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NOTATION

a semiminor axis of ellipse

B body bluntness parameter for conic section ((b/a)2 for ellipse) defined
by y2 = 2Rfex - B^

2 (ref. l)

B shock bluntness parameter for conic section defined by y2 = 2R x-B x2
S / n -> \ ' S S

Vref. 1J

b semimajor axis of ellipse or span measured from shock apex

C constant in stream function (eq. (Cl))

c chord or body length

c length along chord normalized by c

f scale factor (eqs. (DT), (D8))

G stagnation point mass-flow function (eq. (3))

kg,k1 constants in velocity distribution functions (eqs. (39)-(̂ 2))

M Mach number

m-m location of control surface (sketches (e) and (f-))

n correlation exponent (eq. (15))

P pressure on body

$ streamline radius behind shock

R, wing section or body radius at stagnation point

R shock radius at apex
S

r edge or corner radius —

rm base radius of conical body (fig. 15)

r* body radius of section between tangent points (sketch (j))

s distance on body surface from stagnation point

s distance from stagnation point normalized by s*

u velocity component in £,n coordinate system (sketch (h))

V velocity

iii



V local stream velocity normalized by V*
•

V derivative of V with respect to s

AV correction term to velocity distribution function (table 2)

v velocity component in £,ri coordinate system (sketch (h))

v ,' dimensionless Newtonian velocity

Av',Av" nonlinear components of v (sketch (d))

v base (linear) component of v (sketch (d))
D
•

v derivative of v with respect to s

X,Y coordinate system defined in figure 10

X ,Y shock apex coordinates, figure 10 .
S S - • • ' ' -

x,y coordinate system with origin at shock apex ..

Y reference ordinate, figure 10 . .

y vertical distance at shock between shock apex and stagnation
streamline (sketches (b) and (i))

y vertical distance at body between shock apex and stagnation'pointrst
(sketches (b) and (i))

y* vertical distance between shock apex and sonic point on body
(sketch (a))

a angle of attack

Y specific heat ratio

A shock standoff distance

6 stream deflection angle behind shock

e angle of tangency point of edge radius with respect to chord plane
normal (sketch (c)) . . . . ,.. . . , , ••

£ vorticity . . . . . . . . . . . . • .

0 shock surface.inclination with respect to plane normal to.free-
stream direction; in degrees, except where defined otherwise

£,n coordinate system with origin of stagnation point (sketch (h))

p gas density

iv



p. density of gas behind shock inclined at angle 9
D

pV average mass flow per unit area passing a specified control surface

<|> body surface inclination with respect to plane normal to free-stream
direction; in degrees, except where noted

^ stream function (eq. (Cl))

ft stagnation stream impingement angle (sketch (h))

V correction term to trial shock apex location

Subscripts

c cylinder

H lower

n normal to control surface

p plate

<X. at shock location where streamline has the radius of <%?

st at stagnation point or along stagnation streamline

u upper

0 at location on body in free stream in direction from shock apex

1 free stream

2 behind normal shock

Superscripts

* at sonic point location

t,t',t" tangent point location on body (sketch (j))

v



A METHOD FOR PREDICTING SHOCK SHAPES AND PRESSURE DISTRIBUTIONS

ON TWO-DIMENSIONAL AIRFOILS AT LARGE ANGLES OF ATTACK

George E. Kaattari

Ames Research Center

SUMMARY

A method is presented for determining shock envelopes and pressure distri-
butions for two-dimensional airfoils at angles of attack sufficiently large to
cause shock detachment and subsonic flow over the windward surface of the air-
foil. Correlation functions obtained from exact solutions are used to relate
the shock standoff distance at the stagnation and sonic points of the body
through a suitable choice for the shock shape. The necessary correlation func-
tions were obtained from perfect gas solutions but may be extended to any gas
flow for which the normal shock-density ratio can be specified.

INTRODUCTION

There is current, interest in the aerodynamics of planetary atmospheric
entry vehicles. Such vehicles are blunted to ensure a detached shock envelope
in order to minimize vehicle heating rates during the flight trajectory.

Most theoretical and experimental investigations have been devoted to the
prediction and measurement of shock envelopes and pressure distributions about
axisymmetric shapes. Some attention has also been given to a limited class of
two-dimensional cylindrical bodies (ref. l) and to two-dimensional asymmetric
flow about flat plates at large angles of attack (ref. 2). However, solutions
for asymmetric two-dimensional shapes are not readily available.

This investigation was undertaken to develop an approximate method for
estimating the shock envelope and pressure distribution over the windward sur-
face of a large variety of two-dimensional profiles at angles of attack suf-
ficiently large to result in shock detachment. The method employs a technique
similar to that described in reference 3 but utilizes correlations based on
available exact solutions for two-dimensional flows.

ANALYSIS

The analysis will be developed in four parts. First, the effect of body
shape on the velocity gradients and shock standoff distance along the stagna-
tion streamline is considered. Second, basic relationships between shock and
body geometry in symmetric flow are derived and applied to symmetric flow shock
solutions. Third, the symmetric flow relationships are modified and extended



to asymmetric flow shock solutions and demonstrated with a numerical example.
Finally, the method for estimating the pressure distribution is developed and
demonstrated by a numerical example.

Computing forms and necessary figures are provided to organize and expe-
dite both the shock and pressure distribution calculations.

Stagnation Point Velocity Gradients

The effect of body radius on the velocity gradients and the shock standoff
distance along the stagnation streamline is established as follows: Traugott
(ref. ^) showed that the dimensionless velocity gradient at the stagnation
point on a blunt body is a function only of the free-stream flow properties ,
MI and Y:

A (dV/ds)

i *
Assuming that this correlation is applicable to all shock solutions, any par-
ticular solution can be used to determine f(Mi,y). Accordingly, the solutions
in reference 1 for shock-standoff distances, A^/R^, and pressure distributions
on circular cylinders were used to extract numerical values for the velocity
gradient in the vicinity of the stagnation point for various specific-heat
ratios, y> and free-stream Mach numbers. Substituting this gradient into equa-
tion (l), which can be rearranged into a convenient form, yields numerical
values for f(Mi,Y):

st (dV\
R, Vi \ds/

/ (2)

For purposes of the flow continuity analysis described in appendix A,
equation (2) is modified to obtain the stagnation point mass-flow gradient:

Ast /V

d(
st

dfs/A )st

Pst
Pi f ( M l s Y ) = G (3)

st

The function G is plotted as a function of the normal shock-density ratio,
P a / P i » (rather than Mach number) in figure 1. A close empirical fit to the
curves is given by

G = ̂ gil + |*_ Z(Y_i) |_ (U)
where

- =
Pst

 P2L Y+l P2.



