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1 gl 1
(sz x1) /Ly

2 2 2
I4/Ix

mory/Ix + mork /Iy

mery/ Iy

Merx/Iy

moment of inertias in the x, y, z system of
the space station treated as a rigid body
moment of inertias in the x, y, z system

for body 1.

e

principal moment of inertias in the x2, yi,
z2 system for body 2.

initial product of inextia disturbances fox
the space station.

feedback gains.

torsional stiffness coefficient for cable

.connections'

control mass magnitude
undamped crew-quarter wobble frequency

undamped torsional natural frequency

Tl 231 142
(Iy + Iy)ke/Iyly
2
12/1, .

1,
I1}/1y




T ry, \ = coordinakes of control massi Mg in
X, ¥, 2z ccordinate system
Q = contral force
v =w
W = displacenent of the control mass mg
' (see figure 2).
! a(0) = Iyz(O)/(Iz - Iy)
B (Q) = ~Ixz(0)/(Iz - Ix)
5y = damping factor for the ith mode due to
. feedback control
Wy = pi(l--cf)l/2 = imaginary part of the ith feed-back pole
Qx’ Qy = transverse angular velocity components
of the crew quarters
[7) ) = nominal space station spin velocity
B =6 '
6 = torsionat rotation of body 2 relative to

body 1.
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CHAVIER I
INTRODUCTION g

s, o

1.l ADMINISTRATIVE INFORMATION

This xeport covers the work accomplished on NASA contract
NAS8~-27952 during the time period 1 September 1971 to 1 Hovem-
ber 1972 [fox the George C, Marshall Space Flight Centex, Marshall
Space Flight Centex, Alabama, 235812. The prineipal investigatorn
for this study was Dx. Dara W. Childs, Associala Professor of
Mechanical Engincering, The University of Louisville, Louisville,
Kentucky. Inguirics about the results of this study should be

directed cither to Dr. Childs ox Mxr., Harry Buchanan (S&l-ARRO~R)

Marshall &pace Flight Center.

1.2 BACKGROUND LNFORMATION

The Principal investigator for this study participated in
the NASA-ASEE ¢ .mmer faculty program at Marshall Space Flight .
Center during the summer of 1970. The research topic investi-
gated during this time period was the analysis of a novel "wobble
damper" for an artificial-g space station. A space craft is said
to be "wobbling" when its axis of maximum moment of inertia is
not aligned witn its moment-of-momentum vector. This undesirable
vehicle motion can be controlled by tpe use of reaction jets,
passive dampers, control moment gyros (CMG's) and momentum wheels'.
Each of thege devices has both advantages and disadvantages, and
Dr. Bugene Worley (S&E~ARERO~R) suggested the possibility of an

active gystem which would employ a single movable mass to generate

+
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control torques. The stimulus for this proposition was the
observation that astronaut motion within the space station
(moving masses) would be the principal source of spacecraft
wobble motion. It therceforc scemed reasonable to assume that
controlled motion of a comparable mass could be used to eliminate
wobble motion. During the course of the NASA-ASEE summexr faculty
program, the correctness of this supposition was verified by a
combined analytical-simulation study. The results of this study
are presented in Reference 1, and demonstrate that a movéble mass
controller (MMC) represents an extremely attractive alternative
for the wobble damping of spacecraft which basically behaves like
a rigid boudy.

The present study was designed to establish the feasibility
of.an MMC in the attitude stabilization of a cable-connected
artificial-g configuration which can not reasonably be idealized
as a rigid body. The dynamic model for cable-connected con-
figurations employed in this study accounts for the aggregate
motion of the space station and relative torsional motion batween
the crew quarters and counter weight. The developnent of Fhe

model is the subject of the following chapter.




CHAPTER IT
DYNAMIC MODELS g ‘

2.1 INTRODUCTION

Most of the past analyses of cable~connectnd rctating space
station configurations have been woncerned with (a) *he dynamic
formulation of the problem, or (b) the stability of the system.
Typical dynamic formulations have considered the extensional
motion of the system?’? or have considered lateral motion of the

cablegh’®

with the end bodies assumed to be particles. Stabekis
and Bainum® have also examined the problem with an extensib.e ca-
ble but consider the end masses to be rigid bodies.

Posnansky and Heeschen’

have reported the results of an
elaborate lumped-parameter simulation of a cable-~connected con-
figuration which includes both lateral cable dynamics and rigid-body
descriptions for the end bodies. In terms of the present work,
their most significant finding vas that the fundamental natural
frequéncy of the lateral dynamics (coupled cable and rigid-body
motion) was on the order of 1 cps. By comparison, the rigid-be-dy
wobble frequency may be on the order of .0l to .l cps. However,
since cables provide comparatively little torsional rigidity, the
fundamental torsional frequency uay well be below the wobble fre-
quency. From these observed frequency relationships, the dynamic
representation derived in this study is based on the following two
assumptions:

(a) Lateral and extensional motions are a secondary con=-

sideration in designing the attitude-stabilization

system, and




(b} PRelative roll mokidr buiween the end bodies is of
central importance in tha design of the attitude~
stabilization system,

In the sections which follow, a dyamic formulation is derived

' for the space-station/MMC system based cn these assumptions.
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2.2 GOVLRNLNG EQUATIONS
Figure 1 illustTfTQé the basic kincmatic veriables required to
define the problem, The X, Y, 2 axez define an inercial coordinate
system, The x,, y,; 2z, and %,, ya, 7, axes are fixed in rigid bodies
1 and 2, respectively, and thelr origins coincide with the mass centers
of these bodies. The x, y, z axee are parallel, respectively, to the
X1» Yy» 2, axes, and the origin of the x, y, z system coincides with
the nat mass center of the system. The x,, y,, 2, axes are principal
axes for body 2. The angle 0 defires the (only) relative motion between
the x, y, z (x;, y;, 2,) axes and the x,, y,, 2, axes. The vector R
locates the origin of the x, y, 2 system in the X, Y, Z system. The
angular velocity of the x, y, z system relative to the X, Y, Z system
is defined by the vector §, and the angular velocity of the X,, ¥,y 2,
syétem relative to the x, y, z system is defined by the vector w. N
Body 1 of Fkgure 1 corresponds to the crew quarters, while body 2
gorresponds to the counterweilght. By spinning the system about a
transverse axis of maximum moment of inertia (nominally the z axis) an
artificial-g environment is induced in the crew quarters.

The vectors p1 and p? denote the position vectors in the X5 ¥y 2y

1

and the X,s ¥,» %, systems, and the vectors a' and a® locate the origins

of the x,, ¥., 2z, and x_, v., z, systems in the x, y, 2 systems. Hence,
1 V1 2? Vg0 %y 8Y

1

by definition
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Fig.l Basic kinematic definitions




[pldm=0 , [pPdm=0 , mal+ ma® =0 (1)
m m2

where m; and m; are the masses of bodles 1 and 2, respectively.

The following two derivative operations with respect to time are

required.
A
’ V.] a %—% ) V o= %%—
' X,Y,2 XyYy2

where V is an arbitrary vector. The following notation will be used to '
identify the coordinate system in which the component description of a

vector 1s stated: (V) implies a component description in the x, y, z

or X1, ¥y1, 21 system, while (V)i2 implies a component description in

the %2, y2, 22 system. These veztors are related by the coordinate

transforma*ion
k ‘ WMy, = Blw = [6 0o -s8j(W) (2)
o 1 0 ]
- - s 0 ch

where 80 £ sinf, and c8 = cosf.

