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The development of a computer package for the simulo.L• ion and

evaluation of proposed path selection systems for an autonomous Martian

roving vehicle has been undertaken. The package incorporates a number

of 'realistic features, such as the simulation-of random effects due to

•vehicle bounce and sensor-reading uncertainty, to increase the reliability

of the results. To further enhance the usefulness of the package, both

qualitative and quantitative 'evaluation criteria have been established.

The performance of three different path selection systems has

been evaluated to determine the effectiveness of the simulation package,

and L• o ' form some preliminary conclusions regarding the tradeoffs involved

in* designing a path selection system. Using the results of these prelimin-

ary studies, suggestions for future development of the capabilities of the

computer simulation package have been presented.
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I^

li



I. YNUNUOTION

The large communications delay time from (ninato twenty-five

minutes) between the surface of Mars and a mission control group stationed

on Garth makes ground control of an unmanned exploratory vehicle on Mars

awkward and potentially inadequate. The development of an autonomous

vehicular path selection control system is therefore mandatory for the

success of the mission.. This system should be able to select a path to a

specified destination such that dangerous obstacles are avoided and other

mission considerations are met. The fulfillment of these objectives re-

quires the development of a path selection system containing both hardware

and software devices capable of effectively analyzing the terrain surroune,-

ing the vehicle. It is certainly a stringent requirement that these systems

be able to operate with a high degree of reliability, and that they must also

be capable of calling for Garth control under appropriate circumstances.

Previous efforts concerning this area of investigation have con-

centrated upon development of terrain modeling systems, analysis of the

effects of sensor error upon the terrain model, and the study of path se-

lection algorithm characteristics. One of the previous investigations did

include the integration of terrain modeling and proposed path selection

systems for the purpose of algorithm performance evaluation (Ref. 1). How-

ever, these works have been mainly applicable to a long-range obstacle

detection system ' (with sensor ranges *between 50 and 1500 meters), and have

not included quantitative criteria for performance evaluation. In an

attempt to evaluate proposed path selection systems and to expand the use-

fulness of simulation techniques so as to indicate requirements in terrain

model, sensor, and path selection design, this study was initiated.

i
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The project has berm divided into two main Lasko.	 The first

is concerned with the development of a computer package which provides 
.1

the capability of dynamically simulating a wide variety of sensor,

Lorrain modeling, and path selection combinations under reasonab,.y

realistic.conditlons.	 The second task involves the establishment of

criteria for judging the path selection system's performance, as simula-

Led by the computer package developed in the first task.

It shouldshould be emphasized here that these investigations have

been directed	 thirtyat mid-range (three to 	 matersl sensor and path

selection applications, as distinct from short-range applications using

a tactile sensor and the previously studied long-range system. 	 It should

also be noted, however, that the simulation package has the potential for

extension to, or subsequent inclusion of, the other range applications.
7

The following section presents a discussion of the overall

computer simulation package, including its structure, functions, and in-

formation flow.	 Specific discussion of individual block development

studies pnd implementations is given in Section'III. 	 Section IV demon-

`
I

strates the effectiveness of the computer simulation package by comparing

the performances of three different path selection systems. 	 The final

section presents a summary of the progress, conclusions, and suggestions

for future work in this area.

A user's guide for the computer simulation package is available,

and its table of contents is included here as an Appendix.
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II. COMPUTER SIW ATION STRUCTURE

A,	 Goals and Considerations

The computer simulation package is a self-contained unit. Not

only does it simulate the functions of a Lorrain sensor and a modeler,

contain a path selection algorithm, and simulate the vehicle ' s motion dy-

namics, but' it also includes a mathematical description of a terrain and

evaluates system performance using criteria established for Lhis purpose

(see Section III, D . 3). Tite inclusion of the latter two items into the

system reduces error-prone handwork and extends considerably the scope

of the simulation's evaluation capabilities.

Three major considerations ware taken into account during the

computer package design. First, the, flexibility and realism of the simu-

lation is of primary importance. The substitution of alternate vehicle

configurations, path selection algorithms, terrain models, and sensor

schemes, must be conducted with a min:Unum of effort and a low probability

of error. Inputting of terrain data must be flexible enough to represent

a wide variety of terrain characteristics and appearances. As more in-

formation is gained concerning the true Martian terrain, it will be

important to be able to easily construct terrains which reflect this know-

ledge.

As a second consideration, it must be possible to incorporate

non-ideal features which tend.to degrade performance. Such additions

enhance the realism of the simulation, thereby improving the reliability

of the results. Such non-ideal features include: vehicle bounce,'vehicle

1
	 tilt due to terrain slopes, and sensor - reading uncertainty.

a
The third consideration is that the structure of the computer

^i
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simulation should be segmented according to function. All activities

^I	 pertaining to a single function should he grouped into the same block,

if possible. Proper structuring is of considerable importance to the

flexibility requirement that substitution of alternate proposed sensor

systems and vehicle configurations be easily executed. This subject will

be further discussed in the next sub-section.

B.	 Block Diagram Structure

The computor'simulation package has been structured so that each

V block contains a separate function (see rigure 1).	 This allows easy sub-

^s stitution of alternate simulation schemes.	 'there is a minimum of inter-

,! dependence of one block upon the other, and changes in one will not result

f; in changes in another.

The entire system operation can be divided into four major

functions. These are: 1) the terrain characterization function, 2) the

path selection system function, 3) the'vehicle dynamics function, and 4)

the system evaluation and simulation display function.

The terrain characterization function is used to mathematically

(

	

	 describe and store some arbitrary terrain that will be used in the simula-

tion. It is self-contained in that it is independent of any other function,

(	 and it is assigned a separate block in the block diagram structure.

The path selection system function can be further divided into

1) the sensor operation simulation sub-function, 2)' the terrain modeling

process sub-function, and 3) the path selection algorithm sub-function.

t	

These sub-functions are not entirely independent and will often be highly

{l.	 correlated. A change in a particular sensor scheme may force an accompany-

ing change in the terrain model if the new sensing scheme provides a

HI.
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different type of information. In a similar fashion, the path selection

algorithm will often be dependent upon 4he sensor and model schemes.

!these sub-functions have each been assigned a separate block. The re-

sulting three blocks are the only ones in the simulation package which

are dopendent upon one another.

The third major function of the program is vehicle dynamics

simulation. The response of the vehicle to the commands of the path se-

lection system must be simulated, by determining how the moving vehicle

is affected by the terrain and how this in turn may affect the path se-

],action system. This function is assigned a single block in the block

diagram structure as Lt is independent of the other functions.

The fourth major function, system evaluation and simulation dis-

play, supplies visual information indicating what the vehicle is doing,

what the terraixi looks like, and how the path selection system as a whole

is performing. Because of the nature of the information to be represented,

this function is assigned three blocks: 1) the terrain characterization

display block, 2) the terrain model display block, and 3) the system

evaluation block. Each block is totally independent of the others.

Summarizing, Figure 1 shows the overall structure of the block

diagram described above. Excluding the display functions, there are six

major blocks. The actual path selection control system is simulated by

a closed loop (solid lines) containing the sensor simulation terrain model

construction, path selection algorithm, and vehicle dynamics blocks. The

terrain characterization block contains a mathematical representation of

the surface upon which the simulated vehicle is traveling. Finally, the

system evaluation block provides a quantitative measure of the vehicle

i

n

P
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f 	 and path selection system performance during the simulation.

f

C.	 Information Plow

Information flow Was one criterion for distinguishing between

V
the various functions described above. The simulation structure was( f^

l	 partially dependent upon making the information transferred between blocks

(shown as . connecting lines' in Figure 1) as meaningful as possible to the

(

simulation objectives. An understanding of the type of it.formation ex-

`` 	 chango is implicit to understanding the operation of the entire simulation

Et process.

