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ANALYSIS OF SHAPE OF POROUS COOLED MEDIUM FOR AN

IMPOSED SURFACE HEAT FLUX AND TEMPERATURE

by Robert Siegel

Lewis Research Center

SUMMARY

A two-dimensional porous cooled medium has part of its boundary open to a coolant
reservoir and another part subjected to uniform heating by an external source. Coolant
from the reservoir is forced through the medium and exits through the part of the bound-
ary subjected to the heat load. For design purposes it is specified that the coolant exit
surface is to be at a given temperature. This analysis provides a method to obtain the
shape of the porous surface to meet these simultaneous constraints of a specified tem-
perature and heat loading. The analysis includes temperature variations of fluid density,
fluid viscosity, and matrix thermal conductivity. The solution is obtained by combining
the energy equation with Darcy's law in such a way that a potential function can be intro-
duced that satisfies Laplace's equation. All of the heat-transfer and coolant flow quan-
tities can be expressed in terms of this potential, which is governed by simple boundary
conditions. The determination of the shape of the porous cooled region is thereby re-
duced to a free-boundary problem such as in irrotational, inviscid free jet theory. Two
illustrative examples are carried out: a porous leading edge with coolant supplied
through a slot and a porous cooled duct with a rectangular outer boundary.

INTRODUCTION

Some of the advanced power producing devices such as fusion reactors and gaseous
nuclear reactors will require advanced heat-transfer designs to cope with the large wall
heat fluxes that are anticipated. One proposed cooling scheme is transpiration or porous
wall cooling. A metal or ceramic wall is made in a porous form and coolant is forced
through the wall so that it exits from the side of the wall exposed to the high heat flux.
Any heat conducted into the wall is transferred to the coolant and carried back out. The
result is an effective cooling technique. If part of the wall heat flux is provided by heat



transfer from a convective boundary layer, the transpirant blowing out of the wall tends
to push the boundary layer away from the wall, thus reducing the convective load.

The power required to pump the coolant through the wall represents a loss. Also, if
the hot gas heating the porous wall is being used as the working fluid in a power produc-
ing device, the mixing of the coolant with the gas decreases the gas temperature and thus
reduces the thermal efficiency of the device. In a device that is not ground based, such
as a high speed aircraft, the coolant must be carried along, and this represents an addi-
tional weight penalty. These considerations illustrate that the coolant should be used as
effectively as possible. A poor distribution of coolant flow will tend to overcool some
portions of the surface and undercool others.

This report will consider a two-dimensional porous cooled region. The objective of
the analysis will be to determine the shape of the region so that it will provide a specified
heat-transfer performance. Since the region is two-dimensional, its length in the direc-
tion normal to the cross section must be large in comparison with a characteristic di-
mension of the cross section. A porous region along the leading edge of a wing or turbine
blade would be an example of this type of configuration. The coolant enters the porous
region through the part of its boundary that is open to a reservoir. The coolant exit sur-
face has a heat flux specified along it. It is desired to maintain the coolant exit surface
at a specified temperature, for example, at a value slightly below the melting point or
one dictated by structural strength considerations. A method is presented here to obtain
the shape of the porous surface such that a given surface temperature is maintained while
the surface is being heated uniformly by an external source.

The analysis includes the effect of variable properties. The fluid viscosity can be a
function of temperature, and, if the coolant is a gas, its density is found from the perfect
gas law. The thermal conductivity of the solid matrix material can also be a function of
temperature.

To obtain an analytical solution for a situation including all of these effects, some
simplifying assumptions are also required. The coolant mass flow through the porous
material is assumed to be at a pore Reynolds number small enough so that Darcy's law
applies. The thermal resistance between the fluid and the porous matrix material is as-
sumed small enough so that the local fluid and matrix temperatures are equal. As a re-
sult of this assumption a single energy equation can be written for the balance of energy
transport by conduction in the matrix and by convection of the flowing coolant.

The variable fluid properties cause the flow and energy equations to be coupled.
Because the coolant exit boundary of the porous medium has an unknown shape, a solution
must be found that will simultaneously satisfy the flow and energy equations and at the
same time determine the unknown boundary shape so that it is compatible with the spec-
ified boundary conditions. The solution is obtained by use of a suitably defined potential
function that satisfies Laplace's equation. The temperature distribution and local heat
flux can be directly related to this potential. This was shown in reference 1 for a porous
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region of specified shape. The analysis of reference 1 is extended here to include var-
iable thermal conductivity of the matrix material and to account for the unknown shape of
the coolant exit surface.

