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TECHNICAL MEMORANDUM X-64720 ‘@‘;
ASCENT CONTROL STUDIES OF THE 049 AND

ATP PARALLEL BURN SOLID ROCKET

MOTOR SHUTTLE CONFIGURATIONS

INTRODUCT ION

The major issues involved in the control authority question, as shown

s schematically in Figure 1, have remained unchanged since the conceptual -
’ . ization of the configuration; however, the analysis of the many different con- :

figurations and a better understanding of the overall interacting phenomena

&{w"‘ have resulted in: (1) quantifying some of the issues, and (2) gaining

£ insight into or uncovering additional factors that will influence the choice.

The basic decision for SRB TVC or No TVC must be made, however, without
complete guantitication of certain driving issues, These data cannot be
obtained until the confi guration has settled and this can be accomplished only
with detailed, long term analysis,

All of the items listed in Figure 1 are highly coupled and relate to or
influence the answer; however, during the course of the studies a few predom-
inant questions have evolved that transcend the trades as indicated. As an
example, two characteristics of the vehicle are of paramount importance if
the vehicle flies without SRB TVC: (1) the level of the misalignments of the
SRB thrust vector, and (2) the aerodynamic characteristics, which include
static stability, aero surface effectivenesses, and aeroelastic effects. The
major concerns in both cases are the level of uncertainty znd the ability to
determine statistically this level.

Thus, two choices are open to management if the goal to fly without
SRB TVC is realized: .1) demonstrate acceptability through costly testing
and analysis, or (2) accept (@without demonstration) that predictions are
accurate, and accept the associated failure risk. This last option raises the
hardest question to answer: What happens if ti.e thrust misalignment is greater
than that expected for a given flight, or that the aerodynamic surface effectiveness
is less than predicted and cannot efficiently be increased? The difficulty in
obtaining these answers is obvicus when one realizes the sensitivity of the
vehicle performance to initial pitch rates, ‘> marginality of the control system,
and the number of various combinations of \. .nd speed, direction, and gust in
the presence of SKB misalignments that requ:e analysis., The analysis of these
many combinations requires thousands of runs and a firm configuration to obtain -
the answer.
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KEY SHUTTLE /SSUES

CONTROL CONCEPTS MODAL CHARACTERISTICS OBJECTIVE

® LET IT ROLL ® ANALYSIS ® MAXIMUM PAY

® LDAD RELIEF ® TEST TO ORBIT Loso
® DRIFT MINIMUM ® MINIMUM VEHICLE

® MODAL SUPPRESSION ABORT IMPACTS FROM

® GIMBAL ENGINES vs DISTURBANCES
AERO SURFACES @ SUBSYSTEM ® VARIED MISSION AND

e SAS FOR HANOLING ® CONTROL PAYLOAD PROFILE
QUALITIES

o MANNED ys AUTO LAND TRAJECTORY SHAPING

ASCENT AND REENTRY ORBIT
GUIDANCE o 2ER0 LIFT
* OPEN LOOP ® ZERO AERD MOMENT
® CLOSED LOOP o SPECIAL @

®INITIATION TIME
® SPECIFIC vs GENERAL
INFORMATION

AERIOYNANIC CONFIGURATION

® CANARDS

® ORBITER INCIDENCE ANGLE
TO BOOSTER

® WING CONFIGURATION

® VERTICAL SURFACE

CONFIGURATION

STRUCTURAL WEIGHT

e TRIM LOADS

o LONGITUDINAL LOADS
e DYNAMIC LOADS
.
)

CONTROL SYSTEN COMPLEX/ITY
SPACE SHUTTLE W= | 24D REALIABILITY

® BLENDING - TVC - AERO
MULTI- SENSORS
MULTI - CONTROL FORCES
PROPORTIONAL GAINS

1

NETWORKS
{ ADAPTIVE FASRMAL LOADS
CONTROL AUTHORITY
e SRM - Ty(C 604 MiNI
o R0 SmFACES INIMUM IMPACT WITHOUT SRM TvC
e OME
Figure 1, TVC vs no TVC study approach, \

Included in this analysis must be the abort system. Of particular
importance to the abort system, design, and reliability, is che identification .
of abort cues for initiation of abort sequences. This identification of proper
abort cues is very complex for the no SRB TVC case and large SRB misalign-
ments. This is because of the fast time-varying characteristics of the vehicle,
such as mass and aerodynamics, which introduce vehicie states ( roll angle
and rates, g8, qa , etc,), comparable in magnitude with those associated
with the larger SRB misalignments. Since these vehicle state values are of
equal size, it is almost impossible to separate the natural signal from an overly
large SRB misalignment introduced state. A further complication arises from
the nature of SRB misalignment introduced vehicle states. These misalignments
can be in any direction; therefore, the vehicle response can be in any direction,
making proper detection difficult, In contrast, the states, due to commanded
maneuvers, are predictable and can be accounted for.

le
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Another highly significant problem evident on this vehicle is the require
ment for modal stability using orbiter only control. Preliminary studies have
indicated that modes with large SKB motions cannot be stabilized without SRB
TVC. This adds another dimension to the risk question since accurate assess.
ment of this problem can only be made after good aerodynamic force disiribution
and interference aero forces are determined.

The time deadline of the decision negated the indepth analyses necessary
to quantify all aspects of the problem, thereby forcing only basic trend studies
which require judgement and extrapolation to arrive at an answer. Furthermore,
it has not been possible to devzlop the very technical analysis techniques that are
needed to optimize the design and trade comparisons, For example, the strong
coupling between structure, control, and trajectory requires a good optimization
program tc insure a minimum GLOW, minimum risk vehicle, but :this approach
is still in development, The same is true of an integrated analysis of lift-off
through separation, including combining high angle of attack flight due to lift oft winds
and low veliicle velocity with the moderate angle of attack flight aue to ascent winds
and increased vehicle velocities, including control logic, control authority limits,
loads constraints and FPR losses.

Another consideration for a completely fair trade between SRB TVC and
no SRB TVC would require two separate designs, each of which would be optimized
for that approach, Again this was not poss.ble, due to the time constraint.
With these limitations in mind, the data presented in this paper were obtained
by using the best combinations of analysis techniques available within the time
frame. These techniques have utilized trade studies in: (.} trajectory and
verformance, (b) lift off dynamics, (c) high q response, (d) separation. (e)
malfunction dynamics, and (f) elastic body dynamics. The best solution was
obtained by using the optimum from one area as the baseline in the next, or
merely by using the results of one to extrapolate factors to add to the other,
Although these shortcomings -- of limited time, lack of two separate designs,
and use of more detailed system studies ~- should be recognized, they have
tur years resulted in adequate ( not necessarily optimum) design and should
do so in this case,

In summarizing the basic 1ssues, it appears that the major questions,
at this time, are: (1) Yhat are the flight risks involved if SRB TVC is used
versus the risks involved if it is not used, and () since cost difference is
very critical, what are the cost risks involved?  This report will: (1) state
the basic vehicle characteristics, ) discuss the basic problems and trades,

(3) present data to develop trends from these trade studies, (1) make

S s — i
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recommendations pertaining to the overall decisiens, and (5) formulate future
plans needed for each decisive option development, In order to meet the needs
of the diversified interest in the basic question contained, the report is divided
into three sections. Section one, the Executive Summary, discusses the basic
problems, the trade factors, a summary of trade studies and trends, and
recommendations. Section two provides the indepth background information
desired by the dedicated technical personnel. Section three contains configura-
tion data and background trade studies that have been conducted to establish
trends and baselines.

|. EXECUTIVE SUMMARY

To arrive at an answer to the question under consideration, at least
five basic conditions must be met by the Space Shuttle system to accomplish
its mission okjectives: (1) the dynamic system must be stable, (2) there
must be adequate control authority, (3) it must contain sufficient flight
performance reserves to meet end conditions under off nominal conditions,