The inputs to the terrain Characterization block are specified

u	 I! by the user and . determine the mathematical terrain description (specified

i

in a cartesian coordinate system) that will be stored in this block. 	 This

block will then be able to provide a z coordinate (altitude) for any set

of x,y coordinates specified by other blocks in the structure. 	 The sensor

simulation block uses the terrain characterization block extensively while

j simulating the operation of a mid-range sensor.

Q^ The outputs of the sensor simulation block are the range measure-

ments made by the mid-range sensor, and these values represent the terrain

d

as the mid-range sensor sees it.	 The terrain model construction block pro-

cesses the sensor's measurements, and passes a model of the terrain to the

to the terrain	 display block forpath selection algorithm (and 	 model	 visual

representation).	 The path selection algorithm block uses this terrain

`j
(

model, the present location, and the location of the target, to generate

^j
steering commands, 	 i.e., to choose a path. 	 The vehicle dynamics block

then moves'tha vehicle using the steering commands and monitors the per-

t formance of the moving vehicle. 	 When the mid-range sensor is to be used

again, the location, direction, velocity, etc. of the ,rhicle are passed

o.

::^
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to the sensor simulation block. The cycle repeats itself until the

vehicle arrives on target or until the simulation is halted for some

other reason. The system evaluation block monitors the performance of

both the vehicle and the path selection system and provides a quantita-

tive perfdrmanco measure at the and of the simulation.

The dashed lines in Figure 1 are mscd to describe non-essential

information flows which may be desirable to enhance the system's flexibi-

lity and display capabilities. The longer broken line can be used to

supply terrain linked non-ideal behavior such as vehicle attitude and

vehicle 5ounce to the vehicle dynamics block. The shorter dashed line

can be used to supply information to the terrain display block concerning

the vehicle's location during its motion. Thus, the vehicle's path during

a simulation run can be displayed graphically.

k
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I11. cOMPUPBR SIMULATION METHODS

A detailed discussion of each block in Figure 1, including

its development, operation, and capabilities, will now be presented.

A. 'Terrain characterization Block

The development of the terrain characterization block is dis-

cussed at greater length in Reference 2.

This block represents a mathematical description of the Martian
i

terrain (using cartesian coordinates), and allows the user to specify some

polynomial representation and build Gaussian distributions upon this base.

These descriptions are used to convey low frequency terrain features. In

addition, a special- features input is used to specify high frequency and

discontinuity components, such as boulders, craters, and crevasses. The
i

user can specify the general characteristics of each of these special

features, thereby enhancing simulation flexibility. All of these special

features are constructed by the use of singularities in the mathematical

description of the surface.

Once the simulation of the path selection process begins, the

terrain characterization block provides other blocks in the simulation

package with the value of the altitude (z) of the terrain at any point

(x,y), Since the block will be used extensively during the simulation, it

incorporates many time - saving procedures. For example, par;Lial nesting

techniques are used when computing the poi nĉ mial features.

B. Path Selection System

Several path selection system schemes were available it the

beginning of this work. A simple scheme was chosen initially so that

Vi
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,effective simulation techniques could be developed. It is assumed that,

as evaluation of these simple path selection schemes is performed, more

advanced systems will be developed and evaluated.

The path selection system has been previously subdivided into

the sensor simulation block, the terrain model construction block, and

the pathseleation algorithm block. Each of these blocks will be treated

separately.

1.	 Sensor Simulation Block

a) Types of Sensor Simulators

The scheme chosen for an initial development of

this block involved a laser beam scanner with zero beam- 	 j

width. The vehicle was assumed to be a point source with

the sensor located directly above (with respect to the
I_

true planet vertical). The scan was assumed to be instan-

taneous, and there was a uniform time assumed between 	
r

scans. A single beam was used and discrete samples were

taken during each scan. The beam had a fixed elevation

angle	 measured with respect to the planet ' s vertical

(see Figures 2A and 3).

The scheme provided the terrain modeling block with

azimuth, elevation angle, and the length of the beam (p

from the sensor to each of the sampled impingement  points

on the terrain surfao e„ Random uncertainty of error in the

measurement process due to vehicle bounce could be intro-.	
cc

duced to the elevation angles and/or the range measurements 	 P

at the user's option. The method for this addition of noise

tc
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is described in Section III, C.2.c.

An additional sensor, scheme was then implemented.

In this scheme, two, three, or four beams simultaneously

sweep the surface (see Figure 2D for an illustration of

the case with two beams). Each beam has a different

fixed elevation angle measured with respect to the planet's

vertical. The assumptions of uniform time between sensor

scans, discrete samples, and instantaneous sweep were also

used for this scheme. Output to the terrain model construe-

tion block was adjusted so that sets of range measurements,

azimuths, and elevation angles were included. Noise could

be added to any of the elevation angles and/or range

measurements'at the user's option.

It was then decided to simulate a sensor whose orienta-

tion with respect to the vehicle was fixed and would be

affected by the in-path and cross-path slopes of the terrain

beneath the vehicle. * The precise location of the mid-range

sensor had to be calculated as the sensor could no longer be

assumed to be directly above the vehicle. The mathematical

transformations necessary to establish the sensor location

and their derivations are given in the program user's guide.

The two previously described sensor schemes were then adjusted

to incorporate this feature (see Figure 4A), and are hereafter

referred to as vertical-fixed sensors.

k	 The in-path slope is defined as the slope of the terrain measured in
the direction of the vehicle's motion. The cross-path slope is measured
in the direction perpendicular to the vehicle's motion.

t
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The vehicle-fixed sensor scheme is similar to the,

above schemes in that the seen time is instantaneous,

discrete samples are taken, and there is a uniform time

(T) between scans. One, two, three, or four simultaneous

beams each with a different elevation angle may be used.

Output to the terrain model construction block includes

sets of azimuths, elevation angles, and range measurements. .

Noise may be added to any of the elevation angles and/or

range measurements at the user's option. Unlike the pre-.

vious schemes, the elevation angles are measured with

respect to the sensor mast, and are held constant with

respect to this mast as the beam is swept across the sur-

face (see Figure 4B).

b) Range Measurement Simulation

The sensor simulation block simulates the motion of

the laser beam and its impingement upon the terrain's

surface. This is done by initially assuming that the

Length of the beam is zero meters and then increasing the .•

length of the beam by one meter increments. Defining the

beam height as z *, the x,y,z * coordinates (see Fig. 5) of

the beam at each incremented length may be computed. The

x,y coordinates are also supplied to the terrain characteri-

zation block, which generates the altitude (z) of the terrain

at the point x,y.	 The length of the beam is increased un-

til the beam passes beneath the surface (i.e. z-z k is nega-

tive), or until the range limit of the laser is exceeded.

j

L _'

41



V

F:
hM

^
^
y

Gi
fy

U]

fl
P

4
a

H
V

J
fA

N
w
i

-
•
H

o$N
N

O

I

1
6
.

cd

	

t
o
 
!
 ^

f G
 "o

 i'	
y	

Ir
n
	

tl.,
f

^
N

 !	
^
	

(	
O

.>
 f

r tii ^
^
^
 ^
	

J A
ti.f.	

d
!

