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FOREWORD

This report represents the results of work performed by

the Lockheed-Huntsville Research & Engineering Center for the

NASA-Marshall Space Flight Center, Alabama, under Exhibit A

of Contract NAS8-25986 (Mod. 5).

The NASA contract monitor for this study was Mr. R. L.

Middleton of the MSFC Astronautics Laboratory.
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SUMMARY

This report contains the results of a study to determine the technical

and economic feasibility of a solar-powered space heating, air-conditioning,

and hot water heating system for residential applications. The basic system

utilizes a flat-plate solar collector to process incident solar radiation, a

thermal energy storage system to store the collected energy for use during

night and heavily overcast periods, and an absorption cycle heat pump for

actually heating and cooling the residence. In addition, heat from the energy

storage system is used to provide domestic hot water.

The basic system represents a direct extension of technology developed

during several space-related engineering studies conducted by Lockheed and

funded by NASA-Marshall Space Flight Center. In one such study, Lockheed

conducted extensive analytical and empirical investigations of an absorption

cycle environmental control .system for the Space Station. In other studies,

Lockheed thoroughly investigated phase change materials (PCMs) for high-

capacity energy storage systems. In still other NASA-funded studies, Lockheed

has developed sophisticated computational tools for thermodynamic and energy

transfer analyses of thermal control systems. Thus, the solar-powered resi-

dential system is a direct and natural spin-off from these previous space-

related projects.

This solar-powered system for residential application offers several ,

significant economic and ecological benefits to the nation as a whole and to

the average American citizen. Several of these benefits are summarized

below.

• Because the system is powered almost entirely by solar energy,
the energy expenditures in this nation for space heating, air-
conditioning, and water heating will be greatly reduced when the
system is widely adopted. Currently, 25% of all the energy used

111
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in the United States is expended to meet these requirements.
Thus, the system will have an important, favorable impact on
the national energy crisis.

• Since widespread adoption of the system will reduce the need
for conventional energy sources for providing heating, cooling,
and water heating services, the pollution byproducts of con-
ventional energy production will be reduced. These pollution
byproducts include air (gaseous, particulate, thermal), water,
radiation, solid waste and radioactive waste pollution.

• The replacement of conventional energy requirements by solar
energy utilization will help preserve fossil fuel reserves, will
help prevent environmental destruction due to mining, and will
reduce this nation's dependence on foreign nations for petroleum.

• Since solar energy is free, the American citizen will realize
tremendous economic savings in heating, cooling, and water
heating for his home and business.

This report contains a detailed description of the solar-powered system.

The analyses of the three major components of the system (the solar collector,

the energy storage system, and the heat pump package) are discussed and re-

sults are presented. The total system analysis is discussed in detail, including

the technical performance of the solar-powered system and a cost comparison

between the solar-powered system and a conventional system. The projected

applicability of the system to different regions of the nation is described.

The primary conclusion of the study to date is that the system is tech-

nically and economically feasible, and that a prototype demonstration unit

should be fabricated and tested as quickly as possible. Further conclusions

and detailed recommendations are also presented.

xv

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

CONTENTS

Section Page

FOREWORD - ii

SUMMARY ill

NOMENCLATURE , ix

1 INTRODUCTION 1-1

2 OVERALL DESCRIPTION OF SOLAR-POWERED SPACE
HEATING, AIR-CONDITIONING, AND HOT WATER
HEATING SYSTEM 2-1

3 SOLAR COLLECTOR ANALYSIS 3-1

3.1 Computer Analytical Model 3-2

3.2 Parametric Solar Collector Analysis 3-9

4 THERMAL ENERGY STORAGE SYSTEM ANALYSIS 4-1

4.1 Thermal Energy Storage System Using Phase Change
Material (PCM) as the Energy Storage Substance 4-1

4.2 Thermal Energy Storage System Using Water as the
Sensible Heat Storage Substance 4-4

5 HEAT PUMP PACKAGE ANALYSIS 5-1

5.1 Selection of Operating Temperatures 5-3

5.2 Selection of Design Heating and Cooling Loads 5-4

5.3 Selection of Fluids 5-5

5.4 Heat Pump Performance 5-5

5.5 Contact with Major Manufacturer of Absorption
Cycle Air-Conditioning Systems 5-13

6 TOTAL SYSTEM ANALYSIS 6-1

6.1 Computer Analytic Model 6-1

6.2 Parametric Total System Analysis 6-8

6.3 Performance of Preliminary Optimized System 6-10

6.4 Detailed Cost Comparison of SolaryPowered System
with Conventional System 6-13

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

Contents (Continued)

Section

7 SYSTEM APPLICABILITY TO DIFFERENT REGIONS
OF THE UNITED STATES 7-1

8 CONCLUSIONS 8-1

9 RECOMMENDATIONS FOR PHASE II STUDY 9-1

10 REFERENCES 10-1

11 BIBLIOGRAPHY 11-1

Appendix

Details of Phase II Efforts A-1

LIST OF ILLUSTRATIONS

Table

4-1. Desirable PCM Properties 4-2

4-2 Typical Candidate PCM Properties 4-3

5-1 Comparison of Refrigerant-Absorbent Fluid Combinations 5-6

6-1 Heat Pump Summary for T „ .. = 220°F (T = 200°F) 6-11• J collector x gen '

6-2 Basis of Comparison Between Solar-Powered and
Conventional Systems . 6-15

7-1 Monthly Average Daily Total Solar Radiation Incident
Upon a Horizontal Surface for Nine U.S. Cities 7-4

Figure

2-1 Schematic of Solar-Powered Space Heating, Air-
Conditioning and Hot Water Heating System 2-2

3-1 Energy Exchange Mechanisms in Flat Plate Solar
Collector 3-3

3-2 Natural Convection Between Parallel Plates at Different
Tilt Angles for Air 3-7

3-3 Optimum Tilt Angle for Solar-Collector at Latitude
of Huntsville, Alabama . 3-10

VI

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

CONTENTS (Continued)

figure Page

3-4 Effect of NASA-MSFC Developed Selective Coating
on Collector Efficiency 3-12

3-5 Solar Collector Performance for Different Cover
Materials - 3-15

3-6 Selected Collector Concept 3-16

3-7 Ambient Temperature Variation 3»18

3-8 Daily Transient Solar Collector Performance 3-20

4-1 PCM Package Design 4-5

4-2 Container Size for H?O Energy Storage System 4-6

4-3 Thermal Energy Storage System Using Water 4-7

4-4 Heat Losses from Energy Storage System for Varying
Insulation Thicknesses 4-9

4-5 Water/Generator Heat Exchanger Requirements 4-10

5-1 Absorption Refrigeration Cycle Schematic 5-2

5-2 Required Generator Temperature for Different
Evaporator Temperatures for Heating Mode Operation 5-9

5-3 Required Generator Temperature for Different
Absorber/Condenser Temperatures for Cooling Mode
Operation 5-10

5-4 Heat Pump Performance in Heating Mode for Different
Generator Temperatures 5-11

5-5 Heat Pump Performance in Cooling Mode for Different
Generator Temperatures 5-12

Vll

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

CONTENTS (Concluded)

Figure Page

6-1 Heat Gain to House for Different Ambient Temperatures 6-3

6-2 Ambient Temperature Variation 6-5

6-3 Total System Cost Equation 6-7

6-4 Total System Cost Optimization 6-9

6-5 Yearly Performance of Solar Powered Heat Pump 6-12

6-6 Daily Variation in Stored Energy 6-14

6-7 Cost Comparison Between Conventional and Solar-
Powered Heat Pump/H_O Heating Systems 6-17

7-1 Monthly Average Daily Total Radiation Data for Nine
U.S. Cities 7-2

9-1 Flow Chart of Phase II Efforts 9-2

Vlll

LOCKHEED • HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

Symbol

A ' ' ' •

Area -

DME-TEG

E , Emax max stored

h
Ah r_

'refrigerant

k

L

m

AP
Pr

Q
*Q
R-21
R-22

T

AT

U

UA

v

X

NOMENCLATURE

Description

area

collector area

distance between plates

dimethyl ether of tetraethylene glycol

maximum energy storage :

acceleration of gravity

convective heat transfer coefficient

latent heat of vaporization of refrigerant

thermal conductivity

length

mass flow rate

pressure difference

Prandtl number

energy exchange

energy exchange rate

refrigerant 21

refrigerant 22

Reynolds number based on length

temperature

temperature difference or change

unit conductance

overall heat transfer coefficient

specific volume

refrigerant concentration in solution with
absorbent

IX

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

Greek

a

a

m

Description
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emissivity

infrared emissivity
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kinematic viscosity
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solar
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Section 1

INTRODUCTION

One of the most pressing national problems today is the increasingly

publicized energy crisis. America's ever-growing demand for energy is

outpacing the nation's ability to produce energy. Yearly, the threat of fuel

shortages and electrical power shortages (brownouts and blackouts) becomes

more real in nearly every region of the country. The byproducts of the energy

crisis are themselves critical national problems:

• Increased air, water, thermal, radiation, and solid waste
pollution;

• Natural resource problems: rapid depletion of fossil fuel
reserves, environmental destruction due to mining, and
dependence upon foreign nations for oil; and

• Constantly rising costs for the consumer of energy.

In the midst of this energy crisis, it is somewhat ironic that there re-

mains a virtually untapped energy source which is totally pollution-free,

impossible to deplete, available in quantities sufficient to power the world

indefinitely, and free of charge. This energy source is, of course, solar

energy.

The present lack of exploitation of solar energy is attributable to two

basic characteristics of solar radiation:

• The relatively low concentration of solar radiation reaching the
Earth's surface makes its conversion to useful energy difficult
and expensive.

• The intermittency and inconstancy of the solar radiation reaching
the Earth 's surface makes energy storage necessary in any appli-
cation where continuous output is required. Such energy storage
is difficult and expensive.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER
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In the past, the widespread availability of conventional energy sources

and their nominal costs made solar energy exploitation unnecessary and eco-

nomically unattractive. However, several recent developments have sub-

stantially altered this situation:

• Conventional energy sources are hard-pressed to meet the growing
national demands for energy. Thus, an energy crisis has emerged.

• The public has become increasingly alarmed over the pollution
which accompanies conventional energy production. Ecological
concerns are now as important as economical concerns to many
Americans.

• The limited nature of natural resources is finally being realized
by a large segment of the populace. The predicted lifetimes of
American natural gas and oil reserves and the growing public
bitterness over practices such as the strip-mining of coal attest
to the necessity of finding alternate energy sources.

• The cost of conventional energy is soaring at an unprecedented
rate, making solar energy exploitation economically attractive
for the first time in history.

