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When hidimerpy charged particles pass through a thhdetector.  the ionization energy loss in that detector is subject tc 
fluctuations or "stnggling" which must be considered in interpreting the data. This probleni 113sbcen treated by Landau. 
Symon. Vavilov. and others. Under many conditions. which depend upon the charge and enrrgy of tlie incident particle and I t  
detector geometry. the ionization energy lost by tlie particle is -ipnilicantly different from tlic energy &posited in the detcctol 
Since most detcctoir respond according to the ionization enerey deposited. tltc differencr between energy lost in the detector 
and enerby dfposiled there must be considered. Illis dil'ference ir *:surd by higl1-cnergy secondary electrons p roduad  in the 
ionization yrocvss that travel far from their point of production. ol'ten leaving the dctector. 

This problem divides naturally into a calculation of the energy loo that results in excitation and lowcnergy secondary 
electrons which do not travel far fruin their production points, and a calculation of energy IOU that results in highenergy 
rcondrry elcclronr which can escape froni the do:cctor. 

The first calculation is pc.rfumed urinp a modification of the Vavilov energy loss distribution. A cutoff energy is intro 
dumd above which ail clcctrons are ignored and energy transienrd to low cncrgy particlcs 15 assumed to be equivalent to I!ic 
energy dcporitcd by them. 

For the sccond calculotion. the trajectory of the primary particle is considercd as a source of secondary higltcnergy 
electrons. The  el**<iionsfrom this sourceare transported using Monte Carlo techniques and multiple scattering theory. and thr 
energy deposited by them in thc detector is calculated. Tlie rcsulls of the two wlculations arc then combined l o  predict the 
energy deposition distribution. 

The results of lhesc calculations are used to predict the chargc resolution of parallel-plate pulse ionization chambers thi 
ore being designed to measure the charge spectrum i)f heavy nuclei in lhe galactic cosmlc-ray flux. 
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CALCULATION OF ENERGY DEPOSITION DISTRIBUTIONS 
FOR SIMPLE GEOMETRIES 

1. INTRODUCTION 

Parallel plate ionization chambers are to  be uscd [ 1 1  as part of an instrument to 
measure the charge spectrum of heavy nuclei in the galactic cosmic-ray flux. The ionization 
chamber measurement determines the energy deposited by the cosmic ray along its 
trajectory through the chamber while other portions of the instrument determine the 
distance traveled through the chamber. (The trajectory is epproximately a straight line 
unless the cosmic ray has a nuclear interaction.) From these two measurements, the energy
deposited in the chamber per unit pathlength of the cosmic ray can be detzrmincd. The 
stopping power or  mcan energy lost per unit pathlength in material - dT/dx is directly 
related t o  the incident particle’s charge. For nuclei up to about iron, calculations of 
stopping power based on the first Born approximation appear to be valid [2,3].  These 
calculations predict that the stopping power is propot-tional to the nuclcar charge squared. 
For nuclei above iron, higher terrns in the perturbation theory series must be taken or  a 
partial wave expansion must be uscd [3,4] to  derive the charge-stopping power relationship. 

However, the stopping power gives us only the werage energy lost by the particle in 
the detector. A beam of particles of the same trajectory. charge, and energy will produce a 
distribution of energy losses in the ionization chamber. This fluctuation in energy loss in a 
tnin absorber, sometimes called “straggling,” i s  the result of  the finite number ofevents that 
occur in the ionization energy loss process. Energy t r a d e r  to the electrons in thc absorber 
material produces excitation and ionization. Many of the elcctrons gain considerablc energy.
The probability of large energy transfers. which depends upon the impact parameter in the 
classical picture, becomes smaller with higher secondary electron energy so that the 
fluctuations in the number of events become greater at higher energies. As a result, the 
energy loss distribution for fast charged particles in thin absorbers has a considerable width 
and is skewed to  the high encrgy side. The problem of calculating this distribution was first 
attacked theoretically by h n d a u  [SI for thin absorbers where only a small fraction ofthe 
particle’s initial energy is lost. He used Laplace transforms to  solve the continuity equation
of the distribution function of  energy loss. In addition to the assumption that the energy
loss was small, his derivation places no upper limit on the energy transferrcd to  a single

‘electron of the absorber. This approximation limited the validity of his solution to 
electrons, positrons. and heavy particles of very high energy or in very thin absorbers. 
Symon 161 soived the problem more generally by using numerical techniques both for thin 
absorbers where the average enetgy loss was less than 10 percent of the initial energy and for 
thick absorbers where the average energy 10%; is more than IO percent of the initial cncrgy.
Vavilov [ 7 ]  followed Landau’s basic approach. but he obtained a more rigorous solution 
without the approximation of unbounded single energy transfen. Thus, his results could be 
applied to  a wider rdnge of particles and energies though still restricted to thin absorben. We 
will use Vavilov’s general method of solution extensivcly in Section 11. 
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For a typical primary cosmic ray with kinetic energy in the CeVlnucleon range, a 
number oi energy loss mechanisms are avaAable - scattering of electrons (delta rays),
excitation of atomic electrons to  higher bcundenergy states, production of Cerenkov 
radiation (the radiation produced when a particle passes through a dielectric at a velocity
faster than the phase velocity of light in the medium) [ 8 J ,  and production of 
bremsstrahlung radiation (radiation that is produced when a charged particle undergoes 
acceleration). Production of delta rays and excitation is the most important energy loss 
process contributing t o  the total stopping power FJr the particles considered here. Cerenkov 
losses are responsible for only a small fraction of the relativistic rise of the stopping 
power [91. and bremsstrahlung Iosscs are negligible because of the high mass of the quclei. 
We will confine ourselves to  consideration of the interactions with electrons. 

Cosmic rays can also undergo nuclear interactions with the chamber material. 
Waddington et a!. [ 101 Lave measured the interaction mean free path for cosmic rays in 
nuclear emulsions. Their results show that the mean free path varics, with minor energy 
dependence (energy nnge was 100 MeV/nwleon to  30 GeV/nucleon), from about I9 cm of 
emulsion (the equivalent of about 46 glcm' of air) for alpha particles to  about IO cm of 
emulsion (27 g/cm' of air) for very heavy primaries with nuclear charges greater than 20. 
Because the ionization chambers considered here are relatively thin (x  C I .O g/cm' ) 
compared with thc interaction mean free path, few rwlear  interactions will occur, and they 
are identified by the tr2jectory measurement in the experiment 1 1 I and treated separately. 

