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A PROGRAMMABLE COMPUTER INTERFACE FOR CAMAC

by Robert W. Bercaw, Theodore E. Fessler, and Jeffrey M. Arnold

Lewis Research Center

SUMMARY

An interface has been developed for CAMAC instrumentation systems that im-
plements data transfers controlled either by the computer central processing unit
(CPU) or by an autonomous (data-channel) processor in the interface unit. The
data channel processor executes programs stored in the computer memory. These
programs consist of standard CAMAC module commands plus special control char-

acters and commands for the processor itself. The interface was built for the PDP-
15 computer, which has an 18-bit word structure, but both 18- and 24-bit data
transfers can be made. A software system has been written that exploits the many

features of the processor.

INTRODUCTION

The fields of data acquisition and control are undergoing revolutionary change

under the impact of small computers. The benefits to be obtained are now so ap-
parent that they need not be discussed. There are, however, numerous pitfalls
and difficulties which must be overcome by anyone whose requirements are not
satisfied by some off-the-shelf system. Foremost amongst these are the hardware
and software problems involved in interfacing specialized research instrumenta-
tion to these computers. The makers of such instruments usually do not have the

resources to supply the service for the vast variety of computers on the market. '
The computer manufacturers, on the other hand, are not very concerned with
supplying it since the number of systems using any particular instrument is small.
Clearly what is called for is some degree of standardization. A number of labora-

tories in the United States and Europe have formally established a standard inter-
facing system known as CAMAC (ref. 1), an acronym for computer aided measure-

ment and control. CAMAC replaces the great variety of input-output busses found



on various models of computers with a single nonproprietary design, standardized
both mechanically and electrically. It consists of a number of bins or crates each
of which will accept up to 24 modules containing instrumentation to be interfaced
to the computer. The CAMAC specifications restrict the instrumentation contained
in a module only to the extent necessary to insure its electrical and mechanical
compatability.

At the rear of the crate, there is a bus structure called a dataway which pro-
vides power to the modules and also links them to the computer. It is designed to
minimize the logic needed in a module and also to provide a large repertoire of
operations for the module designer. The architecture of the dataway is not
patterned on the input-output structure of any make of computer, and therefore it
is necessary to interface it to the chosen computer, that is, to resolve the time and
logic differences between the dataway and the:host input-output system. Although
this may seem to be just a case of shifting the interfacing problem to a different
part of the system, there are significant advantages. The interfacing task is per-
formed just once for all the modules. The instruments and the computer are made
independent and either may be changed or replaced with no effect on the other
(Even the use of a computer is optional; some systems have been built using only
a data recorder.). The price which must be paid is the addition of another unit
variously called the interface, the CAMAC controller or the CAMAC processor. Its
design is singularly important and will to a large extent determine the performance
of the total system.

The CAMAC processor described in this report was designed to fulfill de-
manding requirements. It was to take data at high rates and also to control a wide
variety of instrumentation. (It is currently being used for the automatic operation
of a cyclotron facility and for recording the data produced by the experiments per-
formed on it.) The guiding principles used in its design were to allow rapid re-
configuration of experiments, to impose a minimum of constraints on the generality
of the CAMAC system, and to permit computer "throughputs" of several tens of
thousand words per second. A distinction is drawn here between throughput,
which includes computing, and mere data transfer rate.

The CAMAC processor has been designed and built for the Digital Equipment
Corporation's (DEC) PDP-15, an 18-bit computer having an input-output structure
similar to many other machines. The CAMAC processor consists of two separate



sections. One implements the computer's programmable input-output bus, a facility
that places peripheral devices under the control of the program running in the
computer's central processing unit (CPU) and that provides for transfers of data
betweeen the devices and the computer's accumulator. The second implements
the computer's data channel, a facility that provides direct high-speed transfer of
data between the devices and memory. We will refer to these two sections as the
CIOP, the CAMAC mput-output processor, and the SPCC, the stored grogram
CAMAC channel, respectively. A rough block diagram of the system is shown in
figure 1. Data may flow between the CAMAC dataway and the computer through
either the CIOP or the SPCC. The CIOP involves the accumulator, and the SPCC
the memory. Both sections are under the control of the instructions executed by
the CPU and both are able to interrupt its operation or supply it with status infor-
mation. The difference between them is that the CIOP requires one or more input-
output instructions for each word transferred, while the SPCC uses input-output
instructions only to initialize and stop the data transfer. The "stored program" in
SPCC refers to the fact that it operates independently of the CPU under the control
of programs composed of commands stored in the computer's memory.

The SPCC is quite unusual and avoids many limitations found in most other
designs. Some of its features are

Full repertoire of standard CAMAC operations
Arbitrary sequences of CAMAC operations
Module-initiated program execution
Module-controlled program branching
Dual independent, subchannels
Direct memory increment
Independence of the CIOP
Intermixing of 24-and 18-bit data transfers.
This processor was designed as a two-crate controller for the DEC PDP-15;

however, the principles embodied in it .are more general and can be applied to
other computers having comparable input-output structures. There is nothing
unusual in its design that would prevent its adaptation to a branch driver.

This report is divided into three major sections. The first two describe hard-
ware aspects of the CIOP and the SPCC. The third section describes the PDP-15
software necessary to use these CAMAC processors. The remainder of this intro-



duction briefly describes the CAMAC system and may be omitted by those familiar
with it.

The CAMAC crate fits into a standard relay rack and contains 24 or 25 slots,
called stations, into which instrumentation modules may be inserted. There is an
86 contact connector at the rear of each station through which the module communi-
cates with the system. The array of connectors and their interconnecting wiring
is called a dataway. Most of the connector contacts are wired to form a bus struc-
ture; that is, each contact on a connector is wired to the same contact on all the
other connectors. The end connector (number 24 or 25) , however, is wired
differently than the rest and is known as the control station. It and the one ad-
jacent to it are used to connect the dataway to the computer and to hold the crate
controller, the name given to the electronics used to control the operation of the
dataway. The dataway is organized into a number of functional substructures.
Separate 24 bit wide read and write busses are used to transfer data in the form of
24 bit words (This does not imply that the registers contained in the modules must
be 24 bits long.) . Control of the modules is primarily though another bus contain-
ing four subaddress lines, five function lines, and several master control lines.
The subaddress lines may be used to divide a module into as many as 16 sub-
modules; the function lines allow up to 32 different operations to be performed by
any submodule. Individual stations are addressed by N or station lines, there
being one line between each station and the control station. A second set of lines,
called look at me or LAM lines, parallels these and are used by the modules to
request service.

The format of the commands used to control the CAMAC dataway and modules
is shown in figure 2 (a). The five bit field N specifies the station number of the
module of interest, A is a four-bit subaddress within the module and C is the
crate or bin containing it. Any one of the 32 operations listed in table I may be
performed on a module as specified by the five-bit junction code field, F. The
individual bits are denoted by Fl, F2, F4, F8, and F16 where Fl is the least
significant. Specific fuction codes, which are composites of the entire field, are
distinguished from the individual bits through the use of parentheses. For ex-
ample, the "overwrite group 1 register" operation, invoked by function code 16,
is denoted by F(16) . The same convention is used for the A and N codes. It
should be noted that most of the bits in the function code have standard useage.



All standarized operations have F4=false and all codes having F8=false involve data

transfer. The F16 bit indicates the direction of data transfer.

The status of a given feature of a module is given by the signal it imposes on

the "Q-response" bus line in the dataway when it is addressed. Different F-A

combinations can be used to test different features. There are conventions for the

Q-responses to most of the standard function codes. The Q, H, and E bits in the

command word shown in figure 2 (a) are specific to this processor and not part of

the general CAMAC system. They will be discussed later.

The timing of signals on the CAMAC dataway follows conventional methods for

bus structures. The data source is first gated onto the bus and then, after allowing

some time for the bus to settle, the data are strobed from the bus into its destina-

tion. Figure 2(b) shows the timing of a CAMAC dataway transfer or cycle. Com-

mands and the data to be transferred are placed on the dataway for 1000 nano-

seconds accompanied by a signal on the busy control line (B). Two strobe pulses'

are generated on the SI and S2 control lines during this period. The first may be

used to strobe data off the dataway into a register of either a module or the inter-

face , while the second may be used to clear a register, disable a module, etc.

An

API

A(n)

CA

CAMAC

CIOP

CPU

CR

GLOSSARY

any specific CAMAC subaddress code bit; allowed values are

Al, A2, A4, and A8

automatic priority mterrupt

any CAMAC subaddress code produced by sum of subaddress

code bits; allowed values are A(0) to A(15) , for example,

A(7)=A1+A2+A4; A(8)=A8

current address

computer aided measurement and control; refers specifically to

set of nonproprietary mechanical and electrical standards

CAMAC ^nput-output processor; that part of CAMAC interface

which communicates with computer via lOT's

central processing unit; main control and arithmetic unit of a

computer

CAMAC command register



Data Channel

Data way

Fn

F(n)

HDR

IOP

IOT

LAM.