Symmetrical Shock Solutions

The shock solution is based on flow con
tinuity considerations applied to the region
between the body and its associated shock
depicted in sketch (a). The length Agt
resents the shock standoff distance from the
body in the symmetry plane and, for a given
free-stream flow, is related to the body and
shock radii, R-^ and RS , as will be shown.

The length A* represents the shock
standoff distance from the sonic point on the

„ , > body located at y*. The ratio A*'/y*
depends on the sonic point inclination angle,
<j>*, for a given free-stream flow. This depen-

dence establishes a unique relationship between <j>* and the shock inclination
angle, 0*, as will be shown.

can be specified for a
^* are Determined and

As a consequence of the foregoing, if <|>* and y*
body in a given flow, the parameters A -j., RS » ̂ *, an(^
constitute the shock solution. For this purpose, explicit relationships
between the shock and body parameters are developed in the following sections.

Shock shape—Reference 1 defined shock traces as conic sections of suit-
able bluntness Bs (see Notation) and obtained the shock solutions for a range
of conic-section blunt bodies. In the present investigation, it was assumed
that conic sections can closely approximate the shock trace for a larger vari-
ety of blunt bodies than were considered in reference 1. The shock bluntness,
Bs, is determined from the shock parameters

2
Re and 8* by

(5)
tan 0*

Shock and body parameters at symmetry plane—A mass-flow continuity analy-
sis applied to a "volume" element adjacent to the plane of symmetry in two-
dimensional flow results in the following relationship for the shock and body
radii, Rg and R-^, the shock standoff distance, A +, and the normal shock-
density ratio:

— +f h~ (6)

A detailed derivation of equation (6) is presented in appendix A. The values
of AS-(-/RS as a function of Ag^/R, for various ratios P2/P1 are presented
in figure 2.



Shock and body parameters at sonic "plane"—The average mass-flow compo-
nent normal to the control surface A* (sketch (a)) is denoted as (pv)*. Mass
flow continuity fixes the ratio A*/y* as follows:

n

The mean normal mass-flow component, (pV)*, was determined as follows:
The value, pV, has the maximum value of

1/2 /
p*V* = p^pz/Pi) (2/[(Y+l) - ( Y -1 ) (P1/P 2 ) ]> Y-1

at the sonic point and its derivative taken in any direction is zero. It was
assumed that the second derivative at the sonic point is also zero. The normal
(vertical) components of pV at the shock and the body are, respectively,
P l V i [ ( P Q / P I )-l]sin 6* cos 6* and p*V* cos <j>*. These specifications on pV are
accommodated by a four-term polynomial in x/A* which is integrated to obtain
the normalized mean mass-flow value:

o
— -1 sin 8* cos 6* + 3 fi-~- cos 4>*

U (A*/y*7

Equation (8) indicates that, while primarily sensitive to the sonic angle
()>*, the value for A*/y* is determinate only if a functional relationship
exists between the sonic angle <f>* and the shock angle . 0*. This functional
relationship is established by shock solutions for a family of widely varying
body shapes, including a flat plate, a circularly rounded slab, and a circular
cylinder. The shock solutions for a flat plate and circularly blunted slabs
are discussed in the following sections. These solutions, along with the cir-
cular cylinder solutions of reference 1, were then utilized to establish A*/y*
and 0* as functions of <J>*.

Flat plate—In the case of a flat plate supporting a shock of bluntness
Bs, the sonic point is assumed to reside on the windward side of the plate
corner, whence <f>* = 0. Simple relationships between Bs, Ast/Rs, A*/y*, and
6* with <j>* = 0 were proposed in reference 3 for an axisymmetric disc on
P
purely geometric grounds. These relationships also extend to two-dimensional
flat plates and can be expressed in the present notation as follows:

B = R /A . (9a)
s s st

(A*/y*) = (A '/R )/tan 0* (9b)
p st s p

Equations (8) and (9b) are combined to give



it tan 6*
E - (10)

— - 1 sin 0* cos 0* + 3 w^P! y P P PiVi

Since A -J./R is known from equation (6) and since A^/R^ = 0, solutions for
0| (eq. (10)] and for (A*/y*)p (eq. (9b)) may be calculated for a flat plate.

The results of such calculations are presented in figure 3 for (A*/y*) and in

figure U for 9* as functions of the normal shock-density ratio, Pa/Pli "the

specific heat ratio, ys is used as a parameter.

The equation for a shock with bluntness Bg can "be expressed as

tan9*

s ,/fe tan28* + 1
o

In the case of a flat plate, y* = b and 0* = 6* Equations (9a) and (ll) are

combined to relate the centerline shock standoff distance, A , , to the plate
semiwidth, b:- • • . -

A , /B,, tan20* + 1
st _ s p
b B tan 0*

s p

The shock solution for a flat plate is now completely specified since Bg,
A=+/b, (A*/y*) , and 0* are in hand.ST; p p

Circularly blunted slab—.It is assumed that a circularly blunted slab can
be specified so that at some free-stream Mach number, a circular shock having
nearly the same radius as that of the body will result. In this circumstance,
A* = A .and 0* = <j>*, and with y* = R sin 0* = R sin 0*, equation (8) gives

S~C S D

st It tan Q* / v

The expression Ast/Rs = Ast/Rb is determined using equation (6) and has a
unique value for a given free-stream flow. Thus, 0* = <j>* is readily deter-
mined using equation (13) and the corresponding value of A*/y* is given by

y* R sin 0*
S

Sonic angle, <j>* — In the foregoing, the shock solutions for a flat plate
and a circularly blunted slab were determined once <j>* was fixed, that is,
with <j>* = 0 and with <j>* = 0*. Shock solutions for other body shapes require
general rules for selecting the appropriate sonic-point angle. The rules for



determining the sonic-point location and inclination angle follow those of
reference 3. The arguments and pertinent equations are presented in appendix
B. The essential results are given in figures 5 and 6. Figure 5 gives the
reference sonic-point angle, <t>*, on a circular cylinder as a function of the
reciprocal shock-density ratio, P1/P2» using the specific heat ratio, y» as a

parameter. Figure 6 gives the sonic-point angle ratio in the form
sin (j>*/sin <)>£, either as a function of the body ellipticity ratio a/b or as a
function of the ratio r/b (for a round-corner slab section).