The problem t o  be attacked here is the result of the subtle distinction between thc 
energy lost in a given element of volume along the cosmic ray's path and the energy 
deposited there, since energy can be transported in and out  of the volume clenrent by 
secondary particles and radiation. Thus, energy loss depends on the type of material in the 
volume, whereas energy depou'xed dvpends on the surrounding geometry as well. Since delta 
rays transport practically all energy that is removed from the region where it is lost by the 
primary particle, let us consider how g:nometry affects their production, transport, and 
energy deposition. For a small region on the path of a heavy cosmic ray through a piece of 
material, the production of a high-energy delta ray will cause a large fluctuation in the 
energy lost in the region; but, since the delta ray will leave thr region with little energy loss, 
the fluctuation in energy deposition will not be as large. Convxsely. electrons from other 
portions of the path may scatter into the region. contributing to energy deposition in the 
region. More of the energy of lowar-energy delta rays is deposited in the region of 
production. Finally. at sonre delta-ray energy, depending on the size and shape of the 
region, energy loss is equivalent to  energy deposition because few of the delta rays cscape
from the region relativr! to the number produced there. 

Even if thc relatinnship bctwcen the mean energy deposition and charge was known, 
problems would exist b,;ause the production and transport of the delta rays are random 
processes and the energy deposited in a region by identical cosmic rays will fluctuate from 
event to event depending on the number and cnergies of the delta rays produced. For an 
ionization chaniber, this results in an uncertainty in the determination of the exact charge
of the cosmic ray. Thus, the interesting quantity that we will attempt to  calculate hem is the 
frequency distribution of energy deposition by a heavy cosmic ray considering the 
fluctuations in delta-ny production and transport. 

2 




I. 

To attack the delta-ray problem, we will use the procedure of dividing it inlo two 
problems according to the delta-ray energy. The breaking-point energy e l  is selected to  r 
meet two criteria. First, it must be large compared with the binding energy of electrons in 
the material so that electrons scattered at energies above this energy may be treated as free .,. 
electrons for the scattering cross-section calculation. This places i~lower bound 011e l  in 
the I O - to 100-KeV range 1 I I ] .  Second, since we will assume that all clec trons with energies 
below e l  deposit their energy in the volume element where thcy are produced, so that 
energy loss is equivalent to  energy deposition, the distance that electrons with enerpies 
below c I  can travel must be on the order of the smallest dimension of the production 
volume element. For the calculation shown here, e l  was 80 or 100 KeV because the 
ionization chambers considered are relatively thin. For othnr geometries. e l  could be much 
higher. 

We will calculate the energy-loss/deposition distribution caused by lowenergy delta 
rays and excitation using a modification of the Vavilov energy-loss distribution I71 to te 
derived Iiere. The modification consists of introducing a cutoff energy above which all delta 
rays are ignored. For the delta rays abo .- e l  ,we will calculate the Froduction number and 
energy distribution, and then determine cnergy deposited in the detector by these eiectrons 
using MonteCarlo techniques. Since delta rays produced in the chamber electrodes and 
other parts of the instrument can scatter into the cliamber gas. the MonteCarlo transport 
will consider delta rays produced throughout thc instrument. 

II.  	 THE DISTRIBUTION OF ENERGY LOST 
DUE TO LOW ENERGY TRANSFERS 

k A. Development of the  Restricted Energy-Lots Distribution 

i”­
$. 

f ,  ‘The distribution of energy loss due to low energy transfers is derived in this section.

bi. The  derivation shown here follows Vavilov’s original derivation of the energy-loss
6:
8 distribution I 7 i wliere all energy transfcrs were considered. Here. we exclude high-energy 

$j 
transfers by the introduction of a cutoff energy e l  . As we will show, the introduction of 

5, the cutoff energy in the derivation is not equivalent to  replacing the maximum transferable g energy in the Vavilov distribution equation by a lower energy.

it If we dcfine f(X.A)dA as the probability of an energy loss between energy A and84. 

!:. A + dA because of interactions w k d i  result in losses below e l  for particles traveling a 

F 2  distance X and w(E,r)dc as the probability per unit length of an energy loss F by the 
,I 
C‘. 
; particle at energy E ,then the continuity equation for f ( X 4  1 is 

&k, 

bBf X ,A w(E,e) f  (X,A - �)de - si w ( E , c ) f ( X , A ) d e  
0 0 

3 
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[See Appendix E for a derivation of equation ( I ) . ]  We assume that E > A SO 
that o(E,e) does noIt change as a function of E along the particle path. e l  is the cutoff 
energy above which the delta rays are ignored. I t  is assumed that o ( E , c )  = 0 for c > e l  . 
Thus, b is cqual t o  A for A < e l  and equal t o  e l  for A > ea . 

To use Laplace transforms on  equation ( 1  1, we note that 

c+io ePAq(X,P) dP 
f(X,A) = l s  Pc-iaJ 

where C is an arbitrary constant. When b equals A ,using the convolution theoren on 
the first term on ttic right 0; equation ( I  ), we obtain 

�1 
= $(E*p)@(x*pl  - q(X,P) w(E,e)de (3)ax P 

0 

Solving the differential equation, we get 
, 
i 

(4) 

4 
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thus, 

The incident particles will have no loses; thus, 

f (0 ,A)  = b ( A )  

where 6(A) is the Dirac delta function and 

By transforming equation (S), we have 

f(X,A) = 1 p {P exp {[i' e-PCW(E,�)d� 
C-M 0 

- 0f' co(E,~.)dt~]X//dP t6) 

5 
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or 

For b equal el  ,we get the same equation because of the way w(E.e) is defined. This is 
basically Vavilov's form of the expression except that in his case e ,  is the maximum 
transferable energy. We may rewrite the exponent in equation (7) as 

~ ( E , c ) ( e - ~ '+ Pe - l )de  ( 8 )  

where distant collisions between the particles and electrons play an important role in the 
first term only. The integral in the first term can be written as 

(9 )  

where cmax is the maxinium possible energy transferred to  an electron given by 

Here, m is the electron mass, c is the speed of light, 0 is the primary particle velocity 
over c M is the primary particle mass. and y is defined 3s 

1
Y - J i z F  

6 
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(Appendix A shows a derivation of emax.) The first term in equatiol, ( 9 )  is recog:iized as 
i tlie definition of collision stopping power S(E) .Thus, 

If  we confine ourselves to  heavy energetic charged particles. we may IW the results that 
have been obtained for w(E,c) by applying the first-born approximation if e l  is assumed 
to bc high enough above the electron binding energy in the first-term integral. The 
probability per unit pathlength for the production of an electron with energy E is given 
by 1121 

( 1  1 )  

where N is the numbcr of electrons per unit voiume. 2 is the atomic number of the 
primary particle. and e is tlie electron charge. Defining as 

'j 
and substituting cquation ( I  i) into cquaticn ( I ) we have 

L F 

8.. . dmax 
1 Pte dE-

� 
�1 
1 ~

1 

max I' 
'*' ) (c"' + Pa - l)dc 

0 m u  r. 