The first equation employed to define the vectorsl, w is

Tt = / (a' + oY) x (R+ 281+ 1) dm

mi

(3)
+ (a® + p?%) x (B + 52+ p%) dm
M
where T' is the resultant external torque applied to the system et the
1}

origin of the %, v, z system. By noting the kinematic result

ol
a

=0 x ai + 0 x (R x ai); i=1,2 (4)




and by dintrodueing Eq. (1), Eq. (3) reduces to

2 ) 2
" = I at (2 x miai) +Qx I at x (2 % miaj) (5)
1= ‘ im] '

+ [ (e x BY) dm + [ (p* x P?) dm
mi ma

By substituting from the kinematic equations

B

a

Gxo) +02x (0 xphH (6)

52

(@ x 0% + [ + (2 x w)] x p?
+ QR+ w x [+ w x p?],

implementing the vector identity A x [B x (B3 x A)] =B x [A x (B x A)],
performing the indicated integrations, and gathering terms, Eq. (5)

becomes
(™) = 31 + [ 3w (7
+ [J’-](:)) + [(w) J[32](w)
+ [32100 x w) + [ I[321@) + [ II2](w)

where the notation [( )] implies

[(n] = 1o -y, vy
\' 0 -V
Z X
-V \' 0
y X

and performs the matrix equivalent of the vector cross~product opera-

tion. Returning to Eq. (7), [J]is the inertia matrix for the entire

system in the x, y, z coordinate system. Specifically,




y3
(5] = 1]+ [5%] - m, [l @] (8)
)2] )

where [J'] and [J2] are the inertia matrices for bodies 1 and 2,
(relative to their individual mass centers) in the x, y, 2 systém. The

matrix [J%] is further defined by

[52] = [0]*[a2, 1(6] @)

where [Jgi] 1s the inertia matrix of body 2 in terms of the xz, y2, 22

system. The last three terms in Eq. (7) can be combined as followg
[(D)w = [32]@ xw) + [ I2]@ + TMIF2Iw  (10)

where the vectoy (d) is defined by

(d) = {3[u] - 2[32]}(®) s

]

trace [J%]., (11)

Hence, the final form for Eq. (7) is

»

(r™y = [31¢ + L) Lol (12)
+ [32](@) + [(w)I[321Gw) + [¢d)Jw)

The definition of the vectors § and w is completed by the inde~

9 pendent equation

¢ = [ p% x (R + a2 + p?) dm (13)
m2

where T is the resultant torque applied to body 2 at its mass center, *
Substituting from Eqs. (1) and (6) into Eq. (13), integrating over m;,

’ and then substituting from (10) and (11) yields
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%y, = [33 1@, + [@,, 102,10, (14)

+ 12,1y, + [y, 1032 T, + TG, 1wy,

Since the %3, y2, 2z axes are principal axes for body 2, the y compornent

of Eq. (14) yilelds

C ooo12 A 2 A 2 12 2 - 02 a -

T, = I, + 17 6+ (17, = 12){(Q% - Q2)s0c0 - 0.0, c(20)} (15)
where‘Iiz, I; , I;z are the moments of iInertia for body 2 relative to the
X2, Yoy 2 principal axes, respectively. Further, Qx, Qy, Qz are the

components of  in the x, y, 2z system. Eq. (15) and the matrix equation
(12) define the uncontrolled motion of the system. The assumption is made
in this study that T; is the reaction torque defined by

T; = - k.6 (16)

whére kt is a torsional spring constant.

Figure 2 illustrates the MMC system to be used ir this study. The
essential element of the stabilizer is the point mass m, whose motion
is limited by a tube (or other physical constraints) to be parallel
with the z axis. The tube is attached to body 1, and the position of the
mass within the tube is defined by the variable w. The governing equation

of motion for w is3

£, =m {# + (ery - Q,r) tr2.0, (17)

- 2 2
+ 100 - v@k+ )

where fz is the z component of the reaction force apy lied-to m, and

.
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BODY |

Fig. 2 Controller configuration




12

er, xr., w) are the components of r, the vector which

locatez the control mass in the x, y, 2z system.

The attachment of the MMUC system to body 1 as illustrat-
ed in Fig. 2 will only change Eq. (l12). The required modifi~
cation is
[31(2) + [(2)] [J](q) (18)
F P+ LW 1921 W)+ 1@ (W)

A
.

mg [ (x)1(x) + 2m [(x)1(R)] ()

(%)

It

-+

where

o

(7] = (3] = m [(x)][(x)] (19)

Summarizing, the variables (Qx, Ryr 8,00, w) are defined by

y
Egs. (15), (L7), and {(18).
Frow Egq. (19), the inertia matrix [J] is seen to be a

function of both w and g. Of particular importance asce the .

relationships
T == - 2 - 2
Ixz Ixz(O) + m_x W (IZz Ixz Yspch
(20)
Iyz w2 Iyz(O) +mcryw

2.3 UNCONTROLLED MOTION:LINEAFIZED MODEL
The free motion dynamics problem can be summarized as

follows. Undei ‘ideal conditions, the H (moment~of-momentuin)

|

vector and the axis of maximum momen% of inertia of the
spacestation coincide. If (due to either external torques
or internalrmass motion) the two are forced apart, a |
condition generally called "wobbling” results. This motion

is characterized by a nominally constant rotation rate about

the z axis accompanied by oscillations in QX, Qy’ and 9.
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The defining cequations for free motion are Egs. (Ll2) and
(15), and a valid lincarization of these equations is
possible based on the following observations:
(a) @, = §i, the average spin velocity,
| (b) @ and Qy are very small in comparison to @, and
(c) & is generally small justifying the approxima-
tions ¢c6 = 1, s = 9.
The resultant linearized equations are

Q. = - szya's‘z‘ + Be(l-b2) - afi? o (0)

X
@, = 0, 01T + (k /15 )6 - BE*B (0)/q (21)
8 = - Q_(b-b2)TW/qy -~ (Pi+b20%) 8 + bR*B(0) /qu

where the result, b; = (b~gpb:)/q1, is employed . Two
special cases can be obtained from these general results.
First, if kt + «,- 8 and é + 0, g1 » 1, and by > b. The

result is the rigid body equations.

. - - P - _..2
Qx = anﬂ aft® o (0)
(22)
A = parem. _ ....2
iy = QDT - bR B(0)
with the rigid-body wobble frequency
Y.
p = (ab) /% % (23)

The second special case results if kt=b2=0. Since e = I; /IX

is in general quite small, the resultant ..otion is approxi-

mately defined by
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0, = ~anﬁ - an%o (0)

Gy = 90, T - BAB (01/q, (24)

I

- Y 2 ot
2,0, % - b 026 + DA*B (0)/q

The "rigid body" wobble freguency and the torsional oscillation
frequency p, are defined by

W2 /2
p, = {a b, } € , 0,=Db Q (25)

2.4 CONTROLLED MOTION:LINEARIZED MODEL
As stated previously, motion of the complete system is de-
fined by Egs. (15),; (17); and (18). A walid linearization of the

controlled system is possible based on the preceding assumptions

HH

for free motion (Qz = Q3 Qx’ Qy <<f); sB

following assumptions for the MMC:

0, ¢c6 = 1) plus the

2 2
(a) m_w /Ix<<l, mw /Iy<<l, and

1" : 3 — " ¥ .
(b) the "coriolis-torques 2mcww9x and 2mcww§2y
which arise in Eg. (18) due to the term

am, [(r)10(8)](f) are negligible.