LDR

PC

PI

Q-Response

R Lines

SPCC

WC
W Lines

hardware in computer that allows an external device to com-
municate with computer memory without use of the CPU; also
known as a direct memory access (DMA) channel
The bus structure at the rear of a CAMAC crate
any specific CAMAC Junction code bit; allowed values are Fl,
F2, F4, F8, and F16
any CAMAC Junction code produced by sum of function code
bits; allowed values are F(0) to F(31) , for example, F(7)=
F1+F2+F4; F(8)=F8
CAMAC high .data register
input-output guise; pulses sent to external device by CPU when
it executes IOT instruction
input-output transfer; instructions executed by computer that
allow CPU to communicate with external device
look-jt-me; signal produced by CAMAC module to request
service .
CAMAC Jpw data register
p_rogram counter
p_rogram jriterrupt
line in dataway that allows module to return one bit of informa-
tion to computer
read lines; lines in dataway used to transfer data from a module
to the computer
stored grogram CAMAC channel; that part of CAMAC interface
that communicates with computer via data channel
word count
write lines; lines in dataway used to transfer data to a module
from the computer

CIOP-CAMAC INPUT-OUTPUT PROCESSOR

The input-output processor of the POP-15 provides for program controlled



transfers of data between its accumulator and peripheral devices . The input-output
_transfer instructions (IOT) are used for this purpose, and their format is shown
in figure 3 (a). They have a six-bit operation code identifing their input-output
nature, an eight-bit device select field (organized into a six-bit address and a
two-bit subaddress) , and a field of three bits to control the issuance of three
input-output pulses (IOP). One additional bit allows clearing the accumulator
before the execution of the instruction. The computer places the contents of the
device select and IOP fields on 11 separate lines of its input-output bus in the time
sequence shown in figure 3(b). These 11 signals may then be used by a peripheral
to control a variety of operations such as reading, writing, testing flags, etc. The
IOT instructions used by the CIOP (and SPCC) are listed in table II.

Comparison of figures 2 and 3 shows that the CAMAC command contains con-
siderably more information than can be programmed into the IOT instruction of
the PDP-15 and that the timing requirements are quite different. CAMAC systems
cannot be interfaced merely by adapting the signals available on the PDP-15
input-output bus. There must be an active translation between the two languages
in which the CAMAC command itself is treated as data and transferred to a holding
register (the command register) for use when the actual data transfer takes place.
A block diagram of the CIOP is shown in figure 4. In addition to the command
register (CR), there is also a data register to resolve the timing differences be-
tween the two systems. It is split into two parts because of the difference in the
word lengths of the two systems. In order to transfer 24 bits to a CAMAC module,
three computer input-output transfers are made: one to the CR, one to the high
data register (HDR) and one to the^ow data register (LDR). The CIOP then
executes a dataway cycle to transfer the information from the data registers to a
module. The sequence of operations is exactly the same for reading a module into
the computer; however, an intermediate holding register is not needed. CAMAC"
only specifies the minimum times in a cycle (fig. 2(b)) , they can be lengthened to
accommodate the input-output specifications of the PDP-15 and thus permit the
CAMAC read lines to be merely gated onto the input-output bus: Many modules
have registers of 18 bits or less. These can be read or loaded using only two
transfers by simply omitting the transfer of the high data. Similarly operations
that do not involve data transfer (i.e., when F8 = true) are performed by loading
only the CR. For all types of transfers, the dataway cycle always takes place



immediately after the last input-output transfer. The high-order bit of the low
read lines is also read in with the high read lines for reasons arising in the SPCC.
It occupies the least significant bit and is normally trimmed off by a right rotation
of the accumulator. This redundant use of a bit does not occur in the high-order
write transfers.

There are several other major parts to the CIOP. The IOT decoder interprets
the device select and IOP lines of the computer input-output bus and supervises
the operations listed in table II. The clock issues the busy signal (B) and the
two strobe pulses (SI and S2) in the sequence shown in figure 2(b), and it con-
trols the gating of data onto or off of the dataway. It initiates a dataway cycle
whenever a low-data-transfer IOT is sent or whenever a dataless command (one
having F8 = true) is loaded into the CR.

The station decoder produces a signal on the module station line specified by
the five-bit N field. It also provides for operations that address all modules by
means of virtual modules at some of the nonphysical station numbers. These oper-
ations are listed in table III.

Modules may request service through individual Jook at me (LAM) lines.
These may request either the SPCC or the program interrupt facilities (fig. 5).
The facilities for handling interrupt requests is rather elementary since it is
assumed that most high-rate requests will be handled by the SPCC. All LAM lines
of interest are connected in common to the computer interrupt facilities, which
may be either p_rogram interrupt (PI) or automatic griority interrupt (API). De-
termining which module has raised its flag is accomplished by polling, using the
Q-response line. The result of each test is stored in the Q bit of the CR where it
can either be tested with the skip facility of the PDP-15 or be read along with the
rest of the CR.

• In CAMAC initiated interrupt routines, care must be taken to save and restore
the CR and HDR. There is no need to save the LDR since the dataway cycle is
performed as soon as it is loaded. The Q flag, being a part of the CR, is auto-
matically saved, however the F8 bit must be cleared prior to restoring the CR, or
a new dataway cycle may occur.

DATA CHANNEL PROCESSOR

The purpose of a computer's data channel (also referred to as direct memory



access (DMA)) is to provide for direct transfers of data between memory and a
peripheral without interfering with the operation of the CPU. To do so, it must be
provided with the address in memory used to store or fetch the data, the address
on the input-output bus of the peripheral device, and the direction of transfer. In
the PDP-15 single-cycle data channel, this information is provided by the elec-
tronics of each peripheral device using the channel. A device requests to transfer
data, and the computer subsequently recognizes it by granting it sole control of
the input-output bus and data channel. Next, the device sends the memory address
to the computer over the input-output address lines of the bus. The data word is
then transferred in the direction specified by the device. . .

In the usual organization of a data channel, a block of memory called a buffer
is reserved for the array of data to be transferred. The device is provided with
two counting registers known as the current address (CA) and word count (WC)
registers. The CA specifies the memory location, and the WC keeps track of the
number of words transferred. Both are incremented each time a word is transferred.
Normally, the CA register is loaded with the address of the first location in the-
buffer, and the WC register is loaded with the negated length of the buffer. Trans-
fers occur until the WC register reaches zero or overflows. Then the data channel
is turned off, and the CPU is interrupted so that it may service the channel.

The generality of CAMAC complicates this straightforward scheme because the
numerous modules with their multiple subaddresses and function codes constitute
many devices in one. The elementary approach of having separate electronics for, -.
each device becomes either prohibitively expensive or greatly limits the generality
of CAMAC . Fortunately, these limitations can be avoided by using an approach
that gives the data channel the attributes of a processor. In order to see what this
means, consider the CIOP as a prototype data-channel processor and the computer
as a black box. The CIOP is then seen as performing operations on modules accord-
ing to the commands placed in its command register, and the sequence of commands
can be considered to be its program. The computer's main duty is to serve as a •
source (and sink) for data and commands. Of course, the CIOP depends entirely
on the CPU for its operation, but it will be seen that the CPU can be replaced by a
data channel facility such as is found in the PDP-15.

The principal requirement for an autonomously operating processor is that its
command word fully specify its execution phase. CAMAC's function codes are well



suited for this since a single bit, F8, identifies dataless operations while another,
F16, defines the direction of data flow. They have no provisions for describing the
word size (18 or 24 bits) or to control the processor itself. These must be added,
but fortunately the word size of the PDF-15 provides enough room to include the
necessary parameters. A processor must also have some method of addressing
data and commands in memory. The usual method used for data channels, that of
sequential addressing, is generally adequate for both data buffers and program
commands. But it is desirable and convenient to provide commands for program
jumps and conditional skips. There is little need for more flexible data addressing
because of the parallel capabilities of the CIOP.

A simple data-channel processor based on these principles will have a program
counter to address commands and WC and CA registers to control the data buffers.
It will operate according to the flow chart shown in figure 6. On receiving a request,
the processor enters a-program by loading its program counter with the starting
address of the program to be executed. Commands are then fetched and executed
sequentially until an exit code is found in a command. The program counter is
incremented after each fetch, while the WC and CA registers are incremented after
every data transfer. At the termination of the execution of a program, the processor
will, depending on the WC overflow flag, either pause and wait for a new request
or disable itself and interrupt the computer CPU.

SPCC Architecture

This section contains a brief description of the main elements of the data-channel
processor, SPCC, which we have developed using the preceeding ideas. Details
of its construction are given in appendix A. A block diagram of the principal ele-
ments and data paths of the SPCC is shown in figure 7. The single-cycle data
channel of the PDF-15 is not shown, but it is used for transfers of both data and
commands between memory and the SPCC. Data paths are identical to those of the
CIOP except for the addition of the program counter.

Four different SPCC programs may be executed on a time shared basis. A pro-
gram is entered on the request of an "event" or flag from an external device, which
may be either a LAM or a BNC coaxial input connector located on the front panel.
The LAM's enter through a patch panel so that they may act either as an event input
or as a program interrupt (see fig. 5) . Event inputs pass through a monitor that
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holds requests until they can be serviced and also schedules their servicing
according to a fixed priority scheme.

The control of the processor is performed by a module on the dataway that can
be addressed like any other CAMAC module. The control of the SPCC is thus
accessable to both the CIOP and the SPCC, providing a communication link between
SPCC and CPU programs and allowing the SPCC some control over itself. The -
control module contains WC and CA registers, overflow and error flags, and event
enables, and it uses the commands listed in table IV. There are two separate sets
of registers to provide two independent subchannels, a requirement if input and
output are to be carried on simultaneously. The WC overflow flags are passed to
the computer interrupt and skip facility in the same manner as all other module Q's
and LAM's except that the SPCC LAM has a dedicated interrupt channel (API).

Other sections of the SPCC are the channel control, which supplies the se-
quencing and command interpretation logic, and the address multiplexer, which
generates memory addresses for the data channel. It obtains address information
from the PC, the two CA registers, the read lines of the dataway, and the event
monitor. The dataway read line input allows the SPCC to perform the direct memory
increment using data from a module as the address. The event monitor generates a
unique address for each, known as the event address, from which the SPCC
initially loads the PC. The PC and CA registers specify the addresses for commands
and data buffers.

