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NOTATION

b wing semispan measured from the end plate, m (ft)

C\i. gross thrust coefficient, gross thrust/qS

Cf flap chord, streamwise, m (ft)

cw wing chord, streamwise, m (ft)

D ducted fan exit diameter, m (ft)

L lift, N (Ib)

PNL perceived noise level, PNdB

q free-stream dynamic pressure, N/sq m (Ib/sq ft)

R resultant force, \/L2 + X2, N (Ib)

5 wing area, m2 (ft2 )

SPL sound pressure level, decibels referenced to 0.0002 microbar

T ducted fan gross thrust, N (Ib)

FOO free-stream velocity, knots

X longitudinal force parallel to thrust axis, N (Ib)

Z vertical location of fan axis with respect to wing chord, cm (in.)

a. angle of attack referenced to wing chord, deg

8f deflection of last flap element referenced to wing chord, deg

6 angle of the static resultant force vector with respect to the thrust axis, deg

m



ACOUSTIC CHARACTERISTICS OF A SEMISPAN WING EQUIPPED WITH AN

EXTERNALLY BLOWN JET FLAP INCLUDING RESULTS AT

FORWARD SPEED

Michael D. Falarski

Ames Research Center
and

U.S. Army Air Mobility R&D Laboratory

SUMMARY

A wind-tunnel investigation was made of the noise characteristics of a 4.42-m (14.5-ft) semis-
pan, externally blown jet flap model. The model was equipped with a single 76.2-cm (30-in.)
diameter, ducted fan with a 1.03 pressure ratio. The effects of flap size, fan vertical location, and
forward speed on the noise characteristics were studied.

With the ducted fan mounted 0.79 or 1.24 diameters below the wing and a flap chord greater
than 50 percent, the peak perceived noise level increased 2 to 3 PNdB when the flap was deflected
to 90°. The jet scrubbing noise increased 3 to 4 dB when the flap was deflected 90°. Installation of
the fan on the wing was responsible for 1 to 2 dB of this change. Forward speed did not have a
significant effect on the perceived noise level, although it did cause a reduction in the sound
pressure levels of the first and second fan harmonics.

INTRODUCTION

STOL aircraft will operate from airports within areas of high density population. They^will
therefore be required to operate at noise levels substantially lower than todays commercial aircraft.
For this reason the acoustic as well as the aerodynamic characteristics of the externally blown jet
flap (EBF) STOL concept are being investigated. The results of small scale investigation of the n&ise
characteristics of the EBF and several other STOL concepts are reported in reference 1.

This paper presents the results of an investigation undertaken to study the effects of forward
speed, flap size, and vertical fan location on the acoustic characteristics of an EBF powered by a
low pressure ratio fan. As an acoustic source this type of propulsive device is dominated by the
blade-passage tones and not jet exhaust noise.

The model was a 4.42-m (14.5-ft) semispan wing powered by a 76.2-cm (30-in.) diameter
ducted fan with a pressure ratio of 1.03. The tests were performed in the Ames 40- by 80-Foot
Wind Tunnel.

The longitudinal aerodynamic characteristics were also investigated. They are reported in
reference 2.



MODEL DESCRIPTION

Basic Model

Photographs of the model installed in the wind tunnel and model preparation area are shown
in figure 1. The basic geometry of the model is presented in figure 2 and table 1. The end plate was
attached to the wing, while the fairing was isolated from the model.

The geometry of the ducted fan is presented in figure 3(a) and table 1. The blade plan-form
curves for the eight-bladed, 1.03 pressure ratio fan are presented in figure 3(b). The static thrust as a
function of fan speed is given in figure 3(c), while the variation of fan gross thrust coefficient with
free-stream dynamic pressure is shown in figure 3(d).

Flap System

The three flap systems tested are shown in figure 4(a), and their reference dimensions are given
in table 1. Flap I is a large-chord, triple-slotted flap. The geometric details are shown in figure 4(b).
This system was made by attaching a modification to the aft flap of flap III. Flap II is a large-chord,
double-slotted flap. For this system, the first element of flap I was set at 0°, the first slot sealed,
and the remaining two elements deflected. Flap III is a smaller chord, double-slotted flap. Its basic
geometry is shown in figure 4(c), and its coordinates are given in tables 2 and 3. This system is very
similar to the flap used on the propeller-driven, deflected-slipstream STOL model reported in
reference 3.