• The vast store of new technology currently available makes the
efficient and economical exploitation of solar energy more realiz-
able today than ever before. A great deal of this new technology
is directly attributable to the American space program.

Thus the solar energy question is no longer whether or not it should

be exploited, but rather how it should be exploited. There are two basic

avenues of solar energy exploitation, as described below:

• Large scale solar-powered facilities must be developed to
produce electricity and high temperature thermal energy for
industrial processes. Such facilities could directly replace
conventional facilities. These large scale solar-powered
installations will require large investments of time and money
until they ultimately emerge as practical, everyday solutions
to the nation's energy problems.

• Small scale solar-powered installations must be developed to
meet the nation's large demand for moderate temperature
thermal energy to provide residential and commercial heating,
air-conditioning, and hot water heating. Such small scale
systems can be developed quickly and economically and would

1-2
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have a large effect on the nation's energy troubles, since 25%
of all the energy consumed in this country is used to provide
space heating, air-conditioning, and water heating.

Lockheed-Hun tsville began investigating small scale solar-powered

systems for residential applications in 1971. These preliminary studies

were direct and natural extensions of NASA-funded, space-related studies

conducted by Lockheed. In one such study, Lockheed has conducted extensive

analytical and experimental investigations of an absorption cycle environmental

control system for the Space Station. An absorption cycle system is powered

primarily by thermal energy rather than electrical energy, which is required

by most other environmental control systems. In the Space Station application,

the input thermal energy requirement will be met by waste heat from onboard

equipment. A natural extrapolation of this concept would be to use solar energy

to power an environmental control system for a home. Thus, Lockheed used

the tools developed to analyze and design the Space Station system to investi-

gate a residential solar-powered heating, cooling, and water heating system.

The results of these preliminary analyses were so favorable that NASA-MSFC

awarded Lockheed a contract in June 1972, to perform more detailed analyses

of this solar-powered system.

The objectives of this study were to determine the economical and tech-

nical feasibility of the concept and, based upon the results of this feasibility

study, to decide whether or not a full-scale prototype system should be fabri-

cated and tested. Additional objectives of the study were to perform pre-

liminary system design, to initiate system optimization, and to formulate

plans for the full-scale demonstration program if the system proved feasible.

Throughout the entire study, NASA-MSFC made significant technical

contributions through in-house efforts. These efforts were concentrated in

the following areas:

• Development of a selective coating for the absorber plate of the
solar collector. (The result of this effort was an economical
coating with excellent thermal properties.)

1-3
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• Experimental evaluation of thermal energy storage materials,
including effects of additives on melt temperatures of phase
change materials.

• Fabrication of a 4-foot square solar collector for testing in
the near future.

• Widespread literature surveys and data compilation in all areas
of solar energy research.

This report contains the results of all contractual efforts to date.

1-4

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306Z75

Section 2

OVERALL DESCRIPTION OF SOLAR-POWERED
SPACE HEATING, AIR-CONDITIONING, AND HOT WATER

HEATING SYSTEM

In November 1971, Lockheed-Hunts ville began investigating the feasi-

bility of developing a system which could collect solar energy economically

and efficiently, store this energy for use during the night and on extremely

cloudy days, and use this energy to-drive an absorption cycle heat pump and

also to provide hot water for domestic use. A schematic of the system is

presented in Fig. 2-1. Solar energy is collected by a flat-plate solar collector

which is capable of utilizing both direct and diffuse solar radiation incident

upon it. The collected energy is transferred to a heat transfer fluid which

transports the energy to the thermal energy storage system. Here, the

energy is stored either as latent heat in a phase change material (PCM) or

as sensible heat in a liquid or solid. When heating or air-conditioning is

required, energy is transferred from the storage system to the absorption

cycle heat pump, which can either heat the inside air or cool and dehumidify

the inside air. Also, heat from the thermal energy storage sytem is used to

provide hot water for domestic use.

The system depicted in Fig. 2-1, when eventually constructed, will repre-

sent several advances over previous solar-powered installations. Some of

these advances are listed below.

• The system will utilize solar energy to provide nearly all of the
heating, air-conditioning, and water heating requirements of the
residence, with the small remainder of these requirements being
met with auxiliary energy. In the literature, no current or past
system has been found which provides the major portion of all
three of these residential requirements by utilizing solar energy.
By using the same collector and energy storage system year-
round for all three functions, the economy of the new system is
greatly improved over previous systems.

These investigations started as an in-house project and a NASA contract was
t"O f & -1T rt* ̂ - i * ^ T n v \ ^ l Q 7 7received in June

2-1
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• The system will utilize the absorption cycle for both heating
and cooling. Current and past systems found in the literature
use the absorption cycle only for cooling, while heating is done
directly. The benefit of using the absorption cycle for heating
is the ability to absorb heat from the ambient air to supplement
the solar energy collected, thereby reducing required collector
area and energy storage. The reduced requirements for collector
area and energy storage will improve the economy of the system.

• The system will be cost-optimized for the particular locale
where it will operate. This optimization will be accomplished
using the latest analytical techniques, including transient com-
puter thermal analysis of the collector, experimental solar
radiation data, and daily inventories of all energy quantities.
The optimization will identify the optimum collector area,
energy storage system capacity, and operating temperature of
the collector for a particular application. This optimization
will obviously increase the economy of the system.

From Fig. 2-1, it is apparent that the total system is comprised of three

major subsystems* which include the:

• Solar collector,

• Thermal energy storage system, and

• Absorption cycle heat pump.

Each of these three systems was analyzed in detail during the current study.

The following sections of this document discuss the analytical studies in detail.

The hot water heating system will merely be a heat exchanger with the
thermal energy storage system and is not considered a major subsystem.

2-3
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Section 3

SOLAR COLLECTOR ANALYSIS

The function of the solar collector is to efficiently collect solar radia-

tion incident upon it, and to transfer the collected energy to a heat transfer

fluid for delivery to the energy storage system. There are two basic types

of solar collectors: (1) those which concentrate the incident solar radiation,

and (2) those which .do not concentrate the incident solar radiation. The rel-

ative advantages and disadvantages of each type are given below.

• Concentrating Solar Collectors

Advantages

a. Since the incident solar radiation is concentrated on a small
absorber area, thermal losses are small and collection
efficiency (Qcoiiected/Qincident) is hiSh

b. Capable of high temperature operation due to high efficiency

Disadvantages

c. Limited to collection of direct component of solar radiation
since diffuse component cannot be concentrated

d. No collection on cloudy days

e. Collector must track the sun's movement across the sky

f. Collector design is complex due to mirrors or lenses and
tracking system

g. Expensive due to complexity

• Non-Concentrating Solar Collectors

Advantages

a. Able to collect direct and diffuse components of solar
radiation

3-1
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b. Capable of collection on cloudy days

c. Collector can operate in fixed orientation (no tracking
necessary)

d. Collector design is simple (insulated flat plate with
transparent covers)

e. Cheap due to simplicity.

Disadvantages

a. Since the absorber area is larger for a flat-plate collector than
for a concentrating collector, thermal losses are higher and
collection efficiency is smaller.

b. Limited to relatively low temperature operation because
efficiency drops rapidly at higher temperatures.

For the present application, relatively low temperature operation is

acceptable and cost minimization is of primary importance. Therefore, non-

concentrating flat plate solar collectors were selected as superior to con-

centrating solar collectors for the current application. A detailed analytical

study of flat plate solar collectors was conducted, as described in the follow-

ing sections of this report. .

3.1 COMPUTER ANALYTICAL MODEL

Solar collectors have been analyzed by many investigators for several

decades. The classical methods of analysis rely heavily upon approxima-

tions and shortcuts because these methods were developed before computers

became available. In the current study, numerous previous analyses were

surveyed and all were found unacceptable by comparison to current analyt-

ical techniques. The shortcomings of past analyses will be described in

later sections of this report.

There are six different energy exchange mechanisms which must be

included in the thermal analysis of a flat plate solar collector, as shown in

Fig. 3-1. They are listed on page 3-4.

3-2
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• Solar radiation energy exchanges (Q . ), including

absorption, transmission, and reflection of this short
wavelength radiation

•

• Infrared radiation energy exchanges (Q. , ,), in-

cluding emission, absorption, transmission (through
plastic covers), and reflection of this long wavelength
radiation

• Forced convection between the top transparent cover
and the environment (Q, , .. )forced convection

•

• Natural convection between plates (Q . , .. )* natural convection

• Combined conduction and forced convection of heat from
the absorber plate surface to the heat transfer fluid within
t h e passages ( Q , , . . - , , . )

• . • • conduction -f forced convection

• Conduction in the backside insulation.

Each of these energy exchange mechanisms is discussed separately

in the following sections of this report.

3.1.1 Solar Radiation Energy Exchanges

In a classical paper (Ref. 1), Stokes derived the governing equations

for solar radiation energy exchanges between multiple transparent plates.

These equations treat variations in incident radiation magnitude, angle of

incidence, index of refraction, and extinction coefficient for any number of

plates. The effects of polarization, which become extremely important

when the angle of incidence approaches Brewster's angle, are also

treated. The results of Stokes' analysis were incorporated into the solar

collector model. It is surprising that other solar collector analysts have

avoided using these results, since they represent exact analytical solutions

to the governing physical equations; however, most prior analyses have

3-4
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relied upon simplistic approximations to these results. One consequence

of using the approximations often found in the solar energy literature is

that transient analysis becomes impractical, and only steady-state calcula-

tions can be made.

3.1.2 Infrared Radiation Energy Exchanges

For glass covers, the infrared radiation equations between plates

can be easily determined since glass is opaque to this long wavelength

radiation. For example, between any two parallel plates, the following

equation can be used when edge effects are negligible:

te/A>»',-2

However, for plastic film covers, some of the infrared radiation is trans-

mitted and the above equation is no longer valid. In such cases, the solar

collector model utilized a matrix solution of the flux equations to determine

all net energy exchanges between plates due to infrared radiation.

3.1.3 Convection Between Top Cover and Environment

The heat transfer coefficient between the top cover arid ambient air is

a function of plate temperature, air temperature, wind speed, plate dimen-

sions, and plate orientation. For normal wind conditions and solar collector

dimensions, the convection process is laminar. The following equation from

Ref . 2 was used in the solar collector model:

h , i = IT fo.664 Pr1/3 Re. 1/Z
external L I L

3-5

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

.where k, Pr and ReT were treated as temperature-dependent. (The pre-

ceeding equation is usually called the Pohlhausen solution.)

An average wind speed of 10 mph was assumed and a dimension of 30

feet was used to describe the collector.

