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IyZ (A), IXZ (0) = initial product of inertia disturbances for
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k = feedback gains,

kt = torsional stiffness coefficient for cable
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rX,	 ::y , w = coordinater, of control mas3 me in

X, y, % c00441inate system

U = control. Force

v = w

w = displacement of the control mass Ric

' (see figure 2).

a(0) = IyZ (o)/(IZ - Ty)

a(©) = -IXZ(0) /(IZ - IX)

damping factor for the ith mode due to

feedback control

• w i = pi (1- ^F) 1 / z = imaginary part of the ith reed-back pole

0X, Sy = transverse angular velocity components

of the crew quarters

= nominal space station spin velocity

s =e '
6 torsional rotation of body 2 relative to

body 1.
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INTRODUCTIOIN

1.1 ADMINISTRATIVE' INFOlU4ATION

I

This report covers the work 40c; 111?34shod on NASA contract

NAS'8•279.132 during tho time period I Soptember 3.971 to I Novem-

bor 1,972 for the George 
C. Marshall Space Flight Center, 11arsh"J.1

Space Flight Center, Alabama, 35012. The prim ipal investigator

for thin study was Dr. Dara W. Childs, hssociaLu Professor of

Mechanical Bngin qaring, The University of Louisville, Louisville,

Kentucky. Inquiries about the results of this study should be

directed tither to Dr. Childs o4, Mr. Harry Buchanan (S&E-AERO-R)

Marshall Space Flight Contar.

1.2 BACYNGROUND INFORKATION

The Principal investigator for this study participated in

the NASA-A$EE ,: .rr=er faculty program at Marshall Space Flight

Center during the summer of 1970. The research topic investi-

gated during this tirile period was the analysis of a novel "wobble

damper" for an artificial--g space station. A space craft is said

to be "wobbling" when its axis of maximum moment of inertia is

not alignad wit-n * its moment--of-momentum vector. This undesirable

vehicle motion can be controlled by the use of reaction jets,

passive dampers, control moment gyros (CMG's) and momentum wheals'.

Each of these devices has both advantages and disadvantages, and

Dr. Eugene Worley (S&E-ABRO-R) suggested the possibility of an

active system which twould employ a single movable mass to generate

71-
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control torques. 
The 

stimulus for thi tri 1)roposition was the

observation that astronaut motion within the space station

(moving masses) would be the principal source of spacecraft

wobble motion. It therefore scomd reasonable to assume that

controlled motion of a comparable mass could be used to eliminate

wobble motion. During the course of the NASA-ASEE summer faculty

program, the correctness of this supposition was verified by a

combined analytical-simulation study. The results of this study

are presented in Reference 1, and demonstrate that a movable mass

controller (MMC) represents an extremely attractive alternative

for the wobble damping of spacecraft which basically behaves like

a rigid body.

The present study was designed to establish the feasibility

of an MMC in the attitude stabilization of a cable-connected

artificial-g configuration which can not reasonably be idealized

as a rigid body. The dynamic model for cable-connected con-

figurations employed in this study accounts for the aggregate

motion of the space station and relative torsional motion between

the crew quarters and counter weight. The development of the

model is the subject of the following chapter.

ff	 T
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CHAPTER 11

DYNAMIC 14ODELS

2.1 INTRODUCTION

Most of the past analyses of cable-connecteW xcta"ti ntl space

station configurations have been t,roncerned with (a) 4.hce dynamic

formulation of the problem, or (b) the stability of the system.

',	 Typical dynamic formulations have considered the extensional

motion of the system"' or have considered lateral motion of the

cables 4 ' S with the end bodies assumed to be particles ' Stabekis

and Bainum 6 have also examined the problem with an extensib.Le ,a-

ble but consider the end masses to be rigid bodies.

Posnansky and Heeschen 7 have reported the results of an

elaborate lumped-parameter simulation of a cable-connected con-

figuration which includes both lateral cable dynamics and rigid-body

descriptions for the end bodies. in terms of the present work,

their most significant finding was that the fundamental natural

frequency of the lateral dynamics (coupled cable and rigid-body

motion) was on the order of 1 cps. By comparison, the rigid-bray

wobble frequency may be on the order of .01 to .1 cps. However,

since cables providc comparatively little torsional rigidity, the

fundamental. torsional frequency l,iay well be below the wobble fre-

quency. From these observed frequency relationships, the dynamic

representation derived in this study is based on the following two

assumptions:

(a) Lateral and extensional motions are a secondary con-

sideration in designing the attitude-stabilization

system, and

.,^.	 77_,^....s	 _;	 N	 -,
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(b) Relative roll blit-ween the end bodies is of

contral importance in the design of than attitudo-

stabilization system.

In the sections which follow, a dyawic formulation is derived

for the space-station/MMC system based on these assumptions,
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2.2 GOVUMING BOUATIONS

Figure I illustr--tas the basic kinematic varinbles required to

defino the problem, The X, Y j Z axes define an inertial coordinate

System, The x,, Y,, z, and u 2 , 7, axes are fixed in rigid bodies

I and 2, respectively, and their origins coincide with the mass centers

of these bodies. The x, y, z axer are parallel, respectively, to the

x, lj y j , z, axes, and the origin of the x, y, z system coincides with

the net mass center of the system. The X 2 1 Y2 1 Z2 axes are principal

axes for body 2. The angle 0 defines the (only) relative motion 'between

the x, y, z (x j , y l , z j ) axes and the X 2 1 Y2 1 Z2 axes. The vector R

locates the origin of the x, y, z system in the X 0 Y, Z system. The

angular velocity of the x, y, z system relative to the X, Y. Z system

is defined by the vector 0, and the angular velocity of the xzp y 2f zz

system relative to the x, y, z system is defined by the vector W.

Body 1 of Figure 1 corresponds to the crew quarters, while body 2

corresponds to the counterweight. By spinning the system about a

transverse axis of maximum moment of inertia (nominally the z axis) an

artificial.-g environment is induced in the crew quarters.

The vectors p i and p 2 denote the position vectors in the x ,, YO ZI

and the x2, 
Y 2' Z2 

Systems, and the vectors a l and a 2 locate the origins

of the x,, y,, z, and 
X 2 P Y 2' Z2 

systems in the x, y, z systems. Hence,

by definition

0
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X1

W

vfYl ty2

X,X^

Zi

6

n

Z ► ZI

^2

Fig.l Basic kinematic definitions

r
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f p l dm - 0	 ,	 f p 2 dm *^ 0	 , M IA' + m2a2 - 0	 (1)
M I 	 m2

where ml and m2 are the masses of bodies 1 and 2 respectively.

The following two derivative operations with respect to time are

required.

0^«dV 	 VadV
dt IX'Y'z	 dt x,YrZ

where V is an arbitrary vector. The following notation will be used to

identify the coordinate system in which the component description of a

vector: is stated; (V) implies a component description in the x, y, z

or x1, yi, zx system, while (V) 
12

implies a component description in

the x2, y2, z;! system. These vectors are related by the coordinate

transforma".ion

(V) i2 = DIM =	 ce 0 -so (V)	 (2)

0	 1	 0

where s6 = sin6, and cO E cos®. 	
Lso	 0	 ce

The first equation employed to define the vectors Q, w is

Tr -	 1 ( a l + p l ) x (R + a°l + P 1 ) dm

ml	
(3)

+	
f 

( a2 + p 2 ) x ( + 2, 2 + p 2 ) dm

M2

where Tr is the resultant external torque applied to the system 2t the

origin of the x, y, z system. By noting the kinematic result

ai = Q x ai + Q x (fit x ai) ;	 i = 1,2	 (4)

	

r	 ,
1.



and by introducing Eq. (1), Eq. (3) reduces to

2
T r 	E ai x (h x miai) + 52 x E ai x (S2 x m, a! )	 (5)

Jul	 i-1

+ f (pl x P 1 ) dm + f (p2 x P 2 ) dm
M I	 mz

By substituting from the kinematic:. equations

P 1	 (^2xp1) +Qx (Pxp 1 )	 (6)
A

P2 = ( t x p2 ) + [(w) + (S2 x W)] x p2

+ (S2 + W) x [ (p + W) x p21,

implementing the vector identity A x [B x (B x A)] = B x rA x (B x A)I,,

performing the indicated integrations, and gathering terms, Eq. (5)

becomes

	

