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CALCULATION OF ENERGY DEPOSITION DISTRIBUTIONS
FOR SIMPLE GEOMETRIES

i. INTRODUCTION

Parallel plate ionization chambers are to be used [1] as part of an instrument to
measure the charge spectrum of heavy nuclei in the galactic cosmic-ray flux. The ionization
chamber measurement determines the energy deposited by the cosmic ray along its
trajectory through the chamber while other portions of the instrument determine the
distance traveled through the chumber. (The trajectory is approximately a straight line
unless the cosmic ray has a nuclear interaction.) From these two measurements, the energy
deposited in the chamber per unit pathlength of the cosmic ray can be determincd. The
stopping power or mcan energy lost per unit pathlength in material ~ dT/dx is directly
related to the incident particle’s charge. For nuclei up to about iron, calculations of
stopping power based on the first Born approximation appear to be valid [2,3]). These
calculations predict that the stopping power is proportional to the nuclear charge squared.
For nuclei above iron, higher terms in the perturbation theory series must be taken or a
partial wave expansion must be used [3,4] to derive the charge-stopping power relationship.

However, the stopping power gives us only the average energy lost by the particle in
the detector. A beam of particles of the same trajectory, charge, and energy will produce a
distribution of energy losses in the ionization chamber. This fluctuation in energy lossin a
tnin absorber, sometimes called *‘straggling,” is the result of the finite number of events that
occur in the ionization energy loss process. Energy transfer to the electrons in the absorber
material produces excitation and ionization. Many of the elcctrons gain considerable encrgy.
The probability of large energy transfers, which depends upon the impact parameter in the
classical picture, becomes smaller with higher secondary electron energy so that the
fluctuations in the number of events become greater at higher energies. As a result, the
energy loss distribution for fast charged particles in thin absorbers has a considerable width
and is skewed to the high encrgy side. The problem of calculating this aistribution was first
attacked theoretically by Landau [5] for thin absorbers where only a small fraction of the
particle’s initial energy is lost. He used Laplace transforms to solve the continuity equation
of the distribution function of energy loss. In addition to the assumption that the energy
_loss was small, his derivation places no upper limit on the energy transferred to a single
electron of the absorber. This approximation limited the validity of his solution to
electrons, positrons, and heavy particles of very high energy or in very thin absorbers.
Symon [6] solved the problem more generally by using numerical techniques both for thin
absoroers where the average cneigy loss was less than 10 percent of the initial energy and for
thick absorbers where the average energy loss is more than 10 percent of the initial cnergy.
Vavilov [7] followed Landau’s basic approach, but he obtained a more rigorous sclution
without the approximation of unbounded single energy transfers. Thus, his resuits could be
applied to a wider range of particles and energies though still restricted to thin absorbers. We
will use Vavilov's general method of solution extensively in Section Il.

.



PRpR B

For a typical primary cosmic ray with Kinetic energy in the GeV/nucleon range, a
number of energy loss mechanisms are ava.lable — scattering of electrons (delta rays),
excitation of atomic electrons to higher bcund-energy states, production of Cerenkov
radiation (the radiation produced when a particle passes through a dielectric at a velocity
faster than the phase velocity of light in the medium) [8], and production of
bremsstrahlung radiation (radiation that is produced when a charged particle undergoes
acceleration). Production of delta rays and excitation is the most important energy loss
process contributing to the total stopping power for the particles considered here. Cerenkov
losses are responsible for only a small fraction of the relativistic rise of the stopping
power [9], and bremsstrahlung losses are negligible because of the high mass of the nuclei.
We will confine ourselves to consideration of the interactions with clectrons.

Cosmic rays can also undergo nuclear interactions with the chamber material.
Waddington et al. [10] Lave measured the interaction mean free path for cosmic rays in
nuclear emulsions. Their results show that the mean free path varics, with minor energy
dependence (encrgy ronge was 100 MeV/nucleon to 30 GeV/nucleon), from about 19 cm of
emulsion (the equivalent of about 46 g/cm? of air) for alplia particles to about 10 cm of
emulsion (27 g/cm?® of air) for very hcavy primaries with nuclear charges greater than 20.
Because the ionization chambers considered here are relatively thin (x < 1.0g/cm?)
compared with the interaction mean free path, few riclear interactions will occur, and they
are identificd by the trajectory measurement in the experiment [ 1] and treated separately.

The problem to be attacked here is the result of the subtle distinction between the
energy lost in a given eclement of volume along the cosmic ray's path and the energy
deposited there, since energy can be transported in and out of the volume clement by
secondary particles and radiation. Thus, energy loss depends on the type of material in the
volume, whereas energy deposited depends on the surrounding geometry as well. Since delta
rays transport practically all energy that is removed from the region where it is lost by the
primary particle, let us consider how gzometry affects their production, transport, and
energy deposition. For a small region on the path of a heavy cosmic ray through a piece of
material, the production of a high-energy delta ray will cause a large fluctuation in the
energy lost in the region; but, since the delta ray will leave the region with little energy loss,
the fluctuation in energy deposition will not be as large. Convarsely, electrons from other
portions of the path may scatter into the region, contributing to energy deposition in the
region. More of the energy of lower-energy delta rays is deposited in the region of
production. Finally, at some deita-ray energy, depending on the size and shape of the
region, energy loss is equivalent to energy deposition because few of the delta rays cscape
from the region relative to the number produced there.

Fven if the relationship betwcen the mean energy deposition and charge was known,
problems would exist b._cause the production and transport of the delta rays are random
processes and the energy deposited in a region by identical cosmic rays will fluctuate from
event to cvent depending on the number and energics of the delta rays produced. For an
jonization chamber, this results in an uncertainty in the determination of the exact charge
of the cosmic ray. Thus, the interesting quantity that we will attempt to calculate here is the
frequency distribution of encrgy deposition by a heavy cosmic ray considering the
fluctuations in delta-ray production and transport.
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To attack the delta-ray problem, we will use the procedure of dividing it info two
problems according to the delta-ray energy. The breaking-point energy e, is selected to
meet two criteria. First, it must be large compared with the binding energy of electrons in
the material so that electrons scattered at energies above this energy may be treated as free
electrons for the scattering cross-section calculation. This places a lower bound on e, in
the 10- to 100-KeV range [11]. Second, since we will assume that all electrons with energies
below €; deposit their energy in the volume element where they are produced, so that
energy loss is equivalent to energy deposition, the distance that electrons with enerpies
below €; can travel must be on the order of the smallest dimension of the production
volume element. For the calculation shown here, ¢, was 80 or 100 KeV because the
ionization chambers considered are relatively thin. For othzr gecometries, €, could be much

higher.