The command word used by the SPCC is shown in figure 2 (a). It has three bits
in addition to the usual CAMAC command information. The most significant bit is
used to control the conditional skip. The SPCC will skip the next command if the
Q-response from a module is different from the value of this bit. The high data bit
is set when it is desired to transfer the full 24-bit word by making two transfers;
normally only a single 18-bit transfer is made. Since SPCC programs are usually,
short, devoting a command to a stop code would significantly lengthen a program.
Therefore,-the SPCC is stopped by setting an exit bit (E) in the last command to-be
executed. .

Several nonstandard function codes have been employed to provide special
handling by the SPCC. F(12) has been employed to provide for unconditional pro-
gram jumps within a page: The SPCC loads the 12 least significant bits of the
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command into its program counter when it encounters this function code. No dataway
cycle is executed. Two codes, F(4) and F(6) are used to invoke the direct memory
increment mode. .

SPCC Operation

Figure 8 illustrates the main steps in processing an event. In the request phase,
events are stored in the event latches. When the SPCC becomes free, it activates
the highest priority event pending. The event table, composed of the four event
addresses (memory locations 24 to 27 (octal)), is read to obtain the address of one
of the four relocatable SPCC programs. Normally this address is used to initialize
the program counter 1 The address can be interpreted as a command, howeVer, and
placed into the CR instead. The use of this option will be discussed later. In the
next or fetch phase, a command is read from memory at the address given by the
program counter and, unless it is a jump, it is loaded into the command register and
the PC is incremented.

The execute phase is then entered starting with tests of the F8 and H bits of the
command. Depending on the results, zero, one or two data transfers are made with
the direction of data transfer depending on the F16 bit and then a dataway cycle is
executed. The WC and CA registers are incremented after each data transfer. If the
Q-response from the module is different from the. value programmed into the most
significant bit of the command, the program counter is again incremented to create
a skip. This provides for device controlled program branching. Finally, the SPCC
branches on the exit bit, either returning to the fetch phase or going on to the exit
phase. In this last phase the latch of the event serviced is cleared, and the SPCC
halts and waits for another event, or, if there is a WC overflow, it disables the sub-
channel and interrupts the computer for buffer processing. Note that the interrupt
occurs when the SPCC program is finished, not when the WC overflows. The actual
buffer, length must exceed the. word.count by the size of the largest event.

In pulse height analysis and in a number of other types of experiments, data
acquisition consists of building a histogram of the frequency of the values of some
variable. .Each time an event occurs, the digitized value is used to specify a bin,
and the contents of that bin are incremented by one. The SPCC is capable of directly
incrementing, a word in memory without involving either .CPU or its own subchannel
core buffers. Commands having F(4) or F(6) invoke this mode. The SPCC strips off
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the F4 bit placing a read (F(0)) or read and clear (F(2)) command on the dataway
and gates the R1-R15 lines onto the input-output address lines. The data channel is
then instructed to perform the add-one operation on the location specified by the
module. There is no indication if the word overflows.

Because there are important classes of programs that use only a single data
transfer or command, provisions have been made to eliminate the overhead involved
in loading the program counter. This is achieved by storing a command in the event
table rather than the address of a SPCC program. Since addresses are limited to
15-bit numbers (32 767), a command can be specified by setting the most significant
or Q bit to one. The command register is then directly loaded, but additional
commands can not be executed because the PC has never been initialized. The error
flag is raised if the E bit has not been set equal to one in the command.

Design Considerations

The final design of the SPCC embodies a number of choices which affect its
cost and performance. These choices were made to optimize it for our particular use
and other solutions might be preferable in other circumstances. The principal de-
cision was to store the channel programs in the computer's main memory. This is '
the least expensive method, and it is also simple and flexible. The programs can be
assembled and loaded using the standard software supplied with the computer and
there are no limits to the sizes of the programs. On the other hand, it requires the
transfer of a command for every dataway operation and thus limits the SPCC to speeds
one half or less of that which could be realized in a unit storing the commands in
its own memory.

The number of events was chosen to be four, a number that may appear small •
when compared with patch wired designs. In the SPCC, however, an event merely
defines the starting location of a channel program, and so the number of events only
limits the types of transfers that can be active at one time. Additional transfer modes
can be implemented by one of three methods. First, the skip facility increases the
effective number of channel programs by allowing conditional branching. Second,
if the timing of the transfers is not critical, they can share an event in a manner
similar to the time sharing of a large computer. All that is required to change the
identity of an event is to reload its entry in the event table and to reassign the LAM

13



that activates it (Several LAM's may be mixed using the wired-OR). Finally, any
low rate transfers may be handled by the CIOP.

The SPCC contains dual WC and CA registers^and an event can be associated
with either set. It could have been designed with a single set or with a set per
event. The former was rejected because it would not permit simultaneous input
and output and the latter because we did not feel that the advantages justified the
expense. The use of a set of WC and CA registers per event allows storing each
event in its own core buffer and thus eliminates the need to identify them when
packing and unpacking the buffers. The programs handling the buffers are there-
fore made simpler and faster."Most of these advantages are realizedxin the present
design because most experiments either use two or less events or they have only
one event that is critical. One set of registers can be dedicated to the critical event,
while others share the second set. A disadvantage in using a set of registers for
each event is that the sequence of occurrence of the different events is lost. A
disadvantage of the present scheme of buffers is that events cannot interrupt the
execution of lower priority events. This capability is possible, but it requires a
program counter as well as a WC and CA register per event.

The cost of components and wiring, using the DEC M-series logic and auto-
matic wire wrapping was approximately $5000. This does not include engineering
or documentation costs.

PROGRAMMING CONSIDERATIONS \

Data transfers between CAMAC modules and the computer memory can be
thought of as taking place at three levels. First are data transfers carried out by
the central processing unit (CPU) using a series of input-output instructions and
module commands in a mainstream program. Next are interrupt-level transfers.
These are also carried out by the CPU, but their execution begins when an interrupt
signal suspends execution of one program in favor of another (interrupt-level)
program. And third are data-channel transfers which, once initiated, proceed
without CPU involvement.

With interrupt programming, a device-ready signal interrupts the program in
progress so that a series of input-output transfers (lOTs) can be executed by the
CPU. When the lOTs have been completed, execution of the interrupted program is
resumed. This way, the CPU is free to execute a mainstream program until a flag
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occurs. With data-channel programming, many flags can be handled between
interrupts. Data-channel transfers do not involve the CPU, which is left to proceed
with execution of the current program in a normal way. Only when a whole series
of data transmissions has been completed is an interrupt generated. Thus, data-
channel transfer programming permits very high data rates.

In order to fully exploit the capabilities of our CAMAC processor, a systems
approach has been taken. The aim of this programming system is to simplify
writing new programs that make use of a variety of CAMAC modules at mainstream,
interrupt, and data-channel levels.

Mainstream Programming

Data transmissions to or from a module in a CAMAC system require making two
data transfers. One transfer is between the CAMAC processor and the computer
and is made by a series of instructions stored in the computer. The other transfer
is between a module and the CAMAC processor and is performed by the processor.

. IOT instructions. - The PDP-15 is provided with a set of instructions to control
the transfer of data between the CPU and external devices. These input-output
transfer (IOT) instructions perform a variety of tasks including the enabling and
disabling of devices, the testing of flags and the transfer of 18-bit words of data.
Table II summarizes the lOT-instructions (and their mnemonic names) that address
the CAMAC input-output processor (CIOP).

The first group (LCR to SQF) of lOT-instructions in table II are those normally
used in mainstream programs. The SQF instruction causes the computer to skip the
next program instruction if the Q-bit (high-order bit) of the CAMAC command
register is set. The other lOT-instructions in this group are for data transfers to
and from the computer's accumulator. The last eight lOT-instructions in table II
are those used for control and handling of interrupts.

Module commands. - Commands to CAMAC modules are the sum of four parts
(see also fig. (2a)):

crate address x40 (octal) -
+ module address
+ subaddress x400 (octal)
+ function code xlOOOO (octal)
= module command
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In our CAMAC system, the crate address is either 0 or 1, and module addresses

are 1 to 24 (decimal) inclusive. Subaddresses and function codes are used accord-

ing to CAMAC standards (see table I).

Module commands are stored in the computer program. When one is to be

executed, it is transmitted to the CIOP command register by the program sequence

(PDP-15 assembler language):

LAC COMND /load accumulator with module command

LCR /load CIOP command register

If the function code part of the module command specifies data transfer, the data

are subsequently transferred through the accumulator using one or more of the

data transfer IOT instructions. For example, if data were being read from a

24-bit module, the program sequence would be

LAC COMND /get command to read 24 bits

LCR

RHD

CLLJRAR

DAC HIBITS

RLD

DAC LOBITS

/read high data from CAMAC dataway
/ clear ^ink and rotate AC right
/ (gets rid of bit 7)
/deposit accumulator (at HIBITS)
/read_low data from dataway
/store low data bits too

On execution of the RHD IOT instruction, the seven high-order bits of the 24-bit
CAMAC dataway enter the seven low-order bits of the accumulator and the remain-

ing accumulator bits are set to 0. Upon execution of the RLD lOT-instruction, the
18 low-order bits of the dataway enter the accumulator. Thus, the seventh bit of

the dataway is read twice. The CLL!RAR instruction in the preceding example is

used to get rid of the redundent bit and close the gap so that the two memory lo-
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cations, HIBITS and LOBITS, together represent a 24-bit image of the module data.

When data are transmitted from the computer to a module, the six low-order bits

of the accumulator enter the six high-order dataway lines on execution of the LHD

IOT instruction. No shifting is needed. .

