THE PREDICTION OF THREE-DIMENSIONAL LIQUID-PROPELLANT ROCKET NOZZLE ADMITTANCES

by CASE FILE COPY

W. A. Bell and B. T. Zinn

GEORGIA INSTITUTE OF TECHNOLOGY

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Grant NGL 11--002--085
Richard J. Priem, Project Manager
NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or

B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA or employee of such contractor prepares, disseminates, or provides access to any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to:

National Aeronautics and Space Administration
Scientific and Technical Information Facility
P. O. Box 33
College Park, Md. 20740
Crocco's three-dimensional nozzle admittance theory is extended to be applicable when the amplitudes of the combustor and nozzle oscillations increase or decrease with time. An analytical procedure and a computer program for determining nozzle admittance values from the extended theory are presented and used to compute the admittances of a family of liquid-propellant rocket nozzles. The calculated results indicate that the nozzle geometry, entrance Mach number and temporal decay coefficient significantly affect the nozzle admittance values. The theoretical predictions are shown to be in good agreement with available experimental data.
ABSTRACT

Crocco's three-dimensional nozzle admittance theory is extended to be applicable when the amplitudes of the combustor and nozzle oscillations increase or decrease with time. An analytical procedure and a computer program for determining nozzle admittance values from the extended theory are presented and used to compute the admittances of a family of liquid-propellant rocket nozzles. The calculated results indicate that the nozzle geometry, entrance Mach number and temporal decay coefficient significantly affect the nozzle admittance values. The theoretical predictions are shown to be in good agreement with available experimental data.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>2</td>
</tr>
<tr>
<td>ANALYSIS</td>
<td>4</td>
</tr>
<tr>
<td>Derivation of the Wave Equations</td>
<td>4</td>
</tr>
<tr>
<td>Method of Solution</td>
<td>9</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>12</td>
</tr>
<tr>
<td>Admittances for Longitudinal Modes</td>
<td>12</td>
</tr>
<tr>
<td>Admittances for Mixed First Tangential-Longitudinal Modes</td>
<td>14</td>
</tr>
<tr>
<td>Effect of Decay Coefficient upon Admittance Data</td>
<td>15</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>15</td>
</tr>
<tr>
<td>FIGURES</td>
<td>16</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>26</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>55</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Typical Mathematical Model Used in Combustion Instability Analyses of Liquid Rocket Engines</td>
</tr>
<tr>
<td>2</td>
<td>Nozzle Contour</td>
</tr>
<tr>
<td>3</td>
<td>The Effect of Nozzle Half-Angle on the Theoretical and Experimental Nozzle Admittance Values for Longitudinal Modes</td>
</tr>
<tr>
<td>4</td>
<td>The Effect of Entrance Mach Number on the Theoretical and Experimental Nozzle Admittance Values for Longitudinal Modes</td>
</tr>
<tr>
<td>5</td>
<td>The Effect of the Radii of Curvature on the Theoretical and Experimental Nozzle Admittance Values for Longitudinal Modes</td>
</tr>
<tr>
<td>6</td>
<td>The Effect of the Nozzle Half-Angle on the Theoretical and Experimental Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes</td>
</tr>
<tr>
<td>7</td>
<td>The Effect of Entrance Mach Number on the Theoretical and Experimental Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes</td>
</tr>
<tr>
<td>8</td>
<td>The Effect of the Radii of Curvature on the Theoretical and Experimental Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes</td>
</tr>
<tr>
<td>9</td>
<td>Effect of the Temporal Decay Coefficient on the Theoretical Nozzle Admittance Values for Longitudinal Modes</td>
</tr>
<tr>
<td>10</td>
<td>Effect of the Temporal Decay Coefficient on the Theoretical Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes</td>
</tr>
<tr>
<td>A-1</td>
<td>Flow Chart for the Nozzle Admittance Computer Program</td>
</tr>
</tbody>
</table>
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Values of Transverse Mode Eigenvalues, $S_{mn}$</td>
<td>13</td>
</tr>
<tr>
<td>A-1</td>
<td>List of Subroutines in the Computer Program Used to Determine</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>the Irrotational Nozzle Admittance</td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>Definition of FORTRAN Variables</td>
<td>28</td>
</tr>
<tr>
<td>A-3</td>
<td>Input Parameters</td>
<td>32</td>
</tr>
<tr>
<td>A-4</td>
<td>Output Parameters</td>
<td>33</td>
</tr>
<tr>
<td>A-5</td>
<td>Listing of the Computer Program Used to Determine the Irrotational</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Nozzle Admittance</td>
<td></td>
</tr>
<tr>
<td>A-6</td>
<td>Sample Output</td>
<td>44</td>
</tr>
</tbody>
</table>
INTRODUCTION

The interaction between the pressure oscillations inside an unstable rocket combustion chamber and the wave motion in the convergent section of the exhaust nozzle can have a significant effect on the stability characteristics of the rocket motor and is an important consideration in analytical studies concerned with the prediction of the stability of liquid-propellant rocket engines. This report is concerned with the investigation of this interaction.

To determine the stability of a liquid-propellant rocket engine, the equations describing the behavior of the oscillatory flow field throughout the rocket motor must be solved. To simplify the problem, it is convenient to analyze the oscillations in the combustion chamber and the nozzle separately. For such an analysis, the combustion chamber extends from the injector face to the nozzle entrance as shown in Fig. 1. All the combustion is assumed to take place in the combustion chamber where the mean flow Mach number is generally assumed to be low. On the other hand, no combustion is assumed to take place in the nozzle and its mean flow Mach number increases from a low value at the nozzle entrance to unity at the throat. Downstream of the throat the flow is supersonic and disturbances in this region cannot propagate upstream and affect the chamber conditions. Therefore, in combustion instability studies it is only necessary to consider the behavior of the oscillations in the converging section of the nozzle since only these oscillations can influence the conditions in the combustion chamber.

The nozzle admittance is the boundary condition that must be satisfied by the combustor flow oscillations at the nozzle entrance. Defined as the ratio of the axial velocity perturbation to the pressure perturbation at the nozzle entrance, the nozzle admittance can also be used to determine whether wave motion in the nozzle under consideration adds or removes energy from the combustor oscillations. Furthermore, this boundary condition influences the structures and resonant frequencies of the natural modes of the combustor under investigation.

To theoretically determine the nozzle admittance, the equations which describe the behavior of the waves in the convergent section of the exhaust nozzle must be solved. These equations have been developed by
Crocco\(^2\) and were solved numerically to obtain admittance values for one- and three-dimensional oscillations. These values were tabulated over a wide range of frequencies and entrance Mach numbers for a specific nozzle geometry. By applying the scaling technique developed in Ref. 2, the admittances of related nozzles can be determined. It was pointed out, however, that interpolation of the tabulated values can result in large errors in the predicted nozzle admittances; furthermore, the accuracy of the scaling procedure is open to question. In addition, Crocco's theory is only applicable to constant amplitude periodic wave motions, and in its present form it cannot be applied to cases where the amplitude of the oscillations varies in time.

In this report, the equations needed for computing the nozzle admittance are presented and their solutions are outlined. Crocco's theory is extended to account for wave-amplitude variation with time. Typical theoretical predictions are shown and compared with available experimental data. The effects of the nozzle geometry and chamber Mach number on the nozzle admittance are presented in plots showing frequency dependence of the real and imaginary parts of the nozzle admittance. The effects of the decay coefficient are also assessed. A manual describing the use of the computer program which calculates nozzle admittance values along with a program listing is presented in the appendix.

**SYMBOLS**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C</td>
<td>variable coefficients defined below Eq. (14)</td>
</tr>
<tr>
<td>c</td>
<td>nondimensional speed of sound, (c^<em>/\gamma_o^</em>)</td>
</tr>
<tr>
<td>(\hat{\theta}, \hat{\theta}, \hat{\theta})</td>
<td>unit vectors</td>
</tr>
<tr>
<td>i</td>
<td>(\sqrt{-1})</td>
</tr>
<tr>
<td>(J_m)</td>
<td>Bessel function of the first kind of order (m)</td>
</tr>
<tr>
<td>(K(\psi, \theta, t))</td>
<td>a function having the following space and time dependence:</td>
</tr>
<tr>
<td>M</td>
<td>Mach number at the nozzle entrance</td>
</tr>
</tbody>
</table>

\[
J_m \left[ S_m \left( \frac{\psi}{\psi_w} \right)^{1/2} \right] e^{i\omega t \pm i\theta} \]
n number of mode diametral nodal lines
m number of mode tangential nodal lines
p nondimensional pressure, \( p^* / p_o^* \)
q nondimensional velocity, \( q^* / c_o^* \)
r nondimensional radius, \( r^* / r^*_c \)
\( r_{cc} \) nondimensional radius of curvature at the nozzle entrance, \( r_{cc}^* / r^*_c \)
\( r_{ct} \) nondimensional radius of curvature at the nozzle throat, \( r_{ct}^* / r^*_c \)
S nondimensional frequency, \( \omega^* r_c^*/c^* \)
\( S_{mn} \) the \( n \)th root of the equation
\[
\frac{dJ_m(x)}{dx} = 0
\]
t nondimensional time, \( t^* r_o^*/c^* \)
u nondimensional axial velocity component, \( u^* / c_o^* \)
v nondimensional radial velocity component, \( v^* / c_o^* \)
w nondimensional tangential velocity component, \( w^* / c_o^* \)
y irrotational specific nozzle admittance defined in Eq. (13)
\[
y = \bar{\rho}^* c^* \frac{u'}{p'} = \gamma \bar{\rho} c \frac{u'}{p'}
\]
z nondimensional axial coordinate, \( z^* / r^*_c \)
\( \gamma \) ratio of specific heats
\( \zeta \) a function used to compute the nozzle admittance; defined below Eq. (13)
\( \theta \) tangential coordinate, radians
\( \theta_l \) nozzle half-angle, degrees
\( \lambda \) nondimensional temporal decay coefficient, \( \lambda^* r^*_c / c^*_o \)
\( \rho \) nondimensional density, \( \rho^* / \rho_o^* \)
\( \tau \) a function used to compute the nozzle admittance; \( \tau = 1/\zeta \)
\( \phi \) nondimensional steady state velocity potential, \( \phi^* / c^*_o r^*_c \)
\( \phi \) a function describing the \( \phi \)-dependence of the radial velocity perturbation
\( \psi \) nondimensional steady state stream function, \( \frac{1}{2} \bar{\rho}(\psi) q(\psi) r^2 \)
\( \omega \) nondimensional frequency, \( \omega^* r_c^*/c^* \)
Derivation of the Wave Equations

The equations used by Crocco\(^2\) to compute the nozzle admittance will be developed from the conservation equations. To keep the problem mathematically tractable and yet physically meaningful, the following assumptions were employed.

1. The nozzle flow is a calorically perfect gas consisting of a single species.
2. Viscosity and heat conduction are negligible.
3. The steady state flow is one-dimensional; this assumption implies that the nozzle is slowly converging.
4. The amplitudes of the waves are small so that only linear terms in the perturbed quantities need to be retained in the conservation equations.
5. The oscillations are assumed to be irrotational.

Using these assumptions, the equations of motion in nondimensional form become

\[
\frac{\partial p}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0
\] (1)
Momentum

\[ \frac{\partial \tilde{q}}{\partial t} + \frac{1}{2} \tilde{c}^2 \tilde{q} = -\frac{1}{\rho} \tilde{v} \]  

(2)

and, from the isentropic conditions, \( c^2 = p/\rho \) and \( p = \rho' \).