Ducted Fan Pylons

The model was tested with the ducted fan mounted at three vertical distances below the wing.
The duct positions are described in figure 5. Mounted on the long pylon, the fan was 1.25 diameters
below the wing chord line. The medium pylon positioned the fan 0.79 diameters below the wing.
The cross section of the pylon is also shown in figure 5. With the pylon removed, the fan was
mounted 0.33 diameters below the wing, allowing a portion of the fan slipstream to flow over the
top of the wing.

TESTS

The tests at forward speed were performed at 0° angle of attack; limited tests were performed
at other angles of attack. Gross thrust coefficient Cju was varied from 0 to 6 by varying free-stream
dynamic pressure with the fan rotational speed set at 5000 rpm. The gross thrust was determined
from a calibration of fan exit total pressure versus static ducted fan thrust.

The other test variable was flap deflection. Data were recorded at deflections of 0°, 30°, 60°,
and 90° for each flap system and pylon.



The static (q - 0 N/m2) noise characteristics were investigated with the model installed in the
40- by 80-foot wind tunnel model preparation area, as shown in figure l(b). The microphones were
mounted in the spanwise plane of the ducted fan and spaced at 20° increments in a semicircle
around the undersurface of the wing (fig. 6). For the wind-tunnel tests, the semicircle radius was
6.1-m (20-ft), while for the static tests it was of 7.62-m (25-ft).

The isolated ducted fan was also tested statically as shown in figure l(c). In this case, the
ducted fan was mounted on the long pylon, which was attached to a steel spar. The upper portion
of the spar was wrapped with sound-absorption material to prevent sound reflection.

The noise data was measured with Bruel and Kjaer 1.27-cm (1/2-in.) diameter, type 4133,
condenser microphones and recorded on an Ampex F1300A multichannel tape recorder. For the
wind-tunnel tests, the microphones were equipped with wind-shield nose cones and oriented into
the wind. During the static tests, microphones 1 through 5 were also equipped with the nose cones.
In this case, all the microphones were directed at the fan.

CORRECTIONS

The data have been corrected for reverberations in the wind-tunnel test section and model
preparation area. The test-section corrections were derived from an acoustic investigation reported
in reference 4. Reverberation in the model preparation area was measured with the dodecahedron
sound system described in reference 4. These results were used to correct the static test data. The
data recorded in the wind tunnel have been extrapolated to 7.62-m (25-ft), equivalent to the static
test distance.

Microphones immersed in the relatively high velocity turbulent fan slipstream had high sound
pressure levels at low frequency due to the turbulent airflow and vibration. The data reflect this
false sound source, so care must be taken in the interpretation of data at low frequencies.

The one-third octave band frequency analysis was computed with a Bruel and Kjaer Real-Time
Analyzer. The data were integrated over a period of 30 sec or longer.

RESULTS AND DISCUSSION

Aerodynamic Performance

The static aerodynamic characteristics of the model are presented in figure 7. The configura-
tion with flap I and no pylon had the best static performance. It showed both the highest turning
effectiveness and efficiency. Flap II had essentially the same performance up to 5f=75, where the
upper surface airflow separated, causing a large loss in lift.



Acoustic Characteristics

A complete listing of the acoustic data from this investigation has been reported in reference 5
in the form of tabulated one-third octave band frequency spectrum, overall SPL, and PNL for each
microphone of a given test condition. The results of the acoustic studies are given in figures 7
through 21 and described in table 4.

The static (q = 0) noise investigation was performed in both the wind tunnel and the model
preparation area. The results are compared in figures 8 and 9. Figure 8 compares the PNL directivity
patterns for the two tests. In general, the comparison is good, although there is a small loss in
directivity due to the wind tunnel reverberant field. There is also good agreement between the
one-third octave band frequency spectra of the two tests, as shown in figure 9. Below 500 Hz, the
wind-tunnel results tend to be 2 to 3 dB higher than the data recorded in the model preparation
area, partly because of the wind-tunnel background noise.

Effect of configuration, V^ = 0— Figures 10 and 11 show the PNL directivity patterns of the
isolated ducted fan and the various configurations investigated. On all configurations deflecting the
flap tended to focus the noise and increase the acoustic directivity. Since the fan is pure tone
dominated (fig. 12), this is probably caused by the reflections of the pure tones from the wing
surface. The major noise lobe was centered at approximately 60° for all flap deflections. The change
in peak PNL with flap deflection is presented in figure 13. With no pylon installed, deflection of
either flap II or III had no significant effect on peak PNL. With the medium pylon and flap II, the
noise increased continuously with 5y to a APNL = 4 PNdB at §/•= 90°. Deflecting flaps I and II 60°
or more caused an increase of 1 to 2 PNdB when the ducted fan was mounted on the long pylon.
With either the medium or long pylon, deflecting flap III caused no change. These increases in PNL
with flap deflection are probably the result of noise focusing and reflection from the wing and flap.
In general, the data show that PNL can be reduced by moving the fan away from the lower surface,
and eliminated by reducing the flap chord or moving the fan so that a portion of its slipstream flows
over the wing upper surface.