(4) the system must stay within the design load envelope, and (5) the system
must meet adequate initial conditions for separation. Conditions (1) and (2)
would appear to be redundant; however, for an aerodynamically stable vehicle,
such as the Shuttle, it is possible, with sufficient additional performance
reserve, to meet objectives without control authority. However, the total
GLOW and cost increase for this approach, in general, places constraints on
the control authority and requires a fairly orderly path control. Establishing
the criteria for what is an adequate control authority level is complicated.
Flight path deviations due to lack of complete control sheould not ccnsume
more than half the allocated FPR value ( 3, 000 lbs payload y and

allow 2° on each main engine for elastic body stability while allowing use of
orbiter aero surfaces to their reentry and flyback design value. The loads
criteria are the flyback desigu values. Exceedances of thesc load values
provide impacts to the system, Using these flyback design values as a base,
the various vehicle systems are impuacted in terms of weight, cost, and payload
for both TVC and the no TVC case. One very important conclusion from these
preliminary trade studies is that no parallel burn configuration (at the time
of the study, using a vehicle like the NAR proposal ) had been designed that
could meet all five of these flight objectives without significant changes (fins,
design of orbiter aero surfaces, load capability FPR) with or without TVC

or SRB's, Present configurations with TVC do meet these requirements,

This statement is valid without consideration of elastic body stability and loads.
The present design is based on vigia Lo'iy loacs ana coniros system require-
ments, Congideration of elastic hody effects will increase the vehicie design
loads anu the control system complexit:, The basic s, ic. facvors mvoivea
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in the trades are listed on Figure 2. Nue to their importance in answering
the question under consideration, each one will be d.scussed. For detailed
data, one must see sections II and III.

Item 1 of the figure, '""The SRB TVC System,'' only applies to the SRB
TVC case but has three key factors: the development of 2 movable nozzle and
seal, the determination of actuation requirements, and the determination of
power requirements. The nozzle and seal development requirement is inde-
pendent of whether the system is used as a full dynamic control device or as
a trim device, However, actuation and power are strongly influenced by thc
usage approach. This raises the question of whether to use SRB TVC fully or
as a trim device. Item 2 is highly dependent upon the TVC qucstions. With
TVC, shrouds are required for reducing engine gimbal hinge moment. No
TVC possibly requires addition of fins and heavy use of aero surfaces for ‘
control while SRB TVC could reduce orbiter main engine gimbal requirements
and thereby reduce hydraulic requirements, engine spacing, orbiter base
area and weight, thus helping the flyback trim problem and reducing engine
cost. Performance (item 3) is strongly influenced by the SRB nozzle cant,
which can be relaxed with TVC, thereby allowing reduced GLOW or increased
performance. The amount of usage of control effectors has a performance
impact, as do wind effects on control authority versus loads. Item 4 lists
potential changes in loads due to TVC versus no TVC, such as cant loads,
placement of HO LOX tank, holddown approach, SRB lateral and longitudinal
placement, etc, Here it should be pointed out that these are some of the
major areas where the two independent design approaches discussed in the
introduction would be very effective but could not be carriad out because of .
time. Separation rocket requirements (item 5) are a function of the side CeT
loads (nozzle cant), as well as the separation logic. As mentioned earlier, )
the SRB misalignments are critical for the no TVC casc and become drivers r
in quality control, demonstration testing, and control authority requirements, ‘
as well as lift-off requirements. Abort considerations (item 7) are important
in answering the risk question of larger than predicted misalignments, as
discussed earlier, Major issues here are whether SRB TVC increases abort
capability and whether the near pad abort rockets can be eliminated, Item 8
lists the control questions: Can modal suppression be provided without SRB
TVC? What are the subsystem interface impacts? And the ever present
question, what control authority is required? Item 9 raises the question of
SRB TVC impact on recovery, while item 10 raises the question of how many
extra wind tunnel tests are required without SRB TVC since additional tests . -
are required for determining the aero control surface effectiveness and co RS
acroelastic data more accurately. Orbiter system impacts (item 11), such P N
as increased wing weight required to use acro surfaces, are high cost items ‘
becausc one pound of orbiter weight increases the GLOW by a factor of 40 or
more. Item 12 raises the persistent question of operational requirecments
for the different systems.
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In attempting to arrive at these impacts, several problems exist, as
shown in Figure 3. The starred items in the figure show major problems for
the no TVC case, while the unstarred items are major concerns for either case.
At lift-off (item 1) , aero surfaces are not effective; therefore, practically all
the control authority capability is required to trim the presently predicted SRB
misalignment errors of 0.5° which are assumed to generate 30 misalignment
moments cn the vehicle. Surfaces do become effective very early and help
overcome this problem if their etfectiveness is predicted and they can be used.
This marginality, without aero surfaces, is illustrated in Figure 4 where these
3o disturbance moments are plotted along with the control authority capability
for full 10° and for €. The difference is reserved for dynamics.

S et eda s B R

All this occurs in a region where the vehicle must start pitching and roll-
ing to one of its varied launch azimuths. If proper initial pitch rates and, within
reasonable time. proper vehicle roll are not accomplished, performance losses
occur, The ATP configuration trajectory, which has max q occurring at 38 sec.,
does not have a severe problem since aero surfaces become effective early enough
(10 sec.)to increase the couurol authority available. Other problems exist , how
ever, with the early q, such as spending much longer flight times athigh q.

|
i
|

I:‘.ffectivF growth potential of the system exists only through increased SRM
size and thrust. All past space vehicles have always had growing pains due to
expanding requirements and uncovered problems: therefore, growth apnears a
certainty, With growth (increased SRB thrust) the marginal control condition
at Litt off can only become worse for the same misalignment conditions.

Without TVC, orbiter aero surfaces must be used extensively; therefore,
their effectiveness is very critical to SSME control authority requirements and
for control of roll excursions. The differences are shown on Figure 5 in the ATP
predicted and the measured etfectiveness values, Because of the misalignment
condition illustrated in Figure 4, this error in prediction could mean the difference
in having a satisfactory versus unsatisfactory solution. Wind tunnel tests showed
predicted effectiveness to be high by about 30 7 - 50 7,

The vehicle sensitivily to SRB misalignments is very critical., (Item 3
in Figure 3 lists the sources.) Figure 6 shows the effect of roll rate as a
function of misalignment while Figure 7 is a plot of g8 (load indicator) for the
same misalignments. Both plots have a sharp increase between misalignments
of 0.5° and 0, 6°, exceeding acceptable limits. Roll rates above 15° /sec and »
g R® above 4500 PSF deg. It should be pointed out that q goes from the 5100 “
design value to the 1, 4 safety factor limit of 7140

1. Douglas L. Elackwell, Size Analysis of the 156 Inch Diameter EHOT
Configuration, IN-AERO 6-72 -1, August 31, 1972,
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in less than three seconds for the 0. 6° misalignment case, indicating that safe
abort would be hard to accomplish, due to potentially short warning times.
Also abort cue identification is an obvious problem because of the high roli
rates and qp's produced from winds and smaller misalignments alone. The
control authority limitation of the no TVC case (item 4) has already been
discussed.

An ever present problem for all Shuttle concepts is the trade between
structural loads and performance, If tight path control is enforced, structural
loads are high due to the large induced angle of attack. Reducing angle of
attack turns the vehicle into the wind, thus creating large attitude errors and
performance losses. The best answer is, in general, a compromise bet . =
the two. Abort requirements, approach, and system (item 6) are critic..
problems, but beyond the scope of this paper. Present configurations (ir..n 7)
have large aerodynamic stability and yaw roll coupling, which compound the
problems discussed under control authority and loads and performance trades.
The best ascent design would have small aerodynamic stability with the magni-
tude of C 4 such that the combined yaw roll moment vector would be nearly

B
collinear (that is, produce the same ratio of roll moment to yaw moment)
with the total control authority vector (see section 2).