The shape of the unknown boundary is obtained by using conformal mapping such as
in inviscid free jet theory. The author previously adapted the free-jet theory to deter-
mine the free-boundary configuration of a two-dimensional freezing layer (ref. 2). It
will be shown that the results of the freezing problem can be directly carried over to the
porous medium problem. To illustrate the application of the method, results are carried
out for a two-dimensional leading edge with coolant introduced through part of its bound-
ary and for a porous cooled duct with a rectangular outer boundary.

ANALYSIS

Geometry and Specified Conditions at Boundary

The general type of porous region being considered is shown in figure 1. The con-
figuration is two-dimensional, that is, it is a cylinder of arbitrary cross section, infi-
nitely long in the z direction, and with its axis parallel to that direction. A coolant res-
ervoir at pressure and temperature p,,too is adjacent to a portion SO of the porous
material that is open to the flow. Coolant flows through the porous medium and leaves
through the surface S, which is exposed to a heat flux qs. The remaining surface area
Si is impervious to the flow and is also insulated. Some specific geometries of this type
will be discussed later (see figs. 3(a) and 7(a)) to illustrate the application of the
analysis.

The surface S through which the coolant exits is specified as being at uniform tem-
perature and also as having a uniform heat flux being transferred to it. This would ap-
pear to be an overspecified set of boundary conditions, but it is the shape of S that is
not specified. The objective of the analysis is to obtain the shape of S that will allow
the simultaneous specification of these two conditions. This would provide the optimum
shape to accommodate the incident heat flux for the specified temperature. For example,
a heat flux could be specified and the shape found that would cause the surface temper-
ature to be within a given value below the melting point or be at a temperature fixed by
structural considerations. If the porous material can sublime without disturbing the
porosity, the shape would be that formed by sublimation as a result of being subjected to
the specified heat loading. In this instance the t s would be the sublimation temperature.

As the fluid in the reservoir at p 0, approaches the coolant inlet surface SO, the ac-
celeration effects are neglected with regard to affecting the fluid pressure. Hence, the
pressure along SO is equated to the reservoir value, po = P0 . Since P0O > Ps, the cool-
ant flows from SO to S. (Symbols are defined in the appendix.) Inside the porous
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medium, the fluid picks up the energy being conducted in at the surface S and then car-

ries it back out of the medium. Since po and ps are both constants, the fluid veloc-
ities along both the inlet and exit surfaces are locally perpendicular to these surfaces.

This fact enters the boundary conditions along these surfaces.

The effective thermal conductivity of the matrix material is kin, which is a function
of temperature and is based on the entire cross-sectional area rather than on only the
area of the solid material. Because the conductivity of the matrix material is generally
much larger than that of the coolant, the heat conduction in the coolant is neglected. The

Darcy velocity u, that will be used throughout the analysis is the local volume flow di-

vided by the entire cross-sectional area rather than by the pore cross-sectional area.

Governing Equations

The size of the porous medium is usually quite large compared with the size of the
individual pores, so that it is not necessary to deal with the individual pores and volume
averaged continuum equations can be used. Then the following equations apply within the

porous material for compressible and incompressible coolants:
Conservation of mass -

V · (pu) = 0 (compressible) (la)

V · i = O (incompressible) (lb)

Darcy's law (fluid inertia effects are neglected) -

u- K Vp (2)

Conservation of energy (kinetic energy is neglected) -

V· 0j=o (3)

where

-km(t) Vt + puCpt (4)

Perfect gas law (for compressible case) -

p = pRt (5)
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Boundary Conditions

As the fluid in the reservoir approaches the porous medium, it receives any heat
that is being conducted from the coolant inlet face S0 back into the fluid. This raises
the coolant temperature (and hence matrix temperature, since they are locally equal in
this analysis) to to, which is an unknown quantity along the surface S0 and which will
be obtained later in the analysis and will be found to be independent of position along S0 .
The thermal conductivity of the fluid is generally much smaller than that of the porous
matrix material, and hence, as the fluid approaches the wall, the temperature rise from
too to to takes place in a thin layer compared with the thickness of the porous material.
A boundary condition is obtained by balancing the heat conducted out of the surface with
the energy carried back into the matrix by the fluid. The pressure along the boundary
can be taken at the reservoir value since the pressure change from flow acceleration in
the reservoir is small compared with the pressure drop through the porous material.
Hence, the conditions along the coolant inlet face are

km n0 Vt pCp(t - to)d *u
. =pCp(t-tfor (x,y) on S0 (6)

= p = Poo = constant

On the surface S of unknown shape and through which the fluid leaves the porous
material, the temperature and imposed heat flux are both specified as constant so that
the boundary conditions are

t = t s = constant

kmns ' Vt = qs = constant for (x,y) on S (7)

P = Ps = constant J

On the impervious surfaces the conditions are

for (x,y) on Si (8)
ni q = 
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Equations and Boundary Conditions in Dimensionless Form