The resultant linearized equations may be written as
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(o,] To -Ta Ta(leb,) 0 0 -T%*glfe]
. - 1 —
2,0 | 0 o kT, 0 %ig, 2,
18 1= | =%(b=b,)/q, 0 0 - (b, 0%4P%) 0 -R3g,|ip |}
0 0 0 1 0 0 0 6
: v fr, (b ~1) ﬁry(a-1> —ﬁkye(l—bz) rxkt/x§ 0o D%, (v
wj Lo 0 0 0 10w,
-ry/Ix ~an (0)
1 -
T/1y bB (0) /q,
‘ -r /1* _.| bB(0)/q
, 4 XY tu + T ' , (26)
0 0
(1te,)/m, ryaoc<0>—rxb6(0)/q1
R |
L v k 0 J ~

e

In the equation above, u is the control contributioa to
the force fz éppearing in Eq. (17). A comparison between the
solutions from this linear model with those of the general non-
linear model (Eqs. (18), (17), and (15) ) for a wide range of
cases revealed no significant differences, 1In most cases no

discernible differences were evident in plots of the solutions.

5

i,
-
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DATA, AGREEMENY'S ,AND ASSUMPTIONS

3.1 CONTROL OBJECTIVES AND CUNTRAINTS

''he general attitude~stabilizetion control objectives may
be definred in texms of the control force w and the state~vari-
able vector X (gx, Qy, g, 8, Vv, w). In terms of these variables,

the basic requirement is the synthesis of a feedback control

!

logic u = u(X) which satisfies the following descending order of

objectives:

(a) The attitude~stabilization system is required to eliminate
the oscillations in the transverse angular velocity componen®s
of body 1 (Qx, Qv), i.e., the desired terminal state is
fy (Bg) = Qg (tg) = 0.

(b) While the comfort of the astronauts does not explicitly
depend oﬁ 6 also being forced to zero, the coupling of
the system is such that condition (a) cannot generally (k#0)
be otherwise satisfied. Hence, an additional desired ter-
minal state is é(tf) = 0.

(c) It is desirable that the full capacity of the controller
be restored after a disturbance has been eliminated, hence,
the additional desired terminal states w(tf) = &(tf) = 0.

In summary, the desired terminal state is

Qo (te) = G (tg) = Bltg) = wity) =wlte) =0 -2n
The control constraints can be summarized as follows:

(a) Motion of the control mass is amplitude limited by physical

constraints, i.e.,



|w] S W 16.5 f.. (28)

(b) A vontrol which requiresz aa .excessive control fnrce u is
deemed to be impractical. Epecifically, in this study
control forces in excess nf thiriy-five pounds were deemed to
be unaceceptable; hence,

ju] 2 U = 35 1bs. (29)
In addition to these specific aand easily gquantifiable
fequirements and constraints, the feedback control legle to

be derived was constrained to be time-invariant and (generally)

linear in form. Specifically, a control law of the form

. . t
u = kqﬂx + ko 4+ ka0 4+ ky® + ksw + kew + koS w(r)dr (30)
0

Y
was, employed where the integral term was added for the sole
ﬁurpcsa of enforcing the terminal boundary condition w(tf) = 0, and
has no other intended influence on the dynamics oflthe system.

From Egs. (26) and (30), the control system has the form

X = AX + bu + £, u=kTx (31)
or in closed-loop form
X = [A+ bkT] X + £ (32)
In general terms, the control synthesis problem addressed here
can be stated as follows. Determine those gains k; which will
cause the controlled system defined by Eq. (32) to rapidly re-

cover from an initial disturbance,and to approach the desired

terminal state given in Eq. (27) without violating the constraints

of Egs. (28) and (29).
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3.2 SPACE~STATION CONFIGURATIONS AND DATA
To this investigator's knowledge, NASA's more xucent investi-

gation of artificlal-g space stations have concentrated on the

following threec concepts:

(a) A nuclear-powercd, nominally axisymmetric configuration for
which two bodies are connected by a comparatively rigid con-
necting tunnel,

(b) A nuclear-powered, nominally axisymmetric configuration for
which two bodies are connected by cables, and

(¢c) A solar-powered, axymmetric cable~-connected configuration.

Concepts (a) and (b) were investigated by McDonnell-Douglas Astro-

nautics company under the direction of Marshall Space Flight Centerx,

while concept (c¢) was investigated by North American-Rockwell underx
the direction of The Manned Space Flight Cgn:ier, NASA Houston.
* The superior perfosmance of an MMC for actitude stabilization

cE céncept (a) has previously been demonstrated in Reference 1,

and the investiyations of this study are restricted to concept (b).

Specifically, the configuration investigated in this study is

based on the geometric and inertial properties arrived at by

McDonnell-Douglas Astronautics in Reference 8. Table A illustrates

the significant longitudinal dimensions of this space station de-

sign in its varioﬁs stages of deployment.

The inertia properties for the space station in its various
stages of degloyment are provided in Table B. The asymmetry which
is evident (i.e., I, >I,, I >Iy , I% >I%) in this table was added
by the investigators to the nominal symmetric properties provided

by Reference 8. The following guidelines were used to arrive at

the~e modified inertial properties:




(a)
(b)

19

TABLE A: AXIAL SPACE~STATION DIMENSIOMS

body 1 body 2
. ‘ B
| M ]
o ‘ \\%% - J
C '
S G, e e et e .
Deployment C, C, Cable r
Stage - Length Y
0 57.16 166,2 0.0 -51.5
1/4 69,28 201.4 35.3 ~63.6
1/2 8l.41 236.7 70.5 - 75.8
3/4 93.R3 272.0 1.05.8 - 87.9
1 105.7 307.2 141.0 ~100.0

Ci1 (ft) = distance from C.M, of body 1 to C.M. of space

station
C, (ft) = distance from C.M, of body 1 to C.M. of body 2
ry(ft) = distance from C.M. of space station to MMC

Dynamic stability of the system requires asymmetry.

The crew quarters are 'nominally axisymmetric, and the pro-
vision of asymmetry requires additional design effort and
expense: The assumption was made that asymmetry would be

provided by the internal mass-distribution design ¢ the

crew quarters, and the asymmetry used in Reference 1 was

taken to be representative of the degree of asymmetry which
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could he obtained by this approach.

(¢) The counterweight is also nominally axisymmetric, and it
turns out that(from a controls viewpoint)a perfactly
axisymmetric body is ideal. Consegquently, sufficient asym-
metry was provided in body 2 to account for residual (but

unintentional) counterweight asymmetry.

3.3 REFERENCE DISTURBANCES AND CONTROLLER SIZING

The reference disturbance used throughout this studf consists
of four astronauts (773 lbs. or 24 slugs) moved instantaneously
to the wozst possible locations within the crew quarters. The

resultant initial product-of-inertia disturbances for the £fully

)

deployed configuration are

I, (0) = 3250 slug-£t?, Iyz(O) = 51,000 slug-ft? (33)

These product~of-inertias were used for all stages of deployment.
Eq. (20) drmonstrates the linear dependence of the Ixz and

Iyz product of inertias upon the controller position w, and it

is primarily through this dependence that the MMC system is used
to generate control torques. The MMC considered in this study is
defined by the parameters

r, = 16.5 £.- , m, = 11 slugs 4 (34)

The parameter ry depends upon the stage of deployment and is de-
[Y

fined in Table A. The product-of~inertia capacity of the con-

troller is from Egs. (20) and {(28) chz = 3000 slug-ft?, z}yz -

18,200 slug-ftz(ry = 100.ft). The equivalent static torgue capa-

bility (for @ = 4 rpm, and ry = 100 ft.) is approximately ]Tx max

c T2 = 525 ft-lbs. Since

177,

|2 = 3180 ft-1lbs, and |T

_ [+C
ylmax = | le




21

TABLE B: INERTIA PROPERTIES AND PARAMETERS

Body 1 Body 2
\\\\\
Deployment )
Stage I, (slug-£ft?) Iy(slug—ftz) d
0 64.926x% 106 65.009x% 10° .9796
1/4 90.166x 10° 90.249x 10° .9853
1/2 119.91 x 10° 119.99 x 10° .9889
3/4 154.13 x 10° 154.21 x 10° .9914
1 187.10 x 10° 187.18 x 10°© .9929 -

Constant Inertial Parameters

I§ = .621x 10°slug-ft? e

1; = .787% 10°slug-ft?
I, = 1.407x 10°slug-£t?
b, = .0500 , b, = .0709 , b = .0592

the products of inertias are linear functions of w, the control

torques may be varied linearly from zéro to full capacity.