If the function code specifies testing a module flag, the flag status is first

transferred to the high-bit position of the command register. Its presence there .-«

can then be tested by the SQF lOT-instruction:

LAC COMND /get command to test module's flag

LCR

SQF /skip if Q-flag set

XX /instruction skipped if flag is set

Special all-module commands. - Four special module commands, which .

address all modules at once, have been included in our CAMAC command repertoire.

They are listed in table III. The ZGEN command generates a CAMAC initialize signal

(Z) , which resets all module registers and disables all module LAM flags. The

CGEN command generates a clear-modules signal (C), which does not disable the

LAM flags. The SETINH and CLRINH module commands are used when it is desired

to control a group of modules such as sealers. (Not all CAMAC modules respond to

the inhibit line.)

Interrupt Programming

In this section we consider those parts of a program that arrange for and
process interrupts. For convenience, these parts are usually grouped together as
a subprogram that can then be thought of as an extension of the hardware with which
it associates. In a CAMAC system, the hardware device is a module. Since more
than one interrupting module may be needed in a program, it is desirable to have
subprograms written so that they do not interact with one another. That way, a
variety of subprograms can easily be brought together to do a particular job. This
independence is made possible by a system program called CAMAC.. (A listing
of CAMAC . is given in appendix B .)
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LAM interrupt processing. - At the time an interrupt is honored by the

computer, the interrupting device sends a trap address to the CPU - an address

which is unique to that device. The memory cell corresponding to the trap address

contains the first instruction of the program that services the interrupt.

The CIOP sends the same trap address for all look-at-me (LAM) interrupts.

Before any modules are enabled to cause interrupts, a general purpose interrupt

routine must exist and its first instruction must be put into the trap location.

The system program CAMAC. satisfies these requirements.

The interrupt-level programming in CAMAC. takes care of those program

steps needed by all interrupt-processing programs:

(1) Saves computer registers

(2) Saves CAMAC command and high-data registers

(3) Enters Q-test skip chain

(4) Restores CAMAC and computer registers

(5) Returns to interrupted program.

The saving and restoring of all registers allows interrupt-servicing programs to

use any of the system hardware (computer or CAMAC) without losing data needed

to resume an interrupted program. On the other hand, interrupt-servicing pro-

grams cannot use any subprograms that might also be in use by an interrupted

program.

The Q-test skip chain is the sequence of module tests that is needed to find

which module has raised its flag (Q) . For each module that can cause an LAM

interrupt, there must be a link in the Q-test skip chain of the form:

ENTER LAC QTEST /get command to test module's flag

LCR

SQF /skips to BEGIN if flag is up

EXIT JMP* NEXT /.— or jumps to next link in chain

BEGIN . . /begin servicing interrupt

/from this module

JMP* RETURN /Return to CAMAC.

These links test the modules, one at a time. When the module is found, the cor-

responding interrupt-servicing program is begun.

18



LAM initialization. - When a module subroutine is first used, its Q-test link

must be put into the chain. An initializing entry has been provided in the CAMAC.

system program to do this. Typically, a module subroutine will itself have an

initializing section entered at mainstream level for the purpose of setting up

addresses that will later be used at interrupt level. This initializing section

should be of the form:

SUBO 0 /initializing entry to subprogram

JMS* .DA /jump to subroutine for arguments

JMP INIT1

ARG1 0 /argument addresses

ARG2 0 / (as many as needed)

INIT1 JMS* CAMAC. /call to CAMAC.

NEXT ENTER /address of Q-test link

RETURN 0 /address of CAMAC. return

LAC (JMP INIT2) <

DAC INIT1 <

INIT2

The first five lines in this example are the standard sequence for subroutines

called from FORTRAN-IV programs. When CAMAC. is entered, it gets the 15-bit

address ENTER of the Q-test link from the location labeled NEXT and overwrites

it with the 15-bit address of the next link in the chain. CAMAC. also fills in the

return address to be used by all of the LAM interrupt-servicing routines. This

return address points to that section in CAMAC. which restores the computer and

CAMAC registers and returns to the interrupted program. The two lines tagged

"<" destroy the call to CAMAC . (Each subprogram may call CAMAC. only one

time.)

The Q-test chain is formed as the modules are initialized. If a priority

schedule is desired, modules should be initialized in order of highest priority.

Since only one module is processed at each interrupt, a module whose Q-test

link is at the head of the chain can prevent the processing of other modules if its

LAM flag keeps coming up. (No provisions have been made for re-ordering the

Q-test chain or removing links. However, a link can be effectively disabled by

replacing the ENTER instruction with the instruction labeled EXIT.)
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CAMAC. initializes itself the first time it is called by a module subroutine.
This includes setting up the interrupt trap address, executing the ZGEN module-
clearing command, and enabling LAM interrupts. Control of module interrupts
after this should be through the enable and disable commands to individual
modules.

Mainstream control. - Module subprograms that service interrupts should
also have entry points for starting up and shutting down data transfers. Starting
up may consist simply of enabling a module or it may involve setting up a data
buffer and transferring addresses. Shutting down is done by disabling the
module LAM. An example of a simple module subprogram having all of the parts
described is given in appendix C.

k

Data-Channel Programming

The stored-program CAMAC channel processor (SPCC) makes it possible to
transfer data between CAMAC modules and the computer memory without using
the CPU for each transfer. Module commands are still stored in the computer
memory but in this case they are obtained directly by data-channel requests from
the SPCC . lOT-instructions are not required; all of the control needed to transfer
data to or from a data buffer (a block of computer memory) is provided by the
SPCC.

Command decoding by SPCC. - Module commands processed by the SPCC
have the same format as those used by the CIOP (refer again to fig. 2(a)) . Crate
address, module address, subaddress, and function code bits are arranged the
same. However, certain function codes are given nonstandard meanings. Also,
three bits not used in module commands processed by the CIOP are used specif-
ically to control the SPCC. The additional information contained in module com-
mands for the SPCC is needed because no IOT instructions are used.

Module commands that are to be processed by the SPCC are stored as a channel
program in the computer memory in the order that they are to be executed. Exe-
cution begins when an external event signals the SPCC. Four event inputs are
provided, each one with its own wired-in event address. The event address points
to a cell in the computer memory that contains the starting address of a channel
program. Execution of the module commands in the channel program proceeds in
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order until a special code (EXIT) is encountered, at which time data-channel
transfers stop.

Every module command in a channel program is treated by the SPCC as a skip
command, depending on the Q-response from the module addressed. The Q-bit
code (fig. 2 (a) ) in the module command is compared with the Q-response from the
module: if they differ, the next command in the channel program is skipped.
Whenever a skip occurs, bit 15 of the status register (described in a following
section) is set and remains set until the next event is processed.

Ordinarily, when a read command is executed by the SPCC, the 17 low-order
bits from a module are transferred to memory. (18 bits can be read if bit 1 of the
word-count/enable register has been set. This is explained in the following
sections.) If the H-bit is set in the module command (fig. 2(a)) , the SPCC will
transfer two data words to memory. The first holds the seven high-order bits of
24 and the next holds the 17 low-order bits. On write commands, 18 bits are
transferred from memory to module if the H-bit is not set. With the H-bit set, the
contents of two memory cells are transmitted. The six low-order bits from the
first memory cell enter the six high-order bits of the module register; the 18 low-
order bits of the module are filled from the second memory cell.

The ADD-1 function codes, F(4) and F(6), are used as modified module-read
commands. They signal the SPCC to use the data from a module as a memory
address in an increment-memory operation on a cell in the computer memory.
(Overflows are ignored.)

Function code F(12) is used by the SPCC to get the address of its next module
command when that command is out of sequence. The 12 low-order bits of this
command replace the corresponding bits of the SPCC program counter. It allows"
jumps to any place in the same page of the computer's memory.

SPCC control module. - As was mentioned previously, each event (maximum
of four) is associated with an event address and hence with a channel program.
Each event is also associated with one of two sets of SPCC control registers (sub-
channels) . The following is a description of the registers found in each of these
two subchannels. These registers respond to module commands just like standard
CAMAC modules. Table V lists the command repertoire of the SPCC control
module. The first group of these module commands (LDCAO through FLAG1) are
the ones that normally appear in user programs. They provide the means of
controlling the SPCC.
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The current-address register of the SPCC contains the 15-bit address of the

next memory cell in the user's data buffer. This register is initially loaded

(using the CIOP) with the address of the first word in the buffer. When the user

program is ready to let data begin flowing through one of the SPCC channels, the

word-count/enable register for that channel is loaded with a word having the

format:

0 1 2 5 6 1 7

0 X
1 1 1

ENABLES
1 1 1

0
1 1 1 1 1

-WORD COUNT
1 1 1 1 1

Loading this word into the word-count/enable register enables events 0 to 3 cor-

responding to the enable bits 2 to 5 that are set. These events can then start the

SPCC when they occur. During the processing of an event, data are transferred

to or from the data buffer. At each transfer, the word-count register and the

current-address register are incremented by one. If the word count overflows

into bit position 6 during any of these transfers, the enable bits are cleared and a

flag (end of record) is set to cause an interrupt at the end of event processing.

The initial value loaded into the word count should therefore be the 11-bit twos-

complement of the number of data words in the data buffer. In the case where

events can give rise to input data strings of variable length, the word count

should contain an allowance for the maximum number of data words that might be

put into the data buffer by one event.

Bit 1 of the word-count/enable register (filled with X in the example) is used

to enable transfer of all 18 low-order bits from the CAMAC dataway to the computer

memory.

