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Numerical calculation of flow fields about rectangular wings

of finite thickness in supersonic flow

Jerald Milo Vogel

Under the supervision of Dr. E. W. Anderson
From the Department of Aerospace Engineering and

Dr. George Serovy from the Department of Mechanical Engineering
Iowa State University

The inviscid flow fields about a three-dimensional rectangular

wing of finite thickness at angle of attack with a subsonic tip in

a supersonic flow are determined by applying a second order finite

difference technique to the gas dynamic equations of motion in

their conservative form. The analysis includes a comparison of the

second order technique with a current third order method.

The principal objective of the study is to apply a current

finite difference technique to the equations governing the super-

sonic flow past a wing to obtain the variation in the gas dynamic

variables throughout the immediate flow field. The study is

separated into two parts. The first part deals with the comparison

of the second order MacCormack technique and the third order Rusanov

technique. The second part is the actual implementation of the

numerical method to obtain the flow field about a rectangular wing

with a 7.5 degree half-angle double-wedge cross section and a

double-cone tip at a Mach number of 2 at 0 and 4 degrees angle of

attack.

The results obtained in the application of the MacCormack and
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Rusanov techniques to the modified Burgers' equation and the gas

dynamic equations governing the supersonic flow past a two-dimensional

wedge indicate that the second order method by MacCormack is as good

as Rusanov's technique in terms of flow field resolution and better

in terms of computer storage requirements and run times.

The flow field about the rectangular wing is separated into

three regions consisting of the forebody, the afterbody and the

wing wake. Solutions for the forebody are obtained using conical

flow techniques while the afterbody and the wing wake regions are

treated as initial value problems. The numerical solutions are

compared in the two-dimensional regions with known exact solutions.
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INTRODUCTION

The aerodynamic analysis of the flow fields about aircraft

capable of operating in the supersonic regime for extended periods

of time is a formidable task. The complex geometry of such vehicles

in conjunction with the difficulty of solving the equations govern-

ing the aerodynamics preclude the possibility of obtaining exact

solutions for the associated flow fields. These fundamental dif-

ficulties have prompted the development of numerous approximate

methods for analyzing fluid flows. One of the most common of the

simplifying assumptions used is that the flow may be separatedinto

a viscous boundary layer flow and an outer inviscid flow which ef-

fectively determines the body pressure. This report is concerned

with the calculation of the outer inviscid flow about a rectangular

wing moving at supersonic speeds.

The inviscid equations of motion governing the flow generated

by a wing moving at supersonic speeds form a set of hyperbolic

differential equations. Since they are hyperbolic, the equations

can be solved (at least conceptually) by techniques applicable to

initial value problems. Up to the present only two such techniques

which provide exact solutions have been applied to inviscid super-

sonic flow problems. The first technique involves the method of

characteristics (1). This method has been successfully applied to

numerous supersonic flow problems. Unfortunately, the application

of this method is a complex task due to the geometric problems

introduced by body shape, and difficulties in determining the
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coordinate system or systems required and the inherent way in which

a characteristics method works. The second method involves the

use of shock-capturing finite difference approximations of the

equations of motion and the solution of the resulting approximate

equations at each grid or mesh point. This attack provides a solu-

tion for the inviscid flow throughout the flow field. The technique

used advances the initial data through the fixed mesh, applying

boundary conditions only at the body and in the free stream. Shock

and expansion waves form and decay automatically without special

treatments of any kind. On the other hand, the characteristics

method utilizes logical numerical procedures to isolate shock waves

and requires the application of the Rankine-Hugoniot shock relations

across them to identify their strength and position.

The acceptance of the shock-capturing numerical techniques is

becoming more universal as these techniques are improved. The

early problems associated with the precise location of the shocks

and the tendency of the techniques to produce spurious oscillations

in the magnitudes of the dependent variables in the neighborhood of

the shock are gradually being overcome. Numerical calculations of

inviscid flows based upon the full Eulerian equations have been

carried out for a variety of supersonic problems using several

finite difference techniques. The techniques have generally been

first, second and, more recently, third-order. Numerous authors

have applied the Lax (1) first-order method to fluid flow problems.

Notable among the results obtained by these investigators are the
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solutions for the time dependent blunt body problems obtained by

Bohachevsky and Mates( 2 ) and Bohachevsky and Rubin( 3 ) and the non-

equilibrium gas dynamic calculations of DeJarnette(4 ). While the

Lax method provides reasonable results for very small mesh sizes,

second-order methods are being used with increasing frequency.

Kutler( 5
) has recently applied a version of the second-order Lax-

(6)Wendroff method developed by MacCormack to study flow about

sonic-edged, conical, wing-body combinations at angle of attack.

Results of his work show excellent agreement with conical flow

solutions calculated using other methods and with available ex-

perimental data. More recently, a third-order method developed

simultaneously by Rusanov(7) and Burstein and Murin( 8 ) gives im-

proved shock and flow field resolution in certain cases.

This study is concerned with applications of the second-order

MacCormack(6 ) technique and the more recently developed third-

order Rusanov( 7 ) technique to some simple nonlinear problems lead-

ing to solutions of the full Eulerian equations for flow about a

rectangular wing moving supersonically. The material presented is

separated into four major sections. The first section is an

analysis of the differencing techniques under consideration as

well as a discussion of the theoretical stability criterion based

on amplification matrix theory. The second section is concerned

with solutions of a one dimensional partial differential equation,

the modified Burger's equation. Such solutions aid in understanding

the MacCormack and Rusanov differencing techniques and their



4

application to nonlinear hyperbolic systems. The third section is

concerned with the application of the two techniques to a more

realistic flow problem, the supersonic two dimensional wedge flow

field, in an attempt to determine the technique best suited for

the rectangular wing problem. The fourth and final section presents

the numerical solutions for the flow fields about and in the wake

of a rectangular, not-so-thin wing in a supersonic flow field at

angle of attack.
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DIFFERENCING METHODS

Introduction

In recent years there has been an ever increasing use of

finite difference methods in the reduction of continuous systems

in order to obtain solutions to complex flow problems. The dominant

influencing factor in the development of the numerical techniques

has been the advent of the high-speed computing machinery required

to process data at many points in a solution field.

To utilize a finite difference method one must first degenerate

the continuous domain of interest to a discrete set of points

generally termed the grid. The partial differential equations of

motion governing the flow field are then differenced in some pre-

scribed fashion. This results in a set of finite difference equa-

tions which must be solved at each point in the grid subject to

certain boundary conditions applied at the edge of the grid.

Although the techniques appear to be elementary in nature and

simple to apply one must be concerned with the accuracy, convergence

and stability characteristics of the techniques. For the flow

fields that contain shock waves one must be concerned with the

ability of the finite difference technique to develop apparent

discontinuities at the proper locations without producing excessive

fluctuations in the magnitudes of the dependent variables near the

discontinuities. In summary, improperly applied numerical methods

may lead to extremely erroneous results.
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Kutler(5 ) recently investigated a series of second-order finite

difference techniques including Lax-Wendroff(
9

) methods and other

somewhat similar methods developed by Leith ( 1 0 ) , Fromm , Richt-

meyer(12), Burstein(13) Strang(14) Gourlay and Morris , and

MacCormack(6) as well as the classic first-order technique by Lax

The results of the investigation indicate that in terms of ease of

programming, storage space requirements, length of computing time

and shock resolution and stability the method by MacCormack is

superior and, as a result, is here to be considered for the study

of the rectangular wing problem.

A second technique, developed by Rusanov( 7 ) and Burstein and

Murin( 8 ) will be considered to see if the more recently developed

third.order technique performs enough better so as to warrant its

use in the rectangular wing solution.

The following three sections present brief discussions of

accuracy, stability and the finite difference techniques under

consideration.

Accuracy

In general the errors associated with finite difference solu-

tions may be separated into two basic types. The first type of

error is termed truncation error and is a measure of the degree to

which the finite difference equations actually represent the

continuous system of equations. Truncation error may be viewed in

terms of a set of "modified partial differential equations" which
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is the set of equations the finite difference formulation actually

represents (see Ref. 16, p. 38). In this investigation the "modi-

fied equations" are studied for each differencing technique in the

section of the report containing the technique descriptions.

The second type of error is termed round-off error which is

sometimes referred to as computational error. Such errors are a

result of the discrete equations being solved exactly only up to a

certain number of digits depending upon the particular machine used

to obtain the solution.

The grid point spacing effects both types of errors but in

different fashions. That is, while decreasing the grid point spac-

ing will generally decrease the truncation error, the resulting in-

crease in required solution steps will tend to increase the computa-

tional errors. Hence, one cannot always increase accuracy by de-

creasing the mesh size.

Stability Criteria

One problem encountered in the application of finite difference

schemes involves the numerical instabilities which result in error

amplification. Unstable numerical schemes allow the growth of

error to the extent that the true solution is "masked" yielding

highly useless data. Hence, it is very desirable to have a means

of predicting the parameters and their bounds which cause numerical

schemes to result in instability.

The stability analysis used in this paper is that outlined by
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(17) (5)
Richtmeyer and Morton( which was also utilized by Kutler

Four restrictive conditions must be applied in utilizing the tech-

nique. The governing equations must be locally linearized, the

coefficients must be constant, the solution must be smooth and the

boundary conditions must be ignored. Hence, the analysis is good

only for regions removed from the boundaries and which are devoid

of discontinuities.' However, experience has shown that instabili-

ties generally manifest themselves initially in the form of small

amplitude, short wave length oscillations superimposed on a smooth

solution in a narrow region of the solution field. Hence, the

restrictions imposed by the stability theory may not be as prohibi-

tive as they first appear.

Consider the system of partial differential equations in

conservative form given by

Et + Fx = (1)t x

where E and F are conservative variable vectors. This set of equa-

tions can be written in the form

Et + AEx = 0 (2)

where A is a matrix containing the Jacobian elementsof F with

respect to E.

If the A matrix is constant one may obtain the exact solution

by means of the Fourier series method yielding

-ik At ik x
x e x

-e
o (3)
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where Eo is a constant vector and kx is an arbitrary constant.

To apply the stability analysis to the numerical technique one

introduces a row of errors along a t = constant line and observes

the manner in which the differencing technique propagates the errors

in time. The errors may be represented by a discrete Fourier series

of the form

B8 e' jx(4)
k

Usually, only the effects of one term (eii jG x ) of the series is

evaluated and a linear superposition process is utilized to evaluate

the total error effects. If, for a fixed mesh, the error increases

without bound as n/At + oo the technique is termed stepwise unstable.

To illustrate the concept, consider the following difference

scheme as applied to Equation (2):

n+l -n At - n -n
= E -n - (E E 1 ) (j j 3 x j+1j-l

with the boundary condition

E°= ei8jA x (6)

The use of a separation of variables technique leads to a solution

of the form

.n e- j~x3E = (nAt) (7)

Substitution of Equation (7) into the difference equations (5)

yields
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-n+1 _ nif-?XE 1 = [I- E' (e - e ) = GEn
where I is the identity2 is the mesh ratio.

where I is the identity matrix and LI is the mesh ratio.

The matrix G in Equation (8) is termed the amplification

matrix and the solution, given by Lomax(8 ), is

Ejn = L cj ( j)n

(8)

(9)

where n is an exponent and the Xj represent the eigenvalues of the

amplification matrix.

For the solution given by Equation (9) to remain bounded as

n o.o the eigenvalues of G must be less than or equal to unity.

Hence, the stability criterion is given by

IxjiI- (10)

To simplify the example under consideration assume that the

set of conservative variables E contains one member. Then the

amplification matrix reduces to

.G = 1 _ >'A (e ' _.a e ) (11)

In view of Equations (10) and (11) the stability requirement is

that

1 .+ V 2 A
2
sin2 (/2Ax) < 1 (12)

It is noted here that the stability criterion yields stable

values for the mesh ratio V . The results of Equation (12) indicate
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that the difference scheme under consideration is unstable for

any mesh ratio.