(T r) = CJ] (s) + [ (Q) ] rJ] (n)	 (7)

+ [J 2 ] (W) + [ (W)][j2](W)

+ ^J2 ]( x W) + [(W)]rJ2](Q) + [(Q) ]rj 2I(W)

where the notation [( )] implies

[(V)]	 o -vZ V 

V	 o - q

	

z	 x

	

-v
y	 x

v	 o

and performs the matrix equivalent of the vector cross-product opera-

tion. Returning to Eq. (7), [J]is the inertia matrix for the entire

system in the x, y, z coordinate system. Specifically,
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2
[sJ	 [i l l + [J 2 1 -	 mi [ (ai) na^ > 1 	 (8)

inl

where [J 1 ] and [d 2 1 are the inertia matrices for bodies l and 2,

(relative to their individual mass centers) in the x, y, z system. The

matrix D 2 1 is further defined by

[J 2
]
	 C a

T
[ 2 1 llel	 (q)

where [J2 i ] is the inertia matrix of body 2 in terms of the x 2 , y 2 , z2

system. The last three terms in Eq. ( 7) can be combined as follows

[ ( d)^(w) _ [J^J(s^ x ^) + L(W)a^J2a(^) + [(o)if.J2 i(w)	 (10)

where the vector ( d) is defined by

	

(d) = {j[U] - 2[J2 1}(0)	 = trace [J 2 l, (11)

Bence, the final form for Eq. (7) is

(Tr)	 [J ] (h) + [(Q) ][J](S2)	 (12)

+ [J2 1(w) + [(w)J[J2](w) + [(d)J(w)

The definition of the vectors n and w is completed by the inde-

pendent equation

Tc f p 2 x (fit + a2 + p 2 ) dm	 (13)
M2

where T c is the resultant torque applied to body 2 at its mass center.

Substituting from Eqs . (1) and (6) into Eq . x(13) , integrating over M2,

and then substituting from (10) and (11) yields

11
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A

(T C), [j z aO	 + [(n) Ili 2 1(1)	 (14)

	

iz	 iz	 i z	 iz	 i2	 i z

+ 
[J12 j(w)  12 + [ M 12 ^ 1. 12l(w)  12 + [ (d ) i 2] (w) i"

Since the x2, Y2f z2 axes are principal axes for body 2, the y compoi.ent

of Eq. (14) yields

	

T  = 1 2 SZ + 1 2 6 + (12	 z	 z
J2 ) ((S12g2)s8c8 - S2	 c(20)1	 (15)y	 Y y	 y

where-I 2 1y , 
12 

are the moments of inertia for body 2 relative to the

x21 y 20 z2 principal axes, respectively. Further, 0 x , r'Ly , Q, z are the

components of Q in the x, y, z system. Eq. (15) and the matrix equation

(12) define the uncontrolled motion of the system. The assumption is made

in this study that Ty is the reaction torque defined by

Ty - k t6	 (16)

where k  is a torsional spring constant.

Figure 2 illustrates the MMC system to be used it this study. The

essential element of the stabilizer is the point mass me whose motion

is limited by a tube (or other physical constraints) to be parallel

with the z axis. The tube is attached to body 1, and the position of the

mass within the tube is defined by the variable w. The governing equation

of motion for w is3

f  = mc{iW + (SZ xry - 6yrx
) + rx2zgx	

(17)

+ ryQ Q	 w (Qx + Qy) }

where f  is the z component of the reaction force app. lied • to mc , and

0



I

z1ZI

i

MC

Zl

I I

x,x,

16.5 ft.

.	 I

BODY I

Fig. 2 Controller configuration

4
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,(r x , ry , w) are the components of r, the vector which

locates the control mass in the x, y , z system.

The attachment of the 14140 system to body 1 as illustrat-

ed in Fig. 2 will only change Eq. (12). The required modifi-

cation is

(Tr ) = (J)	 +	 (18)

..	 n
me l (^') J f r) + 2m.c [ (r) J [ (S?) J (r)

where

	

[JJ = [J] - mc[(r)][(r)J 	 (19)

summarizing, the variables (Q X , St y , Q z ,0, w) are defined by

Eqs. (15), (17), and (18) .

Froia Eq. (19) , the inertia matrix [J] is seen to be a

function of both w and e. Of particular importance a.,-e the

relationships

XZ = xxz (0) + mcrxw - ( I 2 -
 1

2 ) s 0c e
Z2 2	 x2

(20)
Ty z ; Iy z (0) +m4 r y w

2.3 UNCONTROLLED P- IOTION:LINEAIIZEU MODEL

_	 The free motion dynamics problem can be summarized as

follows. Under'ideal conditions, the H (moment-of-momentum)

vector and the axis of maximum moment of inertia of the

spacestation coincide. If (due to either external torques

or internal mass motion) the two are forced apart, a

condition generally called "wobbling" results. This motion

is characterized by a nominally constant rotation rate about

the z axis accompanied by oscillations in 0 X , 92y , and e

^.
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The defining equations for free motion are Eqs. (12) and

(15) t and a valid line,krization of these equations is

possible based on the following observations:

(a) SI z z Iff, the average spin velocity,

(b) SIx and SI
y are very small in comparison to D I and

(c) 0 is generally small justifying the approxima-

tions cO = 1, se — 6.

The resultant linearized equations are

k = - 0 
y 
aN + be (1-b 2) N - all' a (0)

6y = SIx b 1 'ff + (k t/ I I e - bSZ 2
 ^ (0)/q,	 (21)

y

6 = - Q x (b-b 2 ) 'FI/q 1 	(Pl'+b 2ff2) a + bU 2 ^(0) /q1

where the result, b, = (b-q 2 b 2 )/q l , is employed	 Two

special cases can be obtained from these general results.

First, if k t	
CO'. 0 and ; -* 0, q, + 1, and b, -* b. The

result is the rigid body equations.

a?T - a-ff 2 a (0)

(22)

0 bff - bff 2 ^(0)

with the rigid-body wobble frequency

I	 Fp = (ab) /z 	 (23)

The second special case results if k =b 2 =0. Since e = 1 2 /1
t	 y X

is in general quite small, the resultant .,io-Lion is approxi-

mately defined by
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Sty 	ya3^

Sty 	0 b i3% - 020 ( 0 1/q , (24)

0	 ., 5'4Yb I 	.. b 237 2 6 * aal o (0)/9

The "rigid body" wobble fregaency and the torsional oscillation

frequency p 2 are defined by

p l	 {a b l }	 n , p2^ b 2	 S2	 (25)

2.4 CONTROLLED MOTION:LINEARIZED MODEL

As stated previously, motion of the complete system is de-

fined by Eqs., (1.5 1 ; 117),- and 1 18). A valid linearization of the

controlled system is possible based on the preceding asst:mptior.s

for free motion ( P z = 0; Q I Sty «,Q; se = 0, c6 = I) plus the

following assumptions for the MMC:

(a) mcw 2 /Ix«l, mcw 2 /Iy«l, and

(b) the "coriolis-torques" 2mcwwQx and 2mcWwQy

which arise in Eq. (18) due to the term

2m  ( (r) ] ( ( 2 ) 1 (r) are negligible.