3.4 DEPLOYMENT AND RETRACTION PROCEDURES

The assumption was made in this study that the nominal design

spin velocity @ is 4 ¥pm, and that in both the deployment and




retraction phases the spinw?elncity could only exceed this value.

In other words, the rigidly assembled spacc station would be over
spun prior to deployment., As deplioyment proceeded, the spin-
velocity would drop (consefvation of angular momentum),and when
fully deployed would rotate at 4 rpm. Basically the same pro-
cedure’vould be followed in the retraction phase. Hence, spin
velocities of 4 rpm and higher were jinvestigated. This approach was
found to be conservative, since in general increasing the spin-

velocity degrades the controller's performance.

3.5 TORSIONAL STIFFNESS COEFFICIENTS
The two following configurations were used in defining the
torsional stiffness ko

(a) a zero torsional stiffness configuration (kt= 0), corresponding

’ - e e e

v

to a single cable design, and

(b) a maximum torsional stiffness configuration corresponding -
to the McDonnell-Douglas design.

The relatively high torsional stiffness of the McDonnell-Douglas

design was verified by simulations (at MSFC)of alternative designs.

The calculation of the values for kt were based on the work of

D. Nixon’ (S&E—AERO;R), and weré aided by personal communications

with Mr. Nixon.

3.6 SYNTHESIS PROCEDURE
One impoftant feature of the state variable formulation
of a linear feedback control syétem is the fact that the poles

of the closed-loop-transfer function can be positioned arbi-

trarily by the proper choice of feedback gains (if all the state




variables are available). The closed loop characteristic

0 5
equation of a system writtea in the form X = [A+bkr]X is given

. - . B
by the determinant |sI = 4 - bk

. Por an nth order system,
the characteristic eguationr is an nth order polynomial in the
Laplacian operator s, with n + 1 terms. The coefficlent of the

' sh term equals one, and tihe cvefficients of the sn-l to s0 terms

| provide n algebraic equations in terms of the n unknown feed-
back gains ki that can be equated to the corresponding co-
efficients of any vesired nth order characteristic polynomial.
By solving this set of n eguations, the closed-loop poles of the
system can be positioned to whtain desired freguency domain
solutions.

The effectiveness of the root specification method as a con-

; P = rmpyolUsystem designTteéchnigué is limited by the fact that the

transient magnitudes of the various system and control variables
cannot be predicted from frequency-domain solutions. Two major
constraints imposed on the performance of the control system
éonsidered in this study were a maximum control mass deflection

; . magnitude, (Egq. (28)) and a maximum control force magnitude

(Eq. (29)). While the ability to calculate feedback gains to
yield desired degrees of damping on the system variables is of
considerable use, intuitions based on past experiences and trial
and error procedures provide the only insight into the effect of
pole locatiops upon the maximum variable magnitudes in time domain
solutions. 1In this phase of the study, gains were first calculated
'to yield roots specified from physical and intuitive bases. Time

responses using these gains were then obtained by numerical inte-
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gration of the sysktem's sqguitione of meotion to determine
whethex the gains caused the system copstraints to be violated.
The methcd of closed-~loor pole specification was applied
to both the fourth-order, nou-deployed rigid body configuration
and the sixth-oxrder, cable connected configuration of Eqg. (26).
The characteristic equations of the two systems were established
/ by expanding the determinant of the closed-loop system coefficient
matrix. The closed-loop characteristic polynomial for the cable-
conhected system is provided in Appendix A. Sets of equations
relating the unknown feedback gains to the desired closed~-loop
poles were obtained by equaﬁing the coefficients of the closed-
, v loop polynomial to those of the desired characteristic equation.
A computer program utilizing the IBM SQQentific Subroutine Package
-mmw—nwuw“_”“EiBQEEH: E&Mb,dw;s"aébeiogeé'ﬁé ;6iﬁé the equation sets. Two
: additional IBM subroutines, HSBG and ATEIG, were used to calculate
the eigenvalués of the closed~loop system matrix for each set
of calculated gains to verify that the desired roots were actually
obtained. |
The general criteria for selecting desired root locations can
be explained as follows. First, one notes from Eg. (26) that
without control the control mass motion is itself unstable due to
the coefficient A, = ﬁzel. Assuming that the controller is
stabilized (via the kew term in Eg. (30) with all other ki = C),
- the system defined by Eg. (26) has the following three gndamped
| modes of motion and natural frequencies:
‘(a) wobble motion involving Qx‘and Qy (natural frequency = p ),

1
d _ ‘ (b) torsional motion involving B and 6 (natural freguency = pz),

and
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(c) control mass motion involving v and w (natural frequency
= P,
Hence, the characteristic equation for the uncontrolled system

has the form

3
T (s® + p3?%) =0 {35)
| 1=1

The gains k; are selected so that the closed-loop characteristic

equation has the form

3
(s + py) T (s
i=1

2+ 2g;pis + py?) =0 (36)

where the s + p, term arises due to the integral feedback term.
The damping factor for wobble motion ;, was selected to be unity
in all cases. The damping factors for the control mass and
torsional mction were selzcted to yield equivalent damping constante,
i.e.,t,p, = ¢,P, = L,;P;. The natural frequency of the control

mass p, and the pole location due to integral feedback p, were

selected in accordance with various criteria depending upon the

configuration.
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CHAPTER 1V
RESULTS

4.1 INTRODUCTION

As explained in the preceding chapter, the synthesis procedure
employed in this study consists of (a) selecting (guessing)
closed-loop, root locations, (b) calculating gains ks which will
yield these roots, and (c) obtaining the transient solutions to
determine whether the force and deflection constraints have been
violated. The trial-and-error character of this procedure is
such that one is never quite sure that yet another try would not
improve things. However, the solutions presented here are the
result of & latge number of such trial and error refinements... ..o e
While some slight improvement might be achieved by additional
effort, these results in general represent best-possible con-
troller performa  ze, i.e., optimum selection of gains ky. Fur-
thermore, the controller performance through a wide-range of

configurations and operating conditions is consistently excellent.

The results presented in the following sections demonstrate the
influence of the ﬁollowing factors on controller performance:
(a) stage of deployment,

(b) nominal spin velocity o, and )

(c) torsional.stiffness kg.

The results consist of both tabular data and illustrations of

transient solutions. The tabular data (which is presented for

each case) contains the following information:
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it

(a) t; = ratio of effective to critical damping for al) modes,
(b) p,

(c) p, = torsional natural freguency,

wobble frequency,

I

(d) specified closed~loop poles,

(e) calculated gains ki,

(f) peak control force Iulmax' and
, (g) peak control mass deflection 'Wlmax’
Transiept solution illustrations are provided for the two fully-
deployed configurations (ki = 0, ki # 0) both with and without
control. 1In addition, transient solution illustrations are pvo-
vided for the 1/2 deployed configuration (k¢ # 0) at maximum spin

valocity. These illustrations were included to provide a quali~

tative indication of the controller's effectiveness.

g 4.2 ’UNDEPLOYED SPACE STATION

The requisite input data for the undeploye? space station is
provided in the preceding chapter. As previously noted in Section
3.4, the nominal spin-wvelocity can equal or exceed 4 rpm. The two
cases considered for the non-deployed corfiguration are (a) @ = 4
rpm and (b) ¥ = 11.5 :iom. An initial value of @ = 11l.5 rpm.is
sufficient to yield a spin-velocit -’ of 4 rpm.foxr the fully-deployed
configuration. The results for these two cases are illustrated
in Tables 4.2(a) and (b). Inspection of these tables reveals that
the lower spin-velocity case is the more easily controlled in the

sense that a highexr control force is required.
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TABLE 4.2(a): Undéployed Configuration, 8 = 4 rpm.