The governing equations and boundary conditions will now be placed in dimensionless
form. Note that the functions P and M differ for the compressible and incompressible
flow cases; these differences will result in the two cases reducing to the same set of
relations. The dimensionless variables are

X= x

hr

y =:Y
hr

t
T -

too

P =
P2

incompressible

compressible

'.{+\
ttL ' incompressible

p00 t

(t) compressible

km (t)
Km(T)- m

km,qh

6 E-7104

1
2F

M(T) =

(I

P C,

to



qshr
Qs k (12b)

P- pCpKP,0 (13)

2 /iokm 

V=i 8X + Y
ax ay

For the compressible case equation (5) is first used to eliminate p from equa-
tions (la) and (4). Then for both the compressible and incompressible cases, Darcy's
law is used to eliminate i. The result is that equations (1), (3), and (4) reduce to

V P = 1 VMT VP
MT

V- =O

(14)

(15)

_ AQ= -K VT - VP
M

By a similar manipulation boundary conditions (6) to (8) become

(16)

KmT , Xp
Tn- 1 n VT +--n VPT- 1 M

for (X,Y) on S0

P=1

T=T =

Kmns VT = Q

P=P
5 -

for (X, Y) on S

for (X,Y) on Si

(17)

(18)

ni. VP = O

ni .=0 J
(19)
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Formulation in Terms of Potential Function

At this point we shall postulate, pending later verification that P is a function of T
only. It will be found that with this condition a solution is obtained satisfying the govern-
ing equations and boundary conditions, and hence this is the required solution. It will
now be shown that this assumption permits the energy flux to be expressed as the neg-
ative gradient of a potential A,

Q =-v (20)

and then from equation (15)

"2 ' = 0 .(21)

Hence the potential function is a solution to Laplace's equation; the boundary conditions
for } will be given later.

Since P is only a function of T

1 Vp_ 1 dP VTVP - - VT
M(T) M(T) dT

Hence, if we put

h(T) = 1 dPdT (22a)
M(T) dT

g(T) Km(T)dT (22b)

T

it follows that

Vh(T) =dh VT 1 d VT 1 VP (23a)
dT M(T) dT M(T)

Vg(T) = dg VT = K (T)VT (23b)
dT
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Equation (16) can then be written as

Q = -Vg(T) -XVh(T) = -V[g(T) + Xh(T)] = -V4 (24)

where the potential function -4 is defined by

4, - -0 = g(T) + Xh(T) = (T) + X dP dT (25)
FKT M(T) dTJ

0

and 40 is an arbitrary constant that can be used to fix the level of the potential. Since
P is only a function of T, 4 is a function of T only, and hence P and T are func-
tions of 4, only.

Equations (15) and (16) have been expressed in terms of a potential as given by equa-
tions (21) and (20) with the potential given by equation (25). Now equation (14) will be
considered. This can be written as

~2p = 1 d(MT) , . dP 4, =1 d(MT) dP I4,2 (26)
MT d4, d4, MT db4 db

Now, V2p = VP = VdP .- In view of equation (21) this becomes1
d4,

2p = d2 P 4, 12 (27)

d4 2

From equation (25)

d = Km + X 1 dP _K + X dP d4 (28)
dT M dT M d4, dT

Equations (27) and (28) are used to eliminate P from equation (26) giving the following
equation, which is a restatement of equation (14) in a form that determines T as a func-
tion of 4,,

d2 T 1 dT (K - T )m dT

d4 2 KmT d4 dTI d

1
Note that V. dP Vie = dP V. + dV=d V _ dP = 2_ +. Vd2 2 P 1V>12

d4 d4 dft d4 dc 2 d4' d4 2
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or equivalently

d 1 (Km doT =]0 (29)
d4m d4)

Equation (29) can be integrated to obtain T(I)), but before doing this the first bound-
ary condition of equation (17) will be expressed in terms of D. It follows from equa-
tions (24) and (23) that

-VP = V - Km VT
M

Substituting into the boundary condition gives

KmT ^
T- 1 n0O VT + no * (VD - Km VT) = 0

Using the relation VT = (dT/d4))V) results in a new expression of the boundary
condition:

+ K T no · Vi =0 for (X,Y) on SO (30)

Solution for Temperature Ratio in Terms of Potential Function

Equation (29) can be integrated twice to obtain

PT K dTT0 1+ClnT (31)

The constants C1 and 40 are to be evaluated from the boundary conditions. Thus in-
serting the solution (31) into equation (30) gives