The resultant linearized equations may be written as
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,x 1 U	
"eta ire (1,^ •b L )	 0	 0 --5 1  g 2 SAX

Sty St}3	 0 0	 kt/1y	 0 42 91

p 
S -S2 (b-b 2 )/q 1 	0 0	 - (b - 2 +pi)	 0 -St2g1

8 0	 0 ]	 0	 0 0 4

v Ur	 (b 1 -1)	 52ry (a-1) -$Zrye ( 1-b 2 )	 rxkt/I 1 	0 ^2e1 v

w 0	 0 0	 0	 1 0 w

-ry/IX -aa(0)

rx/I1 y -b ^ (0)/q 1

+
x	 y u	 +	 SZ 2 (26)

0 0

(1+e 1) /mc ry as (0) -rxb S (0) /q l

0 0

' In the equation above, u is the control contzibut oa to

the force f 	 appearing in Eq.	 (17).	 A comparison between the

solutions from this Linear model with those of the general non-

linear model (Eqs .	 (18) ,	 (17) , and	 (15)	 )	 for a wide range of

cases revealed no significant differences,	 In most cases no

discernible differences were evident in plots of the solutions.
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DATA, . aRELN,LIt TS I AND ASSUMPTIONS

3. 1 CONTROL OBaPCTIVES AND C ON RAINTS

The general attitude-s4abiliza.tion control objectives may

be defined in terns of the control force it and the state-vari-

able vector X ( px r 0y1 0, 6, v, W) . In terms of these vari ables,

the basic requirement is the synthesis of a feedback control

logic u = u(X) which satisfies the following descending order of

objectives:

(a) The attitude-stabilization system is required to eliminate

the oscillations in the transverse angular velocity componen^s

of body 1 (SIx , py ) , i. e., the desired terminal state is

^x (t f ) = y(tf ) = 0.

(b) While the comfort of the astronauts does riot explicitly

depend on 6 also being forced to zero, the coupling of

the system is such that condition (a) cannot generally (k tad)

be otherwise satisfied. hence, an additional desired ter-

minal state: is 6(t f ) = 0.

(c) It is desirable that the full capacity of the controller

be restored after a disturbance has been eliminated, hence,

the additional desired terminal states w (t f ) _ ^7 (t f ) = 0.

In summary, the desired terminal state is

k(tf ) = ytf ) = 6(tf ) = w(tf )	 w(tf ) = 0	 (27)

The control constraints can be summarized as follows:

(a) Motion of the control mass is amplitude limited by physical

constraints, i.e.,



1 wl ^ w Lx 1 C. , 5 ct,	 (28)

(b) A control which requires an oxcossivr control force u is

deemed to be impractical. EVocifically, in this study

control forces in excess of thir';y-five pounds wore doomed to

be unacceptable; hence,

Jul < U = 35 lbs.	 (29)

In addition to those specific aAd easily quantifiable

requirements and constraints, the feedback control logic: to

be derived was constrained to be time-invariant and (generally)

linear in form. Specifically, a control law of the form

u = k1 p + k291 + k 3 6 + k 4 e + JC Sw + k6W + k7f 
t w(T)dT (30)

x	 y	 0

was,employed where the integral term was added for the sole

purpose of enforci-nq the tei-rainal boundary condition w(t f) =_O, and

has no other intended influence on the dynamics of the system.

From Eqs. (26) and (30), the control system has the form

X = Ax + bu + f , u = k TX	 (31)

or in closed-loop form

X = CA + bk T ] X + f	 (32)

In general torms, the control synthesis problem addressed here

can be stated as follows. Determine those gains k i which will

cause the controlled system defined by Eq. (32) to rapidly re-

cover from an initial disturbance,and to approach the desired

terminal state given in Eq. (27) without violating the constraints

of Eqs. (28) and (29).

7WWF7 7
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3.2 SPIKE-STATION CONFIGURATIONS AND DATA

To this investigator's knowledge, NASA's more rocent investi-

gation of arti gicaal-g space :stations have concentrated on the

following three concepts:

(a) A nuclear-powered, nominally axisymmctric configuration for

which two bodies are connected by a comparatively rigid con-

necting tunnel,

(b) A nuclear-powered, nominally axisymmetric configuration for

which two bodies are connected by cables, and

(c) A solar-powered, axymmetric cable-connected configuration.

Concepts (a,) and (b) were investigated by McDonnell-Douglas Astro-

nautics company under the direction of Marshall Space Flight Centex,

while concept (c) was investigated by North American-Rockwell under

the direction of The Manned Space Flight Oen4er, NASA louston.

The superior performance of an MMC for " 4titude stabilization

cf concept (a) has previously been demonstrated in Reference 1,

and the investitations of this study are restricted to concept (b).

Specifically, the configuration investigated in this study is

based on the geometric and inertial properties arrived at by

McDonnell.-Douglas Astronautics in Reference 8. Table A. illustrates

the significant longitudinal dimensions of this space station de-

sign in its various stages of deployment.

The inertia properties for the apace station in its various

stages of deployment are provided in Table B. The asymmetry which

is evident (i.e., I z > Ix , I >IX , 11 >12) in this table was added

by the investigators to the nominal symmetric properties provided

by Reference 3. The following guidelines were used to arrive at

the s e modified inertial properties:

F.
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TABLE A; AXIAL WACE-STATION DIMENSION

body 2body 1

1

Cz

loyment	 C;
tacre

0 57.16

1/9 69.28

1/2 81.41

3/9 93. r,3

1 105.7

C2 Cable
Length

166.2 0.0 - 5 1

201..4 35.3 -63

236.7 70.5 _ 7 5

272.0 105.8 - 87

307.2 141.0 -'10

CI(ft)	 distance from C.M. of body 1 to C.M. of space
station

C 2 (ft) = distance frorn C.M. of body 1 to C.M. of body 2,

r  (ft) = distance from C.M. of space station to MMC

(a) Dynamic stability of the system requires asymmetry.

(b) The crew quarters are-nominally axisymmetric, and the pro-

vision of asymmetry requires additional design effort and

expense. The assumption %;as made that asymmetry would bA

provided by the internal mass-distribution design c! the

crew quarters, and the asymmetry used in Reference 1 was

taken to be representati%e of the degree of asymmetry which

^.	 r;	 . ,.
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could be obtained by this approach.

(c) The counterweight is also nominally axisymmetric, and it

turns out that(from a controls viewpoint) a perfectly

axisymmetric body is ideal. Consequently, sufficient asym-

metry was provided in body 2 to account for residual (but

unintentional) counterweights asymmetry.

3.3 REFERENCE DISTURBANCES AND CONTROLLER SIZING

The reference disturbance used throughout this study consists

of four astronauts (773 lbs. or 24 slugs) moved instantaneously

to the worst possible locations within the crew quarters. The

resultant initial product-of-inertia disturbances for -the fully

deployed configur« Uon are

Ixz (0) - 3250 slug-ft 2 ,	 Iyz (0) : 51,000 slug-ft2	
.(. 3.)s..^.-^.._

These product-of-inertias were used for all stages of deployment.

Eq. (20) d-monstrates the linear dependence of the Ixz and

Iyz product of inertias upon the controller position w, and it

is primarily through this dependence that the MMC system is used

to generate control. torques. The MMC considered in this study is

defined by the parameters

rx = 16.5 f " , me = 11 slugs	 (34)

The parameter ry depends upon the stage of deployment and is de

fined in Table A. The product-of-inertia capacity of the con-

troller is from Eqs. (20) and (28) Icxz ' 3000 slug-ft 2 , I C' z -
y

18,200 slug-ft 2 (ry = 100.ft). The equivalent static torque capa-

bility (for St = 4 rpm, and ry = 100 ft.) is approximately ITx ( max

IIcyz ^n 2 = 3180 ft-lbs, and ITy 1 max	 CxCxz)1,2
	 525 ft-lbs. Since

1



21

TABLE B: INERTIA PROPERTIES AND PARAMETERS

Body 1	 Body 2

Deploymont
Stage IX(alug-ft2) Iy (slug-ft 2 ) a

0 64.926x 10 6 65.009x 10 6 .9796

1/4 90.166x 10 6 90.249x 10 6 .9853

1/2 119.91 x 10 6 119.99 x 10 6 .9889

3/4 154.13 x 10 6 154.21 x 10 6 .9914

1 187.10 x 10 6 187.18 x 10 6
.9929>:^ e.....r.^

Constant Inertial. Parcimeters

Iy = .62lx 106s1ug-ft,

ly = .787x 106s1.ug-ft2

Iy = 1.407x 106slug-ft2

b 2 = .0500	 ,	 b l	=	 .0709	 ,	 b = .0592

the products of inertias are linear functions of w, the control

torques may be varied linearly from zero to full capacity.