'? 
I 

J4g 
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-. . . . .  

Pcrform;?g some of the integrals and replacing XS(E), which is the mean et-ergy loss, 
with ,\"e obtain 

Sinipllfying slightly and noting that [ I31 

S 1 l - e  -�P dc = & + In qP - Ei(-EIP)
E

0 

where f is Eu!er's constant 0.577 ... and P) is the exponential integral, we obtain 

Letting 

I 



f 
t. 	 and 
IE 
1 


i and substituting into equation (7). we obtain


i

i
i

I


I 

I
it 

f
i 

Clioo!;ing C' = 0 for tlic contoiir of integration and letting iu = Y ,we obtain 

t
i
I
f
I 


I Since e-'U = cos u - i sin U, 

I 

i 


i 


t
i
ii 
 9 
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. . .  . . . .  .... 

and from Reference 13 Ii 
) - i Si(.) + i ~ / 2  u z o 

) - i Si(U) - iT/2 u < 0 

u - i s inu  -

where Ci(u) is the cosine integral and Si(u) is the sine integral. Regrouping into real and 
imaginary parts 

- uSi(u) - cos u t + ihu + tc u[lnlul - Ci(lul)l 

+ $ Si(u) + sinu 
max 

Letting 

10 
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and 

(16) 

and noting that zl(u) is an even function a?rd g2(u) is an odd function. we get the 
distribution we shall call the "restricted energy loss distribution."

-.[++e)]
(0 

f(X,A) = J cos[Au + ug2(u)ldu . (17) 
*El 0 

Comparing these results with the results of V~vilov'soriginal derivation where 

= K = ­
� max 

-
A t - A - A  - K @ * + f - t )

E rnax 

gi(u) = p2[lnlul - C,(lul) 1 - u si(u) - cos u 

and 

we note that emax has been replaced by c I  in a A before the integral. and that A har an 
additional logarithmic term. Also. 8' has been replaced by /emax in the exponential 
and in gl (u) and g~(u) .Thus,simply replacing cmax by cI  in Vavilov's distribution will 
not give the correct distribution. 



- - 

To evaluate the sine and cosine integrals which occur in equations ( I  5 )  and (161, we I 

use the following approximations: 

f + lnu  

f + l n u +  

G(u) sin u - H(u) cos u 

s i n  u-
U 

I U  

q(4 = 
r / 2  - G(u) cos u - H(u) sin 

1 

u 5 0.01 

0.01 < u c 1.0 

(18) 
1 . 0 5  uc50.0  

U 1 5 0 . 0  

u 5 0.01 

0 . O l C  u <  1.0 

u 

lr/2 cos u uz50.0  
U 

where 

1 (u* + b,u6 + b,d + blu2 + b 
= ?tuu + b@ + b6u4 + b,u2 + b3 

and 

a# 38.027264 a5. = 40.021433 

4 = 265.187033 ab = 322.624911 

a j  = 335.677320 a7 = 570.236280 

a, = 38.102495 aa = 157.105423 

12 



..., 
*. . . ,. ,-. .. - I, 1 _. . .. . .  ..,, 

. .  i. r. *. . 

bi = 42.242855 bs = 48.196927 

b p  = 302.757865 b6 = .482.485984 

bs = 352.018498 b, = 11 14.978885 

b, = 21.821899 br = 449.690326 . 

The series was terminated at  the term which was of the sum to  that term. 

Since most of the contribution in the integral in equation (17) is near the origin, the 
integration can be terminated at some finite limit. Simpson's rule was used to perform the 
numerical integration. Difficulties are encountered in obtaining good convergence of the 
integral where K is small and on the tails of the distribution where IKI is large. Typically,
for a K of 0.87, good convergence was obtained on the tails [f(X,A) 1 by 
integrating to a u of 20.0 with 6000 integration steps. At a K of 19.3, integration to 1.5 
with 2500 steps yielded good convergence. Good convergence here is taken as more than 
two significant figures since the test is applied at the extremes of distribution. Nearer the 
maximum of the distribution, convergence is much better than this. The test for good 
convergence was a second calculation where the upper bound of the integration was doubled 
and the number of integration steps was quadrupled. 

B. Resilts for the Restricted Energy-LossDistribution 

In this section, we show some of the results obtained using the restricted energy-loss
distribbtion derived above to calculate the energy-loss distribution duc to low-energy 
transfers. 

Taking the ionization chamber in Reference 1 as a typical example, we show (Fig. 1)
the energy-loss distribution for an iron nucleus incident at 2.5 GeV/nucleon on a 
5.lcm-thick chamber containing 90-percent argon and 10-percent methane at 
1 atmosphere. The curve for "no cutoff" is the regular Vavilov distribution which as usual is 
skewed to  thz right, peaking at an energy slightly below the mean energy loss of 
9.16 MeV. The stopping power S(E) used to  calculate was the proton stopping power 
at the same energy per nucleon multiplied by 2' .The electron density weight average of 
the argon and the methane stopping power tabulated in Reference 14 were used to 
approximaie the stopping power of the mixture. As would be expected, as the cutoff e l  is 
decreased, the tail to the right of the distribution maximum disappears, making the 
distribution more Gausskn and the mean of the distribution decrease. 