3.1.4 Natural Convection.Between Plates.

In:most previous analyses, some constant unit conductance was

assumed between parallel plates. In the current study, however, the actual

variations in unit conductance caused by air temperature, plate spacing and

plate orientation were included by using curve fits for empirical data, as shown

in Fig. 3-2. A plate spacing of 1 inch was assumed and thermodynarnic prop-

erties of air were treated as temperature-dependent.

3.1.5 Heat Transfer from Absorber Surface to Fluid in Passages

This heat transfer process is a classic example of the fin-tube radiator

problem which has been investigated widely. Preliminary calculations re-

vealed that proper tube sizing and spacing could result in negligible tempera-

ture gradients over the collector, and, therefore, this heat transfer process

was omitted from the model.

3.1.6 Insulation Losses

The heat losses from the back of the collector are minimized by insu-

lating the entire backside area of the collector. Initial calculations revealed ^

that these losses could be made negligible by using a fairly thick volume of

cheap, lightweight, loose-fill insulation over the back of the collector.

Therefore, these losses were omitted from the analytical model of the

collector,. '

3-6
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3.1.7 Model Options

The analytical computer model was designed for use in either of the

following modes:

• Steady-State Conditions

*" -sb ' "

In this mode of operation, an iterative procedure was used to solve

the simultaneous energy transfer equations to yield the temperatures of all

collector components and the net energy transfer rates between components.

Constant values were input for collector temperature, ambient temperature,

incident solar radiation intensity and angle of incidence.

• Transient Conditions

This was the most important mode of operation and is felt to repre-

sent an advancement of the state of the art in solar collector analysis. In

this mode, the collector operating temperature, ambient temperature,

collector orientation, and experimental solar radiation data were input.

The program then conducted a transient thermal analysis of the collector

treating variations in solar radiation intensity and direction based upon

experimental solar data and the astronomy of the sun-earth system. All ,

components of the collector were assumed to be at ambient temperature at

sunrise, and the computer program solved numerically the transient energy

transfer equations to determine all temperatures and energy transfer rates

as functions of time. Since the actual collector will physically operate in

the transient mode, only a transient analytical treatment should be used

as the basis for designing a solar collector. However, nowhere in the

solar energy literature was there found a treatment similar tp the current

transient analysis.

3-8
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3.2 PARAMETRIC SOLAR COLLECTOR ANALYSIS

A parametric analysis was conducted to determine the effect on col-

lector performance of the following variables:

• Collector orientation

• Collector temperature

• Selective absorber surface coatings

• Number and type of transparent covers

• Solar environment

• Ambient environment.

The important results of the parametric analysis are discussed in the follow-

ing sections.

3.2.1 Optimum Collector Orientation

For a fixed orientation flat-plate solar collector operating in the

northern hemisphere, the best orientation for receiving a maximum amount

of incident solar radiation is southward-facing, with the collector tilted back

from the vertical by an angle, 0 , (see Fig. 3-3). This optimum tilt angle

(0 ) is a strong function of the time of year since it depends strongly on

the earth-sun astronomy. The optimum tilt angle for a solar collector

operating at the latitude of Huntsville, Alabama, is shown in Fig. 3-3 as a

function of time of year. This curve was generated by integrating the total

solar radiation received per day per unit area, and then differentiating this

function of $, setting the derivative equal to zero, and solving for the $ .

which maximizes radiation received. Several interesting points are pre-

sented by this curve. The variation between ^ for 22 June and for 22

December is large, over 70 . This immediately suggests that shifting

orientation twice per year, one to yield summer optimal performance and

the other to yield winter optimal performance, might improve performance

3-9
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appreciably. However, in the current study, a single fixed orientation was

assumed. Another interesting point is that on 22 June a 0 value greater

than 90° is observed. This results from the fact that the sun rises and sets

about 23.5 north of east and west, respectively, on this date. Thus the

total insolation for the day is greater for a slight northern tilt than for any

other value. However, this is somewhat misleading since the atmospheric

attenuation of solar radiation is greatest in the early morning and late even-

ing, and the atmospheric absorption was not considered in calculating ^ ..

To determine the best $ for the entire year from the curve in Fig. 3-3

is difficult. The following points must be considered.

• More energy collection is needed in winter than
in summer

• Cloud cover prevails more in winter than in
summer

• Days are shorter in winter than in summer

• Heat losses from the collector are greater in winter
than in summer due to the lower ambient temperatures.

After some deliberation, a collector tilt angle of 45 degrees was selected

for the entire year. This angle is biased in favor of winter collection, but not

enough to preclude adequate summer performance. In the total system analysis,

described in Section 6, this selection was found to be a good one.

3.2.3 Collector Temperature and Selective Coatings

The surface which ultimately absorbs the solar radiation trapped by

the collector can merely be blackened, or it can be treated to selectively

absorb solar radiation while emitting very little infrared radiation. The

latter surface should perform better, especially at higher temperatures.

During the course of this study, NASA-MSFC Materials Laboratory de-

veloped a selective coating with excellent properties. Figure 3-4 compares

3-11
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Fig. 3-4 . Effect of NASA-MSFC Developed Selective Coating on Collector
Efficiency
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a collector utilizing this coating with one utilizing a black surface. The

collector efficiency (Q .. j/Q- •<» J is plotted for each collector as

a function of collector temperature. In the current application, collector

temperatures between 220 and 250°F will be required, as discussed further-

in Section 6. The benefits of using the selective coating in this temperature

range are obvious, since the efficiency is nearly doubled. In addition to the

excellent thermal performance of this NASA-developed coating, the cost of

applying the coating will be small because of the simple application process

developed by Materials Laboratory during the course of this study.

Several other points should be made about Fig. 3-4. The curves were

generated using the steady-state option of the computer program. The con-

stant conditions are specified on the figure. Because the conditions do not

correspond to the actual transient operation of the collector, these data

provide little information about how much energy could be collected on a

particular day or about how large a collector should be used to drive the

heat pump/water heater system. Thus, these data cannot be used to actually

design a solar collector. Ironically, this steady-state presentation of data

is all that is found in most of the solar energy literature. This method of

presenting data is valuable, however, for comparing different design modi-

fications such as different coatings. Also, this type of data can be generated

on a computer for a minimal amount of computer time, while a transient analy-

sis of a collector over the entire year takes several hours of digital computer

time. Therefore, in the current study, steady-state analysis was used to

compare the effects of different design parameters and transient analysis

was used to generate design data for the optimum collector concept.

Because of the obvious benefits of the selective coating and because

NASA-MSFC personnel are confident that the coating cost can be reduced

to a totally acceptable level, all further collector designs discussed utilize

this coating.
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3.2.3 Collector Temperature and Transparent Covers

The type and number of transparent covers used in a solar collector

greatly influence its performance. Figure 3-5 presents the results of a

parametric study of transparent covers. The most important result of this

study is that Tedlar, a DuPont polyvinyl flouride plastic film, is superior to

glass for any number of covers and any temperature. Fortunately, Tedlar

is also cheaper than glass. Thus, Tedlar was chosen as the transparent

cover material. The Tedlar''considered in this analysis is 0.004 inches thick.

Another important point made by Fig. 3-5 is that two Tedlar covers are

superior to one or three such covers for the temperature range of interest

(220°F and slightly higher). Thus, the solar collector design from this point

on is based upon using two Tedlar cover sheets.

3.2.4 Selected Collector Concept

Based upon the parametric studies described previously, the collector con-

cept presented in Fig. 3-6 was selected as optimum. This collector utilizes

the selective coating and two Tedlar covers. The most economical method

of manufacturing this type of collector will probably be to modularize panels

as shown. The heat transfer fluid passages will probably be integrated into

the plate, rather than being tubes as shown.

To demonstrate the performance of the selected collector concept, NASA-

MSFC is currently constructing a 4-foot square test model. This model will be

tested in the near future to evaluate the accuracy of the analytical performance

predictions. The model will utilize the NASA-developed selective coating and

two Tedlar covers, as shown in Fig. 3-6.

For the remainder of the collector analysis, a fixed-orientation flat-

plate collector designed as shown in Fig. 3-6 was used. The tilt angle was

set at 45 degrees, for reasons previously discussed. The effects of solar

environment and ambient environment were determined in the transient

analysis described in the following section.
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Fig. 3-5 - Solar Collector Performance for Different Cover Materials
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NOTE: Collector panels are "modularized" in sections.

Chemically Plated
Aluminum Plate

Heat Transfer Medium
Passages

Insulation

Fig. 3-6 - Selected Collector Concept
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3.2.5 Transient Analysis of Selected Collector Concept

To actually design a solar-powered heat pump/water heating system

using the selected solar collector concept, design data must be generated

for the collector which provides the following information:

(%) = function (Day, T „ . ) .
VA/collected collector'

The effects of solar radiation variations and ambient temperature variations

must be included in generating these data. In the current study, a transient

analysis was conducted for each day of the year using the computer program

described previously. Experimental solar radiation measurements for each

day of the year were obtained from the U.S. Weather Bureau for 1971 for

Atlanta, Georgia. This is the closest location where the measurements are

made which has a latitude nearly the same as Huntsville's latitude. These

solar data are in the form of whole day totals for a horizontal flat plate. To

make the data useful for a minute-by-minute transient analysis for a plate

not horizontal in orientation, the data were recorrelated as follows:

• The theoretical whole-day total for a horizontal flat plate was
calculated for each day of the year, based upon the solar con-
stant unattenuated by atmospheric absorption.

• The measured whole-day total was divided by the theoretical
whole-day total to obtain the atmospheric transmission factor
for that day. Thus, the effects of cloud cover, atmospheric
absorption, air pollution, etc., were lumped into this trans-
mission factor which was different for each day of the year.

• The solar radiation incident upon the solar collector was cal-
culated minute by minute, based upon the solar constant, and
then multiplied by the atmospheric transmission factor for that
day^ Thus, time-dependent incident solar radiation was used
in the transient analysis.