MacCormack Technique

MacCormack has constructed a second order predictor-corrector

sequence for use in solving systems of partial differential equa-

tions in conservative form. When applied to Equation (1), Mac-

Cormack's technique yields

r n+i1 n /t Fn n]j = Ej - Fj+1 Fj

(13)
n+1 j [En + En+l At n+l n+i]Ej (-F.

The tilde that appears over certain of the variables denotes the

predicted value of that particular variable.

To investigate the accuracy of the technique the modified

partial differential equation is developed for a system of the form

given by Equation (2) with A = c = constant and E = u which is the

linear wave equation.

ut + cu
x

= 0 (14)

The resulting difference equations reduce to

vn+l n n n
Uj = Uj - v(uj+ -uj)J i j j+1 l

(15)
un+ n+n+l n+l)]

U. + U. + (. Uj-1[U ~ ~ ~ 'J u-
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The modified.equation, which is the equation actually repre-

sented by Equation (13), is ofthe form

u + cu = Qu (16)

t x

where Q is some differential operator. To evaluate Q one first

combines the predictor and corrector equations yielding

Un = (i-V2 )jn + + (j (17)
j j2 Uj+1 2 1(17)

Each term is then expanded in a Taylor series about the point

(nAt, jAx). Partial derivatives with respect to time that are

second order and higher are eliminated using Equation (16). For

MacCormack's technique Equation (14) reduces to

Ut + ux (1- 8)) U' ( v) ux 3

(18)

The Qp term is represented by the right side of Equation (18).

It is noted that to second order the modified equation is

exactly the linear wave equation as it should be since the tech-

nique is second order. The lowest order dispersive error and dis-

sipative error is given by the first and second terms respectively

on the right side of Equation (18).

An interesting point to observe is that when v = + 1 the

error terms in Equation (18) all become zero resulting in an exact

solution. This condition is referred to as the "shift condition"

by Kutler and Lomax(
1 9

) who have shown that satisfying this condition

as best possible in the nonlinear case generally yields good shock
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capturing characteristics.

The limits on W for which the computational

grow in an unbounded fashion may be determined by

previously discussed amplification matrix theory.

wave equation the amplification matrix, which has

is given by

G = 1 - 2 + / 2cos63Ax) - i/sin';3Ax)

errors do not

means of the

For the linear

but one element,

(19)

If the magnitude of the amplification factor, G, is not to exceed

unity then W, commonly termed the Courant number, must not be

permitted to exceed unity. Hence, the stability bound on the mesh

size is given by

V = c 1 (20)

In view of Equation (18) the shift condition is the maximum stable

Courant number.

Rusanov's Technique

Recent improvements in high-speed computers has resulted in

increased interest in higher order differencing methods to improve

flow field resolution. One of the more recent is a third-order

method developed simultaneously by Rusanov(
7 ) and Burstein and

Murin(8). This technique, based on the Runge-Kutta method, utilizes

a three-level predictor-corrector sequence which, when applied to

Equation (1), is given by
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Ej+k( ) j= (E+j 1 + E)

(2) = E.n 2/3 (F (1) - F ) (21)
J J Ae `~j+l J21

En+l = E. - 1/24 A [-2Fj+
2

+ 7(F +1n Fj 
1
f) + 2F .

- 3/8 - (Fj+(2) - Fj (2)

-8/ n n + Ej 1n
)
+ 6Ejn+ ejF

2- /24 [Ej+2 - 4 (Ej+ 1 +E 1 )+ 6 E +E 2

The last term in the third level equation is a stabilizing term

without which the system would be unconditionally unstable for all

values of 1V.

Application of Rusanov's technique to the linear wave equation

given by Equation (13) yields the following modified partial dif-

ferential equation:

Ut + cu -c ( a - 4 V + v 3) uxx

(22)

-c 120 5 - 4 - 15 / + 4L 
4
) U + ..... + 

It is readily apparent from the modified equation that to third

order the linear wave equation is solved exactly as could be ex-

pected since Rusanov's technique is third-order. The lowest order

error term which contains the fourth derivative is dissipative in

nature with the next higher order term being dispersive. It is also

noted that for 8 = 3 and V 1 the error terms shown on the right
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side of Equation (21) vanish. Kutler and Lomax(
1 9

) have shown

that under these conditions the shift condition is satisfied

yielding an exact solution.

(7)In so far as stability is concerned Rusanov has shown

that the stability criteria are given.by

(23)
2 4

which indicates that the shift condition also satisfies the

stability requirement. It would appear that when one operates at

mesh ratios less than unity the value of 8 should be set to

most nearly satisfy the shift condition, which is a difficult re-

quirement to meet.
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SOLUTION OF THE MODIFIED BURGERS' EQUATION

Introduction

A major problem encountered in the application of finite dif-

ference techniques is the effect of eigenvalue variation throughout

the flow field. Stability analyses have shown that eigenvalue

magnitudes determine stability bounds which ultimately dictate ac-

ceptable grid mesh ratios. In addition, the modified partial dif-

ferential equations are used to predict the best grid mesh ratios

from an accuracy viewpoint. From previous work it has been noted

that for best results one should operate as closely as possible to

the upper stability bound corresponding to a Courant number of unity.

Utilizing a fixed coordinate system in which the mesh ratios are

constant to determine a flow field in which the'eigenvalues are non-

constant precludes the possibility of operating at the best Courant

number throughout the flow field. Hence, it is quite desirable to

use a finite difference technique capable of good flow field resolu-

tion through a wide range of Courant numbers.

An investigation of the two numerical techniques under consid-

eration is presented in this section in an attempt to evaluate

their behavior when applied using a variety of off-design Courant

numbers. Particular attention is given to the spreading of dis-

continuities and oscillations of the solution near points of rapid

change of the dependent variables.

The hyperbolic form of the equation introduced by J. M. Burgers
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is a valuable aid in studying the ability of a given numerical

method to produce a solution to a nonlinear equation(20) The

modified Burger's equation:in conservative form is given by

2
u + (U 2)=O (24)

Kutler has successfully used this equation as an analog of the

inviscid Euler equations and studied the solutions produced by

various first- and second-order methods( 5 ). Shocks and rarefactions

which occur in the gas-dynamic solutions were simulated by introduc-

ing discontinuities in the initial data.

A similar procedure is followed in this section to compare

MacCormack's technique, which Kutler found to be a superior second-

order method, with the more recent third-order technique developed

by Rusanov. In order to accomplish this, two discontinuities of

different magnitudes are introduced in the initial data simulating

shocks of different strengths with different propagation rates.

In particular, the problem is to determine the solution of

the modified Burger's equation subject to the initial conditions

shown in Figure 1 which are

u = x x

u = u2 x2 >x > x (25)

u = u1 x< x1

where

U1 > U 2
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u(x, 0)

U 1
I

u = u
_ 1

u = u

XI
x1

Figure 1. Initial conditions for Burger's

t

I x
X1 X2

Figure 2. Space-time solution for overtaking discontinuities

X

equation

X2
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Since this problem represents.the intersection of two discontinuities,

the exact solution is presented in two regions. The first region

is prior to the intersection of the discontinuities and the second

is after the intersection (Figure 2). The exact solutions in these

regions are

Region 1

x _'x - 2
u(x, t) =O t > 

U +U u2t
u(x, t) = u2 1 + 12 < x2 2

x - x u + u 2
u(x, t) = u 1+2

(26)

Region 2

x Ul
u(x, t) = 0 > 2

U 1
u(x, t) u1 t< 

Stability Analysis

Next a stability analysis based on amplification matrix theory

is performed on Equation (24) to determine the bounds on the mesh

ratio at//lx for which the numerical techniques are stable.

Equation (24) can be written in the form of Equation (2).with

E = u and A = u yielding an expression in the form

ut + u ux = O (27)



20

which is similar to the linear wave equation with the wave speed

equal to the quantity u.

In view of Equations (20) and (23) the stable range of mesh

ratios for both the MacCormack and Rusanov methods is given by

Yu F1 1(28)

For those points in the solution field where At/Ax numerically

exceeds the reciprocal of u one can expect an instability to exist.

Numerical solutions are usually obtained by using fixed intervals

in time and space ( At, /Ax). Hence, one must search the field to

determine the maximum of the eigenvalue, u, for this value will

determine the largest stable At/Ax. That is, for stable solutions

using a fixed mesh ratio the stability criterion is given by

Sx g< u (29)max

It is noted here that in more complex problems the maximum eigen-

values cannot always be determined until the numerical process is

under way. Hence, it is not an unusual procedure to change the

mesh ratios as the numerical process continues.

Numerical Solutions

Two double-shock geometries were considered for each numerical

technique. In one case u2 = 3 and ul = 5 whereas in the other case

U
2
= 1 and u1 = 5. They are termed the 5-3-0 and the 5-1-0 prob-

lems respectively. In both cases the discontinuities, called
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waves, were located at x2 = 15 and x1 = 36 and were contained within

one interval. A total of 100 intervals was used in the x direction

with the interval size Ax equal to unity.

The integrations in time were allowed to proceed for a total

of 60 steps, a sufficient time interval to allow the faster moving

wave to overtake the slower. The time interval for the integration

was chosen to be the maximum allowable consistent with the criterion

given in Equation (28). Under these circumstances the large ampli-

tude wave is always being computed at the maximum Courant number

which, according to the linear analysis, should yield the best

possible solution. For the 5-3-0 and 5-1-0 cases the smaller

amplitude waves are being computed at suboptimal Courant numbers

of 0.6 and 0.2 respectively.

The dependent variable is held constant at both ends of the

spatial grid which provides boundary conditions for the system.

The integration is terminated well before the waves intersect the

boundary.

The 5-3-0 double-shock problem is solved first. Figures 3,

4 and 5 represent solutions using Rusanov's technique with a

Courant number of unity and a stability parameter, , of 3, 2 and

1 respectively. Figure 6 represents a solution using the MacCormack

technique with a Courant number of unity. Figure 3 indicates that

at . = 1 and = 3 a stable solution exists throughout the field.

The large amplitude wave is being computed at the optimum condi-

tions while the small amplitude wave is being computed at a
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Figure 4. Burger's equation solution, Rusanov
5-3-0 case for 8 = 2.0 and Courant
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number = 1
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suboptimal Courant number of 0.6. The magnitude of the stability

parameter, , falls within the stable range throughout the field.

As predicted, the large wave resolution is very good with few

oscillations occurring at the discontinuity and, at the same time,

the discontinuity is confined to one interval. The smaller amplitude

wave, however, is not as well behaved. The off-design Courant num-

ber at this point in the solution field causes undesirable oscilla-

tions to occur at the discontinuity as a result of the dispersive

termsin the modified equation. The spreading of the discontinuity

caused by the dissipative terms in the modified equation is not

extremely significant at this Courant number since the discontinuity

remains captured in essentially one interval. Figure 4 shows the

results for I = 1 and 8 = 2. For the large wave 8 is in the un-

stable range according to the linear theory. Although it appears

that the actual numerical solution is stable an excessive number of

large amplitude oscillations occur yielding a highly undesirable

solution. For the lower amplitude wave the 8 value is in the stable
range. The oscillations at the discontinuity are fewer than the

previous solution indicating that perhaps the stability parameter

should be set at less than the maximum value for the best results

at off-design Courant numbers. In both cases the discontinuities

remain isolated between essentially two grid points. Figure 5 in-

dicates a solution for which 1 = 1 and 8 = 1. For the large

amplitude wave the value of 8 is far outside the stability range

and, as a result, an instability occurs at this point in the solution
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field. For the small amplitude wave the 8 parameter is slightly

outside the linear stability range yielding a solution with excessive

oscillations but apparently marginally stable. Figure 6 shows the

MacCormack solution at a Courant number of 1.0 for the large wave

and a Courant number of 0.6 for the small wave. Essentially no

oscillations occur at the large wave while even at the off-design

Courant number very few oscillations occur at the small wave. Both

discontinuities remain isolated between two grid points.