Relationship of h*/y* and Q* to <£* — A preliminary plot of the calculated
A*/y* values with sin d>* for a flat plate, a circularly blunted slab, and for
a circular cylinder determined from reference 1 suggested a uniform exponential
increase of A*/y* with sin <j>*. Accordingly, the three available A*/y*
values were utilized to correlate A*/y* with sin <J>* over the range,
0 < d>* < d)*:r TC

A _ /A*\lsin < , }

*PJV
sin **

The values (A*/y*) and (A*/y*) correspond to the circular cylinder and flat

plate, respectively. The value of sin <J>* is normalized by the circular
cylinder value, sin <j>^. The value n was determined by substituting the
values of A*/y* and $* from the circularly blunted slab solution into equa-
tion (15). The results of evaluating the expression A*/y* - (A*/y*) as a

function of sin 4>*/sin $% are presented in figure 7 with the free-stream con-
ditions expressed in terms of the normal shock-density ratio,

A preliminary plot of the three available 9* values with sin <j>* sug-
gested a correlation curve of some complexity. Therefore, additional values of
<j>* were required to define the relationship between 6* and <j>*. Such values
were calculated by utilizing the A*/y* - <f>* relationship (fig. 7) with equa-
tion (8). The results are presented in figure 8, in which the term Q* - Q*

is expressed as a function of the normalized sonic-point angle variable,
sin cf>*/sin $£, with normal shock-density ratio, p2/Pi, as a parameter.

It is interesting that the correlations of A*/y* and 0* with <j>* in the
forms presented in figures 7 and 8 are independent of the specific heat ratio,
Y- The application of these correlations to shock solutions in general will be
demonstrated in a following section.

Asymmetrical Flow Shock Solutions

The pattern of asymmetrical shock is assumed to consist of an upper and a
lower conic section of different bluntness , Bs ; both sections, however, are
assumed to have a common vertical tangent and radius of curvature, Rs , at the
shock apex as shown in sketch (b). The appropriate sections constituting the
shock are found by iterative calculations so that, ultimately, both upper and
lower shock elements satisfy A*/y* values based on mass-flow continuity at



R

Sketch (c)

their respective body sonic-point ordinates. In this regard, it is assumed
that equation (6) is applicable although the stagnation streamline is curved.
The curvature of the stagnation streamline, however, does introduce certain
stream displacements denoted by ys and yĝ . in sketch (b). An approximate
analysis of these displacements is presented in appendix C. The results of the
analysis are presented in figure 9.

The asymmetrical solution is applied to a class of two-dimensional bodies
typified by the section shown in sketch (c). The radii ru and r^ are the
leading and trailing edge radii of the section whose chord length is c. These
radii are tangent to a body arc of radius R̂ ,. The tangency points fix the
indicated angles, eu and e^. The angle of attack, a, is measured between the
chord and the free-stream direction.

The technique of the asymmetrical shock solution is best demonstrated by
the following calculative example with necessary equations introduced as
required.

Calculative example—The solution is applied to a wing-like body such as
shown in sketch (c). The coordinate system most convenient to the solution is
shown in figure 10 along with specific geometric details of the body in
question.

The solution is based on an initially assumed value for the span b, which
locates the shock apex (fig. 10). An approximate value for b is based on the
following: If the angle of attack a is 90°, the flow will be nearly symmet-
rical and the shock apex will be located approximately at midchord, or,
b = c/2. If the angle of attack is sufficiently small that a sonic point will
reside at the point where ru and R are tangent, the circular cylinder shock
solution applies with <J>̂  = <j>£ = 90 - a - eu. The shock apex will then be
located at b = ru. A linear variation of b with an angle of attack a is
assumed with the above limits, giving the following result:

b _ !_ _ fl _ ruT90° - ot"|
c 2 2 c e + <j>*|L Jl_ u

 Y
c-l

(16)



A trial shock solution can be calculated using the values c = 1.0, ru = 0.10,
r£ = 0.05, % = 1.92, eu = 10°, e£ = l6.5°,,and a = 65° (fig. 10).

A reference ordinate is defined a.s

Y = (c - r - rjsin a + r = (l.O - 0.10 - 0.05)0.906 + 0.10 = 0.870
m u £ u

(17)

The free-stream flow is ideal air at MI = °° (y = 1.**, P2/P1 = 6.0). The
basic shock parameters associated with the flow are as follows:
(A*/y*) = 0.608 (fig. 3).; 9* = 19.1*5° (fig. !*); and <(>* = 1*1*.5° (fig. 5).

P P c

The approximate shock tangency point (apex), b, given by equation (l6) can
then be evaluated:

b _ 1 I 1 0.1011 90° -- 65° "[ =

+ U+.5°J
•31 7

O I n i n II -i <iO . 1,1, t-O I " • JJ- I
<J dor

b = 0.317 (c = 1.0)

The upper sonic angle, <)>*, is determined as follows: The ratio ru/b =
0.10/0.317 = 0.316 takes the role of r/b in figure 6 where the ordinate value
sin <j)*/sin <j>g = 0.77 is found. The value for 4>* = sin"1 (0.77 sin 1*1*.5°) =
32.7° is calculated. This angle is compared with the inclination of the upper
corner tangency point, ft = a + e - 90° = 65 + 10° - 90° = -15°. The sonic-
point angle criteria defined in appendix B require the larger of these angles
to represent 4>*; therefore, <J>* = 32.7°.

The upper sonic point coordinates are given by the following:

Y* = Y - r (1 - sin **) = 0.870 - 0.10(1 - 0.5̂ 0) = 0.821* (18)
u m u u

X* = (c - ru - r£)cos a + TU cos <J>* = 0.85(0.1+22) + 0.10(0.81*2) = 0.1*1*3

(19)

With the angle <$>$ specified, the ratio (A*/y*) and the shock angle Q*
are determined as follows: The values (A*/y*) - (A*/y*),, and 9* - 6*, asso-

ciated with 4>* = 32.7° (at P2/P1 = 6.0), are found from figures 7 and 8 which
give (A*/y*) - (A*/y*) = 0.109 and 6* - 6* = -2.60°, whence

and
(A*/y*) = 0.109 + 0.608 = 0.717

9* = -2.60° + 19.^5° = 16.85'u

The lower sonic angle, ( j> f , is determined as follows: The lower span,
opposing the upper span b, has the value, Ym+r^-b = 0.870+0.05-0.317 = 0.603.
The ratio, r /(Ym+r -b) = 0.05/0.603 = 0.083, takes the role of r/b in

X< A/



figure 6 where the ordinate, sin <j>*/sin <fi* = 0.52, is found. The value for
<j>$ = sin~1(0.52 sin HH.5°) = 21.H° is calculated. This angle is compared with
the inclination of the lower corner tangency point,

$* = 90° + e - a = 90° + 16.5° - 65° = Hi.5°
X> JC

The previously mentioned sonic-angle criteria1 requires the larger of these
angles to represent <j>*; therefore, cj>* = Hi.5°.

x>

The lower sonic-point coordinates are as follows:

Y* = -r£ sin <fr« = -0.05(0.663) = -0.033 (20)

X* = r£ cos <j>* = 0.05(0.7̂ 9) = 0.037 - (21)