The primary acoustic source of the low-pressure fan is rotational in nature; therefore, the PNL
will be dominated by the fundamental blade passage frequency and its harmonics. This can readily
be seen in the one-third octave spectrum in figure 12. Therefore, any change in PNL caused by flap
deflection must result from a change in SPL at these frequencies. Figure 14 shows the change in the
fundamental and the first two harmonics with 5y. Variation of PNL with flap deflection was caused
by a proportional variation in the fundamental and second harmonic. For the most part the change
occurred in the second harmonic because the higher frequency sound contributes more to the PNL.
This also results from the fact that reflection is a function of chord to wavelength ratio; therefore,
the higher frequency sounds will be directed more than the lower frequency sounds.

Effect of configuration on broadband noise- It can be seen in figure 12 that the broadband
noise below 500 Hz increases when the ducted fan is installed on the wing and the flap is deflected.
Commonly called "jet scrubbing noise," this noise results from the impingement of the fan exhaust
on the wing and flap, and it would become dominant if the fan rotational noise were attenuated. To
study this noise source, an overall SPL was computed over only the 12.5- to 500-Hz portion of the
spectrum. Figure 15 shows the directivity patterns of the jet scrubbing noise. It can be seen that
there is very little directivity. These results are summarized in figure 16. Installation of the fan on



the wing resulted in an increase of 1 to 2 dB. The increases with 5^-were approximately linear. For
all configurations the overall increase at 8*= 90° was 3 to 4 dB.

Effect of forward speed— The effect of forward speed on the acoustic characteristics was
determined in the wind tunnel. The variation of the perceived noise level directivity patterns and
boardband noise frequency spectrum are presented in figures 17 and 18, respectively. In the range
of forward speeds investigated, there was no discernible trend on either the PNL directivity or
broadband frequency spectrum, although SPL of the first and second fan harmonics decreased with
increasing forward speed, the greatest change being in the first harmonic (figs. 19 and 20). The
reduction tends to be the same for all flap deflections, indicating that it results from an unloading
of the fan blades and improvement in inlet flow conditions rather than any influence of the wing.

A limited sample of acoustic data was recorded at angles of attack up to 18°. These results are
presented in figure 21 as the variation of PNL and SPL of the fundamental and harmonic tones with
angle of attack. The effect on acoustic directivity was investigated with several model azimuthal
positions taken with respect to the fan thrust line rather than the microphone position. In the range
of angle of attack and forward speeds investigated, there was no evident trend of the effect of angle
of attack on the acoustics of the semispan wing, although there were significant changes in the level
of the fundamental and harmonic tone sound pressure.

CONCLUDING REMARKS

There is good agreement between static data taken in the model preparation area and in the
wind tunnel. There was a slight loss in directivity due to the tunnel reverberant field. This could be
more of a problem with a highly directional acoustic source.

When the ducted fan was mounted 0.79 diameter below the wing, the peak PNL increased 4
PndB with flap deflection. This increase was the result, of an increase in SPL of the blade-passage
frequency and its second harmonic. This effect was eliminated by either reducing the flap chord or
moving the ducted fan to a position 0.33 diameter below the wing.

The increase in jet noise due to scrubbing was 3 to 4 dB at 5/-= 90° for all configurations.
Installation of the ducted fan on the wing accounted for 1 to 2 dB of this increase.

Forward speed had no discernible effect on the perceived noise level directivity pattern or the
broadband noise of the model. The SPL of the first and second fan harmonics was reduced by the
lower fan blade loading and improved inlet flow created by forward speed. This trend was not seen
at the fan fundamental frequency.