Either of the SPCC subchannels can be stopped from mainstream level by the

SPCC-module commands FLAGO and FLAG1. These commands have the same effect

as.a word-count overflow; the enable bits are cleared and the end of record (EOR)

flag is set. The SPCC then causes an end-of-record interrupt to occur, trans-

ferring program control to the interrupt-servicing program.

EOR interrupt processing. - When an EOR interrupt occurs, control transfers

to the CAMAC . system program just as with LAM interrupts. CAMAC. saves all

of the volatile hardware registers and then transfers control to the user's

interrupt-servicing program for the interrupting subchannel. The simplest

interrupt servicing program could be no more than a status word to signal the

mainstream program that a data buffer has been filled or emptied. It would then
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be up to the mainstream program to unpack the data buffer or to load it up as the
case may be.

If high input-data rates are expected, the use of two data buffers in a "ping-
pong" arrangement is desirable. When an EOR interrupt occurs, the SPCC can
be reset to resume running with the current address of an empty data buffer.
(The operation of the SPCC is not affected by the current CPU interrupt level.
Once a subchannel is enabled, data flows without interruption until it's EOR flag
goes up and the subchannel is stopped.) Then, still at interrupt level, the just-
filled data buffer can be unloaded. When all of the data have been processed from
that buffer, control returns to the interrupted program until the new buffer has
been filled.

If more than one kind of event can send data to a buffer, some kind of tag may
be necessary to identify the beginning of each data group in the buffer. This can
be accomplished by using the SPCC-module command STAT (table IV) as the first
command in the channel program for each event. When the SPCC processes the
STAT command, a word of the form

0 15 17
1 1 I 1 1 1 1 1
0 — _ —

is read as an event descriptor into the next cell of the data buffer. Bits 16 and 17
of the status register specify the event. Bit 15 is set whenever a channel-program
skip occurs as a result of a difference between the QBIT code of a module command
and the Q-response received from the module. The high-order bit of the status
register (bit 0) is always read, even when the channel is operating in the 17-bit
mode. These status words can be easily identified, therefore, if all of the other
data in the buffer had been read in without the high bit.

SPCC initialization. - When an SPCC subchannel is first used, it is necessary
to perform an initializing procedure. For this purpose, an entry in CAMAC . has
been provided which should be called from the SPCC-using subprogram by the
sequence:
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JMS* CAMAK. /SPCC initialization entry

JMP NEXT

ENTRY /address of handler's entry

CHANL /SPCC subchannel (0 or 1)

EVENTS /first event address

NEXT

•

This sequence tells CAMAC. which subchannel is involved, the entry point(s) to
the interrupt-servicing routine for this subchannel, and which of the four
channel-program pointers are to be written into the event addresses. Calls to
CAMAK. can be made any time it is necessary to change the channel-program
pointers or interrupt-servicing routine in either of the subchannels.

EVENTS must be the address of the first of a block of four consecutive
pointers. If a particular event is to be associated with the subchannel being
initialized, the address of its first module command should be in the corresponding
element of the pointer block. An address of zero is used to mark events not
associated with the channel being initialized. At the start of an event, the SPCC
loads one of these channel-program pointers (corresponding to the event number)
into a program counter. Subsequent module commands are then obtained from
computer memory addressed by this program counter. If only one module command
is needed to process an event, it is more efficient if the SPCC uses the content of
the event address as a command instead of the address of its first command. The
SPCC has this capability. If the high-order bit of the data in the event address is
set, then the SPCC uses the data as a module command instead of a memory address.

Mainstream control of channels. - Each subprogram that uses a CAMAC channel
should include provisions for starting and stopping the flow of data through a
channel without producing data errors and without interfering with the operation
of the other channel.

An example of a subprogram that contains most of these elements is given in
appendix D. In this example, data are entered in a single module, one word per
event. The LAM line from this module is used to initiate event 0 in the SPCC,
using subchannel 0. Direct control of events from mainstream is by the use of
enable and disable commands to the module.
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Mainstream control of data-buffer processing is achieved by using the SPCC-
module command FLAGO (table III) to cause an EOR interrupt. Buffer processing
then proceeds at interrupt level. Partially full (or even empty) buffers are proc-
essed in the same way as a full buffer that results from a normal word-count over-
flow.

In the example, a status word (STATUS) is used to keep track of whether the
subchannel was enabled or not when the interrupt occurred. Another status word
(START) , set by the mainstream section, tells the interrupt-servicing program
whether or not the subchannel is to be enabled.

One last point: the input module is first cleared before enabling it so that an
event that may have occurred beforehand is not included as the first datum. The
module is disabled before final buffer processing so that no "suspended events"
remain in the event latch (fig. 10) . If the module were allowed to flag an event, the
event latch would be set even though the channel was disabled. Later, when the
channel was enabled (by loading the word-count/enable register) processing of
the event would begin even though by then there might no longer be valid data in
the module register.
Lewis Research Center,

National Aeronautics and Space Administration,
Cleveland, Ohio, January 15, 1973,

503-10.
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APPENDIX A

SPCC HARDWARE

This appendix describes the details of the SPCC which has been built for the
PDP-15.

Data Buffer and Command Registers

These registers serve the same roles as in the CIOP. The two processors
share the same low data register (LDR) , but have separate command (CR) and
high (HD) data registers. The LDR can be shared because it never holds infor-
mation for more than one input-output cycle. ,

Data way Clock

The clock is shared with the CIOP and has the same start conditions; that is,
upon loading the command register for dataless transfers or upon transferring the
low order data to or from the computer.

*
Program Counter

This is a 15 bit register that specifies the memory address of the next command
to be executed by the SPCC. It consists of a 12-bit incrementing register and a
three-bit page register. The program counter is normally loaded from a memory
event address each time an event is processed and is incremented each time a
command is loaded into the command register. The conditional skip feature is pro-
vided by making an increment at SI time in the dataway cycle if the Q-response
does not agree with the Q-bit of the command causing the cycle. The lower 12 bits
of the PC can be loaded under SPCC program control to provide a program jump.
A command containing the function code F(12) loads its low-order 12 bits into the
PC instead of the CR. There is no dataway cycle.

Control Module

The access to most of the flags and registers used to control the SPCC is
through the dataway as though they are contained in a module at N(23) , C(0).
This allows the SPCC a control of itself which would not be possible if the module
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was directly on the input-output bus. The module is accessible to both the SPCC

and the CPU and thus serves a communication link between different levels of

programming.

Contained in the control module are the word-count/enable and current-address

registers, the status register, and the error and word count overflow flags. Two

independent subchannels are provided, each having its own word-count/enable

and current address registers. A summary of its command set is given in table III.

Channel LAM's. - The command module's LAM directly drives^the PI and API

interrupt facilities of the PDP-15 and is provided with its own API trap address

(70) at priority 2, It is controlled by the SPCC enable using the ESPCC and

DSPCC lOT's. There are three sources of LAM requests: the word count overflow

(or end-of-record) flags from the two subchannels and an error flag. These flags

may be tested through their Q-responses. The WC overflow flags are of course set

by the overflow of their respective word count registers but they may also be set

through the dataway (using F25)) to force the processing of an incomplete buffer.

Since the overflow flags also disable their respective subchannels, they are

actually raised at the completion of the processing of an event to prevent any loss

of data.

The error flag acts differently. It is raised if the PC overflows or if there is

no exit bit in a single command program, which takes its command directly from

one of the four event addresses. The error flag immediately freezes the status of

the processor to allow a diagnosis of the error.

Current address registers (CA). - Each subchannel contains a 15-bit register

that is used to specify the address to or from which data are transferred. Each

one consists of a 12-bit incrementing register and a three-bit page register. They

can be loaded using function code F(l) , but they cannot be read or cleared. Sub-

channels 0 and 1 have subaddresses 0 and 1, respectively.

Word-count/enable registers (WC) . - Each subchannel contains a two-part

register composed of a 12-bit WC register and a five-bit enabling register. The

two are packed into one word to shorten interrupt handling. The WC register is

automatically initialized when the subchannel is enabled. Bits 02-05 enable event

inputs 0 to 3, respectively, and bit 01 enables the most significant read line, R18.

In addition to turning on the event input, setting an enable bit also serves to

associate the event with the subchannel of the enable. Therefore, a given event
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should be enabled by one subchannel at a time. The R18 enable applies to all
events associated with its subchannel. Its use will be explained in the next
section. The WC register is an incrementing register zhat must be loaded with the
2's complement (12 bit) of the buffer size. When it overflows, it will inactivate its
subchannel by clearing its enable register, but only after the current event has
been processed. Therefore, the actual dimension of a buffer must exceed the word
count by the size of the largest event minus one. The subaddresses of the
WC/enable registers for the two subchannels are 2 and 3. They are loaded using
F(17) and read using F(l) . The enable-register portion can not be read (it yields
zeros) , but it can be cleared using F(ll) .

Status register. - When two or more events share a buffer on input, it is
usually necessary to label each event in order to guide the program processing
the buffer. The control module provides a status register for this purpose that can
be read using F(l) ,A(4). The module places a "1" on the R18 line and the event
code (0-3) on Rl and R2. R3 is controlled by a flip flop, which is reset at the
start of each event and which is set whenever there is a Q skip (i.e., the
Q-response differs from the value in the MSB of the command) . Thus the status
register shows that a program branch has occurred and allows the definition of
subevents. The "1" placed on the R18 line is used to identify the status word, the
word created in memory when the status register is read. It becomes a unique
tag if the R18 line is inhibited on all other read operations by the enable register.