3.4 DEPLOYMENT AND RETRACTION PROCEDURES

The assumption was made in this study that the nominal design

spin velocity 7 is 4 1-pm, and that in both the deployment and

G



22

retraction pnases the spti.tr rvaf;;city could only exceed this value.
In other words, the rigidly asoumb led space station would be over

spun prior to deployment, As deployment proceeded, the spin-

velocity would drop (conservation of angular momentum),and when

fully deployed would rotate at 4 rpm. Basically the same pro-

cedure'would be followod in the retraction phase. Hence, spin

velocities of 4 rpm and higher were ^'.nvestigated. This approach was

found to be conservative, since in general increasing the spin

velocity degrades the controller's performance.

3.5 TORSIONAL STIFFNESS COEFFICIENTS

The two following configurations were used in defining the

torsional stiffness kt;^

(a) a zero torsional stiffness configuration (k,,= 0), corresponding

to a single cable design, and

(b) a maximum torsional stiffness configuration corresponding

to the McDonnell-Douglas design.

The relatively high torsional stiffness of the McDonnell-Douglas

design was verified by simulations (at MSFC)of alternative designs.

The calculation of the values for k  were based on the work of

D. Nixon9 (S&E-AERO^R), and were aided by personal communications

with Mr. Nixon.

3.6 SYNTHESIS PROCEDURE

One important feature of the state variable formulation

of a linear feedback control system is the fact that the poles

of the closed-loop-transfer function can be positioned arbi-

trarily by the proper choice of feedback gains (if all. the state

i	 '



variables are available), r."be closed loop characteristic

equation of a syst:ene writto,, ir: t:ie form X = (A+bk TIx is given

b the determinant si :^	 my	 ^ A	 .. k,k"	 For an nth order system,

the characteristic equation: is an nth order polynomial in the

Laplacian operator s, with r. + 1 terms. The coefficient of the

s  term equals one, and the coefficients of the sn 1 to s 0 terms

provide n algebraic equations in terms of the n unknown feed-

back gains k  that can be equated to the corresponding co-

efficients of any i:;,asi.red nth order characteristic polynomial.

By solving this set of n equations, the closed-loop poles of the

system can be positioned to obtain desired frequency domain

solutions.

The effectiveness of the root specification method as a con-

""°` '°° T ' "'teal `s'ystem design'*tdcllni que` is limited by the fact that the

transient magnitudes of the various system and control variables

cannot be predicted from frequency-domain solutions. Two major

constraints imposed on the performance of the control system

considered in this study were a maximum control mass deflection

magnitude, (Eq. (28)) and a maximum control force magnitude

(Eq. (29)). While the ability to calculate feedback gains to

yield desired degrees of damping on the system variables is of

considerable use, intuitions based on past experiences and trial

and error procedures provide the only insight into the effect of

pole locations upon the maximum variable magnitudes in time domain

solutions. In this phase of the study, gains were first calculated

to yield roots specified from physical and intuitive ba- ,es. Time

responses using these gains were then obtained by numerical inte-

77,
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gration of the system's	 of motion to determine

whether the gains caused the system f;orra traints to be violated.

The method of closed--lo go pu.ln specification was applied

to both the fourth-order, non-deployed rigid body configuration

and the sixth-order, cable connected configuration of Eq. (26).

The characteristic equations of the two systems were established

by expanding the determinant of the closed-loop system coefficient

matrix. The closed-loop characteristic polynomial for the cable-

connected system is provided in Appendix A. Sets of equations

relating the unknown feedback gains to the desired closed-loop

poles were obtained by equating the coefficients of th%= closed-
:

loop polynomial to those of the desired characteristic equation.

A computer program utilizing the IBM Scientific Subroutine Package

ry - program, iSIMQ, Y aas developed to solve the equation sets. Two

additional IBM subroutines, HSBG and ATEIG, were used to calculate

the eigenvalues of the closed-loop system matrix for each set

of calculated gains to verify that the desired roots were actually

obtained.

The general criteria for selecting desired root locations can

be explained as follows. First, one notes from Eq. (26) that

without control the control mass motion is itself unstable due to

the coefficient A 56 = S2 2 el. Assuming that the controller is

stabilized (via the k 6 w term in Eq. (30) with all other k  = G),

the system defined by Eq. (26) has the following three undamped

modes of motion and natural frequencies;

(a) wobble motion involving 0x 'and Sty (natural frequency p l ),

(b) torsional motion involving S and a (natural frequency p2)1

and

7	 '7.777717W
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(c) control mass motion involving v and w (natural frequency

= PO'

Hence, the characteristic equation for the uncontrolled system

has the form

3
IT (s 2 + pi 2) = 0	 05)

1=1

The gains ki are selected so that the closed-loop characteristic

equation has the form

3
(s + p 0 ) it ( s 2 + 2;ip is + pi 2 ) =- 0	 (36)

i=1

where the s + po term arises due to the integral feedback term.

The damping factor for wobble motion ;1 was selected to be unity

in all cases	 The damping factors for the control mass and ^^`" "

torsional motion were selected to yield equivalent damping constants,

i.e• ► ^i p i = ^2p 2 = ^3p3• The natural frequency of the control

mass p 3 and the pole location due to integral feedback p o were

selected in accordance with various criteria depending upon the

configuration.

i
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CHAPTER IV

RESULTS

4.1 INTRODUCTION

As explained in the preceding chapter, the synthesis procedure

employed in this study consists of (a) selecting (guessing)

closed-loop, root locations, (b) calculating gains k i which will

yield these roots, and (c) obtaining the transient solutions to

determine whether the force and deflection constraints have been

violated. The trial-and-error character of this procedure is

such that one is never quite sure that yet another, try would not

improve things. However, the solutions presented here are the

result of a large number of such trial and error

While some slight improvement might be achieved by additional

effort, these results in general represent best-possible con-

troller performa :e, i.e., optimum selection of gains k i . Fur-

thermore, the controller performance through a wide-range of

configurations and operating conditions is consistently excellent.

The results presented in the following sections demonstrate the

influence of the following factors on controller performance:

(a) stage of deployment,

(b) nominal spin velocity S^, and

(c) torsional stiffness kt.

The results consist of both tabular data and illustrations of

transient solutions. The tabular data (which is presented for

each case) contains the following information:
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(a) 4i = ratio of effective to critical damping for d11, anodes,

(b) p l 	wobble frequency,

(c) p2	 torsional natural frequency,

(d) specified closed-loop poles,

(e) calculated gains ki,

(f) peak control force 1u1max' and

(g) peak control mass deflection { w l max'

Transient solution illustrations are provided for the two fully-

deployed configurations (k t = 0, kt ^ 0) both with and without

control. In addition, transient solution illustrations are p-o-

vided for the 1/2 deployed configuration (kt ^ 0) at maximum spin

v-locity. These illustrations were included to provide a quali-

tative indication of the controller's effectiveness.

4.2 UNDEPLOYED SPACE STATION

The requisite input data for the undeployel. space station is

provided in the preceding chapter. As previously noted in Section

3.4, the nominal spin--velocity can equal or exceed 4 rpm. The two

cases considered for the non-deployed configuration are (a) S2 = 4

rpm and (b) S2	 11.5 gym. An initial value of 7 = 11.5 rpm.is

sufficient to yield a spin-velocit y of 4 rpm.for the fully-deployed

configuration. The results for these two cases are illustrated

in Tables 4.2(a) and (b). Inspection of these tables reveals that

the Tower spin-velocity case is the more easily controlled in the

sense that a higher control force is requircJ.

z
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TABLE 4.2 (a,) ; Undeployed Configuration, St ^ 4 rpm.

Input Data: S = .418 rad./_or., c'i 	 .1004 rad./sec.

Control Data: 7 1 = 1.0 1 r 3 .1667

k 1 = 1.815 x 10 3 lb.sec.%rad., k 2 = -3.767 x 10 4 lb.sec./rad.

k 5 = .1037 lb.sec./ft., k, = -4.456 lb./ft., k7 = -.1109 lb./ft.sec.