The ratio (A*/y*)j, and the shock angle 6| will now he determined. The
values (A*/y*) - (A*/y*) and 6* - 6*, associated with cf>* = Hi.5°

P P
(p2/Pi = 6.0), can be determined from figures 7 and 8, which give .
(A*/y*) - (A*/y*) = 0.165 and Q* - 6* = -1.30°; therefore,

(A*/y») = 0.165 + 0.608 = 0.773
and *

6* = -1.30° + 19.H50 = :ZS.:Z50
JC

Sufficient information is now available to estimate the coordinates Xs
and Ys, of the shock "apex"

X = X* + x* + A* = X* + y*(x*/y*) + y*(A*/y*) (22)s u u u u Ju J u Ju J u

Y = Y - b (23)s m
The value

y* = b _ (Y - Y*) = 0.317 - (0.870 - 0.82H) = 0.271 ( 2 H )u m u

is the vertical displacement between the upper sonic point on the body and the
shock apex. The value x£ is the horizontal displacement on the shock from
the apex to the point where the shock inclination is 9U. The displacement
ratio, (x*/y*)u, is approximated by the "mean" shock slope, tan(8u/2_). Equa-
tions (22) and (23) can now be evaluated:

X = O.HH3 + 0.271 tan l6'^° + (0.271)(0.717) = 0.67?
S c.

Yo = 0.870 - 0.317 = 0.553
S

Occasionally, the selection rule may give an angle <j>| > <(>*, in which
case <j>| is assigned the value of <)>£. In this event, the location on the
body where its surface inclination is <f>* fixes the lower sonic-point
coordinates.



The approximate shock apex is located by the above coordinates on figure 10 and
is denoted by the circular symbol.

Attention is now given to defining the stagnation streamline. For this
purpose, the length AQ in the free-stream direction between the shock apex
and the body, the associated body surface inclination 4> Q , and the radius R^,
at the body terminus of AQ are required. These values may be calculated with
the geometry of simple analytic body sections but, in general, are most expedi-
tiously scaled from an accurate drawing of the section. In this case, the mea-
surements from figure 10 are AQ = 0.277 and <j> 0 = .21°; R^ has the given value
of 1.92 units. A simplified stagnation streamline consisting of two straight
lines of equal length, one drawn horizontally and one drawn at the inclination
4> o s respectively, are located as indicated by the dashed line elements in fig-
ure 10, While this approximation lacks the qualitative feature of the actual
uniformly curved streamline, its length,

Ast ~ A0(l + cos cf>0)/2 = 0.277(1 + 0.93M/2 = 0.268 (25)

is a good approximation to that of the actual stagnation streamline. The angle
4>st at the point of the stagnation streamline impingement on the body is (in
degrees) as follows:

AQ sin <j>0
* + = *o - 57.3 -^ 5— = 21° - 57.3(0.277/2)(0.357)/1.92 = 19.5°
S U £. K

(26)

The stagnation streamline value, A^/R^ = 0.268/1.92 = O.lUO, and the corre-
sponding value, Ast/Rs = 0.200, is found from figure 2 with Pa/Pi = 6.0. The
value Ast/Rs = 0.200 with p£/Pi = 6.0 gives the ordinate ys/Ast sin <f>st =
0.18 from figure 9. The vertical displacement ys of the dividing (stagna-
tion) streamline from the shock apex is evaluated as follows:

y = (y /A , sin $ , )A , sin <j> , = O.l8(0.268)sin 19.5° = 0.016
s s st st st st

The effect of the displacement ys is to reduce the mass flow intercepted by
the upper shock and to increase the mass flow intercepted by the lower shock.
These mass-flow continuity considerations then affect the values of A* as
follows:

Au = (yu - ys)(A/y)u

A* = (y*+ys)(A/y)*

With the value of Rs = A s t / (A s t /R s) = 0.268/0.200 = 1.3^0, an improved
determination of the ratio x*/y* is made with the conic-section relationship:

<*\ - , tan ?* (29)
~ 1 + (Rs/y*)tan 6* ^

A check of the shock apex or tangency point location Xg as given by both
the upper and lower shock geometry is then made. For this purpose, the values
of y*, (x*/y*)u, and (x*/y*)̂  need to be established first:

10



y* = Y - TO£, m Y* = 0.8TO - 0.317 - (-0.033) = 0.586£

With equation (29) :

and

tan l6.85c

= 0.121
£̂r tan 16.85°

(30)

tan 18.15°

tan 18.15°
= 0.187

The shock apex location X is given for the upper and lover shock "by

r*
X = X* + (y* - y )(nH + y*[̂ r)
su u *u ys \y*/u

 yu\y*ju

= O.Mt.3 + (0.271 - 0.016)0.717 + 0.271(0.121) = 0.659

A* x'
> (31)

= 0.037 + (0.586 + 0.016)0.773 + 0.586(0.187) = 0.612 J

A discrepancy or mismatch of x
sr>-x

su
 = 0.6l2 - 0.659 = -0.0^7 is indicated.

Since the above values for Xg are primarily affected "by yu and y$, an incre
mental correction term, V, is applied to these values so that XS£ = Xsu.
Equations (3l) are modified accordingly and equated:

X*
u

(yy V) 1 - £-} + (v* + V) —„# ^-j,, v 'l „*
u

* - v)j + ( y * - v ) |
*

(32)

Equation (32) is solved for V (neglecting nonlinear terms in V) with the
result

X . - X
V =

su -O.OVf

f* A*
y*j + I V*/ + lv*/ + \ V*/^ 'u \^/u \^ /«, \y I a

f* A* 0.121 + 0.717 + 0.187 + 0.773
= -0.026

(33)

The above correction, V = -0.026, when applied to "b = 0.317, automatically
modifies the values, y* and y*, to the required values.

An iterative calculation is then made with the modified value,
b = 0.317 - 0.026 = 0.291, replacing the initial value, b = 0.317. The calcu-
lations are repeated with the exception that the initial value
(x*/y*)u = tan(ê |/2), used in equation (22), is replaced by the value (x*/y*)u

11



from equation (29). This substitution is clarified by examining the computing
form presented in table 1. This form contains the foregoing calculations and
presents the numerical results of iterations toward a convergent solution. The
final results include the ordinate of the stagnation point location Yg^ on
the body and the shock bluntness parameters Bsu and Bg., given by equation (5).

Pressure Distribution

The pressure distribution is found by first determining the velocity dis-
tribution V/V* = V(s), where s = s/s*, and applying the perfect gas
relationship

(3U)
I ~VT I 1 \l " I I

'st

to give P/Pst a-3 a function of s. This application is expedited through
figure 11 which gives P/Ps-t as a function of V/V* for various values of the
specific heat ratio, y«

The method, in principle, is as follows: The velocity distribution func-
tion is first determined for what is considered an analytic (smooth) body
approximating the actual body shape. A correction term is then added if neces-
sary to account for the effect of surface curvature discontinuities. The
desired function V(s) is subject to the constraints V(0) = 0 and V(l) = 1;
the associated derivatives V(0) and V(l) are then evaluated at the stagnation
and sonic points.