111. HIGH-ENERGY DELTA-RAY DISTRIBUi'lON 

In this section, we describe tne number and ene;gy distribution of the high-energy 
delta rays to be used and test its validity. 
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Figure 1. F.cstricted energy lossdistribution with various delta-ray energy 
cutoffs for an iron nucleus (Fe56) with an energy o f  2.5 GeV/nucleon for a 

pathlength of 5.1 em in a mixture of  90-percent argon and ]&percent methane 
at I atmosphere of pressure. emax was 12.853 MeV. 
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Because equation ( 1  1) applies above the cutoff energy e l  ,the average number of 
delta rays produced along the pathlength X above c I is given by 

or 

n
0 

= w ( ; ; - -11 
'max max 

Thus, the energy distribution of the high-energy delta rays is given by 

W E ,�1 
n(4 - n 

0 

or 

maxn(c) = 
1 -+: ' In"'­
�1 max � max � max 

Since the production of a high-energy delta ray along the path of the primary 
particle path is a rather rare event, and since events of this type are independent of each 
other, we assume that the distribution of the number K of delta rays produced 
above e l  is Poisson, with a meail of no or 

n0 e - b  
P(K) =: 

K: 
(22) 

IS 


I , . .. 
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To test the assumption of equation(22), we performed a small MonteCarlo 
calculation to determine the distribution of energy lost to  high-energy delta rays by primary 
particles. For each of a set of primary particles, we sampled a number K from 
distribution P(K) then we sampled K energies v' from n(e) and summed them to obtain 
the energy loss of each primary particle. (See Appendix B for a description of sampling
techniques.) Figure 2 shows the resulting distribution for 5000 iron nuclei incident on the 
argon-methane mixture, as in Figure 1. The .cutoff energy e l  was 0.08 MeV. 
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Figure 2. Energy loss distribution due to  delta rays with energies above 0.80 MeV for an 
iron nucleus (FeS6)with an energy of 2.5 CeV/nucleon for a pathlength of 5 .  I cm in a 

mixture of 90-percent argon and 10-percent methane at 1 atmosphere of pressure. 

The total energy loss is the sum of the energy lost to  lowenergy delta rays and the 
energy lost to high-energy delta rays. According to Reference 12, if a random variable Z is 
given by 

. . .  . -

1 
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then the frequency distribution of Z is given by the convolution integral 

(23) 


where fi(u) is the frequency distribution of u and f,(t) is the frequency distribution 
of t .Since the distributions used here are zero over the negative range, the distribution of 
total energy loss f+T) is given by 

fT(AT) c f' f(X,AT - t) f (t) dt mc 

0 

where AT is the total energy loss and fmc(t) is the distribution of loss caused by 
high-energy delta rays, determined by the MonteCarlo calculation. Figure 3 shows the result 
of applying equation (24) to the distribution shown in Figure 2 and the corresponding 
distribution in Figure 1. The distribution shown in Figure 3 is practically identical to the 
distribution in Figure 1 where no cutoff is used except in the range betwecn 12.0 and 
13.0 MeV. (The discrepancies here are believed to be purely statistical in natcre. The 
number of histories which gave contributions in this region was small.) Similar resulks have 
been obtained for other primary particle charges and energies and' for different energy
cutoffs e l  .Thus, we believe the assumption of equation (22) is valid. 

IV. HIGH-ENERGY, DELTA-RAY TRANSPORT AND ENERGY DEPOSITION 

In this section, we describe the method of transporting the high-energy delta rays 
produced in the ionizatian chamber and surrounding material and c.f calculating their energy
deposition in the chamber gas. 

Since the chamber consists of a number of materials and has a fairly complex 
geometry, Monte-Carlo transport techniques are the only ones that are easily applicable. A 
pure simulation, following the consequences of each individual scatter as is sometimes done 
with neutrons or gamma rays, is not used, because an electron interacts with so many 
atomic electrons in the process of slowhg down. Instead, the electron path is divided into 
several segments, and a new direction of travel is selected from a multiple scattering 
distribution at the end of each segment. The scheme used here follows closely those 
described by Berger [ 161 and Perkins [ I7J .First, an energy grid is set up uniformly spaced
in the logarithm of energy between and emax; Le., each energy �1 is larger than the 
proceeding energy �1-1 by a fixed percentage (usually about 5 percent). Second, using the 
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Figure 3. Total energy loss distribution calculated using the convolution 
integral [equation (24)] on the distribution shown in Figure 2 and the 

corresponding distribution ( E ,  = 0.08 MeV) from Figure 1. 
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cont inuous-s lowing-down approximation, the distance traveled AX1 in losing 
energy �1 - �1-1 is determined from the total electron stopping power ST(‘) [ 181 by 

where p is the material density. Since �1 is near ~ ~ - 1 ,equation ( 2 5 )  is approximated by 

� 

In -I 
rI- 1 EI- 1 iLut =(E T 1-1 - .sT(T) 

which assumes a power law connecting points and ST(e1-1) on the stopping power 
curve. Where mixtures are involved, the stopping power is the average of the stopping 
powers of the elements or compounds in the mixture weighted by the corresponding
electron densities. Third, given the energy lost and the distance traveled, the Moliere 
multiple scattering parameters (19, 20,21) are calculated. (Appendix C describes the 
Moliere distribution.) 

The Moliere distribution was selected over other distributions that are theoretically 
more accurate because it a n  be very rapidly sampled. (The comparisons in Figures 4,5, and 
6 show that the Moliere distribution is adequate for our purposes.) S i n e  cacli primary 
particle can produce several hundred high-energy delta rays in passing throagh the ionization 
chamber and surrounding material, and since several thousand primary particles should be 
sampled to obtain satisfactory statistical accuracy, a niultiple scattering distribution that can 
be rapidly evaluated is of prime importance in making the calculation possible. 

An electron history proceeds as follows: The electron initial energy is samp!ed from 
equation (21) (see Appendix B) and the nearest grid energy eI  is taken as the actual 
starting energy (Fig. 7). The elcctron’s initial spatial coordinates are sampled randomly
along the segment of the primary particle’s path in a region of a single material; Le., if 100 
electrons are generated along a path segment through the chamber wall, their initial 
coordinates are distributed randomly along that segment. If five electrons are generated on 
the chamber segment, their initial coordinates are random along that segment. Energy
deposition by the electron is determined by taking the difference between the two possible 
sources of energy, the production of the electron in the chamber gas or the scattering of the 
electron into the chamber gas, and the one possible energy-loss mechanism, the escape of 
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Figure 4. Energy deposition for 0.5 MeV electron normally
incident on an aluminum slab. 
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the electron from the chamber gas. If the electron initial coordinates lie in the chamber gas, 
I the initial energy is added to the sum of energy dcposited by the electron in that chamber. 