Figure 8 lists the system requirements and potential relaxed constraints

for the SRB TVC case and the no SRB TVC case. This chart is a summary
and contains many of the issues previously discussed. It should be reempha-~
sized here that the potential rel: ted constraints listed for the TVC case are
not based on a vehicle designed to take full advantage of the incorporation of
TVC but ~re listings of the major items seen at this time. The key differen~
tiators between SRB TVC and no SRB TVC are: (1) the requirements for

stringent control of SRB misalignments, (2) accurate prediction of aero dynamic

surface effectiveness, (3) the large performance loss resulting from SRB
nozzle cant, and (4) the cost of the SRB TVC system itself. The first three
penalize the no SRB TVC system, whereas the last item is an SRB TVC system
penalty, but only a slight penalty when considering the total systems costs with
and without TVC,

Figure 9 summarizes the trades listed in Figure 2 in terms of cost
and GLOW for both TVC and no TVC. A detailed breakout of these items is
presented in section II. The TVC cost is based on 5 reuses of the system and
includes refurbishment. The cost is given in terms of '71 dollars, The SRB
TVC system that is priced is for a one deg sec rate system at + 5° deflection.
‘our separation rockets can be eliminated due to the reduced cant for the TV(
case, The cant effect alone saves 70, 000 lbos GLOW per flight; but the
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gimballing engines must be protected from the large aerodynamic hinge
moment. This costs 56,000 lbs GLOW and $85M program cost. Due to

the large aerodynamic yaw stability characteristics and uncertainty of aero
surface effectiveness, fins are required for the no TVC case. These cost

10, 000 lbs GLOW and $47 M. Verification of a I/2° SRB misalignment for

a 99% confidence ievel requires 30 additional, above the 10 baselined in the
program, SRB test firings and more elaborate test equipment. The require -
ment for the test firings for verification was arrived at by assuming a standard
deviation of 0.175 misalignment from test and assuming 99% confidence level
using conventional statistical qualification formulas. This cost is $76 M with -
out accounting for any possible schedule slippage. Additional wind tunnel test-
ing will be required toobtain aero surface effectiveness data, but no estimate
is available, Using the surfaces to the extent required tc fly without TVC
impacts the orbiter ilyback weight 2,000 lbs according to NAR. This is not
included in these cost data, Based on the assumption that the slow rate TVC
system is adequate, SRb TVC saves the program approximately S17 M (with -
out orbiter impacts or removal of the Abort Solid Rocket Motors (ASRM's)).

The prime conclusion reached is:

Recommend TVC, primarily because of the unknown risks resulting i
from the uncertainty in SRB thrust vector alignment error and aero surface :
effectiveness. Also, the following conclusions were made:

l. SRB TVC desensitizes the system so that it is not dependent on highly
accurate aero surface effectiveness data and SRB misalignment predictions.

2. SRB TVC allows a more definitive state identification for failure -
modes and abort cues, including potential abort capability increase, ﬂ

3. There is marginality of control authority in all flight regimes
without SRB TVC.

4. There is better growth potential,

5. There is capability for structural mode suppression by increasing
the SRB TVC maximum rate,

6. SRB TVC could eliminate the requirement for control effectors mix T
logic MOSES and engine stop logic; however, this approach will probably ;
be desirable for the TVC case due to its simplicity and added control authority
margins particular for abort, Lo

7. SRB TVC, because of its slow rate, does not, at this time, preclude - Tw
the need for adaptive control schemes ¢ handle modal stability and modal '
suppression requirements.

15
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8. SRB TVC is the only control authority approach which does not i
require a multiple solution, For example, Fins aero surfaces SRB
misalignment demonstration

A. Areas that Need Emphasis

Regardless of the choice of control authority source SRB TVC versus
orbiter only control , several areas need extensive analysis, with the no SRB \
TVC case having additional requirements. These areas will be discussed. -

No SRB TVC

A comprehensive discussion of the MOSES concept has been treated §
in Ref, 2.

The mixer approach, as presented, needs to have added the logic to
handle the saturating of control effectors using the best capability of the
remaining effectors. This approach alsc needs modal suppression concepts,
as an additional feature,

RV

These developments are mandatory for the no SRB TVC case and are
very efficient and useful for the SRB TVC case, particularly for abort

considerations.
General

Analyses and techniques that are required, regardless <t the choice ot _
SRB TVC or no SRB TVC re: o

1. The indepth analysis of the vehicle response to measured winds,
which have wind speed, gust. and direction correlated. Elastic body loads
are very dependent on these wind inputs and require this correlation to
climinate conservative load estimations. This is of particular importance
to the H, O, tank where a high mass fraction is essential,

2, Lift -off and high g dynamics analyses have historically been
conducted as special, separate studies. An integrated system analysis is

2 Stephen W, Winder and David K. Mowery, Space Shuttle Control Momenis

-

by Optimal Selection of Engine Signal. October 17, 1972, i
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required as verification of these specialized approaches to eliminate conserv-
atism and insure mission success.

3. A modal suppression requirement study is necessary, but very
complicated due to the complex modal properties of many, closely grouped
three dimensional modes, These dynamic load levels could possibly design
the external tank. Again, the vehicle performance depends on a very low mass
jor the tank weight and, therefore, these loads must be carefully reduced.

Alluded to e~rlier in this section was the strong coupling between
trajectory, control, and structural design. This coupling requires a combined
optimal analysis program. This program is under development and ca it
least predict some effective and efficient changes to the baseline system. This
analysis is necessary to insure a viable, optimal system and the importance of
this approach must not be minimized if the Shuttle is to be capable of meeting
its quick launch, variable mission concept.

In summary, regardless of the control authority approach chosen,
several delicate tecnnical problems must be evaluated. These are:

1. Measured wind analysis instead of the synthetic profile
a pproach for control system design and loads.

2. Mixer logic and eagine saturation logic development.
3. Modal suppression and gust loads requirements.

4. Integrated lift-off-ascent analysis.

5. Structural dynamic modeling.

6. Sensor location analysis for modal stability.

I1. BACKGROUND DATA

A. SRB Misalignments
1. SQURCES

As was pointed out in the executive summary, one of the major con-
tributors to the requirement for SRB TVC is the inability to fabricate a twin

17
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solid system that does not have thrust unbalance and thrust misalignments.
The thrust misalignments are caused by:

a. Gas dynamics within the nozzle
b, Nozzle misalignment to the SRM
¢. SRM stacking error

d. SRM misalignment > the HO tank
e, Static trim elastic deflections

f. Temperature gradients

g. Dynamics and aeroelastic effects,

The problem is compounded because: (a) At a minimum, 80% of the
thrust is from the SRM's, (b) the control characteristics of the main engine
are not collinear (i.e. they do not produce the same ratio of roll moment to
yaw moment) with these SRB disturbance moments, and (c) the large relative
moment arm of the SRB's in roll. The memorandum, SP-EM-SE(19) -72,
""Solid Rocket Boost~~ Thrust Vector Control (SRB TVC)," 3 contains a pre-
sentation on the SRB misalignments and the mass for implementing SRB TVC,
The conclusion of this analysis was that the SRB misalignment alone would be
less than 0, 5° and have a circular distribution. The error sources are given
in Figure 10, while the thrust unbalance is shown in Figure 11. A typical
misalignment for the Avanti SRM (Fig. 12) shows both a time changing or
running mean due to the cant, widi a va.."nce avout \ne mean. ‘The mean itself
varies 0.5 in its 80 second burn time. Since the cant effect canceis vecause ot
its predictability on each engine, only the variance is important to the control
requirements problem,

A static trim elastic body error estimate ( Fig, 13) has been made using
preliminary modes and shows small errors in all cases,

Effective misalignments caused by dynamics of the structure should not
affect the control requirements problem, since all moces will have greater
than 1.5 Hz oscillations, With this high frequency osciuation, there will be
cancellation of effects.

3. Dr. H, Thomason, Solid Rocket Booster Thrust Vector Control ( SRB TVC),
SP-EM-SE (19)- 72, October 12, 1972,
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ANGULAR ERROR (DEG)
SOURCE PITCH PLANE YAW PLANE
e THRUST MEASUREMENT ERROR
(STATE-OF-THE-ART) + 0,33 + 0,33
e MECHANICAL +0.19 +0,19
e THROAT EROSION, GAS DYNAMICS = 0.06 + 0,14

Figure 10. ATP SRM thrust vector alignment error
assessment (single motor).