To obtain the linearized wave equations, the dependent variables are expressed in the following form:

\[ \tilde{q} = \tilde{q} + q', \quad \rho = \tilde{\rho} + \rho', \quad \rho = \tilde{\rho} + \rho' \]  

(3)

Substituting these expressions into Eqs. (1) and (2), neglecting all non-linear terms involving primed quantities, and separating the resulting system of equations into a set of steady state equations and a set of unsteady equations yield the system of steady state equations:

\[ \nabla \cdot (\tilde{\rho} \tilde{q}) = 0; \quad \tilde{c}^2 = \tilde{\rho}' - 1 = 1 - \frac{\gamma - 1}{2} \tilde{q}^2; \quad \tilde{\rho} = \tilde{\rho}' \]  

(4)

and the following system of unsteady linear equations that describe the wave motion:

\[ \frac{\partial \tilde{\rho}'}{\partial t} + \nabla \cdot (\tilde{q}' \tilde{q}) = 0 \]  

(5)

\[ \frac{\partial q'}{\partial t} + \nabla (\tilde{q} \cdot q') = -\nabla \left( \frac{\tilde{\rho}'}{\gamma \tilde{\rho}} \right) \]  

(6)

\[ p' = \tilde{c}^2 \rho' \]  

(7)

To simplify the application of the boundary conditions at the nozzle walls, these wave equations are solved in the orthogonal coordinate system shown in Fig. 1. In this coordinate system the steady state velocity potential \( \phi \) replaces the axial coordinate \( z \), the steady state stream function \( \psi \) replaces the radial coordinate \( r \) and the angle \( \theta \) is used to denote azimuthal variations. Using this coordinate system the velocity vectors can be expressed as follows:
\[ \dot{q} = \bar{q}(\varphi) e_\varphi \]

\[ q' = u' e_\varphi + v' e_\psi + w' e_\theta \]

Using the definitions of the steady state velocity potential and stream function for a one-dimensional mean flow, it can be shown \(^2\) that

\[ q(\varphi) = \frac{\partial \varphi}{\partial z} \]

\[ \psi = \frac{1}{2} \bar{\varphi}(\varphi) \bar{q}(\varphi) r^2 \]

Rewriting Eqs. (5) and (6) in the \((\varphi, \psi, \theta)\) coordinate system yields the following system of equations\(^2\):

**Continuity**

\[ \frac{\partial (\rho' \bar{\rho})}{\partial t} + \dot{q}^2 \frac{\partial \left( \frac{p'}{\bar{\rho}} \right)}{\partial \varphi} + 2\bar{\rho} \frac{\partial}{\partial \psi} \left( \frac{v'}{rpq} \right) + \frac{\bar{\rho}}{2\psi} \frac{\partial (rw')}{\partial \theta} = 0 \] (8)

**Momentum**

\[ \varphi\text{-component} \]

\[ \frac{\partial \left( \frac{u'}{\bar{q}} \right)}{\partial t} + \frac{\partial}{\partial \varphi} \left( \dot{q}^2 \frac{u'}{\bar{q}} \right) + \frac{\partial}{\partial \psi} \left( \frac{p'}{\gamma_p} \right) = 0 \] (9)

\[ \psi\text{-component} \]

\[ \frac{\partial t}{\partial t} \left( \frac{v'}{rpq} \right) + \dot{q}^2 \frac{\partial}{\partial \varphi} \left( \frac{v'}{rpq} \right) + \frac{\partial}{\partial \psi} \left( \frac{p'}{\gamma_p} \right) = 0 \] (10)

\[ \theta\text{-component} \]

\[ \frac{\partial}{\partial t} (rw') + \dot{q}^2 \frac{\partial}{\partial \varphi} (rw') + \frac{\partial}{\partial \psi} \left( \frac{p'}{\gamma_p} \right) = 0 \] (11)

Equations (7) through (11) constitute a system of five equations in the five unknowns -- \(\rho'/\bar{\rho}, \ u'/\bar{q}, \ v'/\bar{r}\bar{p}_{\bar{q}}, \ rw', \) and \(p'/\gamma_p\). These equations are solved by the method of separation of variables and the solutions are
\[
\frac{u'}{q} = \frac{d\phi(\varphi)}{d\varphi} K(\psi, \theta, t)
\]

\[
\frac{v'}{r' q} = \tilde{\Psi}(\varphi) \cdot \frac{\partial}{\partial \varphi} K(\psi, \theta, t)
\]

\[
rw' = \tilde{\Psi}(\varphi) \cdot \frac{\partial}{\partial \theta} K(\psi, \theta, t)
\]

\[
\frac{p'}{p} = -\left[i(w - i\lambda)\tilde{\Psi}(\varphi) + q^2(\varphi) \frac{d\tilde{\Psi}(\varphi)}{d\varphi}\right] K(\psi, \theta, t)
\]

\[
\frac{\rho'}{\rho} = -\frac{1}{c^2} \left[i(w - i\lambda) \tilde{\Psi}(\varphi) + q^2(\varphi) \frac{d\tilde{\Psi}(\varphi)}{d\varphi}\right] K(\psi, \theta, t)
\]

where

\[
K(\psi, \theta, t) = \begin{cases} 
J_m S_{mn} \left(\frac{\psi}{\varphi_w}\right)^{\frac{1}{2}} \cos m\theta e^{i(w - i\lambda)t} & \text{for standing waves} \\
J_m S_{mn} \left(\frac{\psi}{\varphi_w}\right)^{\frac{1}{2}} \pm i\theta e^{i(w - i\lambda)t} & \text{for spinning waves}
\end{cases}
\]

These solutions identically satisfy the momentum and energy equations. Substituting these solutions into Eq. (8) and eliminating variables give the following differential equation for the function \(\tilde{\Psi}\):

\[
\frac{-q^2(\varphi^2 - q^2)}{c^2} \frac{d^2 \tilde{\Psi}}{d\varphi^2} - q^2 \left[\frac{1}{c^2} \frac{d\varphi^2}{d\varphi} + 2i(w - i\lambda)\right] \frac{d\tilde{\Psi}}{d\varphi}
\]

\[
+ \left[(w - i\lambda)^2 - \frac{\gamma - 1}{2} i(w - i\lambda) \frac{q^2}{c^2} \frac{d\varphi^2}{d\varphi} - \frac{S_{mn}^2}{r_w^2}\right] \tilde{\Psi} = 0
\]

\[
(12)
\]

The function \(\tilde{\Psi}\) can be related to the specific acoustic admittance by the formula

\[
y = \gamma pc \frac{u'}{p'} = -\frac{\gamma pc}{q^2 \tilde{\zeta} + i(w - i\lambda)}
\]

\[
(13)
\]
where \( \zeta = \frac{1}{\bar{\psi}} \frac{d\bar{\psi}}{d\varphi} \). Using the definition of \( \zeta \) and Eq. (12), the following differential equation for \( \zeta \) is derived:

\[
\frac{d\zeta}{d\varphi} - \frac{B}{A} \zeta + \zeta^2 = - \frac{C}{A} \tag{14}
\]

where

\[
A = \bar{q}^2 (\bar{c}^2 - q^2)
\]

\[
B = \bar{q}^2 \left[ \frac{1}{2} \frac{d\bar{q}^2}{d\varphi} + 2i(\omega - i\lambda) \right]
\]

\[
C = \left[ (\omega - i\lambda)^2 - \frac{S_{mn}^2 c^2}{\bar{q}^2 \omega} - i(\omega - i\lambda) \right] \frac{\bar{q}^2}{2} \frac{d\bar{q}^2}{d\varphi}
\]

Equation (14) is a complex Riccati equation which must be solved numerically to obtain \( \zeta \). Once the value of \( \zeta \) is determined at the nozzle entrance, the nozzle admittance can be computed directly from Eq. (13).

Inspection of Eq. (14) shows that the value of \( \zeta \) depends upon its coefficients \( A, B, \) and \( C \) which in turn depend upon \( \omega, \lambda, S_{mn} \), and the space dependence of \( \bar{q} \) and \( \bar{c} \) in the nozzle. The behavior of \( \bar{q} \) and \( \bar{c} \) in the nozzle can be computed once the value of \( \gamma \) and the nozzle contour are specified.

To determine \( \zeta \) for given values of \( \omega, \lambda, S_{mn} \) and \( \gamma \) and a specific nozzle contour, Eq. (14) must be integrated numerically. A major difficulty which can occur during this integration is that \( \zeta \) becomes unbounded whenever \( \bar{\psi} \) approaches zero, which causes numerical difficulties in the integration scheme. Crocco and Sirignano\(^2\) noted that this phenomenon occurred for low Mach numbers and high values of \( \omega/S_{mn} \). At these Mach numbers and frequencies they developed asymptotic solutions for \( \zeta \).

Instead of using the asymptotic solution, an exact numerical solution is obtained in this study. The problem is resolved by introducing a new dependent variable

\[
\tau = \frac{1}{\bar{\psi}} \frac{d\bar{\psi}}{d\varphi}
\]
As \( \dot{\varphi} \) approaches zero and the magnitude of \( \zeta \) becomes large, \( \tau \) becomes small. Introducing the definition of \( \tau \) into Eq. (14) gives the following Riccati equation for \( \tau \)

\[
\frac{d\tau}{d\varphi} + \frac{B}{A} \tau - \frac{C}{A} \tau^2 = \frac{1}{\dot{\varphi}}
\]  

(15)

At those regions where \( \zeta \) becomes unbounded, Eq. (15) is integrated instead of Eq. (14).

**Method of Solution**

To obtain the nozzle admittance from Eq. (13), values of \( \zeta \) and \( \tau \) are computed by numerically integrating Eq. (14) or (15). To evaluate the coefficients \( A, B, \) and \( C \), a differential equation that describes the variations of the steady state velocity in the subsonic portion of the nozzle must be derived. Differentiating the continuity equation

\[
\frac{\dot{r}^2}{\dot{q}} = \frac{p_{\text{th}}}{r_{\text{th}}} \frac{q_{\text{th}}}{q_{\text{th}}} = \text{constant}
\]

(16)

where \( \dot{q}_{\text{th}} = \dot{c}_{\text{th}} = 2/(\gamma + 1) \), and using Eq. (4) yield the following differential equation

\[
\frac{dq}{dr} = \frac{1}{dr/dq^2} = -\frac{\gamma - 1}{r_{\text{th}}} \left( \frac{2}{\gamma + 1} \right) \left[ \frac{-2}{(\gamma - 1)^2} \left( \frac{\dot{q}}{q} \right)^2 \left( \frac{1}{2} \frac{\dot{q}}{q} - \frac{1}{2} \frac{\dot{q}}{q}^2 \right) \right]
\]

(17)

Using Eq. (17) and the specified nozzle contour in terms of \( r(z) \), the quantity \( dq/d\varphi \) can be obtained from the relationship

\[
\frac{dq}{d\varphi} = \frac{dq^2}{dr} \frac{dr}{dz} \frac{dz}{d\varphi} = 2 \frac{dq}{dr} \frac{dr}{dz}
\]

(18)

Once \( \dot{\varphi} \) is known the corresponding value of \( \dot{c}^2(\varphi) \) can be obtained by use of Eq. (4). To evaluate \( dr/dz \) in Eq. (18), the nozzle contour shown in Fig. 2 is used. Starting at the combustion chamber the contour is generated by a circular arc of radius \( r_{cc} \) turned through an angle \( \theta_1 \), the nozzle half-angle. This arc connects smoothly to a straight line which is inclined
at an angle \( \theta_1 \) to the nozzle axis. This straight line then joins with another circular arc of radius \( r_{ct} \) which turns through an angle \( \theta_1 \) and ends at the throat. Using this nozzle contour, in regions I, II and III of Fig. 2

\[
\frac{dr}{dz}\bigg|_I = -\frac{\left[2r_{ct}(r - r_{th}) - (r - r_{th})^2\right]^{\frac{1}{2}}}{r_{ct} + r_{th} - r}
\]

\[
\frac{dr}{dz}\bigg|_{II} = -\tan \theta_1
\]

\[
\frac{dr}{dz}\bigg|_{III} = \frac{[2r_{cc}(1 - r) - (1 - r)^2]^{\frac{1}{2}}}{1 - r_{cc} - r}
\]

Utilizing the appropriate expression for \( dr/dz \), Eq. (18) can now be solved simultaneously with Eq. (14) or (15) to determine the nozzle admittance.

The numerical integration of these equations must start at some initial point where the initial conditions are known. Since the equation for \( \zeta \) is singular at the throat, the integration is initiated at a point that is located a short distance upstream of the throat. The needed initial conditions are obtained by expanding the dependent variables in a Taylor series about the throat. To obtain this Taylor series, its coefficients \( \zeta(0) = \zeta_0 \) and \( \zeta_1 = \frac{d\zeta}{d\phi}\bigg|_{\phi = 0} \) must be evaluated at the throat where \( \phi = 0 \).