(1 T + 1 ) T =0 for (X,Y) on S0I 0 ,V(P 
T -
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This boundary condition is satisfied if C1 = -1 so that equation (31) gives the relation
between T and cb

f T KmdT (32)
~ IT 1 - T

0

Relation Between Pressure Function and Temperature Ratio

The second of boundary conditions (17) involves P. It is necessary to relate P to
T so that P can be related to ( and the boundary condition formulated in terms of ).
From equation (28)

d= (dT-K m) (33)
dT \dT

and from equation (32)

d( Km
m-~~~~~~ ~~(34)

dT 1-T

These relations are combined to obtain

dP_ 1 KmM T KmM (35)
dT \1 T 1 - T k't

Integrating this from SO to an arbitrary position in the medium and taking into account
the second boundary condition (17) gives the relation between P and T,

rT

P - ToKmM dT (36)
x/m l-T

The value To is unknown in this integral. To evaluate it, the first and third boundary
conditions of equation (18) are imposed to give
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S, -1 S TPs - KmM dT (37)

0

This integral can be carried out once the thermal conductivity and viscosity variations

are specified so that Km(T) and M(T) are known. The quantity To is thereby related

to the specified quantities Ps and Ts .

Boundary Conditions for Determination of Potential Function

The temperature has been obtained in terms of a potential (4 (eq. (32)), and the

pressure has been found in terms of the temperature (eqs. (36) and (37)). Hence all

quantities will be known if the potential can be found as a function of position in the po-

rous material. To obtain the simplest boundary conditions for the potential ), which is

governed by Laplace's equation, the constant b0 in equation (25) can be set equal to

zero to give

k dP dT
I m T +M(T) dT] (38)

and since T = T0 along S0 the boundary condition is

= O for (X,Y) on S0 (39)

With 0 = O equation (32) becomes

T K

fT= / -m dT (40)
JT1 - T

This is evaluated at the coolant exit face to obtain the boundary condition

=4s- -/T dT for (X,Y) on S (41)
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The surface temperature T
s is specified and TO is calculated from equation (37).

Hence, bs is known.
It follows from equation (20) and the second condition in equation (19) that - must

satisfy the boundary condition on the insulated impervious surfaces

i' '4=0 for (X,Y) on Si (42)

Since P is a function only of T, and T is a function only of 4', the first boundary con-
dition (19) is then automatically satisfied.

The remaining boundary condition to be considered is that the free boundary must
have a shape such that the second condition of equation (18) will be satisfied. The con-
dition can be written as

Kms dV = Qs (X,Y) on S
d9

From equation (34) (dT/db)
s = (1 - T)/Kmj so the boundary condition becomes

A Q
n s · v4 = - (X,Y) on S (43)

1 -T s

Equations (39) and (41) to (43) provide the required boundary conditions to solve
equation (21) for 4. In the solution of Laplace's equation for the potential function, it
would be convenient to have the boundary potentials on S0 and S go from 0 to 1 rather
than from 0 to %s, and to have the normal derivative on the coolant exit boundary be
unity. To accomplish this, the potential is normalized as

cp(X, Y) -(X,Y) (44)
as

Also let Qs/(1 -Ts)
s =D and

vV a a =a aV= 1-i + =i +
D aXD aYD ax aY

Then p is obtained from

V = 0 (45)
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with the boundary conditions

0 = 0 for (X,Y) on S0 (46a)

Ip= I (46b)
for (X,Y) on S

ns V= 1 (46c)

i V = 0 for (X,Y) on Si (46d)

These conditions are summarized in figure l(b).
By eliminating To from equations (40) and (41) the temperature distribution in

terms of 'p is given by

I0- 1 1 m-T dT (47)
4, s 1 -T

Mass Flux at Coolant Exit Surface

A quantity of practical interest is the local coolant flux distribution leaving the po-
rous medium,

pu. n - K pVp. fpu * n s = Pt) s for (x,y) on S (48)

First consider the case of a compressible flow. By using equation (5) and introducing
dimensionless variables this becomes

k
pu n

s
K Vp n m,o X VP . n (49)

pu(t) Rt Ch MTs

But upon noting that VP = (dP/dT)(dT/d-)V(I we find from equations (35) and (34) that

VP = T (1 - T) MT
X \l- Km T

14



Inserting this in equation (49) gives

hrC
prhCpu. n = -n · VI for (X,Y) on S (50)

k

By use of equation (43) the dimensionless mass flux is given by

hrCp - I Qs
pus n = (51)

km 0 T - 1

or

qs
Pu *s n, = (52)

Cp(t - t)

A similar manipulation for incompressible flow shows that equation (52) also applies for
that case.

Determination of Unknown Coolant Exit Boundary

The analysis up to this point has shown that the temperature distribution in the po-
rous medium can be expressed in terms of a potential where the potential is a solution to
Laplace's equation. The difficulty in solving the Laplace equation in the porous medium
is that the coolant exit boundary has an unknown shape. In this problem the heat flux and
temperature are both given along the coolant exit boundary. The relation between these
quantities is what is usually desired in a porous medium heat-transfer analysis. The de-
tailed temperature distribution in the medium is generally of lesser importance but is
needed in thermal-stress calculations. Hence, the main result to be obtained here is the
shape of the unknown coolant exit boundary - this type of problem is often called a free-
boundary problem.