We will calculate the energy-loss/deposition distribution caused by low-energy delta
rays and excitation using a modification of the Vavilov cnergy-loss distribution {7] to be
derived here. The modification consists of introducing a cutoff energy above which all delta
rays are ignored. For the delta rays abo ~ ¢, , we will calculate the production number and
energy distribution, and then determine cnergy deposited in the detector by these ciectrons
using Monte-Carlo techniques. Since delta rays produced in the chamber electrodes and
other parts of the instrument can scatter inte the chamber gas, the Monte-Carlo transport
will consider delta rays produced throughout the instrument.

H. THE DISTRIBUTION OF ENERGY LOST
DUE TO LOW ENERGY TRANSFERS

A. Development of the Restricted Energy-Loss Distribution

The distribution of energy loss due to low energy transfers is derived in this section.
The derivation shown here follows Vavilov’s original derivation of the encrgy-loss
distribution [7) where all energy transfcrs were considered. Here, we exclude high<energy
transfers by the introduction of a cutoff energy €, . As we will show, the introduction of
the cutoff energy in the derivation is not equivalent to replacing the maximum transferable
energy in the Vavilov distribution equation by a lower energy.

If we dcfine f(X.A)dA as the probability of an cnergy loss between energy A and
A + dA because of interactions wh.ch result in losses below €, for particles traveling a
distance X and w(E.e)de as the probability per unit length of an energy loss ¢ by the
particle at energy E , then the continuity equation for f(X.A) is

b £ '
HEL) = [ wE.rxa - ade - [l oEe e
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[See Appendix E for a derivation of equation (1).] We assume that E » A so
that w(E,e) does not change as a function of E along the particle path. ¢, is the cutoff
energy above which the delta rays are ignored. It is assumed that w(E.) = Ofor e > ¢, .
Thus, bt iscqualto A for A < ¢, andequalto ¢, for A > €, . .

To use Laplace transforms on equation (1), we note that

w
ox,P) =P [ T2 f(x,a)aa
o
C+: PA
£(X,4) = -2% f E__ﬂéﬂl dp
Ciiw
© (2)
WEP) = P [ &€ w(E,e)de
o
C+i®» Pe
. e E,P
wE ) = 5= [ st dP
C-io

where C is an arbitrary constant. When b equals A , using the convolution theorcm on
the first term on the right o« equation (1), we obtain

B(X,P) _ E,PIO(X.P) _ 4k, p) f ' w(E, €)de 3
ax P o

Solving the differential equation, we get

! €1
$(X,P) = #(0,P) exp [ﬂ{i—l’l - w(E.e)de]x @
[+
€y
ﬁ’p = [ e FE w (€, €)de 3
o

e o oy
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thus,

o(X,P) = ‘¢(0,P) exp [fi e-Pe w(E, €)de - f w(E,e)de]X . (5)
o o d

The incident particles will have no losses; thus,

f(0,A) = 5(A) ;

» where 5§(A) is the Dirac delta function and

¢(0,P) = P [ e P2 5(a)da
[+

s

= P . 3

By transforming equation (5), we have

, CHo PA & _pe
f(X,4) = e f -5 P exp f e w(E, €)de
. - o
€
- f w(E, €) de] X3 jdP (6)
o

.4
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(x,4) = 5= [ cap|ap
Clim
€1
+Xx [ W(E, &) (e T ¢ - 1)de|ap . )
[o]

For b equal ¢, , we get the same equation because of the way w(E,e) is defined. This is
basically Vavilov’s form of the expression except that in his case ¢, is the maximum
transferable encrgy. We may rewrite the exponent in equation (7) as

€1 €1
I1=PlA-X [ ew(E,e)defl+ X [ W(E,€)(e "€ + Pe - 1)de  (8)
[¢] (o]

where distant collisions between the particles and electrons play an important role in the
first term only. The integral in the first term can be written as

€max € max
I = f ew(E, €)de - f ew(E, €)de )
(o] €4

where €., is the maximum possible energy transferred to an electron given by

mc? g2 y?
€max = 2m myY
1+ —M + (ﬁ)

Here, m is the electron mass, ¢ is the speed of light, 8 is the primary particle velocity
over ¢, M is the primary particle mass, and ¥ is defined as
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(Appendix A shows a derivation of e,,..) The first term in equation (9) is recognized as
the definition of collision stopping power S(E). Thus,

emax
1="P{A - X|S(E) - [ ew(E, €)de
T 61
€y )
+ X [ wEe(e ©+ Pe - 1)de . (10)

o

If we confine ourselves to heavy cnergetic charged particles, we may uvse the results that

have been obtained for w(E.e) by applying the first-born approximation if e, is assumed
to bc high enough above the electron binding energy in the first-term integral. The
probability per urit pathlength for the production of an electron with energy e is given
by [12]

21er2 4 2
w(E€) = SomTer (1 - ) an
max

where N is the number of clectrons per unit voiume, Z is the atomic number of the
primary particle, and e is the electron charge. Defining  as

21er;e4 (12)
mce

gE

and substituting cquation (1 i) into cquaticn (1) we have

€
max 2
I=Pla- XS(E) - ¢ ll--@—eede
G‘ € max
€ 2,
+ X§ JJEI’(I'%LC')@‘“H’G-IMG (3)
o “max
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Performing some of the integrals and replacing XS(E), which is the mean erergy loss,
with A , \ve obtain

- € 2
f=PlA -3+ xgfin -2 _ g, Be
€1 €max
i P € epP
_e~€1 2 2 1 o™
+ xefite pfis B\, [P+ B f1°€ de
€1 €max max /o
Simplifying slightly and noting that [13]
€y 1 e-EP
il ————dc = ¢+ In P - E(-&P)
o

where § is Euler's constant 0.577 ... and E;j(-, P) is the exponential integral, we obtain

I=P[A-K-X§(ln€—€"—+82+l-t)]

max

/ 2 -¢,P 2
+ X&%Kl » L& ).. e +(P + £ >[1an - E (-e,P)]}
1 € €4 € i
max max

Letting

y = €1p 1
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and

7L=A-A-xln-—£‘—+32+1-t)
€ €max

and substituting into equation (7), we obtain

Clim 2
(X,4) = —— [ expiay + a1+ LE)_ Y
27[5‘1 1 €
Clem ! max

e e

max

Choosing C' = 0 for the contoutr of integration and letting iu = Y , we obtain

exp [x (1 + %‘Ez—;—)] ®
1(X,A) = \ max 5 fAn

2re, J e
-0
_ 2
_ scje iu - (m + e—eﬂ->!ln iu - Et(-iu)]}}du
{ max
Since ¢4 = cosu - isinu,
In ei"/zlul = ir/2 + Inlul u=o0

