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SEDIMENTARY FEATURES ON THE SURFACE OF

MARS AS SEEN FROM MARINER 6 AND 7 PHOTOGRAPHS

by

Ronald L. Parsley

The primary scope of this report is to comment on martian surface features

which are sedimentary in origin or are related to the probable sedimentary regime.

Other geomorphic features and processes such as the origin of craters have been

discussed by others and do not fall into the scope of this report. Nevertheless a

number of features related to craters are germane to our discussion of sedimentary

features and will be discussed below.

With the scale derived from the near encounter, B-Camera pictures from

Mariner 6 and 7, it is evident that our knowledge of major geomorphic features

and the forces acting upon them is still rudimentary. From what we do see on the

martian surface, it appears that it is neither closely similar to the lunar surface

nor to that of the earth, although some interesting close analogues exist in the lat-

ter case (Lowman, 1971).

This work was undertaken following certain assumptions: 1) Water plays or

has played little or no role in the transportation of sediments. 2) Sufficient winds

are generated in the martian atmosphere (Sagan et al., 1971) to transport fine sed-

imentary material. 3) Most transportation of material on the martian surface has

been by aeolian processes.

The general terminology for terrains on Mars described by Leighton et al.

(1969) is used herein; however, in some frames intermediate conditions can be

recognized.

MARTIAN AEOLIAN SEDIMENTS—GENERAL STATEMENT

On Mars, as on the earth, the greatest accumulation of sediments is in

topographically depressed areas, e.g., in rills (which frequently appear to be



grabens), in "local" protected areas as on the bottoms of craters, or in large

basins such as Hellas. Directly related to this is the fact that much of the

topographically higher areas (usually cratered terrains) appear to be relatively

clean without thick sedimentary coverings. This is demonstrated in the se-

quence of frames 6N9 to 6N25, which shows an area between the martian equator

and 20° south latitude and contains much cratered terrain. In this sequence the

walls of extensively eroded craters are sharply defined, and features such as rim

faults and slumps are still clearly visible. This strongly argues for an active

transporting agent, viz. martian winds, which are removing mechanically weath-

ered sedimentary material (probably in the form of dust-sized particles) off the

highlands into basins or into protected areas (floors of craters, rills, valley-like

depressions, etc.). These upland cratered areas must therefore be the principal

source areas since it is illogical to assume that sedimentary basins and grabens

self-generate their contained sediments.

Albedo differences on some parts of Mars have been observed to change.

Some short period albedo changes may be due to dust storms; however, it is

probable that most albedo changes are due to other surface conditions. Most of

these light-dark areas, especially the latter, are somewhat independent of topog-

raphy and altitude. It is possible that the breakdown of rocks on the martian sur-

face results from the disarticulation and mechanical reduction of mafic and

leucocratLc minerals to dust-sized particles. (The mechanism of weathering is

enigmatic. The role played by hydration, particle bombardment, and mechanical-

thermal disarticulation of grains is still in the conjectural stage.) The surface

material may be very fine grained to begin with (especially if the martian surface

went through a heating and rapid cooling phase), and disarticulated grains could

be immediately transportable. Martian winds may segregate the finer portions of

this weathered material and in some areas leave aeolian lag deposits of mafic

materials which generally have higher specific gravities. In these areas it is

likely that mafic materials are also being actively transported, but the net transport
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favors the lighter minerals. Boundaries of the lag deposits may change with the

winds, either by advancing or retreating fronts of heavier minerals or by settling

of lighter grains in lag deposit areas at the cessation of an aeolian storm. Sur-

face winds probably can effect such albedo changes without the presence of long-

standing clouds or other phenomena observable on the Mariner 6 and 7 frames.

Conditions that affect the movement of mafic minerals in the thin martian atmos-

phere may be akin to low-level movement of material, as seen in the African ergs.

The relatively gentle slopes on Mars would explain some of the independence

of terrain relationships so far as dark areas on the highlands are concerned. Cutts

et al. (1971) have pointed out, however, that topography does in some instances

affect albedo differences; their suggestion that it is affected by aeolian transporta-

tion is in total agreement with this study. In craters, basins, and rills, fine

grained, high albedo sediments would probably mask the darker coarser sediments.