These coefficients are evaluated by substituting the series

\[\zeta = \zeta_0 + \zeta_1 \phi + \ldots\]

into Eq. (14) and taking the limit as \( \phi \to 0 \). The results are

\[\zeta_0 = \zeta(0) = \frac{C_0}{B_0}\]

\[\zeta_1 = \frac{d\zeta}{d\phi}\bigg|_{\phi = 0} = \left[B_1(C_0) - A_1\left(\frac{C_0}{B_0}\right)^2 - C_1\right]/(A_1 - B_0)\]

where
\[ c_0 = C \left| \phi = 0 = \left( w - i\lambda \right)^2 - i \frac{2(\gamma - 1)(w - i\lambda)}{(\gamma + 1)\sqrt{r_{th}r_{ct}}} - \frac{S_{mn}^2 (2)}{r_{th}r_{ct}} \right. \]

\[ b_0 = B \left| \phi = 0 = \frac{4}{\gamma + 1} \left[ \frac{1}{r_{th}r_{ct}} + i(w - i\lambda) \right] \right. \]

\[ b_1 = \frac{db}{d\phi} \bigg|_{\phi = 0} = \frac{4}{\gamma + 1} \left[ \frac{6 + \gamma}{3r_{th}r_{ct}} + i \frac{2(w - i\lambda)}{r_{th}r_{ct}} \right] \]

\[ a_1 = \frac{da}{d\phi} \bigg|_{\phi = 0} = \frac{-4}{(\gamma + 1)r_{th}r_{ct}} \]

\[ c_1 = \frac{dc}{d\phi} \bigg|_{\phi = 0} = 2(\gamma - 1) \left[ \frac{S_{mn}^2}{r_{th}r_{ct}} - \frac{i(w - i\lambda)}{3r_{th}r_{ct}} \right] (6 + \gamma) \]

The following relations are used in the evaluation of the above quantities:

\[ \frac{2}{\phi = 0} = \frac{2}{\gamma + 1} \]

\[ \frac{d^2}{d\phi^2} \bigg|_{\phi = 0} = \frac{4}{(\gamma + 1)r_{th}r_{ct}} \]

Once \( \zeta_0 \) and \( \zeta_1 \) are known, the initial condition at \( \phi = \phi_1 \) is obtained from the expression \( \zeta(\phi_1) = \zeta_0 + \zeta_1\phi_1 \).

The numerical solution is obtained by use of a modified Adams predictor-corrector scheme, and employing a Runge-Kutta scheme of order four to start the numerical integration. Initially, Eqs. (14) and (18) are integrated to determine \( \zeta \); if the magnitude of \( \zeta \) exceeds a specified value at which numerical difficulties can occur, the integration of Eq. (14) is terminated. Using the value of \( \zeta \) at that point, \( \tau \) is computed and the
integrated proceeds using Eq. (15). Similarly, should the magnitude of \( \tau \)
become excessively large, the integration of Eq. (15) is terminated, \( \zeta \) is
computed from the value of \( \tau \) at that point, and the integration proceeds
using Eq. (14). This process is repeated until the nozzle entrance is
reached. A computer program utilizing this procedure has been written in
FORTRAN V for use on the UNIVAC 1108 computer and it is presented in the
Appendix.

RESULTS AND DISCUSSION

Using the previously mentioned computer program, theoretical values
of the real and imaginary parts of the nozzle admittance have been computed
for several nozzle configurations having contours similar to the one presented
in Fig. 2. In these computations the radii of curvature, \( r_{cc} \) and \( r_{ct} \), are
assumed to be equal. The admittance values are presented as functions of the
nondimensional frequency \( S \) in Figs. 3 through 9 where they are compared with
available experimental data obtained from Ref. 3. In these figures, the
frequency has been nondimensionalized by the ratio of the steady state speed
of sound at the nozzle entrance to the chamber radius \( r_c \).

Admittances for Longitudinal Modes

Longitudinal-type instabilities in general occur in the range of \( S \)
from 0 to approximately 1.8 which is in the vicinity of the cutoff frequency
of the first tangential modes. The cutoff frequency of a particular transverse
mode is \( S_{mn} \sqrt{1 - M^2} \) where \( S_{mn} \) is the transverse mode eigenvalue and the sub-
scripts \( m \) and \( n \) respectively denote the number of diametral nodal lines and
the number of tangential nodal lines. Values of \( S_{mn} \) are given in Table 1 for
several values of \( m \) and \( n \).

For longitudinal modes good agreement exists between the experimental
and theoretical values of the real and imaginary parts of the admittance as
shown in Figs. 3 through 5. The effect of changing the nozzle half-angle is
presented in Fig. 3 for a nozzle with an entrance Mach number \( M \) of 0.08 and
\( r_{cc}/r_c = 0.44 \). The data indicate that increasing \( \theta_1 \) increases the frequency
at which the real and imaginary parts of the admittance attain maximum values.
These data also indicate that the assumption of a one-dimensional mean flow
Table 1. Values of Transverse Mode Eigenvalues; $S_{mn}$

<table>
<thead>
<tr>
<th>Transverse Wave Pattern</th>
<th>m</th>
<th>n</th>
<th>$S_{mn}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>First Tangential (1T)</td>
<td>1</td>
<td>0</td>
<td>1.8413</td>
</tr>
<tr>
<td>Second Tangential (2T)</td>
<td>2</td>
<td>0</td>
<td>3.0543</td>
</tr>
<tr>
<td>First Radial (1R)</td>
<td>0</td>
<td>1</td>
<td>3.8317</td>
</tr>
<tr>
<td>Third Tangential (3T)</td>
<td>3</td>
<td>0</td>
<td>4.2012</td>
</tr>
<tr>
<td>Fourth Tangential (4T)</td>
<td>4</td>
<td>0</td>
<td>5.3175</td>
</tr>
<tr>
<td>First Tangential, First Radial (1T,1R)</td>
<td>1</td>
<td>1</td>
<td>5.3313</td>
</tr>
<tr>
<td>Fifth Tangential (5T)</td>
<td>5</td>
<td>0</td>
<td>6.4154</td>
</tr>
<tr>
<td>Second Tangential, First Radial (2T,1R)</td>
<td>2</td>
<td>1</td>
<td>6.7060</td>
</tr>
<tr>
<td>Second Radial (2R)</td>
<td>0</td>
<td>2</td>
<td>7.0156</td>
</tr>
</tbody>
</table>

used in the development of the theory appears to be valid. Even for nozzles with half-angles as high as 45 degrees, for which it has been shown that the mean flow is two-dimensional, the experimental and theoretical nozzle admittance values are in good agreement.

Examination of Fig. 4 shows that the entrance Mach number $M$ has a significant effect on the admittance values for $\theta = 15$ degrees and $r_{cc}/r_c = 0.44$. However, increasing the nozzle half-angle appears to decrease the influence of the entrance Mach number, and for $\theta = 45$ degrees variations in $M$ have little effect. The dependence of the nozzle admittance upon the radius of curvature for a nozzle with $M = 0.16$ and $\theta = 30$ degrees is shown in Fig. 5.

The data presented in Figs. 3 through 5 show that for longitudinal modes the real part of the nozzle admittance is always positive. As indicated by Crocco positive values of the real part of the nozzle admittance imply that the nozzle removes acoustic energy from the combustor wave system which implies that the nozzle exerts a stabilizing influence upon the chamber oscillations.

In combustion instability analyses of liquid-propellant rocket motors, it is often assumed that the nozzle is short. This assumption implies that the nozzle length and throat diameter are much smaller than the chamber length and diameter so that the wave travel time in the nozzle is much shorter than the wave travel time in the chamber. For a short nozzle the real and imaginary
parts of the admittance are independent of frequency and are given by the expressions

\[ y_r = \frac{\gamma - 1}{2} M; \quad y_i = 0 \]

These theoretical short nozzle admittance results do not agree with the results obtained for typical liquid rocket nozzles presented in Figs. 3 through 5. The disagreement is especially evident for nozzles with low values of \( \theta_1 \), which imply that the nozzle is long, and for high values of \( S \) where the wave length of the oscillation becomes of the same order of magnitude as a characteristic nozzle dimension.

**Admittances for Mixed First Tangential-Longitudinal Modes**

The mixed first tangential-longitudinal modes are those three-dimensional modes which exist between the cutoff frequencies of the first tangential \((S \approx 1.8)\) and second tangential \((S \approx 3.0)\) modes. Theoretical and experimental nozzle admittance data for these modes are presented in Figs. 6 through 8.

In Fig. 6 the influence of the nozzle half-angle on the admittance values is shown. The theoretical and experimental results are in good agreement and they indicate that increasing \( \theta_1 \) increases the frequency at which the real and imaginary parts of the admittance reach maximum values.

The effect of Mach number on the admittance values is presented in Fig. 7 for \( \theta_1 = 15 \) degrees and \( r_{cc}/r_c = 0.44 \). Mach number effects are especially significant at the higher frequencies. However, as shown in Ref. 3, increasing the nozzle half-angle decreases the dependence of the admittance values on the Mach number. The effect of changing the radii of curvature on the admittance values is presented in Fig. 8.

The results presented in Figs. 6 through 8 show that for mixed first tangential-longitudinal modes the real part of the nozzle admittance can be negative which means that the nozzle radiates wave energy back into the combustor; this process exerts a destabilizing influence on the oscillations in the chamber. These negative values occur only for three-dimensional modes and, as shown by Crocco, their cause can be traced to the term involving \( S_{nn} \) in Eq. (12). For longitudinal modes, for which \( S_{nn} \)
is zero, the real part of the nozzle admittance is always positive, and for those modes the nozzle always exerts a stabilizing influence upon the combustor oscillations.

**Effect of Decay Coefficient upon Admittance Data**

The nozzle admittance theory has been modified to include the effects of a temporal decay coefficient, $\lambda$. Typical results are shown in Figs. 9 and 10 for values of $\lambda$ of -0.05, 0, and 0.05. These results indicate that varying $\lambda$ affects both the real and imaginary parts of the admittance. Therefore, the decay coefficient should be included in the nozzle admittance computations when the oscillations are not neutrally stable.

**SUMMARY AND CONCLUSIONS**

The equations necessary to determine the nozzle admittance for one- and three-dimensional oscillations have been developed. The analytical approach used in solving the nozzle wave equations is outlined and employed to obtain nozzle admittance data for typical nozzle configurations. These data show the dependence of the nozzle admittance values upon nozzle geometry, nozzle Mach number, mode of oscillation, and the temporal damping coefficient.

The results can be summarized as follows for longitudinal and mixed first tangential-longitudinal modes. Decreasing the nozzle length by increasing the nozzle half-angle and Mach number or by decreasing the throat and entrance radii of curvature decreases the frequency dependence of the nozzle admittance. Good agreement exists between the theoretical predictions and available experimental data. However, the nozzle admittance values for typical liquid rocket nozzles are not in agreement with the values obtained from short nozzle theory. Including the effects of a temporal damping coefficient in the nozzle admittance computations changes the admittance values. Therefore, when the oscillations are not neutrally stable, the temporal decay coefficient should be accounted for in the computations.
Figure 1. Typical Mathematical Model of a Liquid Rocket Engine
Figure 2. Nozzle Contour
Figure 3. The Effect of Nozzle Half-Angle on the Theoretical and Experimental Nozzle Admittance Values for Longitudinal Modes
Figure 4. The Effect of Entrance Mach Number on the Theoretical and Experimental Nozzle Admittance Values for Longitudinal Modes
Figure 5. The Effect of the Radii of Curvature on the Theoretical and Experimental Nozzle Admittance Values for Longitudinal Modes
Figure 6. The Effect of the Nozzle Half-Angle on the Theoretical and Experimental Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes
Figure 7. The Effect of Entrance Mach Number on the Theoretical and Experimental Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes
Figure 8. The Effect of the Radii of Curvature on the Theoretical and Experimental Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes
Figure 9. Effect of the Temporal Decay Coefficient on the Theoretical Nozzle Admittance Values for Longitudinal Modes
Figure 10. Effect of the Temporal Decay Coefficient on the Theoretical Nozzle Admittance Values for Mixed First Tangential-Longitudinal Modes
The computer program for calculating the irrotational nozzle admittance from Crocco's theory which is extended to account for temporal damping is written in FORTRAN V interpretive language compatible with the UNIVAC 1108 machine language compiler. This program consists of seven routines - the main or control program and six subroutines. The names of the routines are listed in Table A-1 in sequential order. The FORTRAN symbols used in these routines and their definitions are presented in Table A-2 in alphabetical order. The input parameters necessary for the admittance computations must be specified in the main program and are listed in Table A-3. The output parameters and their definitions are listed in Table A-4. A detailed flow chart of the computer program is shown in Fig. A-1, and the program listing and sample output are presented in Tables A-5 and A-6, respectively.