Iniu =
in e'm/zlul = ~ir/2 + Inlul u < 0O
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and from Reference 13

Ci(lul) - iSi(u) + ir/2 u=0

Ei(-iu) =
* Ci(lul) - iSi(u) - ir/2 u< o0
exp[x(l + —ﬂ—: 2§)] ©
f(X,A) = Bre; e —mf exp{i?\u

2
- x{cos u - isinu - (iu + fﬁ->[lnlul
max

- Ci(lul) + iSi(u)lg}du

where C;(u) is the cosine integral and S;(u) is the sine integral. Regrouping into real and
imaginary parts

2
exp[x (1 + %ﬂ.

f(X,4) = e max)] -f exp{x{-eiji-z; (nlul - C(tul)]
- uSi(u) - cosu $+ iau + ix{u[lnlul - Ci(lul)]
+ -€—€£2- Si(“) + sinu} }du
max
Letting
gi(u) = fﬁ {In{u] - Ci(lul)] -u Si(u) - cosu (15)

max
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and
2
g(®) = ullnlul - -C (lu)] + Z£-5(w) + stnu a6)
max

and noting that g,(u) is an even function and g;(u) is an odd function, we get the
distribution we shall call the “restricted energy loss distribution.™

exp[x(l + Eﬁic—)]
€ max _ }’ exg,(u)
[

f(x,A) = e, cos[Au + kgy(u)ldu . (A7)

Comparing these results with the results of Vavilov's original derivation where

2 w
(xX,a) = exp[;(: + A E) f exg‘(") cos{Au + xg,(u)ldu
o

A== k(B2 +1-27)

gi(v) = B¥YInlul - Ci(!ul)] - usi(u) - cosu
and

gx(w) = ullajul - C(iul) + S (u)] + sinu

we note that €max has been replaced by €, in « A before the integral, and that A hzs an
additional logarithmic term. Also, 2 has been replaced by €,8? lemay in the exponential
and in g,(u) and g, (u) . Thus, simply replacing €max by €, in Vavilov’s distribution will
not give the correct distribution.
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To evaluate the sine and cosine integrals which occur in equations (15) and (16), we
use the following approximations;

( t + Inu u= 0.01
© j 2§
(-1)"u .
t+ lnu+ j;l W 0.01<u<1.0 s
C,(w) '< (18) .
G(u) sinu - H(u) cos u 1.0 = u<50.0
sin u
u=50.0
\ u
u u=< 0.01
@ j2i1 e
(-1)"u ’ §
0.01 < .0
FZO @+ Dz + D Or<u<t .
8,(v) = (19) .
x/2 - G(u) cos u - H(u) sinu 1.0 =u<50.0
x/2 - -‘%9;—“ u=50.0
where
8 6 4 2
G(u) = l(us + aius + a,u‘ + a;,u2 + a‘)
uu+asu+asu+31u+aa »
1 /u® + bu® + but + bu? + b,
Bl) = B\ Hw 7 bl + bt b Bt
and
a, = 38027264 as = 40.021433
a; = 265.187033 a, = 322.624911 g
a, = 335.677320 2, = 570.236280 B
a, = 38.102495 - a, = 157.105423 -
3

12
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by, = 42.242855 bs = 48.196927

b, = 302.757865 bs = 482.485984
by, = 352.018498 b, = 1114.978885
b, = 21.821899 bs = 449.690326

The series was terminated at the term which was 10°¢ of the sum to that term.

Since most of the contribution in the integral in equation (17) is near the origin, the
integration can be terminated at some finite limit. Simpson’s rule was used to perform the
numerical integration. Difficulties are encountered in obtaining good convergence of the
integral where «x is small and on the tails of the distribution where [x{ is large. Typically,
for a k of 0.87, good convergence was obtained on the tails {f(X,A) =~ 103] by
integrating to 2 u of 20.0 with 6000 integration steps. At a « of 19.3, integration to 1.5
with 2500 steps yielded good convergence. Good convergence here is taken as more than
two significant figures since the test is applied at the extremes of distribution. Nearer the
maximum of the distribution, convergence is much better than this. The test for good
convergence was a second calculation where the upper bound of the integration was doubled

and the number of integration steps was quadrupled.

B. Results for the Restricted Energy-Loss Distribution

In this section, we show some of the results obtained using the restricted energy-loss
distribution derived above to calculate the energy-loss distribution duc to low-energy

transfers.

Taking the ionization chamber in Reference 1 as a typical example, we show (Fig. 1)
the energy-ioss distribution for an iron nucleus incident at 2.5 GeV/nucleon on a
5.1-cm-thick chamber containing 90-percent argon and 10-percent methane at
1 atmosphere. The curve for “no cutoff” is the regular Vavilov distribution which as usual is
skewed to ths right, peaking at an energy slightly below the mean energy loss & of
9.16 MeV. The stopping power S(E) used to calculate & was the proton stopping power
at the same energy per nucieon multiplied by Z? . The electron density weight average of
the argon and the methane stopping power tabulated in Reference 14 were used to
approximaie the stopping power of the mixture. As would be expected, as the cutoff e, is
decreased, the tail to the right of the distribution maximum disappears, making the

distribution more Gaussian and the mean of the distribution decrease.
l. HIGH-ENERGY DELTA-RAY DISTRIBUVYION

In this section, we describe the number and energy distribution of the high-energy
delta rays to be used and test its validity.
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Figure 1. Restricted energy loss distribution with various delta-ray energy
cutoffs for an iron nucleus (Fe®®) with an energy of 2.5 GeV/nucleon for a
pathlength of 5.1 cm in a mixture of 30-percent argon and 10-percent methane
at 1 atmosphere of pressure. €., was 12.853 MeV.
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Because equation (1) applies above the cutoff energy ¢, , the average number of 3,
delta rays produced along the pathlength X above e, is given by

LN

€ . e ¥
max e
- Be i
no = f )—:5- 1 - p de
€4 max
or
1 1 BZ €4
= -— o +
%o X € € € In € 20)
max max max

-3
RE. 3
Thus, the energy distribution of the high-energy delta rays is given by
o
K
_ Xw(E, €
n(e) = XefEe9)
o
or
(s B2e
i - € ax
- - + In —--
€ € € €
max max max