•

The value of the stagnation point derivative V(0) is found by rearranging
terms in equation (3) with VX/V* =

(35)
1 "Bt ' " ' "

The values Ag^/R^ and s*/A + are provided by the previously determined shock
solution for the body in question.

The sonic point velocity derivative is related to the sonic point pressure
derivative by differentiating equation (3̂ ) with respect to s/s* and evaluat-
ing the result at V/V* = 1:

d(P/Pst) _ YP*d(V/V*)
d(s/s*) ~ Pstd(s/s*)

The sonic pressure derivative, to a good approximation, is -s*/r (ref. 3).
Substituting this value for the left side of equation (36) gives the value of
the sonic point velocity derivative as follows:

_ d(V/V*) Pst"a

~ d(s/s»)

12



The next subsection presents the derivation of velocity functions subject,
to the above constraints and applicable to smooth bodies (no surface curvature
discontinuities). The following subsection presents an approximate method that
accounts for the effect of surface curvature discontinuities.

Velocity distribution for a smooth body—In reference 5 it was pointed out
that in the vicinity of a sharp sonic corner, the velocity in the present
notation is

V(s) * 1 - A - S (38)

Equation (38) satisfies the requirements that V(0) = 0 and V(l) = 1, and gives
V(l) = °° in agreement with equation (37) for a sharp sonic corner (r = 0).
Equation (38) is generalized in a simple manner to accommodate v(l) ^ °°, but
to retain the property, V(d) = 0 and V(l) = 1:

1 - /I - k,S
(39)

1 - /I - kj

The appropriate constant, k^ , is determined by differentiating equation (39)
and equating the result at s = 1 to V(l) (eq. (37)):

kl =
- 2V(1)]2

(UO)

Equation (39) with kj satisfies the condition V(0), V(l), and ?(l), but .only
in fortuitous cases gives the correct value for V(0). An independent velocity
function is required to satisfy_the conditions V(0), V(l) , and v(0). A mono-
tonically increasing function, V(s), similar to that of equation (39) is chosen

where
V(s) =

A - k0(l - i) - /I - k0

1 - /I - k0
(Ul)

W(0)[v(0) - 1]=
[1 - 2V(0)]2

Equation (Hi) satisfies the "end" conditions V(d), V(0), andV(l). All "end"
conditions are satisfied by a linear interpolation between the values given by
equations (39) and

/I - k0(l - s) - /I - k0

1 - /I - k0
(1 - s) +

1 - /I -

1 - /I -

In cases where V(0) < 0.5, equation (U2a) will not satisfy both V(d) and
V(l) = 1. A truncated series term is substituted for such cases:

13



V(s) = [V(0)5
1 - /I -

1 _ /I _

B

*st AV

Equations (l*2a) and (l*2b) give a uniform velocity distribution and are presum-
ably applicable to a smooth body of uniformly varying surface curvature.

Effect of curvature discontinuities—In cases where the location of the
stagnation point is Newtonian (most forward point on the body) or when the
absolute value of the body surface inclination angle increases with distance
from the stagnation point, the effect of surface curvature discontinuities may
be estimated in the following manner. Newtonian theory suggests the relation-
ship v s sin 4> (the lower case v is used to distinguish velocities from
those given by equation (1*2)). The further approximation v = <j> (<f> in
radians), is adopted to simplify the analysis. The body surface is assumed to
consist of three tangent radii, R^, r*, and r. The values of v =.<)> associ-
ated with s = 0, the tangent points, and at s = 1 are, respectively, $s-t»

<j)t' t (j,t ̂ an(j (j,* as shown in sketch (d).
Straight-line elements are drawn between adjacent

* <j> values resulting in a line function indicated
by the solid line. The slopes of the individual
elements are determined by the appropriate sur-
face^radius, that is, where the element radius is
R].,, V = s */!?•)-,, etc. A smooth curve approximation
to the line function is determined as follows:
The midsection of the line function is extended
to s = 0 and s = 1. The result is a linear base
function, vg, to_which smoothly varying incremen-
tal functions Av' and Av" of the form Av' =
C'(l-s)n' and Av" = C"(s)n" are added to match
the line function ordinates and slopes at s = 0
and 1=1:

v = VB - Av
f + Av" (1*3)

The smooth Newtonian velocity distribution, given by equation (1*3), is analo-
gous to the velocity distribution given by equation (1*2). The difference in
velocity distribution between the line function and equation (1*3) represents an
additive correction term accounting for surface curvature discontinuities. It
is assumed that this Newtonian correction, suitably scaled, can be applied to
the distribution given by equation (1*2) to account for the effect of surface
curvature discontinuities.

Detailed derivations giving the explicit form of equation (1*3) are omitted
herein. Instead, the results of such derivations are embodied in the computing
form presented in table 2. Additional instructions are given in appendix D.

Numerical example—In graphical form, figure 12 shows sample numerical
results obtained with equation (1*2) for the velocity distribution on a smooth
body equivalent to a blunted cone.2 The appropriate velocity correction term

2While the shock solution presented herein applies only to two-dimensional
flow, the method of determining the velocity distribution is general. The
velocity gradients for this example (fig. 12) are determined from reference 3.

0 S

Sketch (d)
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is provided by a calculated example in the computing form of table 2. Comments
on the selection of suitable scaling factors and other details pertaining to
the computing form are discussed in appendix D.

The pressure distribution corresponding to the corrected velocity distri-
bution was determined from figure 11 and is included in figure 12.

COMPARISON OF EXPERIMENTAL AND PREDICTED RESULTS

The validity of the present method was assessed on the basis of compari-
sons with the theoretical shock envelopes of reference 2 and comparisons of
pressure distributions with the theoretical results of references 1 and 5 and
the experimental results of references 6 and 7.

• Shock Shape

'; Comparisons of shock shapes predicted by the present method and reference
2 for a flat plate are shown in figure 13. Good agreement is shown at the
angles of attack, 90° and 76° (Mj = 20). The agreement deteriorates somewhat
at an angle of attack of 60°. A point to be noted at the angle of attack of
60° with MI = 5 is the location of the stagnation streamline. The streamline
predicted by reference 2 is essentially straight and parallel to the free-
stream direction, implying that the stream entered the shock at its apex. This
is in contradiction to the assumption made herein that the stagnation stream-
line should exhibit a subsonic type behavior and curve toward a nearly normal
impingement to the body surface as indicated. Unfortunately, no experimental
data are available to resolve the difference in these predicted streamlines.