IN
'

V:	
t

NN
	

III1

0HhUL
ti	

.

^s7'
V

1

r^4.`N

0C
7

^I



6

.Ir,

r

17.

U

f

i

i

r
L

i
{

If the beam passes below the surface within the range

limit (apocifLed by the user), then an interval halving'

algorithm is used to obtain the true impingemont: point

between the two points on the beam above and below the

surface. By specifying the maximum acceptable altitude

difference between beam and terrain, the user can control

the accuracy of the simulated range measurement obtained

from the interval halving algorithm. An initial gueya

scheme is used for multiple beam sensors to avoid unneces-

sary computations. Once a beau range has been calculated,

their this range can be used as an initial guess for the

length of the other beams for a given azimuth.

For the sensors whose elevation angles were measured

with respect to the planet's vertical, the coordinates

(x ) y,z *) along the beam could be readily computed. For

the vehicle-fixed sensor, the elevation jingles are measured

with respect to the sensor mast, making computation of

points along the beam more complicated. To simulate this

situation, a new cartesian coordinate system with the

origin at the sensor is assumed. By calculating the beam

points with respect to this new coordinate system, and then

multiplying by an appropriate transformation (composed of

the directional cosines of the new axes)., the beam points

can be converted to the coordinate system in which the

mathematical model of the terrain is defined. Once this

has been achieved, the range measurement techniques des-

cribed above may be utilized (see the user's guide for

t
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particulars of transformation mathematics),

2.	 Terrain Modal Constructi on. Block

Wo previous efforts, which have investigated the subject

I of terrain modeling (Refs. I' and 3), have developed indices	 which
to

indicate the major Lorrain features that are crucial to the safe

motion of the vehicle. 	 Those works go beyond the level of imple-

mcnL•ation that is presently available,	 Consideration at this

stage is aimed at general concepts of terrain modal types, and at

the criteria on which they depend.

Essentially, five distinct terrain models were proposed in

this investigation.	 The first three of these models depend upon

measurements at two different points upon the terrain surface to

achieve their significance, 	 These are illustrated graphically in

Figure G, and are referred to as 1) slope, 2) altitude, and 3)

range models.	 Because of the geometry of the situation, any one

rof these particular models can be obtained from any of the others.

^. however, in terms of algorithm decision criteria, a certain modal

may be more convenient and meaningful to a particular proposed

obstacle-detection path selection system.	 Models have been imple-

mented which are both slope based and range based. 	 For each dis-

[ crate azimuth angle, the slope model converts the supplied range

information '(from the mid-range 'sensor) into slopes by sssumiing

4t
4! a linear slope from the vehicle's position to the impingement point

[ of the sensor beam. The range model stores the sensor's range
t	 i

measurements without any processing.	 The models in both cases then

^J become an array of stored numerical data (for each mid-range sensor

scan) which reflect tha,particular criteria on which the terrain
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(1

l model is hosed (slopes, ranges).

A fourth concept of the modeling process is to encode the

data obtained from the sensor into single-bit representations.

Using some predetermines] criteria, the model assigns a given

value, (1), to sensor data (or combinations of this data) if

the data falls within threshold limits and some other value,(0),

if the data is outside of these boundaries. In this manner, a

set of the values (0's and 1's) is obtained for each sensor

sweup, Figure 7A. If several of these sets were stored for pre-

sentaLion to the path selection algorithm at the same time, the

model would begin to resemble a code of acceptable and nonaccept-

able terrain features, Figure 713. This type of model is certainly

more visual than the previous three, and in a sense actually in-

volves some of the decision process itself in that it "decides"

whether given points on the terrain are within some limit (pre-

sumably acceptable), or outside of it (unacceptable).

The final model proposed was one which constructs a maL• hema-

tical representation of terrain characteristics. An example of

this would be the fitting of an equation to data in order to repre-

sent a contour line. Algorithms are , available in t11e literature

which determine the minimum order of equations that fit sets of

data, and then let the terrain model be the set of resuiting equa-

tion orders. The basis for such a model would be regression analy-

sis. This model has been left as a topic for future work.

The models discussed above are an attempt at defining some

of the basic criteria which can be used in terrain model con-

structicn; It is expected that as the path selection system

I
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evaluation tool becomes useful in assessing particular modeling

(

!

^j

schemes, more complex models will be developed.

,i 3.	 Path Selection Algorithm Block

tll The development ofof the path selection algorithm block

assigned that, on the basis of some criteria
	
(e.g.(e.g.,	 slop„ accepta-

f

i
bility, range threshold, otc.), the path selection algorithm would

choose an acceptable path along one of the mid-range sensor 'a

scanning beams	 (see Figure 3).	 In one of the path selection

algorithms presently implemented, the testing of criteria is

accomplished . by comparing the terrain models' slopes or ranges

} with threshold slopes and ranges.	 If the model - supplied values
niq

are acceptable, the algorithm issues appropriate steering commands.

1 If they are unacceptable, the algorithm continues a search of the

terrain model for other paths.

^j

W

Considering a slightly different situation, the encoded

terrain model data is already in a go, no-go form (see Figure 7B).

Sinde the traversaUility criteria has already been applied, the

path selection algorithm need only search + the data for an accept-

able path.

Ij
Both types of algorithms have been software implemented, and

both search the terrain model data in a specific sequence. 	 The

( 44
11 heading .angle from the vehicle ' s present location to its destina-

'• tion ( target) is calculated and then compared with all of the

( sensor beam directions. —The direction nearest the heading angle

^f
is chosen as a tentative path.	 If the terrain model data (slope,

range, etc.) for this direction is acceptable, the vehicle receives

r

1

22.

4
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1

a steering command to head in this direction, If this path is

not acceptable because an obstacle is indicated, the algorithm

then , searches one path to Lite right, one path to , the left, two

paths to Lha right, and no forth until a traversable path is

found. The. direction of this path then becomes the new steer-

ing command for the vehicle.

An emergency path selection algorithm has also been simula

ted. This subset of the path selection algorithm is only.used

when, the vehicle encounters some obstacle it cannot negotiate.

,This situation could occur if the vehicle lands in a sleep crater

or on a butte, or if the mid-range sensor did not detect some

dangerous obstacle which the vehicle has encountered, 'The emer-

gency path selection algorithm might: involve backing the vehicle

up or stopping and providing mission control on Barth with a tele-

vision picture of Lite situation,

The extension of any of the,terrain model's to include

several sensor scan sets permits the development of more powerful

patli selection algorithms. In the case of slope, range, or alti-

tude models, a secondary criterion for traversability might be

the minimization of energy used for motion. Thus, not just a

safe or acceptable path is selected,'but rather an optimal one

,(on the basis of energy considerations),

d4I

7
q
a

^1,

C.	 Vehicle Dynamics Block

1.	 Simulation Capabilities

The purpose of this block- s to dynamically simulate the,

motion of the vehicle and to provide the evaluation block with

information for analysis of the vehicle's motion. The vehicle

U
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dynamics block must also provide the sensor simulation block

with various vehicle parameters (location i 'hoading, speed, etc.);

so that a sensor simulation may be performed.