Since the production of a high-energy delta ray along the path of the primary
particle path is a rather rare event, and since events of this type are independent of each
other, we assume that the distribution of the number K of delta rays produced
above ¢, is Poisson, with a mean of n, or

(22)

[+]
P(K) = -

15
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To test the assumption of equation (22), we performed a small Monte-Carlo
calculation to determine the distribution of energy lost to high-energy delta rays by primary
particles. For each of a set of primary particles, we sampled a number K from
distribution P(K) then we sampled K energies ¢ from n(e) and summed them to obtain
the energy loss of each primary particle. (See Appendix B for a description of sampling
techniques.) Figure 2 shows the resulting distribution for 5000 iron nuclei incident on the
argon-methane mixture, as in Figure 1. The cutoff energy e, was 0.08 MeV.

w*
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-
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-
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[} 1 2 3 4 ] [
ENERGY LOSS (MeV)

Figure 2. Energy loss distribution due to delta rays with energies above 0.80 MeV for an
iron nucleus (Fe®*®) with an energy of 2.5 GeV/nucleon for a pathlength of 5.1 cm ina
mixture of 90-percent argon and 10-percent methane at 1 atmosphere of pressure.

The total energy loss is the sum of the energy lost to low-energy delta rays and the
energy lost to high-energy delta rays. According to Reference 12, if a random variable Z is

given by

Z=t+u '
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then the frequency distribution of Z is given by the convolution integral

£5(2) = [ £,(Z - t) f(t) at (23)

’

where f;(u) is the frequency distribution of u and f;(t) is the frequency distribution
of t. Since the distributions used here are zero over the negative range, the distribution of
total energy loss fp(AT) is given by

AT
L.(85) = of (X, A5 - ) £ (6) dt 4)

where A is the total energy loss and fnc(t) is the distribution of loss caused by

high-energy delta rays, determined by the Monte-Carlo calculation. Figure 3 shows the result
of applying equation (24) to the distribution shown in Figure 2 and the corresponding
distribution in Figure 1. The distribution shown in Figure 3 is practically identical to the
distribution in Figure 1 where no cutoff is used except in the range betweecn 12.0 and
13.0 MeV. (The discrepancies here are believed to be purely statistical in natore. The
number of histories which gave contributions in this region was small.) Similar resulis have
been obtained for other primary particle charges and energies and for different energy
cutoffs €, . Thus, we believe the assumption of equation (22) is valid.

IV. HIGH-ENERGY, DELTA-RAY TRANSPORT AND ENERGY DEPOSITION

In this section, we describe the method of transgorting the high-energy delta rays
produced in the ionization chamber and surrounding material and of calculating their energy
deposition in the chamber zas.

Since the chamber consists of a number of materials and has a fairly complex
geometry, Monte-Carlo transport techniques are the only ones that are easily anplicable. A
pure simulation, following the consequences of each individual scatter as is sometimes done
with neutrons or gamma rays, is not used, because an electron interacts with so many
atomic electrons in the process of slowing down. Instead, the electron path is divided into
several segments, and a new direction of travel is sclected from a multiple scatiering
distribution at the end of each segruent. The scheme used here follows closely those
described by Berger [16] and Perkins [17]. First, an energy grid is set up uniformly spaced
in the logarithm of energy between e, and €max’ i.e., each energy ey is larger than the

proceeding energy ey by a fixed percentage (usually about 5 percent). Second, using the
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continuous-slowing-down approximation, the distance traveled AXj in losing
energy € - €. is determined from the total electron stopping power S{(e) [18] by

N
1 de -
= = (25)
17 el_fl S,1(€)

where p is the material density. Since ey is near ey_;, equation (25) is approximated by

€

I
In €. €, €,
I-1 I-1 1
~ - (26)
& € 157(e) Splepy) 5{)
T
1°7 6.1

which assumes a power law connecting points St(ey) and S-{ep}) on the stopping power

curve. Where mixtures are involved, the stopping power is the average of the stopping
powers of the elements or compounds in the mixture weighted by the corresponding
electron densities. Third, given the energy lost and the distance traveled, the Moliere
multiple scattering parameters (19, 20,21) are calculated. (Appendix C describes the
Moltiere distribution.)

The Moliere distribution was selected over other distributions that are theoretically
more accurate because it can be very rapidly sampled. (The comparisons in Figures 4, 5, and
6 show that the Moliere distribution is adequate for our purposes.) Since cach primary
particle can preduce several hundred high-energy delta rays in passing through the ionization
chamber and surrounding material, and since several thousand primary particles should be
sampled to obtain satisfactory statistical accuracy, a multiple scattering distribution that can
be rapidly evaluated is of prime importance in making the calculation possible.

An electron history proceeds as follows: The electron initial energy is sampled from
equation (21) (see Appendix B) and the nearest grid energy ey is taken as the actual

starting energy (Fig. 7). The electron’s initial spatial coordinates are sampled randomly
along the segment of the primary particle’s path in a region of a single material; ie., if 100
electrons are generated along a path segment through the chamber wall, their initial
coordinates are distributed randomly along that segment. If five electrons are generated on
the chamber segment, their initial coordinates are random along that segment. Energy
deposition by the electron is determined by taking the difference between the two possible
sources of energy, the production of the electron in the chamber gas or the scattering of the
electron into the chamber gas, and the one possible energy-loss mechanism, the escape of

¢
19
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Figure 4. Energy deposition for 0.5 MeV electron normally
incident on an aluminum slab.

the electron from the chamber gas. If the electron initial coordinates lie in the chamber gas,
the initial energy is added to the sum of energy deposited by the electron in that chamber.
Otherwise, the sum is set to zero. If the electron escapes from the chamber, the energy at
escape will be subtracted from the sum. The angle between the initial electron direction and
direction of the primary particle is calculated from

(1 + r_n__) €
cos ' = My L_, 27
B €+ 2me?
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[see Appendix A for a derivation of equation (27)]; the direction cosines of the initial
electron trajectory are calculated using the cosines of the primary particle path (see
Appendix D). Then, the coordinates of the end of the first path segment are determined.
Tests are made to determine if the chamber b¢undary has been crossed. If the electron has
escaped from the chamber gas, the energy at the boundary dctermined by linear
interpolation is subtracted from the energy sum deposited by the electron in that chamber.
If the electron has scattered into the chamber gas, then the energy at the boundary is added
to that chamber sum. When any chamber boundary is crossed, a new set of segment e¢nd
coordinates must be calculated because of changes in density or stopping power. Then, tests
are made for succeeding boundary crossings until the region is reached wiiere the segment
actually ends. A new direction is then sampled from the Moliere multiple scattering
distribution, and the process of boundary testing starts over along tie new patii segment.
The electron is followed in this fashion until it either escapes from the instrument or
feaches e; . At ¢; , one last segment is taken whose length is the mean electron

pathlength [18] at €, .