TIME INTERVAL MAXIMUM IMBALANCE
LBS
e IGNITION TRANSIENT 300, 000
¢ WEB ACTION TIME 200,000
¢ TAILOFF TRANSIENT 550, 000

Figure 11. NAR ATP solid rocket booster predicted maximum
thrust imbalance for a single pair (unmatched).

Static aeroelastic misalignment for both the symmetrical and anti-
symmetrical modes could lead to significant misalignment values, particularly
for slowly changing wind speeds. Sufficient aero force distributions are not
available to make these estimates.

2. SRB TVC SYSTEM

The referenced memorandum® contains cost and weight numbers for
various nozzle designs and actuation systems. The recommendation was for
either a flex or Techroll seal, movable nozzle with pneumatic hydraulic

4. ibid.
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actuation. The weight of the two systems is approximately the same. The
cost of these systems ($121M) was based on a detailed in-house study
(Astronautics Laboratory ) and a survey of the major solids contractors.

3. DEMONMNSTRATION

Man rating of vehicles, in general, requires tha{ pc atially dangerous
phenomena be accurately known. Obtaining this knowledge is the major probicm
for the no SRB TVC system. For example, if it was desired to have a
0.5° demonstrated raisalignment value at a 99% confidence level, then it could
be postulated how many firings would be required for a given measured
standard deviation, If the standard deviation was 0.12° then 40 firings would
be required to demonstrate the 99% confidence level for 0. 5° misalignment,

This is based on an assumption that these small misalignment values can be
measured, With such large longitudinal and lateral (due to 15° cant) forces,
some contractors state that it is basically beyond the state of the art to

measure the additional force that results from a small misalignment. It was
estimated hy the Astronautics Laboratory above referenced memorandum that a
$16(M) development program would be required to achieve this measurement
accuracy in addition to the costs of 30 additional test firings for demonstration.
The demonstration problem is eliminated if SRB TVC is used. Present analyses
aave shown that a 1° misalignment is acceptable with SRB TVC. This misalign -
ment can be demonstrated within the present SRB test firing program plans and f
using state of the art measuring techniques. ‘

4. ANALYSIS

Assuming that there exists a demonstrated misalignment valve with a
certain confidence level, the question arises as to how to use this data for
paired motors without being unduly conservative. This problem is discussed
in document cited in footnote 5 and means are provided for achieving 3¢
disturbance moments for different misalignment relationships between the two
motors. These basic re.ationships are summed up in Figure 14, for in-phase
and 90° out-of-phase motors, giving appropriate misalignment values to place
on each motor to produce the 30 moments. A plot of these 30 moments for
the worst theta angle was given in the executive summary (Fig. 4). It is clear
tha* the greater the confidence level of the demonstrated misalignment value, ‘ v
the smalier the alighment value that must be used to produce a 30 moment o
(sce item HOI, Figure 14), The message here is obvious. If the demonstration !
program produces confidence levels that are lower than expected, a larger .
design misalighment sigma level must be used to generate the 3¢ moments, f S
or higher risks to the system must be accepted. L

5. Mario H. Rheinfurth, Effect of Thrust Vector Misalignment on Control
System Design, S& E~-AERO-DD-29-72, October 6, 1972,
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Without SRB TVC it has been assummed in this analysis that a 0. 5°
SRB thrust misalignment could be demonstrated to a 99% confidence level.
For the case with SRB TVC this same value would be 1. 0° thrust misalignment
and the corresponding o values in item II, Figure 14, would be doubled.

B. Controllability, Performance, and Loads

Two vehicles were analyzed to determine controllability, performance,
and loads characteristics, with and without SRB TVC. The first vehicle was
designated 049 (see appendix for configuration) and the second was the NAR
ATP vehicle. The v49 work was accomplished between release of the proposal
and awarding the contract, at which time the ATP data were available for
analysis. The two vehicles are compared in Figure 15 in five key areas that
have a major effect on the study results. The thrust to weight ratio (T/W) at
lift-off is quite different, 1.4 and 1,7, with the ATP vehicle being the higher
value. This increases the effect of SRB misalignments on control authority.
Also, the thrust curve of the ATP configuration remains flat for several
seconds, while the 049 curve begins immediately to regress. This decreases
the effects of misalignments for the 049 configuration as a function of flight
time, Dynamic pressure is 125 PSF higher for the ATP vehicle which could
lead to higher loads. This larger ¢ and T/W, however, increase the
vehicle's injected weight into orbit.

Indicators of the vehicle dynamic characteristics and the control
authority requirements are the ratio of the aerodynamic disturbing moment
coefficient, C,, and the control authority moment coefficient, C,. Only orbiter
main engines were used to calculate C,. Both vehicles are stable in pitch with
the same ratio; however, the ATP vehicle has large yaw aerodynamic stability,
hence a factor of 3 increase over the 049 vehicle,

This large stability will force either letting the vehicle turn into the
wind with the corresponding performance losses, or accepting high structural
loads and control authority requirements., The yaw-roll coupling is slightly
higher for the ATP vehicle but is a problem for both vehicles since very little
roll control authority is available from the orbiter main engines, These large
values will force the use of orbiter aero surfaces and possibly an aerodynamic
fin or SRB TVC. Finally the 049 vehicle has twin rudders while the ATP is a
single rudder configuration. Ailerons have been baselined for use on the ATP
vehicle and not for 04 9.  With these background configuration differences,
the study results will be presented as: (1) Nonaerodynamic regimes (lift-off
and tail-off), (2) aerodynamic regions (high q), (3) elastic body requirements,
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(4) mixer concepts, (5) effects of using an integrated lift-off ascent wind
profile, (6) abort considerations, and (7) general trend studies important to
overall system considerations,

1. NONAERODYNAMIC REGIONS

a. Lift-off. Three separate problems are important at lift~off: (1)
tower collision potential, (2) control system saturation, (3) recovering from
lift-off transients with satisfactory vehicle states and control authority to
achieve the pioper trajectory from pitch rate and vehicle orientation., The
vehicle orientation is very important since the difference in performance in
flying the orbiter head up versus head down is on the order of 3500 pounds of
payload. Since the launch pad must be fixed and the vehicle must perform
several mission options, a minimum of o3° roll for at least one mission is
required to achieve the proper orbiter orientation,

The 049 vehicle had acceptable characteristics in all three areas of
concarn. Figures 16 through 18 are vehicle state histories as a function of
altitude for an RSS combination of major vehicle distributions, lateral c.g.
offset, SRB thrust difference, SRB thrust misalignment, and ground winds.
The vehicle drift is small and generally away from the tower; therefore,
there is no tower collision problem. The engines hit the soft limit but do not
hit the 10° hard limit, and the roll angle is acceptable, reaching about 14° at
280 meters altitude. The three different plots, shown for each variable, are
different mixing logics, where 033 indicates a yaw-roll uncoupled logic
(gimballing about the three engine centroid) and 026 (gimballing engines
about the approximate centroid of the two bottom engines) uses increased roll
authority at the expense of yaw control. If early drift is a problem, then the

026 logic would be needed; however, this leads to drift problems and trajectory

shaping problems since the problem of trimming out misalignments is merely
shifted from near pad to a higher altitude,

The ATP had much more severe lift-off problems due to the higher
T/W and could be made but marginally acceptable only through the early use
of aero surfaces. Figure 19 is a plot of the maximum roll torque due to SRB
thrust misalignments and the available roll torque from rudder and ailerons
from the ATP vehicle. After approximately 10 seconds, there is sufficient
aerodynamic control surface torque to start trimming the vehicle; however,
the control engines do saturate until this time and roll angles buil~ up.
Figures 20 through 22 are the same type charts as presented for 049, indica-
ting the more severe problem of recovery of controllability as aerosurfaces
become effective, If ae osurface effectiveness is lower than predicted,
controllability and trajectory shaping problems would occur.
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The effect on roll error, if the 35° roll command is instituted early
(5 seconds), is shown on Figure 23. The lack of control authority to achieve
this early roll maneuver led to delaying the maneuver until 15 seconds in
order to have the aerosurfaces effective. This delay costs about 800 pounds
injected weight.