Woronow and King (1972) point out that one cratered area with low albedo is

more cratered than adjacent high albedo areas. They argue that this low albedo

area may be younger. It is also possible that part of the albedo difference may be

due to darker material remaining in a more cratered area due to reduced fetch of

martian winds. This upland area in and around Meridiani Sinus is probably a

source area for fine grained material blowing out of it.

This explanation for the changes in albedo between light and dark areas re-

lies on only two assumptions: 1) that the surface of Mars is being degraded (which

is observable), and 2) martian winds blow with steady velocities over sufficient

distances to segregate the light and heavy fractions of weathered rocks (segrega-

tion being due to mineralic and/or size differences alone). In the latter case,

this is somewhat verifiable by the filling of rills, craters, and basins by the higher

albedo, finer grained fraction. If the total fraction of the weathered surface were

evenly transported, it seems likely that basin and other fillings should have approxi-

mately the same albedo as in many of the upland areas. The fact that this is not so

argues for differentiation or an unexplained type of segregation of rock types on the

martian surface.



This is not in total agreement with the findings of Pollack and Sagan (1969),

who argue for a monomineralic surface (goethite) with albedo differences being a

function of grain size only. Particles in high albedo areas have an "average par-

ticle radius of 25pt, " while the mean particles in low albedo areas range from

lOOpi to 200/J. Their findings, if true, would indicate size segregation, probably

by aeolian action as suggested by Woronow and King (1972), and indicate that if

these low albedo areas are not younger, they are certainly at least active source

areas.

CRATERED TERRAINS

A great deal has been written about crate red terrains, especially in respect

to their origin and sequence of events in which the two included types of craters

were formed. The first and oldest type are large and flat-floored; many of these

are highly eroded. These craters probably were produced by impacts in the

planet's primordial surface. Numerous smaller, rounded bowl-shaped craters

are younger than the previous type as indicated by their presence on the rims and

crater bottoms of the flat-bottomed type. In a number of cases, the second type

of crater is seen modifying older round-bottomed craters. There does not seem

to be any modifying of bowl-shaped craters by larger flat-bottomed ones; thus the

sequence of events is assured.

The length of time taken for the flat-bottomed craters to be produced is not

known; however, when we look at their state of degradation, considerable variation

is observed. While most of these craters show erosion, some seem to show much

more. This would seem to argue for 1) a considerable period of time in their for-

mation, 2) variable composition of the crust (hence variable resistance to weather-

ing), 3) local variations in structural fabric which would facilitate weathering, e. g.,

small criss-cross networks of faults, 4) the possibility of persistent local weather

conditions which would increase the rate of weathering, and 5) other forces and/or

combinations of the above. It is interesting to note that there is no evidence in

Mariner 6 and 7 photographs of flat-bottomed craters developed in sediments.



Perhaps this argues for a shorter period in the formation of these craters. At

least some bowl-shaped craters can be shown to have impacted in sediments

and argue for a longer and perhaps continuous (albeit on some sort of decreasing

scale) post flat-bottomed crater history. This will be discussed below.

Flat-floored craters seem to have the following observable history (excluding

those which have an apparent volcanic stage by flooding of the bottoms by flows):

1) formation by infall of flux on the planet's surface, and 2) modification of the

craters (some of which are essentially coeval with formation) by rim faults,

slumping infalls of other material, large-scale faulting (producing faceted craters

which reflect a large-scale fabric on the planet's surface), and infilling by aeolian

sediments. Infilling of sediments in some cases can produce "bajadas" (as seen

in the crater in the southwest corner of frame 6N17). The sources of these sedi-

ments must be twofold, from the eroding rims and from sources away from the

rims. When the rims are high and fresh, they form a natural wind barrier. Then,

as erosion of the rims increases, the winds deposit a higher percentage of non-

rim originated material. As the crater rims erode, they form progressively less

of a barrier until they reach a point where winds can blow sediment into and out

of them. In situations where the rims are reduced to little more than an arcuate

series of monadnocks, transport out of the crater may match and probably exceed

transport into the crater, i. e., by removal of accumulated unconsolidated sedi-

ments.