Otherwise, the sum is set to zero. If the electron escapes from the chamber, the energy at 
escape will be subtracted from the sum. The angle between the initial electron direction andi

I
I direction of the primary particle is calculated from 
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Figure 6.  Energy deposition for 4.0 MeV electrons normally incident 
on an aluminum slab. 
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[see Appendix A for a derivation of equation (2711 ; the direction cosines of the initial 
electron trajectory are calculated using the cosines of the primary particle path (see 
Appendix D). Then, the coordinates of the end of the first path segment are determined. 
Tests are made to determine.if the chamber bcandary has been crossed. If the electron has 
escaped from the chamber gas, the energy at the boundary dctermined by linear 
interpolation is subtracted from the energy sum deposited by the electron in that chamber. 
If the electron has scattered into the chamber gas, then the energy at the boundary is added 
to that chamber sum. When any cnamber boundary is crossed, a new set of segment end 
coordinates must be calculated because of changes in density or stopping power. Then. tests 
are made for succeeding boundary crossings until the region is reached where tne segment 
actually ends. A new direction is then sampled from the Moliere multiple scattering 
distribution, and tire process of boundary testing starts over along tile new path segment.
The electron is followed in this fashion until it either escapes from the instrument or 
ieaches e l  . At e l  , one last segment is taken whose length is the mean electron 
pathlength [ lS l  at e l  . 

As a check on the accuracy of the eleztron transport, calculs;ions of energy 
deposition in a plane aluminum slab were made using !he described method. Reference 22 
describes similar calculations using Berger’s program, ETRAN 4161,which is recognized as 
one of the best electron transport codes presently available. Figures 4, 5, and 6 show 
comparisons of the results from Berger’s program I221 and the transport described here for 
monoenergetic electrons normally incident on the slab surface at 0.5, 1 .O, and 4.0 MeV, 
respectively. The energy grid separation was 5.0 percent, and the cutoff energy e l  was 
0.08 MeV in our case. Results from our program tend to  peak slighi!y higher in energy and 
drop more rapidly with energy. The differences are small and should not significantly affect 
the results of our calculations. 

V. TOTAL ENERGY DEPOSITION 

In this section, we show how the total energy doposition distribution for primary 
particles is calculated using the results of the previous sections. 

In these calculations, the primary cosmic rays are presumed to arrive as a 
monoenergetic, monodirectional beam of a single isotope and to  travel in a straight line 
through the instrument. Given the exterior point of incidence and the beam direction 
cosines, the pathlength in each chamber is determined and the low-energy, delta-ray energy
deposition (restricted energy loss) distributions are calculated according to equation (1 7) for 
each chamber. 

To obtain the high-energy, deltaenergy distribution, we use MonteCarlo techniques 
in one of two schemes, depending on the number of delta rays produced by the primary. If 
each primary on the average generates only a few (6100) delta rays above the cutoff 
energy, a new set of electron histories can be generated for each primary particle as the 
primary is followed through the instrument. (The number and energy sampling is as 
described in Section 111.) In most cases of interest, however, each primary produces on the 
order of 1000high-energy electrons, and generating a new set of electrons for each primary
particle becomes prohibitively expensive in terms of computer time. Instead, a set of 

? 
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electrons is sampled from a table of electron histories prcviously generated and placed on 
magnetic tape, and the same electron history a n  be w d  several times. This approximation 
is valid if the table can contain a representative population of electrons. For the calculations 
shown here, 20 000 electron histories were generated in each region of the geometry that 
was crossed by the primary beam. 

The electrons sampled for each primary particle an treated as follows: The initial 
energies of electrons that happen to be generated in a given chamber are summed and added 
to an energy lossldeposition for lowenergy transfers sampled from the distribution given by
equation (17) to  obtain a total energy loss for the particle in the chamber. Next, the energy 
deposited in a given chamber by all electrons sampled for z primary is sunimed to  obtain the 
energy deposited by high-energy electrons in the chamber. Combining this energy with the 
sampled lowenergy electron loss/dtposition sample yields the total energy deposited by the 
chamber primary. After several Ihousind primary particles have beer. sampled. the resulting 
energy losses and energy depositions are sorted into energy bins t o  give histograms
approximating the frequency distributions for lowenergy loss/deposition. high-energy 
deposition, total energy depositicn. and total energy loss. 

A s e c o n d  a n d  b e t t e r  method for calculating the total deposition
distribution - because it eliminates the statistical fluctuation of sampling from the 
low-energy loss/deposition distribution - is to  use equation (23) in 3 convolution of the 
restricted energy-loss distribdtion from equation ( I  7) and the histogram frequency 
distribution for high-energy electron energy deposition resulting from the MonteGrlo 
calculation. This is the method that is used for the results that follow. 

VI. RESULTS AND CONCLUSIONS 

Figures 8 and 9 show the total energy deposition distribution calculated by the pure! 
MonteCarlo (the histogram) and the MonteCarlo convolution (the smooth curve) foi iron 
nuclei FeS6 normally incident at  2.5 GeV/nucleon on the double ionization chamber of 
Israel et al. [ 11 .  The instrument was simulated by a stack of five rectangular slabs 99xm 
long by 9 9 c m  wide. The front slab which represents material between the primary beam 
and the first chamber plus the front chamber wall is 0.40 cm or 1.1 g/cmz of aluminum 
thick. The second slab which repnxnts  the first chamber gas is 5 . l c m  thick. The gas is a 
mixture of 90-percent argon plus lepercent methane at  1 atmosphere with a density of 
1.6767 X IO-’ g / r ” .  Thus, 8.5 X IO-’g/cmz of chamber gas is encountered by the 
beam. (The gas slab is identical to  the one used for Figure 1 .) The third slab representing the 
back wall of the front chamber plus the front wall of the back chamber is 6.0 X 10- cm or 
1.6 X IO-’g/cm2 of aluminum thick. The fourth slab is the gas of the second chamber and 
is identical to  the second slab. The fifth slab is the back wall of the back chamber which is 
3.0 X IO-’ cm or 8.0 X IO-’g/cma of aluminum thick. We assumed that little energy is 
deposited in the chamber by electrons reflected from the side walls of the chamber or from 
material behind the back chamber wall so that electrons that entered these regions are 
allowed to  escape from the geometry. The cutoff e n e r p  c, was chosen to be 0.08 MeV SO 
that comparisons can be made with cufves in Figures 1.2, mnd 3. 
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Figure 8. Calculated frequency distribution of energy deposition in the first of two stacked 

ionization counters of Israel e t  al. [ 1] by iron nuclei (Fe") normally incident a t  


2.5 GeV/nucleon. (The histogram is the pure MonteCarlo calculation and 

the curve is the MonteCarlo convolution.) 