In summary, lift-off is marginal from the controllability standpoint
and could have a potential influence on trajectory shaping, particularly if an
integrated lift-off, high q wind profile is used. These results will be
presented later since this wind affects both lift-off and high q.

SRB TVC easily handles the lift-off problem with a 1° SRB thrust
misalignment. Using a one degree per second rate limited system, the
control requirements are near the misalignment values. Figure 24 is a
typical time plot of one SRB engine during lift-off with the 1° thrust misalign-
ment showing the capability of the system to control the vehicle during lift-off
with large control margins, even with the large SRB thrust misalignments.

b, Thrust Tail-off. SRM's have the basic characteristics of fairly
long thrust tail-offs and a large 30 thrust delta between two corresponding
motors during this time (Fig. 25). If the vehicle is flown without SRB TVC,
this large thrust delta requires that the two individual motor's thrust be aimed
through the c.g. or the result will be saturation of the orbiter main engine
control requirements, Saturation of the control system would result in
untenable separation conditions. Since this is a nonaerodynamic flight regime,
only the main engines are available for control.

If SRB TVC is chosen, it is desirable to take advantage of the increased
control momen. produced by this approach by reducing the cant angles and
picking up the large GLOW savings that result from the cosine loss. The
amount of cant reduction is somewhat dependent upon the ability of the SRB
TVC to handle the taii~off thrust deitas.

2. AERODYNAMIC REGIONS (HIGH q)

The solution to the high ¢ control authority problem can take many
forms due to the availability of aerosurfaces and the potential use of aero-
dynamic fins. Due to the simultaneous occurrence of high wind speed and high
dynamic pressure, a threefold trade must be made between control authority
requirements, performance losses, and structural loads., Since both vehicles
studied have large aerodynamic stability, the natural tendency of the vehicle
is to turn into the wind and reduce loads at the expense of trajectory dispers-
ions (FPR losses). Any attempt to reduce this tendendy to turn into the wind
increases both loads and control authority requirements.

/
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Fins can be used on both vehicles to accomplish the cual purpose of
decreasing the yaw plane aerodynamic stability and the aerodynamic yaw-roll
coupling. A detailed discussion of an optimized fin size and location trade
study is in Section T,

The ailerons are used primarily to augment roll control while the

rudder can be used in either yaw or roll. Whether to feed back roll commands

or yaw commands, or a mixture, to the rudder is a major question, since any
rudder deflection creates both a yaw and roll moment. From the load stand-
point, it is desirable to unload the rudder, reducing the yaw and roll moment
for these vehicles. In the case of the 049 configuration, it was best to only
feed roll commands to the rudder, while the large yaw plane aerodynamic
stability characteristics of the ATP configuration necessitated feeding both
yaw and roll commands to the rudder during high q.

* Control gains must be time programmed to handle the changing vehicle
aerodynamics conditions and control authority requirements., This requires a
blending between the lift-off control logic concept and the high q concept under
discussion; the latter allows some vehicle weather cocking and use of aero-
dynamic surfaces. After dynamic pressure is reduced the control logic
system must be blended back to the type used at lift~off, Individual time
programmed gains to each actuator or a mixer approach is required to
accomplish this (Fig. 26). The results presented in this section are based
on the individual time programmed actuator gains. In section 4, a detailed
discussion of the mixer (MOSES) approach with results is given, The
appendix has the control gains used for each configuration.

a. Pitch Plane. The effect of the electronic attitude command soft
limit on pitch plane control is given on Figure 27 for the 049 configuration.
This soft limit is used to allow control authority for stability consideration
and was not working for the 8° soft limit case with the engines hitting the hard
limits (mechanical) for about 2 seconds for a combined SRB thrust misalign-
ment and winds. Reducing this soft limit to five degrees kept the engines
from hitting the mechanical stops and provided the two degrees needed for
stability. However, the reduced control authority available for path control
led to approximately 6,000# loss of injected weight, Repeating the same case,
using an 8° soft limit, gained 3,000# injected weight. The figure shows both
head and tailwind cases for positive and negative thrust misalignment (cant
change) with 5° and 8 soft limits on the attitude command, The sensitivity
and marginality of the system are clearly uemonstrated by these results and
also show the fine tuning necessary to fly without SRB TVC. For this vehicle,
loads were not a problem since all ga's were under 4000, The engine
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deflection is indicated by " p and the attitude error at SRB separation by 0 .

The injected weight is deltad to 359,130 pounds. A comparison of the 8° soft
liinit cace with and without SRB TVC is shown in Figure 28, With SRB TVC
the qo's tended to increase, giving a slight gain in performance. Through a
change in control logic, the loads could be reduced by increasing the perform-
ance loss.

Figure 29 is the same type analysis for the ATP vehicle and produces
the same basic trends.

b. Yaw-Roll, To solve the yaw-roll problem for both the ATP and 049
configurations, a vertical fin had to be add:d at the ET intertank area, The
049 vehicle needed the fin to reduce both yaw stability and yaw induced rolling
moment, while, for the ATP configuration, the main purpose was to reduce
the yaw aerodynamic stability and reduce large performance losses. TL 049
configuration required a 400 sq. ft. fin while the ATP vehicle needed nearly
600 sq. ft.

Figure 30 summarizes the 049 configuration results, with and without
SRB TVC, for various SRB thrust misalign \ents and crosswinds. Only the
rudder and orbiter main engines were used for control for the no SRB TVC
case because of the large weight peralty incurred when using ailerons., Maxi-
mum engine deflections, roll and yaw attitude errors, load indicators (q8),
and performance losses were acceptable for all cases.

The ATP vehicle had more protlems, as indicated on Figures 31 and
32, particularly without fins, By using both ailerons and rudder with orbiter
main engines, the engines were at the mechanical limits and performance
losses were greater than 6000 pounds injected weight. With an 800 sq. ft. fin
these performance losses dropped to 600 pounds or less, but the engines still
hit the mechanical limit for one SRB misalignment (yaw plane), In both these
cases, the rudder and aileron were used to their reentry hinge mioment limit,
Figure 33 is the case for the ATP vehicle using SRB TVC and indicates no
basic problems. This was a one degree per second rate limited SRB TVC
gsystem,

The summary chart for the ATP vehicle is given in the Executive
Summary and is not repeated here. This vehicle is very marginal from both
the control and performance standpoints, requiring some major changes.
This is true for both lift-off (Part 1, section 3) and high q, just presented.
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The 049 configuration was also analyzed for other potential high q
solution options. Figure 34 shows the comparison for these additional options
in terms of loads, control authority, performance ioss, GI.OW, and cost.
Increasing the main engine gimbal capability to 13° did not iac.ease vehicle
performance, and engines were on the mechanical limit for 30 seconds and a
roll rate of 13 deg/sec occurred. Increasing the rudder hinge moment by a ,
factor of 2 produced a marginal system, but at an increased GLOW cost of i‘
172,000 pounds and $70(M) total program cost. The 400 sq. ft. fin was ‘,
acceptable from control authority and performanc: standpoint, but had a i
GLOW increase of 6080 pounds and a program cost oi $50(M). The free roll «
case was marginal, with a GLOW increase of 133, 000# required to make up
performance losses and a total program impact of $76(M). The control
engines still hit the mechanical limits, The SRB TVC saved 150, 000# GLOW
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for this vehicle at a program cost of $ 70(M). The larger GLOW savings for
SRB TVC for the 049 configuration over the AT P configuration that was pre-
sented in the Executive Summary is due to the larger cant (15°) that is
required to track burnout c.g. for the 049 configuration. In summary, only
three options appear feasible to solve the high q problem: (1) using orbiter
aero surfaces, {2) using ventral fin, and (3) using an SRB TVC system.,
Only the SRB TVC system increases the control authority margin and effec-
tively handles the lift-off and burnout flight regimes simultaneously., There
is a potential louds problem with SRB TVC; however, this can be handled with
proper control logic and some performance loss.