Figures 7, 8 and 9 represent a Rusanov solution to the 5-1-0

problem with J = 1 and for values of 8 of 3, 2 and 1 respectively.

The same general trends occur with the addition of substantial

amounts of discontinuity spreading at the lower wave which is

being computed at a Courant number of 0.2. Figure 10 shows the

MacCormack solution which contains, overall, fewer oscillation

problems and a lesser amount of discontinuity spreading.

On the basis of the information obtained from the solution of

Burger's equation it appears that it is desirable to use the Mac-

Cormack technique rather than the Rusanov technique. Shock resolu-

tion and over- and under-shoot characteristics are better over the

range of eigenvalues considered. At the lower Courant numbers the

shock spreading with the MacCormack technique appears to be-less

severe than that resulting from the use of the Rusanov technique.

In addition, the computer storage and computation time requirements

are significantly lower for the MacCormack technique.
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Figure 9. Burger's equation solution, Rusanov technique.
5-1-0 case for 8 = 1.0 and Courant number = 1
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TWO-DIMENSIONAL WEDGE FLOW FIELDS

Introduction

To further develop the comparison between the numerical tech-

niques under consideration a study of the two-dimensional wedge in

supersonic flow is undertaken. The equations of motion governing

the flow about a two-dimensional wedge with the same half-angle as

is encountered at the leading edge of the three-dimensional rectan-

gular wing are solved at a Mach number of 2 using both numerical

techniques. Then a comparison with available exact solutions is

made to evaluate the performance of the techniques. Of particular

interest is the capability of the techniques to develop crisp shocks

in the proper locations as well as minimize the number of oscilla-

tions of the dependent variables in the neighborhood of theshock.

Three different approaches may be used to obtain a numerical

solution of the wedge equations of motion.

In the first approach the complete unsteady equations of motion

are integrated subject to boundary conditions dictated by the wedge

geometry. Since the equations are hyperbolic in the time variable,

the problem generated is of the initial value type. The integration

of these equations in time proceeds from an-appropriate set of

initial data and is terminated once the flow variables reach a

steady state condition.

The second approach is one used by Kutler ). The full-blown

equations of motion are reduced to a set of steady equations by
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setting all time derivatives equal to zero which would be the situa-

tion in the case of the steady state solution. The resulting equa-

tions are hyperbolic with respect to the x-coordinate (the coordinate

most nearly aligned with the,.-flow direction) as long.as.the x-compo-

nent of velocity remains locally supersonic. Again, the system

reduces to an initial value problem and can be integrated in the x-

direction starting from an appropriate set of initial data and sub-

ject to boundary conditions dictated by the wedge geometry. Since

the flow is conical in nature the flow variables in the solution

are constant along rays from the origin, a condition which serves

as the convergence criterion in the numerical process. It is readily

apparent that the x-coordinate in the steady equations is quite

analagous to the time coordinate in the set of time dependent

equations.

The third approach is one that has been used by Anderson and

Vogel (
2 1 ). The full-blown equations of motion are transformed

from a Cartesian coordinate system to a polar coordinate system in

which one of the coordinates (r) is the distance along a ray from

the origin. Again, the set of equations is hyperbolic in time.

Since the flow is conical, the steady state values of the r deriva-

tives are initially set equal to zero yielding a simple set of

hyperbolic equations containing one less independent variable than

in the case of the full-blown set. The equations are integrated

in time starting from an appropriate set of initial data. The

solution is realized when the dependent variables no longer change
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with time.

In general, approaches 2 and 3 require less computer storage

and computation time than is the case in approach 1, since the

equations of motion contain one less independent variable than

those of approach 1. However, approach 1 is probably more versatile

since it is not dependent upon the conical flow requirement.

Approach 2 is adopted for the investigation undertaken in this

paper. The numerical solutions for the two-dimensional wedge as

well as the leading edge of the rectangular wing are obtained

through numerical integration of the steady equations.

Steady Equations of Motion

The two-dimensional wedge flow equations of motion in a

Cartesian body-oriented coordinate system for a steady, inviscid,

nonheat-conducting and adiabatic flow are given by(5).

Jx jy

A(P pu 2 + Puv) = 

(30)

+ ~0_a (P- uv +a(P +Pv =
ax a

p 9 [ 2 (u2 + v2)]

These equations are the continuity equation, x-, and y-direction

momentum equations and the integrated form of the energy equation

which is usually referred to as Bernoulli's equation.- The dependent
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variables (JP, u, v, p) in the equations are in a dimensionless

form. The nondimensionalizing parameters for the pressure, density

and the velocity components are gamma times the free stream stagna-

tion pressure, the stagnation density and the stagnation speed of

sound respectively.