The distributions of Figures 8 and 9 appear to  be Gaussian with no Landau tail 
present. The full width at half maximum is 0.9 MeV or about 10 percent of the mean energy
deposition. The mean energy deposition is below the mean energy loss by about 3 percent,
implying that energy deposition is not in equilibrium with energy loss. More energy is being 
transported out the back wall of the chamber than is being transported in the front wall, in 
agreement with Reference 23 which suggests that perhaps 6 g/cm' or more of material is 
required to reach equilibrium between the production and absorption of knock-on 
electrons. The most striking observation is the reduction of the full width at  half maximum 
by a factor of two as compared with the width of the energy-loss distribution (Fig. I ) .  

26 



- -  I .  . . . . , . . .F . . ,  . ;..,. .. I . ~ i. ‘T.,.- . , - . I  - ... . _. 

I 8.0 8 5  0.0 Ob 10.0 

ENERGY DEPOSITIONW V )  

Figure 9. Calculated frequency distribution of energy deposition in the second of two 

stacked ionization counters of Israel, et al. [ 11 by iron nuclei ( F e T  normally 


incident at 2.5 CeVinucieon. The histogram is the pure MonteCarlo 

calculation and the curve is the MonteCarlo convolution.) 


Observations by Israel et al. [ 11 on balloon flights from Palestine, Texas (where the 
geomagnetic cutoff is 4.5 MV), using the instrument simu!ated for Figures 8 and 9, indicate 
a width of 14 to 16 percent for the iron peak. (Their results are shown as the histograms in 
Figure 10 taken from Reference 1.) The measurements had several sources of fluctuations 
not considered here. Amplifier noise was Gaussian with UN equal to 2.2 percent of the 
mean pulse height due to normally incident relativistic iron. Uricertainties in the trajectory 
measurement were characterized by a UL of 2.1 percent. The experimenters also suggested 
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Figure 10. Comparison of Israel et al. 111 results with our calculated 
distribution including noise and contribution from charges 25 and 27. 



I 

that part of the width of the peak was because perhaps as many as IO percent of the counts 
included under the peak were for charges of 25 and 27. The superimposed curves in 
Figure IO are out-results with the other sources of fluctuations folded into our calculated 
distribution and with a contribution of IO percent equally divided between charges 25 and 
27. The curve is normalized to the total number of counts in channels 1 10 to  130, and 
energy deposition is assumed to be proportional to charge squared. The peak width with the 
other sources of fluctuation included is 13 percent of the mean energy deposition which is 
in reasonable agreement with their results. 

Figure 1 1  demonstrates the importance of the surrounding material for the energy 
deposition calculation and shows the energy deposition distribution for the bare 5.1 gas slab 
used for the previous figures with no surrounding material. The peak energy has derreased 
by more than 1.O MeV and the full width at half maximum is nearly halved compared with 
the complete geometry. Note that the distribution is merely shifted slightly from the 
corresponding energy loss/deposition distribution for e, equal to 0.08 MeV in Figure 1 
implying that high-energy electrons from material above the chamber contribute more to 
qnergy deposition in the chamber than do those highenergy electrons created in the 
chamber. 

Figures 12 through 23 show the results of a study of the response as a function of 
charge of a proposed ionization chamber to be flown on a satellite [24] .  The instrument 
actually consists of four chambers with the responses of the first and second chambers 
combined to obtain a single measurement of energy deposition, The third and fourth 
chambers were similarly coupled. In the calculations, the instrument was simulated by a 
stack of' 50- by 50-cm rectangular slabs. The first slab rtpresenting material in front of the 
instrument was 0.37 cm or 1 .O g/cm2 of aluminum. Next, theie were eight alternating slabs 
0.0508cm or 0.4-g/cm2 thick of iron representing the chamber walls a.rd 3.0cm thick 
representing gas. Last, there was the back wall of the last chamber which was like the other 
iron slabs. The gas was a mixture of 98-percent xenon and 2-percent carbon dioxiOe at 
1 atmosphere. Thus, the gas slabs were 1.73 X g/cm2 thick. The cosmic rays were 
taken as normally incident at the center of the front aluminum slab with an energy of 
10.0GeV/nucleon. 

For lower charges (Figs. 12 through 15). we note that the Landau tail is still in 
evidence but that the distributions are not as skewed as the Vavilov energy-loss distribution 
would be. The variation of the distribution maximum with charge can be well represented as 
being proportional to charge squared, and the variation of the distribution width seems to  
be proportional to  charge. The width again is much smaller for the energy deposition 
distribution than it would be for the energy-lossdistribution. 

In conclusion, the relationship between energy loss and energy deposited by primary 
cosmic rays is not simple. To determine the energy deposited in a small region, as is required 
for the analysis of data on heavy cosmic rays from ionization chambers and in other 
applications such as microdosimetry. the energy transport and deposition by highenergy 
secondarl electrons must be considered. In the case of ionization chambers, the calculations 
described here show that the energy depositiofi frequency distribution is considerably 
narrower than the energy-loss distribution with the most probable energy deposition 
somewhat below the mean energy loss for the geometries considered. The deposition 
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Figure 11. The energy deposition frequency distribution for iron (FeS6)
nuclei normally incident at 2.5 GeV/nucieon on a bare slab with 

dimensions 99 X 99 X 5.1 cm composed of 90-percent argon a d  
10-percent methane at a pressure o f  1 atmosphere. 
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Figure 12. The energy deposition frequency distribution for nitrogen
(N") nuclei normally incident at 10.0CeV/nucleon 

on the four-chamber instrument. (These results are for 
the first twochambercoupled detector.) 
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Figure 13. The energy deposition frequency distribution for 
nitrogen (Nt4) nuclei normally incident at 10.0GeV/nucleon 

on the fourchamber instrument. (These results are for 
the second twochamber-coupled detector.) 
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Figure 14. The energy deposition frequency distribution for oxygen 
(Ot6) nuclei normally incident at 10.0CeV/nucleon on the 

four-chamber instrument. (These results are for the first 
two-chambercoupled detector.) 
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Figure 15. The energy deposition frequency distribution for oxygcn 

(Ot6) nuclei normally incident at 10.0CrV/nucleon on the 


four-chamber instrument. (Theseresults are for 

the second twochambercoupled detector.) 
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Figure 16. The energy deposition frequency distribution for sulfur ' 3  . 
(S3') nuclei normally incident at 10.0CeV/nucleon or the I .  