3. ELASTIC BODY EFFECTS

The stabilization of the elastic body modes, using orbiter only for
control, is a very critical problem. This is because the launch system is
basically four elastic bodies, spring connected at two points, To illustrate
the problem of stabilizing the attached bodies, ET and SRB's, a two body
problem was formulated by considering them to be rigid but connected by
springs. In the analysis, the control sensor and control force could be
located on the same body or cn separate bodies. Figure 35 is a root locus
for the case where the sensor and control force are on the same body and
show that no damping can be added to the mode associated with the body that
does not have the control force and control sensorf, Putting the sensor on
one body and the control force on the other can help or hurt damping. The
unstable case is shown on Figure 36. Sensors on each body improved the
situation; however, for adequate stability, a control force and control sensor T
were required for each body. o

P

S o oM W 2 S

General Dynamics Corporation conducted a full stability analysis for a
parallel burn vehicle using three dimensional modes and found that, without
nonconventional control or a full SRB TVC, adequate stability was not achiev-
able. Root locus plots indicated these stability problems for orbiter only
control for one rate gyro location and are shown on Figures 37 and 38&.

1ne conclusion is evident that modal stability for this vehicle will be a el -
real problem and one on which the proposed slow rate SRB TVC system will ? ‘
have no bearing, since it will not be able to respond to the modal frequencies.
This forces three independent considerations: (1) make the SRB TVC a full o
rate system to remove the risk of modal instability, (2) conduct detailed S
elastic body modal characteristics analysis and test verificatior, and (3) make B =y
a study of nonconventional control system techniques. )

6. Alberta W, King, Effect of Coupling Between Rotation and Bending Modes
on the Stability of a Space Vehicle, MTP-AERO-63-77, November 1963.
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Figure 35. Root locus for spring connected bodies, control force,
and sensors on the same body.
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Figure 36. Root locus for spring connected bodies, control forces,
and sensors on different bodies,
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4. MIXER CONCEPTS

One of the more significant control problems of these configurations
is characterized by high yaw plane stability, complemented by roll-yaw
coupling, which is caused by both the aerodynamics and the geometry of
control. That is, an angle of sideslip, 8, or a control deflection, 0 , produces
yaw and roll moments simultaneously, This can be graphically illustrated by
the moment diagram for a given time point of the 049 configuration, as shown
on Figure 39. A disturbing moment vector due to sideslip (shown per degrece
on the figure), or due to SRM misalighments, must be offset by the resultant
of the control effector vectors for vehicle trim. To achieve simultaneously
zcroed (trimmed) roll and yaw moments, the effector magnitudes must be
manipulated so that their resultant is collinear with and of the same magnitude
as the disturbance vector. Obviously, to accomplish this, a number of choices
may exist, with the number increasing for a larger number of control effectors.

The specific choice of how to blend, or mix, the various control effec-
tors to produce control torques collinear to the disturbances has significant
effects on the ability of the vehicle to control within the prescribed position
limits placed on the individual effectors. Two approaches were taken to
implement a blender, First, the flight regime was separated into the two
regions: aerodynamic and nonaerodynamic, which gave three trajectory
areas — lift-off, high q, and tail-off, An average optimum mix was achieved
for each region of the 049 configuration flight and the mixing gains were
ramped from one trajectory area to the other around 40 seconds and 100
scconds of flight time (see Figure 26). The second method minimized a
weighted quadratic performance index of effector deflections to supply the
additional constraints that are needed to produce two moments (yaw and roll)
with four or more control effectors?, The relation of this complete timewise
optimum approach to the rest of the vehicle system is shown on Figure 40,
This mixer uncouples the control laws from the effectors and achieves a more
casily understandable system, while the first approach only accomplishes it
for the average vehicle characteristics. Both methods have been given the
acronym '' MOSES."

The second ty e of blending is particularly adaptable to the coupling
problems of the Shuttle configuration. This configuration utilizes a number
of control effectors which, when deflected, produce moments about more
than one axis. These configurations control with engines gimballing in pitch
and ysw, with rudders, and possibly, on the ATP configuration, with ailerons.
Differences in the basic aerodynamics of the two configurations (the ATP is
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considerably more stable in yaw than the 049 configuration) will cause some
changes in the control laws between the vehicles, but the MOSES techniques
present an optimum and consistent method of producing the desired control
torques from the available effectors once the command level of control torque
is determined by the control laws, The studies reported herein include onlv
the roll and yaw moment generation, but extension of the techniques for pitch
moment generation is obvious.

Additional details of the MOSES mixer are included on Figurc 41, The
weighting matrix essentially contains the square of the deflection limits for
each of the effectors as the main diagonal terms but correlation effects can be
used if desired. In the case of the aerodynamic surfaces, the limits may vary
with dynamic pressure. The use of partials, of course, implies linearization
about an equilibrium point.,

a. Weighting Effects on Contro! Authority., Weighting effects ure
illustrated by comparison of Figur«:s 42 and 43. These figures present the
amplitudes of the individual effeciors (byl’ 6y2’ GR and 5P), as conunanded

by the MOSES mixer in static analysis at maximum dynamic pressure with an
assumed 10° sideslip angle for an 049 configuration with a 400 sq. ft, ventral
fin, Several cases are included. Case 1 is for the nominal vehicle; the other
cases, 2 through 9, have different SRM misalignments, as well as the 10-
degree sideslip disturbance. Weightings from Figure 42 essentially say that
all effectors can be used to 10° without excessive weighting penaltie-, but
Figure 43 weightings only allow 5° for rudder and pitch engine deflection
before weighting penalties become large. Comparison of the two figures
shows that, at this maximum q region, the rudder is quite cffective and the
mixer uses it to keep the engine 1 yaw deflection (Gyl) reduced. Wlhen the

allowable rudder is reduced, however, large yaw deflection from cngine 1
(byl) is now requircd to make up the remaining moment, and its commanded

defleciion exceeds the ten degree limits,
b. Effect of Correlation Factors on Control Activity, Some correlating

effects are shown on Figure 44, where effector deflection per degree of sideslip
is plotted versus correlation factor for differential pitch deflection ( 61“)

correlating with engine 1 yaw deflection (Gyl) and for rudder deflection ( GR)
correlating with engine 2 yaw deflection (6y2). Because of the high slopes

for large values of correlation for the latter case, it becomes obvious that
minimum correlation should be maintained between rudder deflection and
engine 2 yaw deflection for this flight condition.
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¢. Dynamic Response Results. The dynamic response of the two ypes
of blenders on the 049 configuration was determined by 6-D simulation and
several of the variables have been listed on Figure 45 for comparison. Blender
A of the figure utilized the quadratic performance index while Blender B used
the averaged vehicle characteristics. Both types of blending produced very
adequatc responses to the 60 m/sec crosswind for the perfectly aligned case.
The performance index blender, however, showed superiority both in control
and effector deflections used. This, of course, reflects the procedure of
optimizing Blender A continuously while the Blender B is for averaged charac-
teristics. The continuous optimization procedure also allows for logic to be
programmed in to account for saturation of individual effectors or for effects
of some malfunctions such as engine out. Continued study is required to best
take advantage of the possibilities of this technique.

5. SFFECTS OF AN INTEGRATED LIFTOF} /ASCENT WIND PROFILE

Preliminary studies on the shuttle configuration have revealed its high
sensitivity to the SRM misalignments for the no SRM TVC case. Response to
the misalignments produces high gimbal angle demands during early flight
when initial trajectory maneuvering is being accomplished, and also during
the period when the vehicle is passing through the altitude regions where there
is transition betw <n the boundary-layer-influenced ground winds and the
irec-atmospheric-flow ascent winds. Because of this high level of vehicle
iesponse during the transition time, the validity of the common practice of
using ¢wo separate areas of analysis, i.e., lift-off and high q flight, for
control system analysis, has to be questioned.