Three partial differential equations of motion are in'the

conservative form

~~~~~aE.~~ | I~F =o~ O(31)

where E is-a vector whose elements are conservative variables

given by

U . ,

E = P + (32)

puv

and F is a vector whose elements are conservative variables

given by

F= puv (33)
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Exact Solution

The exact solution to the two-dimensional supersonic wedge

is clearly presented in the text written by Liepmann and Roshko(22)

The flow field over the wedge surface behind the shock is uni-

form and is in the direction of the wedge surface. The wedge

surface pressure is given by

Pw- = + (2sin i) ()

and the shock angle can be determined using the equation

M 2sin22 -1

tan Q = 2 cot 2(35)
MD (Y+cosfj )+2

Two values of shock angle ( ) satisfy the equation. The smallest

value, the proper solution, represents the weak solution for at-

tached shocks.

Wedge Coordinate System and Resulting Grid'

The Cartesian coordinate system used for the wedge flow field

analysis is aligned such that the x-axis is in the direction of the

wedge surface with the y-axis normal to the surface. Hence, the

wedge surface is a constant-coordinate surface, a highly desirable

situation with regard to boundary conditions. Application of

boundary conditions for body surfaces in nonaligned coordinate

systems can be extremely difficult and, at times, may present

stability problems.
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The grid system for the numerical techniques generated by

the coordinate system is shown in Figure 11. Since only the upper

surface flow field is to be considered the lower wedge surface can

be ignored. The existence of the sublayer is a result of the ap-

plication of boundary conditions and is discussed later. It is

also noted that for this coordinate system the free stream velocity

vector is canted with respect to the x-axis.

A second coordinate system used in the two-dimensional wedge

analysis but not presented in this section is depicted in Figure

12. The system is termed a "semi-polar" system. As with the

Cartesian system, the wedge surface is a constant-coordinate surface.

Numerical Solution Technique

The integration in the Cartesian system is initiated using free

stream values of the flow variables at each grid point in the y-

direction along the x = 1 line. This is commonly termed an

impulsivestart. The integration in the x-direction continues

until the x = 2 line is reached. At this point in the numerical

process Kutler's stepback procedure is impelemented(
5 ). This allows

the integration to be re-started at x = 1 with updated initial data

taken from the x = 2 line. In Figure 13 it is noted that grid

points numbered 2 4, 6, .... , m along the x = 2 line are on the

same rays from the origin as the grid points 2, 3, 4, ...

m/2 + 1 along the x = 1 line. Since the flow is conical,

data may be shifted along the rays from the x = 2 to the
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x = 1 grid points generating new initial data. For the scheme to

work properly the grid points m/2, ...., m must be outside the

shock wave in the free stream. Solution convergence occurs when

the initial data generated by successive stepbacks becomes constant.

It is noted that for the semi-polar system depicted in Figure

12 the stepback procedure becomes somewhat meaningless since the

corresponding grid points at all x = constant stations lie on rays

from the origin. Hence, the integration can proceed in the x-direc-

tion until no change occurs in the dependent variables along the

rays.

Boundary conditions must be specified at the outer grid points

and at the sublayer grid points since these are not integrated

points. The dependent variables at the outer grid points are-more

easily handled. The grid is set up so that the outer edge is always

in the free stream resulting in known constant boundary data. The

grid points along the sublayer present a more difficult problem.

The normal velocity component at the surface of the wedge must

vanish since flow cannot pass through the surface. To satisfy this

condition the normal velocity component is treated as an odd func-

tion at the body surface. That is, the sublayer value of the normal

velocity component is set equal to the negative of the normal velo-

city component one layer above the surface. The values of the re-

maining dependent variables along the sublayer are evaluated using

the reflection technique as used by Bohachevsky and Rubin( ). The

basic assumption used in this technique is that the normal derivatives
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of the dependent variables vanish on the surface. Hence, the

variables are treated as even functions on the wedge. That is,

the dependent variables along the sublayer are set equal to their

values one mesh point above the body. In view of the exact solu-

tion the reflection technique is exact for wedge flow in that the

normal derivatives are zero.

Numerical Solutions

Equations (30) were integrated using the Iowa State University

IBM 360-65 computer system for both Rusanov's and MacCormack's

methods for a wedge with a 7.50 half-angle at a Mach number of 2.

Two mesh ratios (Ax/Ay) were used. One at 1.272 which is near

the experimental maximum for stability as determined by Kutler

and the other at 1.0( 5 ). Three values of the stability parameter,

, associated with the Rusanov technique at a mesh ratio of 1.0

were used to assess the effect of ~ on the solution. In all cases

the grid points in the y-direction consisted of a total of 30 mesh

points.

Figure 14 shows the pressure distribution normal to the wedge

surface using Rusanov's method at the lower mesh ratio of 1.0 for

8 values of 1.0, 2.0 and 3.0. The solution for a 8 of 1.0 is

distinctly inferior to those obtained for 8 values of 2.0 and 3.0.

This is a result of the excessive overshoots and undershoots in the

vicinity of the shock. The solution for 8 = 2.0 appears to yield

a crisper shock than the solution for = 3.0 as well as lower
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amplitude oscillations in the free stream after the shock is

encountered.

Figure 15 shows a similar pressure distribution using the

MacCormack technique for Ax//by = 1.0. Although there is some

overshoot from the shock layer side, the behavior for the free

stream side is very good with no oscillations occurring.

Figures 16 and 17 show the pressure distributions for the

Rusanov and MacCormack methods, respectively, at the higher mesh

ratio near the experimental stability bound. The Rusanov stability

parameter, 8, was set equal to 3.0 which, according to linear

stability theory, is the only stable value when the maximum mesh

ratio is used. The MacCormack technique develops a crisp shock

with few oscillations as the shock is encountered on either side.

The Rusanov solution, on the other hand, develops a fairly crisp

shock but exhibits excessive oscillations on the free stream side

of the shock. While decreasing the value of 8 improves the flow

field behavior in the free stream, the shock layer portion of the

solution becomes less well behaved in this case.

In all cases, the shock is properly located and the magnitudes

of the dependent variables are correct.

There is about a 30 per cent savings in computation time as

well as a substantial decrease in storage requirements using the

MacCormack technique. Based on these criteria as well as the re-

sults discussed above, it would appear that the MacCormack technique

is superior for solving the two-dimensional wedge flow problem in
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the range of Mach numbers and wedge angles examined here,

Additional experiments were performed using the semi-polar

coordinate system described earlier. Although these solutions

are not discussed here, they proved to be satisfactory. The major

difference noted was that computation times required to reach a

solution were longer.
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THE RECTANGULAR CONE-TIPPED WING

Introduction

The primary objective of this investigation is to develop,

by means of finite difference techniques, the flow field about a

body in supersonic flight. Kutler and Lomax( 2 3 have already

investigated a variety of wings, bodies and their combinations

including two-dimensional wedges, two-dimensional and axisymmetric-

nonconical bodies, cones, planar delta wings and delta wings with

dihedral mounted on.conical bodies. The latter two studies were

restricted to supersonic leading edges. His results obtained

using shock capturing finite difference techniques agree well with

the method of characteristics solutions and available experimental

data.

The body considered in this paper is a three-dimensional

rectangular wing with a symmetric double wedge cross section to

which is attached a double cone tip as shown in Figure 18. The

cone half-angle is chosen to be less than that of the tip Mach

cone yielding a subsonic tip. Hence, the upper and lower surfaces

are notindependent as they are in the case of supersonic edges.

The flow field about the body can be separated into three

distinct regions as indicated in Figure 19.

Region I contains the forebody flow field which begins at the

cone-wedge vertex and ends at the mid-chord point. The wing aspect

ratio and free stream Mach number are chosen such that the Mach
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Figure 19. End view of 3-D rectangular wing showing the
three regions of the flow field
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cones from the wing tips do not intersect on the forebody. Hence,

the flow in this region is entirely conical. That is, flow variables

along rays from the vertex of the cone are constant. The flow field

solution is generated using conical flow methods similar-to those

discussed in the section on 2-D wedges.

Region II contains the afterbody which begins at the mid-chord

point and ends at the aft cone-wedge vertex. The partial differen-

tial equations governing the flow in this region represent an

initial value problem that is solved using initial data generated

in the forebody solution. That is, the flow variable magnitudes in

the plane containing the base of the forebody are the initial data

for the afterbody.

Region III contains the wake behind the wing which begins at

the aft cone-wedge vertex and extends downstream indefinitely.

Again, the problem in this region reduces to an initial value

problem with initial data generated using the afterbody solution.

The sections that follow contain discussions of the problems

and the solutions associated with each of the three regions. Dis-

cussion topics include equations of motion, coordinate systems,

stability, boundary conditions, solution techniques and results.

Equations of Motion

The basic flow equations that govern a supersonic flow are

given by the conservation of mass, energy and momentum. The first

two equations are scalar while the last is a three-component vector
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equation yielding a total of five scalar equations of motion. For

a steady, inviscid, nonheat-conducting and adiabatic flow these

equations in vector notation are given by, respectively

V *(pq) = 0

q * VHt = 0 (36)

V(q /2) + (Vxq) xq + VPP/ - o

For a Cartesian coordinate system Equations (36) may be written in

the scalar form as follows:

Conservation of mass

(Pu) x + (pv)y + (p w)z = 0

x-direction momentum

(P+ + (puv) + (puw) = O

y-direction momentum (37)

(pUV)x + (p + pv 2)y + (pVW)z = O

z-direction momentum

(puw)x + (PV:y + (p p pw 2
) = 

Energy equation

p = [1 _ (U2 + V2 + w2)]

The dependent variables (p, p, u, v, w) in Equations (37) are in

a dimensionless form. The nondimensionalizing parameters for the

pressure, density and velocity components are gamma times the free
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stream stagnation pressure, the stagnation density and the stagna-

tion speed of sound, respectively.

It is noted that only four of Equations (37) are partial dif-

ferential equations. The fifth equation, the energy equation, is

used in its integrated form to simplify the integration procedure.

Equations (37) and equivalent equations in other coordinate

systems can be written in the general form

E +F + G + H O (38)
x y z

where E, F and G are vectors whose elements are conservative

variables given by

E = Pu (39)

PUW

puV

{ vF = , P+ |(40)

pvw

(41)

I pvw
Vp+ pw2.2
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The vector H represents the non-homogeneous portion of Equation (38)

and is identically zero for the Cartesian form of the equation of

motion. However, it is nonzero in the equations of motion associated

with the forebody and afterbody flow because the Cartesian system

is not employed in these regions, only in the wake region. The

coordinate systems and associated equations of motion for regions

other than the wake are developed and discussed in subsequent sections.

Numerical Technique

Based on the analyses in previous sections concerning the

modified Burger's equation and the two-dimensional wedge flow solu-

tions, the MacCormack technique was chosen over the Rusanov tech-

nique. The criteria used to make the comparison were solution time

and computer storage requirements as well as flow field resolution.

Over the range of eigenvalues considered the MacCormack technique

produced crisp shocks with few oscillations on either side of the

shock, generally better than the Rusanov technique. Solution times

were, on the average, thirty per cent less with a substantial de-

crease in the computer storage requirement.

The conclusions reached thus far may be somewhat misleading in

that there appear to be situations in which the Rusanov technique

is quite superior to that of MacCormack. Anderson and Vogel (2 1 )

have investigated the shock reflection problem in which a shock wave

intersects a flat surface resulting in a second reflected shock.

The equations of motion governing the flow are the normal fluid flow
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equations discussed in this paper. One encounters a wide variation

in eigenvalue magnitudes throughout the flow field in this situation.

Hence, utilizing a constant mesh ratio in applying the numerical

technique causes a portion of the solution to be developed at a very

low effective Courant number. In those cases where the eigenvalues

vary as much as a factor of ten, Rusanov's technique produces

distinctly superior solutions. However, no reflected shocks are

encountered in the rectangular wing problem and, as a result, such

severe eigenvalue variations do not occur throughout the flow field.

The MacCormack predictor-corrector equations as applied to

Equations (38) are given by

_ Z (Gjk+1 G k - H k A

(42)

E. n+l [E n + n+1 - n+l)jlk = i j,k + %,k 'l 'jk -kj-lk

-n+l n+l n+lA.
- (G. k j k-1 Hk

The tilde that appears over certain of the variables denotes the

predicted value of that particular variable whereas n, j and k are

the indicies associated with the x, y and z directions respectively

and serve to define the location of the grid points throughout the

flow field.
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Stability Considerations

The quality of solutions obtained using Equations (42) depend

to a great extent upon the magnitudes of the mesh ratios Ax/Ay

and Ax//Az. Operation at mesh ratios outside the stable range

leads to divergence whereas values well below the maximum stable

values lead to poor flow field resolution in the neighborhood of

the shock. Hence, it is quite desirable to have a priori knowledge

of stable ranges of the mesh ratios in setting up the flow field

grid.

Kutler and Lomax(2 3 ) present criteria based on amplification

matrix theory to theoretically predict stability bounds in multi-

dimensional problems. To utilize the analysis one must know the

eigenvalues of the coefficient matricies of the gas-dynamic equa-

tions of motion. In his work Kutler( 5 ) developed the coefficient

matricies for the equations of motion in a Cartesian system and

determined the associated eigenvalues. For convenience, his work

is outlined in Appendix A. The stable ranges for the mesh ratios

are given by

Ax 1

(43)

I< IXmaxl

where XA and X B represent the maximum eigenvalues of the
max max
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A and B matricies respectively. One can obtain approximate values

for the maximum eigenvalues to be used in conjunction with Equations

(43) to set up a grid in which the mesh ratios are near their maximum

value yielding near-optimum numerical results.

Region I Flow Field Analysis

Forebody geometry and coordinate systems

That portion of the body contained between the leading edge

of the wing and the shoulder at mid-chord constitutes the forebody.

The geometry of the forebody and the associated Cartesian coordinate

system are depicted in Figure 20. As noted in Figure 20, the fore-

body can be separated into two parts. The first part, the wing

proper, consists of a wedge with half-angle Q while the second
w

part, the wing tip, consists of a half-cone having the same half-

angle Qc as the wedge. Hence, a smooth transition is made from

the wedge to the cone with no discontinuities in surface slope.

Since the wing is not cambered, the forebody cross section is

symmetric with respect to the chord plane.

The Cartesian coordinate system associated with the forebody

has the origin at the apex of the cone. The y-axis is perpendicular

to the plane of symmetry, the x-axis is in the chord plane (the

plane of symmetry) and the z-axis extends along the span of the

wing. The positive directions are as shown in Figure 20.

It has been noted earlier that a coordinate system in which

the body can be described by a constant coordinate surface is highly
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desirable. For the forebody this is most easily accomplished using

two systems, one for the wing proper and one for the half-cone.

The coordinate system used to describe the half-cone and the

corresponding flow field region is shown in Figure 21. The coordinate

0 defines the angle between the interface plane (the plane containing

the intersection of the wedge and cone) and the cone meridian plane

containing the point ( g, Q, 0). The coordinate Q defines the angle

between the cone axis and the radius to the point of interest. The

coordinate 5 is simply the x position of the point.

The coordinate system associated with the forebody wing proper

and corresponding flow field is shown in Figure 22. Only the upper

half of the body is shown. The coordinate 0 represents the angle

between the interface plane and the plane normal to the chord plane

and containing the radius to the point ( , Q, 0). The coordinate

Q represents the angle between the chord plane and the projection

of the radius on the interface plane. The coordinate 6 is the x
position of the point.

The grid system generated by the coordinate system is defined

by the intersection of a set of 0 = constant planes, a set of Q =

constant surfaces, one of which defines the body, and a ~ = constant

plane. The grid in a typical = constant plane is depicted in

Figure 23. The grid points associated with the wedge in the inter-

face plane are identical with those of the half-cone. It is noted

here that corresponding grid points in successive = constant

planes lie along rays from the common origin of the coordinate
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Figure 20.

y

x

lb> z.

Wing forebody geometry

Y

(f., Q, 0)

Z

Coordinate system used
and corresponding flow

to describe half-cone
field region

Figure 21.
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systems. Hence, the stepback procedure becomes somewhat trivial

in the forebody solutions.

Forebody flow equations of motion

To obtain flow field solutions in Region I the flow equations

must be transformed from their Cartesian form given in Equations (37)

to the new systems described in Figures 21 and 22. The mechanics

of the transformations are presented in Appendix B.

The transformed equations of motion for both the wedge proper

and the half-cone for the forebody region as given by Equations (B4)

and (B5) are of the general conservative form

· F+ + G0 + H = 0 (44)

The conservative variable vectors E , F , and G as well as the

nonhomogeneous term H for the wedge proper are given by

(45)

t,- 2-
F = -singcosOE + cos OF (46)

G = -sinscosE .+ cos2 (47)

H = (-2sin 2 - sin20 + cos20)E

(48)
+ 2singcosQF + 2sinocos0g

and for the half-cone are given by

E = ~ tanQE (49)
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F = -Esin :+ FsinecosOcoso + Gsinecososino (50)

G = -Fsinr + Gcos$ (51)

H = (2singcosg - tanQ)E

~~~2 + -2 ~~~~(52)
+2+cosisin e + 2Gsin sin(

where the vectors E, F and G are the conservative variables

associated with the standard Cartesian form of the equations of

motion and are defined in Equations (39), (40) and (41).

The scalar components of Equations (44) represent the conserva-

tion of mass and the x, y and z direction momentum equations. The

energy equation is not included in this set since it is used in the

integrated form as given by the last of Equations (37).

Evaluation of gas dynamic variables from conservative variables

In the integration process, the set of predictor-corrector

equations developed by MacCormack are used to determine only the

numerical values associated with the scalar components of the vector

E . Each time that E is updated along the integration path in the

-direction the remaining conservative vectors F and G as well

as the nonhomogeneous term H must be numerically evaluated. Since

F , G and H are functions of p, p , u, v, w one must extricate
-t

from E the gas dynamic variables.

In the coordinate systems used to describe the various regions

of the wing and surrounding flow field the variables E are simple

functions of only the Cartesian counterpart E. Hence, it is
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convenient to evaluate the gas dynamic variables using a two-step

process. In the first step the scalar components of E are evaluated.