Ames Research Center
National Aeronautics and Space Administration
and
U. S. Army Air Mobility R & D Laboratory

Moffett Field, Calif. 94035, June 20, 1972
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TABLE 1.- REFERENCE DIMENSIONS

Flap I
Wing area, S,m2(ft2)
Wing chord, cw, m(ft)
Flap chord, Cf, m(ft)

11.0(118.4)
2.49(8.17)
1.62(5.30)
0.65
2.12

Flap II
Wing area, S, m2(ft2)
Wing chord, cw, m(ft)
Flap chord, C, m(ft)

Flap III
Wing area, 5, m2(ft2)
Wing chord, cw, m(ft)
Flap chord, ct, m(ft)
cXcw
CfjDs

Semispan, b, m(ft)

Ducted fan
Duct

Inside diameter, m(ft)
Exit diameter, m(ft)
Chord, m(ft)
Fan station, percent of duct chord

Fan
Planform curves
Number of blades
Hub-to-tip diameter ratio
Blade angle at tip, deg
Approximately blade tip clearance, cm(in)
Pressure ratio

Pylons

Long pylon
Medium pylon
No pylon

Z.m(ft)

0.96(3.13)
0.604(1.98)
0.253(0.83)

11.0(118.4)
2.49(8.17)
1.28(4.19)
0.514
1.68

7.40(79.8)
1.68(5.5)
0.71(2.31)
0.42
0.93

4.42(14.5)

0.762(2.5)
0.762(2.5)
0.655(2.146)

35.13

See figure 3(b)
8
0.533
30
0.81(0.032)
1.03

Z/D

1.24
0.79
0.33
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TABLE 3.- BASIC WING COORDINATES

Upper surface

Chordwise
station

0
.42
.74

1.39
3.10
6.57

10.05
13.57
20.61
27.75
34.80
42.00
49.00
57.40
63.25
70.25
77.50
84.60
93.80

100.00

Ordinate

0
1.93
2.38
3.11
4.45
6.40
7.90
9.13

11.01
12.41
13.41
14.05
14.35
14.30
13.95
13.33
12.49
11.40
10.19
8.52

Lower surface

Chordwise
station

0
.985

1.37
2.12
3.94
7.52

11.05
14.57
21.55
28.55
35.30
42.47
49.45
56.40
63.35
70.30
77.30
78.70
84.30
91.30

100.00

Ordinate

0
-1.63
-1.96
-2.47
-3.33
-4.50
-5.35
-6.01
-6.98
-7.65
-8.05
-8.22
-8.16
-7.87
-7.37
-6.73
-5.88
-5.74
3.94
8.19
8.40

Leading-edge radius = 1.171

Chord = 1.1 94m (47.0 in.)

All dimensions in percent chord



TABLE IV.- INDEX TO DATA FIGURES

Figure

7(a)
(b)

8(a)
(b)
(c)
(d)

9(a)
(b)
(c)
(d)
00

10
H(a)

(b)
(c)
(d)
(e)
(0
(g)

12(a)
(b)

13
14(a)

(b)
(c)
(d)

15(a)

(b)
(c)
(d)
(e)
(0
(g)

16
17(a)

(b)
(c)
(d)
(e)
(0
(g)
(h)

18(a)

(b)
(c)
(d)
(e)
(0

19(a)
(b)
(c)

20(a)
(b)
(c)

21 (a)
(b)
(c)

Pylon

Medium and long
No

1
t

Medium
t
No

1
Medium

t
Long
No
t

Medium
t

Long
1
T

Medium
No

No, medium, long
No

Medium
t

Long
Long

No

Medium
1

Long
t

No, medium, long
No

1
1
t

Medium
1
t

No
No

1
1T

Medium
1

Power off
Medium

I
t
No
iT

Medium
No

Flap

I-HI
t
II

III
II

1
T

III
II
1

Isolated fan
II

HI
II

III
I
II

III
II
III

I-III
III
II

III
II

Isolated fan

II
III
II

III
I

III
I-III
II

III
II

III
II

5/

1

1
30

1
T
60
30

I
T
60
—

—

i

30
t
60
90
30

60
30
30

60
90
30
60
0

60
60
30

Figure type

Aero, char.
t

PNL directivity
1
1
1

Spectrum

\

PNL directivity

Spectrum
t

Apeak PNL
ASPL-harmonic

1
1
{

Jet noise
directivity

Ajet OASPL
PNL directivity

60° azimuth
spectrum

—

\

Variable

8f

T
Test area

'
rpm
bf

J

rpm

Sf
J

Forward speed

Forward speed

Angle of attack

J

Remarks

100° azimuth
60° azimuth

120° azimuth
o t

60° azimuth

60° azimuth
t

80° azimuth
5000 rpm
4000 rpm
5000 rpm
4000 rpm
5000 rpm
4000 rpm
4000 rpm
5000 rpm
5000 rpm

4000 rpm

5000 rpm
4000 rpm

—
Fundamental
First harmonic
Second harmonic
Fundamental
First harmonic
Second harmonic

10
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Three-quarter rear view.