Closed-Loop Pole Location

nx, S1 	 w	 Iw

real	 -.1004	 -.1004	 -.0288

imag.	 0.0	 .5942

Transient Performance:

l u lmax = 15.9 lbis, 1w1max = 16.2 ft.

-- °-°	 *TABLE .4:2^ , b) f Undeployed Configuration, St 	 11.5 rpm.

Input Data: SZ = 1.2035 rad./sec., p, = .2891 rad./qec.

Control Data: ^ 1 = ]"0, ^3 = .40

k, = -1.081 x 10 3 lb.sec./rad., k2 = -1.626 x 1.0 `' lb.sec./rad.

k s = -10.91 lb.sec./ft., k 6	 -9.965 lb./ft., k 7 = -•.1596 lb./ft.sec.

Closed-Loop Pole Location

Six , Sty	w	 f w

real	 .2892	 -.2892	 -.0288

imag	 0.0	 .6626

Transient Performance

lul max = 24.4 lbs. ► 1w1 max = 10.8 lbs.
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4.3 CONTROL FOR k t = 0.

a. The Fully Do laved Configuration St d

Since a space station will normally be in the fall -doployod saute

the effectiveness of the MMC in providing attitude stabilization,

for this particular configuration is of fundamental interest.

Evidence for the controller's superior performance is pwovided by

a comparison of the uncontrolled motion illustrated in figure 3

with the controlled motion in figure 4. In addition, from Table

4.3(a), the peak force and deflection magnitudes are seen to be

(Wl max ` 16.5 ft., and Jul max= 14.2 lbs. Note is made that the

gains on 0 and 0 (k
3
 and k 4 ) are zero, and this is characteristic

of all kt = 0 cases. Since no disturbance torque is applied to

the crew quarters due to e motion, there is no reason to attempt

control of the relative torsional motion.

TABLE 4.3(a). The Fully Deploy

Input Data: p,/—Q = .230, p 2 /S2 =

Control Data: ^,= 1.0 , ^ 2 = 0.,

k i = 610.1 lb.sec./rad., k2

k 5 = -.634 lb.sec.,'ft. , k 6 =

Closed-Loop Pole Location

Ox' S1 

real	 .1109

	

eO Configurati,o.., SZ	 4 rpm., kt	 0.

.223

4 3 = .20

-1.561 x 10 4 1b.sec./rad., k 3 = k 4 = 0.,

	

-3.974 lb./ft., k 7	.0910.1b../ft.sec.

w	 8	 Iw

-.1109	 0.	 .0287

	imag	 .0093	 .5431	 .0933

Transient Performance:

lulmax = 14.2 lb., JwJ max = 16.5 ft.

­
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4.a Controlled Motion: 0 versus t for the fully
deployed configuration with kt = 0 1 and SZ=4rpm.
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.,4.b Controlled Motion: O Y versus t for the fully
deployed configuration with kt = 0 1 and
f= 4 rpm.
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b. 3/4 Deployed Configuration,	 -- 4 and 4.85 rpm

The results for this case are summarized in Table 4.;(b). n

comparison of these results with those o 11able 4.3.1 a) reveals ~cant

differences between the 3/4	 and the fully deployok',, configuration

when Si = 4 rpm. This comparative insensitivity to the state of

deployment can be explained by noting that the only factors wlich

vary in the governing Eq.(26) due to deployment are a, ry/Ix , and

e = I 2y/Ix . The latter two parameters are small, and have a com-

paratively minor influence on the systems' behavior. Conversely,

the dependency of the wobble frequency p l upon a (Eq. Z25)) makes

it a significant parameter. However, Table B reveals that a only

changes slightly front the non-deployed to the fully deployed con-

figuration.

A comparison of the results of case 1 and 2 in Table 4.3(b)

demonstrates the marked dependence of controller performance upon

the nominal spin velocity. The natural frequen.ies p l , p 2 display

the predicted (Eq. (25)) linear dependence upon SZ while the peak

force Jul max increases markedly with increasing q.

c. 1/2 Deployed Confi guration,	 = 4 and 6.23 rpm.

The results for these two cases ari presented in Table 4.3(c), and

continue to demonstrate (a) the comparative insensitivity to the

stage of deployment, and (b) the marked dependence of controller

performance upon the nominal spin velocity.

d. 1/4 Deployed Configuration, 	 = 4 and 8,3 .sum

The results for these two cases are presented in Table 4.3(d), and

represent basically the same controller behavior cited previously

for the 112 deployed configuration. h
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TABLE 4.3(b) 3/4 Deployed Configuration, k t = 0.0

Case; 1: St  = 4 rpm _ .418 rad./sec.

Input Data: pl /SZ = .230, P2/5d = .223

Control Data: 41 = 1.01 42 = 0. 1 4 3 = .1667

k  = 1.023 x 10 3 lb.sec./rad., k2 = -2.259 x 10 4 lb.sec./rad.

k 3 = k k = 0, k 5 = 1.399 lb.sec./ft., k 6 = -5.3940 lb./ft.

k 7 = -1.309 lb./ft.sec.

Closed-Loop Pole Location:

	

Q x , Sty	 w	 8	 !w

	

real	 -.1109	 -.1109	 0.	 -.0286

	imag.	 .0108	 .6554	 .0932

Transient Performance:

Jul... = 19.1 lb., 
(wl max = 16.5 ft.

Case 2: SZ = 4.85 rpm = .507 rad./sec.

	

Input Data: p l /C	 .230 , p 2/SZ = .223

Control Data: ^ 1 = 1.0 , ^2= 0.0 1 ^ 3 = .1667

k l 	914.1 lb.sec./rad., k 2 = -2.729 x 104lb.sec./rad.

k 3 = k 4 = 0, k 5 = 1.732 lb.sec./ft., k 6 = -7.947 lb./ft..

k 7 = -.19257 lb./ft.sec.

Closed-Loop Pole Location:

	

S2 x , 0y.	 w	 8	 fw

	real	 -.1344	 -.1344	 0.	 -.0286

	

imag.	 .0125	 .7950	 .1131

Transient Performance:

lu 'max = 28.0 lbs., (w1 max = 16.5 ft.
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TABLE 4. 3 (c) : 1/2 Deployad Configuration, k t = 0.0

Case 1: S2 -, 4 rpm - . 43.8 r.: ii. /scu.

Input Data: p 1 4 - .230 , p 2 /U = .223

Control Data: ^1= 1.0, 4 2 ='A ' O , ^3= .250

k i	 268.26 lb.sec./rad., k 2 = -9.785 x 10 3 lb,sec./rad.

k 3 = . k 4 = 0 1 k s = -2.3147 lb.sec./ft., k 6 = -2.799 lb./ft.

k7 = -.0580 lb./ft.sec.

Closed-Loop Pole Location:

	

SZx, SZy 	w	 0	 fw

real	 -.1107	 -.1107	 0.0	 -.0286

imag.	 .0117	 .4285 .0932

Transient Performance:

l u l max = 9.7 lb. 	 ( w (max = 16.1 ft--.

Case 2: Sz 6.23 rpm = .652 rad./sec.

Input Data: p 1 /Q = .243 , p 2/U = .223

, Control. Data: ^,= 1.0 , ^2= 0.0 , ^3= .20

k, = 358.6 lb.sec./rad., k 2 = -2.393 x 10 4 lb.sec./rad.

k 3 = k4 = 0. , ks = -.9139 lb.sec./ft.

ks = -9.619 lb./ft. p k7 = -.2206 lb, /ft.sec

Closed-Loop Pole Locations:

	

Q x , Oy	 w	 6	 fw

real	 -.1726	 -.1726	 0.0	 -.0287

imag.	 .0170	 .8455 .1453

Transient Performance:

lulmax	 34.0 lbs.,	 1w1max = 16.5 ft.