Secondly, the gas dynamic variables are evaluated using the inverse

of the relationships E (p,p , u, v, w) and the integrated form of

the energy equation. The explicit forms for the variables p, p ,

u, v and w are developed in the following work.

In view of Equation (39) the scalar components of E are given

by

E
1

p u (53)

E2 = P + pu (54)

E3 = Puv (55)

E4 = puw (56)

Dividing Equations (55) and (56) by (53) yields

v = E3E1 (57)

w = E4/E 1 (58)

Combining Equations (53), (54) and the last of Equations (37),

the energy equation, yields

2E +i 

2El1 [ 21 I ) (a v2 + m w2 12

u = (59)

(7+ 1)
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The positive sign is used since flow is supersonic throughout the

flow field. Equation (53) may then be used to evaluate density as

follows,

P = E1 /u (60)

and the energy equation for pressure

P' P (1 r32) (61)
2 

The relationships between E and E for the wedge proper and

the half-cone in the forebody region are given by Equations (45)

and (49) respectively.

Initial and boundary conditions

In the application of MacCormack's technique the grid points

existing on the boundaries of the grid system depicted in Figure

23 are not integrated points. Hence, a set of boundary conditions

must be developed to specify the values of the gas dynamic variables

along the upper and lower two-dimensional wedge boundaries, the

outer free stream boundary and the upper and lower wing surfaces.

The conditions along the outer free stream boundary are most

easily specified since the grid is always made large enough that

the outermost grid points always lie outside the shock in the free

stream. Thus, the gas dynamic variables at these locations retain

their constant free stream values.

The upper and lower two-dimensional wedge boundaries are

placed toward the center of the wing well outside the Mach cones.
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emanating from the half-cone verticies of the wing tips. Hence,

these grid points exist in the two-dimensional wedge regions of the

wing flow field for which exact solutions are known. The gas

dynamic variables along these boundaries are frozen at the two-

dimensional wedge flow values dictated by the exact solution. The

dimensionless shock layer pressure is given by Equation (34),

the dimensionless density is given by (2 2 )

Pw (7+1) M. sin22

i (7T-1) M, 2 sin2 + (62)

and the dimensionless rectangular velocity components are given

by

wU (-+1) Mm sin '+2
q- 2 sin(63)

V U
w = w tan G (64)

q, q, w

w = 0 (65)
w

where ' = + CC for the upper surface and = l - CC
pper 1w

for the lower surface (see Figure 24). Equation (35) defines the

shock wave location for the upper and lower surfaces in the two-

dimensional regions with Q = w - CC and Q = Q + CC for the upper

and lower surfaces respectively.

The boundary conditions that must be specified along the

surface of the wing in each E = constant plane are somewhat more
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Upper Surface Shock

Chord Plane

Free
Stream
Velocity

Lower Surface Shock

Figure 24. Forebody wedge cross section in two-dimensionalflow region showing upper and lower surfaceshock waves and associated geometry
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complex. Although a variety of techniques has been developed many

of the procedures are fairly difficult to implement and sometimes

quite costly in terms of computing times. Also some yield question-

able results.

Abbett(24) has reviewed and compared many of the procedures

currently in use for calculation of surface boundary points. In-

cluded in the survey are reflection techniques, explicit and implicit

differencing using one-sided derivative approximations, characteris-

tics techniques and techniques utilizing extrapolation from interior

points to the boundary. In addition, Abbett(2 4 ) has developed a

new scheme in conjunction with MacCormack's differencing technique

to evaluate the gas dynamic variables along the wall. The method

is analytically simple, easy to incorporate, computationally fast

and satisfies an entropy condition on the body surface that the

other techniques do not. Although the basic Abbett technique does

not appear to give good results for bodies having high curvature,

a slight modification yields a very usable scheme which is applied

in this study. The following paragraphs include an explanation of

the basic Abbett technique as well as the required modifications.

The basic Abbett boundary condition scheme is a two-step

predictor-corrector sequence in which the prediction step consists

of the original MacCormack predictor. All gas dynamic variables

on the body are evaluated in this step. In general, the predicted

velocity at the body will not be parallel to the surface. The

corrector step, then, consists of an application of a simple
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isentropic flow expansion or compression, whichever is necessary,

to turn the flow parallel to the surface. Then the body pressure

is corrected by the amount dictated by the expansion or compression

angle and the body density is determined using the surface entropy

value as well as the corrected pressure. The modulus of the velo-

city on the body surface is corrected by using the energy equation.

The angle (8) through which the flow must be turned after the

predictor step to align the flow with the surface is given by

8 =sin'1

'

(66)

where the subscript p denotes predicted value and ~ is the unit

vector normal to the surface.

Now that the turning angle for the expansion or compression

has been evaluated, the corrected pressure may be determined using

a truncated form of the Prandtl-Meyer function(25) given by

Pc = 2 +y M2 (+1)M 4-4(M2-1)] 2 (67)1M 2 2.r M2 +1M4 4M2 (67)
P M~ -L 4(M2-1) j

The subscript c denotes corrected value and the parameter M denotes

the predicted value for surface Mach number. It is noted here that

for positive 8 quantities the flow must be expanded and for negative

values the flow must be compressed.

Since the surface entropy is known and constant the body

density may be corrected using
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/ c = P (PC./ P)1/ (68)

where the barred quantities are known constants.

The corrected velocity modulus from the energy equation is

given by

Pcc

whereas the proper velocity direction is defined by means of the

unit vector

-q (%. * n (70)
9 IqP k ( ip *n) n

Equation (70) is developed by removing the normal component of the

predicted velocity and normalizing the resulting vector which

effectively defines a unit vector parallel to the surface. The

combination of Equations (69) and (70) yields the corrected

velocity

qc Ic= iq (71)

from which the rectangular components uc, vc and w
c
may be deter-

mined.

Ferri( 2 6 ) has shown that for conical flow the entropy along a

streamline remains constant. Hence, the body entropy can be defined

once the body streamline is identified. Since the streamlines that

wet the body surface emanate from the two-dimensional regions outside

the tip Mach cone, the entropy values can be obtained from the exact
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2-D wedge solutions. For the angle-of-attack case the upper and

lower surface shock waves in the 2-D regions are of different

strengths yielding different body entropies for the upper and lower

surfaces. Ferri( 2 6 ) also shows that vortical singularities can, in

fact, occur at those points in the flow field where both the normal

velocity component (normal to the radius from the origin) and the

crossflow velocity component vanish. Since the normal component

of velocity is zero everywhere on the body surface a vortical

singularity on the body can occur only where crossflow stagnates.

Hence, to apply Equation (68) one simply uses upper surface 2-D

values of p and p along the upper surface 3-D region until the

crossflow stagnation point is reached. Then the lower surface 2-D

values must be used.

For bodies having high curvature the prediction step in the

basic Abbett technique appears to misalign the flow on the body

surface. The Abbett corrector then continuously compresses (shock

layer region) or expands (expansion region) the flow throughout the

integration process resulting in very large or near zero body

pressures respectively. To remedy the situation the reflection

technique is used after the prediction step to produce more realis-

tic body flow variables for the Abbett correction step.

A sublayer is added to the grid system. This yields a set

of mesh points below the body surface as depicted in Figure 23.

The sublayer values of the flow variables are estimated by treating

the normal velocity component as an odd function and the radial and
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crossflow components as well as the pressure and density as even

functions at the body surface. The normal, radial and crossflow

scalar velocity components are given by

- A
q= q ' n

qr = q i (72)

qc q qn qr

respectively, where i is the unit vector in the radial direction.
r

The resulting equations defining the sublayer flow variables are

given by

P1 = P3

Pi=p3

91 =93
n .(73)

q =q
q 1 r 3

qc qc1 3

where subscripts 1 and 3 denote sublayer and superlayer values

respectively.

Once the sublayer values are known the body surface grid

points may then be evaluated using the MacCormack corrector. The

resulting body flow variables are used as inputs to the Abbett

boundary condition routine which satisfies the body entropy condition.
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The integration procedure is started impulsively. That is,

the gas dynamic variables at the interior grid points are initially

set at free stream values. Although different initial data may be

used to initiate the integration the impulsive start seems to be

quite convenient. As the integration proceeds from one ~ plane to

the next, the shock wave moves from the body surface out into the

flow field to its proper location.

Choice of grid system

In view of the stability and accuracy considerations presented

earlier the forebody grid should be chosen such that the mesh ratios

A61/A and A6/ 0 are near their upper bounds for stability on

both the wedge proper and the tip half-cone. Failure to do so may

yield poor solutions in portions of the flow field. Of greatest im-

portance is the /\/ ratio since the shock wave is encountered

in the Q direction. In previous work dealing with the 2-D wedge

solutions it was noted that the most disastrous effects of suboptimal

Courant number operation occur in the vicinity of the shock. One

can expect both a smeared shock and severe oscillations in the

neighborhood of the shock. Hence, the grid work is constructed such

that the ratio A6/Q is always near the maximum value for stabil-

ity. The Mach numbers and angles of attack used in this study are

such that no rapid expandions and, as a result, possible recompres-

sion shocks are encountered in the 0 direction. Therefore, the

increment %.0 is chosen such that the ratio is as close

to its maximum value as possible without having either too few or
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an excessive number of grid points. The latter case leads to

lengthy computation times.

An estimate of the maximum mesh ratios and, as a result, the

proper grid spacing can be made using the criteria given by Equations

(43). Hence, the eigenvalues of the coefficient matricies of the

gas dynamic equations of motion in the forebody coordinate system

must be evaluated. The development of the expressions for the fore-

body eigenvalues is presented in Appendix A.

The gas dynamic equations of motion for the forebody are given

by Equations (All) where the coefficient matricies A and B are

defined in Equations (A12) - (A15). The five eigenvalues associated

with each of the coefficient matricies are given by Equations (A16)

- (A23).

The eigenvalues were determined numerically at all grid points

in various preliminary solutions for a Mach number of 2 and angles

of attack of 0 and 4 degrees. In all cases observed the triple

repeated eigenvalues were the smallest. Thus, the largest of the

eigenvalues given by Equations (A17), (A19), (A21) and (A23)

represent the maximum for the corresponding matricies. For the

wedge proper the maximum eigenvalues for the A and B matricies

were near unity and for the tip half-cone 1.0 and 6.5 respectively.

Since the eigenvalues of A for both the wedge proper and the

cone tip have approximately the same maximum magnitude the corre-

sponding AQ increments for maximum stable values of the ratio

A //AQ for both regions are very nearly the same. Therefore,
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using a common An in both regions is quite desirable from the

stability viewpoint and certainly makes the computational process

much simpler.

On the other hand, in view of the maximum eigenvalues of the

B matricies, the /$ increments for maximum stable values of the

ratio A /A% should be near a 0 and 6.5 times a 0 for the wedge

and cone tip regions respectively.

The number of grid points in the 9 direction was set at 20

with the- /i increment chosen such that approximately 7 points are

on the free stream side of the shock wave in the 2-D region of the

flow field. The remaining grid points are in the shock layer region

and sublayer.

The /A increments for the upper and lower wedge regions were

chosen such that 10 grid points exist in each 9 = constant plane.

At least 4 are outside the tip Mach cone and, as a result, in the

2-D region of the flow field. The /A increment for the cone tip

region is chosen such that 13 grid points exist in each 9 = con-

stant plane, 2 of which are common to the upper and lower wedge

regions.

The resulting computational plane grid system, similar to.that

depicted in Figure 23, has dimensions 20 by 31 which allowed

reasonable solution convergence times. The numerical values

associated with the AG and AO are given in Table 1 for the

two conditions investigated.