In frame 6N22 (fig. 9), the large, greatly eroded crater warrants our atten-

tion. Broad shallow canyons are visible inside the crater. Small impact craters

in this crater are either developed in intercanyon areas (in sedimentary rocks?)

or on the crater floor where active erosion or sedimentation is taking place. In

some situations "lumpy" fall-back can be observed on the bottoms of craters,

exhumed from the primary state (see lower center of frame 6N16, fig. 5). Further

study of intensity of winds, grain size, etc. —probably after a manned expedition-

will be able to quantify this observation. Most flat-bottomed craters with raised



rims are assumed to have an infilling of sediment to explain their smooth nature

except in some cases where lava flows have, along with sediments, helped form

flat floors.

In comparison, bowl-shaped craters generally show either the typical im-

pact crater morphology of smooth, concave rounded bottoms or have a central

peak similar to numerous lunar impact craters. In the former case the bottoms

are usually smooth with fall-back debris (and small central peaks) being covered

by fine grained sediments, e.g., frame 7N6 (fig. 10), In the martian highlands

few, if any, of the smaller bowl-shaped craters are eroded to the point where

their rims are denuded or the fall-back ejecta has been exposed (assuming that

the ejecta is coarse enough to be detected on the photos).

Martian craters, even seemingly very fresh craters, do not manifest the

ray ejecta patterns that are so common on the moon. Fresh bowl-shaped craters,

however, sometimes do have hummocky ejecta patterns. Similar patterns are

seen in some explosion craters and impact craters such as the Barringer Crater

in Arizona. Hummocky ejecta is clearly visible in frame 6N20 (fig. 8). It is

likely that such features are not uncommon on Mars but are now erased by aeolian

processes. The hummocky ejecta in frame 6N20 is associated with fresh, sharp

craters with little visible erosion. Eroded craters such as in frame 7N6 (fig. 10)

show very low and denuded ejecta mounds. This perhaps bespeaks not of variation

in surface composition, flux velocity, etc., but of efficiency of surface aeolian

processes. Even if welded by heat upon impact, ejecta, being highly fractured,

would be considerably less resistant to erosion than crustal rock. Hummocky

ejecta may have been a more common phenomenon than is observed on the mar-

tian surface but is ephemeral relative to the length of time to erode the crater

rim.

CHAOTIC AND ASSOCIATED TERRAIN

Chaotic terrain and features such as long sinuous rills are developed in the

Aurorae Sinus region. This area seems to be topographically depressed (Collins,



1971) below the general level of the upland cratered terrain. As various authors

have pointed out, chaotic terrain does not seem to have analogues (at least easily

identifiable ones) on the earth or moon. In the often cited photo 6N14 (fig. 4), the

prominent depression bears at least superficial resemblance to "badlands" topog-

raphy in arid regions of earth. Perhaps what we are seeing here is "rejuvenes-

cence, " caused not by uplift, but by removal of material by aeolian action along

jumbled parallel fault zones. Parallel faults enhanced by downdrop (grabens),

slump, and probably aeolian removal (downslope winds) of material are clearly

visible.

Badlands topography on earth typically develops in fine-grained, poorly

consolidated horizontal sediments. Much of the Aurorae Sinus area could be a

sedimentary basin and the broad "gulleys" as in frame 6N14 (fig. 4), or long

sinuous rills or grabens as in frames 6N5 (fig. 1) and 6N7 (fig. 2), may be de-

veloped in sediments. Because these features are also closely fault-controlled,

the depressed Aurorae Sinus area may be caused by deflation of a less resistant

crustal material made susceptible by closely spaced faulting. Whatever the

subsurface material is, this area is susceptible to weathering and transport as

evidenced by the sharply reduced number of craters adjacent to chaotic and

"rill terrains."

The parallel rill patterns on frame 6N7 (fig. 2) show that they are fault-

controlled and that there is headward erosion or valley widening along parallel

fault swarms or along graben walls. In both frames 6N5 (fig. 1) and 6N7 (fig. 2),

one of the long rill valleys seen on each is sinuously offset. The direction of the

offset seems to parallel some of the planetary grid system faults (Binder and

McCarthy, Jr., 1972). The broader eroded portions of the rills are considerably

higher in albedo and probably contain trapped sediments.