Three-quarter front view

(c) Isolated ducted fan installed in the model preparation area.

Figure 1.- Concluded.
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Figure 2.— Basic model geometry.
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(a) Bask geometry.

Figure 3.-JDueted fan geometry and fan characteristics.
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Figure 3.— Concluded.
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FLAP I: C f/Cw = 0.650

FLAP n: C f/Cw = 0.5l4

FLAP m: C f/Cw = 0.420

(a) General characteristics.

Figure 4.— Geometry of the flap systems.
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(b) Basic geometry of flaps I and II.

Figure 4.— Continued.

20



.09
(3.55)

.220 .206
(8.67) (8.13)

FLAP PIVOT

-FORE FLAP PIVOT

(2.1)

ALL DIMENSIONS IN METERS (INCHES)
SEE TABLE E

(c) Basic geometry of .flap III.

Figure 4.— Concluded.

21



LONG PYLON

0.1015(4)

0.178 (7)
0.305 (12)-
— 1.015(40)

SECTION A-A

MEDIUM PYLON

0.254
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Figure 5.— Geometry of the ducted fan pylons.

22
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NUMBER

10(0°) =

CENTER OF FAN

9 (20°)

1(180°)

2(160°)

MICROPHONE
NUMBER

10(0°)

3(140°)

6(80°) 5(100°) l.28cmCOND.
MICROPHONE WITH

NOSE CONE
POINTED AT FAN

STATIC TEST MICROPHONE ARRANGEMENT

CENTER OF FAN

9 (20°)

1(180°)

2 (160°)

8 (40°) 3(140°)

7 (60°)

6 (80°) 5 (100°) 1.28 Cm COND.
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Figure 6.— Wind tunnel and static test microphone arrangement.
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Figure 7.- Static longitudinal aerodynamic characteristics.
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(a) Flap II, 6y= 60°, no pylon, 4000 rpm.
j

Figure 8.- Comparison of perceived noise level directivity of the static tests in the model preparation area and
wind-tunnel test section.
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Figure 8.- Continued.
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Figure 8.— Continued.
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Figure 9.— Comparison of sound frequency spectrum of static tests in the model preparation area and the wind-tunnel test section,

(a) Flap II, 5^-= 30°, no pylon, 5000 rpm, microphone position = 100°.

31



120

no

100
CO
T3

: 90

60

TEST
o STATIC
a TUNNEL

TUNNEL BACKGROUND

\J \ A
f . i ^ i \

12.5 31 80 200 500 I.25K 3.I5K 8K
ONE-THIRD OCTAVE BAND FREQUENCY, HZ

(b) Flap II, 5^-= 30°, no pylon, 5000 rpm, microphone position = 60°.

Figure 9.- Continued.
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Figure 9.— Continued.
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Figure 9.— Continued.
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Figure 9.— Concluded.
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Figure 10.— Perceived noise level directivity pattern for the isolated ducted fan.
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(a) Flap II, no pylon, 5000 rpm.

Figure 11.— Effect of flap deflection on the perceived noise level directivity pattern; static test, 5000 rpm.
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Figure 11.—Continued.
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Figure 11.— Continued.
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Figure 11.- Concluded.
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Figure 12.— Effect of flap deflection on noise frequency spectrum; static test, 5000 rpm, microphone position = 60
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Figure 13.- Change in peak perceived noise level with flap deflection; static test, 5000 rpm.
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Figure 14.- Variation of the fundamental frequency and the first two harmonics of the peak perceived noise level with
flap deflection; static test, 5000 rpm.
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Figure 14.— Continued.
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Figure 15.— Noise directivity pattern of the jet noise; static test, 5000 rpm, frequency range = 12.5—500 Hz.
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Figure 17.— Variation of perceived noise level directivity pattern with forward speed.
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Figure 17.— Continued.
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Figure 18.— Variation of broadband noise frequency spectrum with forward speed; microphone location = 60°
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Figure 18.— Continued.
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Figure 18.-Continued.
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Figure 18.-Continued.
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Figure 18.—Continued.
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Figure 18.—Concluded.
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Figure 19.— Variation of SPL of the fan tones with forward speed; flap II, medium pylon, 5000 rpm.
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Figure 19.— Continued.
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Figure 19.- Concluded.
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Figure 20.- Variation of SPL of the fan tones with forward speed; flap II, no pylon, 5000 rpm.
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Figure 21.— Variation of acoustic characteristics with angle of attack; flap II, V^ = 23 knots, 5000 rpm.
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