Much attention has been directed at simulating the vehicle's

motion realistically, and many non-ideal situations can be effee-

tively modeled.	 To date software implementation has been completed

in the following areas:

F]l a)	 Vehicle Response Time - Provisions have been made so

that the vehicle can turn only at a specific rate and so that the

F, travel of the vehicle during very slow sensor scans and/or very

slow computer calculations can be simulated	 The user may assume

ideal conditions, if desired.

b)	 Vehicle Motion - It has been assumed that the vehicle

drives itself uphill and coasts downhill. ' Therefore, two models

of vehicle motion (an uphill model and a downhill model) have

been determined.	 These models calculate the power required to

traverse a slope and the speed of thee-vehicle on this slope.

c)	 Random Disturbances - Noise of two types may be added

to components of or measurements made by the path selection

fl system. The addition of noise simulates random effects due to

H1
bouncing of the vehicle,'steering er.rors, etc.

d)	 Short Range Sensor - An ideal mechanical sensor simula-

H for is available.	 Since a short range mechanical sensor may

interfere with science operations, this simulation provision is

optional and is controlled by the user.

2.	 Simulation Methods

a)	 Vehicle Response Time, 	 The motion of the vehicle has
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A

been divided into three states, the length of each being con-

trolled by the user,

1) Run State 1 - represents the motion of the.vohicle

from the start of execution of the steering command until

the start of use of the mid-range sensor.

2) Run State 2j	 represents the motion of the vehicle

:j	 during the use of the mid-range sensor. The,effeets of

vehicle motion on sensor measurements can be simulated

if the sensor, takes a finite amount of time (run state 2)

to make the range measurements. An instantaneous sensor

would eliminate run state two.

3) Run State 3 - represents the motion of the vehicle.

from the end of use of the mid-range sensor until the

start of execution Of the next steering command. This

state allows analysis of time delay of steering command

generation due to a slow onboard' computer. The onboard

ll	 computer must construct a terrain model from the sensor

measurements and use a path selection algorithm to gene-

rate the new steering command. A very fast onboard com-

puter would eliminate run state 3.

The run states are executed cyclically, starting with run

state o ,"e, until the vehicle arrives 
on 

target or the vehicle gets

into trouble (due to dangerous terrain) and must stop. Information

concerning the vehicle's velocity, 'location, and present heading is

passed to the sensor simulator and terrain model during run state

two. Similar information is passed to the path selection algorithm

between run states two and three.

U,
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i
Note that the end of execution of a particular steering

command can occur during any of the run states, or during none

of them.	 This enables analysis of a variety of steering rates,
i

C
7	 ,

this parameter being controlled by the user. 	 By making the steer-

ing rate sufficiently small, one can simulate a vehicle which

generates steering commands faster than they can be executed. 	 A
i.

FIJI	 very large steering rate, allows "instantaneous" response to steer-
1aa

ff	

ing commands.

b)	 Vehicle Motion	 The point below the center front edge of the
^t

f { vehicle's wheelbase an the Martian surface (xa) ya , za ) - (sea
Ii

•

Figure 8), is moved in discrete horizontal steps of fixed length
i

ff

I	 (STEP), the value-of which is determined by the user. 	 If the

vehicle is on an in-path slope (o<), then the length of a discrete

path increment becomes STEP /cos (oO = S.

I!	
When the vehicle is on a positive slope, a potential energy

f((l

formula, derived in Reference 1, is used to calculate power re-

I^	 quiiements and the velocity of the vehicle. 	 Specifically: ^y

C1
P.E. = 0.00838(W)(D)sin(o •+O)

1 where:

P.E. = potential energy, in watt-minutes,

W	 = weight of the vehicle; in pounds, l"•

D	 = the distance traveled, in feet,

8	 = the drag angle (effects of friction, wheel slippage, etc.),

Q(	 = the slope of the terrain.

Since POWER	 ENERGY = ENERGY * VELOCITY, then
TIME	 DISTANCE
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1-' it follows that

fI
lJ

`J

POWER m 1.65W VELOCITY sin	 (4-0); where POWER

is in watts, and VELOCITY is in motors per second,
i

formula iUsing this	 the velocity and the power required may

be calculated.	 Note that the user specifies available power and

the drag angle (e).	 Steep slopes that would force the vehicle's

velocity to be less than some minimum velocity (determined by the

user) would have prevented execution of the vehicle motion models

and other action would have been taken.

}
When the vehicle is on a negative slope, the motors of the

vehicle are turned off and the vehicle is allowed to coast down

the hill.	 Therefore, no power is consumed. 	 This situation has

been modeled as a block sliding on an inclined plane, and the

equations of motion are:

I
(W)sincz - UKN=ma

I
N = W cos of

! thus	 a = g (sine(	 - UK coso( )

I	 i (

l

where	 a = acceleration of vehicle, in meters/sect

,` d = in-path slope of terrain

l UK = coefficient- of friction (effects of friction,
wheel slippage, etc.)

t
W = weight of vehicle, in pounds

N - normal force on vehicle from surface, in pounds
1

i
g = gravity on liars, 3.62846 meter/sec

2
.

s

y^ If the acceleration is negative, then the vehicle cannot

i
accelerate down the slope.	 In this case, assume that the vehicle's

I



i

motors bring the vehicle up to maximum speed instantaneously using

(!

{^ zero watts of power and then abut oft. 	 If the acceleration is posi-

tive, and since the length of the path increment S on the slope

is known, then:fi

S = v 0 +.0.5at2

u
of -voaat

.

and,	 v 	 (vo + 2.OaS)0.5

Where:

^i of	 final velocity of the vehicle at bottom of slope,
in meters/secondy

{
vo•= initial velocity of the vehicle at top of slope,

in meters/second

S = length of slope, in meters

t = time to traverse slope of length S, in seconds.

1 ( If regenerative breaking is	 being employed by the vehicle,

then the final velocity and the slope length must be adjusted so

Ithat the vehicle never exceeds its maximum attainable speed. 	 If•

the vehicle is already moving at this velocity when a downhill slope

j^ is encountered, then the vehicle maintains this velocity and uses no

9 i power.

c)	 Random Disturbances - Noise may be added to any component or

} 1. measurement of the path selection system. 	 Consider the fact that
r

( displacing a vehicle wheel by some amount 	 x	 will cause some dis-

a
l

lacemenL	 of some com onent in the path selection system. 	 IfP	 Y	 P	 P	 Y

.^ the vehicle employs some sort of shock damping system, then the re-

`

lation between	 y	 and	 x	 can be modeled approximately by a second

11 order differential equation:

t

29.
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Y(t ) + ^Y( t) + Wn2Y( t ) - x(t)

where 	 damping of system (specified by user)

W 	 -•natural frequency of system (specified by user)

The easiest way to simulate the above differential equation

on a computer is by use of the difference equation:

'Y(k) = CY(k-1) - DY(k-2) + AX(k-1) + BX(k-2)

where the sampling ,rate T is implicit in the equation and zero,

initial conditions are assumed. Development of the coefficients

A,B,C,D and the sampling rate T is presented in.the user's guide.

If• white noise is applied to the difference equation in the form

of X(k), then the output Y(k) will be secon& order low-pass filtered

white noise. If this quantity is applied directly to the path selec-

tion system component in question, then the results of random distur-

bances to that component may be analyzed.

If one wishes to simulate a linear relation between bouncing

vehicle wheels and some component, then the white noise should be

applied directly to that component.

It should be noted that judicious scaling of the white noise

is important and is controlled by the user. A subroutine generates

random numbers between zero and one. The user specifies the mean

and the maximum deviation of the mean and these random numbers are

then scaled accordingly and used as inputs to the difference equation.