Seasonal variations in ambient temperature also were included in the

analysis, as presented in Fig. 3-7. This ambient temperature was used for

heat loss calculations, both radiative and convective, from the collector to

the environment.
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Using the solar and ambient data as described, the transient analysis

was conducted for each day of the year and for several different collector tem-

peratures to yield (Q/A) . , as a function of Day and T .. . Figure

3-8 presents an example of the transient analysis for one particular day and

one particular collector temperature. Several interesting points are made

by this figure. The entire collector is assumed to be at ambient temperature

when the solar radiation first impinges upon it. The program then determines

the transient temperature response during warmup. After the collector gets

to its operating temperature, the heat transfer fluid begins circulating to main-

tain the operating temperature and net energy collection begins. Net energy

collection continues until late afternoon when the losses overshadow the inci-

dent radiation. At this time, energy collection ceases and the collector begins

to cool off. This same analysis was conducted for each day of the year and for

collector operating temperatures from 100 to 300°F. The data thus generated

were saved for use in the total system analysis discussed in Section 6.
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Fig. 3-8 - Daily Transient Solar Collector Performance
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Section 4

THERMAL, ENERGY STORAGE SYSTEM ANALYSIS

Since solar energy cannot be collected at night or on extremely over-

cast days, energy must be stored during collection periods for use in these

non-collection periods. Although energy can be stored in many different

forms, thermal energy storage is the most efficient form for the current

application, since the collected solar energy is converted to thermal energy

at the collector and reconversion to mechanical or electrical energy for

storage would be highly inefficient. There are two primary means of storing

thermal energy in a substance: (1) through a phase change, or (2) through a

temperature rise (sensible heat storage). Both of these thermal energy storage

mechanisms were investigated in the current study, as described in the following

sections.

4.1 THERMAL ENERGY STORAGE SYSTEM USING PHASE CHANGE
MATERIAL (PCM) AS THE ENERGY STORAGE SUBSTANCE

Energy can be stored in a substance as the latent heat of a phase change.

This energy can be stored through solid-solid, solid-liquid, or liquid-vapor

phase changes. However, in the current application, the quantity of energy to

be stored is of the order of 10 Btu and the storage volume would be excessive

for the liquid-vapor phase change. Therefore, only the solid-solid and solid-

liquid phase changes were considered. Several hundred PCMs were surveyed

to determine their applicability to the current system.

The desirable properties of a PCM are presented in Table 4-1. Each

PCM surveyed was evaluated according to these properties. Several PCMs

were found that would function adequately in the energy storage system,

although none was ideal in every property. Several workable PCMs are

listed in Table 4-2.
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Table 4-1

DESIRABLE PCM PROPERTIES

• Low Cost per Btu Stored (low cost per Ib and high
heat of fusion) m

• Melt Temperature: 200 — 230°F

• High Density

• High Thermal Conductivity

• Non-Hazardous, Non-Toxic

Chemically Stable, Non-Corrosive to Container
Materials.
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Table 4-2

TYPICAL CANDIDATE PCM PROPERTIES

Material Name

Melt Temperature Heat of Fusion

(Btu/lbm)

• Sulfur

• a-Naphthol

Methyl Fumarate

Potassium Alum

• Oxidized Asphalt

Micro-Crystalline Wax

240

203

216

196

180 - 220

170 - 220

24

70

104

79

60 - 100

Melt temperature without additive. Additives to lower melt
temperature have been tested by NASA-MSFC.
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A thermal model of the PCM energy storage system was developed to

determine the effects of fin arrangement, tube arrangement, and PCM prop-

erties upon overall AT (T ,. . - T . ). Typical results are pre-K collector generator' *r f

exit
sented for sulfur in Fig. 4-1. The container size, number of fins and tubes,

and basic package design are seen to be reasonable for a AT of 20 F and 10

Btu of energy storage. \

For the PCMs thus far surveyed, the cost of PCM for about 10 Btu of

energy storage will be $500 or more. The cost of the container, fins, tubes,

plumbing, insulation and installation must be added to the cost of PCM to ob-

tain total energy storage system cost. Thus, the total cost for a PCM system,

while reasonable, will be greater than the cost of a similar size water con-

tainer which can be used if sensible heat storage is utilized instead of phase
;

change energy storage. The following section presents the results of the

analysis of a thermal energy storage system using water as the sensible heat

storage substance.

4.2 THERMAL, ENERGY STORAGE SYSTEM USING WATER AS THE
SENSIBLE HEAT STORAGE SUBSTANCE

A large quantity of energy can be stored as sensible heat in water. The

mass of water required depends upon the quantity of energy to be stored and

the temperature rise of the water. Since the cost of water is negligible, the

container size is more important than the mass of water required. Figure 4-2

presents container size as a function of maximum energy storage and tempera-

ture rise. In the current application, about 1.1 x 10 Btu will need to be stored;

this value is justified in Section 6 of this report. For a 20°F temperature rise,

a cubical container measuring 9.4 ft on a side will be needed to store 1.1 x 10

Btu, as seen from; Fig. 4-2.

The basic water storage concept is shown in Fig. 4-3. The water tank

will probably be placed below ground level for thermal and aesthetic reasons.

As discussed further in Section 6, the generator exit temperature will be
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Tubes

Fins

Typical Results

• Energy Storage at 100%
Melt: 1,000,000 Btu

• PCM: Sulfur

• Cube Dimensions:
7 .2x7 .2x7 .2 ft

• 6 . : =• 100,000 Btu/hrsolar in

• Q • = 72,000 Btu/hr
gen out

• Number of Fins: 49
(aluminum)

• Fin Spacing: 1.73 in.

• Fin Thickness: 0.150 in.

Tube Spacing: 5.2 in. (Every other tube
contains generator fluid; every other
tube contains solar collector fluid. )

ATin = ATfin.n
melted) in

AT . = AT f.out fin ,

4- * i = AT.total in .out

frozen) out

= T „ .
collector

- Tgenerator
exit

= 20°F

Fig. 4-1 - PCM Package Design
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14

12

10

AT = 10°F

H_O Container

0 5 x 1(T 1 x 10°

Maximum Energy Storage (Btu)

1.5 x 10l

Fig. 4-2 - Container Size for H?O Energy Storage System
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To Collector

From Collector

To Generator

From Generator

T " = 60°Fground

Insulation

Fig. 4-3 - Thermal Energy Storage System Using Water
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about 200°F. Thus, the water temperature will vary from about 210°F to

about 230 F, for the 20 F temperature rise. To prevent boiling, a slight

prossurization of the system will be required, about 6 psig. Non-volatile

additives could be used instead of pressurization to elevate the boiling point,

but the cost of the additives may be excessive for the large amounts involved.

To prevent heat losses to the environment, some cheap loose-fill insulation

will be placed between the tank and surroundings. The percent heat loss from

the container versus insulation thickness is shown in Fig. 4-4 for a mean col-

lector temperature of 220 F and for a mean water temperature of the same

value.

The cost of insulation, even for a thickness of 1.5 to 2.0 ft, should be

small by comparison to the cost of the tank. The losses can therefore be

reduced below 5% without excessive cost. The cost of the tank itself will rely

heavily upon the ingenuity of the designer. One preliminary idea is to use a

thin metal or plastic liner, supported by a metal, wood, or concrete structure,

somewhat similar to current swimming pool construction techniques.

Two flow loops are attached to the container, one to the solar collector

and one to the generator of the absorption machine. The collector loop is en-

visioned as an on/off controlled flow system, which will allow flow circulation

whenever the collector temperature is slightly higher than the water tempera-

ture. The generator flow loop is envisioned as a variable flow loop, where the

flow rate will depend upon the stored water temperature and upon the character-

istics of the water/generator heat exchanger. For example, Fig. 4-5 presents

water flow rate required to provide a constant 72,000 Btu/hr generator input

at a generator exit temperature of 200 F for different heat exchanger char-

acteristics (UA) and different water temperatures. This variable flow will

be accomplished with cheap, commercially available mechanical valves which

require no power. The flow variation will allow a constant generator heat input

to be made regardless of the water temperature, thereby allowing the absorption

machine to function in the steady-state, steady-flow condition.
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4-10

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306275

The results of the thermal energy storage system analysis had to be

incorporated into the total system analytical: model discussed further in

Sections. Therefore, an overall AT (T ,, , - T . ) of 20°Fcollector generator
exit

was assumed for the energy storage system, since this AT was found reason-

able for either PCM or water energy storage. The cost of the energy storage

system was more difficult to estimate. A value of 0.05 cents/Btu was finally

assumed, based primarily upon the assumption of using water as the energy

storage substance. This value corresponds to a storage system total cost of

$550 for the 9.4-ft cubical system discussed previously.
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Section 5 .

HEAT PUMP PACKAGE ANALYSIS

An absorption cycle heat pump is used for heating or cooling the air in

the conditioned space. A schematic of the heat pump is presented in Fig. 5-1.

Thermal energy (Q ) added at the generator represents the primary energy
O

input for the machine. This energy is supplied by the energy storage system,

which received this energy originally from the solar collector. A small amount

of mechanical energy is added to the machine at the pump, but this energy is

very small compared to the other principal energy exchanges of the machine,

since the pumping is done on the liquid phase rather than on the vapor phase

as in a conventional heat pump. Thermal energy is liberated at the condenser

(Q ) and the absorber (Q ), and thermal energy is absorbed at the evaporator
. c a

(Qe). '

The heat pump operates in two basic modes: heating and cooling. In

the heating mode, heat is absorbed from the outside air at the evaporator,

which operates at a temperature below the outside temperature. Heat is

supplied to the conditioned space at the condenser and at the absorber, both

of which operate at temperatures above the temperature of the conditioned

space. From the first law of thermodynamics,

Aeating = 6c + 6a = V 6e-

Since Q represents collected solar energy, it is apparent that more heat.is
& ' .

supplied to the conditioned space than must be collected. A quantitative

measure of the efficiency of the heat pump operation is given by:

Cheating A^e
i^ • -

solar g

In some instances, the outside air temperature will drop below the evapora-

tor temperature. In such instances, the refrigerant flow will bypass the
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evaporator as shown in Fig. 5-1. In this case, the lower limit of H is reached:

Q
n = -r-2- = i.o.

Q
g .

In the cooling mode, heat is absorbed from the inside air at the evapo-

rator, which operates below the inside air temperature. This heat absorption

cools and dehumidifies the conditioned space. Heat is dumped to the outside

air at the condenser and at the absorber, both of which operate above the

ambient air temperature. A quantitative measure of the performance of the

heat pump under this mode of operation is given by:

• •

Q Q
: B - cooling _ e > .

Q , Qsolar g

Thus, it is seen that the most important parameter for the heat pump in

the heating mode is r\, and for the cooling mode it is (3 .. In addition to n and

(3 , the pump power required for operation in each mode is important since it

represents an electrical energy input which must be paid for by the owner of

the system. The magnitude of the pump power can be calculated under ideal

thermodynamic conditions as:

Ideal Power = mvAP.

Now that the modes of operation of the heat pump have been described

and the important parameters identified, the results of the heat pump analysis

will be presented in the following sections.

5.1 SELECTION OF OPERATING TEMPERATURES

Before a performance analysis of the cycle could be conducted, the

operating temperatures of the evaporator, condenser, and absorber had to

be selected. For the heating mode of operation, the condenser and absorber
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must transfer heat to the air in the conditioned space, which is about 70 F.