The need for an integrated analysis for control svstem and performance
studies brought about the need, also, for a definition of an integrated wind
profile which merged the ground wind profiles with those of the inflight winds.
This profile has, therefore, been developed and is documented’, In this
memorandum, ground wind buildup envelopes, shears, and gusts are defineq,
along with the recommended methods for blending into the high altitude winds.
Each of the different buildups, i.e., shears and gust envelope, or envelope
plus gust, (sce Figure 46), must be examined to determine which causes the
worst case for the most critical variables. Previous vehicles (Saturn V),
where drift was a significant problem, showed most sensitivity to the envelope
plus gust type of winds, The rotational response, however, is more a problem
to the shuttle configurations than drift, and preliminary results indicate that
the shears plus gust produce a significantly greater response, particularly in
roll and engine deflections, Early roll responses to shear and gust buildup

7. George H, Fichtl, Merged Space Shuttle Design Ground and Inflight Wind
Profiles for Systems Trade-off Studies, S& E~AAERO-YA, October 24, 1972,
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(profile #1, Figure 46) may be compared to those of an envelope plus gust
(profile #2, Figure 46) by examining Figures 47 and 48 which represent cases
in which only the wind profile was changed.

PR

Engine deflections display similar trends with respect to ground wind
profiles, as indicated by comparison of Figures 49 and 50. These comparisons
support the conclusions above that the shear wind buildup produces the more
significant responses. One important aspect of the shuttle flight is the estab-
lishment of a good trajectory with minimum error early in flight, where the
vehicle flight is quite sensitive to trajectory errors, Ground winds, of course,
perturb the initiation of the trajectory and can, therefore, have some effect on
the achievement of its performance values. The condition of the vehicle state
at any given point, after the transients due to misalignments and winds, must
be evaluated with respect to continued ability to perform the mission, Thus,
it is imperative that an integrated profile be used to assure that the early
states achieved by response to ground winds and misalignments do not lead to
later problems with control, loads or performance. Evaluation of these 1
profiles on the shuttle has not been made in preceding work, but their impor- y
tance is quite apparent.

A B W b o

AP A 7 S Xt o TR S

6. ABORT CONSIDERATIONS

Abort mission ground rules are still being studied and lead to depth of
analyses far beyond the scope of the studies reported here, Nevertheless,
certain results obtained are pertinent to the abort considerations and should
be reported. In the process of the study, a maximum SRB misalignment
tolerance of one half of a degree has been established if SRB TVC is not
utilized. If greater SRB misalignments do occur, an aborted mission is
assumed because of excessive response and pertor.nance loss. These cases, T
however, also need to be examined to determine if any other constraint which WEL o,
might be injurous to crew or vehicle integrity exists. Accordingly, studies “es
were made on the ATP vehicle for larger than one half degree misalignments
and the results of interest have been briefly discussed in the Executive .
Summary and are shown in more detail in Figures 51, 52 and 53, These plots L
show how the maximum value of the product of sideslip angle and dynamic »F -
pressure (q3), the roll rate (P), and the product of roll rate and dynamic
pressure (qP) vary as the SRB misalignment increases. The qj product is
a load indicator and is currently baselined at 5100 PSF-deg. Assuming a 1.4
safety factor, the failure point would occur at 7140 PSF-deg (the top line).
For these pure yaw m’ alignments greater than .5°, the rate of increase of
maximum qp3 becomes quite high and the point of failure is reached in the . 75
degree misalignment range., As indicated, these values can be changed
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qd PSF deg/sec

Figure 53. P response to greater than 1° misalignment on SRB.
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somewhat by the type of control system that is being flown, A higher load
relief system (b0 greater) will reduce the gqpB magnitudes but will also affect

the vehicle performance advecrsely because of its tendency to deviate from the
path as it reduced the sideslip angle, The third curve points out the need to
maintain a relatively high path angle gain for better margin, These observa-
tions point out the probable need to change control logic toward higher load
relief when the need for mission abort is recognized. The abort recognition,
however, presents another problem. Because of the control characteristics

of this vehicle, without SRB TVC large transients are expected to occur due

to fast changing vehicle response to acceptable misalignments, Cues that will
establish that a vehicle is cxperiencing a larger than acceptable misalignment —
not merely the transient from an acceptable misalignment — in time to get

logic switched and initiate action in time to prevent breakup will be difficult to
formulate. Dynamic responses, shown in Figure 54, reveal that the g3 time
histories can go from near design value to the failure value due to wind gusts,
which take but a few seconds to develop. Warning time is, therefore, very
short, This again points to a dilemma in the control system design: Increasing
the gains to achieve good vehicle response causes control system saturation in
response to the SRB misalignmeuts.

Maximum roll rate is plotted versus misalignment value for several
types of misalignments and two sets of coatrol gains for one of the misalign-
ments. (See Figure 52.) These rates occur early in flight when misalign-
ments are being trimmed and the roll raaneuver is being performed. The
shape of the curve alsu reflects the trends mentioned with respect to the q
product, namely, the rate of incr..se is quite sharp above a half degree
misalignment with the values becoming quite large. No maximum allowable
magnitude has been established for the ATP vehicle but the higher values may
become quite disturbing to the pilots. Increase in tha roll gains at the expense
nf early engine saturation still results in considerable rates for misalignments
aliove one half degree. An earlier shuttle version had a dynamic pressure,
roll rate product limit of 6300 PSF deg/sec placec on it* so the ATP qP
product was ploi.ed against this limit, as shown on Figure 53, for the same
cases as the previous figure. Using this criter‘on, the plot also shows that
larger misalignment values than one half degre. would be unacceptable,

The rate of increase in the response maxin‘ums of the variables just
discussed, as the one half degree misalignment is exceeded, points up again
the marginality of a control system that does not include SRB TVC, With the
large excursion values for intolerance response, recognition of a malfunctioned
or an out-of-tolerance flight becomes exceedingly difficult.

8 C. T. Modlia, Jr., Wing Aerodynamic Load Limits for the Parallel Burn
Launch Configuration, MSC-ES2, April 5, 1972,
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As mentioned previously, many more factors must be considered for
abort than have been touched on here, Nevertheless, the identification pro-
blem will be very real in light of the rapidit;’ in which the load indicators can
change the wind gusts,

7. GENERAL TREND STUDIES

Several general trend studies important to overall systems cor " lera-
tions were performed using 049 vchicle data, The trend information 1lus
obtained can be extrapoiated to the other configurations of similar geometry.
In these trend studies the cffects on »tability and control duc to (1) addition
of fins, (2) variation of shape of trajectory and of orbiter orientation, (3)
change in SRB pitch cant angle, and (4) change in relative dircction at which
the wind sirikes the vehicle have been determined. Results obtained in each
case will now be discussed.

a. FinStudy. Another possible method of improving the control
situation in the high dynamic pressure regicas is to alter the vehicle aero-
dynamic configuration so that the distur! .ces due to sideslip produce a
moment vector which is reduced in magn.tude and is more nearly collincar
with the major control vectors. A study was made using a ventral fin attocked
to the HO tank as a means of accomplishirg this. Since the vehicle was
excessively stable in yaw, even without the fin, aft placement seemed inadvis-
able. Different fin sizes and fin placements, as shown on Figure 55, were
considered. Control logic was chosen to give a control vector, also shown
on the Figure 55, and a performance index consisting of the perpendicular
distance of the disturbance veetor from collinearity with the control vector
was calculated,

Disturbance vectors (per degree sideslip), the contr)l vectors (per
degree), and the performance index were calculated over the flight time/
Mach number range for the various fin sizes and locations, Figure 56 and
57 show the resulting moment rnaps over the flight time range. A 400 square
foot fin located at either X = 1251 or 1451 shows up as most promising from
these plots and this judgment is reinforced by the performance index, as shown
for the better size/location combination on Figure 58. Another significant
fa. :or for consideration is that the X = 1251 location places the fin between
the LOX and hydrogen tanks of the HO tank., This is a very convenient attach
point from structural considerations.