The 'entire random noise scheme has been set up so that the user

can apply different types of random noise (filtered or unfiltered)

to as many variables of interest as desired.

d) Short Range Sensor - An ideal mechanical sensor can be simulated

at the user's option. The height o^ the surface at a distance of

I'
[1
I"
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t;

a

t

i

(]I

l"

STEP meters (defined in Section III, C.2.b) in front of the

vehicle is calculated and the slope is computed with respect to

the point on the surface below the front of the vehicle (xa ,ya' za) -

(see Figure 8). If the slope is not within acceptable limits

(specified by the user), then the emergency mode of the path so-

lection algorithm is executed.

D.	 Display and Evaluation Blocks

1.	 Terrain Display Block

The initial development of this block was performed by

Mr. Michael Martin, and subsequent completion and refinements were

carrigd out by the authors. Since visual representations of the

terrain surface were considered highly desirable, sever,sl methods

of graphical output were evaluated. A decision was made, mainly

due to the ease of implementation and small cost, to use a line

printer to construct a contour map of the terrain modeled in the

terrain characterization block. The software implementation of

this, block utilizes the symbols 0-9 and blanks to represent 19 bands,

or ranges, fnr contour display. All values of the terrain surface

altitude within a given band range are represented by that band sym-

bol. An example of the output from this block can be seen in

Figure 9. Several versions of this program were written, but the

most useful one automatically searches the entire terrain area to

be displayed and determines the individual band ranges (which are

all equal). The size of the area to be displayed is also automatically

determined and scaled by the program by taking the maximum difference

between the target location and initial vehicle location x and y

F 
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coordinates and establishing slightly lamer square boundaries.

The terrain display block can also represent special features such

as boulders (see Figure 10).

After expanding the area displayed by the terrain contour map,

two other hypes of maps were developed. The first map is the vehicle

path map, as shown in Figure 13, Section IV. The path of the

vehicle," initial vehicle location, and the target location are shown

gVaphically. An appropriate symbol is also used to indicate when the

-mid-range sensor is being used along the vehicle's path. If the

vehicle moves off of the area shown, no graphic record of its progress

outside the map's limits is presented.

The second map is an overlay of the vehicle path map onto the

terrain contour map. The grid marks have been deleted from the over-

lay (see Figure 12, Section IV).

It should be noted that because of the amount of calculations

required (10,140 separate altitude calculations,), there is a definite

time penalty (depending on terrain complexity) when searching a

terrain for its maximum and minimum points to enable automatic vertical

scanning. There is also a memory penalty' (about 40K bytes), but it was

felt that the convenience of a completely automatic contour map out-

weighed these disadvantages. Both penalties may be easily circumvented

by allowing the user to specify the maximum and minimum altitude

values of the terrain to be displayed. This assumes that the user

knows exactly how his terrain behaves, an assumption which may be un-

warranted for complex terrains.

2. Terrain Model Display Block

The form of the terrain model display block is highly dependent

^i:
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upon the nature of the terrain model used , in a simulation. ,The

development of this block has therefore been left as a subject

for future work.

3. Sysiems Evaluation Block

To develop an effective means for evaluating the performance of the

vehicle for various path selection systems, both quantitative and heuristic

methods have been implemented in the systems evaluation block.

a) Quantitative Evaluation

It is desired to describe mathematically as many important

features.of the performance of the path selection system as

possible so as to minimize the need.for subjective evaluations.

The following formula has been postulated so that important

characteristics of a system and their relative importance can be

stated analytically:

3

M =—' i WiFi
i=1

where:

M the figure of merit of the system,

Fi indices that represent the important characteristics,
or features, of the system,

W 
	 the weights of the corresponding indices.

The figure of me.r.j,t, indices, and weights are defined so that

their numerical values will vary between zero (worst case), and

unity (best case). In other words, the importance and/or the de-

sirabi:lity of a variable increases as its.value increases. .

If the weights and indices are , appropriately chosen, then the

system which generates the highest value of M, when the above formula
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is applied, ' would be the most desirable system. Assuming that

the indices chosen adequately describe the system' "s performance,

there still remains the selection of the values of the weights.'

At this point in time, the weights have been selecte4 so that all

performance indices are assumed to be equally important. Adjust-

ment of these weights for performance indices not equally important

has been left for'future work.

The actual mechanics of each index must now be considered.

Tentatively, it has been decided that three indices sufficiently

describe vehicle performance, and, if certain conditions are met,

the number of indices may be reduced to two. The three indices

are:

(i) lath Length - If Dm is the distance between the
starting point: and the target, and
De + Dm is the length of the path
chosen by the vehicle, then the
index defined by

F  =	 Dm

D+De m

provides a measure of the selected
path length.

(ii) Battery Time - If the total time taken by the
vehicle to reach its target is called

Te + Tm, and the time that the vehicle
uses iL• s batteries is called Tb , then
the index defined by

F	
Te+Tm T 

2	
%4-T

provides,a measure of the battery usage
time.

(iii) Traverse Time - If Dm is the distance between the
vehicle and the target, and the maximum



a

U

` velocity of the vehicle is Vm, then
li the minimum time required to reach

[
the target is Tm Dm /Vm, and 'the index

E defined by

F3	 m

Te+Tm

^

.
provides a measure of the total travel

1 time.

i The first index penalizes long and /or wandering paths while

Al
{ the second penalizes the selection of'paths that contain steep

r slopes, thereby forcing the vehicle to rely on • it$ batteries as

j l
f

.well as its radioactive thermal generators (RTGs)., If the vehicle

j must slow down for other reasons besides steep slopes (e.g.,

tactile sensor contact), then the system will be penalized for this

loss of time through the third index.

[j b)	 Heuristic Evaluation

Some important characteristics of a system are not easily des-

cribed in quantitative form, and yet these characteristics certainly

seem to require consideration. 	 The following two features fit into

this Category:

1	 [ (i)	 Safety of PeLh Selected - Although the safety
of the vehicle is of primary importance, it is
difficult to analytically describe the inherent

it danger to the vehicle present in a selected
path.	 What is hoped to be an indication of
safety has been implemented by counting the

f number of times the tactile sensor indicates
II the vehicle is about to encounter an obstacle.

'1

(ii)	 Correct Performance - Situations may arise where

(1 the vehicle is called upon to "not succeed". For
example, if the target is surrounded by an un-

{	 r 1 traversable crevasse, then it would be better for
the vehicle to get "close", rather than attempt
to reach the exact target. 	 This feature is a
purely heuristic characteristic, and any evalua-
tion in this area would be performed by humans.

r
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IV. PATH SELECTION SYSTEM EVALUATION

s

f

H

In order to demonstrate the effectiveness of.the techniques

presented in Section III, the performance of the three path selection

systems described below has been evaluated.

A.	 Path Selection System Description

1)	 System Similarities

We shall consider a laser sensor mounted on a mast such that,

the base of the mast is directly above the point (x a,ya ,z a) shown

in Figure 8, Section III. The laser beam is used every three

seconds to instantaneously measure the ranges to the impingement

points in 17 directions in front of the vehicle (as shown in Figure

,3, Section III), each direction being separated by 2.5 degrees.