It is noted upon examination of the numerical values for
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Table 1. Computational: plane grid spacing for the forebody flow
region

Upper wedge Cone tip Lower wedge

' = 0 ° Cr= 40 (I= 0° C= 4° c 0 °

(radians) 0.1165 0.1046 0.2618 0.2618 0.1165 0.1301

(radians) 0.04470 0.04434 0.04470 0.04434 0.04470

the angular increments that the conditions for maximizing the mesh

ratios are nearly satisfied. The worst violation occurs in the

na increment for the upper and lower regions which are about 2.5

times larger than the desired values. Decreasing the increments

to their proper values, however, would require excessive grid

points from a computation time viewpoint. Since no shock waves

are encountered in the 0 direction, operation at the lower mesh

ratios in these regions should not be prohibitive.

Solution technique

The integration is initiated in the = 1 plane and proceeds

20 steps in the J direction at which place the solution is checked

for convergence. If convergence has not been achieved the process

is repeated until a solution is established. The increment A/ is
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chosen as large as possible without exceeding the stability bound-

which is determined experimentally by simply increasing a/ until

divergence occurs.

In each = constant plane (see Figure 23) the integration

proceeds from the body surface to the free stream boundary and

from the upper 2-D wedge boundary spanwise along the wing, around

the cone tip and to the lower surface 2-D wedge boundary.

Care must be taken in the integration process at the grid points

in the wedge-cone interface planes since the equations of motion

for the wedge proper and cone are not the same. Since the MacCormack

predictor uses forward differences, the cone equations are used for

the prediction step in the upper surface interface plane while the

wedge equations are used in the lower surface interface plane. On

the other hand, the opposite is true for the corrector step since

the corrector utilizes backward differences.

To insure that the predictor differences are always forward

and the corrector differences backward the integration steps must

always be in the positive directions. In view of the integration

process described above, the positive directions for the y and z

axes must be reversed in the lower surface wedge region. The only

effect this has in the integration process is the reversal of signs

associated with the v and w velocity components.
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Forebody numerical solutions

One wing configuration is considered in this study with a fore-

body wedge half-angle of 7.5 degrees and, as a result, a 7.5 degree

tip cone half-angle. The wing chord length is set at 2 units.

The flow fields for a free stream Mach number of 2 are eval-

uated at angles of attack of 0 and 4 degrees. The 0 degree case

is used as a check to see if the numerical technique develops the

proper flow field symmetry associated with the upper and lower

surface flow regions.

Flow field solutions for both the 0 and 4 degree angles of

attack cases were obtained using the grid spacing defined in Table

1. In both cases the near maximum integration step size was used.

It was determined by means of a trial and error process. Succes-

sively larger increments /~ were tried until divergence occurred.

The resulting /Aincrements for the 0 and 4 degree cases were

0.04434 and 0.040 respectively. Table 2 shows the corresponding

mesh ratios 6/ and A&Ae used to obtain the solutions in the

various regions of the forebody flow field. Also tabulated are the

theoretical maximums based on the linear one-dimensional theory.

It is noted that the ratio An/ is always within 80 per

cent of the predicted maximum. This procedure should yield a

reasonable solution in the shock vicinity. In the cross flow direc-

tion the linear stability bound is exceeded in the cone region while

on both the upper and lower wedge surfaces the ratio is

between 30 and 40 per cent of the predicted maximum. As expected,
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increasing the increment / causes instabilities in the crossflow

direction in the cone region.

The Cl= 0° normal pressure distributions (normal to the wing

chord plane) at various spanwise points in the mid-chord plane are

shown in Figures 25 and 26 for the upper and lower wedge regions

respectively. Figures 27 and 28 depict normal pressure distribu-

tions in various meridian planes about the tip cone. The index

parameter k defines the angular location of the 0 = constant planes

in all regions. Figure 29 shows the relative location of the planes

corresponding to the 31 k values. The index parameter j defines the

angular location of the Q = constant surfaces common to ail regions.

Table 3 lists the numerical values for Q and 0 in all regions for

both angles of attack considered.

The distributions appear to be smooth with the bow shock ap-

pearing in each distribution. It is quite well defined and usually

contained in one to two intervals. As noted in Figure 30, the

shock wave lies nearer the wing surface in the cone region. In the

2-D wedge region the bow shock is at an angle of 36.71 degrees with

respect to the wedge center line which decreases to 30.5 degrees in

the cone region at the plane of symmetry (k = 16). The shock

strength decreases from the wedge region to the cone region.

The spanwise distribution of pressure along the body surface

is shown in Figure 31. The body pressures decrease from the 2-D

upper wedge value of 0.137 to a near constant value of about 0.1145

around the cone surface-then increases again to 0.137 at the lower
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k = 31 30 29 28 27 26 25 24 23 22 - Lower Surface

k= 1 2 3 4 5 6 7 E8 9 10

Wake 

Afterbody

Forebody

- Upper Surface

22

Figure 29. Plan form and frontal view of wing showing the
relative location of the 0 = constant planes
defined by the index parameter k
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Table 3. Numerical values for the angular orientations of the
0-= constant and 0 = constant planes defined by the
indicies j and k respectively

0 degrees 0 degrees

k j
== ° Cc= 4° (= 0° Cc= 4

1 -60.07 -53.92 1 5.140 4.939
2 -53.40 -47.93 2 7.500 7.500
3 -46.72 -41.94 3 9.860 10.06
4 -40.05 -35.94 4 12.23 12.62
5 -33.37 -29.95 5 14.59 15.18
6 -26.70 -23.96 6 16.95 17.74
7 -20.02 -17.97 7 19.31 20.30
8 -13.35 -11.98 8 21.68 22.86
9 -6.670 -5.990 9 24.04 25.42
10 0 0 10 26.40 27.99
11 15.0 15.0 11 28.77 30.54
12 30.0 30.0 12- 31.13 33.11
13 45.0 45.0 13 33.49 35.67
14 60.0 60.0 14 38.85 38.23
15 75.0 75.0 15 38.21 40.79
16 90.0 90.0 16 40.58 43.35
17 105.0 105.0 17 42.94 45.91
18 120.0 120.0 18 45.31 48.47
19 135.0 135.0 19 47.66 51.03
20 150.0 150.0 20 50.03 53.60
21 165.0 165.0
22 180.0 180.0
23 -6.67 -7.450
24 -13.35 -14.91
25 -20.02 -22.36
26 -26.70 -29.81
27 -33.37 -37.27
28 -40.05 -44.72
29 -46.72 -52.17
30 -53.40 -59.63
31 -60.07 -67.08
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wedge 2-D region. Slight pressure oscillations occur along the

body surface near the wedge-cone interface planes probably caused

by the large values of the mesh ratioA A /A0. These are the

regions in which crossflow instabilities occur when the A incre-

ment is increased.

In an attempt to demonstrate the reliability of the numerical

technique used in this study, a comparison is made with flow fields

developed by Babenko( 2 7
) for a circular cone with a half-angle of

7.5 degrees at a Mach number of 2 at zero degrees angle of attack.

The normal pressure distribution in the 90 degree meridian plane is

plotted in Figures 27 and 28. The body surface distribution (which

is constant) plotted around the cone surface from the 0 to the 180

degree meridional planes is shown in Figure 31. The normal distri-

butions in the 90 degree meridional plane as well as the body surface

distribution for both the wedge-cone and the Babenko cone are similar

in form with the numerical pressure values associated with the latter

somewhat smaller. This is to be expected since the bow shocks asso-

ciated with wedge shaped bodies are stronger than those associated

with those of cones having the same vertex angle.

In general, the numerical technique appears to generate the

required flow field symmetry for the zero angle of attack case.

The C = 40 normal pressure distributions at various spanwise

locations on the upper and lower wedge surfaces are shown in

Figures 32 and 33 respectively. The distributions for the tip cone

region in various meridional planes are depicted in Figures 34 and 35.
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Again the distributions are very smooth with a well defined bow

shock contained in one to two intervals.

The normal pressure distribution in the 90 degree meridional

plane (k = 16) for the Babenko cone at a 4 degree angle of attack

is included in Figures 34 and 35. As expected, the pressured in

the Babenko cone flow field are generally less than in the wedge-

cone field.

The shock shape in the = 1 plane for CC= 40 is shown in

Figure 36. The shock angles with respect to the wedge center line

in the upper and lower 2-D wedge regions have numerical values

36.95 and 37.0 degrees respectively. In the cone region the bow

shock lies generally near the body surface with the smallest center

line shock angle (29.5 degrees) occurring in the 0 = 113 degree

meridional plane on the lower surface. It is noted that the shock

shapes for the = 00 and C= 40 cases are quite similar.

Although the center line shock angles in the upper and lower

wedge regions are very nearly the same, the corresponding shock

strengths are quite different as noted in the lateral body surface

pressure distributions depicted in Figure 37. The surface pressure

associated with the weaker upper surface shock is 0.1108 which de-

creases only slightly around the cone then increases to 0.1681 in

the lower 2-D wedge region containing the stronger bow shock. The

slight pressure oscillations experienced in the CC= 0 case near

the wedge-cone interface planes also appear in the CC = 4 data.
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Region II Flow Field Analysis

Afterbody geometry and coordinate systems

That portion of the body contained between the mid-chord

point and the trailing edge of the wing constitutes the afterbody

which is a mirror image of the forebody. As with the forebody,

the afterbody is separated into two parts. One part consists of

the wedge proper and the other part the tip half-cone.

The coordinate systems defining the afterbody tip cone and

surrounding region is depicted in Figure 38. The Cartesian system

is the same as that for the forebody. The system into which the

equations of motion are cast consists of the ( y, 7, system.

The coordinate 0 denotes the angular orientation of the meridian

plane containing the point (., 7$ A) and the axis of the tip half-
cone. The coordinate 7 (measured in the meridian plane) denotes

the angle between the wing chord plane and a line in the meridian

plane passing through the point ( '7 , 0) and the circle given by

y2 + z2 (2 tan ec)2 (74)

Note that the circle defined by Equation (74) is the intersection

of the (y, z) plane and the extension of the tip cone. The

coordinate ~ represents simply the x position of the point

The coordinate system used to define the wedge proper portion

of the afterbody flow field is depicted in Figure 39. The coordi-

nate 7 is the angle between the wing chord plane and the line that
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contains the point ( , 7, 0) and the point y = 2 tan *w' The

coordinate 0 represents the angle between the x axis and the plane

containing the y axis and the point in question. Again, the

coordinate J is simply the x coordinate.

The grid system generated is defined in the tip region by

the intersection of a set of 0 = constant meridian planes, a set

of 7 = constant conical surfaces and a = constant plane. In

the wedge proper region the grid system is defined by the inter-

section of a set of 7= constant wedge planes, a set of 0 =

constant planes and a = constant plane. It is noted that the

afterbody surface is represented by a = constant surface, one

reason for chosing the particular coordinate systems described.

A typical grid network would be similar to that depicted in Figure

23. Once again, the grid points in the wedge-cone interface

planes are common to both the wedge and tip half-cone.

Afterbody equations of motion

In order to perform the integration in the afterbody region

the equations of motion given by Equations (37) must be transformed

from the Cartesian form to the (~, 7, ,) system. The trans-

formation is presented in Appendix B.

In the afterbody region the equations of motion for both the

wedge proper and the tip half-cone are of the general form

+ F + + H = 0 (75)
E~
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The conservative variables E . F and G and the nonhomogeneous

term H for the wedge proper are given by

E =

F = -sin co°/E + cos2YF (76)

I = -sin cos0E + cos2 9G

H = (cos y2 -siny - 2sin ) sin,,cos)Z + 2sinycosy/F

and for the tip half-cone

E = ( tany + 2tangc) E

2~'~~~ ~2tane
F = -sinjcos + cos (osy(cos + sin0g) (tany+ (77)

G = -Fsing + Gcos$

2tane (78)

H = -(tan"+ ) ( cos )E-2cosy sin (cosF+sinj)

As in the forebody case, the variables E, F and G are the vector

conservative variables associated with the Cartesian form of the

equations of motion.