The solution of free-boundary problems has its foundation in inviscid free-jet theory
where the velocity potential in the jet flow region is governed by Laplace's equation. In
reference 2 a free-boundary theory was developed for use in freezing problems. The un-
known shape was determined of a steady-state two-dimensional frozen region formed by
cooling the frozen region along part of its boundary while subjecting another part to a
convective heating condition. This method was extended to other frozen shapes in
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reference 3 and to a radiative heating condition in reference 4. (In ref. 4 the specified
heat flux at the surface is nonuniform.)

The present solution has been shown to depend on a potential with boundary condi-
tions given in figure 1(b). A comparison with the solution method as described in ref-
erence 2 reveals that these are the identical boundary conditions in the free-boundary
freezing problem. Hence, this previously developed technique, and the results obtained
with it, can be directly applied to the present problem. The general analytical technique
will be briefly reviewed here. Then some examples will be given of porous configura-
tions that can be applied in practice.

The analytical technique is based on the use of conformal mapping. Following ref-
erence 2 the negative potential is taken as the real part of an analytic function:

W = -? + i~4 (53)

The lines of constant (p and constant ip form a two-dimensional orthogonal net. By us-
ing conformal transformations between the W plane (to be described) and the physical
plane, the transformed functions will always be analytic. Hence in the physical plane the
potential will satisfy Laplace 's equation. Since a function that is analytic in a given re-
gion is completely determined by its boundary values, it is only necessary to require that
the mapping satisfy the boundary conditions.

The potential W plane is shown in figure 2, and the porous region occupies a rec-
tangle. The coolant inlet and outlet surfaces SO and S are lines of constant Sp
(eqs. (46a) and (46b)). Along the impermeable Si surfaces the normal derivative of cp
is zero (eq. (46d)); as a result of this orthogonality, these boundaries are lines of con-
stant 4Q. The height of the rectangle is unknown and will be related to the specified heat
flux along S. If the mapping between the W plane and the physical plane can be obtained
subject to the constraint in equation (46c), then the line 3-4 in the W plane can be trans-
formed into the physical plane and the unknown free surface thus determined.

Let the coordinates in the dimensionless physical plane (fig. l(b)) be designated by
the complex variable Z = X + iY. To find the relation between the W and Z planes the
fact is utilized that the derivative of an analytic function is independent of direction and
hence the derivative with respect to Z can be written as

dW= ant +i aIP (54)
dZ ax ax

Using the Cauchy-Riemann equation aip/ax = acp/aY and defining a quantity r gives

dW_= a_ + i a__p _ (55)dW a q + iY(55)
dZ ax aY
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This is integrated to give

Z = 1dW + C2 (56)

where C2 is an integration constant. If { can be found as a function of W then the in-
tegration can be performed to obtain Z which thus relates Z to W.

To obtain a relation between ( and W a potential derivative plane (-a p/ax against
i a8p/aY) is constructed from the known boundary conditions. In addition to the normal
derivative boundary conditions shown in figure l(b), there is the condition that dqp/dl = 0
along SO where Z is a path along the boundary. This gives along SO

do =- a'P dX + a8p dY = O (57)
dl aX dl aY dl

Since SO has a specified shape, the dX/dl and dY/dl are known along this boundary.
Hence, the curve representing this boundary can be drawn on the ( plane. Along S the
boundary condition n

s
· Vap = 1 means that this boundary will be part of a unit circle in

the { plane. This behavior will be illustrated by a few examples.
After the representation in the { plane has been found, the conformal mapping be-

tween the { and W planes gives the required {(W) relation so that the integral in equa-
tion (56) can be evaluated.

To demonstrate the method and obtain some useful shapes for porous cooled media,
two configurations will be analyzed: a leading-edge region with fluid supplied through a
coolant slot and a porous duct with a rectangular outer boundary.

EXAMPLES ILLUSTRATING APPLICATION OF GENERAL METHOD

Leading-Edge Region Fed Through Coolant Slot

This geometry is shown in figure 3(a) and consists of a porous leading-edge region
with coolant being supplied through a slot in an insulated wall that supports the porous
region. The coolant exit surface S is to be maintained at uniform temperature t

s

under the influence of a uniform imposed heat flux qs, which could be supplied, for ex-
ample, by convection from an external stream.

The region in dimensionless coordinates is shown in figure 3(b) along with the values
of {o and its derivatives on the boundaries. From this point on, the analysis exactly
parallels that for determining the configuration of a frozen layer in reference 2, and
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these previous results can be used with only a change in nomenclature. The regions in
the potential and potential derivative planes are given in figure 4.