Input Data: § = .418 rad./tec., 3, = .1l004 rad./sec.

Control Data: 7, = 1.0, §,= .1667

i}

k, = 1.815 x 10° lb.sec./zaé., k, = «3.767 x 10" lb.sec./rad.
ks = .1037 lb.sec./ft., k, = =-4.456 1b./ft., k, = =.1109 1b./ft.sec.

Closed-Loop Pole Location

Qs Oy v fw
real -.1004 ~.1004 ~-.0288

imag. 0.0 5942

Transient Performance:

|ulmax = 15.9 1lbs, |w|gax = 16.2 ft.

~ *TABLE "4.21(b) r Undeployed Configuration, © = 11.5 rpm.
Input Data: § = 1.2035 rad./sec., p, = .2891 red./sec.

Control Data: ¢, = 1.0, z, = .40

~1.081 x 10° lb.sec./rad., k, = ~1.626 x 10" lb.sec./rad.

—10091 J.baseﬂ./ft-, ks - "'9-965 lbo/ft-' k7 = "01596 lb./ft.SGCn

k)

k

-
2

Closed~-Loop Pole Location

Qg s Qy W Jw
real  -.2892 -.2892 -.0288
imag 0.0 .6626

Transient Performance

|u| = 24.4 lbs., |w| = 10.8 lbs.

max

max




4.3 CONTROL FOR ki = 0.

a. The Fully Deployed Configuration @ = 4 rpm

Since a space station will normally be in the fully-depioyed state
the effectiveness of the MMC in providing attitude stabilization
for this particular configuration is of fundamental interest.
Evidence for the controllex's superior performance is provided by
a comparison of the uncontrolled motion illustrated in figure 3
with the controlled motion in figure 4. In addition, from Table
4.3(a), the peak force and deflection magnitudes are seen to be

max max
gains on 8 and 6 (ké and k,) are zero, and this is characteristic

lwl = 16.5 ft., and |ul = 14,2 lbs. Note is made that the

of all ki = 0 cases. Since no disturbance torque is applied to
the crew quarters due to & motion, there is noc reason to attempt

control of the relative torsional motion.

TABLE 4.3(a). The Fully Deployed Configuratioc., % = 4 rpm., k¢ = 0.
Input Data: p,/Q = .230, p,/% = .223

Control Data: g,= 1.0 , L,= 0., §,= .20

i

k, = 610.1 lb.sec./rad., k, = -1.561 x 10'lb.sec./rad., k; = k, = 0.,
ks = -.634 lb.sec.'ft., k, = =3.974 lb./ft., k, = -.0910.1b./Et.sec.

Closed-Loop Pole Location

Qyr Oy w 8 fw
real -.1109 -,1109 0. -.0287
imag .0093 .5431 .0933

Transient Performance:

= 14.2 1b., |w] = 16.5 f+.

lul max

¥ max
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b. 3/4 Deployed Configuration, 7 = 4 and 4.85 rpn

The results for this case are summaxized in Table 4.5{b). B
conmparison of these results with those ox Table 4.2'a) rzveals zcant
differences between the 3/4 and the fully deployed configuration
when © = 4 rpm. This comparative insensitivity to the state of
deployment can be explained by noting that the only factors which
vary in the governing Eq.{26) due to deployment are a, ry/I,, and

e = Izy/Ix. The latter two parameters are small, and have a com-
parativély minor influence on the systems' behavior. Conversely,

the dependency of the wobble frequency p1 upon a (Eq. {25)) makes

it a significant parameter., However, Table B reveals that a only

changes slightly from the non-deployed to the fully deployed con-

figuration.

A comparison of the results of case 1 and'z in Table 4.3 (b)
demonstrates the marked dependence of controller performance upon
the n?minal spin velocity. The natural frequencies p;, p, display
the predicted (Eg. (25)) linear dependence upon ; while the peak
increases markedly with increasing j.

force Iu]max

c. 1/2 Deployed Configuration, g = 4 and 6.23 rpm.

The results for these two cases ara presented in Table 4.3(c), and
continue to demonstrate (a) the comparative insensitivity to the
stage of deployment, and (b) the marked dependence of controller

performance upon the nominal spin velocity gq.

d. 1/4 Deployed Configuration, ' = 4 and 8.3} . om

The results for these two cases are presented in Table 4.3(d), and
represent basically the same controller behavior cited previously

for the 1/2 deployed configuration.

- ‘ i
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TABLE 4.3(b): 3/4 Deployed Configuration, ki = 0.0

Cas¢ l: § = 4 rpm = ,418 rad./secc.
Input Data: p, /8 = .230, p,/0 = .223
Control Data: ¢, = 1.0, ¢, = 0.,5, = .1667

k, =k, =0, kg = 1.399 lb.sec./ft., ki
k, = ~-1.309 lb./ft.sec.

Closed-Loop Pole Location:

= =5,

k. = 1.023 x 10° 1lb.sec./rad., K, = -2.259 x 10% 1b.sec./rad.

3940 lb./ft.

Dyr Oy w 6 Sfw !
real -.1109 -.1109 0. -.0286
imag. .0108 .6554 .0932
Transient Performance:
]ulmax = 19.1 1b., |w[ . = 16.5 ft. -
Case 2: @ = 4.85 rpm = .507 rad./sec.

Input Data: p,/f = .230 , p,/% = .223

‘Control Data: g;= 1.0 , §,= 0.0, L;= .1667

k, = 914.1 lb.sec./rad., k, = -2.729 x 10"*1b.sec. /rad.

3
k?

-.19257 1b./ft.sec.

Closed-Loop Pole Location:

k, =k, =0, kg = 1.732 lb.sec./ft., k; = -7.947 1lb./ft..

Qxr Oy \ ] Sw
real ~.1344 ~.1344 0. -.0286
imag. .0125 .7950 1131

Transient Performance:

= 28.0 lbs., |w] = 16.5 ft.

] max

max
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TABLE 4.3(c): 1/2 5eploycd Confiiguranson, kg = 0.0

Case 1: § = 4 rpm = .418 razd./scc.

Input Data: p,/8 = .230 , v,/ = .222

Control Data: §,= 1.0, L, =0.0 , g,= .250
k, = 268.26 lb.sec./rad., k, = ~9.785 x 10° 1b.sec./rad.
ky = k, =0, kg = -2.3147 lb.sec./ft., k, = -2.794 1lb./ft.
k, = -.0580 lb./ft.sec.