Surface Velocity and Pressure Distributions

A comparison of the velocity distributions for a flat plate at MI = 20
predicted by the present method and those of reference 2 for a flat plate are
shown in figure lU. Good agreement is shown between the predicted (positive)
velocities leeward of the stagnation point at the angles of attack, 90° and 76°.
There is less agreement between the predicted values when the angle of attack
is 60°. The lack of agreement between the predicted values of the (negative)
velocities windward of the stagnation point is more pronounced at the angles of
attack, 76° and 60°. This lack of good agreement arises partly from the dis-
crepancies between the predicted streamlines, since the windward velocity is
very sensitive to the stagnation streamline as the stagnation point approaches
the plate (windward) leading edge.

Predicted and experimental pressure distributions over the forward face of
various blunt bodies are compared in figure 15. The comparisons are made for
axisymmetric bodies since two-dimensional data, particularly for asymmetrical
shapes at various angles of attack, are relatively scarce. However, since the
method of estimating the pressure distribution is independent of the
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dimensionality of the flov, the good agreement shown in figure 15 between the
results of the present method, the results presented in reference 5, and the
experimental data demonstrates the validity of this method.

CONCLUSIONS

A method has been developed for predicting shock envelopes and pressure
distributions for a variety of two-dimensional blunt bodies at various angles
of attack. The method is restricted to those cases in which the bow shock is
detached from the body and the flow over the forward face of the body is
subsonic.

This method utilizes a quickly convergent calculative procedure based on
correlation functions which relate the shock standoff distances at the stagna-
tion and sonic points to the body geometry. The correlation functions depend
primarily on the normal-shock density ratio modified to a small degree by the
specific heat ratio of the gas. Since the effect of the specific heat ratio is
small, the method should give adequate solutions for the equilibrium flows of
real gases.

Predicted shock envelopes and pressure distributions compared favorably
with the results of other theoretical methods and with experimental values in
the Mach number range U.O to 20.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif. 9^035, Sept. 25, 1972
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APPENDIX A

BODY-SHOCK GEOMETRY IN SYMMETRY PLANE

The relationship "between the shock and body radii, Rs and R-^, and the
shock standoff distance, AŜ . , in the plane of symmetry is determined "by utiliz-
ing mass-flow continuity, oblique shock relationships, and a suitable
coordinate system.

Mass' flow near the shook—-The
shock and flow geometry is depicted in
sketch (e). The analysis is confined
to the domain below a control surface
m-m which extends normal to the body
surface (not shown). This surface is
inclined to the symmetry plane at a
small angle, <J>. The purpose of the
following calculations is to find the
mass-flow component normal to the plane
m-m and its derivative along m-m at
the shock.

Sketch (e) A streamline entering the curved
shock of radius, Rs , at some point, y^,

above the shock apex will be deflected an angle, 6^, and will pursue a curved
path of radius,^, behind the shock. The results of reference 8 give the fol-
lowing radius ratio for small 6:

V P2P2 , (5 -yjl
* " pTlpi (i + Y)J

where 6 = y/Rs and P2/P1 is the normal-shock density ratio.

By oblique shock theory, the small deflection angle ^
as follows:

fp2

(Al)

can be expressed

(A2)

In the vicinity of the shock, the equation of the streamline entering the
shock (x = 0) at y = y^ is given by Maclaurin's expansion

(A3)

The equation of the control surface, m-m, is

y = y. - <J>x (Ah)
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The inclination of the streamline where it intersects the control surface
is dy/dx + <$>. Flow continuity along the streamline, s = x, gives the mass-
flow relationship, pV/p^Vi = y/p/y. The component of mass flow normal to m-m
is

Equation (A5) is expressed in terms of y and x ass

(pV)n

f(xT\ fU) R

Equation (A6) gives at the shock (x = 0)

(pV)n
= 6 H

s

The derivative of equation (A.6) at x = 0 is

<l(pV)

(5 -
(l

x (A6)

(AT)

(A8)

A two-term expression for the normal mass-flow component in the vicinity
of the shock is

(PV)
(A9)

Sketch (f)

Mass flow near the body—A streamline in the
vicinity of the stagnation point on the body is
shown in sketch (f). At a small distance, dx, from
the body, the stream is essentially parallel to the
surface.

From equation (3), the mass-flow gradient at
the stagnation point of the body is

A
st ° G (A10)
st

n

The subscript n has been appended to indicate that the flow at (or near) the
body surface is normal to the control surface m-m.

At the point ds = R-̂ tji on the body surface, the mass flow is
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st/Rb)

st
(All)

Assuming that the circulation
small concentric strip of width dx

f V • ds = 0 holds for the perimeter of a
and length R, <|> it can be shown -that

d(pV) (1. + A

Normal mass-flew variation along the control surface — A four-term poly-
nomial expression for the variation of normal mass flow from the shock to the
"body along the control surface m-m is

+ C3

(A13)

The constants C2 and 03 are determined so that x/Agt = 1 (body surface) ,
equation (A13) reduces to equation (All) and the derivative of equation (A13)
reduces to equation (A12) .

Shock and body radius relationship — The normal mass-flow distribution
given by equation (A13) was integrated over the interval 0 < x < AS-(- to give
the total mass flow passing through the control surface m-m and was equated
to the flow entering the shock element, ysPiVi. Omitting arithmetic details,
the following identity resulted:

st

(AIM

The geometric relationship yg/Rg = (Agt+R )<j>/Rg relates 6g, <|>, and 6g. The
ratio Ag^/^ and the angles 6g and <J> were thereby eliminated froin equation
(AlU), giving the final result:

'^-^W-%>
2A

= 1 + -=^ — - R (6)
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APPENDIX B

BODY INCLINATION AT THE SONIC POINT

The solution for an infinite shock-density ratio was used to determine the
inclination of the sonic point on a conic-section body. The results were then
modified to apply to finite shock-density ratios and to nonconical sections by
the following procedures.

Conic-Section Body

The inclination angle ** at the sonic point was determined as a function
of the body bluntness parameter B^ using the Busemann solution for an infi-
nite shock-density ratio. Details for the axisymmetric flow solution are pre-
sented in appendix A of reference 3. A similar solution for two-dimensional
flow gives the following result:

(1 - sin2**) -•—• = (K ^ i){t(B^ - l>sin2<J>* + l]3/2 - [(^ - l)sin2<|>* + l])
st "b

(Bl)

In the present application of equation (Bl), the gas was assumed to be
perfect. Since the theory requires an infinite shock-density ratio, the value
P*/P ^ = 0.607, appropriate for a gas with y = 1»0 an^ MI = °°, was' used. The
results for sin <}>* are normalized by the value for a circular cylinder
(sin <{>* at B^ = l) and are presented in figure 6 as a function of a/b (note
b/a = B*/2). Although the absolute values for sin ** given by equation (Bl)

may not be correct for a finite shock-density ratio, it is .assumed that the
ratio sin <f)*/sin <f>*. will not differ greatly from that given by exact theory.
Thus, if the value of <j>* is known for a circular cylinder in a given free-
stream flow, the value of <(>* for a conic-section body can be determined from
figure 6. The values of <)>* for a circular cylinder by the exact solutions of
reference 1 are presented in figure 5.