Therefore, TC and Ta were selected at 90°F, thus allowing a 20°F tempera-

ture differential to facilitate heat transfer. The evaporator temperature is

more difficult to select. The lower the value of T , the fewer the instances
6

when the outside temperature falls below Te; however, the higher the value of

T , the lower the pump power required for operating the heat pump. A value
C '

of 20°F for T was finally selected.

For the cooling mode of operation, the absorber and condenser temper-

atures were selected to be 105 F, thus allowing a reasonable temperature

differential between these components and the outside air on hot summer days.

This temperature is about the same as for a conventional heat pump. The

evaporator temperature was selected as 40 F, thus allowing a 30 F tempera-

ture differential with the conditioned space for providing heat transfer and

dehumidification.

The generator temperature was left as a parameter to be optimized, as

discussed further in Section 5.4.

5.2 SELECTION OF DESIGN HEATING AND COOLING LOADS

The design heating and cooling loads for any conditioned space are

functions of many variables, including building size, exposed area, windows,

sun exposure, ambient temperature and humidity variations, insulation, con-

struction materials, number "of occupants, etc. In the current study, instead

of determining design heating and cooling loads for a particular conditioned

space, it was desired to define typical loads approximating the requirements

of many houses. Thus, the following loads were defined:

• Maximum Heat Load = 72,000 Btu/hr

• Maximum Cooling Load = 36,000 Btu/hr.
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These loads are fairly typical for a home in this region of the nation.

They apply approximately to a poorly insulated 1500 ft house or to a well-

insulated 2500ft house. These loads were assumed in the remainder of the

heat pump analysis to allow calculation of typical values of heat rates, flow

rates, and power requirements. Any other loads could be met by the absorp-

tion cycle heat pump with appropriate linear adjustments in heat rates, flow

rates, and powers.

5.3 SELECTION OF FLUIDS

The selection of the refrigerant and absorbent fluids for the absorption

cycle heat pump greatly influences the performance of the machine. However,

only a few fluid pairs are currently known to be practical for this application.

Among those available, the parameters to be compared are basically two:

• the ability of the fluids to function at the selected temperatures,

• the effect of the fluid properties (primarily Ah£ and .
"refrigerant

P-T-X properties) on the pump power requirement of the machine.

(The efficiencies (r\ and.p) are also important in selecting fluid pairs;

however, all current fluid combinations offer about the same r\ and P for the

same operating temperatures. )

Table 5-1 presents a comparison between the most competitive fluid

pairs. Obviously, ammonia and water are best for the current application.

5.4 HEAT PUMP PERFORMANCE

After determining the operating temperatures, the heating and cooling

loads, and the best fluids for use in the absorption cycle heat pump, a per-

formance analysis was conducted to determine the effect of generator tem-r

perature on r\, (3 and pump power. The analysis was conducted by solving

simultaneously the absorbent continuity equation, the refrigerant continuity
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equation, and the energy equation at each location around the cycle to meet

the selected heating arid cooling loads at the selected temperatures. For the

heating mode, the analysis was based upon a generator input heat load of

72,000 Btu/hr rather than a heating output of 72,000 Btu/hr. This was done

because the maximum heating load of the conditioned space will occur when

the outside air temperature is below the evaporator temperature (20 F). In

such an instance, the refrigerant will bypass the evaporator and, from the

first law of thermodynamics,

Cheating = 6a + 6c = ̂ g = 72'000 Btu/hr'

When the outside air temperature is above the evaporator temperature, the

evaporator will not be bypassed and:

• • • • • •

Seating = °a + Qc = V °e = 7

Thus, the heating system will provide adequate maximum heating on

very cold days without the evaporator and will provide more heating than is

needed when the evaporator is used on normal or sunny days. The heating

mode was analyzed as described above for two basic reasons:

• Conventional systems are designed to meet maximum heating
loads with electric strip heaters which consume large quantities
of electrical energy. Since the electrical power is to be minimized
in the solar -powered system, strip heaters are undesirable and
the system should be designed to deliver the maximum heating
load without requiring strip heaters.

• Although the heating output will exceed the demand on normal days
when the evaporator is not bypassed, this extra output will yield
fast response and will require the same daily energy input at the
pump as an undersized unit. .

As stated previously, the generator temperature is the primary inde-

pendent variable of interest in the heat pump analysis. For a given set of

operating conditions, T has a lower limit. This lower limit is, of course,r °
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the boiling point of the solution. Figure 5-2 presents this lower limit for T
O .

as a function of T for the heat pump in the heating mode. For the selected
C

value of T (20°F), the minimum generator temperature is about 175 F.
G ,

Figure 5-3 presents this lower limit for T as a function of absorber andgen
condenser temperature (T = T ) for the heat pump in the cooling mode. Fora c
the selected value of 105 F for T and T , the minimum generator temperature

i SL C . •

is about 182 F. Therefore, only temperatures above these values must be

considered in the performance analysis.

Figure 5-4 presents the results of the performance analysis for the heat

pump in the heating mode. The ideal power decreases from infinity at about

175 F to very low values above 200 F. The r\ decreases slightly with in-

creasing T , thus showing the benefits of relatively low temperature op-
O • • \-

eration of the generator.

Figure 5-5 presents the results of the performance analysis for the heat

pump in the cooling mode. The ideal power decreases from infinity at about

182°F to very low values above 200 F, again indicating the need for a generator

temperature exceeding 200 F. The (3 decreases with increasing T , again
• O

showing the benefits of a fairly low temperature generator.

Both Fig. 5-4 and Fig. 5-5 imply that there is some optimum value of

T , depending upon the relative importance of maximizing r\ (or P) and of

minimizing power. However, T also affects solar collector efficiency
O

since T .. must be greater than T . Thus, an optimization of Tcollector 5 gen ' gen
must include the effects of T upon TJ, P, power and solar collector

O

efficiency. Such an optimization was conducted for T , as well as for
O

several other total system design variables, and is discussed further in the

following section of this report.
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Conditions

Heating Mode Operation.
T = T = 90°Fa c
Aqua-ammonia Fluid Combination

260

240

c
0)
00

220

200

180

160

Workable
Region

~ Impossible
Region

-30 -20 -10 10 20 30 40

Fig. 5-2 - Required Generator Temperature for Different Evaporator
Temperatures for Heating Mode Operation
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Fig. 5-3 - Required Generator Temperature for Different
Absorber/Condenser Temperatures for Cooling
Mode Operation
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Fig. 5-5 - Heat Pump Performance in Cooling Mode for Different
Generator Temperatures
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5.5 CONTACT WITH MAJOR MANUFACTURER OF ABSORPTION CYCLE
AIR-CONDITIONING SYSTEMS

To further establish the feasibility of large-scale manufacturing of the

absorption cycle heat pump described in previous sections, Lockheed con-

tacted a major manufacturer of commercial absorption cycle air conditioning

systems, the Arkla Air Conditioning Company. The modes of operation,

fluids, temperatures and performance of the heat pump were described to

Arkla to obtain their critical opinion of the feasibility of the system. In re-

sponse, Arkla personnel perceived no major problems with any aspect of the

machine. In addition, they informed Lockheed that, from the preliminary

description of the machine, they could see no reason why the mass-produced

heat pump would cost much more than their current production systems, which

cost less than $900 for residential sizes. It,should be noted that these pre-

liminary contacts were telephone conversations, and that the feasibility and

cost estimates represent opinions rather than firm conclusions at this time.

However, these positive opinions of a major manufacturer are considered

important additional indications of the practicality of the absorption cycle

heat pump.
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Section 6

TOTAL SYSTEM ANALYSIS

The total system cost (including hardware, installation, maintenance,

and operating costs) is a function of three primary independent variables:

• Solar collector area

• Energy storage system capacity

• Collector temperature.

To evaluate the economic feasibility of the solar-powered system, it

is necessary to determine the optimum value for each of these three variables

and then to compare the resultant total system cost to the cost of a conventional

heating, cooling, and water heating system. To accomplish these objectives,

a total system analysis was conducted during this study. To conduct this analy-

sis, the performance and cost results of the solar collector analysis, the thermal

energy storage system analysis, and the heat pump package analysis were in-

corporated into a total system computer analytical model. The analytical model

and parametric analysis are described in the following sections. The perform-

ance of the preliminary optimized system is discussed, and the results of a

detailed cost comparison are presented. :

6.1 COMPUTER ANALYTICAL MODEL

As described in Section 3, the results of the solar collector analysis

yielded the total energy collected per unit area as a function of collector tem-

perature for each day of the year. These results were based upon transient

analysis and empirical solar data. As further presented in Section 3, the

collector concept, using two Tedlar cover sheets, was chosen as optimum

from a cost and performance viewpoint. The best cost estimate was taken
#

as $1.00 per square foot . Thus, the following relations were incorporated

into the total system computer analytical model:

*
Estimated cost figures for system components are preliminary, and will be
more firmly established during the Phase II program as discussed in Section
9 and the Appendix.
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Q „ - , pay, T ' . ) = Q/A (Day, T .. t ) . (Area),collected x 7> collector' ' * 7' collector' v "

Cost .. . = $l/ft2 • Area .collector '

As described in Section 4, the overall AT for the thermal energy storage

system was found to be about 20 F for a reasonable system design. The cost

of the thermal energy storage system was estimated to be about 0.05 ^/Btu,

as also described in Section 4. Thus, in the total system computer analytical

model, the following relations were utilized:

Cost,., . = (0.05 //Btu) i(E ),thermal energy max
storage system

T = T ,, ' - 20°F.
gen collector

As described in Section 5, the efficiency and ideal power were deter-

mined as functions of generator temperature for both summer and winter

operation. Thus, the following relations were used in the total system model:

Cheating

,- = .cooling gen

Power, .. =Power u (T ),
heating H gen'

Power ,. = Power,, (T ).cooling C gen

A thermal model for the conditioned space was required in the total

system analysis, and the chosen model is presented in Fig. 6-1. As discussed

in Section 5, these heating and cooling loads are fairly typical for a house in

the Huntsville area. The water heating requirement was taken to be the typical

value of 4000 Btu/hr continuously throughout the year.
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Fig. 6-1 - Heat Gain to House for Different Ambient Temperatures
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A seasonal variation in ambient temperature was utilized in the total

system analysis to determine daily heating and cooling requirements through-

out the year. This ambient temperature variation is shown in Fig. 6-2, and

is the same curve that was used in the solar collector analysis.