This computer program has been written to predict nozzle admittances for nozzle contours shown in Fig. 2. The run time required depends upon the number of admittance values desired and the nozzle length. To obtain 40 admittance values at different frequencies for the nozzles investigated in this study, one to two minutes of run time on the UNIVAC 1108 computer are required.
### Table A-1. List of Subroutines in the Computer Program Used to Determine the Irrotational Nozzle Admittance

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>Specifies the nozzle geometry and operating conditions in the converging section of the nozzle</td>
</tr>
<tr>
<td>NOZADM</td>
<td>Specifies initial conditions at the throat, computes the final nozzle admittance values, and contains all output formats</td>
</tr>
<tr>
<td>RKZDIF</td>
<td>Uses the Runge-Kutta of order four to obtain initial values for the modified Adams integration routine</td>
</tr>
<tr>
<td>RKZDIF</td>
<td>Computes the differential element in the converging section of the nozzle used to solve Eq. (14)</td>
</tr>
<tr>
<td>RKTDIF</td>
<td>Computes the differential element in the converging section of the nozzle used to solve Eq. (15)</td>
</tr>
<tr>
<td>ZADAMS</td>
<td>Numerically integrates Eq. (14) using the modified Adams numerical integration scheme</td>
</tr>
<tr>
<td>TADAMS</td>
<td>Numerically integrates Eq. (15) using the modified Adams numerical integration scheme</td>
</tr>
</tbody>
</table>
Table A-2. Definition of FORTRAN Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Real coefficient A of Eqs. (14) and (15)</td>
</tr>
<tr>
<td>A(5)</td>
<td>Coefficients of the Runge-Kutta formulas of order four</td>
</tr>
<tr>
<td>AF</td>
<td>Nondimensional temporal damping coefficient ( \lambda )</td>
</tr>
<tr>
<td>ANGLE</td>
<td>Nozzle half-angle, degrees</td>
</tr>
<tr>
<td>ALR</td>
<td>Derivative of the coefficient A evaluated at the throat</td>
</tr>
<tr>
<td>BI</td>
<td>Imaginary part of the coefficient B in Eqs. (14) and (15)</td>
</tr>
<tr>
<td>BR</td>
<td>Real part of the coefficient B in Eqs. (14) and (15)</td>
</tr>
<tr>
<td>BOI</td>
<td>Value of BI at the throat</td>
</tr>
<tr>
<td>BOR</td>
<td>Value of BR at the throat</td>
</tr>
<tr>
<td>B1I</td>
<td>Derivative of BI evaluated at the throat</td>
</tr>
<tr>
<td>B1R</td>
<td>Derivative of BR evaluated at the throat</td>
</tr>
<tr>
<td>C</td>
<td>Nondimensional speed of sound squared, ( c^2 )</td>
</tr>
<tr>
<td>CI</td>
<td>Imaginary part of the coefficient C in Eqs. (14) and (15)</td>
</tr>
<tr>
<td>CM</td>
<td>Mach number at the nozzle entrance</td>
</tr>
<tr>
<td>COR(5)</td>
<td>Formula for the corrector in the modified Adams integration routine</td>
</tr>
<tr>
<td>CR</td>
<td>Real part of the coefficient C in Eqs. (14) and (15)</td>
</tr>
<tr>
<td>COI</td>
<td>Value of CI at the throat</td>
</tr>
<tr>
<td>COR</td>
<td>Value of CR at the throat</td>
</tr>
<tr>
<td>CLI</td>
<td>Derivative of CI evaluated at the throat</td>
</tr>
<tr>
<td>C1R</td>
<td>Derivative of CR evaluated at the throat</td>
</tr>
<tr>
<td>DP</td>
<td>Integration stepsize</td>
</tr>
<tr>
<td>DP(5)</td>
<td>Derivative used in the corrector formula in the modified Adams integration routine</td>
</tr>
<tr>
<td>DR</td>
<td>Derivative of the local wall radius with respect to axial distance</td>
</tr>
<tr>
<td>DU</td>
<td>Derivative of the nondimensional velocity ( q^2 ) with respect to the wall radius ( r )</td>
</tr>
<tr>
<td>DWC</td>
<td>Increment of the nondimensional frequency ( \omega )</td>
</tr>
</tbody>
</table>
Table A-2. Definition of FORTRAN Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY(5,4)</td>
<td>Derivative used in the modified Adams integration scheme</td>
</tr>
<tr>
<td>F</td>
<td>Constant given as ( \frac{\bar{q}}{\sqrt{\gamma}} ) evaluated at the nozzle entrance</td>
</tr>
<tr>
<td>FZ(4,5)</td>
<td>Derivative used in the Runge-Kutta method</td>
</tr>
<tr>
<td>F1</td>
<td>Lumped parameter determined by the conditions at the throat</td>
</tr>
<tr>
<td>F2</td>
<td>Lumped parameter determined by the conditions at the throat</td>
</tr>
<tr>
<td>GAM</td>
<td>Ratio of specific heats ( \gamma )</td>
</tr>
<tr>
<td>G(5)</td>
<td>Dependent variable in the Runge-Kutta integration routine</td>
</tr>
<tr>
<td>H</td>
<td>Integration stepsize</td>
</tr>
<tr>
<td>I</td>
<td>Integer counter</td>
</tr>
<tr>
<td>IP</td>
<td>Integer constant. If IP = 0 the nozzle admittance is output. If IP ( \neq 0 ) the amplitude and phase of the pressure oscillation are output along the length of the nozzle</td>
</tr>
<tr>
<td>IQ</td>
<td>If IQ = 2, the integration of Eq. (15) for ( \tau ) is complete</td>
</tr>
<tr>
<td>IQZ</td>
<td>= 1: Eq. (15) for ( \tau ) is integrated</td>
</tr>
<tr>
<td></td>
<td>= 2: Eq. (14) for ( \zeta ) is integrated</td>
</tr>
<tr>
<td>J</td>
<td>Integer variable</td>
</tr>
<tr>
<td>JOPT</td>
<td>= 1: Eq. (15) for ( \tau ) is integrated</td>
</tr>
<tr>
<td></td>
<td>= 2: Eq. (14) for ( \zeta ) is integrated</td>
</tr>
<tr>
<td>K</td>
<td>Integer variable</td>
</tr>
<tr>
<td>N</td>
<td>Integer variable</td>
</tr>
<tr>
<td>NU</td>
<td>Number of differential equations to be solved by the Runge-Kutta or the modified Adams integration routine</td>
</tr>
<tr>
<td>NWC</td>
<td>Number of frequency points</td>
</tr>
<tr>
<td>P</td>
<td>Value of the steady state velocity potential</td>
</tr>
<tr>
<td>PARG</td>
<td>Phase of the pressure oscillation in the nozzle</td>
</tr>
<tr>
<td>PHI1</td>
<td>Imaginary part of ( \phi )</td>
</tr>
<tr>
<td>PHIR</td>
<td>Real part of ( \phi )</td>
</tr>
</tbody>
</table>
Table A-2. Definition of FORTRAN Variables  
(Page 3 of 4)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Imaginary part of the pressure oscillation</td>
</tr>
<tr>
<td>PMAG</td>
<td>Magnitude of the pressure oscillation</td>
</tr>
<tr>
<td>PR</td>
<td>Real part of the pressure oscillation</td>
</tr>
<tr>
<td>PRED(5)</td>
<td>Predictor formula for the modified Adams integration routine</td>
</tr>
<tr>
<td>Q</td>
<td>Constant given as ((r_{th}/4)(\frac{2}{\sqrt{\gamma + 1}}))</td>
</tr>
<tr>
<td>QBAR</td>
<td>Nondimensional steady state velocity (\bar{q})</td>
</tr>
<tr>
<td>R</td>
<td>Local wall radius (r)</td>
</tr>
<tr>
<td>RCC</td>
<td>Ratio of the radius of curvature at the nozzle entrance to the radius at the nozzle entrance</td>
</tr>
<tr>
<td>RCT</td>
<td>Ratio of the radius of curvature at the throat to the radius at the nozzle entrance</td>
</tr>
<tr>
<td>RHO</td>
<td>Nondimensional, steady-state density (\bar{p})</td>
</tr>
<tr>
<td>RT</td>
<td>Nondimensional throat radius</td>
</tr>
<tr>
<td>R1</td>
<td>Nondimensional radius at the entrance to Section 2 of the converging portion of the nozzle</td>
</tr>
<tr>
<td>R2</td>
<td>Nondimensional radius at the entrance to Section 3 of the converging portion of the nozzle</td>
</tr>
<tr>
<td>SRTR</td>
<td>Constant given as (\sqrt{r_{th}/r_{cc}/r_c})</td>
</tr>
<tr>
<td>SVN</td>
<td>(S_{mn})</td>
</tr>
<tr>
<td>SVNBR</td>
<td>(S_{mn}r_c/r_{th})</td>
</tr>
<tr>
<td>SYI</td>
<td>Imaginary part of the specific admittance (y)</td>
</tr>
<tr>
<td>SYR</td>
<td>Real part of the specific admittance (y)</td>
</tr>
<tr>
<td>T</td>
<td>Nozzle half-angle, in radians</td>
</tr>
<tr>
<td>TDN</td>
<td>Inverse of the square of the magnitude of (\zeta)</td>
</tr>
<tr>
<td>TI</td>
<td>Imaginary part of (\tau)</td>
</tr>
<tr>
<td>TMAG</td>
<td>Magnitude of (\tau)</td>
</tr>
<tr>
<td>TPI</td>
<td>Derivative of TI with respect to (\varphi)</td>
</tr>
</tbody>
</table>
Table A-2. Definition of FORTRAN Variables
(Page 4 of 4)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPR</td>
<td>Derivative of TR with respect to $\theta$</td>
</tr>
<tr>
<td>TR</td>
<td>Real part of $\tau$</td>
</tr>
<tr>
<td>TZ</td>
<td>Value of $\theta$ at the nth integration point</td>
</tr>
<tr>
<td>T2</td>
<td>Square of the magnitude of $\tau$</td>
</tr>
<tr>
<td>U</td>
<td>Steady state velocity squared, $c^2$</td>
</tr>
<tr>
<td>UZ</td>
<td>Dependent variable in the Runge-Kutta integration scheme</td>
</tr>
<tr>
<td>W</td>
<td>Nondimensional frequency $S$</td>
</tr>
<tr>
<td>WC</td>
<td>Nondimensional frequency $\omega$</td>
</tr>
<tr>
<td>X</td>
<td>Value of $\theta$ at the nth integration point</td>
</tr>
<tr>
<td>Y(5)</td>
<td>Dependent variable used in the modified Adams integration scheme</td>
</tr>
<tr>
<td>YI</td>
<td>Imaginary part of the irrotational nozzle admittance defined by Crocco in Ref. 2</td>
</tr>
<tr>
<td>YR</td>
<td>Real part of the nozzle admittance defined by Crocco in Ref. 2</td>
</tr>
<tr>
<td>ZDN</td>
<td>Inverse of the square of the magnitude of $\zeta$</td>
</tr>
<tr>
<td>ZI</td>
<td>Imaginary part of $\zeta$</td>
</tr>
<tr>
<td>ZMAG</td>
<td>Magnitude of $\zeta$</td>
</tr>
<tr>
<td>ZPI</td>
<td>Derivative of ZI with respect to $\theta$</td>
</tr>
<tr>
<td>ZPR</td>
<td>Derivative of ZR with respect to $\theta$</td>
</tr>
<tr>
<td>ZR</td>
<td>Real part of $\zeta$</td>
</tr>
<tr>
<td>ZOI</td>
<td>Value of ZI at the throat</td>
</tr>
<tr>
<td>ZOR</td>
<td>Value of ZR at the throat</td>
</tr>
<tr>
<td>ZLI</td>
<td>Value of ZPI at the throat</td>
</tr>
<tr>
<td>ZLR</td>
<td>Value of ZPR at the throat</td>
</tr>
<tr>
<td>Z2</td>
<td>Square of the magnitude of $\zeta$</td>
</tr>
</tbody>
</table>
Table A-3. Input Parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAM</td>
<td>Ratio of specific heats, ( \gamma )</td>
</tr>
<tr>
<td>CM</td>
<td>Mach number at the nozzle entrance</td>
</tr>
<tr>
<td>SVN</td>
<td>Nth root of the equation ( \frac{dJ_\gamma(x)}{dx} = 0 ). Corresponds to ( S_{mn} ). Values of ( S_{mn} ) are given in Table 1 for various acoustic modes</td>
</tr>
<tr>
<td>WC</td>
<td>Initial value of ( \omega )</td>
</tr>
<tr>
<td>DWC</td>
<td>Increment of frequency</td>
</tr>
<tr>
<td>NWC</td>
<td>Number of frequency points desired</td>
</tr>
<tr>
<td>ANGLE</td>
<td>Nozzle half-angle, degrees</td>
</tr>
<tr>
<td>RCT</td>
<td>Radius of curvature at the throat nondimensionalized with respect to the chamber radius</td>