Nonconic-Section Bodies

If a blunt body does not have a conic section, the parameter B^ is not
appropriate. However, the sonic-point location on other types of blunt bodies
may be estimated on the basis of the foregoing analysis. To this end, it is
assumed that a shock in the form of a conic section is appropriate for all
classes of blunt bodies considered here. For example, a blunt body with a
rounded corner of radius r is illustrated in sketch (g). When the flow has
an infinite shock-density ratio, the shock coincides with the body in the
vicinity of the sonic point. If the sonic point is on the rounded corner of
the body, the Busemann solution applies if the body corner radius r is
equated to the radius of a conic section at the same sonic-point ordinate, y*
(ref. 3):
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(B2)
1 +

Sketch (g)

Equation (B2) gives the r/b value for an
equivalent body that supports the same elliptical
shock and the same sonic angle as a body with the
bluntness parameter Bjj. The value of
sin <{>*/sin <j>^ for rounded corner bodies as a
function of r/b is plotted in figure 6.

In some cases, a qualification of the sonic
angle is necessary, for example, when the body is
a large-angle wedge or a large-radius surface
terminated by a rounded corner. In such cases,
the inclined or circularly blunted portion of the
body will be tangent to the corner radius r at
which point a surface inclination angle 4>* is
defined. Tfye sonic-point angle is then taken as
<t>t , if <!> is greater than the value of <(>*
determined from figure 6.
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APPENDIX C

ASYMMETRIC STAGNATION STREAM

Streamline Impingement Angle on Body

Consideration is given to a small domain in the vicinity of the stagnation
point on the body (sketch (h)). Because of vorticity effects induced by the
shock, the stagnation streamline does not impinge normally to the body but will

be inclined at some angle fi with respect to the
normal. In this small domain the flow is incompres-
sible and the velocity components will be linearly
proportional to the local coordinates, 5 and n. A
stream function which yields linear velocity compo-
nents and satisfies the boundary condition ^ = 0
at C = fin and n = 0 is

(ci)

The velocity gradient 9u/9£ was assumed constant
along the stagnation streamline of length Ag-(- , and

Sketch (h)

to the order of accuracy required here , was
assigned the value

jju
95

Ĵ_
P2 st = C (C2)

The vorticity <; (ref. 9) in terms of the coordinate system used herein is

9n - 95 P2

Equations (C3) and (CU) are equated to yield

, }
(C3)

where 6 is the small angle indicated in sketch (e).s

Equation (Cl) is differentiated partially for £,
(C2), gives

and with the C from

st (cU)

(C5)
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Stream Geometry

The stagnation streamline is referenced to a
coordinate system whose origin is at the shock
"apex" as shown in sketch (i). The streamline ordi-
nate is ys at the shock and ygt at the body.

Examination of incompressible asymmetric flows
in general shows that the stagnation streamline
increases uniformly in curvature as it approaches
the stagnation point. A simple curve having this
property was chosen to represent the stagnation

Sketch (i) streamline between the shock and the body.

# = CU/tan 6 (C6)

The constant C^ is selected to give the correct streamline radius at the
shock as follows :

C.f = <f tan 6 . :(C7)<*• s s

The differential streamline length is

Op d6
(C8>

After integrating equation (C8) and evaluating it between -the limits 6g
and <t>ŝ . + ft, it is equated to the length of the stagnation streamline, Ast, to
yield

r sin(<f> . + ah
- ~| -sin 6L- s -1

Ast = *g tan 6g to| ZTT^T I (C9)

Similarly, the ordinate change in the streamline between the shock and the body
can be found by integrating dy = sin 6 ds = CU cos 6 d6:

y ... - y = R tan 6 [sin(4> , + ft) - sin 6 ] (CIO)
S U S S S S~C S

The term RS can be eliminated between equations (C9) and (CIO) and, using the
relationship 6S = [(p2/Pi)-l](ys/Rs), the following streamline ordinate
relationship results:

yst - ys _ sin(<t>st + "} - Sin 6s
A , sin($ . + ft)st „ st

sin 6s

Equations (C5) and (Cll) were used to calculate values of ys and yŝ . as func-
tions of AŜ ./RS, <j>s.f., and P2/P1- The results are presented in figure 9.
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APPENDIX D

AUXILIARY INSTRUCTIONS FOR TABLE 2

The computing form (table 2) for determining the velocity correction term
applies directly to a body consisting of three finite tangent radii, R^, r^,
and r (items (l) to (3)) between the stagnation and sonic point locations

(sketch (j)). The angles 4>st» 4>
tf, 4)*", and 4>*

**4 j* (items (U) to (?)) measure in radians the surface
\̂ Ĉ inclinations at the stagnation point, the tangent

$t"̂ *1 m£\^ points, and the sonic point with respect to a plane
Ĵ  \. normal to the free-stream direction. In cases

/ N. ^— f where any of the surface element radii are of zero
y^_ N. curvature, the distances s^ , s* , and s* to the
^̂ "̂ -t tangent points (items (8) to (10)) as specified in

the computing form are indeterminate. In this
event,.the following auxiliary equations for com-
puting the values of s are required. For clari-
fication, the geometry for each of the following
cases is shown in sketch (k).

Sketch (j)

Case I, R = °°, r and r Finite

Since the angle <|> = <j> , the value of s (item ( 8 ) ) is
S u

t" t". , rMsin $ - sin $ . ) - r(sin <j>* - sin $ )s •*•- S=T:
S"C

Case II, r = °°, R, and r Finite

t1 t" t"
Since the angle <(> = <j> , the value of s (item (9)) is

,„ . , y* - R, (sin $ - sin 4> . ) - r(sin <J>* - sin 4 )
s* = s* + i 2*». (D2)

COS <()

Case III, r = °°, R, and r Finite

t"Since the angle <|> = <J>*, the value of s* (item (10)) is

+ ii 7* - R, (sin <|> - sin <}> .) - r (sin 4>* - sin 4> )
at " O S"C /T^^\(D3)



R b =CO

Case I Case

Case IS.

r=ao

Case V

•Rh=r f=oO

Case 21
Sketch (k)



Case IV, R Finite, r* = r = °°

t * t" t"
Since the angles <j> = <j> = <J>* and the value of s = s* (item (9)

equals item (10)),

t" * t' y*- Vsin **--»in*8t)s = s* = s + - - - (DU)

Case V, r Finite, R. = r = °°

t ' t" t '
Since the angle fy . = <)> and the angle <}> =<)>*> the value of s

(item (8)) is

, , y* sin <)>* - Ax* cos $ - r [l - cos(<|>* -<(>.)]
U D SO

s = - : — 7-rs - T — r -sin(<j)* - <j>gt)

where Axg is the horizontal distance between the stagnation and the sonic
point locations.