Closed-Loop Pole Location:

s Qy w 0 Sw
. real ~.1107 ~.1107 0.0  ~-.0286
imag. 0117 .4285 .0932

Transient Performance:

|ulpax = 9.7 1b. , = 16.1 ft.

|9 max

B R — T W HIE K. wer YR S e e gy - — - - - -~ P T o . m

R

L3

Case 2: §& = 6.23 rpm

.652 rad./sec.
Input Data: p,/f = .243 , p,/0 = .223 )
Control Data: £,= 1.0 , Z,= 0.0 , £,= .20

k, = 358.6 lb.sec./rad., k, = -2.393 x 10* lb.sec./rad.

k, =k, = 0. , kg = -.9139 lb.sec./ft.

ke = -9.619 1b./ft., ky = -.2206 1b./ft.sec

Closed-Loop Pole Locations:

Qs Dy W ) fw
real -.1726 -.1726 0.0 -.0287
iniag. .0170 .8455 .1453

Transient Performance:

||y = 34.0 1bs., |w|max = 16.5 £t.
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TABLE 4.3(<): 1/4 Deployed Configuration, kg = 0.0
Case l: @ = 4 rpm = .4LE xad./sec.
Input Data: p,/7 = .230 , p,/7 = .223

Control Data: g = 1.0 , §,= 0.0, 3= .16G7

1]

1.013 x 10"1b.sec./rud., k, = -2.238 x 10"lb.sec./rad.

k,
k3

.

k, = =.1301 1b./ft.sec.

Closed-Loop Pole Locations:

Qxr Qy w 6 Jw
real -.1105 -.1105 0.0 ~.0285

imag. .0140 .65342 .0931

Transient Performance
b smene s o ton ve ...,.I,.Hlmax. =..-1.9,' Q. l.b.' . -IVZI max: = “;1'6,' 5 ft.
Case 2: 0= 8.3, rpm = .867 rad./sec.
Input Data: p,/0 = .254, p /0 = .223
'Control Data: 7, = 1.0 , g,= 0. , L,= .333

. -357.9 lb.sec./rad., k, = -1.060 lb.sec./rad.

P
i}

w
]

” -.1400 lb./ft.sec.

Closed-Loop Pole Location:

vir Sy w 0 fw
real -.2293 -.2289 0.0 -.0287
imag- .0221 .6478 .1931

Transient Performance:

|ul 12.9 ft.

= 23.9 1b., |w|

max max
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4.4 CONTROL I'OR FPINITE TORSICMAL ETIFFNESS

a. The Fully Deployed Configtixaiion, G = 4 rpm

N e
o gan E———

The obvious observatién that a cable-connected space station will
be fully-deployed throughout mozt of its lifetime makes establish-
ment of effective c¢ontrol fox +this particulér stage of fundamental
importance. Evidence for the controllers' superior performance

P is provided by a comparison of the uncontrolled motion illustrated
in figure 5 with the controlled motion illustrated in figure 6.
From table 4.4(a), the controlled motion of figure 5 corresponds to
critical wobble damping rates, and results in the peak force

= 16.1 lb., and peak deflection magnitude |w| =

magnitude |u| nax

max
l16.3 ft.

TABLE 4.4(a): The Fully Deployed Configuration, & = 4 rpm
Input Data: ki = 1.463 x 105ft.1b: /rad. P
p,/% = .230 , p,/% = 1.36

Control Data: 6,= 1., L,= .169, Gg= .167

k1 = 3061. lb.sec./rad., k, = =5.063 x lO“lb.sec./rad.,
k; = =3.052 x 10%1b.sec./rad., k, = 2.215 x 10%1b./rad.
kg = =1.764 lb.sec./ft., k, = =5.653 lb./ft., k, = -.161 1lb./ft.sec.

Closed-Loop Pole Location:

g, Qy w 8 na
real -.1109 -.1109 ~-.1109 -.0288
imag. 0.0 .6464 .-.6559

Transient Performance:

[ul = 16.1 1b., |w| = 16.3 ft.

max

max
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6.a Controlled Motion: Q, versus t for the fullg
deployed configuration with ky = 1.463 x 10
ft.1lb./rad., and @ = 4 rpm.
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6.b Controlled Motion: Qy versus t for the full¥
deployed configuration with k¢ = 1.463 x 10
ft.1b./rad., and Q@ = 4 rpm.
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6.c Controlled Motion:0 versus t for the fully
deployed configuration with k¢ = 1.463 x 10°
ft.lb./rad., and § = 4 rpm.
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6.d Controlled Motion: w versus t for the fully
deplo,ed configuration with k¢ = 1.463 x 10°
ft.lb./rad., and © = 4 rpm.
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-

b. 3/4 beployed Configuraticn, § = 4 and 4.85 rpm.

——

The results for this case uie summarized .n Table 4.4(b). A com-
parisoﬁ of these rcsuits wiLthe those of 4.4(a) for % = 4 rpm

reveals that the only sionificant difference caused by a /4
retraction is an increase in k, with a consequent increase in the
torsionpl natural frequency p,. However, in behavior which is very
similar to that noted in the preceding sesiion fwr K¢ = 0, increasing
0 causes an even more marked increase in Ker Py and P, Thie

result can be explained by noting that ki is an (approximately} 1imaax
function of the tensile force in the cabliy, wihich 48 in turn propor-
tional to £%. These comparatively large values of %, zalee couple
wobble and torsional motion. Evidence of this coupling is demon-

strated in figure 5 for uncontrolled space station motion.

Cr R oW e wEie e R wwsr o Seweo o ——— w = - - P

TR IR R 3 -

c. .1/2 Deployed Configuration, § = 4 and 6.23 rpm.

The results for these two cases are presented in Table 4.4(c),

and continue to demonstrate (a) the comparative insensitivity to

the stage of deployment, and (b) the marked dependence of controller
performance upon the nominal spin-velocity $. The simulation results
for the = 6.23 rpm case are presented in figures 7.a through 7.e.
An inspection of these results confirms the.effectiveness of the
controller in providing initial wobble démping rates. The compara-
tively minor effect of the lightly damped (5, = .1364) torsional

oscillations on wobble motion is evident in Figures 7.a and 7.b.

'

d. 1/4 Deployed § = 4 and 8.3 rpm.

The results for these two cases are presented in Table 4.4(d), and

-reflect basiéally the same control cited above for the 1/2 deployed

configuration.
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TABLE 4.4(b): 3/4 Deployed Configuxation

Case L: @ = 4 rpm., = .418 rad./sec., kg = 1,726 x 105 ft.lb./rad.

Input Rata: p,/0 = .229, pz/ﬁ = 1.48

Control Data: f,= 1.0 , §,= .1557 , t,= 2857

k, = 710.9 lb.scc./rad., k, = =1.694 x 10"lb.sec./rad.

ky, = -2.070 lb.sec./rad. , k, = 4.796 x 10°1lb./rad.

k., = =3.271 lb.sec./ft., k, = -1.993 1lb./ft., k, = -.0547 lb./ft.sec.

Closed-Loop Pole Location:

PR W o Jw
real ~-.1108 ~.1108 =-.1108 -.0288
imag. 0.0 .3716 .7027

Transient Performance:

lul .y = 13.8 1b. , Jw| = 15.7 ft.

Case 2: § = 4.85 rpm = .507 rad./sec., kt'= 2.544 x 10°ft.1lb./rad.

Input Data: p,/Q = .278 , p,/Q = 1.79

Control Data: ¢,= 1.0 , g,= .1556 , .=

,= -1667

>
i

, = 3079. lb.sec./rad. , k, = -6.105 x 10"1lb.sec./rad.

e
w
Il

-3.385 lb.sec./rad., k, = 3.750 x 10°lb./rad.

t
il

~1.247 1b.sec./ft., k, = -8.198 lb./ft., k, = -.2367 lb./ft.sec.

7

Closed~Loop Pole Location

Ry Qy % 0 Sw
real -.1344 ~.1344 -.1344 ~-.0288
imag. 0.0 .8530 .7950

Transient Performance:

W

= 16.0 fti.