As a check on the accuracy of the electron transport, calculaiions of energy
deposition in a plane aluminum slab were made using the described method. Reference 22
describes similar calculations using Berger’s program, ETRAN {16], which is recognized as
one of the best electron transport codes presently available. Figures 4, 5, and 6 show
comparisons of the results from Berger’s program [22] and the transport described here for
monoenergetic electrons normally incident on the slab surface at 0.5, 1.0, and 4.0 MeV,
respectively. The energy grid separation was 5.0 percent, and the cutoff energy €, was
0.08 MeV in our case. Results from our program tend to peak slighily higher in energy and
drop more rapidly with energy. The differences are small and should not significantly affect
the results of our caiculations.

V. TOTAL ENERGY DEPOSITION

In this section, we show how the total energy deposition distribution for primary
particles is calculated using the results of the previous sections.

In these calculations, the primary cosmic rays are presumed to arrive as a
monoenergetic, monodirectional beam of a single isotope and to travel in a straight line
through the insirument. Given the exterior point of incidence and the beam direction
cosines, the pathlength in each chamber is determined and the low-energy, delta-ray energy
deposition (restricted energy loss) distributions are calculated according to equation (17) for
each chamber.

To obtain the high-energy, delta-energy distribution, we use Monte-Carlo techniques
in one of two schemes, depending on the number of delta rays produced by the primary. If
each primary on the average generates only a few (< 100) delta rays above the cutoff
energy, a new set of electron histories can be generated for each primary particle as the
primary is followed through the instrument. (The number and energy sampling is as
described in Section I11.) In most cases of interest, however, each primary produces on the
order of 1000 high-encrgy electrons, and generating a new set of electrons for each primary
particle becomes prohibitively expensive in terms of computer time. Instead, a set of
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electrons is sampled from a table of electron histories previously generated and placed on
magnetic tape, and the same electron history can be used several times. This approximation
is valid if the table can contain a representative population of electrons. For the calculations
shown here, 20 000 electron histories were generated in each region of the geometry that
was crossed by the primary beam.

The electrons sampled for each primary particle are treated as follows: The initial
energies of electrons that happen to be generated in a given chamber are summed and added
to an energy loss/deposition for low-cnergy transfers sampled from the distribution given by
equation (17) to obtain a total energy loss for the particle in the chamber. Next, the energy
deposited in a given chamber by all electrons sampled for 2 primary is summed to obtain the
energy deposited by high-energy clectrons in the chamber. Combining this energy with the
sampled low-energy electron loss/deposition sample yields the total energy deposited by the
chamber primary. After several thousand primary particles have been sampled, the resulting
energy losses and energy depositions are sorted into cnergy bins to give histograms
approximating the frequency distributions for low-energy loss/deposition, high-energy
deposition, total energy depositicn, and total energy loss.

A second and better method for calculating the total deposition
distribution — because it eliminates the statistical fluctuation of sampling from the
low-energy loss/deposition distribution — is to use equation (23) in a convolution of the
restricted energy-loss distribution from equation(17) and the histogram frequency
distribution for high-energy electron energy deposition resulting from the Monte-Carlo
calculation. This is the mcthod that is used for tlie results that follow.

VI. RESULTS AND CONCLUSIONS

Figures 8 and 9 show the total energy deposition distribution calculated by the pure
Monte-Carlo (the histogram) and the Monte-Carlo convolution (the smooth curve) for iron
nuclei Fe®® normally incident at 2.5 GeV/nucleon on the double ionization chamber of
Israel et al. [1]. The instrument was simulated by a stack of five rectangular slabs 99-cm
long by 99-cm wide. The front slab which represents material between the primary beam
and the first chamber plus the front chamber wall is 0.40 cm or 1.1 g/cm® of aluminum
thick. The second slab which reprezents the first chamber gas is 5.1-cm thick. The gas is a
mixture of 90-percent argon plus 10-percent methane at | atmosphere with a density of
1.6767 X 107 g/cm?®. Thus, 8.5 X 107 g/cm? of chamber gas is encountered by the
beam. (The gas slab is identical to the one used for Figure 1.) The third slab representing the
back wall of the front chamber plus the front wall of the back chamber is 6.0 X 102 cmor
1.6 X 107" g/cm® of aluminum thick. The fourth slab is the gas of the second chamber and
is identical to the second slab. The fifth slab is the back wall of the back chamber which is
3.0 X 10? ¢cm or 8.0 X 10? g/cm?® of aluminum thick. We assumed that little energy is
deposited in the chamber by electrons reflected from the side walls of the chamber or from
inaterial behind the back chamber wall so that electrons that entered these regions are
allowed to escape from the geometry. The cutoff energy €, was chosen to be 0.08 MeV so
that comparisons can be made with curves in Figures 1, 2, and 3.
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Figure 8. Calculated frequency distribution of energy deposition in the first of two stacked
ionization counters of Israel et al. { 1] by iron nuclei (Fe®®) normally incident at
2.5 GeV/nucleon. (The histogram is the pure Monte-Carlo czlculation and
the curve is the Monte-Carlo convolution.)

The distributions of Figures 8 and 9 appear to be Gaussian with no Landau tail
present. The full width at half maximum is 0.9 MeV or about 10 percent of the mean energy
deposition. The mean energy deposition is below the mean energy loss by about 3 percent,
implying that energy deposition is not in equilibrium with energy loss. More energy is being
transported out the back wall of the chamber than is being transported in the front wall, in
agreement with Reference 23 which suggests that perhaps 6 g/cm? or more of material is
required to reach equilibrium between the production and absorption of knock-on
electrons. The most striking observation is the reduction of the full width at half maximum
by a factor of two as compared with the width of the energy-loss distribution (Fig. 1).
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stacked ionization counters of Israel, et al. [1] by iron nuclei (Fe®®) normally
incident at 2.5 GeV/nucteon. The histogram is the pure Monte-Carlo
calculation and the curve is the Monte-Carlo convolution.)