LAM Patch Panel (LPP)

All of the LAM lines of crate zero are brought into the LAM patch panel (LPP)
where they may be connected either to the automatic interrupt facility or to one of
the four event lines. All of the API inputs are equivalent and may be used in-
dependently . The LPP is located on the front panel of the control station in crate 0.
The layout of the LPP, a 50-pin AMP connector, is shown in figure 9.

External Event Lines

Four BNC connectors are provided on the front panel of the control station of
crate 0. The inputs accept 3.5- to 8-volt positive pulses 0.5 to 6.0 microsecond
long.
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Event Monitor

All events or requests for the SPCC first pass through an event monitor where
they are held until they can be processed. Event 0 is accorded the highest priority
and event 3 the lowest. The highest priority event pending always takes precedence
over all others. The event monitor consists of the following elements shown in
figure 10.

Event active lights. - Four lights are provided on the front of the crate zero
control station to indicate when events are being processed.

Event latches. - These four S-R flip flops serve to hold event requests until
they can be processed. They may be cleared by issuing the command F(10)A(0)
C(0)N(23) or an initialize (Z). An event latch is reset after its request has been
serviced.

Event gates. - The outputs of the event latches pass through the event gates.
A gate is open only if the event is enabled and the SPCC is not busy.

Event register. - The outputs of the event gates are stored by this four-bit
register. The entire register is cleared after an event is processed.

Priority ladder. - This netword insures that only one event is active at a
time. Only the highest priority request in the event register passes through it.

Event address generator. - While an event is active, this generates the
address in memory (24 to 27 octal, respectively, for events 0 - 3 ) from which the
program counter will initially be loaded. The four locations are referred to as
the event table.

Address Multiplex

The address multiplex provides 15 bits of data for the input-output address
lines of the PDF-15 and thus specifies the location in core to or from which data
are transferred. Inputs to the multiplexer are the event address generator, the
program counter, the two current address registers, and the Rl to R15 read lines
of the dataway.

Data Channel Control

This Xinit provides the logic necessary to operate the PDP-15 data channel. It

interprets the command, selects the mode of operation, (input, output, or memory
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increment) , gates data to the proper register, and controls the input-output
address multiplexer.

There are two separate ways of turning event processing on and off: the event
enables controlled through the dataway and the channel enable controlled by the
IOT instructions ESPCC and DSPCC and the PDP-15 input-output power clear.
While these appear to have the same function, there are significant differences
that must be recognized to assure proper operation. The event enables are the
primary control since they have been designed to prevent any loss of data that
might be caused by a WC overflow or programmed stop occurring during a SPCC
transfer. They turn off their subchannel only between the processing of events.
The action of the channel enable, on the other hand, is immediate and may cause
the loss of data.

Timing and Latency

The operational speed of the SPCC is entirely determined by the speed of the
single cycle data channel. The channel operates in two modes: normal (or
asynchronous) and burst (or synchronous) . In the normal mode, data transfers
require three memory cycles per word: in the burst mode the first requires three
cycles but subsequent transfers take only one cycle per word. The SPCC uses
burst mode only when a 24-bit word is transferred. Therefore, fetching a command
by the processor takes three microseconds while its execution takes one micro-
second per six bits of data transferred. This means that the SPCC operates at
approximately one fourth the speed of the CPU. In addition to these times, programs
having more than one command require an additional three microseconds to load
the PC.

The data channel stands at the top of the PDP-15's priority hierarchy, and care
must be taken that the SPCC does not shut out other vital operations. Short
latency devices such as disk memories should be placed closer to the computer on
the input-output bus to give them higher priority. Since the processing of an
event can be quite lengthy when many modules must be read, breathing space has
been provided for lower priority operations by restricting SPCC transfers to one
every eight microseconds. This means that the processing of a complicated event
can be quite lengthy. Because one event shuts out others until its completion, care
must be taken if any event has short latency requirements. The rate restriction on
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SPCC transfers can be eliminated if there is no other solution, but it has been
found that the clock synchronization in the PDF-15 is severely strained by the
SPCC operating at full speed and the computer's input-output clock adjustments
must be made carefully to assure reliable operation.
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APPENDIX B

ASSEMBLY LANGUAGE LISTING OF CAMAC. SYSTEM PROGRAM

.TITLE CAMAC.

/CAMAC SYSTEM PROGRAM

.GLOBL CAMAC. /LAM INITIALIZATION

.GLOBL CAMAK. /SPCC INITIALIZATION

.GLOBL ECAMCK /RE-ENABLE FOR RESTART

.GLOBL .DA /EXTERNAL SUBROUTINE

/CAMAC lOT-INSTRUCTIONS

LCR=706004

RLD=706132

SQF=706001

RDCR=706112

RHR=706172

LHD=706044

LON=706101

LOF=706104

ESPCC=706161

SLF=706021

SEORF=706061

/LOAD COMMAND REGISTER

/READ LOW DATA BITS

/SKIP ON Q-FLAG

/READ COMMAND REGISTER

/READ HIGH DATA REGISTER

/LOAD HIGH DATA REGISTER

/ENABLE LOOK-AT-ME

/DISABLE LOOK-AT-ME

/ENABLE SPCC

/SKIP ON LOOK-AT-ME FLAG

/SKIP ON END-OF-RECORD FLAG

/MODULE COMMAND CODES

F=010000

Al=000400

A3=3*A1

A4=4*A1

/VALUE OF Fl (FUNCTION CODE)

/VALUE OF Al (SUBADDRESS)

/VALUE OF A3 (SUBADDRESS)

/VALUE OF A4 (SUBADDRESS)

ZGEN=100034 /CLEAR.ALL MODULES
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/SPCC MODULE COMMANDS

N=000027 /SPCC MODULE ADDRESS

STOP=400000 /FORCES AN ERROR FLAG

.DEC

STAT=F*1+A4+N

SENSEO=F*lO+Al+N

SENSE1=F*10+A3+N

SERROR=F*8+N

.OCT

/READ STATUS REGISTER

/SENSE AND CLEAR SUBCHANNEL 0 FLAG

/SENSE AND CLEAR SUBCHANNEL 1 FLAG

/SENSE ERROR FLAG

/MISCELLANEOUS CONSTANTS

ERR=4

TRAP1 24

/ERROR REPORT ROUTINE ENTRY ADDRESS

/FIRST OF 4 EVENT TRAP ADDRESSES

/ENTRY FOR INITIALIZING LOOK-AT-ME INTERRUPTS

CAMAC. 0
LOF /DISABLE L-FLAG INTERRUPTS

JMS INIT /INITIALIZE CAMAC SY-S.TEM

LAC* CAMAC. /ENTER MODULE INTO SKIP CHAIN:

DAC* LAST /SAVE ADDRESS OF MODULE LINK

LAC CAMAC. /THIS MODULE'S ADDRESS

DAC LAST / SAVED FOR NEXT TIME

LAC (NOFLAG) /ADDRESS OF END OF SKIP CHAIN

DAC* CAMAC. / REPLACES MODULE'S LINK ADDRESS

ISZ CAMAC. /INCREMENT ARGUMENT ADDRESS POINTER

LAC (CMCNT1) /GIVE ADDRESS OF RETURN

DAC* CAMAC. / TO INTERRUPT HANDLER

ISZ CAMAC. /INCREMENT ARGUMENT ADDRESS POINTER

LON /RE-ENABLE L-FLAG INTERRUPTS

JMP* CAMAC. /RETURN TO CALLING PROGRAM
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FIRST

LAST

NOFLAG

FIRST

/ADDRESS OF START OF SKIP CHAIN

/ADDRESS OF LAST LINK IN SKIP CHAIN

/ENTRY FOR SPCC SUBCHANNEL INITIALIZATION

CAMAK. 0

JMS* .DA

JMP .+4

PROG 0

CHANL 0

EVENTS 0

JMS INIT

LAC* CHANL

SZA

CLA1IAC

.°AX

LAC PROG

DAC USERS,X

CLX

LAC (4) .

PAL

CAMAK1 LAC* EVENTS,X

SZA

DAC* TRAP1,X

AXS 1

JMP CAMAK1

JMP* CAMAK.

/GET ADDRESSES OF ARGUMENTS

/ADDRESS OF SERVICING PROGRAM

/SUBCHANNEL NUMBER (0 OR 1)

/BLOCK OF 4 CHANNEL-PROGRAM POINTERS

/INITIALIZE CAMAC SYSTEM

/GET SUBCHANNEL NUMBER.