These ranges are processed by a terrain modeler, which generates a

model of the surface and a heading (from North) for each of the 17

areas scanned. Heading calculation errors will result if the terrain

model neglects the effects of in-path and cross-path slopes (in-path

slope alone has no effect). If the sensors beam does not impinge

, upon the surface wi^hin some specified distance r (where r is the

greatest measurable distance from the sensor to the impingement point,-

a sensor design limitation), then the terrain modeler will assume that

no obstacle exists in that particular direction. A path selection

algorithm will search the terrain model for a traversable path and

generate the appropriate steering command, this command being one of

the terrain model's 17 calculated headings. All three path selection

systems will use the same peth selection algorithm, as described in

Section III, B.3. It is assumed that the onboard computer will perform

J
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the necessary computations instantaneously. It will also be

assumed that'the vehicle instantaneously responds to steering

commands generated by the path selection algorithm.'

In addition to its , mid-range sensor, the vehicle is assumed

to have a short-range tactile sensor. If this sensor indicates

trouble, or the normal path selection algorithm cannot find a tra-

versable path, an,emergency path selection algorithm will be used.

J.

Specifically, the vehicle will stop, instantaneously rotate thirty

degrees clockwise , using no power, .and then use its normal path se-
lection system to find a new route.

The differences between the three path selection systems will

now be discussed. Note that the beam elevation angle and the sensor

height specified in the following system descriptions are measured

with respect to the true planet vertical when the vehicle is on a

horizontal plane.

2). System I (single beam sensor; approximate terrain model).
Path Selection System I uses an instantaneous single beam

sensor (as shown in Figure 2A, Section III) with a beam elevation
angle from the mast of 82.4 degrees. The sensor is mounted two

meters above the surface, and the laser beam impinges the surface

15 meters in front of the sensor.

The terrain modeler assumes that the point two meters directly

below the sensor (using the planet vertical) will .always be on the

Martian surface. The terrain from each of the 17 impingement points

This is a simplifying assumption, not intended to be realistic. If
the emergency mode was used in a real situation, the vehicle would probably
communicate with Earth, thus incurring a time penalty.

r

s^a
_'



I;

I,.

u^.

40.

to this hypothetical surface point is assumed to be linear. The

slopes of these "linear" terrain segments b&^ then be calculated

-and stored,along . with the corresponding headings, as the terrain

model. To'calculate the true headings of each of the laser beams,

the model assumes that the deflection angles measured by the sensor

are measured in the true horizontal plane, i.e., the effects of in-

path and cross - path slopes are ignored.

The path selection algorithm uses the maximum and minimum

traversable slopes of the vehicle as thresholds, and uses the

terrain model information to generate a go, no -go map (simi.lar to

Figure 7A, Section III) which is then searched for a traversable

path.

3)	 System II (single beam sensor; exact terrain model)

Path Selection System II is similar to System I in that a

single beam sensor of height two meters is again used, but the

elevation angle of the sensor beam has been adjusted to 79.4 de-

grees so that the beam strikes the surface 11 meters from the

sensor if the vehicle is on a horizontal , plane (see Figure 2A,

Section III).

The terrain modeler assumes that the terrain is linear from

the.point directly below the center front edge of the vehicle's

wheelbase (xa) ya,za) - see Figure 8, Section III) to the 17 beam

impingement points. The modeler takes into account the effects

of in-path and cross-path slopes when calculating the true loca-

tion of the beam impingement points. The slopes of the "linear"

terrain segments and the true headings of these slopes are found

I

I
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from the geometry of the situation, as developed in the user's

guide.

The path selection algorithm is the same as that used in

•System I,

4) System III (double beam sensor; approximate terrain model)

Path Selection System -III uses an instantaneous double beam

sensor (as shown in Figure 2B, Section 1II) with beam elevation

angles from the mast of 66.8 and 70.85 degrees, The sensor is

mounted three meters abova the surface. If• the vehicle is on a

horizontal plane as shown in Figure 2B, Section III, then the

,lower laser beam impinges tia- surface 7 meters in front of the

sensor.

The double beam sensor makes a set of measurements in 17

'directions of interest. The terrain modeler processes each set

of the range measurements by subtracting the lower beam length

from that of.the upper beam and converting the'length difference

to'e time interval. This time interval is then compared to pre-

determined'thresholds, and a go, no-go map, similar to the map in

Figure 7A, Section III, is generated. This modeling scheme was

originally proposed in Reference 4. The headings bf the 17 lower

beams are computed by assuming that the deflection a;Lgles measured

by the sensor are measured-in the true horizontal plane, i.e., the

effects of in-path Cad cross-path slopes are ignored. This modeler

is the same as that used in System I. The upper berm is assumed to

Unlike the other two path selection systems, this system's terrain
(	 modeler does not assume that the mid-range sensor measures impingement

point directions in the true horizontal plane.

F
,4



42.

. . have the same headings as the lower beam at corresponding measure-

ment points;

The path selection algorithm for this system searches the

-terrain model map, as explained in Section III, 8.3, to find a

traversable path.

The main characteristics of these three systems are listed in

Table I,. below.

TABLE I
PATH SELECTION SYSTEM CHARACTERISTICS

A

• Item

'Number of

System I System lI

1 1
Sensor Beams

Beam Elevation 82.4 79.4
Angle (degrees)

Sensor height 2 2
(meters)
above ground.

Terrain Model slope model- slope model-
Type approximate exact

calculation calculation

In-Path, Cross-
Path Slope no yes
Compensation

System III

2

66.8
.70.85

3

time interval
go, no-go,map

no

B.	 Test Situation

The vehicle and a target are placed on the surface shown in

Figure 11, with the vehicle headed directly for the target. For each path

selection system, four test situations have been prepared. Each system

has been simulated using both vehicle-fixed and vertical-fixed mid-range
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sensors, and both sensors are operated under "ideal", i.e., deterministic,-

-and "noisy" conditions. The "noise" consists of adding uniformly distri-

buted random variations of zero mean and a maximum deviation of 15 degrees

to the actual do-path and cross-pafih slopes of the terrain beneath the

vehicle. Since the vehicle dimensions are set at 3.3 x 2.6 meters (10x8

feet), the addition of this noise can be thought of as representing the

effects of traversing terrain irregularities having maximum heights or

depths of 0.9 meters.

C.	 Discussion

ThG performances of the three path selection systems in several

tests are summarized in Tables 2 through 6 in terms of the following cri-

teria:

(i) Selected path length,
(ii) Battery usage time,
(iii) Total travel time,
(iv) Figure of merit (M),
(v) Number of times that the emergency mode of

the path selection algorithm is used (N).

In this analysis, no distinction is made between using the emergency mode

because of,obstacle contact, or using the mode because of a request from

the normal path selection algorithm due to the fact that the algorithm can-

not find a traversable path.

1)	 System I (single beam sensor; approximate terrain model)

The performance results for Systems I are shown in Table II,

and a typical path chosen by the vehicle is shown in Figure 12.

For all test situations, the vehicle reached its target. However,

the vehicle always bumped into the boulders. From the terrain

model output, it was determined that the vehicle was unable to get

close enough to the boulder to determine that an obstacle existed

4
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without than contacting the boulder. Onco'contact occurred,.the

vehicle always tried to "dust miss" the bouldcr,,and as a result,'

usually hit the obstacle again. The terrain modeler detected the

obstacle at a safe distance (a definite slope change was evident),

but the go, no-go thresholds that the path selection algorithm was

using were too large to indicate a dangerous situation. Therefore,

it was concluded that for slope models, the go, no-go thresholds

should not be as large as the vehicle's maximum traversable slope. 	 ''

r.