Observations by Israel et al. [1] on balloon flights from Palestine, Texas (where the
geomagnetic cutoff is 4.5 MV), using the instrument simulated for Figures 8 and 9, indicate
a width of 14 to 16 percent for the iron peak. (Their results are shown as the histograms in
Figure 10 taken from Reference 1.) The measurements had several sources of fluctuations
not considered here. Amplifier noise was Gaussian with o) equal to 2.2 percent of the

mean pulse height due to normally incident relativistic iron. Uricertainties in the trajectory -
measurement were characterized by a ¢ of 2.1 percent. The experimenters also suggested

v N ..
TSP T R Py L0 ) .. S

27




" 1. 18 20 2 26 28 2 30
- L] 1] L) L v i ] L] L] L ]
' CHARGE
40} | -
| «a———=DISCRIMINATOR
|
i CHAMBER &1
30 | <

F0 .
2
g Z, . \ia.n__ﬂ_,.n.
3

o
(-]
Y
A

< DISCRIMINATOR

CHAMBER #2

e

90 100 110 1220 130 140
CHANNEL NUMBER

Figure 10. Comparison of Israel et al. { 1] results with ovur calculated
distribution including noise and contribution from charges 25 and 27.

28

ek

2
I A T LS
I AL #

PN I

B b o ik ©




y
%
4

:

i

¢

+

3

i

"t

o ——y 43 o r¢h—" ¥

N

20

P

that part of the width of the peak was because perhaps as many as 10 percent of the counts
included under the peak were for charges of 25 and 27. The superimposed curves in
Figure 10 are out-results with the other sources of fluctuations folded into our calculated
distribution and with a contribution of 10 percent equally divided between charges 25 and
27. The curve is normalized to the total number of counts in channels 110 to 130, and
energy deposition is assumed to be proportional to charge squared. The peak width with the
other sources of fluctuation included is 13 percent of the mean energy deposition which is
in reasonable agreement with their results.

ot e

Figure 11 demonstrates the importance of the surrounding material for the energy
deposition calculation and shows the energy dzposition distribution for the bare 5.1 gas slab
used for the previous figures with no surrounding material. The peak energy has de-ceased
by more than 1.0 MeV and the full width at half maximum is nearly halved compared with
the compiete geometry. Note that the distribution is merely shifted slightly from the
corresponding energy loss/deposition distribution for €, equal to 0.08 MeV in Figure 1
implying that high-energy electrons from material above the chamber contribute more to
energy deposition in the chamber than do those high-energy electrons created in the
chamber.

Figures 12 through 23 show the results of a study of the response as a function of
charge of a proposed ionization chamber to be flown on a satellite [24]. The instrument
actually consists of four chambers with the responses of the first and second chambers
combined to obtain a single measurement of energy deposition. The third and fourth
chambers were similarly coupled. In the calculations, the instrument was simulated by a
stack of 50- by 50-cm rectangular slabs. The first slab representing material in front of the
instrument was 0.37 cm or 1.0 g/cm? of aluminum. Next, theie were eight alternating slabs o
0.0508-cm or 0.4-g/cm® thick of iron representing the chamber walls and 3.0-cm thick L
representing gas. Last, there was the back wall of the last chamber which was like the other .
iron slabs. The gas was a mixture of 98-percent xenon and 2-percent carbon dioxide at
1 atmosphere. Thus, the gas slabs were 1.73 X 1072 g/cm? thick. The cosmic rays were o ey
taken as normally incident at the cen‘er of the front aluminum slab with an energy of ST
10.0 GeV/nucleon. el

.
e Rast Ra e

For lower charges (Figs. 12 through 15), we note that the Landau tail is still in
evidence but that the distributions are not as skewed as the Vavilov energy-loss distribution
would be. The variation of the distribution maximum with charge can be well represented as L
being proportional to charge squared, and the variation of the distribution width seems to
be proportional to charge. The width again is much smaller for the energy deposition N
distribution than it would be for the energy-loss distribution. Ll

Y

Py

In conclusion, the relationship between energy loss and energy deposited by primary
cosmic rays is not simple. To determine the energy deposited in a small region, as is required
for the analysis of data on heavy cosmic rays from ionization chambers and in other
applications such as microdosimetry, the energy transport and deposition by high-energy :
secondary electrons must be considered. In the case of ionization chambers, the calculations S
described here show that the energy deposition frequency distribution is considerably Cy
narrower than the energy-loss distribution with the most probable energy deposition -l
somewhat below the mean energy loss for the geometries considered. The deposition ..
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Figure 11. The energy deposition frequency distribution for iron (Fe®®)
nuclei normally incident at 2.5 GeV/nucieon on a bare slab with
dimensions 99 X 99 X S5.1 cm composed of 90-percent argon and
10-percent methane at a pressure of 1 atmosphere.
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Figure 12. The energy deposition frequency distribution for nitrogen
(N'*) nuclei normally incident at 10.0 GeV/nucleon
on the four-chamber instrument. (These results are for
the first twochamber-coupled detector.)
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Figure 14. The energy deposition frequency distribution for oxygen
(0'®) nuclei normally incident at 10.0 GeV/nucleon on the
four-chamber instrument. (These results are for the first
two-chamber-coupled detector.)
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Figure 16. The energy deposition frequency distribution for sulfur
(S%*) nuclei normally incident at 10.0 GeV/nucieon or the
four-chamber instrument. (These results are for
the first two-chamber-coupled detector.)
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Figure 17. The energy deposition frequency distribution for sulfur
(S%2) nuclei ncrmally incident at 10.0 GeV/nucleon on the
four-chamber instrument. (These results are for
the second two-chamber-coupled detector.)
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Figure 18. The energy deposition frequency distribution for chromium
(Cr%?) nuclei normally incident at 10.0 GeV/nucleon on
the four-chamber instrument. (These results are for the
first two-chamber-coupled detector.)
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Figure 20. The energy deposition frequency distribution for manganese
(Mn*%) nuclei normally incident at 10.0 GeV/nucleon on the
four-chamber instrument. (These results are for the
first two-chamber-coupled detector.)
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Figure 21. The energy deposition frequency distribution for manganese
(Mn**) nuclei normally incident at 10.0 GeV/nucleon on the
four-chamber instrument. (These results are for the
second two-chamber-coupled detector.)
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Figure 22. The energy deposition frequency distribution for iron
(Fe®%) nuclei normally incident at 10.0 GeV/nucleon on the
four-chamber instrument. (These resuits are for the
first two-chamber-coupled detector.)
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distribution is narrower because the high-energy delta rays basically tend to follow the £
primary particle’s path through the instrument. First, they are initially produced at small ‘ i

angles from the direction of the primary path, and, second, the multiple scattering i ;
distribution for high-energy elecirons is highly peaked in the forward direction. As they !{ ‘,’

travel through the instrument, they deposit their initial energies over long segments of the