Another small advantage, gained by use of the fins, is found in com-

parison of Figures 59 and 60. Thesc figure show the movement of the system
roots with Mach number. Comparatively less root movement is found for the
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PENALTY FUNCTION N2.m2

20

1.6

1.2

0.8

04

5 400 ft2 fin @ 105|

8 600 ft fin © 1051
6 400 ft* fin @ 1261

7 660 2 fin @ 1261

54[—
+

5 MACH NO,

Figure 58. Size/location combination for performance inlet.
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system with the ventral fin, This tends to imply less sensitivity to gain
variations once the roots are placed at their desired locations.

Additional fin data are shown on Figure 61 which lists the high dynamic
pressure region control effector trim requirements for an 8° sideslip angle
with SRM misalignments. Again, the 400 square foot fin located forward on the
tank proves superior to the other configurations.

b. Trajectory and 7 rbiter Orientation Trades. Various types of
trajectories were investigated for the 049 configuration and are summarized,
from a payload standpoint, on Figure 62 which was obtained from the docu-
ment cited in footnote 9. Payload effects can be derived from this figure,
and reflect (a) change from point mass to moment balanced trajectories,

(b) change in commanded angle of attack, (c¢) change in orbiter orientation,
(d) change in SRM p*' h cant, and (e) change due to envelope winds. The
moment balanced, z: o aerodynamic normal force, cockpit up trajectory
serves as the baselin. case.

The cockpit ¢ »wn, negative one degree angle of attuck shows the pay-
load advantage of th > option over the others studied. The delta weights at
insertion are also + .own on Figure 62, For the heads up (cockpit up) trajec-
tory the aerodynamic and engine normal forces are opposing each other as
illustrated in Figure A3, with the predominant engine force tending to depress
the trajectory. For the heads down trajectory, to the contrary, the engine
normal force and the aerodynamic force work together to provide lift o the
trajectory, which can be utilized to gain payload.

The influence on dynamics and control of the various effects cf all
the different cases for which the payload wacz displayed will not ho discussed.
However, figure 64 is a presentation of several dynamic and coatrol variables
for both the ""heads up'' and the '"heads down'' trejectories. A 50-meter per
second wind has been applied from several directions relative to the vehicle.
Comparison of the various maximum quantities reveals that, while some
differenc~s do exist between the two ways of orienting the orbiter, none of the
differcnces are significant enough to be sufficient to eliminate either orienta-
tion from consideration. Tilting over the wing reguired a considerable "dog
leg' in the trajectory and did not show sufficient additional promise to be
considered further., To expedite the other trend studies of the 049 configura-
tion, which are reported upon herein, the ""heads up'' trajectory was chosen for
continuing studies.

9. Orval Ethridge, Moment Balance Trajectories for the MSC -042 Orbiter
Contiguration with Two 156'' Solid Rocket Motors Burning In Parallzl, S&E
AERO-GT-55-72, June 15, 1972,
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TRAJECTORY

Zero Aero-Normal Force
Zero Aero-Normal Force
+ 1° Angle of Attack

- 1° Angle of Attack

+1° Angle of Attack

-1° Angle of Attack
Head Wind

Right Cross Wind

Tail Wind

SRMS Canted Through
C.G. Liftoff

SRMS' Pitch Plane Cant
Zero

Pitch Over Wing

Point Mass Gravity Turn

VEHICLE ATTITUDE

(CASE - NOMINAL)

A WEIGHT @ INSERTION

Nominal Cockpit Up
Cockpit Down
Cockpit Up

Cockpit Up

Cockpit Down
Cockpit Down
Cockpit Up

Cockpit Up

Cockpit Up
Cockpit Up

Cockpit Up
Cockpit @ 90° 2

Cockpit Up

0

+ 3400 Lbs.

+ 885 Lbs.

-~ 932 Lbs.

+ 3232 Lbs.

+ 3513 Lbs.

+ 2727 Lbs.

-~ 637 Lbs.

- 3459 Lbs.

- 2693 Lbs.

- 1055 Lbs.

- 489 Lbs.

+ 2467 Lbs.

a. Cockpit Up reference position angle measured from refereunce position
to 180° Cockpit Down Position.

Figure 62, Summa=y of trajectories and corresponding payload.
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¢. Cant Angle Studies. Effeets of cant angles in piteh were also
investigated.  First, the no wind trajectories were run for various combinations
of SRM cant and liquid engine cant, Fcr determination of the liquid cants, the
lower engine cant was specified and the upner engine piteh cant was varied to
cause intersection with the lower engine thrust vectors at a point vertically
above or below the c.g. The range in values for the pitch gimbal angle over
the flight was plotted for that combination. Plots of ¢ngine defiection versus
SRM cant arc shown for two valu.:s of liquid ¢ngine cant in Figure 65, The
magnitude of the range of pitch ieflection values (cenvelope width) was recorded
where the envelope was ceniered shout zero, These and the corresponding SRM
cant valucs were recorded ana plotted in Figure 66, where the minimum range
(1.78°) can be fcund, along with the corresponding liquid cant (1:3.2°) and SRM
cunt (.36°). 1t should be remembered that the values were picked that centered
the gimbal range about zero for the no wind trajectory. Because of the dif.
fecence in magnitude hetween the 95-percentile headwinds and tailwinds, this
choice may not be the optimum case. No attempt was made, however, to redo
the study in light of this difference. For continuing studies, a .34° SRM caat
wus used and the 12° /18° orbiter cants, as shown in the drawing of the 049
configuration, were used.

d. Wind Direction Influence. The effects of wind direction upon the
control requirements were investigated by running trajectories with < 50..
meter per second wind from different azimuths., Representative cesults are
shown in Figure 67 which is a plot of the range of both the number one engine
piteh and yaw deflections versus wind azimuth., The launch azimuth is oriented
{o 90° so that the 90° wind aximuth is a headwind and a 270° wind azimuth is
a tailwind. These data suggest that the least excitation comes from a tailwind,
and active load relief might be obtained by turning the tail into the wind.

¢.  Trajectory Shape Effect. The effects upon the required gimbal
angle in pitch of changing the commanded angle of attack in the trajectory is
shown in Figure 68. The « trajectory at the origin commanrds the zero
acrodyanmic normal force angle of attack and the plus one trajectory commands
an additional degrce of angle of attack over that of the o, trajectory. One
portion of the figure shows the wind speed that just produces a 10° gimbal
deflection for both headwinds and tailwinds for the values of pitch attitude
crror gain. The "softer' control system (aop = ,5) allows a larger wind speed

without hitting the limits, but also allows greater attitude errors. The shift
of the ay + 1 trajectory provides a bias to offset the difference in magnitude
between the 95% headwind and 95% tailwind and permits 95% wind capability.
Gne of the prices paid for this, however, is illustrated in the other portion of
the figure. The product of the dynamic pressure and the angle of attack, a
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loads indicator, is increased tor the trajectory for the headwind. It is still
within an acceptable range, however. A 75 meter/second tailwind is the 95-
percentile value rather than the 45 meter/second tailwind which is shown on
the figure; the g for a 75 meter/second tailwind, however, is not expected
to exceed 3000 PSF deg. The o + 1 trajectory was selected for the 049
configuration studies.
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Various combinations of gains were investigated with the optimum set
dependent upon the particular variable of interest. The values listed below
are typical of those required to achieve a good compromise.

PITCH YAW ROLL RUDDER

POSITION a, 2.0 .50 .25 2.0
RATE a, 2.0 2.0 1.0 2.0
ANGLE OF ATTACK b, 0 .5° - i}
INTEGRAL ERROR  a_, 1 - , -

a. SHAPED GAIN 2.0

]
s

0.5

8
& -

N
b. q q/qmax
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ATP CONFIGURATION GAINS — NO SRM TVC

RUDDER
PITCH YAW ROLL ROLL YAW

POSITION 2. .5 0.15° 4
RATE 2. 2. 0.5 4
ANGLE OF ATTACK 0 .5¢° '

a. Shaped Gain 2.0
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