The mapping functions between these planes have been obtained in reference 2, and
the integration in equation (56) carried out for Z(W). The result was evaluated along the
coolant exit surface to yield its coordinates as

2 In 1 - n

(58)

- tan- b -

as In 1-b 2 1-b2

where 5 is a variable with range -b -< - b. The b depends on the imposed physical
conditions, and this relation will now be determined.

In the notation of reference 2 the boundary condition at the free surface was
aT/aN = 1, and in the present analysis it is ns Vpo = 1. The T and p are com-
parable quantities so that the only difference is in the nondimensionalizing factor in N
compared with that in the V. This shows that the quantity y in reference 2 is to be re-
placed in the present analysis by hr/D = km 0o(to - tS) s/qs. Then it directly follows
from equation (32) in reference 2 that the parameter b is related to the physical quan-
tities by

km, O(t s - too)ls b K) (59)

qs a lnq~a in 6 - b
2

Another quantity of interest is the total heat (Qtot ) being conducted into the surface
S, which is also equal to the energy transferred to and then carried out of the medium by
the coolant. This is equal to the imposed heat flux integrated over the area of the free
surface S. The flow rate per unit area into the medium along SO is given by
-pu n0 I SO. From equation (50) it follows that this can be written for the present geom-
etry as °

hrCpu n ad)rppU 0' V0 for (X,Y) on SO
km 0aY

m,
®

0
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To obtain the total flow, integrate over the inlet surface S0 to obtain

2 hCpP, = r dx = 2 hr , dR
k ay s r aY

(The integration limits refer to the numbers in fig. 3(b).) By use of the Cauchy-Riemann
equations this can be integrated to obtain

hrdi = 2bhd_ dX = 2hshr[4(3) - h(4)] = 2shr[l4(2) - z/(1)]

The conformal mapping results (eqs. (24) and (31) of ref. 2) give

V4(2) - /(1) = K(b)
K VI )

From an overall heat balance

Qtot = - 2 f3 pu. 0 Cp(t s - tc)dx

Combining these relations and noting that 4s is negative, gives

Qtot Cp K(b)- G -~b) (60)
2 km 0(t s too)l sl 2 km, oolsI K( 1- b2)

The Qtot is per unit length normal to the x-y plane in figure 3(a). The G is the
total mass flow of coolant per unit time and unit length normal to the x-y plane, that is

G = -2 pu · no dx

(The negative sign is present because the u is in a direction opposite to n0 .)
For a given set of physical conditions the left side of equation (59) is computed (note

that the As is found from eqs. (41) and (37)). The b can then be found from
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equation (59), and the coordinates of surface S and the Qtot obtained from equa-
tions (58) and (60). The results are shown in figures 5 and 6.

Porous Duct with Rectangular Outer Boundary

As a second example of the conformal mapping technique, results are given for a
porous cooled rectangular duct (fig. 7(a)). An interior shape of the duct cross section is
to be obtained that will maintain the interior surface at a given temperature when a uni-
form heat flux is being transferred to the interior surface by convection or radiation from
a high-temperature gas. From symmetry, only the lower left quadrant of the duct need
be considered.

A comparable free-boundary problem for a solidified region inside a duct was ana-
lyzed in reference 3. These results can be directly used by only changing the nomen-
clature as in the previous example. The porous region in dimensionless coordinates is
shown in figure 7(b). The mappings into the potential and potential derivative planes are
given in figure 8. For detailed information on these mappings and the conformal trans-
formation between the r and W planes the reader is referred to reference 3. A brief
summary of results is given as follows:

The aspect ratio of the duct is related to two mapping parameters c and d by

K(1I ~+K K
a - d+ c \ + c

+b )+ c( ),c + dj \Vc + d/

(> 

d> 1
(61)

where K is the complete elliptic integral of the first kind. This is used to find c,d
pairs that correspond to various aspect ratios. Then the coordinates of the coolant exit
surface of the porous medium can be found from

x a_ = 

= 1 -

where F is the ellipti

(1+ d)(c + )) c + d

F ( sin- + d) l -1 < < 

F sin- (cl+d)( )- _) /
(1+ c)(d - )' + 

K(- f)+ 1K( LK)

ic integral of the first kind.
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The values of c and d can also be used to obtain the corresponding imposed phys-
ical conditions from the relation

2(c + d) K (c- )(d
m, 0,(ts - t0 )s I (c + 1)(d + 1) (c+ 1)(d + (63)

qsb K( + K(ci

c + +d c+d}

The total heat transferred to the interior surface of the porous medium (equal to the
energy carried away by the coolant) per unit length of the duct is given by

2(c + d) 1
Qtot - Cp_ G [ l (d * 11 (64)

4km o(t -t )l isl 4km olsl K ( 1)(d 

L (c + 1)(d + 1)]

The configurations of the porous region for various aspect ratios are given in fig-
ure 9. Each of these figures gives curves for various values of the parameter containing
the imposed physical conditions. Figure 10 gives the total heat transfer and coolant

mass flow rates as a function of this parameter.