- primary particle’s path, whereas in their production they have produced large fluctuations in

) the energy loss along short segments of the path. Because high-energy electrons produced
K above the chamber gas deposit more energy in the chamber gas than those high-energy
T electrons produced in the gas, reductions of the matter above the chamber should decrease
the width of the energy deposition frequency distribution and slightly lower its mean energy
f: deposition which could improve the instrument’s charge resolution.

o Presently, the calculation of energy deposition for charges around 20 and above are
‘ almost prohibitively expensive in terms of computer time because of the large number of
delta rays involved. With careful reprogramming, the computer time can probably be
reduced. For example, electrons cannot travel farther than their mean pathlength, assuming
no straggling. Thus, electrons produced one pathlength from the chamber need not be
considered in the calculation. The second improvement that needs to be introduced for
extension of the calculation to very high charges is the introduction of the correct delta-ray
production cross section from a partial wave calculation [3]. With these improvements, the

method could cover the whole charge spectrum.
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APPENDIX A. DERIVATION OF THE ANGLE — ENERGY
RELATIONSHIP FOR DELTA-RAY PRODUCTION AND
THE EQUATION FOR MAXIMUM TRANSFERABLE ENERGY

The initial relativistic momentum of the primary particle is given by
P = yMV (A-D)

where V isits velocity, vy isgiven by

Y = T/ (A-2)

and M is its mass. Conservation of momentum gives

——= —.' — §
P + Pe (A-3)

-_— -
where P’ is the primary particle momentum and P, is *he delta-ray momentum. Assuming

that the primary particle was initially traveling along the X axis in the positive X direction,
we may write equation (A-3) in component form as

P

P! cos ¢ +Pe cos @ (A4)

<
]

P! sin ¢ +Pe sin 0 | (A-5)

where ¢ is the polar angle of P’ and 6 is the polar angle of P, . Since delta rays are less

massive than nuclei, cos ¢ is always greater than zero, and we may use the identity
cos? ¢ + sin? ¢ = 1 together with equation (A-5) to obtain

, > - .
cos® =4 /1 - =2 sin? o (A-6)
Poz
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Thus, equation (A4) becomes

RJ

P2

sin2 9 + P cos 0
p-? e

Using algebra and the identity cos? 6 + sin? 8 = |, we get

P? - p? 4+ p?
=3

cos @ = PP
e

Using conservation of energy momentum

E? = P?c® + M2 ct
i i i

and the momentum-energy relationship

B.E,
P = i’i

i c
where E; is the total energy, equation (A-8) becomes

E? - E? 4+ E: - m?ct

2EpJ E? - m? ¢t
e

cos 0 =

(A7)

(A-8)

(A9)

wliere E is the initial primary particle total encrgy, E' is the final primary particle total
erergy, E, is the delta-ray total energy, and m is the electron mass. Using conservation cof

euergy

E=E"+E - mc? ,
©
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equation (A-9) becomes :
. 2 E_ - mc? i z
cos 9 = E + mc e ‘ i :
EB E_+mc? y (A-10) ;
!
Using the mass energy relationship ‘
4
E = yMc? 1
and the definition of kinetic energy
€ =E - mc: |,
[’ e
equation (A-10) becomes ‘ 3
i N
i
: Jn
% i+My €
? = / . -
cos @ B € +2mc? (A-11) i §
LI
: For m/M < 1 ,equation (A-11) is approximately i o N‘j
% ]
=¥
7
& ] € + 2 mc? ' (A-12)
i +
Solving equation (A-11) for € we get g
D
]
_ 2 mc? g2 cos?o k
€ = m\ 2 , 2 . (A-13) 13
+ ——— - “
(1 M-y) pB* cos“ 6 ! 3
E
The maximum energy transfer occurs when @ is zero; thus, _ V
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or squaring the bottom term and simplifying

2 52 ‘

€ - —2 e B J}m 5 , (A-14) ;

3 max x m 1
_ 1+ M + M 1

where m/M < 1

z g? . A-15
€ax © 2mc B v (A-15)
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APPENDIX B. SAMPLING FROM FREQUENCY DISTRIBUTION

A continuous frequency distribution f(X), often called the density function, is
defined such that f(X)dX gives the probability of an observation between X and
x + dX . The cumulative frequency distribution is defined as

X
F(X) = f f(X°) dx (B-1)
-0

It gives the probability of finding an observation X' less than or equal to X . For discrete
frequency distributions, the cumulative distribution is given by

N
F(Xy) = hzo P(x’; (B-2)

where P(Xj) is the probability of observing Xj . Obviously, F(X) varies between zero and
unity.

All sampling in these calculations is based on one simple rule [24}: To obtain a
sample whose frequency distribution approximates a given continuou: frequency
distribution, the equation

F(Xp) = R (B-3)

is solved for Xp the sampled variable where R is a pseudorandom number uniformly
distrituted on the interval O to 1. For a discrete distribution, the inequality

F(Xp) = R>F(Xoo ) (B4)

is solved for Xpy -
The pseudorandom number R is generated using the multiplicative congruence

method. Given ine last pseudorandom interger Nj between 1 and 2°% - 1, the next
integer in the sequence is given by
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N, + 1 = 515 18 mod 23
and

I + 1 (B-5)

As an example of sampling from a continuous distribution, consider tue frequency
distribution of the enecrgy of high-energy delta rays given in equation (21). The cumulative
distribution is given by

Thus, we have from equation (B-3)

2
._1_._ - 1—. + —E— ln.G.-L_
€y € € €

R max R
R = 1 1 p € ’
— + 2 In 1
€4 € € €
max max max

which can be solved numerically for eg by the simple iteration

2
€Ri = -:_ + € 8 In € =L
! max Ri_j

Where the initial guess ep is taken as €, , convergence is rapid except at €,,,..
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APPENDIX C. THE MOLIERE MULTIPLE SCATTERING DISTRIZUTION

The Moliere multiple scattering distribution gives the angular distribution expected
for a beam of electrons which has been scattered several times (>20) . Bethe [21] provides
an easily understood description of the distribution. It is given by

(2)
M) 0do = vdw (2¢" 7 + (v) M Bz(‘“ +..) (1)

where M(8) is the frequency of scattering through the angle 8 . The series is sufficiently
accurate when terminated with the terms shown [21]. The

functions M(”(O) and M(z) (0) are tabulated by Bethe ([21}. The parameter B is
defined by the transcendental equaticn

B-InB =b (C-2)

where b is given by

X, is the screening angle given by

A - | 2,
X = — 1.13 +3.76 ——— (C-3)
a -1/3 137Be
0.885a Z
o O

P

e
where A is Planck’s constant divided by 27, a, is the Bohr radius, Z, is the atomic number
of the material, P, is the magnitude of the electron’s momentum, and B, is the magnitude
of the electron’s speed over the speed of light. x is given by

2e?