/ IF NOT 0,

/ ASSUME 1

/GET ADDRESS OF SERVICING PROGRAM

/ENTER INTO BUFFER INTERRUPT TABLE

/INITIALIZE INDEX AND

/ LIMIT- REGISTERS

/SET UP CHANNEL-PROGRAM POINTERS

/INCREMENT INDEX REGISTER

/LOOP AGAIN

/RETURN TO.CALLING PROGRAM

/ENTRY TO RE-ENABLE CAMAC FOR RESTART FROM DUMP

ECAMCK 0

JMS INIT

JMS XZGEN

LON

/MAKE SURE IT'S INITIALIZED

/CLEAR ALL MODULES

/ENABLE L-FLAG INTERRUPTS
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ESPCC /ENABLE SPCC TRANSFERS

JMP* ECAMCK /RETURN

/ONCE-ONLY SUBROUTINE TO INITIALIZE CAMAC SYSTEM

INIT 0

AC SAVE

CRSAVE

HRSAVE

XRSAVE

LRSAVE

MQSAVE

SCSAVE

SGSAVE

USER

TEMP

INIT1

INIT2

JMS

CAL

16

SLF

XZGEN

70

CMC INT

CAL

16

SEORF

71

CMKINT

DBK

CLX

LAC

PAL

LAC

DAC*

AXS

JMP

ESPCC

LAC

DAC

JMP*

(4)

(STOP)

TRAP1,X

1

INIT1

INIT2

INIT+1

INIT

/CLEAR ALL MODULES

/INITIALIZE API CHANNELS

/(THESE ALSO USED AS TEMP STORAGE)

/DEBREAK FROM CAL LEVEL

/INITIALIZE INDEX AND

/ LIMIT REGISTERS

/INITIALIZE CHANNEL-PROGRAM POINTERS

/ TO TRAP UN-INITIALIZED EVENTS

/INCREMENT INDEX REGISTER

/GO BACK

/ENABLE SPCC

/OVERLAY ONCE-ONLY INITIALIZATION

/RETURN

/SUBROUTINE TO EXECUTE ZGEN MODULE COMMAND

XZGEN 0

LAC (ZGEN)

LCR

RDCR

/INITIALIZE ALL MODULES

/CHECK OPERATION OF CIOP
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SAD (ZGEN)

JMP* XZGEN

LAC (4)

JMS* (ERR-1)

JMP XZGEN+1

/COMMAND REGISTER OK

/COMMAND REGISTER NOT OK

/.IOPS4 ERROR MESSAGE

/TRY AGAIN WHEN READY

/HANDLER FOR LAM INTERRUPTS

CMC INT

CMCNT1

0

JMS SAVE

JMP* FIRST

JMS UNSAVE

DBR

JMP* CMC INT

/SAVE REGISTERS

/ENTER Q-TEST CHAIN

/RESTORE REGISTERS

/DEBREAK AND RESTORE

/RETURN TO INTERRUPTED PROGRAM

/HANDLER FOR EOR INTERRUPTS

CMKINT 0

JMS SAVE

CLX

LAC (3)

PAL

CMKNT1 LAC TEST,X

LCR

SQF

JMP CMKNT2

LAC USERS,X

DAC USER

JMS* USER

JMS UNSAVE

DBR

JMP* CMKINT

/SAVE REGISTERS

/INITIALIZE INDEX;AND

/ LIMIT REGISTERS

/GET FLAG-TEST COMMANDZ

/TEST THE FLAG

/GET HANDLER ENTRY ADDRESS

/ENTER USER'S PROGRAM

/RESTORE REGISTERS

/DEBREAK AND RESTORE FROM INTERRUPT

/RETURN TO INTERRUPTED PROGRAM
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CMKNT2 AXS 1

JMP CMKNT1 /GO BACK

/ERROR-REPORTING SECTION

NOFLAG

ERRFLG

NOINIT

ADDERR

/TABLE

TEST

LAW 51

JMP* (ERR)

0

LAC (STAT)

LCR

RLD

DAC* (ERR-1)

AND ( 3 )

TAD TRAP1

DAC TEMP

LAC* TEMP
SAD (STOP)

JMP NOINIT

LAW 52

JMP* (ERR)

LAW 53

JMP* (ERR) ,

0

LAW 54

JMP* (ERR)

OF EOR- INTERRUPT

SENSEO

SENSE1

SERROR

/ERROR : N

/READ STAT'

/AND SAVE

/CHECK EVE:
/FOR STOP i

/ERROR: HA:

/ERROR: UN

/ERROR: NO

FLAG TESTS

/SUBCHANNE:
/SUBCHANNE:
/ERROR
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/TABLE OF USER-SUPPLIED, EOR-SERVICING PROGRAMS

/ - . -

USERS ADDERR /SUBCHANNEL 0

ADDERR /SUBCHANNEL 1

ADDERR /ERROR

/SUBROUTINE TO SAVE REGISTERS

SAVE 0

DAC ACSAVE

LACQ

DAC MQSAVE

LACS

DAC SCSAVE

CLAICLLIIAC

MUL

1

DAC SGSAVE

PXA

DAC XRSAVE

PLA

DAC LRSAVE

RDCR

DAC CRSAVE

RHR

DAC HRSAVE

JMP* SAVE.

/ACCUMULATOR

/MQ REGISTER

/EAE STEP COUNTER

/EAE SIGN BIT

/INDEX REGISTER

/LIMIT REGISTER

/CIOP COMMAND REGISTER

/CIOP HIGH DATA REGISTER

/RETURN

/SUBROUTINE TO RESTORE REGISTERS

UNSAVE 0

LAC HRSAVE

LHD

LAC CRSAVE

/CIOP HIGH DATA REGISTER
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AND (677777)

LCR

LAC LRSAVE

PAL

LAC XRSAVE

PAX

LAC SGSAVE

ABS1ECLA

AAC 77

SCSAVE

(640402)

(640477)

. + 1

XOR

TAD

AND

DAC

XX

LAC MQSAVE

LMQ

LAC ACSAVE

JMP* UNSAVE

.END

/REMOVE F8 BIT

/CIOP COMMAND REGISTER

/LIMIT REGISTER

/INDEX REGISTER

/EAE SIGN BIT

/EAE STEP COUNTER

/MQ REGISTER

/ACCUMULATOR

/RETURN
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APPENDIX C

AN EXAMPLE OF AN INTERRUPT-LEVEL MODULE SUBPROGRAM

.TITLE ADC1

/ADC IN ADD-1 HODE THROUGH A CAMAC MODULE WITH

/LOOK\:AT-ME INTERRUPTS AT EACH EVENT.
\

.GLOBL ADCO /INITIALIZE

.GLOBL ADCON /START ACCUMULATING

.GLOBL ADCOFF /STOP ACCUMULATING

.GLOBL CAMAC.,.DA /EXTERNAL SUBPROGRAMS

/CAMAC IOT-INSTRUCTIONS -

LCR=706004 /LOAD COMMAND REGISTER

RLD=̂ 706J.32 /READ LOW DATA BITS.

SQF=706001 /SKIP ON 0-FLAG

/ADC MODULE COMMANDS

F=10000 /VALUE OF Fl (FUNCTION CODE)

.DEC

MOD=11 /ADC MODULE ADDRESS

SADC=F*8+MOD /SKIP ON ADC FLAG

EADC=F*26+MOD /ENABLE ADC LOOK-AT-ME

DADC=F*24+MOD /DISABLE ADC LOOK-AT-ME

RADC=F*0+MOD /READ AND CLEAR ADC

.OCT

ADCO 0 /INITIALIZATION ENTRY

JMS* .DA /F4 GET ARCS SUBROUTINE

JMP INIT

ARG1 0 /ADDRESS OF 1-ST CHANNEL

INIT JMS* CAMAC. /LAM INITIALIZING CALL TO CAMAC.

NEXT ENTER /WILL POINT TO NEXT IN SKIP CHAIN
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RETURN 0 /WILL BE RETURN FROM INTERRUPT

LAC EXITO

DAC INIT /CAMAC. CAN BE CALLED ONLY ONCE

EXITO JMP* ADCO

ADCOM 0

LAC

LCR

RLD

LAC

LCR

JMP*

/START DATA ACCUMULATION

(RADC) /READ MODULE TO CLEAR IT

(EADC) /AND THEN ENABLE IT

ADCON

ADCOFF 0

LAC

LCR

JMP*

/STOP DATA ACCUMULATION

(DADC) /DISABLE THE MODULE

ADCOFF

ENTER

BEGIN

ADDR

LAC

LCR

SQF

JMP*

LAC

LCR

RLD

TAD*

DAC

ISZ*

JMP*

JMP*

0

.END

(SADC) /TEST MODULE'S FLAG

/IF FLAG IS UP, BEGIN PROCESSING

NEXT /—OTHERWISE GO TO NEXT LINK

(RADC) /READ THE CHANNEL NUMBER FROM MODULE

ARG1 /ADD ON ADDRESS OF CHANNEL JL-

ADDR /AND SET THE MEMORY ADDRESS

ADDR /ADD-1 TO MEMORY ADDRESS

RETURN /AND RETURN TO INTERRUPTED PROGRAM

RETURN /(DISREGARDING OVERFLOWS)
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APPENDIX D

EXAMPLE OF SUBPROGRAM THAT USES SPCC AND "PING-PONG" BUFFERS

.TITLE ADC2

/ADC IN ADD-1 MODE THRU A CAMAC MODULE USING

/SPCC SUBCHANNEL 0.

.GLOBL ADCO /INITIALIZE

.GLOBL ADCON /START ACCUMULATING

.GLOBL ADCOFF /STOP ACCUMULATING

.GLOBL CAMAK.,.DA /EXTERNAL SUBPROGRAMS

/CAMAC IOT-INSTRUCTIONS

LCR=706004 /LOAD COMMAND REGISTER

RLD=706132 /READ LOW DATA BITS

LLD=706024 /LOAD LOW DATA BITS

/MODULE COMMAND CODES

F=010000 /VALUE OF Fl (FUNCTION CODE)

Al=000400 /VALUE OF Al (SUBADDRESS)

EXIT=000200 /FLAGS END OF CHANNEL PROGRAM

/SPCC MODULE COMMANDS

N=000027 /SPCC MODULE ADDRESS

.DEC

LDCAO=F*17+N /LOAD CURRENT ADDRESS

LDWCO=F*17+A1+N /LOAD WORD-COUNT, ENABLE REGISTER

RDWCO=F*17+A1+N /READ WORD-COUNT REGISTER

FLAGO=F*25+A1+N /SET END-OF-RECORD FLAG

/ADC MODULE COMMANDS

MOD=11 /ADC MODULE ADDRESS
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EADC=F*26+MOD

DADC=F*24+MOD

RADC=F*0+MOD

.OCT

/ENABLE ADC TO MAKE TYPE 1 EVENTS

/DISABLE ADC

/READ AND CLEAR ADC

ADCO

ARG1

ADCON

0

JMS*

JMP

0

JMS*

JMP*

ENTRY

(0)

EVENTS

0

LAC

LCR

RLD

LAC

LCR

DAC

LAC

LCR

JMP*

.DA

.+2

CAMAK.