MM



TABLE 4.3(d):	 1/4 Deployed Configuration, kt = 0.0

Case 1:	 St = 4 rpm --	 .416

Input Data:	 p l /St =	 .230	 , p 211 s2	 -	 .223

Control Data:4,= 1.0	 ,	 t; 2= 0.0,	 3=	 .1607

k l = 1.013 x 10 4 1b.sec./rad. ,	 k z = -2.238 x 1041b.sec. /rad.

k 3	 k 4	 = O f ks = 1.350	 lb .sec./f t., k 6 = 5.362 lb./ft.

k 7 	 - .1301 lb./ft.sec.

Closed-Loop Pole Locations:

0x, S1 	 w	 0 fw

real	 - . 1105	 - . 3105	 0 . 0, -.0265

imag.	 .0140	 .65342	 .0931

Transient Performance

.19
" 0 - lb..,_, _.^w^max. _	 16 ^.5	 ft._s_•	 ..	 .,^. ,_.I..u^max

Case 2: Sl= 8.3, rpm -	 .867 rad./sec.

Input Data:	 p,/*	=	 .254, P 2 /SZ = .223

'Control Data:	 ^ 1	 = 1.0	 ,	 ^2 = 0.	 ,	 ^3 = 	 .333

k l = -357.9 lb . sec./rad.,	 k 2 = -1.060 lb.sec./rad.

k 3	 = k 4	 = 0.	 ,	 k 5 := -7.258	 lb . sec./ft., k 6 = -7.880	 lb./ft.

k 7 = -.1400 lb. /ft.sec.

Closed-Loop Pole Location:

•	 E2 X ,	 S2y	 w	 8 fw

real	 -.2293	 - . 2289	 0.0 -.0287

imag•	 _ .0221	 .6478	 .1931

Transient Performance:

Iul max - 23.9 lb.,	 Iwl max = 12.9 ft.
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f

4.4 CONTROL FOR FINITE TOMP TOMAL STIB'FNESS

a. The Fully Deployed Cq,ifaqux,%i-ion, fle v4 rpm

The obvious observation that a oable--onnected space station will

be fully-deployed throughout mo?t of its lifetime makes establish-

ment of effective control foz this particular stage of fundamental

importapce. Evidence for the controllers' superior performance

is provided by a comparison of the uncontrolled motion illustrated

in figure 5 with the controlled motion illustrated in figure 6.

From table 4.4(a), the controlled motion of figure 5 corresponds to

critical wobble damping rates, and results in the peak force

magnitude lul max = 16-1 lb., and peak deflection magnitude 1w1max

16.3 ft.

TABLE ..A . 4 (a)	 The Fully., Deployed , Configuration, SZ 	 4 rpm

Input Data: kt	1.463 x 105ft.lb,./rad.

	

p l /'ff = .230	 1 P2/_R = 1.36

Control Data: ^,= 1 '' 4 2= '169' 4 3 = .167

k i = 3061. lb.sec./rad., k 2	 5.063 X 1041b.sec./rad.,

k 3 = -3.052 X 10 4 1b,.sec./rad., k 4 = 2.215 X 103 lb./rad.

k s = -1.764 lb.sec./ft., k 6	 -5.653 lb./ft., k 7 = -.161 lb./ft.sec,

Closed-Loop Pole Location:

RX , 0y	 w	 6	 fw'

	

real	 -.1109	 -.1109	 -.1109	 -.0288

imag.	 0.0	 .6464	 .-.6559

Transient Performance:

Jul max = 16.1. lb., 
1w1 max = 16.3 ft.
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6-a Controlled Motion: Ox versus t for the fully
deployed configuration with k t = 1.463 x IOD
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b. 3/4 Deployed Conf'ic ura-'r- r nn. U ". A rind 4 .85 rpm..

The results for this case u-i p s ,,iwar;ized in Table 4.4 (b) 	 A com-

parison of these results w..ttza those of 4.4 (a) for 	 4 rpm

reveals that the only signifi can.h difference caused by a 41/4

retraction is an increas e in k t with a consequent increase in the

torsional natural frequency p 2 . However, i.n behav i or which is very

similar to that noted in the preceding se.,vAon.1z.- kt = 0, increasing

52 causes an even more marked increase in k t , p i , and P2'  '`:i s

result can be explained by noting that k t is al:;, ( ac ga'x;;.:^k;cT3). i 1^;+f$?

function of the tensile force in the cablr,. ? War, .4"n .s in • utnk pv*or-

tional to SZ2. These comparatively large values Uf + r4lao coupl,r^

wobble and torsional motion. Evidence of this coupling is demon-

strated in figure 5 for uncontrolled space station motion.

c. .1/2 Deployed Configuration, 	 4 and 6.23 rpm,

The results for these two cases are presented in Table 4.4(c),

and continue to demonstrate (a) the comparative insensiti-;i.ty to

the stage of deployment, and (b) the marked dependence of controller

performance upon the nominal spin-velocity SZ. The simulation results

for the Sl	 6.23 rpm case are presented in figures 7.a through 7.e.

An inspection of these results confirms the effectiveness of the

controller in providing initial wobble Jam.ping rates. The compara-

tively minor effect of the lightly damped (^3 = .1364) torsional

oscillations on wobble motion is evident in Figures 7.a and 7.b.

d.. 1/4 Deployed	 4 and 8.3 rpm.

The results for these two cases are presented .,,a Table 4.4 (d) , and

reflect basically the same control cited: above for the 1/2 deployed

configuration.

.w
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TABLE 4 . 4 (b) : 3/4 Deployed Configuration

Case l: n = 4 rpm. = .418 rad./sec., k t 	1,726 x 10 5 ft.lb . /rad.

Input Data: p,/-R = .229, p 2 /5t = 1.48

Control Data: ^,= 1.0 , ^2= .1557 , 43= ,2857

k l	 710.9 lb.sec./rad., k 2 = -1.694 x 1.04lb.sec. /rack.

k 3 = -2.070 lb.sec./rad. , kq = 4.796 x 103lb./rad.

k 5 = -3.271 lb.sec./ft., k 6 = -1.993 lb./ft., k 7 = -.0547 lb. /ft.sec.

Closed-Loop Pole Location:

Ox, Sly	 w	 0	 fw

real	 -.1108	 -.1108 -.1108	 -.0288

imag.	 0.0	 .3716	 .7027

Transient Performance:

lul max = 13.8 lb. I lwl max = 3.5.7 ft.

Case 2: Sl = 4.85 rpm = .507 rad./sec,, k t ^= 2.544 x 105ft.lb ./rad.

Input Data: p,/Sd = .278 , p z /*	 = 1.79

Control Data: ^,= 1.0 , ^= .1556 , ^3 .1667

k, = 3079. lb.sec./rad. , k 2 = -6.105 x 104lb.sec./rad.

k3 = -3.385 lb.sec./rad., k 4 = 3.750 x 103lb./rad.

k 5 = -1.247 lb.sec,./ft., k 6 = -8.198 lb./ft., k 7 = -.2367 1b./ft.sec.

Closed-Loop Pole Location

Qx , 0Y	 w	 6	 fw

real	 -.1344	 -.1344 -.1344	 -.0288

i,mag.	 _ 0.0	 .8530	 .79 50

Transient Performance:

lul max = 25.4 lb., 1w1 max = 16.0 ft.
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TABLE 4.4 (c) : 1/2 Deployed Configuration

Case 1: SZ = 4 rpm. = .418 rad./sec., k t = 2.254 x y05fr.lb ./rad.

Input Data: p 1 /Sd = .229 , p 2 /St = 1.68

Control Data: 4, = 1.0 1 ^2= .1364, r 3 = .3333

k l = 373.8 lb.sec./rad., k 2 = -1.227 x 104lb.sec./rad.

k 3 = 1.491: x 10 3 1b.sec./rad., k 4	4.691 x 1031b./rad.

ks = -3.578 lb.sec./ft., k 6 = -1.621 lb./ft.,k 7 = -.0402 lb./ft.sec

Closed-Loop Pole Location

	

Six, Sty	 w	 6	 fw

real	 -.1107	 -.1107 -.1107 -.0288

image	 0.0	 .3130	 .8036

Transient Performance:

iul max = 12.1 lbs. , Iwi max = 14.9 ft.