N nax

= 25.4 1b.,

max
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TABLE 4.4(c): 1/2 Deployed Configuration

Case 1: % = 4 rpm. = ,418 rad./sec., ky = 2.254 x in°®

Input Data: p,/S = .229 , p,/f = 1.68
Control Data: Z, = 1.0, L,= .1364, 5,= .3333

k)

}

373.8 lb.sec./rad., k,

il

Ky

kg

il

4
-1-621 lbc/ft- Ik7 =

i
It

"'3.578 lb-sec./ft- ' ke

Closed-Loop Pole Location

Ry s Qy w 8 fw
real -.1107 -.1107 ~-.1107 =-.0288
- imag. 0.0 .3130 .8036

Transient Performance:

12.1 lbs.

max r Wipag = 14.9 ft.

ul

Input Data: p, /@ = .378 , pz/ﬁ = 2.77

.Control Data: g,= 1.0 , g,= 1364, C,= .40

Closed-Loop Pole Location

Qyr Sy w 9 fw
real -.1726 =-.1726 =-.1726 =-.0288
" imag - 0.0 .3955  1.254

Transient Performance:

= 27.2 lb., |w| = 13.7 *t.

|u| max

max

ft.lb./rad.

-1.227 x l0*lb.sec./xrad.
1.491 x 10%1b.sec./rad., k, = 4.691 x 10%1lb./rad.

~.0402 lb./ft.sec

6.23 rpm = .652 rad./sec., ky = 5.48 x 10°ft.l1lb./rad.

k, = =-174.96 lb.sec./rad., k, = -1.276 x 10%*1b.sec./rad.
k, = 6,907 x 10°1lb.sec./rad., k, = 1.181 x 15%1b./rad.
s —5.928 lb.sec /ft., kg = -2.893 1b./ft. ,k, =-.0685 lb./ft.sec.
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TABLE 4.4(d): 1/4 Deployed Configuration
Case 1: € = 4 rpm. = .418 rad./sec., ky = 2,836 x 107£t.1ib./rad.
Input Data: p,/% = .228 , p,/Q = 2.52
Control Data: g,= 1.0, ;,= .1046, L,= .20
k, = 2.156 x 10°lb.sec./rad., k, = =3.437 x 10"lb.sec./rad.

-
Li)
il

~1.2608 x 10"lb.sec./rad., k, = 3.372 x 10°lb. /vad.
ks = "11255 lb-SGC./ft-, ks = "30909 lb-/fta, k7= "'01113 lb./ft.Sec.

Closed~Loop Pole Location:

Qo s Qy ' 0 Sfw
real ~,1104 -,1104 -.,1104 -.02878
imag. 0.0 .5411 1.050
Transient Performance
lulmax = 15.8 1b., lemax = 16.5 ft.

r—t——

case 2: © = 8.3 rpm. = .867 rad./sec., ky = 1.550 x 10° ft.1b./rad.
Input Data: p,/8 = .254 , p,/R = 2.52
Control Data: §,= 1.0, §,= .1046 , £;= 0.50

k, = -712.6 lb.sec./rad., k, = -1.010 x 10*lb.sec./rad.

k, = 1.782 x 10"1b.sec./rad., k, = 1.892 x 10% 1b./rad.

k, = -8.685 lb.sec./ft., k

1t

6 -4.334 lb./ft., k, = -.0766 lb./ft.sec.

Closed-Loop Pole Location

fgr Qy w 8 Jw
real -.2291 -.2291 -.,2291 -.0288
imag. 0.0 .3968 2.177 ¥
Transient Performance
|u| = 34.9 1b., |w]| = 9.7 ft.

max

max
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CHAPTER V
SUMMARY, CONCLUSIONS, AND EXTENSIONS
5.1 SUMMARY AND CONCLUSIONS
A dynamic model for cable~connected artificial-g space stations
with an attached mevable-mass-controller (MMC) system has been
derived, and a linearized model for this system has been developed
and its validity confirmed. This model has been used to examine
the effectiveness of the MMC system in providing attitude stabili-~
zation for a space-station configuration reported by McDoﬁnell—
Douglas in Reference 8. The influence of the following three
specific parameters were investigated:
(a) Stage of deployment. Undeployed, 1/4, 1/2, 3/4, and fully

deployed stages were examined.

- o

(b) Nominal spin-velocity . This parameter was variéd bééween
) 4 rpm and an upper value depending upon the stage of deployment.
(c) Torsional stiffness ky. This parameter was varied from zero

(corresponding to a single cable) to an upper value calculated

for the McDonnell-Douglas design.

The MMC was required to provide critical wobble damping rates
for all configurations without violating the peak—force—magﬁitude |
constraint, lul E_ES lb., and the peak-deflection constraint,
|lw| £ 16.5 ft. As discussed in Section 3.6, damping for the control
mass and the torsional motion was provided to yield a uniform
damping constant for wobble motion, control mass motion, and rela-

tive torsional motion, i.e.,

25,p, = 25,P, = 27,P,

where the z; are modal damping factors, and p,, p,, p, are the
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"patural frequencies" assoc:ated with wobble, tovsional, and con~
trol mass motlon, respectiwely, [n all cases ;, was required to
be unity (critical wobble famwing); hence,

5, = P/P, + &3 = P,/P, (37)
The natural frequency, p, was positioned arbitrarily (within
reascn) for each case by a proper selection of the feedback gains;
however, the wobble frequency p, and toxsional natural frequency
p, are physical parameters which depend on the configuration, (i.e.,
spin velocity, asymmetxy, torsional stiffness, etc.).

The procedure for comparing the controller's performance
for the various cases is markedly simplified by the synthesis pro-
cedure employed, since the “"quality" of control is the same for
all cases. Specifically, for all cases, wobble motion is critical~-
s e oly damped (5 =l) " and "all mod2l damping constants are equal. Hence,
the significant point in a comparison of cases is the required
maximum control force |u|max and control mass deflection lwlmax'

As previously noted, these two variables are of interest be-

céuse of the physical constraint on |w|, and the prescribed con-

straint on |u|. They also indicate whether control torques arise

primarily due to the control force u or control mass displacements
w. Control torques directly caused by u are generated via the
moment terms ury and ury while torques due to w are generated via
product of inertia terms mgrywR® and m,rywR®. From a controls
mechanizationbviewpoint, the variable lulm should be minimized,

ax

is maximized, i.e., |w| = 16.5 ft. 1In other words,

while |w| nax =

max
one would like to employ: a comparatively small and slowly=-varying

‘control force, and generate the required control torques primarily
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through the "leisurely" manipulation of w., The feasi' ility of
achieving this desired control character depends primarily upon
the wobble frequency p;. A8 pz is increased, the rosponse of w

to an crror signal containing £, and @, is dimirish=d, and the

b

required control torques can only be supplied by increasing the

magnitude of u.

A similar (although lesser) problem arises when thz torsional
natural frequency p, is increased. However, the control logic

which specifies 5,= P1/p2 largely eliminiates any difficulty in

controlling the torsional motion by simply reducing the reguired

damping factor as p, is increased. The following points con-

cerning this procedure should be noted:

(a) As p, increases, the amplitudes of undamped torsional oscilla-
tions are reduced, and the influence of this mode of oscilla-

* tion on the artificial~g environment in the crewquarters is
rgduced. Hence, the necessity for damping this mode of os- 1
cillation is reduced as p, increased.

(b) Attempts in this study to provide comp:ratively large damping .
factors (i.e., .4 2 ¢, S .6) for configurations having cam-
paratively high values of p , were not notably successful in
that a large control force (u Z 40 1lbs.) was required, and it
was generally necessary to reduce the wobble damping rates

(.4 21, £ .6),

and, w| are summarized

The results of all cases for |u] max

max
in Table 5.1 and 5.2. Table 5.1 contain= the nominal (% =4rpm.)

casee for both the zero and finite torsional stiffness cases.