CRATERED-TOFEATURELESS TERRAIN TRANSITIONAL AREA

Photos 7N25 (fig. 11), 7N26 (fig. 12), and 7N27 (fig. 13) are some of the

most important of the Mariner 6 and 7 series. These photographs record the



transition from the cratered highlands into the nearly featureless sedimentary

basin of Hellas. This transitional area is characterized by Basin and Range type

faulting (Lowman, 1971), trending in a north-south to slightly northwest direction.

Most of the ridges dip toward the basin or are manifested as stair-stepped normal

faults. Frequently the fault scarps are truncated or modified by craters, which

generally postdate them. It is evident, however, that post-cratering activity has

occurred along some of the faults as evidenced by faceting of some crater walls.

Close inspection shows that a number of these fault blocks are strongly "muted"

by sedimentation, e.g., frame 7N26 (fig. 12); in some instances where the tops

of the ridges are occupied by craters, these also are muted. The clean crisp

appearance of the adjacent cratered highlands clearly indicates that in the transi-

tion area the ridges and craters (all muted) are major sediment traps.

In frame 7N27 (fig. 13), at least five craters adjacent to the basin of Hellas

have breached rims on the adbasin side. To some degree this effect may be

localized muting of features by down-slope winds (Sagan, 1970), but some of this

is probably due to marginal normal faulting and part of the Basin and Range

faulting regime adjacent to Hellas. (In the situation seen along the eastern mar-

gin of frame 6N8 (fig. 3) between an upland and basin area, the faulting is not in

upthrown blocks or stair-stepped; rather it appears to be vertical tensional re-

lease swarms of parallel fractures which are modified by slump and aeolian action

to produce chaotic terrain.)

FEATURELESS TERRAIN

Upon close inspection it is evident that featureless terrain is anything but

featureless. Craters, albeit highly muted ones, are visible in the western part

of Hellas (frame 7N27, fig. 13). To the east (frame 7N29, fig. 14) the data are

rather poor because of "noisy" photos, but some circular features, assumed to be

craters, are visible.

Hellas is assumed, due to its lower and smoother topographic relationship

to the cratered highlands (as evidenced by radar profiles, etc.), to be a large
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sedimentary basin. The lack of larger muted craters suggests that the sediments

must be at least several kilometers deep, i.e., deep enough to bury craters that

formed on the bottom of the basin during the early history of the planet. It is pos-

sible that in the center of the basin more than 10 km of sediments are present.

Some poorly defined circular patterns in the Hellas basin suggest impact

into soft unconsolidated sediment. Subsequent aeolian action reduces such craters

and their ejecta to near the general level of the basin. The fact that such features

can be seen indicates that flux into the surface has continued over a long period of

time. As pointed out by Sharp et al. (1971), the circular basin of Hellas is very

old and probably has been collecting sediments over much of the planet's history.

The smooth surface is also indicative of variable winds; at least in the available