TABLE II

PERFORMANCE RESULTS for SYSTEM I
(single beam sensor; approximate terrain model)

Item

Vertical-Fixed

No Noise

Sensor

Noise

Vehicle-Fixed

No Noise

Sensor

Noise

Test Number 1 2 3 4

Selected
Path Length 78.5 80.5 77.0 79.0
(meters)

Battery Usdge 1.34 1.34 1.34 1,.34
Time (seconds)

Total Travel 52.33 53.67 51.33 52.67
Time (seconds)

M 0.97 0.96 0.98 0.96

N 2 4 1 3

The vehicle-fixed sensor produced a terrain model where a five

degree difference in measured slopes from those obtained with the

vertical-fixed sensor was common. Thus, this sensor seemed to pro-

duce models inferior to those produced by the vertical-fixed sensor.

,'	 ii
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This was especially noticeable when the vehicle was .close to an

obstacle, as the vehiclo. . fixed sensor tended to " lose" edges of

the obstacle. The reason for this is the approximations made by

the terrain modeler. The steering commands are generated using

directions in which the laser beams, due to in-path and cross-

path slopes, are not pointing. The importance of thin error is

magnified when the range measurements are very short, such as

when the vehicle is close to an obstacle. Note, that the vehicle-

fixed sensors fared better against the obstacle according to the

results in Table II. In losing edges of the obstacle, the vehicle

tended to wander and luckily wandered a4++v fran the obstacle,

whereas the vehicle, guided by the vertical-.ixed sensor, hit the

obstacle more squarely, and took longer to negotiate it.

When adding "noise" to the vehicle's in-path and cross-path

slopes, drastic range measurement differences occurred. Slope

deviations of 7 to 10 degrees from those slopes calculated under

no-noise conditions were common. Again, the vertical-fixed sensor

produced better results than did the vehicle-fixed sensor, for the

same reason cited above,

Two additional test situations(numbers 5 and 6 in Table TII)

were run in an attempt to improve System I's performance, In test

5, the same situation exists as in test 1, but the mid-range sensor

was used twice as often (i.e., every 1.5 seconds). The vehicle

detected'thc obstacle and was able to turn so that only one boulder

contact occurred, rather than the two contacLS made in test 1. Again,

the slope thresholds used by the path selection algorithm were too

large to allow for efficient obstacle avoidance.
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TABLE III

ADDITIONAL PERFORMANCE RESULTS for SYSTEM I
(single beam sensor; approximate terrain model)

Vertical-Fixed Sensor	 I	 Vehicle=Fixed Sensor

Item No Noise No Noise Noise Noise

Test Numer 1 51 4 6•

Elapsed Time
Between Sensor 3.0 1.5 3.0 3.0
Scans (seconds)

Beam Separation 2.5 2.5 2.5 5.0
Angle (degrees)

Selected
Path Length 78.5 77.0 79.0 78.0
(meters) (!

Battery Usage 1.34 1.34 1.34. 1.34
Time (seconds)

^i
Total Travel 52.33 51.33 52..67 52.00	 !1
Time (seconds)

M 0.97 0.98 0.96 0.97

N 2 1. 3 2

A different method was then used to obtain better performance,

as shown in test 6, Table III. Here, the radial, increment between

sensor beams was increased from 2 . 5 to 5 . 0 degrees. All other para-

meters were the same as for test 4. Since the path selection

algorithm chooses a path from one of the beam directions, then the

vehicle can effectively turn twice as fast, as it is now scanning

an area twice as large as before. Since the boulder was relatively

large, this increase in space between the beams has no penalizing

effect on performance. The usual problem of slope thresholds still
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caused obstacle contact.

2) System II (single beam sensor; exact terrain model)

Although this path selection system also always reached the

target (see Table IV), contact was always made with the boulder

at least once, indicating the same slope threshold problem as

associated with System I.

TABLE IV

PERFORMANCE RESULTS FOR SYSTEM II
(single beam sensor; enact terrain model)

Vertical-Fixed Sensor 	 I	 Vehicle-Fixed Sensor

' Test Number 7 8 9 10

Selected
Path Length 80.0 80.5 80.0 81.5
(meters) \l

Battery Usage 1.34 1.34 1.34 1.34
Time (seconds)

Total Trrvel 53.33 53.67 53.33 54.33
Time (seconds)

M 0.96 0.95 0.96 0.95

N 2 1 3 1

Note however, that System II operates much better under noisy

conditions than does System I (refer to Table lI for.comparison),

as it compensates for the effects Of Lila disturbed in-path and cross-

path slopes. Tests 8 and 10 yielded better results than tests 7 and

9 because, for this particular terrain situation, the vehicle approached

the boulders from a different angle, thus allowing easy avoidance of the

49:
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obstacle. The angle of approach is different because the terrain

modeler, in compensating for the in-path and cross-path slopes

when calculating beam headings, provides the path selection algo-

rithm with true beam headings. Thus, the available steering

commands are affected by the amount of "noise" present, allowing

some directional drifting between sensor scans. The figures of

merit penalize this extra . path length, but do not account for the

fact that boulder contact has been reduced (by luck more than by

design) since the'normal and emergency path selection algorithms

both require no time for execution.

3) ' System III (double beam sensor; approximate terrain'model)

This is the only system where some tests never used the

emergency mode, and it is this only system where, in some tests,

the vehicle failed to reach its target (see Table 'V). In terms of

obstacle response, the system performed better than did Systems I

and/or II. 'As soon as the two beams struck the boulder, it was

identified as an obstacle. This is more desirable than the results

obtained earlier, where increases in slopes were measured but the

critical thresholds were not surpassed. The vehicle-fixed sensor

yields better results than the vertical-fixed sensor because the

terrain model is set up to reflect changes in slopes with respect

..to the vehicle, rather than trying to measure actual slopes.

However, System III proved to be extremely sensitive to the

noise, as variations in slope caused unacceptably large variations

in the range measurements. In test 14, the large variations in

range due to noisy in-path and cross-path slopes oriented the

50.
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'FABLE V

PERFORMANCE, RESULTS for SYSTEM III
(double beam sensor; approximate terrain model)

Vertical-Fixed Sensor . Vehicle-Fixed Sensor

Item No Noise Noise No Noise Noise

Test Number 11 12 13 14

Selected
Path Length 76.5 77.5 76.5 18.0•
(meters)

Battery Usage 1.34 1.34 1.34 1.34
Time (seconds)

'Total Travel 51.00 51:67 51.00 12.00
Time (seconds)

M 0199 0.98• •0.99 failed

N 0 2 0 11

i

vehicle such that its terrain modeler indicated obstacles surrounded

the vehicle after the vehicle had moved about 18 meters towards the

target. System III was successful with a vertical-fixed sensor

subjected to noise (test 12), but only because the terrain model

generated a "go" condition when no range measurement was possible .

(due to sensor design 'limitations affecting the greatest measurable

distance).

Test 15 (see Table VI) Indicated that the system has difficulty

negotiating gently sloping terrain. In this test, the boulders were

moved slightly so that the vehicle would head for a wedge, or cave,

between the two boulders. Since the emergency path selection algo-

rithm only allows clockwise rotation, the vehicle was expected to

wander around for a while before it're-oriented itself. However,



TABLE VI

ADDITIONAL PERFORMANCE RESULTS for SYSTEM IIl
(double beam sensor; approximate terrain model)
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Vertical-Fixed Sensor

' Item	 No Noise No Noise

Test Number	 11	 15

Selected
Path Length	 76.5	 123.5

Battery Usage
Time (seconds)	 1.34	 15.68

Total Travel
Time (seconds)	 51.00	 82.34

M	 0.99	 failed

N	 0	 9

*In test 15, th;n obstacle was moved slightly so that the vehicle
would make contact at a point resembling.a cave.

the vehicle became lost (see Figure 13) as the terrain model in-

dicated a solid barrier where only smooth slopes existed. The

e.lmul.ttion was terminated when it became evident that the vehicle

would take an excessive amount of time to reach the target.