Case 2: n = 6.23 rpm = .652 rad./sec., k t = 6.48 x 105ft.lb ./rad.

Input Data: p l /Si = .378 , p 2 /SZ = 2.77

.Control Data: ^,= 1.0 , 4 2= .1364, ^3= .40

k l = -174.96 lb.sec./rad., k 2 = -1.276 x 104lb.sec./rad.

k 3 = 6.907 x 10 3 1b.sec./rad., k w = 1.181 x 104lb./rad.

k s -5.928 lb.sec /ft., k 6 = -2.893 1b. /ft.,k 7 =-.0685 lb./ft.sec.

Closed-Loop Pole Location

	

Ox , Py	 w	 e	 fw

real	 -.1726	 -.1726 -.1726 -.0288

image	 0.0	 .3955	 1.254

Transient performance:

Jul max = 27.2 lb., Jwl max13.7 ft.

1:
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TABLE 4.4 (d) : 1/4 Deployed Configuration

Case 1:	 = 4 rpm. = . 418 rad. /sea. , k t 	'. 836 x ? 0' f^t,^.}^,/rad.

input Data: p,/5t	 .228 , p 2/5l = 2.52

Control Data: t 1 = 1.0, 4 2= .1046, ^3= .20

k l = 2.156 x 10 3 lb.sec./rad., k 2 = -3.437 x 10''lb.sec./rad.

k 3 = -1.2608 x 10'lb.sec./rad., k 4 = 3.372 x 103lb.,/Lad.

ks = -1.255 lb.sec./ft., k, = -3.909 lb. /ft., k 7 = -.1113 lb./ft.sec.

Closed-Loop Pole Location:

St x , Sty 	w	 0	 fw

real	 -.1104	 -.1104	 -.1104 -.02878

imag.	 ^0.0	 .541 1 	1.050

Transient Performance

u 
l 
max = 15.8 lb., ) w I max = 16.5 ft.

Cas e 2 :S2 = 8.3 rpm. = .867 rad./sec. , kt = 1.350 x 10 6 ft:.lb./rad.

Input Data: p l /St = .254 , p 2 /0 = 2.52

Control Data: 4 1 , 1.0, ^ 2 = .1046 , 43= 0.50

k l = -712.6 lb.sec./rad., k 2 = -1.010 x 104lb.sec./rad.

k3 = 1.782 x 10'lb.sec./rad., k 4 = 1.892 x 10 4 lb./rad.

ks = -8.685 lb.sec-,/ft., k 6 = -4.334 1b./ft., k7 = -.0766 lb./ft.sec.

Closed-Loop Pole Location

Qx, Sty	w	 8	 fw

real	 -.2291	 -.2291	 -.2291	 -.0288

i.'mag.	 1	 0.0	 .3968	 2.177

Transient Performance

lulmax = 34.9 lb., IwImax = 9.7 ft.

.. .,:	 .,	 ....	 __	 ,_... ..u_._	 c,... x,-.f^^.	 -	 Sea	 ^	 .:.:;•	 ^	 -.,+.w ^+^.,...	 ^	 3^1'-'.,:.	 ^'	 , 	 '-'s	
.. .	 _.	 ^.:.
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CHAPTER V

SUMMARYr CONCLUSIONS, AND EXTENSIONS

5.1 SUMMARY AND CONCLUSIONS

A dynamic model fQr cable-connected artificial-g space stations

with an attached movable-mass-controller (MMC) system has been

derived, and a linearized model for this system has been developed

and its validity confirmed. This model has been used to examine

the effectiveness of the MMC system in providing attitude stabili-

zation for a space-station configuration reported by McDoiinell-

Douglas in Reference 8. The influence of the following three

specific parameters were investigated:

(a) Stage of deployment. Undeployed, 1/4, 1/2, 3/4, and fully

deployed stages were examined.

(b) Nominal spin-velocity S1. This parameter was varied between

4 rpm and an upper value depending upon the stage of deployment.

(c} Torsional stiffness kt . This parameter was varied from zero

(corresponding to a single cable) to an upper value calculated

for the McDonnell-Douglas design.

The MMC was required to provide critical wobble damping rates

for all configurations without violating the peak-force-magnitude

constraint, lul "35 lb., and the peak-deflection constraint,

jwl < 16.5 ft. As discussed.in Section 3.6, damping for the control

mass and the torsional motion was provided to yield a uniform

damping constant for wobble motion, control mass motion, and rela-

tive torsional motion, i.e.,

29 1 p 1 = 2^ 2p 2 = 2 3p3

where the i are modal damping factors, and p,, p z , p 3 are the
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11 11atl)xal frequenciez" assoc: atod with wobblo, torsional, and con-

trol mess mp%04.on, respectO roly, En all cases ^, was required to

be unity (critical wobble t amying) hence.,

^ 2 = P I /P 2 f r, 3 = p l /p ;	 (37)

The natural frequency, p, wap positioned arbitrarily (within

'	 reason) for each case by a proper selection of the feedback gains;

r	 however, the wobble frequency p 2 and torsional natural frequency

P2 are physical parameters which depend on the configuration, (i.e.,

spin velocity, asymmetry, torsional stiffness, etc.).

Thn procedure for comparing the controller's performance

for the various cases is markedly simplified by the synthesis pro-

cedure employed, since the "quality" of control is the same for

all cases. Specifically, for all cases, wobble motion is critical-

,. ._ . _...... ly clamped ` (^ j -1) ," and `all `modal damping constants are equal. Hence,

the significant point in a comparison of vases is the required

maximum control force lulmax and control mass deflection lwlmax'

As previously noted, these two variables are of interest be-

cause of the physical constraint on lwl, and the prescribed con-

straint on Jul. They also indicate whether control torques arise

primarily due to the control force u or control mass displacements

W. Control torques directly caused by u are generated via the

moment terms urx and ury, while torques due to w are

product of inertia terms mcrxw5l 2 and mcrywQ 2 . From

mechanization viewpoint, the variable Jul maxshould

while lwlmax is maximized, i.e., lwl max = 16.5 ft.

one would like to employi a comparatively small and

generated via

a controls

be minimized,

In other words,

slowly-varying

control force, and generate the required control torques primarily
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through the "leisurely" manipt'.lation of W. The feasi' iliLy of

Achieving this desired control character depends primarily upon

the wobble frequency pr. As p2 is increased, the --t-5ponse of w

to an error signal containing !Rx and Sty is dimirish • c., and the

required control torques can only be supplied by increasinc; the

magnitude of U.

A similar (although lesser) problem arises when thv torsional

natural frequency p 2 is increased. However, the control logic

which +specifies ^2= PI /P 2 largely eliminiates any difficulty in
controlling the torsional motion by simply reducing the required

damping factor as p2 is increased. The following points con-

cerning this procedure should be noted:

(a) As p2 increases, the amplitudes of undamped torsional oscilla-

.tions are reduced, and the influence of this mode of oscilla-

tion on the artificial -g environment in the crewquarters is

reduced. Hence, the necessity for damping this mode of os-

cillation is reduced as p 2 increased.

(b) Attempts in this study to provide comp., ratively large damping

factors (i.e., .4 < 42 e .6) for configurations having co m-

paratively high values of p 2 were not notably successful in

that a large control force (n = 40 l.bs.) was required, and it

was generally necessary to reduce the wobble damping rates

(.4 < i	 < .6).

The results of all cases for Iul max and;wlmax are summarized

in Table 5.1 and 5.2. Table 5.1 contain- the nominal (St =4xpm.)	
i

cases for both the zero and finite torsional stiffness cases.

The entries of 0 and l for deployment stages indicate the non-

.
m•
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deployed and fully-doployad cases, respectively. The overspin

cases are summarized in 'T'ABLES 5.2.

TABLE 5,1 (a): Transient performance for W = 4 rpm,, and k t = 0.