SUMMARY OF ANALYSIS

The geometric aspects of the solution are concerned with determining the unknown
free boundary of a two-dimensional region in which Laplace's equation is valid (eq. (45))
and with boundary conditions (46). This can be accomplished by conformal mapping as
described in relation to equation (56).

The mapping requires representing the porous region in the complex potential and
potential derivative planes. In the complex potential plane the region is always a rec-
tangle, and the derivative boundary conditions determine its shape in the potential deriv-
ative plane. The dimensionless heat flow rate as given for the examples by equa-
tions (60) and (64) involve 1s' This is obtained from equation (41) in which the quantity
TO is found from equation (37).

The potential at any location in the porous region can be obtained from the result of
the integration in equation (56), which relates the coordinates in the potential plane to
those in the dimensionless physical plane. The temperature at that physical location can
be found from equation (47), which gives the relation between the temperature and the
potential. The TO in this relation is found from equation (37).
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DISCUSSION

A method is developed for obtaining the heat-transfer characteristics of a two-
dimensional porous cooled region having a free boundary. A free-boundary shape is
found such that it will be at a specified temperature while being subjected to an imposed
uniform heat flux. The solution was obtained by showing that all the heat-transfer quan-
tities could be related to a potential function that is a solution to Laplace's equation in
the porous region. Conformal mapping could then be used, as developed for free-
boundary problems, to obtain the configuration of the unknown boundary. The procedure
can be extended in principle to a nonuniform heat flux at the free boundary. In this in-
stance the free boundary in the potential derivative plane would not be part of a circle,
and the mapping into the potential plane would require more sophisticated analytical tech-
niques or numerical methods. An example of this type of mapping by using a series ex-
pansion is given in reference 5. In reference 4 a particular nonuniform heat flux is con-
sidered as imposed by radiant heating.

Results are given for a porous leading edge region as shown in figure 3(a). This
type of geometry might be used to cool the stagnation region along the leading edge of an
airfoil. The shape of the porous region is shown in figure 5 as a function of the param-
eter km ,(t s - to)lbsl/qsa. Figure 5 gives the coolant total mass flow rate and the
total heat transferred to the coolant exit surface of the porous region per unit length of
the region. From an overall energy balance the Qtot must be transferred to the coolant.
Hence there is the relation

Qtot = GCp(ts - too)

Because of the interaction of the various quantities, the results in figures 5 and 6
can be discussed in various ways. One approach is to consider a situation where a given
pressure ratio is available and the surface of the porous medium is not to exceed a cer-
tain temperature t s for a specified heat loading qs. With these quantities given, the
parameter km ,o(t s - too)lIs//qsa is uniquely determined, and the shape of the porous
region is found from figure 5. For the purpose of discussion, consider what would hap-
pen if qs is kept constant and the porous region is made thinner. For simplicity ignore
property variations so that qDs remains fixed. Then from figure 5 a thinner region cor-
responds to a smaller value of the parameter and hence t s is decreased. It would ap-
pear then that an improved cooling situation would result by decreasing the thickness.
However, it must be realized that according to figure 6 a decrease in the abscissa corre-
sponds to an increased coolant flow. Hence decreasing the surface temperature to below
what is really required results in wasted coolant. If the thickness of the porous region is
made larger than given by the solution, the coolant flow will be decreased and the surface
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temperature will be higher than desired. Thus the solution gives the porous region shape
that provides the minimum coolant flow with the correct flow distribution to cope with the
imposed heat load and not let the surface temperature exceed the temperature limit that
has been specified for it.

When the porous region in figure 5 becomes very thick compared with the coolant
slot width, it approaches a circular shape. This would be expected from the uniform
boundary conditions. The coolant is then flowing outward in a radial way from what is
approximately a line source (normal to the x, y plane) at the origin of the region.

The second configuration treated is a porous cooled duct with rectangular outer
shape as shown in figure 7(a). The coordinates and boundary conditions in the dimension-
less system are shown in figure 7(b). The mappings into the potential and potential de-
rivative planes are given in figure 8. This yields the porous shapes in figure 9 for ducts

with aspect ratios from 1 to 5. For each aspect ratio a set of curves is given for various

values of the physical parameter km, 0(t
s

- t 0 )Jlsl/qsb. It should be noted that the map-
ping yields two roots for some values of the parameter. The group corresponding to very
thick porous regions is shown dashed. The corresponding heat and mass flows are shown

in figure 10.