X, = W NN AXZ (2 +1) (C4)
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where N, is that atomic density (atoms/cm®). ¥ is defined by

g = —24— | (C-5)
xcﬁ

Since the electron energy changes in passing through AXj, the mean energy
(e * el_,)/z is used to define P, and B . Equation (C-2) is solved numerically for B by

the simple iteration

Bi-i-i = b+In Bi . (C-6)

The initial guess B, for the initia} scatter is 8.0. For succeeding scatters, the converged
result from the previous scatter is nsed for the initiai guess. Convergence to several places is

‘usually obtained in five or six iteraticns of equation (C-6).

Sampling from equation (C-1), we use equation (B-3) or

Or

f M(9) 040 = R (X))
(¢}

which reduces to

. f‘I'R ¥R
—¥ o M(“

R (¥) vd¥ + O M(Z)

B B¢

(¥) ¥d¥ _ p  (C8)

where, from equation (C-5),

0 = X, NB ¥g
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The integrals in equation (C-8) are performed numerically to the tabulated values given in
Reference 21. Since the exponential is the most important term on the right of equation
(C-8), an initial guess at ¥ p is obtained by solving the equation

¥2, = -InN R .

Then, the correct value is found by searching through the tabulated values of the integral
from ¥'. Linear interpolation is used between tabulated values.
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AF;PENDIX D. USE OF DIRECTION COSINES
FOR DESCRIBING PARTICLE SCATTERING

One of the most efficient ways of describing particle’s direction for the Monte-Carlo
transport is the use of direction cosines. In Cartesian coordinates, a unit vector along the

particle path is given by
k* = ai + B + vk (D-1)

where «, 8, and y are the X-, Y-, and Z-direction cosines, respectively. The utility of
this method is shown by the calculation of the new particle coordinates when the particie
has moved a distance r . The new coordinates are gisen by

X, = X + ar
(o]
Y1=Yo+3r

Zl=Z°+'yr

where X,, Y, and Z, are the old coordinates. The problem arises in determining the
new direction cosines when a particle scatters at some angle 8’ from the original direction.

If we define a new coordinate system with its positive Z axis directed along k' and
its X axis directed along i’ where i’ is defined by

.. - k°xXK
T (D-2)
Since
i j k
kxk=la g ¥ |=p8L - aj ’
00 1
equation (D-2} becomes
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.

e S T (D-3)
Jat + gt Ja? + g2

For a right-hand coordinate system,

.k x i’
j "lkoxioi

Since k' and i’ are perpendicular, the magmtude of the cross product is one and

j* =-—-—1—-[a-yl + 8y - (a? + %) k] . (D-4)
a? + g?

Now if we have a unit vector in the new system given by
n=a’i + g% + yk° , (b-5)
it is g.ven in the unprimed system by

. 1

Ja? + g

(Bi -~ aj)

n=au

+ 8° ———— [ayi + Byj - (a? + %) kI

Na? + g

+ yolai + 8j + k]

or regrouping
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A a? +82
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+ a‘a + BBy

+ Y'B ]
Ja? + B2
- + -B"Jaz+ﬁz+y"y k .
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Thus, the direction cosines of n in the old system are

EHRE IR T R

a¥* = a—é—Lﬁ_ﬁL + .y"a
Na? +p?

L

L

pr = “2TEELBY e (D-6)
»Jaz +g°

» i
k yx = -g*Na? + g2 + vy .
'.?‘ -
9 We note that the direction cosine in the new system o', ', v’ are related to the scattered
. angles by i
]
@’ = cos ¢*sing” !
B’ = sin¢’sing” - (D7)
¥ = cosf6”’ , ‘

where ¢' is the azimuthal scattering angle and 8' is the polar scattering angle.
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APPENDIX E. DERIVATION OF THE CONTINUITY EQUATION
OF THE ENERGY-LOSS FREQUENCY DISTRIBUTION

Let ¢ (X,A) be the flux of particles that having passed through a distance X of
material have lost energy 4 and let P(AX, A’+Z) be the probability that a particle with
energy loss A’ at X will have an energy loss A after passing through an additional
distance AX of material where only interactions that result in energy losses below ¢, are
considered to contribute to total energy losses A or A’. Then the flux (X +AX,A) is
given by

‘A
¢(X+ AX,A) = ¢ (X,8) + [ P(AX,A~a)¢ (X,a%)da"
0
- [ Pax,a—~a" ¢ (X,a) da" . (E-1)
A

where the first integral on the right is because of particles scattered into A and the second
integral is because of particles scattered out of A . Since

99 (X,A) _ lim o (X+AX,A)- ¢ (X,A)
ox T AX—0 AX

using equation (E-1) we obtain

9 (x,a) _ lm | P(axA”—a) .
X - AX—0 [f AX ¢(X,a7) das

_ [ P(AX,a—A") : .
.£ AX ¢(X:A) dan ] N (E-2)

Since we are considering only interaction which results in losses below energy €, in the
limit of small AX,P(AX,A+A) iszerofor A'+A>e, and we may change the limits on the

. integrals in equation (E-2) accordingly. Thus,
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X, .
%(_A_)_ = f OJ(E,A"A ')¢ (X,A‘) aa’ {
X B
! -f w(E,A"-A) ¢ (X,A) dA™
4 A
1
where . -
A - € A>¢
B = . (E-3)
0 A < €4
Letting e = A - A",e' = A" = A,and b = A - B, we obtain f
8¢ (X,A) b Y
== = [ w(Be ¢(X,a -€)de S
X 0 ;
€3
- [ w(Eeo (X.8)ce” . (E-4)
0
The probability density function f(X,A) is given by
(x,a) = —2&a) . E-5)
[ ¢(x.a)aa”
0

Thus, éhe continuity equation of f(X,A) is found by dividing both sides of equation (E-4)

by [ ¢(X,A°)da”, yielding
0
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HEA) _ [ oimel s
—x - f(’)w , X,A - eMe

€

- f w(E,€”) f(X,€*) de* .
0
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