</tr>
<tr>
<td>RCC</td>
<td>Radius of curvature at the nozzle entrance nondimensionalized with respect to the chamber radius</td>
</tr>
<tr>
<td>IP</td>
<td>( = 0 ): nozzle admittances are printed ( \neq 0 ): pressure magnitude and phase are printed at each point along the nozzle</td>
</tr>
<tr>
<td>AF</td>
<td>Temporal damping coefficient ( \lambda )</td>
</tr>
<tr>
<td>Variable</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>WC</td>
<td>Nondimensional frequency, $\omega$</td>
</tr>
<tr>
<td>YR</td>
<td>Real part of the admittance as defined by Crocco in Ref. 2</td>
</tr>
<tr>
<td>YI</td>
<td>Imaginary part of the admittance as defined by Crocco in Ref. 2</td>
</tr>
<tr>
<td>W</td>
<td>Nondimensional frequency</td>
</tr>
<tr>
<td>SYR</td>
<td>Real part of the specific admittance $y$</td>
</tr>
<tr>
<td>SYI</td>
<td>Imaginary part of the specific admittance $y$</td>
</tr>
</tbody>
</table>
Table A-5. Listing of the Computer Program Used to Determine the Irrotational Nozzle Admittance (Page 1 of 10)

```plaintext
1*  COMMON/X1,2AM, SVN, ANGLE, RCT, RCC /X2/T,RT, Q, R1, R2, IP, WC, AF
2*  COMMON/X3, Z1R, ZII
3*  COMMON/X4, C4
4*  GAM = 1.233
5*  AF = 0
6*  IP=0
7*  RCC = 1
8*  RCT = 5.457*2/11.82
9*  NC = 40
10* ANGLE = 20
11* CM = .25
12* DO 1:0 I = 1,2
13* IF(I,E0,2) GO TO 5
14* SVN = 0
15* NC = 27
16* GO TO 20
17* 5 SVN = 1.84129
18* NC = 20
19* CONTINUE
20* DO 200 J = 1,3
21* AF = 0.05*(J-2)
22* IF (1,E0,2) GO TO 25
23* WC = 0.55
24* GO TO 30
25* WC = 1.55
26* CONTINUE
27* IF(IP,.E0,0) GO TO 10
28* WRITE(6,1000) CM, SVN, GAM, ANGLE, RCT, RCC
29* CALL NOZADW(CM, NC, DWC).
30* 10 CALL NOZADW(CM, NC, DWC).
31* 200 CONTINUE
32* 100 CONTINUE
33* 100g FORM = (46X, 28MPRESSURE MAGNITUDE AND PHASE, // 38X,
34* 1 1hMACH NUMBER = , F3.2, 7H SVN = , F6.4, 9H GAMMA = , F3.1
35* 2 ,// 22X, 15HNOZZLE ANGLE = , F4.1, 21H RADIOf CURVATURE!
36* 3 , 9THROAT = , F6.4, 12H ENTRANCE = , F6.4, //, 46X,
37* 4 , 2H X, 7X, 4HPMACG, 10X, 4HPARG, )
38* STOP
39* END
```
Table A-5. Continued (Page 2 of 10)

```plaintext
SUBROUTINE NO2ADM(CM*, NW*, DWC)
   DIMENSION DY(5,4), G(5), GP(5), Y(5)
   COMMON/x1/SY*SNY, ANGLE, RCT, RCC/X2/T, RT, R1, R2, IP, WC, AF
   COMMON/3/Z1, Z21
   DP = 0.001
   T = 3.1415927 * ANGLE / 180
   WRITE(6,1000) CM*, SNV*, GAM*, AF, ANGLE, RCT, RCC
   DO 10 I = 1, NW

   20 DO 25 WC = WC + DWC
   25 RT = (CM*+0.5)/(1 + (GAM*-1)*CM*/CM*/2)**((GAM*-1)/(4*(GAM*-1)))

      1 Q = (255RT)*(2/(GAM*+1))**(1/((GAM*-1)/(4*(GAM*-1))))
      PHIR = 1
      PHII = 0
      R1 = RT + RCT*(1 - COS(T))
      R2 = 1 - RCC*(1 - COS(T))
      R = RT
      P = 0
      U = 2 / (GAM*+1)
      SRTR = (RT + RCT)**0.5
      AIR = 4 / (GAM*+1)**SRTR
      BOR = 4 / (AIR + GT/GAM*+1)
      BOI = 4 * WC / (GAM*+1)
      SVNR = SNV/RT
      COR = WC * WC - ((SVNR + SVNR) * 2 / (GAM*+1))
      AF* = AF* - 2*AF*/(GAM*-1)/(GAM*+1)*SRTR
      COI = -2 * WC * (GAM*-1) / ((GAM*+1)*SRTR) - 2*AF*WC
      BIR = (24 + 4*GAM*)/(3*RCT*RCT*(GAM*+1)) - 8*AF*/(SRTR*(GAM*-1))
      BII = 8 * WC / (SRTR*(GAM*-1))
      CIR = 2 * (GAM*-1) * SVNR * SVNR / (SRTR * (GAM*+1))
      31    1 CII = -AIR * WC * (GAM* - 1) * 0.5
      32    1 CII = -AIR * WC * (GAM* - 1) * 0.5
      33    1 ZOR = (ZOR + COR + BOI*COI) / (BOR + BOR + BOI*BOI)
      34    1 ZOI = (ZOR*COI - BOI*COR) / (BOR + BOR + BOI*BOI)
      35    1 F1 = BIR + ZOR + BII*ZOR - ZOR*ZOR*AIR + AIR*ZOR*ZOR - CIR
      36    1 F2 = BII + ZOR + BIP*ZOR - 2*AIR*ZOR*ZOR - CII
      37    1 ZIR = F1*AIR - BOR - F2*BOI / ((AIR - BOR)*AIR - BOR + BOI*BOI)
      38    1 ZII = (F2*AIR - BOR + F1*BOI) / ((AIR - BOR)*AIR - BOR + BOI*BOI)
      39    1 C = U
      41    1 G(1) = U
      43    1 G(2) = ZOR
      44    1 G(3) = ZOI
      45    1 G(4) = PHIR * ZOR = PHII * ZOI
      46    1 G(5) = PHII * ZOR + ZOI = PHIR
      47    1 DY(1,1) = -AIR
      48    1 DY(2,1) = ZIR
      49    1 DY(3,1) = ZII
      50    1 DY(4,1) = PHIR
      51    1 DY(5,1) = PHII
      52    1 IQZ = 2
      DO 30 I = 2,4
      CALL RKT7(5,DP,P,G,GP,IQZ)
      P = P + DP
      U = G(1)
      ZR = G(2)
      ZI = G(3)
      PHIR = G(4)
      PHII = G(5)
      53    1 D0 30 I = 2,4
      CALL RKT7(5,DP,P,G,GP,IQZ)
      P = P + DP
      U = G(1)
      ZR = G(2)
      ZI = G(3)
      PHIR = G(4)
      PHII = G(5)
      55    1 CALL RKT7(5,DP,P,G,GP,IQZ)
      P = P + DP
      U = G(1)
      ZR = G(2)
      ZI = G(3)
      PHIR = G(4)
      PHII = G(5)
      60    1 CALL RKT7(5,DP,P,G,GP,IQZ)
      P = P + DP
      U = G(1)
      ZR = G(2)
      ZI = G(3)
      PHIR = G(4)
      PHII = G(5)

      20 RT = (CM*+0.5)/(1 + (GAM*-1)*CM*/CM*/2)**((GAM*-1)/(4*(GAM*-1)))
      1 Q = (255RT)*(2/(GAM*+1))**(1/((GAM*-1)/(4*(GAM*-1))))
   25 RT = (CM*+0.5)/(1 + (GAM*-1)*CM*/CM*/2)**((GAM*-1)/(4*(GAM*-1)))
      1 Q = (255RT)*(2/(GAM*+1))**(1/((GAM*-1)/(4*(GAM*-1))))
      PHIR = 1
      PHII = 0
      R1 = RT + RCT*(1 - COS(T))
      R2 = 1 - RCC*(1 - COS(T))
      R = RT
      P = 0
      U = 2 / (GAM*+1)
      SRTR = (RT + RCT)**0.5
      AIR = 4 / (GAM*+1)**SRTR
      BOR = 4 / (AIR + GT/GAM*+1)
      BOI = 4 * WC / (GAM*+1)
      SVNR = SNV/RT
      COR = WC * WC - ((SVNR + SVNR) * 2 / (GAM*+1))
      AF* = AF* - 2*AF*/(GAM*-1)/(GAM*+1)*SRTR
      COI = -2 * WC * (GAM*-1) / ((GAM*+1)*SRTR) - 2*AF*WC
      BIR = (24 + 4*GAM*)/(3*RCT*RCT*(GAM*+1)) - 8*AF*/(SRTR*(GAM*-1))
      BII = 8 * WC / (SRTR*(GAM*-1))
      CIR = 2 * (GAM* - 1) * SVNR * SVNR / (SRTR * (GAM*+1))
      31    1 CII = -AIR * WC * (GAM* - 1) * 0.5
      32    1 ZOR = (ZOR + COR + BOI*COI) / (BOR + BOR + BOI*BOI)
      34    1 ZOI = (ZOR*COI - BOI*COR) / (BOR + BOR + BOI*BOI)
      35    1 F1 = BIR + ZOR + BII*ZOR - ZOR*ZOR*AIR + AIR*ZOR*ZOR - CIR
      36    1 F2 = BII + ZOR + BIP*ZOR - 2*AIR*ZOR*ZOR - CII
      37    1 ZIR = F1*AIR - BOR - F2*BOI / ((AIR - BOR)*AIR - BOR + BOI*BOI)
      39    1 ZII = (F2*AIR - BOR + F1*BOI) / ((AIR - BOR)*AIR - BOR + BOI*BOI)
      41    1 C = U
      43    1 G(1) = U
      44    1 G(2) = ZOR
      45    1 G(4) = PHIR * ZOR = PHII * ZOI
      46    1 G(5) = PHII * ZOR + ZOI = PHIR
      47    1 DY(1,1) = -AIR
      48    1 DY(2,1) = ZIR
      49    1 DY(3,1) = ZII
      50    1 DY(4,1) = PHIR
      51    1 DY(5,1) = PHII
      52    1 IQZ = 2
      DO 30 I = 2,4
      CALL RKT7(5,DP,P,G,GP,IQZ)
      P = P + DP
      U = G(1)
      ZR = G(2)
      ZI = G(3)
      PHIR = G(4)
      PHII = G(5)
      55    1 CALL RKT7(5,DP,P,G,GP,IQZ)
      P = P + DP
      U = G(1)
      ZR = G(2)
      ZI = G(3)
      PHIR = G(4)
      PHII = G(5)
      60    1 CALL RKT7(5,DP,P,G,GP,IQZ)
      P = P + DP
      U = G(1)
      ZR = G(2)
      ZI = G(3)
      PHIR = G(4)
      PHII = G(5)

35
```
Table A-5. Continued (Page 3 of 10)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>61</strong></td>
<td>DY(1, I) = GP(1)</td>
</tr>
<tr>
<td><strong>62</strong></td>
<td>DY(2, I) = GP(2)</td>
</tr>
<tr>
<td><strong>63</strong></td>
<td>DY(3, I) = GP(3)</td>
</tr>
<tr>
<td><strong>64</strong></td>
<td>DY(4, I) = GP(4)</td>
</tr>
<tr>
<td><strong>65</strong></td>
<td>DY(5, I) = GP(5)</td>
</tr>
<tr>
<td><strong>66</strong></td>
<td>Y(1) = U</td>
</tr>
<tr>
<td><strong>67</strong></td>
<td>Y(2) = ZR</td>
</tr>
<tr>
<td><strong>68</strong></td>
<td>Y(3) = ZI</td>
</tr>
<tr>
<td><strong>69</strong></td>
<td>Y(4) = P:II</td>
</tr>
<tr>
<td><strong>70</strong></td>
<td>Y(5) = P:II</td>
</tr>
<tr>
<td><strong>71</strong></td>
<td>CALL ZA7AMS(5, DP, p, Y, DY, IZ)</td>
</tr>
<tr>
<td><strong>72</strong></td>
<td>IF(IP .EQ. 1) GO TO 10</td>
</tr>
<tr>
<td><strong>73</strong></td>
<td>U = Y(1)</td>
</tr>
<tr>
<td><strong>74</strong></td>
<td>ZR = Y(2)</td>
</tr>
<tr>
<td><strong>75</strong></td>
<td>ZI = Y(3)</td>
</tr>
<tr>
<td><strong>76</strong></td>
<td>P:II = Y(4)</td>
</tr>
<tr>
<td><strong>77</strong></td>
<td>P:II = Y(5)</td>
</tr>
<tr>
<td><strong>78</strong></td>
<td>S = 1 - U*GAMMA (GAMMA - 1)</td>
</tr>
<tr>
<td><strong>79</strong></td>
<td>R = C***(1/GAMMA)</td>
</tr>
<tr>
<td><strong>80</strong></td>
<td>F = (QAM)/ (GAMMA RHO)</td>
</tr>
<tr>
<td><strong>81</strong></td>
<td>IF(I .EQ. 1) GO TO 35</td>
</tr>
<tr>
<td><strong>82</strong></td>
<td>ZJ = (U<em>ZAF</em>TAF) + (U<em>ZTR + AF</em>TR)</td>
</tr>
<tr>
<td><strong>83</strong></td>
<td>ZY = (U<em>ZAF</em>TAF) + (U<em>ZTR + AF</em>TR)</td>
</tr>
<tr>
<td><strong>84</strong></td>
<td>Y = (U<em>ZAF</em>TAF) + (U<em>ZTR + AF</em>TR)</td>
</tr>
<tr>
<td><strong>85</strong></td>
<td>Y = (U<em>ZAF</em>TAF) + (U<em>ZTR + AF</em>TR)</td>
</tr>
<tr>
<td><strong>86</strong></td>
<td>GO TO 40</td>
</tr>
<tr>
<td><strong>87</strong></td>
<td>35</td>
</tr>
<tr>
<td><strong>88</strong></td>
<td>TR = Y(2)</td>
</tr>
<tr>
<td><strong>89</strong></td>
<td>TI = Y(3)</td>
</tr>
<tr>
<td><strong>90</strong></td>
<td>TO = (1 + AF<em>TR - WC</em>TI) * (U + AF<em>TR - WC</em>TI)</td>
</tr>
<tr>
<td><strong>91</strong></td>
<td>Y = (1 + AF<em>TR - WC</em>TI) * (U + AF<em>TR - WC</em>TI)</td>
</tr>
<tr>
<td><strong>92</strong></td>
<td>Y = (1 + AF<em>TR - WC</em>TI) * (U + AF<em>TR - WC</em>TI)</td>
</tr>
<tr>
<td><strong>93</strong></td>
<td>40</td>
</tr>
<tr>
<td><strong>94</strong></td>
<td>SYR = C***(GAMMA/(2*(GAMMA - 1))) * Y</td>
</tr>
<tr>
<td><strong>95</strong></td>
<td>SYI = C***(GAMMA/(2*(GAMMA - 1))) * Y</td>
</tr>
<tr>
<td><strong>96</strong></td>
<td>SYR = C***(GAMMA/(2*(GAMMA - 1))) * Y</td>
</tr>
<tr>
<td><strong>97</strong></td>
<td>SYI = C***(GAMMA/(2*(GAMMA - 1))) * Y</td>
</tr>
<tr>
<td><strong>98</strong></td>
<td>GO TO 10</td>
</tr>
<tr>
<td><strong>99</strong></td>
<td>CONTINUE</td>
</tr>
<tr>
<td><strong>100</strong></td>
<td>CONTINUE</td>
</tr>
<tr>
<td><strong>101</strong></td>
<td>FORMAT(1(I)), 5X, 30HTHEORETICAL NOZZLE ADMITTANCES, //, 25X</td>
</tr>
<tr>
<td><strong>102</strong></td>
<td>1</td>
</tr>
<tr>
<td><strong>103</strong></td>
<td>2</td>
</tr>
<tr>
<td><strong>104</strong></td>
<td>3</td>
</tr>
<tr>
<td><strong>105</strong></td>
<td>4</td>
</tr>
<tr>
<td><strong>106</strong></td>
<td>E1D</td>
</tr>
</tbody>
</table>