Evaluation of the gas dynamic variables from conservative variables

The same process is used to obtain the gas dynamic variables

in the integration process over the afterbody region as is used in

the forebody region. The first of Equations (76) is solved for the

vector variable E which is then incorporated in Equations (57) - (61)

to evaluate v, w, u, p and p.
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Boundary conditions

As in the forebody region, the afterbody boundary points must

be specified in some fashion since the points along the edges of

the grid are not integrated points.

The grid spacing in the Y direction is chosen to be large

enough that the outermost of the grid points are always in the

free stream outside the shock layer. Hence, the gas dynamic

variables along these boundaries are retained at the free stream

values.

Two methods are available for the specification of the variables

along the 2-D afterbody wedge boundaries. Since the a/0 increments

utilized in the afterbody region are the same as those used in the

forebody integration, the boundary grid points as well as those in

the three adjacent 0 = constant planes are all outside the tip

Mach cone and in the 2-D flow region. Hence, the gas dynamic

variables at the boundary may be set at the 2-D solution values that

are known, a technique that was utilized in the forebody integration.

A reflection technique may also be used at this boundary. The

reflection occurs across the 02 plane as shown in Figure 40.

1\ 23 \\ X = constant
plane

Figure 40. Geometry of the reflection technique
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The gas dynamic variables at grid point 1 are set equal to those at

grid point 3 as they must be if the points are in the 2-D region of

the flow field. In effect, the technique generates its own 2-D

solution.

The reflection technique was adopted in this study. It pro-

vides a means by which the integration technique can be tested.

That is, if the solution in the 01 plane does not correspond to

the known 2-D solution, the integration technique is not performing

properly.

The boundary conditions along the surface of the afterbody in

each ~ = constant plane are specified in the same fashion as on

the forebody. A sublayer set of grid points is added and the

modified Abbett technique is applied at the afterbody surface. It

is noted here that the body entropies remain unaltered throughout

the expansion at the mid-chord point of the wing. Hence, the

entropy values are known from the forebody solution.

Initial data

The initial data required to start the afterbody integration

are taken from the forebody solution. Since the grid points asso-

ciated with the forebody and afterbody systems in a specified ~ =

constant plane do not coincide, point for point, some logical

method must be used to transfer the data from the forebody to the

afterbody grid system. In this study a scheme is utilized in

which the four nearest forebody grid points for each afterbody

grid point are located (see Figure 41).



105

- direction

t

-- 0 - direction

I I

forebody g id points

/9 *-' afterbody grid point

_ (i) - - i)0
I I

Figure 41. Data transfer technique from the forebody
to the afterbody grid

The data are then transferred by means of a simple linear inter-

polation scheme in both the 0 direction and 7 direction. The

specific = constant plane in which the data transfer occurs

depends upon the particular case under consideration. Even though

the data transfer occurs near the mid-chord the exact location of

the initial data plane for the afterbody depends upon the step

size used in the afterbody integration process.

Choice of grid system

The afterbody grid dimensions are established somewhat once

the forebody system is defined in that the same A 0 increments are

used. This is to insure that the outer boundary points remain in
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the 2-D region of the flow field. The increment /A^Yis chosen

such that at least four grid points\ always remain in the free stream

region outside the shock layer throughout the afterbody region.

Numerically, the values associated with Y for the afterbody and

Ag for the forebody are very similar in all cases.

Solution technique

The initial data plane for the afterbody is located such that

the first integration step in the t direction contains the mid-

chord point at the half-interval. That is, the initial data plane

in which the forebody data transfer occurs is located at J = c/2 -

/ /2 where /A is the initial integration step size and c is the

wing chord length. The initial integration step, then, is from the

forebody region to the afterbody region. The integration then

proceeds along the afterbody to the vicinity of the trailing edge.

The magnitude of the integration step size /A is governed by the

linear stability criteria.

It was noted in earlier work that the gas dynamic equation

coefficient matricies A and B in the wedge proper region of the

afterbody are identical in form to those associated with the fore-

body. Hence, the same eigenvalues that dictate the maximum mesh

ratios in the forebody wedge region now dictate the maximum of

An/Ao andA/A7Y in the afterbody wedge proper region. These

eigenvalues remain nearly constant over the afterbody region.

For the tip cone, the eigenvalue structure is quite different

in the afterbody region. The maximum eigenvalues for the A and B
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matricies are given by Equations (A30) and (A32) respectively.

Although the eigenvalues given by Equation (A30) are the same order

of magnitude throughout the afterbody region, those defined by

Equation (A32) become infinite as the trailing edge is approached.

Hence, if constant Q increments based on initial data were used

in the integration process one might expect a crossflow instability

to develop since the maximum stable value forA /A/ decreases

rapidly near the trailing edge. In fact, the stable integration

step size approaches zero near the trailing edge presenting dif-

ficulties in the afterbody integration process.

To insure that the crossflow instability does not occur the

increment Q is set equal to the value dictated by the linear

stability criteria given in Equations (43) at each step in the

integration process. The value / is given by

AA 'one (79)

The integration moves quickly initially along the afterbody

but slows down radically near the trailing edge. Furthermore,

since all other eigenvalues remain nearly constant throughout the

afterbody field, one can expect a lower quality flow field solu-

tion near the trailing edge as a result of the very suboptimal mesh

ratio operation, especially in the vicinity of the shock wave.
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Afterbody numerical solutions

Afterbody solutions are obtained using initial data from both

the C = 0° and CC= 40 forebody solutions at a Mach number of 2.

The grid spacing in each = constant plane is quite similar

to that of the forebody. The system contains 31 points in the 0

direction and 20 points in the 7 direction. The /A0 increments

for the afterbody region are the same as for the forebody region and

are defined in Table 1. The A7increments, common to all afterbody

regions; are 3.0286 degrees and 3.0556 degrees for the 5= 00 and

C = 40 cases respectively. The angular orientation of the various

= constant planes defined by the index parameter k are given in

Table 3 and the angular orientation of the various 7 = constant

planes defined by the index parameter j are given in Table 4.

An initial integration step size (/ ) of 0.01 is used to

move from the forebody region to the afterbody region. Hence, the

initial data plane for the afterbody is at t = 0.995 with the first

integration advancing the data to the = 1.005 plane. The shoulder

of the wing ( . = 1.0) occurs at the half-interval of the first

integration step.

Subsequent integration step sizes are set to the maximum

value dictated by the linear stability analysis given by Equation

(79). The resulting numerical values for the mesh ratios L4//o0

and / are given in Tables 5 and 6. Included in the tables

are the maximum values for the ratios in the various flow field

regions as predicted by linear stability theory. Since the cone
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Angular orientation of the various =
in the afterbody grid system

constant planes

7 (degrees)

a = 0o cc = 40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

-10.53

-7.50

-4.47

-1.44

1.59

4.62

7.64

10.67

13.70

16.73

19.76

22.39

25.82

28.84

31.87

34.90

37.93

40.96

43.99

47.02

-10.56

-7.50

-4.44

-1.39

1.67

4.72

7.78

10.83

13.89

16.95

20.00

23.06

26.11

29.17

32.22

35.28

38.33

41.39

44.44

47.50

Table 4.
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cross flow eigenvalues vary extensively throughout the integra-

tion, the tables include values in the initial data plane ( ~ =

0.995) as well as the final integration plane ( t = 1.97).

As noted in Table 5, the ratio A/Ly decreases from about

70 per cent of its theoretical maximum initially to about 1 per

cent near the trailing edge in order to satisfy the crossflow

stability criteria. Hence, one can expect the flow field solution

to degenerate somewhat in the vicinity of the shock as the trailing

edge is approached.

Normal pressure distributions at various spanwise locations on

both the upper and lower wing surfaces at three different ~ = con-

stant locations along the afterbody chord are presented in Figures

42 - 65. In particular, Figures 42 - 53 depict the normal pressure

distributions for the.( = 0 angle of attack case in the t = 1.2,

1.5 and 1.76 planes along the afterbody. Figures 54 - 65 depict

the normal pressure distributions for the aC = 4° angle of attack

in the ~ = 1.25, 1.5 and 1.76 planes. The relative locations of

the points on the wing surface (defined by the index parameter k)

at which the normal distributions are displayed can be obtained in

Figure 29 with the exact locations defined in Table 3.

The exact 2-D solution for a symmetric double wedge afterbody

is included on each set of upper and lower wedge surface pressure

distributions. The exact solutions are used as the standard with

which the numerical solutions in the 2-D region (k = 3) are com-

pared to test the behavior of the numerical technique.
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The distributions, which now contain an expansion region as

well as a bow shock, appear to be fairly smooth except in the

vicinity of the shock where mild oscillations develop early in

the integration process and become quite severe in the trailing

edge region where the very low mesh ratios are used to satisfy

the cross flow stability criteria. The shock waves in all dis-

tributions, however, are quite well defined and usually contained

in one to two intervals. The expansions are quite smooth and in

the 2-D wedge regions follow the exact solutions quite closely.

The numerical technique does, however, appear to overexpand the

flow in both the wedge regions and cone regions on the body surface.

The 2-D wedge body pressure for the C = 0° case is 0.0588, and for

the Cr = 4° case the upper and lower 2-D wedge body pressures are

0.048 and 0.075 respectively. The numerical solution values are

initially somewhat lower. However, as the integration proceeds to

the trailing edge the 2-D body pressures increase again to nearly

their proper values. The overexpansion also propagates into the

flow field normal to the wing chord plane.

With the exception of the overexpansion situation near the

body surface, the numerical technique generates a 2-D solution that

compares favorably with the exact solution. In addition, the pres-

sure distributions for the CC = 0 case indicate that the proper

flow field symmetry is generated.
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Region III Flow Field Analysis

Afterbody geometry, coordinate system and equations of motion

That portion of the flow field aft of the trailing edge of

the wing is termed the wake. This region, void of any solid

boundaries, is bounded on three sides by the free stream and on

the fourth side by the 2-D flow field associated with the wake of

a symmetric double wedge.

The coordinate system used to define the wake flow field is

a Cartesian system with the origin centered at the forebody cone

apex. The same frame was used to describe the body geometry

associated with the forebody and the afterbody. The grid in each

x = constant plane is defined by the intersection of a set of y =

constant and z = constant planes, resulting in a rectangular

arrangement of mesh points.

The equations of motion in the Cartesian frame are given by

Equations (38) with the conservative variables A, T and G given in

Equations (39) - (41).

Initial and boundary conditions

The boundary conditions applied at the outer extremes of the

grid are similar to those used in the afterbody integration. The

grid dimensions are chosen large enough such that the outer grid

points always lie in the free stream along the upper and lower

grid boundaries as well as on the boundary off the wing tip. Along

the 2-D flow region boundary the reflection technique is used to
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determine the flow variables. Hence, as long as the flow along

this boundary remains two-dimensional the numerical solution may

be compared with the known 2-D exact solution in an attempt to

evaluate the performance of the numerical technique. It is noted

here that if the tip Mach cone intersects this boundary the flow

will no longer be two-dimensional and the 2-D exact solution no

longer applies. However, the 3-D solution generated by the numer-

ical technique in this case is still legitimate with the z = constant

plane about which the reflection occurs representing the center of

the 3-D wing.

The initial data used in the wake integration are generated

in the afterbody integration and are contained in the final integra-

tion plane of the afterbody. Since the grid points associated with

the afterbody and wake systems do not, in general, coincide the

data must be transferred from the afterbody grid to the wake grid..

The linear interpolation scheme used in the forebody-afterbody

data shift is used here.