The entries of 0 and 1 for deploymunt stages indicate the non-
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deployed and fully-deployed cases, respectively. The ovexspin
cases arc summarized in TABLES 5.2,

TABLE 5,1 (a): Transient performance for & = 4 rpm., and kg = 0,

A S - 5
0 15.9 16.2
1/4 19.0 16.5
1/2 9.7 16,1
3/4 19.1 16.5
1 14.2 16.5

TABLE 5.1(b): Transient performance for ¥ = 4 rpm., and ky> 0.

beptoyment  lulpax  Ivlpa
0 15.9 16.2
1/4 15.8 16.5
1/2 12.1 14.9
3/4 13.8 15.7 pmmmmmmm————
1 16,1 1l6.3

TABLE 5.2(a): Transient performance for overspin cases with ki = 0.

Tlepm.)  [elmax ¥ ]pa
0 1l1.5 24.4 10.8
1/4 8.3 19.0 1l6.5
1/2 6.23 34.0 16.5
3/4 4,85 28.0 16.5
1 4.0 14,2 16.5

TABLE 5.2(b): Transient Performance for overspin cases with kg > 0.

Deployment 2 (rpm.) lulmax lemax
Stage : (1b.) (f£t.)
0 ‘ 11.5 24.4 10.8
1/4 8.3 34.9 9.7
1/2 6.23 27.2 13.7
3/4 4,85 25.4 16.0

1 4.0 l6.1 16.3
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The results of these tables confirm the general corclusion
of this study, namely, the MMC system can provide cffuctive and
generally satisiactory attitude stabilization for a wide range of
space station configuvrations. In addition, the conclusions con-
cexrning specific parameter variations are as follows:

(a) Stage of Deployment. Foxr a fixed spin veloeity §, the changes
in the stage of deployment have a comparatively minor direct in-
influence on controller pexformance. This statement can be con-
firmed by inspecting Tables 5.1(a) and (b).

(b) Nominal spin velocity . This is the single most important
factor on system dynamics. In general, effective control is much
more easily achieved for the nominal spin-~velocity § = 4 rpm.
than the higher spin rates, which would suggest the advisability
of spin-up or spin-down firings at the intermediate stages of
deployment,

(c) Torsional stiffness ky. In general, the MMC was equally
effective for the k4 = 0 and McDenngell-Douglas designs, When kg
is zero, the torsional motion ié uncontrollable, but has no effect
on the crew quarter artificial-g environment. Furthermore, the
gains k4 computed for k¢ = 0 proved to be generally satisfactory
for k. up to 2000 ft.lb./rad. ¥For the finite torsional stiffness
cases, § motion was coupled into the crew guarter~, but the finite
values of kt’enabled effective control of 6. During the cource of
this study, preliminary wvalues for k¢ were examined whicl. were
(erronecously) an order of magnitude larJjer than those cited in

Section 4.4. However, gains were computed for these values (at
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% = 4 rpm for the fully-deployed confituiestion) which vialded

an extremely effective control logic. At - agse elevated values
the torsional frequency p, was much larger than the wohile fre-
quency p; , which in turn decreased and approached ciie rigid-body
} o value (ab)l/z. As noted previously, the control logic used in
this study ninimizes any control difficulties associated with
large values for p,.

In some cases where comparatively high wobble frequencies p;
were ehcountered, a smaller value of control mass mg = 7 slugs
was employed in an attempt to lower the peak force magnitude
Iulmax' The results were generally unsatisfactory, since this
led to difficulties in satisfying the deflection constraint

|w| & 16.5 ft.

1/

5.2 ) EXTENSIONS

A logical sequel to this invesﬁigation would coensist of
a similar study with an improved dynamics mode. (such as that pro~
sed by Nixon ) for cable-connected configurations. An improved ly-
namics model would include the complete rotational degrees of frre-
dom for crewquarters and counterweight, but would not' require extensiona.
motion between the bolies. The control logic and synthesis pro-
cedure employed in this study should apply for an improved model,
3ince basically only an increase in dimensionality is involved.

Several practical problems which would arise in the imple-
mentation of an MMC system remain unresolved. For example, the
proper technique for measuring system variaoles (9, é, et=.) is
not clear. Furthermore, while the physical requirements of an MMC

system would seem to be modest, a hardware investigation with thle
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objective of fabricating and testing an MMC tc establish its

operating characteristics would be of considerable value.

-

o




(81

* Huntsville, Alabama.
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APPENDIX A: Closed-Loop Chalavtcristic Polynomial

The closed~loop polynmmial, whlch is obtained by an ex-

pansion of the determinant JsI-A~bk1|, 1s of the form

s” 4+ a,s®+a.s”+a,s"+ a8+ a8+ 0 stha; =0 (A.1)
where each of the ai's is a linear function of the unknown
gains ki, i.e.,

6
o, = c¢j +j£luijkj (A.2)

From Eg. (26), the aij coefficients were determined as follows:

Q
o

Q
o

H

(ry/IX)I Ogg = —Ug, = (rX/I ly)

Gg, = Oge =0, 0o ¢ = (1L +e))/mc, ag, =0
”dsf ay, =8 0., [a + e(l - b,)] e .
Ulsu - 0663 , °‘35 = ( ’a56 =0"g5 _,OL57 = 0
Oyt Oy = 0 [R%(1 + b,) + P,?] |
- 52 2 _ _ 2
O,, = 0,y [-0% (1 + b, +‘eb2 eb,) (kt/I y)]
a,; = 2% a,, (1 + ab,)

A, = & ¢, (b, - bl)’

Oy g = -(l/mc-!~ryoc61)P12
+(82/m Y{e(1-b,) (b,~ b,) = ab; = b,)}
- 2% r_ o, ,(b, +b,)

- Q% r oy {ate (1- b))% b, - kt/(I; 2%)}

o * : . . a i' s s ria AL
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G 1= 8 ag, (R2[a(l+bs)+ e(l-ba) I+ (ak/12)}
Gy, = 8 0y, {R%b, (1+by) + ki (b2/Ty + b1/12)}

Q
w
w

I

Qt

Guy ¢r Oy = Qyg 4 Gy5 =0

Q
Ly
o

1

= 0y, + 2(1/mgt ryoc“)Pl2
Ggy = Que = 0
Gy, = 0% 05, {R%[ebz(1l-bs) = byl - (3t/Izy)]

o = 0

Opy = O 26

2y

Gpy = 0% 0g, ab

3 2 ! 33 !

Il

-R%(a/mgt ry0g ) {ky(0,/Tly + b, /I%)+ §%1b,)

Ogy = Ogg

ap: 0y = 2° aogg, (2% b, + kt/Izy)
oy, = 8% g { 8%b b, + ke (b,/I'y + b /I%y)}
0, =0, o, =-R%b, o, , 0, =0
. g 5 Qg v Oy, = 0
Got Goy = CGpp = Gy = Qpy = 0p5 = 0gg = 0, Qp; = 0,

The cj coefficients are:
Cg = ¢, =¢, =0

-02%{e(1-b,) (b, - b;) + e,}

Q
o
I

K<l
I

Q%ab, (ke/I'y)+ (@%b, + ky/I%,) (R%ab,- e))
}

54 - b )2
-m Q' {b,ry0, , + arya - ry e(l-b,)%a ,

52 1
—ch Ly Qg ke/I y

MG (B, 0% + ky/I§) (Byrya , + arya ;)

Fryb, g, kt/Ily}
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