36
Table A-5. Continued (Page 4 of 10)

SUBROUTINE RKTZ(NU, H, T1, UU, DUM, JOPT)
COMMON/X2/T*RT, Q1/R2, IP*WC, AF
DIMENSION U(I5), A(I5), UZ(I5), FZ(4+5)+DUM(I5)

A(1) = 0
A(2) = 0
A(3) = 0.5
A(4) = 0.5
A(5) = 1.0
TZ = T1
DO 10 J = 1, NU
   UZ(J) = U(J)
10   IF(JOPT, EQ, 2) GO TO 15
   CALL RKZDIF(TZ, UZ, DUM)
   GO TO 20
   CALL RKZDIF(TZ, UZ, DUM)
   DO 25 J = 1, NU
25   FZ(1, J) = DUM(J)
   DO 30 I = 2, 4
20   TZ = T1 + A(I+1)*H
21   DO 35 J = 1, NU
22         UZ(J) = U(J) + A(I+1)*H*FZ(I+1, J)
23   35   DUM(J) = FZ(1, J)
24   IF(JOPT, EQ, 2) GO TO 40
25   CALL RKZDIF(TZ, UZ, DUM)
26   GO TO 45
27   CALL RKZDIF(TZ, UZ, DUM)
28   DO 45 J = 1, NU
29   45   FZ(1, J) = DUM(J)
30   CONTINUE
30   DO 55 J = 1, NU
31         U(J) = U(J) + H*(FZ(1, J) + 2*(FZ(2, J) + FZ(3, J)) + FZ(4, J)) / 6.0
32   55   GO TO (60, 65, 90, 100, 105, 120), JOPT
33   60   CALL RKZDIF(TZ, U, DUM)
34   65   CALL RKZDIF(TZ, U, DUM)
37   70   IF(I*EQ, 5) GO TO 75
38         PR = KC*U4 - U1*U4 = AF*U(4)
39         PI = KAC*U5 - U1*U5 = AF*U(5)
40         PMA5 = SORT(PR*PR + PI*PI)
41         PARS = ATA*(PI/PR)
42   100   WRITE (6, 1007) TZ, PMA5, PARS
43   1007 FORMAT(46X, FD, 4, 1X, F10.5, 3X, F10.5)
44   75   RETURN
45   END
Table A-5. Continued (Page 5 of 10)

1*  SUBROUTINE RK2DIF(P,G,GP)
2*  C034C1/X1/GA4,SVN,ANGLE,RCT,RCC/X2/RT*Q,R1,R2,IP,WC,AF
3*  C034YON/X3/ZI+ZII
4*  DIMENSION G(5), GP(5)
5*  U = G(1)
6*  ZR = G(2)
7*  ZI = G(3)
8*  PHI = G(4)
9*  PHI1 = G(5)
10*  IF(P) 15, 10, 15
11*  10  GP(1) = 4/((GAM+1)*((RCT*RT)*0.5))
12*  GP(2) = ZIR
13*  GP(3) = ZI1
14*  GP(4) = ZIR
15*  GP(5) = ZI1
16*  GO TO 20
17*  15  C = 1 - (GAM - 1) + U + 0.5
18*  R = 0 + ((C)*((I)/(2*(GAM-1)))) + (U+0.25) + 0.0
19*  IF(R=1) 22, 22, 50
20*  22  IF(R + R1) 25, 30, 30
21*  25  CR = -((2*RCT*(R-RT) - (R-RT)*(R-RT)*0.5)/(RT+RCT-R)
22*  GO TO 45
23*  30  IF(R1=2) 35, 40, 40
24*  35  CR = -TAN(7)
25*  GO TO 45
26*  40  DJ = ((2*RCC*(1-R) - (R-1)*(R-1))*0.5)/(1-R+RCC)
27*  45  DJ = -((U+0.75)*((C)+(2*GAM-1)/(2*(GAM-1)))/(Q+1-(GAM+1)*U+.5)
28*  1
29*  25  GP(1) = DJ+CR
30*  30  SW TO 55
31*  55  SW(1) = 0
32*  55  IF(A = 0) 34, 34, 34
33*  34  30 = U*P(1)/C + 2*AF*U
34*  35  CR = C*AC - SVN*SV*AC/(R+R) - AF*AF
35*  36  1 = -(AC-1)*AF*U + GP(1)*0.5/(1/C)
37*  37  C1 = -(GAM-1)*AC + U*SC(1)*0.5/(1/C) - 2*AF *WC
38*  39  GP(2) = (((H) = (H)*ZI - CR) / A) = ZR+ZR + ZI+zi
39*  39  GP(3) = ((H) + (ZI+zi = CI) / A) = ZR+ZR + ZI+zi
40*  GP(4) = ZR*PHI - ZI+PHI
41*  GP(5) = ZR*PHII + ZI*PHII
42*  R = RT/4
43*  END
Table A-5. Continued (Page 6 of 10)

```
1* SUBROUTINE RKTDIF(p,q,GP)
2* COMMON/X1/GAM,SVN,ANGLE,RCC/X2/T,RT,q,R1,R2,IP,wC,AF
3* DIMENSION G(5), GP(5)
4* U = G(1)
5* TR = G(2)
6* TI = G(3)
7* PHIR = G(4)
8* PHI1 = G(5)
9* C = 1 - (SUM=1)*U*0.5
10* R = Q * ((C)**(-1/(2*(GAM-1)))) * (U**0.25) * 4,0
11* IF(R-1) 22,22+50
12* 22 IF(R-1) 25, 30, 30
13* 25 DR = (2*RT*(R-RT) - (R-RT)*(R-RT))**0,5/(R+RT-0)
14* GO TO 45
15* 30 IF(R-2) 35,40,40
16* 35 DR = -TAN(1)
17* GO TO 45
18* 40 DR = ((2*RCC*(1-R) - (R-1)*(R-1))**0,5)/(1-R-RCC)
19* 45 DU = -(U**0,75)*(C**((2*GAM-1)/(2*(GAM-1)))) / (Q*1-(GAM+1)*U*1)
20* 1
21* GP(1) = DU*DR
22* GO TO 55
23* 50 GP(1) = 0
24* 55 A = U*(C-U)
25* BR = U*GP(1)/C + 2*AF*U
26* BI = 2*AF*U
27* CR = wC*WC - SVN*SVN*C/(R*R) = AF*AF
28* 1
29* CI = -(SUM=1)*AF*U*GP(1)*0.5*(1/C)
30* GP(2) = 1 - (DR+TR-BI+TI) - (CR*(TR+TR-TI+TI)-2*CI*TR+TI))/ A
31* GP(3) = (TR+TI-BI+TR + CI*(TR+TR-TI+TI) + 2*CR*TR+TI) /A
32* T2 = TR+TR + TI+TI
33* GP(4) = (TR+TR-I + TI+PHIR)/T2
34* GP(5) = (TR+PI+II + TI+PHIR)/T2
35* R = U
36* END .
```
SUBROUTINE ZADAMS(N,H,Y,DY,IOZ)
COMMON/X1/GAM+/SVN+ANGLE/RCT/RCC/X2/T+RT+Q+R1+R2+IP+NC+AF
COMMON/X4/ \\
10 CONTINUE
DO 15 I = 1,N
   PRED(I) = Y(I)+H*(Y(I,1)+55.*DY(I,4)-59.*DY(I,3)+37.*DY(I,2)-9.*DY(I,1))/24.0
15 CONTINUE
10 X = X+H
   U = PRED(I)
   ZR = PRED(2)
   ZI = PRED(3)
   P*IR = PRED(4)
   P*I*II = PRED(5)
   C = 1 - (GAM-1)*U*0.5
   R = C * ((C**(1/2)*(GAM-1)))) * (U**=0.25) * 4.0
   IF(R>1) 17,17,100
19 IF(R>R) 20,25,25
20 D*R = -(2+RCT*R-RT)*(R-RT)*(R-RT)*0.5) / (RT+CT-R)
21 GO TO 40
22 IF(R>R) 30,35,35
23 IF(R>R) 40,45,45
25 D*R = ((2+RCT*C-1-R)*(1-R)*(1-R))**0.5) / (1-R-RC)
26 D*U = -(U*0.75*(C*2+(2*GAM-1)/(2*GAM-1)))/(Q*(1-(GAM+1)*U*0.5
27 1) )
28 D*P(1) = D*U
29 A = U*(C-1)
30 B*R = U*P(1)/C+2*AF*U
31 B*I = K*U*C- (SVN*SY*CN)/(R+R) = AF*AF
32 C = -(GAM-1)*AF*U*DP(1)**0.5/C
33 CI = -(GAM-1)*C*U*DP(1)**0.5/C = 2*AF*WC
34 D*P(2) = (2*Z+2R - BI*ZI - CR)/A = 2*Z+2R + ZI*ZI
35 D*P(3) = (1)*Z*Z + BR*ZI - CI)/A = 2*Z+2R + ZI*ZI
36 D*P(4) = Z*I*IR = 2*IR+II
37 D*P(5) = 2*IR+II = 2*IR+II
38 GO TO 40
40 V = 1
41 COR(I) = Y(I)+H*(DY(I,2)-5.5*DY(I,3)+19.*DY(I,4)+9.*DY(I))/24.0
42 Y(I) = (251.*COR(I) + 19.*PRED(I))/270.
43 U = Y(1)
44 ZR = Y(2)
45 ZI = Y(3)
46 PI*IR = Y(4)
47 P*I*II = Y(5)
48 C = 1 - (GAM-1)*U*0.5
49 D*Y(I,1) = D*Y(I,2)
50 D*Y(I,2) = D*Y(I,3)
51 D*Y(I,3) = D*Y(I,4)
52 ZMAS = (Z*Z+R+ZI*ZI)**0.5
53 IF(Z**A = 10 ) 60, 90
54 R = 0 * ((C**(1/2)*(GAM-1)))) * (U**=0.25) * 4.0
55 IF(R>R) 62, 62, 100
56 IF(R>R) 65, 70, 70
57 IF(R>R) 75, 80, 80
58 GO TO 85
59 IF(R>R) 70, 80, 80
60 GO TO 85
61 GO TO 85
| Page 8 of 10 |