The value of s* (item (id)) is

4.11 y* - s cos <j> - r (sin <f>* - sin 4> , )
s* = s* + _ st _ st^ / _N
s s cos <f>* ( ̂  '

Case VI, R^ = r = «>, r = Finite

t1 t" t' t"
Since the angles 4> . = <1> = <|> , the value of s = s (item (8)

equals item (9)) is

+ i +i! 7* - r(sin $* - sin $ . )
U O _ S"C ^T^^^s = s = - - - (Do)

cos 4> 4.st

Scale Factor

The "smoothed" Newtonian velocity distribution, equation (̂ 3), is not gen-
erally equal to that of the velocity distribution given by equation (U2). It
is assumed, however, that the incremental velocity distribution, accounting for
the effect of surface curvature discontinuities by Newtonian theory (item (25))»
is qualitatively valid and by an appropriate scaling factor can be applied as
an additive correction term to the "smooth" velocity distribution given by
equation (U2). ̂ A.logical scaling.factor, f, is the ratio of the velocity
gradients, f = V/v, where V and v are the respective gradients of equations
(1*2) and (U3). Preferably, the gradients should be evaluated at the
stagnation point, whence

f = V(0)/v(0) (D7)
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The term V(0) is given by equation (35) and v(0) = s*/Rb is item (ll) in the
computing form.

In the case when R^ = °°, the Newtonian value, v(0) = 0, is not realistic.
An alternative choice is then the velocity gradient ratio at the sonic point:

= s (D8)
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TABLE 1.- SHOCK SOLUTION COMPUTING FORM

c (chord) = 1.00

ru = 0.10

EU = 10°
r£ = 0.05

E, = 16.5°

a = 65°

7

8

9
10

11

12 0.966

13

ll*

15
16

17

18

• , fig. 3
p

0.608

6», fig. 1* = 19.1*5

$», fig. 5 = UU.5

Iteration number

19
20

21

22
23
21*

25
26

27

28

29

30

31

32

33

35
36

37

38

39

1*0

1*1

1*2

1*3

1*1*

1*5

0.317 ©0.291^0,

.316 .31*1*

292

app. (^») = tan(©/2)\y /u
x* = (V»)(£2) .01*0

.677

.553

.030

.650

.579

125

I Scaled from fig»10
' / at coordinates ftb) -

b = ^ + (70)to©£

3) and ord. fig.9(b)

Yst =©+©@ain©

0.277

21°

0.2UO

20°

1.92

/@)2-cot2@

0.680

.630

11.36

-5.72
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TABLE 2.- COMPUTING FORM FOR VELOCITY INCREMENT, AV

1 Rb=1.0
2 i>"t=00

3 r=°°

1* 4>st=0a

5 (f> t f=0.52l*

6 ^"=0.521+

7 4>*=0.52l*

8 s* '-((f) -(5)) (T) -0.521*

9 stM=(8)+(©-(D)(D ==l*.561*

LO s*=©-K©-G))(3)=l*.561*

20

s
0
o.oi*

.08

®/® =0.11 1*6
.15
.25

©/@=1.0
.60

. .80
1.0

20
s

0
.01*
.08
.111*6
.15
.25

1.00
.60
.80

1.00

21

/^(R)(gp)^-^
1.0

, ,

26

l-(2§)

1.000
.96
.92
.8851*
.85
.75

0
.1*0
.20

0

22

Av"= ©©
0

27
f

®
fs)
— /

1.00
.701

m

0

1*81*
3l*6

.092
0

0

11 s*/R = (LO) / (X)= i*.56l*

12 3*7^= @) /(F)=0

13 s*/r= (10) /(|)=0

111 C'=0-©-(8)/©=0.52lt

15 u. C^-Cii) 0

16 C»+C"=©-^-@=0.52U

17 C"=@-@=0
^~?y_ ffp^

18 _1I VlX V — ' rt

QJ;
19 vB(l)=@+@+©=0.52l*

23

f~\ S~~^\v= (^2) + 0^
0
0.157

.281

.31*3

.397

.1*76

.521*

.521*

.521*

28
Av'=QJ*)(27)

0.521*
.367
.253
.181
.127
.01*8

0 _

_

0

2 It-
Line

function
(1A=0

0.183
.366

©=0.52l*
.521*
.521*

(6^=0.521*
521*
521*

©=0.52l*

29
vB(l)-vB

= @@
0

25
/'"IN /^"N
(2l*) - C23J

0
0.026

.085

.179

.127

.01*8
0 _

0

30
£8) +(29)

0.521*-
.367 -.
.253
.181
.127
.01*8

0 _
_

-

AV

/"~\ h
tfeV1 0

0
0.016

.051*

.111*
!o8l
.031

0 _

0

31
vB-A^'

= @h®

0
0.157

.281
' .31*3

.397

.1*76

.521*

.521*

.521*

.521*

aNote: 4), in radians .
^Scaling factor f = 0.6U, equation (D7) or (D8)
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Figure 1.- The G function.
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Figure 3.- Sonic-point standoff distance (A*/y*) for a flat plate normal
to the stream.
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14

Figure h.- Shock inclination angle 6* for a flat plate normal to stream.



Figure 5.- Sonic-point angle <{>* on circular cylinder.
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Figure 6.- Sonic-point angle <|>* on elliptic and round-corner slab sections,
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.4 .6
sin <£*/ sin <££

8

Figure 7.- Values of (A*/y*) - (A*/y*) as a function of sin <)>*/sin (J>*-
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3.5

1.0

Figure 8.- Values of 6* - 0* as a function of sin <f>*/sin <$>*.



Figure 9.- Streamline displacement, ys and yst<
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Figure 10.- Coordinate system for shock solution with example solution.
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Figure 11.- The ratio p/p as a function of V/V*.
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i E q u a t i o n (42)

V (0) = 2.92 K0= 0.9573
V (I) = CD K,= 1.0

Figure 12.- Sample numerical results for a blunted cone, MI = 4.86.
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\\

Present method

Ref. 2

Figure 13.- Comparison of predicted shock on a two-dimensional plate of various
angles of attack.



v/v,

Figure lU.- Comparison of predicted velocity distribution on a. two-dimensional
plate of various angles of attack, MI = 20.
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Figure 15.- Predicted and experimental pressure distributions on various bodies.
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