Deployment lulmax Iwlma^Stage _(1b.) (ft.)
0 15.9 16.2

1/4 19.0 16.5
1/2 9.7 1611
3/4 19.1 16 .5

1 14.2 16.5

TABLE 5.1(b) : Transient performance for Wd	 4 rpm., and kt> 0.

Deployment I u lma Iw!ma^
Stage (lb. (ft.

0 15.9 16.2

1/4 15.8 16.5

1/2 12.1 14.9
3/4 1.3.8 15.7

1 .16.1 16.3

T T\BLE 5.2(a): Transient performance for overspin cases with k t	0.

Deployment
Stage

St(rpm.) (	 Imax
(1b.) I	 xx(Eim')

0 11.5 24.4 10.8

1/4 8.3 19.0 16.5

1/2 6.23 34.0 16.5

3/4 4.85 28.0 16.5

1 4.0 14.2 16.5

TABLE 5.2(b): Transient Performance for overspin cases with kt > 0.

Deployment St(rpm.) Iulmax Iw lmaxStage (lb.) (ft.)
0 11.5 24.4 10.8

1/4 8.3 34.9 9.7

1/2 6.23 27.2 13.7

3/4 4.85 25.4 16.0

1 4.0 16.1 16.3
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The results of these tables confirm the general concIv ion

of this study, namely, the MMC systom can prove' do effuct; va and

generally satisfactory attitude stabilization for a wide range of

space station configurations. in addition, the conclusions con-

cerning specific parameter variations are as follows:

(a) Stage of Deployment. For a fixed sp • .n velocity r:, the changes

in the'stage of deployment have a comparatively manor direct in-

influence on controller performance. This statement can be con-

firmed by inspecting Tables 5.1(a) and (b).

(b) Nominal spin velocity SZ. This is the single most important

factor on system dynamics. in general., effective control is much

more easily achieved for the nominal. spin-velocity Ua = 4 rpm.

than the higher span rates, which would :suggest the advisability

of spin-up or spin-down firings at the intermediate stages of

deployment.

(c) Torsional stiffness k t . In general, the MMC was equally

effective for the k t = 0 and McDonn,:1,1-Douglas designs, When kt

is zero, the torsional motion is uncontrollable, but has no effect

on the crew quarter artificial-g environment. Furthermore, the

gains kt computed for kt = 0 proved to be generally satisfactory

for kt up to 2000 ft.lb ./rad. For the finite torsional stiffness

cases, 0 motion was coupled into the crew quarter-, but tho finite

values of kt enabled effective control of A. During the cour-e of	 c

this study, preliminary -values for kt were examined whicl. were

(erroneously) an order of magnitude lar7er than those cited in

Section 4.4. However, gains were computed for these values (at

. 	,... ..efAFr	 .rf
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5t 4 rpm for the fully-deployed confi A,fit , a on) which yi ldGd

an extremely effective control. logic. At Arse elevatod values

the torsional fzoquency pz was much larger than the: wohI.le fre-

quency p l , which in turn decreased and approached Glitz, rigid-,body

value (ab) 1/2 . As noted previously, the control logic uved in

this study minimizes any control difficulties associated witY

large values for P2•

In some cases where comparatively high wobble frequencies pi
were encountered, a smaller value of control mass me = 7 slugs

was employed in an at-,tempt to lower the peak force magnitude

(ulmax- The results were generally unsatisfactory, since this

led to difficulties in satisfying the deflection constraint

I wI ^ 16.5 ft.

5.2 EXTENSIONS

A logical sequel to this investigation would cc a nsist of

a similar study with an improved dynamics mode,L (such as that p.Mc-

sed by Nixon ) for cable-connected configurations. An improved ly-

namics model would include the complete rotational degrees of fr^e-

dom for crewquarters and' counterweight, but would not' require ,extensi.ora-

motion between the bo.lies. The control logic and synthesis pro-

cedure employed, in this study should apply for an improved model,

since basically only an increase in dimensionality is involved.

Several practical problems which would arise in the imple-

mentation of 'an MMC system remain unresolved. For example, the

proper technique for measuring system varianles (8, 6, et ,,-.) is

not clear. Furthermore, while the physical requirements of an MMC

system would seem to be modest, a hardware investigation with the

A
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objective of fabricating and testing an INIMC tc establish its

operating characteristics would be of considerable value.
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APPENDIX A: Closed-Loop (.hK tia4, tcristi.0 Polynomial

The closed-loop bol.ynnmial, which is obtained by an ex-

pansion of the determinant .1 s l-A-blt: (, is of the form

S^ + a-6 S 6 + a 5S5 1 a 4s It + a 3 S" + a I s 2 + a 1 S 1 +a o = 0	 (A.1)

where ap.ch of the ai I s is a linear function	 of the unknown

gains k i , i.e., 

6
a  = ci + E aij k]	 (A.2)

From Eq. (26), the 
ail 

coefficients were determined as follows:

a 6 : a6 1 = (xy/xX )	 a6 3 = -v6 2 _ ( rx/I 1y)

a 64 = 0G 66 = 0, a 65 = -(1 + e 1 )/mco a67 = 0

a 5 	 a5 1 =	 a 6 3 [a + e (1	 b2)	 P...

a 5 2	 a6 1 b 1	 as 3 = a 6 1 (b2- b.1)

u54 - a63	 ass r 0 ' a 5 6	 5 ra 57 - Q

a4:	 a41 }= a^ 1 [S 2 (1 + b 2. ) + p 1 2]

a 42 = a0  [_5 2 (1 + b 2 + eb2 - eb 2 ) - (kt/I2y)]

U43 = 
52 a 6 3 (1 + ab 2 )

a 44 = 0 a61 (b 2 - b1)

a4 5 = 
( 1 /mc + ryot6 1) P 1 2

+(52/mC){e(1-b2) ( b 2 - b l ) - ab l - b2)}

- 
52 

r  a6 1 ( b 1 + b2)

_ ^2 rx N 3 {a + e (1- b 2) 2 - b2	
kt/(I2 

02))

a4 G = 0	 a47 = a 56
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a 3: a 3  =	 a 5 3 {SZ 2 (a (1-Fb2)+ e (1-b2) J+ (akt/i2 }

a 32 = S2 aC1 {^2bl (1+b 2 ) + k t ( b 2/xy + b1/I2)}

a 33 	 a44 I a 34	 q'43 I	 a35 = 0

a 3 6 "" a4 5 + 2 ( 1 /1nc+ rya 6 1 ) P 1 2

a37 '- a46 = 0
a 2 : a 21 = 5 2 a61 (5 b 2 + P1 2)

a 22 = 5' a6 3 {5' [eb 2 (1.-b 2 ) - bzl - (' t/z2y)

a2 3	 51 a
63 ab 2 I	 a 2 4 `" a 3 3 ,	 a2 6 = 0

a2 5	 St 2 a ( L -b 2) rx a63

-S 2 ( a/MC+ rya6 1) { k t (b 2 /I l y + b 1 /I 2y )+ Fb 1 b 2 }

a 27	 a36

a l : all _ St 3 aa6 3 (^ 2 b 2 + kt/J 2 
y

al 2 = 5 3 a6 l { $ 2 b i b 2 + kt(b 2/I`y + b l /I 2 y) }

al 3= 0 I	 a1 4= ..5 4 ab 2 a 6 3 I a 1 5 = 0

..^.__ ...W........d	 al 6 = a 2 5 I a 1 7	 0

a 0 :	 a01 = a 02 = a 03 = a 04 = a05	 a06 = of a 07 = a.16
The ci coefficients are:

C6 = C4 = C2 = 0

C5 = 5 e {e(1-b 2 ) ( b 2 - b 1 ) + el)

6^ = 5 2 ab 2 (kt/I l y )+ (5 2 b 2 + k t/I 2 y) (5 2 ab 1 - e1)

-mc54 { b l rya6 1 + ar,a 63 - rX 
e (1-b 2 ) 2a63}

_M 
c 

5 2 r  a 61 )S t/ I 1 y

c1 =M 5 4 {(b 2 St 2 + kt/I 2 ) (bIrya 61 	x+ ara63)

+ryb 2 a 61 kt/Tly}
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