Table A-5. Continued

| 62* | C4 = (1-ZR*C*(1-R) - (1-R)*(1-R)) + 0.5 / (1-R-RCC) |
| 63* | DJ = -(U*(0.75)*(C*12*G*M-1)/(2*(G*M-1)))/(G*(1-(G*M+1)*U/2)) |
| 64* | DY(1,4) = D3*U |
| 65* | A = U*(C-U) |
| 66* | BR = U*Y(1,4)/C + 2*AF*U |
| 67* | BI = 2*WC*U |
| 68* | CR = WC*MC - (SVN*SVN+1)/(R*R) - AF*AF |
| 69* | 1 = (G*M-1)*AF*U*DY(1,4)+0.5/C |
| 70* | CI = -(G*M-1)*WC*U*DY(1,4)+0.5/C - 2*AF*WC |
| 71* | DY(2,4) = (BR*ZR - BI*ZI - CR)/A = ZR*ZR + ZI*ZI |
| 72* | DY(3,4) = (BI*ZR + BR*ZI - CI)/A = 2*ZR*ZI |
| 73* | DY(4,4) = ZR*PHIR + ZI*PHII |
| 74* | IF(I) = EQ. 0 GO TO 87 |
| 75* | P = WC*PHII + U*DY(4,4) - AF*PHIR |
| 76* | PI = WC*PHIR + U*DY(5,4) - AF*PHII |
| 77* | PMAG = (PR*PR + PI*PI)*0.5 |
| 78* | PARG = ATAM(PR/PR) |
| 79* | WRITE(6,1000) X, PMAG, PARG |
| 80* | 87 GO TO 10 |
| 81* | 90 IQZ = 1 |
| 82* | Z2 = ZMAG*ZMAG |
| 83* | Y(2) = ZR/Z2 |
| 84* | Y(3) = ZI/Z2 |
| 85* | ZPR = DY(2,4) |
| 86* | ZPI = DY(3,4) |
| 87* | DY(2,4) = -(ZPR*(ZR*ZR - ZI*ZI) + 2*ZR*ZI*ZPI)/(Z2*Z2) |
| 88* | DY(3,4) = (ZPR*ZR*ZI - ZPI*(ZR*ZR - ZI*ZI))/(Z2*Z2) |
| 89* | G(1) = U |
| 90* | G(2) = Y(2) |
| 91* | G(3) = Y(3) |
| 92* | G(4) = PHIR |
| 93* | G(5) = PHII |
| 94* | DY(1,1) = DY(1,4) |
| 95* | DY(2,1) = DY(2,4) |
| 96* | DY(3,1) = DY(3,4) |
| 97* | DY(4,1) = PHIR*ZR = PHII*ZI |
| 98* | DY(5,1) = PHII*ZR = PHIR*ZI |
| 99* | DO 95 I = 2,4 |
| 100* | CALL RKTZ(5,H,X,G,GP,IGZ) |
| 101* | X = X+H |
| 102* | U = G(1) |
| 103* | TR = G(2) |
| 104* | TI = G(3) |
| 105* | P*PHI = G(4) |
| 106* | PHI = G(5) |
| 107* | DY(1,1) = GP(1) |
| 108* | DY(2,1) = GP(2) |
| 109* | DY(3,1) = GP(3) |
| 110* | DY(4,1) = GP(4) |
| 111* | DY(5,1) = GP(5) |
| 112* | 95 |
| 113* | Y(1) = U |
| 114* | Y(2) = TR |
| 115* | Y(3) = TI |
| 116* | Y(4) = PHIR |
| 117* | Y(5) = PHII |
| 118* | CALL TADAMS(N,H,X,Y,DP,1000) |
| 119* | GO TO 100 |
| 120* | 100 FORMAT(46X,F6.4,IX,F10.5,3X,F10.5) |
| 121* | 100 RETURN |
| 122* | END |
Table A-5. Continued (Page 9 of 10)

1* SUBROUTINE TADAMS(N, H, X, Y, D, I, G, I0, I0)
2* COMMON/X, Y, ANGLE, D, T, R, 10, 1, 2, IP, WS, AF
3* COMMON/54/ C5
5*
6* CONTINUE
7* 15 1 = 1 + N
8* PRED(1) = Y(I) + H*(5*DY(I,4) - 59*DY(I,3) + 37*DY(I,2) - 9*DY(I,1))/24 + 0
9* 15 CONTINUE
10* X = X + H
11* U = PRED(1)
12* T = PRED(2)
13* T = PRED(3)
14* P = I = PRED(4)
15* P = I = PRED(5)
16* C = 1 - (5*AM-1)*U
17* R = 0 + (C)*((I-1)/(2*(AM-1))) * (U**=0.25) = 4.0
18* IF(C<1) 17, 17, 100
19* 17 IF(T-T1) 20, 25, 25
20* 20 T = (12*CT*(1-RT) - (RT)*RT)/(RT+RT)=R
21* 21 T = 40
22* 25 IF(T=40) 30, 35, 35
23* 25 T = -TA*N(T)
24* 24 T = 40
25* 25 T = -TA*N(T)
26* 25 T = 40
27* 25 T = -TA*N(T)
28* 25 T = 40
29* 25 T = -TA*N(T)
30* 25 T = 40
31* 25 T = -TA*N(T)
32* 25 T = 40
33* 25 T = -TA*N(T)
34* 25 T = 40
35* 25 T = -TA*N(T)
36* 25 T = 40
37* 25 T = -TA*N(T)
38* 25 T = 40
39* 25 T = -TA*N(T)
40* 25 T = 40
41* 25 T = -TA*N(T)
42* 25 T = 40
43* 25 T = -TA*N(T)
44* 25 T = 40
45* 25 T = -TA*N(T)
46* 25 T = 40
47* 25 T = -TA*N(T)
48* 25 T = 40
49* 25 T = -TA*N(T)
50* 25 T = 40
51* 25 T = -TA*N(T)
52* 25 T = 40
53* T = T = 12*...5
54* IF(T>10) 60, 90, 90
55* 60 T = T = 12*...5
56* IF(T<10) 60, 90, 90
57* 65 T = T = 12*...5
58* 65 T = T = 12*...5
59* 65 T = T = 12*...5
60* 65 T = T = 12*...5
61* 65 T = T = 12*...5
62* 65 T = T = 12*...5

42
Table A-6. Sample Output

THEORETICAL NOZZLE ADMITTANCES

\( \alpha \) in number = .25  \( \omega V_n = 1.3413 \)  \( \Gamma = 1.2 \)  \( \text{DECAY COEFFICIENT} = -.6500 \)

\( \text{NOZZLE ANGLE} = 20.5 \) \( \text{RADIUS OF CURVATURE: THROAT} = .9234 \) \( \text{ENTRANCE} = 1.0000 \)