Using the relations and curves defined previously, the total system

computer program was designed to calculate each energy quantity of impor-

tance for each day of the year for a given set of:

• Collector area (Area)

• Collector temperature (

• Energy storage system capacity (E ).

These important energy quantities calculated by the program were:

Qcollected(Day)

Cheating <Day>

Q .. (Day)cooling "

Q (Day)pump '

• Estored (Day)

Q (Day)aux }

• Qwaste (Day)

= total energy collected on this day.

= total heat added to house for space
heating on this day.

= total heat removed from house for
air conditioning on this day.

= total heat added to hot water heater
on this day.

= total electrical energy used by pump
on this day.

= total energy left in energy storage
system at end of this day.

= total auxiliary energy added to
thermal energy storage system
on this day to prevent E . ,, . ' . ,r stored
from going below zero.

= total energy which was collected but
could not be stored because the energy
storage system was fully charged
(Estored=Emax) and C°uld aCC6pt n°
further energy input on this day.
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n

ollected
Day = 1

n

Z heating
Day = 1

n

E Q .. (Day)cooling* "
Day = 1

n

2^1 H.
Day = 1

n

Day= 1
Z Q (Day)pump 1I

total energy collected from
Day = 1 through this day.

total heat added to house for
space heating from Day = 1
through this day.

total heat removed from house
for air conditioning from Day = 1
through this day.

total heat added to hot water
heater from Day = 1 through
this day.

total electrical energy used by
pump from Day = 1 through this
day.

Z Q (Day)aux '
Day = 1

n

Day = 1
waste

total auxiliary energy added to
thermal energy storage system
from Day = 1 through this day.

total energy collected but not
stored from Day = 1 through
this day.

To determine the combination of Area, T ., . , and E which would
collector max

yield the most economical total system, a total system cost equation was derived

as presented in Fig. 6-3. The total cost per year was a function of only the three

variables: Area, T
collector» and E

max- A parametric study was conducted to

determine the optimum total system design, using the computer model previously

discussed, and the results of this parametric study are presented in the next

section.
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6.2 PARAMETRIC TOTAL SYSTEM ANALYSIS

The three independent variables were varied in combination over the

ranges shown below:

0 < Area < 2500 ft2

220°F < T „ . . < 250°F— collector —

0 < E < 2.0 x 106Btu.— max —

Collector temperatures below 220°F were excluded from consideration

because these temperatures correspond to generator temperatures below

200 F. At such low generator temperatures, the ideal pump power increases

very rapidly with decreasing temperature, a« shown in Section 5. Therefore,

the deviation between actual power and ideal power could cause serious errors

for these low temperatures. For collector temperatures above 220 F (gene-

rator temperatures above 200 F), however, the ideal pump power is so small

that even a 100% deviation between actual power and ideal power would cause

an error in total system cost per year of less than 2%.

The results of the total system optimization study are presented in Fig.

6-4. The collector temperature of 220 F was found to be superior to the other

temperatures considered, and the best collector area and energy storage system
2 6

capacity were found to be 1300 ft and 1.1 x 10 Btu, respectively. The optimum

design is seen to yield the minimum total cost per year in Fig. 6-4.

Several observations must be made about this optimum system design:

• Both the pump power and auxiliary power requirements
were met with electrical energy at the current Huntsville
minimum rate of 0.88 £ /kW-hr. The auxiliary power
requirement could be met with natural gas, fuel oil, or
other thermal energy source., The rate of 0.88^/kW-hr
does not take cost increases into consideration over the
20-year lifetime of the system. (See Section 6.5 for more
on this topic).
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T „ . =220°Fcollector

= $1.00/£t

= 0.05 cents/Btuenergy storage
system

008 pump =*1000-00

Cost =0.88 cents/kW-hrpower1500 ft
Area Lifetime = 20 years

1300 ft Area

Optimum Point

0.5 x 10° 1.0 x 10" 1.5 x 10*

Thermal Energy Storage System Capacity (Btu)

Fig. 6-4 - Total System Cost Optimization
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• The cost of the heat pump (assumed $1000) does not affect
the optimum point since this cost is not a function of the
independent variables. However, it does affect the total
system cost per year.

• The collector cost ($l/ft ), the energy storage system
cost (0.05^/Btu), and the lifetime of the system (20 years)
all affect the optimum point and are all educated guesses
at this stage of development. Therefore, the optimum
point presented should not be considered the actual best
possible system design. As better estimates of costs and
lifetime become available, the system should be reopti-
mized to determine a new optimum design. The given
optimization is meant only to illustrate the method avail-
able and to provide rough estimates of total cost per year.

6.3 PERFORMANCE OF PRELIMINARY OPTIMIZED SYSTEM

The performance of the system obtained from the preliminary optimi-

zation discussed previously is summarized in Table 6-1. Noteworthy in this

table are the power requirements for heating and cooling, both of which repre-

sent light bulb loads. The yearly operating cost ($30) is about an order of

magnitude less than the operating cost for a conventional heat pump. When

scanning the heating capacities, it should be remembered that no strip heaters

are needed to deliver these energy outputs.

Figure 6-5 presents the important energy quantities for the same system

through the entire year. Note that the outputs of the system, namely the total

heating, cooling and water heating energy summations for the year greatly

exceed the energy input

n

(Q + Q ) (Day)aux pump' v y 'I

which must be paid for by the owner of the system. The total energy collected

curve is somewhat misleading. About 50% of this collected energy was not

utilized because the thermal energy storage system was fully charged while

it was being collected. For example, on many spring and fall days, the solar

energy collected far exceeds the requirements for providing heating, cooling,
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and water heating. The excess energy collected is added to the storage sys-

tem until it is fully charged with energy. Any additional solar energy collected

must be wasted, since there is no place to store it. If water is used as the

energy storage medium, the container could be designed to withstand pressures

higher than the 6 psig required to maintain the liquid state at 230 F. If so, the

water could be allowed to heat up to 240 or 250 F on days when energy supply

far exceeds its demand. For such a system, the auxiliary energy requirements

would be substantially less than those depicted in Fig. 6-5.

The energy storage system performance is further illustrated by Fig.

6-6, which shows the daily variation in stored energy for one of the worst

monthly periods of the year. On days 1, 4, 5, 6, 1 1, 12 and 30, more solar

energy was collected than was needed. However, since the computer model

will not allow the stored energy to exceed E = 1.1 x 10 Btu, a large

quantity of solar energy available was wasted for lack of a place to put it.

And, unfortunately, on days 16, 19, 20, 21, 24, 25, 26, 27 and 28, more energy

was required than available, and auxiliary energy had to be added to the system

to make up the difference. Therefore, an obvious challenge to the inventiveness

of the designer of such an energy storage system is to more effectively store

the collected energy for longer periods economically. However, the optimized

system did perform excellently in the total system analysis, and the following

section shows that the solar-powered system offers significant economic super-

iority over a conventional heat pump system.

6.4 DETAILED COST COMPARISON OF SOLAR-POWERED SYSTEM WITH
CONVENTIONAL SYSTEM

In spite of the obvious benefits of the solar powered heating, cooling and

water heating system in the areas of energy, pollution and natural resources,

the system will never be widely adopted unless it is proven to be economically

competitive to conventional systems. To determine the economic competitive-

ness of the solar powered system, a detailed cost comparison of the two systems

was made during the current study. The basis for comparison is presented in

Table 6-2. The outputs, environment, power source, and lifetime were identical

for both systems to make the comparison a fair one. The conventional heat pump
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cost and compressor replacement frequency and cost were obtained from

heat pump manufacturers. To reflect unavoidable electricity cost increases

over the 20-year period, a 1975 base cost estimate and a 5% estimated yearly

increase in cost were based on conservative predictions from Huntsville

Utilities.

The results of the cost comparison are presented in Fig. 6-7. It must

be stressed that these results are based upon rough cost estimates for the

solar-powered system and, therefore, should not be construed as, extremely

accurate. However, the basic trends are apparent in Fig. 6-7. The solar -

powered system will cost more initially than a conventional system, but will

become economically superior in a relatively short period of time. Although

accurate conclusions must await the actual fabrication and demonstration of

a prototype solar-powered system, the following conclusions are made with

reasonable confidence:

• Although the initial investment in the solar^powered system
will be greater than for the conventional system, the solar-
powered system will become superior in cost within a few
years, probably 3 to 7 years.

• Over the lifetime of the solar-powered system, the owner
will pay less than half what his neighbors with conventional
systems will pay for heating, cooling, and water heating.
This savings will amount to thousands of dollars, probably
$8000 to $10,000.
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Section 7

SYSTEM APPLICABILITY TO DIFFERENT REGIONS
OF THE UNITED STATES

The applicability of the solar-powered system to different regions of

the nation is a complex matter. The only accurate method of judging this
- N

applicability is to conduct a detailed analysis of the system for the actual

weather conditions and solar conditions peculiar to a particular locale, as

was done for Huntsville in the current study (Section 6). After such an

analysis is conducted, a cost comparison between the S'olar-powered system

and a conventional system will determine the applicability.

Under the current contract, detailed analyses for more than one loca-

tion were beyond the scope of effort. Therefore, accurate estimates of sysr

tern applicability for locations significantly removed from the Huntsville area

have not been made. However, several significant facts strongly imply that

the system should be applicable for most regions within the United States,

as given below.

• The availability of solar radiation does not vary too greatly
over most of the nation. Figure 7-1 shows the average daily
total radiation received by a horizontal surface for each of
the twelve months of the year (Ref. 4). Within the bands
shown on the figure, all of the following cities are included:

Atlanta, Ga.
New York, N . Y .
Miami, Fla.
Los Angeles, Calif.
Rapid City, S.D.
Phoenix, Ariz.
Portland, Me.
Fort Worth, Texas
Indianapolis, Ind.

The points for Atlanta are shown on the figure since daily
solar data from Atlanta were used in the detailed analyses
conducted during this study. The Atlanta data are closer
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to the minimum band of Fig. 7-1 than to the maximum band,
thus indicating that the solar radiation assumed available
in the current study is below the median available in these
nine cities. The actual data for these cities is presented
in Table 7-1 (Ref.4).

• The cost of power for other regions of the nation is much
higher than for Huntsville. The national average cost of
electricity is more than double the Hunts ville rate. Thus
the potential savings in operating cost are greater for most
regions of the nation than for Huntsville.

• In regions of the nation with more severe climates than
Huntsville, the solar collector, energy storage system,
and heat pump would have to be larger in capacity to meet
the larger heating and/or cooling requirements. Thus,
the initial investment in hardware would be greater. How-
ever, because greater heating and/or cooling requirements
are needed, the potential savings in operating cost would
also be greater than for Huntsville.