The interesting feature of these results is the fact that for each aspect ratio there is
a maximum value of the physical parameter beyond which no solution exists. To elab-

orate on this, consider a situation where t
s

is fixed and qs is being changed. For a
large qs the physical parameter is small, and the solution given by the solid curves in
figure 9 gives a thin layer. From figure 10 the corresponding flow rate is large. If the

qs is decreased, the physical parameter is increased. Less coolant is required, and
the thickness of the porous region is increased to decrease the flow and thus maintain the

surface at the specified t s . As qs is further decreased, the thickness of the porous
medium can be increased to reduce the flow and thus maintain the surface at t s . How-
ever, as the thickness is increased, the inside surface area of the duct is reduced;
thereby, the total heat loading on the surface is being reduced more rapidly than in direct
proportion to the reduction of qs. A point is reached for a very thick region where to
maintain a given t

s
the qs must be increased with increased region thickness. If qs

were decreased, the t s would decrease below the specified value. This is in the range
of the dashed curves in figures 9 and 10.

CONCLUSIONS

An analytical solution was obtained to determine the optimum shape of a two-
dimensional porous cooled region. The optimum shape provides the proper distribution

of coolant flow through the region surface that is subjected to a uniform heat loading in
order to maintain this surface at a specified uniform temperature. The analysis includes
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the effects of variable fluid viscosity and density, and it includes the effect of variable
heat conductivity of the porous matrix material. The solution was found by combining

the governing equations in such a way that a potential could be defined. This potential
satisfies Laplace's equation in the porous region and is subject to simple boundary con-
ditions. All of the heat-transfer quantities can be related to this potential. The potential
and shape of the porous region are obtained by use of a conformal mapping technique
analogous to the free streamline method of irrotational inviscid free-jet theory.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 15, 1972,
502-28.
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APPENDIX - SYMBOLS

A,B dimensionless half widths of long and short sides of rectangular duct

a half width of coolant slot; half width of long side of rectangular duct

b parameter in mapping; half width of short side of rectangular duct

Cp specific heat at constant pressure

C 1' C2 constants of integration

c,d mapping parameters for rectangular duct

D dimensionless quantity, Qs/(1 - Ts)4 s

F elliptic integral of the first kind, F(?1,k) = ] d77/l - k2 sin2

G mass flow rate of coolant per unit length normal to x,y plane

hr reference dimension of porous region

i, j unit vectors in x and y directions, respectively

K complete elliptic integral of the first kind, K(k) = d7 /V1 - k2 sin2 ij

Km thermal conductivity ratio, km/kmA 

km effective thermal conductivity of porous region

1 path along boundary SO in X,Y plane

M for incompressible case M = (1/2 )(/ii/o)(t,/t); for compressible case
M = /lLo

N dimensionless outward normal coordinate in X,Y plane

n unit outward normal

P for incompressible case P = p/po,; for compressible case P = (p/p0o)2

p pressure

Qs dimensionless heat flux imposed at interface qshr/km, ootoo

Qtot heat conducted into porous surface (equal to heat removed by coolant) per unit
length normal to x, y plane

Q dimensionless energy flux vector, qhr/km, too

gqs heat flux imposed at porous surface S

q energy flux vector, -km Vt + puCpt

R perfect gas constant

S coolant exit surface of porous medium
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Si insulated and impervious surface

S0 coolant inlet surface of porous medium

T temperature ratio t/t,

t absolute temperature

u velocity vector

W complex potential -qI + ip

X,Y dimensionless coordinates, x/hr, y/hr

X,Y dimensionless coordinates, XD,YD

x, y coordinates in physical plane

Z complex variable X + iY

complex potential derivative, - aO + i ap
ax aY

K permeability of porous material

X parameter, poOCpKpOO/2 km,

fluid viscosity

dummy variable in mapping

p fluid density

(I potential defined by equation (25)

)s potential along coolant exit surface

dimensionless potential s/cs

function orthogonal to 4

V dimensionless gradient i + j 
ax aY

M a a
V dimensionless gradient i - + j 

ax aY
Subscripts:

i insulated and impervious surface

s on surface where coolant exits from porous medium

0 on surface where coolant enters porous medium

co at coolant reservoir condition
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Figure 5. - Configurations of porous leading-edge region for various values of imposed physical parameter.
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Figure 6. - Dimensionless heat and coolant mass flow rates at surface of porous
leading edge region as function of imposed physical parameter.
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Figure 9. - Configurations of porous region for various duct aspect ratios and values of imposed physical
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Figure 9. - Concluded.
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Figure 10. - Dimensionless heat and coolant mass flow rates at interior
surface of porous duct as function of imposed physical parameter.
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