D. Summary

Summarizing the above results, the following statements, many

of which are intuitively obvious, can be made:

(i) When using slope type terrain models, , the obstacle thres-
holds should not be as large as the vchicle's maximum
traversable slope.

(ii) For slope type terrain models, increased use of the sensor
allows better obstacle resolution, but may not be neces-
sary if item (i) is satisfied.
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(iii) Increasing the terrain sector scanned by the mid-range
sensor allows the steering commands to become more ef-
fective when the vehicle is mcaneuvering around an
obstadle, but then some terrain is overlooked. 	 This

increase may not be necessary if item (i),is satisfied,

(iv) The slope type terrain model's sensitivity to in-path
and cross-path slopes 'is decreased as the accuracy of
th^ assumptions made in constructing the. terrain model
is increased.

(v) Increasing the elevation angle of the sensor beam for
s7,ope, tyX,e terrain models improves performance when in-
path and gross-path effects are negligible.	 If• these'

effects are not small, then the performance of the
vehicle will be adversely affected.,	All of these
situations are illustrated in Figure 14.

(vi) The differencing method of terrain modeling (as de-
veloped in Reference 4), is highly sensitive to in-path
and cross-path slops, and is more effective when used
in conjunction with a vehicle-fixed sensor than with a
vertical-fixed-sensor.

I
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(A)	 Negligible In-Path and Cross-Path Slopes

no meaningful
information available.

(B)	 Significant In-Path and Cross-Path Slopes

DESIGN CONSIDERATIONS FOR SENSOR. BEAM ELEVATION ANGLES

Figure 14

i
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V: CONCLUSIONS
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A. Summary of Progress

During the past 15 months, a roving-vehicle path selection

evaluation system has been developed. The system can realistically

simulate and uniformly evaluate the performance of path selection systems

under consideration for a Martian roving vehicle. Work has progressed

through the complete specification of the evaluation system ' s structure,

and to various levels of software implementation of the individual struc-

tural components.

The terrain characterization block employs polynomial, gaussian,

and special ' feature models to mathematically simulate Martian terrains.

Sensor characteristics and terrain modeling concepts have been

investigated. The operation of both vertical-fixed and vehicle-fixed

sensors has been simulated. Several terrain modeling and path selection

algorithm schemes have been software implemented.

The vehicle dynamics block has been software implemented to ful-

fill the present simulation requirements. Its capabilities include non-

ideal behavior characteristics which add to the realism of the simulation.

The display and evaluation blocks have reached a preliminary

stage of development. The terrain characterization display block allows a

visual representation of the terrain upon a standard line prinfier. The se

lected , path of the vehicle may also be displayed separately, and/or be

superimposed upon the terrain contour map. The evaluation block provides

information useful in comparing and evaluating the relative merits of

different path selection systems.

Finally, three path selection systems have been evaluated to
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demonstrate the capabilities of the simulation package and to form some

preliminary conclusions regarding the tradeoffs involved in designing a

path selection system.

B. Conclusions and Future Work

This computer simulation system appears to be t
h
e first attempt

at establishing a uniform moans For path . selection system performance

evaluation. Preliminary results indicate that the system can successfully

simulatb and evaluate the performance of path selection systems. Further

development is necessary, however, to increase the effectiveness of the

simulation, especially in the area of evaluation criteria. The following

areas of work are suggested to increase the scope and usefulness of the

simulation package:

1) Terrain Characterization

Although considerable flexibility is available when construct-

ing model @ of Martian terrains, terrain specification is tedious

as one must specify each and every terrain feature. If polynomial

terrain descriptions are being used, it is difficult to select co-

efficients to give some desired terrain. To avoid these problem's,

a polynomial fit to given data points or a regression analysis

might be more direct and less time-consuming. Another approach to

this problem might involve allowing the simulation program to

randomly.add boulders, craters, etc., to some base terrain specified

by the user. It also might be possible to allow the user to sketch

a desired terrain on a cathode ray tube device, and then have the

computer generate the appropriate descriptive equations.

As terrain complexity increases, calculation time to obtain

U
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an elevation at a particular point on the surface also increases.,,

Since the altitude acquisition section of the terrain characteri-

zation block is'used many thousands of times during a typical

simulation, speed in calculation is essential. It is suggested

that this section of the block be rewritten in ASSEMBLER language

to further decrease calculation time.

2)	 Sensor Simulation

If the accuracy of the range measurement simulation is critical-

ly important, then the foliewin6 situation will introduce undesirable

error. If the angle of incidence of the sensor beam with the terrain

surface is small, then any point along the one meter segment of the

beam that passes through the surface may be within the required

vertical difference tolerance specified by * the user. * Since the in-

terval halving algorithm starts at a point midway between the two

endpoints of the beam segment that intersects.the surface, the simu-

lated range error can be as high as 0.5 meters. Since most practical

laser sensors will also give unpredictable results in this situation,

this simulation error might be acceptable. If simulation accuracy is

essential, however, the simulation scheme might have to be modified

to account for this situation.

As demonstrated in the user's guide, errors in approximating

the in-path and cross-path slopes adversely affect the true orienta-

tion of the mid-range sensor. If this error is judged to be undesirable,

the vehicle model used for the sensor simulation block will have to be

*	 This tolerance was set at 0.01 meters for all simulations in Section IV.

1,
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' 3)	 Terrain Modeling and Path Selection Algorithms

1i
To illustrate the capabilities of the simulation package,

several simple terrain models and path selection algorithms have

been software implemented and analyzed in Section IV. 	 More advan-

"° ced'schemes should now be analyzed. 	 Initial efforts in this area

r
might involve a) implementation of schemes available in the liters-

ture, and b) modification of the simple schemes already available.

4)	 Vehicle Dynamics Simulation

Although the sensor simulators consider the vehicle's dimen-

sions,, the vehicle dynamics block treats the vehicle as a point

source.	 For purposes of motion simulation, this assumption is

valid.	 However, since the vehicle has non-zero dimensions, it

cannot move through keyholes, so to speak.	 Improvements in this

1
;)lock should involve detection of•obstacles * that would prevent

^	 ,

vehicle motion, such as discontinuous terrain slopes.

' 5)	 System Evaluation.

Most sf the discussion in Section IV was based upon analysis

of data which was not graphically presented. 	 Factors such as how

F	 [i quickly a path selection system "sees" and responds to an obstacle

i have been determined by inspection of the changes in the terrain

I model as the vehicle'approaches an obstacle. 	 Also, the figures of

merit did not seem to give good correlation between desirable path

selection 'systems and safety of the chosen path.	 Rather as parti-

cularly noted in System II, safer paths were penalized because of

59.

^t * The block must determine if it is possible to traverse the terrain that
the path selection system has chosen. This obstacle detection should not be
confused with that of the path selection system, which is subject to error.
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their slightly greater lengths. 	 It is imperative that more repro-

sentative evaluation criteria be formulated. 	 initial efforts in

this area might be n) addition of now indices to account for path

,
j
I'

safety and speed of vehicle response to obstacles, and b) adjust-

meet of the index weights to provide higher. correlation between

the figures of merit and desirable path 'seloction systems.
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