Therefore, based upon all indications discovered to date, the solar-

powered heating, cooling and water heating system should be applicable to

most regions of the nation with proper modifications in sizing and operating

conditions.
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î .
ON

ON

ĉo
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Section 8

CONCLUSIONS

The basic conclusion of the stud/ to date is that the solar-powered

residential heating, air-conditioning, and hot water heating system is tech-

nically feasible and economically competitive with conventional systems.

The following important conclusions were also drawn from the results of

the study.

• The optimum solar collector design for the system consists
of two transparent Tedlar covers over an aluminum plate
treated with the NASA-developed selective coating. This
coating offers excellent thermal performance at minimal
cost and was developed by NASA-MSFC through in-house
efforts during the current study. The collector should face
southward with a tilt angle of 45 degrees for operation in the
Huntsville, Alabama, area.

• At this time, water appears economically superior to available
PCMs as the thermal energy storage substance, although PCMs
may become superior to water through future research. An in-
sulated, slightly pressurized container is envisioned for
storing the water. Interfaces between the stored water and
the collector and generator have been conceived and pose
no serious design difficulties.

• The absorption cycle heat pump should utilize ammonia and
water as the working fluids, and should operate at the condi-
tions specified previously. The power requirements for the
heat pump will be minimal and the performance adequate.
No serious problems are foreseen in designing, fabricating
and testing such a heat pump, since the operating conditions
are similar to those available in current commercial units.

• During this study, the heat pump design was discussed with
Arkla Air Conditioning Company, a major manufacturer of
commercial absorption machines. They saw no obvious
problems in achieving eventual mass production of such
machines at reasonable costs.

• The total system has been optimized based upon preliminary
cost estimates. From this optimization, 1300 ft2 of collector,
1.1 x 10^ Btu of energy storage, and a collector temperature
of 220°F were found to be best for a typical home in Huntsville,
Alabama. Before actual full-scale construction begins, the
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system should be reoptimized for the actual test building,
and updated cost estimates should be used if available.

• The optimized system will cost more than a conventional
system for initial hardware and assembly. However, in
about five years the solar powered system should demon-
strate economic superiority over conventional systems.
Over the lifetime of the system, the owner will save on
the order of $10,000 in total system cost, compared to a
conventional system.

• The system should be applicable to most regions of the
United States, with proper modifications in collector area,
energy storage system capacity, and heating and cooling
outputs.

• If the system achieves widespread usage, dramatic effects
will be observed in alleviating the national energy crisis,
reducing pollution and preserving natural resources.

• When the solar-powered heating, cooling, and water heating
system was originally conceived, uncertainties concerning
its performance and cost precluded immediate construction
and testing of the system. Therefore, this feasibility study
was conducted to determine through extensive analysis the
actual technical and economic feasibility. Every aspect of
the system has been verified feasible to the extent possible
through analysis. Thus, the technical risks involved in
actually fabricating and testing a prototype system are
currently considered minimal.

In light of the previous conclusions, efforts should begin immediately to

design, fabricate and test a full-scale system to demonstrate its practicality.

Specific recommendations for such a demonstration program are presented in

the following section. .
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Section 9

RECOMMENDATIONS FOR PHASE II STUDY

The overall development of the solar-powered space heating, air-

conditioning and hot water heating system should logically consist of three

basic phases, as shown below.

• Phase I —Analytical Feasibility Study

• Phase II —Design and Fabrication of Full-Scale
Demonstration Unit

• Phase III — Experimental Verification Program.

Phase I has been successfully completed and the feasibility has been

verified analytically. Phase II is envisioned as a one-year program with a

complete demonstration system as the major output. Phase III will require

one calendar year of testing followed by several weeks of reducing and eval-

uating data. When the three phases are successfully completed, the system will

be fully verified and ready for widespread application.

A recommended plan for the Phase II study was generated during the

current study. The basic flow chart of efforts is presented in Fig. 9-1. A

building will be selected and modified to simulate the heating, cooling and

water heating requirements of a typical Huntsville residence. The three

major systems will be designed concurrently and with a large amount of

interaction to assure an optimum total system design. An instrumentation

system will be designed to measure all pertinent quantities. The total system

will be fabricated, and a detailed test plan will be developed. This flow chart

represents an orderly manner of proceeding from the end of Phase I to the

beginning of Phase III. The details of each effort in Fig. 9-1 are presented

in the appendix.
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Fig. 9-1 - Flow Chart of Phase II Efforts
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Appendix

Each of the major efforts delineated in Fig. 9-1 is outlined below.

I. Building Selection

A. Cost Minimization

1. Use available NASA building and/or

2. Use prefabricated home or trailer

B. Location

1. Unshaded area

2. Non-protected area

C. Size

1. Should approximate typical Huntsville
residence ,

2. Should allow collector installation on roof '

II. Building Modifications , . , • .' - . :

A. Modify Insulation if Necessary to Simulate Typical Huritsville
Residence •

B. Add Equipment to Simulate Typical Heat Loads, Cooling Loads,
and Humidity Loads Produced by Occupants, Appliances, etc.

III-(i). Solar Collector Design

A. Structural Design

B. Thermal Design

1. Fluid loop design

2. Insulation design

A-l
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C. Aesthetic Design

D. Cost Optimization Studies

1. Materials

2. Manufacturing processes

3. Installation techniques

4. Lifetime maximization

E. Control System Design.

Ill-(ii). Thermal Energy Storage System Design

A. Structural Design

B. Thermal Design

1. Fluid loop to collector

2. Fluid loop to generator

3. Heat exchangers for hot water and generator

4. Insulation of tank

C. Aesthetic Design

D. Cost Optimization Studies

1. Materials

2. Manufacturing processes

3. Installation techniques

4. Lifetime maximization

E. Control System Design

Ill-(iii). Heat Pump Design

A. Work in Conjunction with Commercial Heat Pump
Manufacturer

B. Heat Exchanger Designs

C. Air Distribution System Design

D. Blower Designs

E. Control System Design

F. Pump Design

A-2
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G. Cost Optimization Studies

1. Materials

2. Manufacturing processes

3. Installation techniques

4. Lifetime maximization

IV. Total System Design

A. Develop More Detailed Cost and Performance Model of
Total System

B. Use Model to Evaluate Each Proposed Design Detail for
Collector, Energy Storage System, and Heat Pump to
Determine Effect on Total System Cost and Performance

C. Determine Optimum Design from Total System Viewpoint

D. Determine Best Interface Between System and Test Building

E. Develop Sketches Suitable for Fabrication of All System
Components

V. Instrumentation System Design

A. Measure all Heat Transfer Rates

B. Measure all Important Temperatures

C. Measure Weather Quantities

1. Temperature , . •

2. Humidity

3. Wind speed and direction

4. Solar radiation

D. Measure Cycle Conditions

E. Measure Temperature and Humidity Distribution Within
Building

F. Automate Data Acquisition System

VI. Total System Fabrication
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VII. Test Plan Development

A. Explain all Measurements

B. How to Evaluate Measurements

C. Expected Variation in Measurements

D. Errors in Measurements

VIII. Phase II Final Report

A. Details of All Results

B. Plans for Phase III

A-4
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NASA TECH BRIEF
Marshall Space Flight Center

NASA Tech Briefs announce new technology derived from the U.S. space program. They are Issued to encourage
commercial application. Tech Briefs are available on a subscription basis from the National Technical Information
Service, Springfield, Virginia 22151. Requests for Individual copies or questions relating to the Tech Brief program may
be directed to the Technology Utilization Office, NASA, Code KT. Washington, D.C. 20546.

A Practical Solar Energy Heating and Cooling System

Flat Plate
Solar

Collector

Heat Transfer
Medium Flow
And
Return Lines Absorption Cycle

Heat PumpConditioned
Air Ducts

Schematic of Solar-Powered Space Heating, Air-Conditioning
and Hot Water Heating'System

A recent study has concluded that a solar-powered
residential heating and cooling system is now technically
and economically feasible. The proposed system pro-
vides space heating, air conditioning, and hot water. The
illustration shows how the system could be used in a
typical home. The major components are:

(a) a flat-plate solar collector to process solar
radiation,

(b) a thermal-energy storage system to store the
collected energy for use during night and
heavily overcast periods.

(c) an absorption cycle heat pump for both heating-
and cooling the residence, and

(d) a hot water system (not shown) that uses heat
. from the energy storage system.

The best solar collector was predicted to consist of
two transparent covers over an aluminum thermal
absorber plate treated with a'special selective coating.
The orientation of the collector can be optimized for a
particular geographic location. The heat is transferred
to a fluid that carries it to the energy storage system.

(continued overleaf)

This document was prepared under the sponsorship of the National
Aeronautics and Space Administration. Neither ttte United States
Government nor any person acting on behalf ofjhe United States

Government assumes any liability resulting from the use of the
information contained in this document, or warrants that such use
will be free from privately owned rights.



The energy transfer fluid and the energy storage
fluid may be water or a phase-change material. Economic
and technical analyses of candidate Quids indicate .that
water is the best choice for the energy storage substance.
In the system it is stored in an insulated, slightly pres-
surized container.

An ammonia and water mixture is the most efficient
heat pump working fluid. Using this mixture no serious
problems are envisioned in the design and fabrication
of a heat pump, since the required pump will be similar
to commercial units.

As part of the study, mathematical models have been
constructed for the analysis and evaluation of all phases
of the system. Both technical and economic criteria
have been considered in the selection of an optimal
system from among several alternatives.

The system should be usable in all parts of the
United States. The costs of installation will be greater
than for conventional heating systems, but this differen-
tial will be defrayed after a few years of service by the
very low operating costs. In fact, in the long run, solar-
energy heating and cooling will be less expensive than
present methods.

Notes: v /
1. This study was. a feasibility project, and an actual

working model has not yet been tested. However,
plans are underway for the construction and testing
of prototypes.

2. Requests for further information may be directed to:
Technology Utilization Office
Marshall Space Flight Center
Code A&PS-TU
Marshall Space Flight Center, Alabama 35812
Reference: B73-10156

Patent status:
NASA has decided not to apply for a patent.

Source: M. J. O'Neill, A. J. McDanal,
and W. H. Sims of

Lockheed Aircraft Corp.
under contract to

Marshall Space Flight Center
. (MFS-22563)
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New Technology Utilization Program

Title: The Development of a Residential Heating and Cooling System Using '
NASA-Derived Technology, " Contract NAS8-25986 (Mod. 5)

Brief Description: Under the subject contract, preliminary analytical develop-
ment was completed and preliminary designs were generated
for a system capable of providing space heating, air-
conditioning, and hot water heating for a typical residence,
using solar energy as the primary input. The system con-
cept was proven to be technically feasible and cost-competi-
tive with conventional systems. The major benefits of the
system are in the areas of energy conservation, pollution
abatement, natural resource preservation, and significant
cost savings for the user.