r: 
four-chambcr instrument. (These rcsults are for 

the first two-chamber-coupled detector.) 
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Figure 17. The energy deposition frequency distribution for sulfur 

(S32)nuclei ncrmally incident at 10.0 GcV/nucleon on the 


four-chamber instrument. (These results are for 

the second twochambercoupled detector.) 
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Figure 18. The energy deposition frequency distribution for chromium 
(Crs2) nuclei normally incident at 10.0 GeV/nxleon on 
the fourchamber instrumcnt. (These results are for the 

first twochamber-coupled detector.) 
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Figure 19. The energy deposition frequency distribution for chromium 
(CrS2) nuclei normally incident a t  10.0GeV/nucleon c;n the 

four-chamber instrument. (These results are for the 
second two-chambercoupled detector.) 
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Figure 20. The energy deposition frequency distribution for manganese 
(MnSs) nuclei normally incident at 10.0 CeVlnucleon on the 

four<hamber instrument. (These results arc for the 
first twoclimbercoupled detector.) 
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figun21- The energy deposition f q u e n c y  distribution for manganese 
I WnsS) nuclei nomially incident at 10.0 CeV/nucleon on the 

fourchamber instrument. (These results arc for the 
second two-chamberciupled detector.) 
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Figure 22. The energy deposition frequency distribution for iron 
(FeS6) nuclei normally incident at 10.0GeV/nucleon on the 

fourchamber instrument. (These results are for the 
first twochamber-couplerl detector.) 

41 



-- 

--- 

1 

I . ,. 

. - .  . t  . . .  

0.6 - _-­

0.6 ­

0.4 ­

0.2 ­

-0.1 

- L
2I 30 31 31 33 34 

ENERGY MPOSITION W V I  

Figure 23. The energy deposition frequency distribution for iron 
(Fe16) nuclei normally incident at 10.0GeV/nucleon on the 

four-chamber instrument. (These results a ~ cfor the 
second twochambercoupled detector.) 
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distribution is narrower because the high-energy delta rays basically tend to follow the 
primary particle's path through the instrument. First, they are initially produced at small 
angles from the direction of the primary path, and, second, the multiple scattering 
distribution for high-energy electrons is highly peaked in the forward direction. As they 
travel through the instrument, they deposit their initial energies over long segments of the 
primary particle's path, whereas in their production they have produced large fluctuations in 
the energy loss along short segments of the path. Because high-energy electrons produced 
above the chamber gas deposit more energy in the chamber gas than those high-energy
electrons produced in the gas, reductions of the matter above the chamber should decrease 
the width of the energy deposition frequency distribution and slightiy lower its mean energy 
deposition which could improve the instrument's charge resolution. 

Presently, the calculation of energy deposition for charges around 20 and above are 
almost prohibitively expensive in terms of computer time because of the large number of 
delta rays involved. With careful reprogramming, the computer time can probably be 
reduced. For example, electrons cannot travel farther than their mean pathlength, assuming 
no stragding. Thus, electrons produced one pathlength from the chamber need not be 
considered in the calculation. The second improvement that needs to  be introduced for 
extension of the calculation to very high charges is the introduction of the correct delta-ray 
production cross section from a partial wave calculation [3]. With these improvements, the 
method could cover the whole charge spectrum. 
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APPENDIX A. DERIVATION OF THE ANGLE - ENERGY 

RELATIONSHIP FOR DELTA-RAY PRODUCTION AND 


THE EQUATION FOR MAXIMUM TRANSFERABLE ENERGY 


The initial relativistic momentum of the primary particle is given by 

-
P = 

-
where V is its velocity, -y isgiven by 

(A-2) 

and M is its mass. Conservation of momentum gives 

- L

where P' is the primary particle momentum and Pe is :he delta-ray momentum. Assuming 
that the primary particle was initially traveling along the X axis in the positive X direction, 
we may write equation (A-3) in component form as 

! 

where 4 is the polar angle of P' and 6 is the polar angle of P, .Since delta rays are less 
massive than nuclei, cos 4 is always greater than zero, and we may use the identity 
cos' 9 -f sin' @ = 1 together with equation (A-5) to obtain 
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Thus, equation (A4) becomes 

Using algebra and the identity cosz B + sir? B = 1 ,we get 

P*- P'2 + Pi 
cos e = 2"Pe 

Using conservation ofenergy momentum 

E: = Pi C' + Mi C' 

and the momentumenergy relationship 

Pi =-piEi 
C 

where Ei is the total energy, equation (A-8) becomes 

~2 - E ' ~+ E: - m2c4 
COS e = 

2 E d E i  - m2 e" 

(A-8) 

(A-9) 

v::tere E is  the initial primary particle total energy, E' is the final primary particle total 
er-ergy, E, is the delta-ray total energy, and m is the electron mass. Using conservation of 
etiergy 

E = E ' + E  - me2 ,
e 
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equation (A-9) becomes 

cos e = E + m c 2  JTE +mc2
EP 

Using the mass energy relationship 

E = yMc2 

and the definition of  kinetic energy 

E = E~ - mc2 , 

equation (A-'lO) becomes 

m 

For m/M 4 '1 ,equation (A-1 1) is approximately 

Solving equation (A-1 1) for E we get 

'--:7
i 

* (A-io) 

(A-1 1) 

(A-1 2) 

(A-13) 

The maximum energy transfer occurs when 8 is zero;thus, 
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or squaring the bottom term and simplifying 

(A-14) 

where m/M 4 1 


� = 2mc2 p2 9 (A-15 ) 

max 
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APPENDIX B. SAMPLING FROM FREQUENCY DISTRIBUTION 

A continuous frequency distribution f(X) , often called the density function. is 
defined such that f(X)dX gives the probability of an observation between X and 
x + dX . The cumulative frequency distribution is defined as 

I t  gives the prohahilily of finding an ohsewation X’ less than or equal to X .For discrete 
frequency distributions. ~l tcwntulativc distribution is given by 

(B-2) 

where P ( 3 )  is the probability of observing Xj . Obviously, F(X) varies between zero and 
unity. 