ADCO

(RADC)

(FLAGO

START

(EADC)

ADCON

/INITIALIZATION ENTRY

/F4 GET ARCS SUBROUTINE

/ADDRESS OF DATA ARRAY

/SPCC-INITIALIZING CALL

/ADDRESS OF INTERRUPT SERVICING

/SUBCHANNEL 0 INDICATOR

/FIRST OF 4 CHANNEL-PROGRAM POINTERS

/START DATA ACCUMULATION

/READ MODULE TO CLEAR IT

(FLAGO) /SET END-OF-RECORD FLAG

/TO CAUSE INTERRUPT —

/(SPCC WILL BE STARTED AT INTERRUPT)

/NOW ADC CAN BE ENABLED

ADCOFF 0

LAC

LCR

LAC

LCR

DZM

JMP*

/STOP DATA ACCUMULATION

(DADC) /DISABLE THE MODULE

(FLAGO) /SET END-OF-RECORD FLAG

/TO CAUSE INTERRUPT —

START /PROCESSOR WILL STOP IT

ADCOFF

/EVENT BITS, POINTERS, AND ENTRY TO EOR-SERVICING
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X.=400000 /TAGS TRAP DATA AS MODULE COMMAND

ENABLE=100000 /EVENT ENABLE BIT (EVENT 0 ONLY)

EVENTS X.+RADC+EXIT /ONLY ONE COMMAND NEEDED

0

0 /O INDICATES EVENTS NOT USED

0

ENTRY

El

0

LAC

SNA

JMP

LAC

LMQ

LAC

DAC

LACQ

DAC

LAC

LCR

RLD

ALS

LRSS

AAC

PAL

LAC

DAC

SNA

JMP

LAC

LCR

LAC

LLD

LAC

LCR

STj

El

.A

.B

.A

.B

(Rl

7

7

we

STJ
STJ

UNI

(LI

.A

(LI

/EOR-INTERRUPT SERVICING ENTRY

/IF THE CHANNEL WAS OFF,

/SKIP OVER BUFFER SWAPPING

/SWAP BUFFER POINTERS

(RDWCO) /READ THE WORD-COUNT REGISTER

/SET TOP 7 BITS OF WORD

/COUNT ALL TO THAT OF BIT 7

/THEN CALCULATE NO. IN BUFFER

/AND SET LIMIT REGISTER
I

IS

/IF NOT TO BE STARTED UP,

UNPACK /JUMP ON TO UNPACKING SECTION

(LDCAO) /LOAD CURRENT ADDRESS REGISTER

/WITH POINTER TO NEW BUFFER

(LDWCO) /LOAD WORD-COUNT, ENABLE REGISTER
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LAC

LLD

UNPACK LAW

PAX

E2

INDEX

(WCO)

-1

JMP

LAC*

TAD*

DAC

ISZ*

NOP

AXS

JMP

JMP*

INDEX

.B,X

ARG1

ADDR

ADDR

1

E2

ENTRY

/WITH INITIAL VALUE

/NOW CHANNEL IS GOING

/BEGIN UNPACKING DATA

/GET THE ADC-CONVERSION NUMBER

/ADD ON ADDRESS OF FIRST CHANNEL

/AND SET THE MEMORY ADDRESS

/ADD-1 TO MEMORY ADDRESS

/(DISREGARDING OVERFLOWS)

/AND LOOP AGAIN

/UNTIL DONE

/THEN RETURN TO INTERRUPTED PROGRAM

WC=40

WCO=-WC&3777+ENABLE

.A

.B

A

B

START

STATUS

ADDR

A

B

.BLOCK

.BLOCK

0

0

0

,END

WC

WC

/BUFFER LENGTH

/INITIAL WORD-COUNT

/BUFFER POINTER

ENABLE VALUE

/DATA BUFFER
/ ii ii

/START-STOP FLAG

/ON-OFF . STATUS FLAG

/ADDRESS. OF INCREMENTED CHANNEL
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TABLE I. - CAMAC FUNCTION CODES

Code
F ( )

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

Function

Read group 1 register
Read group 2 register
Read and clear group 1 register
Read complement of group 1 register

Nonstandard
Reserved
Nonstandafda

Reserved

Test look-at-me
Clear group 1 register
Clear look-at-me
Clear group 2 register

Nonstandard
Reserved
Nonstandard
Reserved

Overwrite group 1 register
Overwrite group 2 register
Selective set group 1 register
Selective set group 2 register

Nonstandard
Selective clear group 1 register
Nonstandard
Selective clear group 2 register

Disable
Execute
Enable
Test status

Nonstandard
Reserved
Nonstandard
Reserved

Use of R and W lines

Functions using the R lines

Functions not using the R or W lines

i

Functions using the W lines

i

Functions not using the R or W lines

i '

Function signals

F16

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

F8

0
0
0
0

0
0
0
0

1
1
1
1

1
1
1
1

0
0
0
0

0
0
0
0

1
1
1
1

1
1
1
1

F4

0
0
0
0

1
1
1
1

0
0
0
0

1
1
1
1

0
0
0
0

1
1
1
1

0
0
0
0

1
1
1
1

F2

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

Fl

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

Code
r ( )

0
i
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

aUsed as add-one type read by channel processor.
Used as program jump by channel processor.
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TABLE H. - CAMAC IOT-INSTRUCTIONS

Name = value (octal) Action

LCR = 706004
LHD = 706044
RHD = 706152
LLD = 706024
RLD =706132
SQF = 706001
RDCR = 706112
RHR = 706172
LON = 706101
LOF = 706104
ESPCC = 706161
DSPCC = 706164
SLF = 706021
SEORF = 706061

Load command register
L,oad high data bits
Read high data bits
L^oad low data bits
Read low data bits
Skip on Q-Flag
Read c_ommand register
Read high data register
Enable Ipok-at-me (turn ON)
Disable lpok-at-me(turn OFF)
Enable SPCC
Disable SPCC
Skip on look-at-me flag
Skip on end-of-record flag

TABLE m. - SPECIAL ALL-MODULE

COMMANDS

Name = value (octal)

ZGEN = 100034
CGEN = 100035
SETINH = 300037
CLRINH = 320037

Action

Initialize all modules
Clear all modules
Set module inhibit line
Clear module inhibit line
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TABLE IV. - CAMAC SPCC-MODULE COMMANDS

F =010000 (octal)
N=000027 (octal)
Al =000 400 (octal)
A2=2*A1
A3=3*A1
A4=4*A1

Function code 1
Module address
Subaddress 1
Subaddress 2
Subaddress 3
Subaddress 4

Name=value Action

LDCAO=F*17+N
LDCA1=F*17+A2+N
LDWCO=F*17+AUN
LDWC1=F*17+A3+N
FLAGO=F*25+A1+N
FLAG1=F*25+A3+N
RDWCO=F*1+A1+N
RDWC1=F*1+A3+N
STAT=F*1+A4+N
CLEARO=F*11+A1+N
CLEAR1=F*11+A3+N
SENSEO=F*10+A1+N
SENSE 1=F*10+A3+N
SERROR=F*8+N
CLRALL=F*10+N

Load current address, subchannel 0^
Load current address, subchannel 1
Load word-count/enable register 0
Load word-count/enable register 1^
Set end-of-record flag, subchannel ()
Set end-of-record flag, subchannel J.
Read word count from subchannel 0
Read word count from subchannel !_
Read status register
Clear enable bits in subchannel 0
Clear enable bits in subchannel 1^
Sense and clear subchannel 0 flag
Sense and clear subchannel 1 flag
Sense error flag
Clear all events and flags

Computer
(DEC PDP-15)

Input-output
bus

CAMAC
controllers

Dataway

Instrumentation
modules

Figure 1. - Block diagram of CAMAC-computer system.
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17

Q

F
A
C
N
Q
H
E

F A H : c N

Function code
Subaddress
Crate
Station number
Q-response
24-bit transfer (two words)
Exit after execution

(a) CAMAC command format.

Busy

SI

S2

I I
0 1

Time, usec

(b) CAMAC dataway timing.

Figure 2. - CAMAC command format and dataway signals.

Bit 17

OP
1 1 1 1 1 I 1

OS C
1 1

IOP

OP Operation code (70)
DS Device select
C Clear accumulator
IOP Input-output strobe pulses

(a) POP 15 input-output instruction format.

Device select 1

AC clear |~1 '

IOP1 I I

IOP 2 | |

IOP 4 I I

Data on bus |

1 1 1
-1 0 1

L
1 1
2 3

Time, usec

(b) POP 15, input-output bus timing.

Figure 3. - POP 15 instruction format and bus signals.
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Input-output bus

Read or write (18)

Device select (8)

IOP (3)

Dataway
Read (7)

Read high dataway

Read (18)

Figure 4. - CAMAC processor operated by programmed input-output bus. The parentheses
contain the numbers of signal lines.
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Input-output
bus
read-write

Data
channel
control

Input-output
bus address

API, PI, and
skip

modules

External
event
inputs

Figure 7. - Block diagram of CAMAC channel processor.
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From event active lines

Event enables

Channel 0

LAM patch
plug

Front panel
(coaxial)

Event processing
finished

Channel 0
active

Channel 1
active

—1 I Event active
2 /lines to SPCC

—3J

From event
register

Figure 10. - Event monitor. The left half of the figure shows the circuitry
associated with each event input The right half shows the circuitry
common to all four inputs.
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