<table>
<thead>
<tr>
<th>N</th>
<th>YR</th>
<th>YI</th>
<th>K</th>
<th>SYR</th>
<th>SYI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6900</td>
<td>-.28273</td>
<td>-.35483</td>
<td>1.66581</td>
<td>-.33670</td>
<td>-.42739</td>
</tr>
<tr>
<td>1.6980</td>
<td>-.27001</td>
<td>-.31455</td>
<td>1.65600</td>
<td>-.32154</td>
<td>-.37507</td>
</tr>
<tr>
<td>1.7000</td>
<td>-.25820</td>
<td>-.27567</td>
<td>1.70618</td>
<td>-.30749</td>
<td>-.32224</td>
</tr>
<tr>
<td>1.7500</td>
<td>-.24715</td>
<td>-.22543</td>
<td>1.75636</td>
<td>-.29433</td>
<td>-.26845</td>
</tr>
<tr>
<td>1.8000</td>
<td>-.23669</td>
<td>-.17522</td>
<td>1.80654</td>
<td>-.28136</td>
<td>-.21543</td>
</tr>
<tr>
<td>1.8500</td>
<td>-.22611</td>
<td>-.13151</td>
<td>1.85672</td>
<td>-.26836</td>
<td>-.15673</td>
</tr>
<tr>
<td>1.9000</td>
<td>-.21567</td>
<td>-.08219</td>
<td>1.90690</td>
<td>-.25536</td>
<td>-.09788</td>
</tr>
<tr>
<td>1.9500</td>
<td>-.20509</td>
<td>-.03848</td>
<td>1.95709</td>
<td>-.24239</td>
<td>-.03926</td>
</tr>
<tr>
<td>2.0000</td>
<td>-.19598</td>
<td>.02497</td>
<td>2.00727</td>
<td>-.23339</td>
<td>.02867</td>
</tr>
<tr>
<td>2.0500</td>
<td>-.18532</td>
<td>.08218</td>
<td>2.05745</td>
<td>-.21700</td>
<td>.09784</td>
</tr>
<tr>
<td>2.1000</td>
<td>-.17438</td>
<td>.14568</td>
<td>2.10763</td>
<td>-.20348</td>
<td>.17217</td>
</tr>
<tr>
<td>2.1500</td>
<td>-.15459</td>
<td>.20837</td>
<td>2.15781</td>
<td>-.18999</td>
<td>.25279</td>
</tr>
<tr>
<td>2.2000</td>
<td>-.13397</td>
<td>.27003</td>
<td>2.20799</td>
<td>-.17654</td>
<td>.34093</td>
</tr>
<tr>
<td>2.2500</td>
<td>-.10675</td>
<td>.35791</td>
<td>2.25812</td>
<td>-.16133</td>
<td>.43814</td>
</tr>
<tr>
<td>2.3000</td>
<td>-.06962</td>
<td>.46211</td>
<td>2.30826</td>
<td>-.14529</td>
<td>.54555</td>
</tr>
<tr>
<td>2.3500</td>
<td>-.01753</td>
<td>.55747</td>
<td>2.35834</td>
<td>-.12930</td>
<td>.66357</td>
</tr>
<tr>
<td>2.4000</td>
<td>.06348</td>
<td>.65283</td>
<td>2.40842</td>
<td>-.11349</td>
<td>.79202</td>
</tr>
<tr>
<td>2.4500</td>
<td>.15196</td>
<td>.74857</td>
<td>2.45849</td>
<td>-.09774</td>
<td>.93475</td>
</tr>
<tr>
<td>2.5000</td>
<td>.13154</td>
<td>.84572</td>
<td>2.50856</td>
<td>-.08204</td>
<td>1.08383</td>
</tr>
<tr>
<td>2.5500</td>
<td>.10382</td>
<td>.94420</td>
<td>2.55862</td>
<td>-.06635</td>
<td>1.23557</td>
</tr>
</tbody>
</table>
Figure A-1. Flow Chart for the Nozzle Admittance Computer Program (Page 1 of 10)
Figure A-1. Continued (Page 2 of 10)
SUBROUTINE RKTZ

SIMPLIFY
A(1) ← A(5)
TZ ← TL
U(1) ← U(5)
FZ(1,1) ← FZ(1,5)

DO THROUGH α
J = 1, NU

UZ(J) = U(J)
DUM(J) = FZ(1,J)

β

DO THROUGH Δ
I = 2, 4

TZ = TL + A(I + 1)*H

DO THROUGH Δ
J = 1, NU

UZ(J) = U(J) + A(I + 1)*H*
FZ(I - 1,J)
DUM(J) = FZ(I,J)

JOPT = 2

CALL SUBROUTINE RKZDIF

CALL SUBROUTINE RKTDIF

DO THROUGH β
J = 1, NU

CALL SUBROUTINE RKZDIF

Figure A-1. Continued (Page 3 of 10)
CALL SUBROUTINE RKZDIF

CALL SUBROUTINE RKTDIF

IF  = 0
   
COMPUTE PR, PI, PMAG, PARG

WRITE TZ, PMAG, PARG

RETURN

END

Figure A-1. Continued (Page 4 of 10)
SUBROUTINE RKZDIF

U = G(1)
ZP = G(2)
ZI = G(3)
PHIR = G(4)
PHII = G(5)

COMPUTE R

P ≠ 0

GP(1) = \frac{4}{(\sqrt{RT^2 + (GAM + 1)^2})}
GP(2) = Z1R
GP(3) = Z1I
GP(4) = Z1R
GP(5) = 0.0

P = 0

COMPUTE DR FOR SECTION I

R - R1 < 0

R - R2 ≥ 0

COMPUTE DR FOR SECTION III

> 0

COMPUTE DR FOR SECTION II

RETURN

END

Figure A-1. Continued (Page 5 of 10)
Figure A-1. Continued (Page 6 of 10)
\[ X = X + H \]
\[ U = \text{PRED}(1) \]
\[ ZR = \text{PRED}(2) \]
\[ ZI = \text{PRED}(3) \]
\[ \text{PHIR} = \text{PRED}(4) \]
\[ \text{PHII} = \text{PRED}(5) \]

\[ \text{COMPUTE } C, R \]

\[ \text{DO THROUGH } \alpha \]
\[ I = 1, N \]

\[ \text{COMPUTE PRED}(1) \]

\[ X = X + H \]
\[ U = \text{PRED}(1) \]
\[ ZR = \text{PRED}(2) \]
\[ ZI = \text{PRED}(3) \]
\[ \text{PHIR} = \text{PRED}(4) \]
\[ \text{PHII} = \text{PRED}(5) \]
\[ \text{COMPUTE } C, R \]

\[ \text{R - R1} \geq 0 \]
\[ \text{R - R2} < 0 \]

\[ \text{COMPUTE DR FOR SECTION I} \]
\[ \text{DO THROUGH } \alpha \]
\[ I = 1, N \]

\[ \text{COMPUTE \text{COR}(1), Y(I)} \]

\[ \text{COMPUTE } C, R \]

\[ \text{DO THROUGH } \beta \]
\[ I = 1, N \]

\[ \text{COMPUTE } \text{C, R} \]

\[ \text{R - 1} \geq 0 \]
\[ B \]

\[ \text{COMPUTE DR FOR SECTION III} \]

\[ \text{DO THROUGH } \Gamma \]
\[ I = 1, N \]

\[ \text{DY}(I, 1) = \text{DY}(I, 2) \]
\[ \text{DY}(I, 2) = \text{DY}(I, 3) \]
\[ \text{DY}(I, 3) = \text{DY}(I, 4) \]

\[ \text{COMPUTE DR FOR SECTION II} \]

\[ \text{COMPUTE DR FOR SECTION III} \]

\[ \text{COMPUTE } C, DU, A, BR, BI, CR, CI, PHIR, PHII, \]
\[ \text{DY}(1, 4) \text{ THROUGH } \text{DY}(5, 4) \]

Figure A-1. Continued (Page 7 of 10)
Figure A-1. Continued (Page 8 of 10)
\[ X = X + H \]
\[ U = \text{PRED}(1) \]
\[ TR = \text{PRED}(2) \]
\[ TI = \text{PRED}(3) \]
\[ PHIR = \text{PRED}(4) \]
\[ PHI1 = \text{PRED}(5) \]
\[ \text{COMPUTE } C, R \]

\[ u = \text{PRED}(\ldots) \]
\[ \text{COMPUTE } DU, A, BR, BI, CR, CI, \]
\[ DP(1) \rightarrow DP(5) \]

\[ \text{COMPUTE } \mathbf{C}, \mathbf{T} \]

\[ R - R1 \geq 0 \]
\[ R - R2 < 0 \]
\[ \text{DO THROUGH } \beta \]
\[ I = 1, N \]

\[ \text{COMPUTE } DR \text{ FOR SECTION I} \]

\[ R - 1 \geq 0 \]
\[ B < 0 \]
\[ \text{DO THROUGH } \gamma \]
\[ I = 1, N \]

\[ \text{COMPUTE } DR \text{ FOR SECTION II} \]

\[ \text{COMPUTE } DR \text{ FOR SECTION III} \]

\[ \text{COMPUTE } DU, A, BR, BI, CR, CI, \]
\[ DY(1, 4) - DY(1, 5) \]

\[ \text{COMPUTE } DY(I, 1) = DY(I, 2) \]
\[ DY(I, 2) = DY(I, 3) \]
\[ DY(I, 3) = DY(I, 4) \]
Figure A-1. Concluded (Page 10 of 10)
REFERENCES


## REPORT DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. R. J. Priem, MS 500-209</td>
<td>NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td>(2)</td>
</tr>
<tr>
<td>Norman T. Musial</td>
<td>NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td>NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td>(2)</td>
</tr>
<tr>
<td>Report Control Office</td>
<td>NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td></td>
</tr>
<tr>
<td>Brooklyn Polytechnic Institute</td>
<td>Attn: V. D. Agosta Long Island Graduate Center Route 110 Farmingdale, New York 11735</td>
<td></td>
</tr>
<tr>
<td>Chemical Propulsion Information Agency</td>
<td>Attn: T. W. Christian Johns Hopkins University/APL 8621 Georgia Avenue Silver Spring, Maryland 20910</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>Lewis Research Center Attn: E. W. Conrad, MS 500-204 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td></td>
</tr>
<tr>
<td>North American Rockwell Corporation Rocketdyne Division</td>
<td>Attn: L. P. Combs, D/991-350, Zone 11 6633 Canoga Park, California 91304</td>
<td></td>
</tr>
<tr>
<td>National Technical Information Service</td>
<td>Springfield, Virginia 22151 (40 Copies)</td>
<td></td>
</tr>
<tr>
<td>Aerospace Corporation</td>
<td>Attn: O. W. Dykema Post Office Box 95085 Los Angeles, California 90045</td>
<td></td>
</tr>
<tr>
<td>Ohio State University</td>
<td>Department of Aeronautical and Astronautical Engineering Attn: R. Edse Columbus, Ohio 43210</td>
<td></td>
</tr>
<tr>
<td>TRW Systems</td>
<td>Attn: G. W. Elverum One Space Park Redondo Beach, California 90278</td>
<td></td>
</tr>
<tr>
<td>Bell Aerospace Company</td>
<td>Attn: T. F. Ferger Post Office Box 1 Mail Zone J-81 Buffalo, New York 14205</td>
<td></td>
</tr>
<tr>
<td>Pratt &amp; Whitney Aircraft</td>
<td>Florida Research &amp; Development Center Attn: G. D. Garrison Post Office Box 710 West Palm Beach, Florida 33402</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>Lewis Research Center Attn: L. Gordon, MS 500-209 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td>School of Mechanical Engineering Attn: R. Goulard Lafayette, Indiana 47907</td>
<td></td>
</tr>
</tbody>
</table>
Library, Department 9,4-706
Rocketdyne Division of Rockwell
North American Rockwell, Inc.
6633 Canoga Avenue
Canoga Park, California 91304

Library
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025

Rudy Reichel
Aerophysics Research Corp.
Post Office Box 187
Bellevue, Washington 98009

Princeton University
James Forrestal Campus Library
Attn: D. Harrje
Post Office Box 710
Princeton, New Jersey 08540

U. S. Naval Weapons Center
Attn: T. Inouye, Code 4581
China Lake, California 93555

Office of Naval Research
Navy Department
Attn: R. D. Jackel, 473
Washington, D. C. 20360

Air Force Aero Propulsion Laboratory
Attn: AFTC Lt. M. Johnson
Wright-Patterson AFB, Ohio 45433

Naval Underwater Systems Center
Energy Conversion Department
Attn: Dr. R. S. Lazar, Code TB 131
Newport, Rhode Island 02840

NASA
Langley Research Center
Attn: R. S. Levine, MS 213
Hampton, Virginia 23665

Aerojet General Corporation
Attn: David A. Fairchild, Mech. Design
Post Office Box 15847 (Sect. 9732)
Sacramento, California 95809

NASA
Lewis Research Center, MS 500-313
Rockets & Spacecraft Procurement Section
21000 Brookpark Road
Cleveland, Ohio 44135

NASA
Lewis Research Center
Attn: H. W. Douglass, MS 500-209
21000 Brookpark Road
Cleveland, Ohio 44135

University of Michigan
Aerospace Engineering
Attn: J. A. Nichols
Ann Arbor, Michigan 48104

Tulane University
Attn: J. C. O'Hara
6823 St. Charles Avenue
New Orleans, Louisiana 70118

University of California
Department of Chemical Engineering
Attn: A. K. Oppenheim
6161 Etcheverry Hall
Berkeley, California 94720

Army Ballistics Laboratories
Attn: J. R. Osborn
Aberdeen Proving Ground, Maryland 21005

Sacramento State College
School of Engineering
Attn: F. H. Reardon
6000 J. Street
Sacramento, California 95819

Purdue University
School of Mechanical Engineering
Attn: B. A. Reese
Lafayette, Indiana 47907

NASA
George C. Marshall Space Flight Center
Attn: R. J. Richmond, SNE-ASTM-44
Huntsville, Alabama 35812