Detailed Description: The general purpose of the item is to utilize available
solar energy to provide heating, cooling, and hot water
heating for a residence.

The solar powered system represents several advantages
over conventional systems because the primary driving
energy is solar energy rather than electricity, natural
gas, or fuel oil. Some of these advantages are listed
below.

• If the system receives widespread adoption, the
national energy crisis will be favorably impacted,
since one-fourth of the total energy consumed in the
U. S. is used for space heating, air-conditioning,
and water heating. • ',

• Air, water, thermal, nuclear, and solid-waste pol- ,
lution will be favorably impacted by the system because !

of reduced needs for electricity and fossil fuel com- ]
bustion. '

• Natural resource preservation will be aided by the :

system. Also, .the environmental destruction due to ,
mining and the dependence on foreign powers for '
petroleum will be reduced. :

G R O U P D I V I S I O N O F L O C K H E E D A I R C R A F T C O R P O R A T I O



• Since solar energy is free, the owners of the system
will realize great savings in operational costs.

The principle of operation of the system is simple. Inci-
dent solar radiation is processed by a flat-plate solar
collector located on the roof of the residence or elsewhere
nearby. The collected energy is stored in a thermal energy
storage system, using either the latent heat of fusion of a
phase change material (PCM) or a sensible heat storage
in water. Actual heating or cooling of the residence is
obtained from an absorption cycle heat pump. An absorp-
tion cycle machine uses thermal energy rather than electri-
cal energy as the primary input. In this case, thermal
energy from the energy storage system powers the heat
pump. The'outside power required by the solar-powered
system is similar in magnitude to a light bulb load. In
addition, heat from the energy storage system is used to
provide domestic hot water.

Several features of the system are believed to be new,
including:

• The system will provide all heating, cooling, and water
;
:. heating requirements for the residence with only minimal

outside power. v . .

.'.'•' The system utilizes an absorption cycle heat pump for
heating and cooling. During heating, therefore, more
thermal energy is added to the conditioned space than
is collected since-additional-heat is absorbed from the
outside air.

• Methods and computer programs have been developed
to optimize the system for a particular locale, thereby
yielding required performance at minimum cost.

• The: system offers significant economic savings to
the user by comparison to conventional systems, on
the order of $10,000 over a 20 year lifetime.

• The system utilizes new and improved designs for the
solar collector, energy storage system, and absorp-
tion cycle machine.

Additional information about the solar-powered system is
provided in the attached report.

Applications: The system should be applicable for residential usage
throughout most of the U. S. with proper sizing of the col-
lector, energy storage system, and heat pump. The major
user will be the average American home owner.



Possible Extensions: The system should be extendable to heating, cooling,
and water heating for apartment complexes, business
facilities, factories, etc.

Degree of Development: Concept only.

Technological Significance: In relation to present state of technology, this
reportable item is considered to be a major improve-
ment.

Innovator: Mark J. O'Neill

Publications: Attached report

Technical Supervisor of Innovator: Juan K.. Loviri, Dept. 54-01
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Disclosure of Invention (Cont'd) . ,

M. J. O'Neill, E/N 668036 - Inventor ^ • ' <^<
W.H. Sims, E/N 611014 - Co-Inventor Uf.U.

Title: Solar Collector /PCM/Absorption Refrigeration Home Heating and
Cooling System

1. Collection of solar energy
2. Storage of this energy through heat of fusion in the PCM
3. Using the stored energy to drive an absorption refrigeration system
4. Using, in summer, the cooling capacity of the evaporator to cool

and dehumidify the air in a building
5. Using, in winter, the heating capacity of the absorber and condenser

to heat the air in a building.
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I S C L O S U R E O F I N V E N T I O N

PATENT DEPARTMENT

LOCKntio MiOtlkCt * »r*0t COMPANY '

This disclosure of invention form sheet is forihu purpose of securing a disclosure and record date of invent ion
and it \a importune thai it be mnde out nnd filed with the Patent Department »» soon n» poosible after conception '
of the invention in order that priority rights to the-invention may be secured. A separate .sheet nay be used for. .
each invention.or modification of the invention and each sheet should be signed and dated by the inventor and also
signed and datcd'by. witnesses, P'eferably; two, by whom the contents of the disclosure have been read fend uniier* ::

:stood.,- . . " . - ; . . ;• ' ,. ".! ";-.•-'-;.. " • ' . ' - . .-. ' . t . . ' ' . - : ... V ' - " ' ~':; 'i'"'1

'x-'INifllE SPACE B^OW, giyeVtClear and concise' explanation of the invention. If.ic.is' purely, a.process give -;

a complete: description of .'it inelbdirtg.'flpw diagrams; if it is a method capable of being illustrated by a rL---L —
where it is an apparatus/ circuit or mechanical devicej the disclosure should consist of a sketch with I

sketch or
the parts

All of the following entries'should be made preferably in ink or type.

1. TITLE OF 1 NVENTION'lSolar CoilectpryPGMyAbsorptlbri'Refrigeration Home
j and.Cooling System ; ,, . ' ' - . , V'.'- '"* '•' "'

. 2. SKETCH AND DESCRIPTION 0? INVENTION "<
• • ' • . . , . . . , ' 7<^':/*»'M1«.»<W««l.ll'.*tiiii«'»ll«.

Kigi 1 -Schematic of'Solar-Home Air Conditioning System
Fig/2 r Schematic.of Solar'Home Heat ^ump System .- . - . • • • ' • ' : '
Fig.-3 .Schematic of.AbaotjStion Refrigeration Cycle , :

The coricept,:6f using solar, energy for cooling and heating a home will employ solar
collectors, phase change materials (PCM) and an absorption refrigeration system.
The basic concept is as:follows: .

Solar energy, in both direct and diffuse radiation form, strikes the solar collector,
which is an energy-absorbing system such as flat-black: aluminum, with a glass cover
to prevent re-radiation into'the atmosphere. The collector is insulated on the bottom
side to prevent conduction and radiation into the ceiling area of the home. Circulating
through the collector is a heat transfer fluid, such as water or higher boiling tempera-
ture fluid. The fluid circulates through insulated lines to the PCM container. An ap-
propriate heat-exchange mode transfers the thermal energy into the bulk of the PCM
(sxich as paraffins or salts) which exhibit high energy storage capabilities during aphase
change from'solid to liquid. The heat transfer fluid then rccirculates to the collector. .
The thermal energy stored in the PCM is then released to the generator component
through conduction heat transfer. This energy is used to boil the solution in the gener-
ator in order to vaporize the refrigeration fluid (such as ammonia or freon). The re-
frigerant then cycles through the evaporator and condenser in basically the same pro-
cess as found in a standard heat pump. The absorption fluid in the meanwhile is being
circulated back to the absorber, in a weak solution form. Here the refrigerant is re-
absorbed in the liquid carrier and re-enters the generator to begin the process over
again. During a heating cycle, an auxiliary heat source is the absorber which la
switched (electrically) into.the system by thermostatic operation. During this process,
heat is added to the home air by both the condenser and the absorber, increasing the
efficiency of the operation. The extremely important point of the operation of the sys-
tem is the almost total lack of external power sources (electrical) required for the
system. The only input requirement is the liquid .pump drive system which will con-
sufnpg"bhly"about TOO^'l3(Twatts~But~ribt"oTi''a?£ontinuous~basisr TKis'TrgpTes'ents a cost.o'f
a few pennies per month operational costs for both.heating and cooling an average resi-
dence. The solar collector will be able to utilize both direct and diffuse solar radiation
since no focusing .or reflecting optical devices are .employed. This will allow energy
collection of significant quantity even on over cast'days. Conservative estimates of op-
erating performance indicate the solar coUector/PCM/absorption cycle system can
adequately heat and cool an average home anywhere in the U.S. with minimal auxiliary
heating or cooling requirements, and with reasonable collector areas and PCM volumes
Although the preliminary calculations have been based on ammonia and water as the
refrigerant and absorbent, respectively, and on the temperatures and pressures given
in Fig. 3, other fluids, temperatures, arid pressures may represent improved system
operation. Therefore, these fluids, temperatures; arid pressures are presented here
only to give a practical example of the solar/PCM/absorption concept and are not inte-
cr.nl pa r t s of tin: r.nnccpt. The basic concept may be summarized as presented on the
" - . i - l v - ^ l i).-i<;._', ift.ijyp-JA.U.'j.H^H png<.•)_.. ... • •' -
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^rKl_gfficc_buildiniis. which will result in reduced nower pcncration rcguircmgptp,

lower pollution products and much reduced cost for'heating and cooling tn thn

4. PREVIOUS METHOD or apparatus

with central air conditioning.

ffilag.feg4ea.tttf Mgtven Kant giiwst

3. INFORMATION on previous method ot apparatus; known use, publication or patents None known

to exist, utilizing all concepts,

6. HOW does this invention differ from previous method or apparatus and what advantages does it offer?

Major difference is mode of work input, major advantages Include lower power

generation requirements, lower environmental pollution and lower operational costs.

7. DATE OF CONCEPTION (when you first thought of the idea) December 15.

8. CHARGE NUMBER(S) or Work Order Humberts) to which each inventor was charging his time on the day the
concept was completed. (Note: Charging time to a Government contract does not automatically entitle the
Government to rights in an ̂ ...i-> Nl-RA10-54ZO (NAS6 Z59861:

9. (a) First sketch or drawing made on December 17 -....

Where filed LMSC-HREC • ____

(b) First written description made on January 1 5

Where filed LMSC-HREC (LMSC D08Z10Z-81Z)

: NOTE: Where possible the above sketches, drawings and descriptions should be attached to this sheet.

10. INVENTION was first disclosed to:
J. K. Lovin Date 15 December t 19 71 ( How Verbal

11.
12.

(2) G. D. Reny

FIRST APPARATUS

FIRST OPERATION

(c) Observed by

Date 15 December . 19 71 .

(a) started on

of apparatus or
N/A

N/A

process (a) started
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*L

(b) Completed
fA. , 19 (b:
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How
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Verbal
N/A

) completed.
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— ,19 —

(d) Apparatus or result of process located at . N/A
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filed LMSC-HREC
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14. <(we) hereby certify that, to the best of Kf(suj) knowledge,
KlHK (we are) the first and original inventor(s) of the subject
matter hereinbefore described.
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Home Address 2601.Fantasia Dr., S...\y., Huntsville. Alai
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