photos, dune features do not seem to be present in Hellas.
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Figure 1.—Mariner Frame 6N5, A Camera, approximate area 2277 X 1125 km.
The northeast trending high albedo bands appear to be sediment-filled grabens. The
graben on the eastern side of the photo is sigmoidal and is probably due to down-
drop along two intersecting fault systems.
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Figure 2.—Mariner Frame 6N7, A Camera, approximate area 141 X 993 km. In
the western half of the frame, two grabens (rills) are well developed and contain
in their broader portions high albedo sediments. The western rill appears to
widen, but actually maintains essentially the same width throughout its length.
The southern part appears wider, probably due to sediments stacking up against
the topographically higher darker area. The eastern graben system is more or
less parallel to the western but is developed in its northern part (above the sig-
moidal offset of the system) more as a set of fault ridges. The offset is probably
due to intersection of two fault systems. The southern part of the system is
broad and appears to have high albedo sediments covering the eastern slopes of
the depression.
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Figure 3. —Mariner Frame 6N8, B Camera, approximate area 126 X 97 km. Note
the chaotic terrain caused by slumping and probable aeolian action along a parallel
fault system.
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Figure 4. —Mariner Frame 6N14, B Camera, approximate area 237 X 99 km. The
broad depression in this frame is believed to be primarily fault-controlled. Note
what appears to be a fault swarm extending away from the head wall of the depres-
sion. Grabens parallel to this feature on this frame and on frame 6N15 lend support
to the theory that this is a highly faulted area. The depression itself is probably due
to removal of fractured and weakened material by winds. Headward growth and wid-
ening is facilitated by slumping. If this hypothesis is true, then chaotic terrain, as
seen on the bottom of the depression, may generally prove to be wind-sculptured,
faulted terrain.
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Figure 5. —Mariner Frame 6N16, B Camera, approximate area 134 X 83 km. Note
the eroded crater with sufficient crater-fill sediment removed to reveal what ap-
pears to be impact fall-back. The sinuous rill on the western edge of the frame is
probably a graben that is partly filled with sediment. The straight sides of the
faceted crater near the center of the frame are essentially parallel to the trend of
the rill, suggesting that the shapes of craters can be controlled by the regional
structural fabric.
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Figure 6.—Mariner Frame 6N17, A Camera, approximate area 1240 X 760 km.
Cratered area with numerous flat-bottomed craters in various states of erosion.
The large crater in the southwest corner of the frame, despite the high sun angle,
appears to be well filled with sediment. Adjacent craters are also filled with
higher albedo sediments, as are most flat-bottomed crater floors. Craters with
more eroded rims seem to have thicker sediment fillings as evidenced by smoother
floors and "bajadas" adjacent to the rims.
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Figure 7. —Mariner Frame 6N19, A Camera, approximate area 1000 X 722 km.
Arrow points to an outstanding example of a highly eroded crater. Note the fresh
bowl-shaped craters, some with central peaks in them, and a smaller flat-bottomed
crater within the greatly eroded rim. The sediment cover within the rim is prob-
ably thinner than in nearby craters where the craters serve as traps. There is
probably considerable transport out of the eroded crater.
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Figure 8. —Mariner Frame 6N20, B Camera, approximate area 89 X 73 km. At
least three of the large fresh craters (nos. 1-3) show hummocky ejecta. Ejecta
probably is ephemeral on Mars due to its erosion by winds. On the western edge
of the photo is a double flat-bottomed crater; possibly the central portion is a
rebound feature as seen on terrestrial cryptovolcanic or astrobleme structures.
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Figure 9.—Mariner Frame 6N22, B Camera, approximate area 84 X 73 km. In the
greatly eroded and filled crater (arrow), there appears to be erosion taking place
manifested by shallow rounded depressions. There is also a virtual lack of small
craters in these areas suggesting active erosion. Small craters are present in
what appear to be divides and higher non-dissected areas. Inside the crater
there also seems to be a low crater density, perhaps indicating high erosive and/or
sedimentary activity.
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Figure 10. —Mariner Frame 7N6, B Camera, approximate area 268 X 152 km. With
one exception the central peaks and fall-back debris are masked by higher albedo
sediments in these moderately fresh craters. Note that what appear to be rim faults
or slumps are sharply defined. Some ejecta mounds are present but appear to be
greatly eroded (arrow).
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Figure 11. —Mariner Frame 7N25, A Camera, approximate area 1128 X 723 km.
Martian cratered highlands which border the large basin of Hellas. Basin and
range type block faults are prevalent in the transition area between the basin and
the uplands.
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Figure 12. —Mariner Frame 7N26, B Camera, approximate area 101 X 77 km. This
is part of the transitional area between the highlands and the basin of Hellas. (See
7N25 and 7N27.) The craters and fault ridges (cuestas), as well as the nearly feature-
less valleys, are "muted" by a heavy sedimentary cover. The uplifted crater in the
western corner of the frame gives ample evidence of post-crater faulting.
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Figure 13. —Mariner Frame 7N27, A Camera, approximate area 998 X 723 km. The
transitional area between Hellas and the uplands is well exposed. While the craters
generally postdate the faulting, subsequent movement has increased fault relief.
This is evidenced by faulting of some crater walls.
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Figure 14. —Mariner Frame 7N29, A Camera, approximate area 937 X 780 km. The
frame of the floor of Hellas is nearly featureless, probably due to drifting sediments.
Close examination reveals several small "muted" craters, suggesting that impact
features are ephemeral in this basin.
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