All sampling in these calculations is based on one simple rule 1241: To obtain a 
sample whose frequcncy distribution approximates a given ContinuoL;: frequency
distribution, the equation 

is solved for XR the sampled variable where R is a pseudorandom number uniformly 
distrituted on the interval 0 to 1. For a discrete distribution, the inequality 

is solved for XRN . 
The pseudorandom number R is generated using the multiplicative congruence

method. Given &neiast pseudorandom interger NI between 1 and z3’ - I , the next 
integer in the sequence is given by 
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f 
N + 1 = 515N mod 235I I 

. I  
t
! and 

i
! 


i R =  NI + I (B-5)
i 2 35 

f 
c 

E
t 

As an example of sampling from a continuous distribution, consider the frequency
distribution of the energy of high-energy delta rays given in equation (21). The cumulative 

i
1
i 

distribution is given by 

I
i 

� 1  ‘R E max ER 

1
i 
! F (cR)= - + F‘ 

t 
. . 

1’ 

�1  ‘max E max 
In E max 

i
i 

Thus, we have from equation (B-3) 

I + p a h %II R =  
�1 ER E max ER 

# 

1 + L l n L
E: E

� 1  ‘max max maxff 
which can be solved numerically for E R  by the simple iteration 

xc
i 
f i * .  

1 ...1 I 

$ 
t
f 
f 
p3 

i Where the initial guess E R ~is taken as E ,  ,ccmvergence is rapid except at emax. 
s“.
$
5. I i 
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APPENDIX C. THE MOLIERE MULTIPLE SCATTERING DISTRIJUTION 

I 

The Moliere multiple scattering distribution gives the angular distribution expected 4 

for a beam of electrons which has been scattered several times (>20) . Bethe [211 provides 
an easily understood description of the distribution. It is given by , 

i 
1 
? 

(C-1) 

where M(0) is the frequency of scattering through the angle 0 .The series is sufficiently 
a c c u r a t e  w h e n  t e r m i n a t e d  w i t h  t h e  t e r m s  s h o w n  ( 2 1 ) .  T h e  
functions M( ' ) (O)  and M(?) (0)  are tabulated by Bethe [21] .  The parameter B is 
defined by the transcendental equaticn 

B-l11B = b (C-2) 

w1:ere b is given by 

2 
xcb = In 

1. 16;xa2 

xa is the screening angle given by 

'a -
- - . b 1.13 + 3.76 

137P, (C-3) 
4 3  

0 .  885aoZo ' e  

where is Planck's constant divided by 2n ,  a. is the Bohr radius. Zo is the atomic number 
of the material, Pe is the magnitude of the electron's momentum, and @, is the magnitude 
of the electron's speed over the speed of light. xc is given by 
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where Na is that atomic density (atoms/cm3 ). @ is defined by 

* s - .e 
(C-5) 

X p 

Since the electron energy changes in passing through AX1 , the mean ecergy 
(�1 + "1-1 )/2 is used to  define P, and Be .  Equation (C-2)is solved numerically for B by 
the simple iteration 

= b +In Bi
Bi+  i 

The initial guess B, for the initial scatter is 8.0. For succeeding scatters, the converged 
result from the previous scatter is med for the initiai guess. Convergence to  several places is 
'usually obtained in five or six iteraticns of zquation (C-6). 

Sampling from equation (C-l), we use equation (B-3) or 

eR 
M(8) 8d0 = R (C-7) 

0 

which reduces to  

where, from equation (C-51, 
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The integrals in equation (C-8) are performed numerically to  the tabulated values given in 
Reference 21. Since the exponential is the most important term on the right of equation
(C-8), an initial guess at 9 is obtained by solving the equation 

9; = -lnm . 

Then, the correct value is found by searching through the tabulated values of the integral 
from 9'.Linear interpolation is used between tabulated values. 

i
j
i 

I i 
! 

! 

I 

i 
1 
! '  
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APPENDIX D. USE OF DIRECTION COSINES 
FOR DESCRIBING PARTICLE SCATTERING 

One of the most efficient ways of describing particle's direction for the MonteCarlo 
transport is the use of direction cosines. In Cartesian coordinates, a unit vector along the 
particle path is given by 

where a, fl, and y are the X-, Y-,and Zdirection cosines, respectively. The utility of -	 this method is shown by the calculation of the new particle coordinates when the particle 
has moved a distance r .The new coordinates are giren by 

Xi = Xo + cyr 

Yi = Yo + $r 

z, = zo + 3/r 

where Xo, Yo,and Z, are the old coordinates. The problem arises in determining the 
new direction cosines when a particle scatters a t  some angle 8' from the original direction. 

If we define a new coordinate system with its positive 2 axis directed along k' and 
its X axis directed along i' where i' is defined by 

Since 

k ' x k = ( i  0 0  ; ) = p i  - aj , 

equation (D-2) becomes 
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Far a right-hand coordinate system, 

.Since k’ and i‘ dl t  perpendicular. the magrutudt of the cross product i s  one and 

Now if we have a unit vector in the new system given by 

n = a’i’ + @’j- + y’k’ , 

it is g.ven in the unprimed system by 

+ y’[cri + Pj + ri<I 

or regrouping 
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+ -a-a + p’py 
+ r’P j 

Thus, the direction cosines of n in the old system are 

y* = - p ’ m +  y’y . 

WI:note that the direction cosine in the new system a’, 8’ , 7’ are related to the scattered 
angles by 

where I$’ is the azimuthal scattering angle and 6’  is the polar scattering angle. 
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APPENDIX E. DERIVATION OF THE CONTINUITY EQUATION 
OF THE ENERGY-LOSS FREQUENCY DISTRIBUTION 

Let 4 (X,A) be the flux of particles that having passed through a distance X of e 
material have lost energy A and let P(AX,A'-L,) be the probability that a particle with 
energy loss A' at  X will have an energy loss A after passing through an additional 
distance A X  of material where only interactions that result in energy losses below e l  are 
considered to  contribute to total energy losses A or A' .Then the flux @(X+ AX,A) is . 
given by 

where the first integral on the right is because of particles scattered into A and the second 
integral is because of particles scattered out of A .Since 

- lim @ t X + A X , A )  - d ( X , A )-ax AX-0 A X  

using equation (E-I) we obtain 

(E-2) 

Since we are considering only interaction which results in losses below energy e l  in the 
Limit of small A X ,  P(AX,A'-A) is zero fcr A'-PA>c, and we may change the limits on the 
integrals in equation (E-2j accordingly. Thus, 

, 

,/ 
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where 

(E-3) 
0 A ( � 1  

Letting E = A - A', e' = A" - A ,and b = A - B, we obtain 

The probability density function f(X,A) is given by 

Thus,
E
the continuity equation of  f(X,A) is found by dividing both sides of equation (E4) 

by + (X,A')dA' yielding 
0 
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