Grid system and solution technique

The wake grid in each x = constant plane contains 40 mesh

points in both the y and z directions. The grid is positioned in

the wake region with the j = 20 and 21 mesh points at y = /y/2

and -Ay/2 respectively (see Figure 66). Hence, half the grid

points lie above the wing chord plane and half below.
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k - r

23

22

21

Wing trailing edge

20

j

19

18

18 19

I...,.. *

,-----.

Figure 66. A portion of the wake grid system showing the
relative location of the wing

The numerical values for Ay and A z used in the wake inte-

gration are 0.195 and 0.176 respectively for the CC = 0° case and

0.195 and 0.1584 respectively for the C:= 4 ° case. The incremental

magnitudes were chosen such that in the wake initial data plane the

3-D portion of the wing flow field is contained within a region

bounded on the lower and upper sides by grid points with indicies

j = 10 and 30 respectively and on the left and right by grid points

with indicies k = 10 and 30 respectively' Hence, the outermost 10

grid points in the system lie either in the free stream or in the

Y.

2 d 21 22

-- z
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2-D double-wedge flow field. However, as the integration proceeds

into the wake the 3-D flow field propagates throughout the grid to

the grid boundaries.

The afterbody integration was terminated at x = 1.97. Hence,

the flow variables at the grid points in the x = 1.97 plane provide

the initial data for the wake integration. The data are transferred

from the afterbody grid to the wake grid, and a single integration

step of magnitude Ax = 0.06 generates the data in the first x =

constant plane in the wake behind the wing. It is noted that the

wing trailing edge is located at the half-interval of the first

integration step.

Subsequent integration step sizes were chosen to be the maximum

allowed as predicted by the linear stability theory. The eigenvalues

associated with the equations of motion for the wake are developed

in Appendix A. Equations (A6) and (A9) represent the maximum eigen-

values of the A and B matricies respectively and, as a result, are

used in conjunction with Equations (43) to determine the maximum

step size Ax. For both cases considered the integration was

terminated well before the shock wave intersects the grid boundaries

which occurs at about one chord length behind the wing.

Numerical solutions

Figures 67 and 68 show various pressure distributions normal

to the wing chord plane for the CC= 00 case in the x = 2.57 and

x = 3.0 planes respectively. Figures 69 and 70 show similar



coCt)

+
J0

90 
0

N
 

C
 

o

X
 

0

0
0 +

c
 

o H

o
o

oo 
H

 x

oo
:0 

0*r· 
U

)
V

oo

H
 

) 
1

a 
r(0,I.I
0C

H
 

H- 
0 

0

o 
o 

o 
o 

o

d
 

vj 
a
e
ln

ssa
d

 
s
s
a
T
u
o
E
s
u
e
a
u
I
I

1
4
2



1
4
3

.
o

I 
I 

i I 
I I 

N

X
 

en

,p
 >

 
.

O
 

-
O

 
_
 

h

_ 
9 

P 
O

 
O

.'c 
N

- (I 
0N

 
'

· 
' 

< -'~-~ 
O

 
I 

_ aN
ua 

a

e 4,'i 
~ 

~ 
-N

 

O
 :r.:,o 

rlo

9 
P 

H
, 

, 
9
h
 

O
. 0)

-r4

·*H 
U_)

s~~~~~~~~~~~~~~~~~.' 
h~~~~~~~~~~~

co 

I 
I 

U
- 

I 
I 

II

H
 

uO

\,

O
 

co 
ko

_ 
_ 

_ 
_0~~~~~ 

~
~

0
N
-
 

0 
0
 

0
8
 

~ 
8
 

8) 
8
 

d
 

/w
 

a
ln

s
s
a
ld

 
s
s
a
T
u
o
T
s
u
a
u
r
:
a



1
4
4

c
c

m
 

aH

N
 

(
0

.,vN 
'
 

co\ _4
 

xD
 

t 
*(n

p. ) 
1
4
 

o.

0 
__-~<

_r 
-- 

+
-

O
 

,- 
-

-
O

II

6
~

 
R

~
' 

_ 
c 

.
-

(l 
I

8 
-

0
0 O

t70 
~

~
~

~
~

~
~

~
~

~
~

~
c~

'
oO

 
·rcna,~~~~~~'

\· 
·rl 

cn~~~~~~~~~~~~~~~0

d 
r,. 

a
n
s
s
a
8
d
 

S
S
a
T
U
O
T
s
u
a
8
U
m
a



00cr,

0
%
,
0*
O
 

0
0
0
 

o

H
 

=

·O
 

U
 

E
0

0 
0-C

c 
o

C
 
X

0

,-~l~ 
* 

(
3

H
 

C
U

)
0
)

O
 

SdO

(C 
II

o

O
 

0 
0 

0 
o

d 
(V

 
a
i
n
s
s
a
x
d
 
s
s
a
T
u
o
T
s
u
a
W
a
G

1
4
5



146

distributions for the cC = 40 case in the x = 2.12 and x = 2.6 planes

respectively. Each contains an exact 2-D solution for comparison.

It is noted again here that the index values k = 1, 20 and 40 define

grid points in the 2-D double-wedge wake flow region, the wing tip

and free stream region off the wing tip respectively.

In moving along the pressure distributions point to point from

j = 1 to j = 40 one encounters a bow shock, an expansion and a re-

compression shock all associated with the lower surface flow, then

another recompression shock, an expansion and a bow shock associated

with the upper surface flow.

The distributions appear to be smooth with well defined

shocks as in the forebody and afterbody solutions. The numerical

2-D solution (k = 1) appears to agree quite well with the exact

2-D solution. The bow shocks have proper strengths as well as loca-

tions. However, the strengths of the recompression shocks as pre-

dicted by the numerical method appear to be excessive. For the

Ct = 0
©

case the pressure behind the recompression shock should

be 0.0935 with the worst numerical solution yielding 0.101, re-

sulting in an 8.02 per cent error. For the C = 40 case the exact

and worst numerical values are 0.94 and 0.1075 respectively,

yielding a 14.4 per cent error. The recompression shock locations

in the 2-D region seem to be well predicted by the numerical method

in all cases.
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RECOMMENDATIONS FOR FURTHER STUDY

One of the major difficulties associated with the wake region

analysis is that the Cartesian coordinate system used to generate

the wake grid system severely limits the distance into the wake

that the integration can proceed. Once the shock intersects the

grid boundary the integration must be terminated for lack of

proper boundary conditions. To proceed farther into the wake the

grid system must be enlarged. This increases the computer storage

requirements and quickly becomes prohibitive in terms of computer

capacity.

This problem can be eliminated by changing the wake coordinate

system to a conical system with an origin at the apex of the fore-

body cone. Then a grid system can then be developed such that the

3-D flow field is contained within the grid boundaries regardless

of distance behind the wing.

The analysis could also be extended to include a variety of

wing cross-sections such as parabolic or circular arc sections,

cambered as well as uncambered. In addition, a wider variety of

tip geometries could be investigated.

Although exact solutions are available for comparison with

the numerical solution in the 2-D regions of the flow field no

such standards exist for the 3-D flow regions. Hence, the per-

formance of the numerical technique can only be extrapolated from

the 2-D results. It would be quite desirable to have experimental

evidence to verify the numerical results in the 3-D regions.
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Although in so far as the author knows no experimental investiga-

tions have been made on the particular wing configuration used in

this analysis, experimental studies have been made on rectangular

wings of other cross sections. In particular, Davis(2 8) conducted

experimental tests on various nonlifting rectangular planform wings

with parabolic cross-sections. The numerical technique used in this

investigation could be easily adapted to the Davis wing configura-

tions. Hence, the 3-D region performance of the numerical technique

could be checked.

The recommendations suggested above are based on the experience

gained in applying the MacCormack technique to-the wing configura-

tion used in this study. The method yielded satisfactory results

in most cases and, as a result, appears to represent a powerful

tool which could be used to investigate flow fields about various

other configurations.
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APPENDIX A

Eigenvalue Evaluation for Cartesian System

The stable range of mesh ratios contained in the finite

difference equations can be theoretically predicted using am-

plification matrix theory. Application of this theory requires an

evaluation of the eigenvalues associated with the coefficient

matricies of the gas dynamic equations of motion.

Kutler( 5 ) shows that the steady equations in a Cartesian

frame can be written in the form

U + AU + BU + C = 0 (Al)
x y z

where U represents a vector of state variables

v
U= wP (A2)

P

and where A and B are square matrices given by
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In the development of the matrices A and B the energy equation

was used in the differential form

q * [VP - ( P/aP)sV] = 0

(A3)

(A4)

(A5)
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For the A matrix, three of the eigenvalues are identical and

given by

X =v/u (A6)1, 2, 3 v/u (A6)

while the remaining two are given by

4X 2uv 2 *(A7)
X4, 5 U2 2

u - c

In a similar fashion, three of the eigenvalues of the B matrix

are identical and given by

X = w/u (A8)1, 2, 3 w/

whereas the remaining two are given by

+ 2U 2 

4, 5 2 2 c(A9)
U -c

Forebody Eigenvalues

The steady gas dynamic equations for the forebody wedge proper

and the tip half-cone can be developed by a simple transformation

of independent variables in Equations (Al) using the Jacobian

elements in Table B2. In terms of the ( 0, , e ) system the

equations become
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U. (x x+ UO + x

+A (U y+ Ups + U Ay) -(A10)

+B (UQ z + U99 + U#O ) + C = 0

Substituting for the Jacobian elements yields a set of equations

given by

I !

Up + A U0 + B U + C = (All)

where, for the wedge proper

2
A cos 9 Isin O cos 0

A =

B cos 2 I sin 0 cos 
B = _

and for the tip half-cone

2 2
Acos 2cos+ Bcos Qsin_ IsinQcosQA = + 6 

Bcos'cosQ AsinpcosQ
=-

(A12)

(A13)

(A14)

(A15)

The matrix I is the identity matrix. In their fully expanded form

showing all the elements the matrices defined by Equations (A12) -

(A15) are presented on the following four pages, Equations (A12a) -

(A15a).

Each of the four matrices contain at least one row or column

in which all but one of the elements are zero. Hence, one of the

eigenvalues in each matrix is immediately available. In all cases
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-singcose

-uVcos2e

( (C-U2)

2 2
c Cos e

(C 2_u2)
o vcos2

p (c2-u 2 )

-sinOcosO

+vcIs26
- ? U

-singcose
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-U

0

2 2
vc cos 20
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2 2-uccos epo
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0
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cos2e
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0

0

0 0
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0
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B =

2 2
O c cos 0

g(c2 -u2 )

-sirxscosg

2_ 2)
~(c _U )

-sinrcos$f

u
0

0

0

-sincos.

0U a

2
wcos 0

p (c 2_ 2 )

0

o2 e

2 2
wc cos AP

wcos' Wp
:(c2_u2)

2 2c2 ucos2 A)

:(c2-u2)

2
ucos20 10

0 ( _ 

0

-sinmoso
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-- WCOS 0
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2
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0
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it can be shown that the first eigenvalue is a triple repeated

eigenvalue. The remaining two eigenvalues are then determined

by solving the appropriate quadratic expression.

For the wedge proper the eigenvalues of the A matrix are

given by Equations (A16) - (A17).

X =t -sinQcosQ + vcos (A16)(A16)1, 2, 3 +
\X = -sinQcosQ

4½2(A17)

(c2 -o 2 ) [u22 k 2 2 2 2. co( 2 - c + c u v c2]

For the B matrix the eigenvalues are given by

= -sindcosa + wcos (A18)1, 2, 3 u

X = -sindcos0 uwcos2
\4 5 ( ((C2_u2) (A19)

c cos2 [2 2 2

C(CO_2U2 u2_c2-w

For the tip half-cone the eigenvalues of the A matrix are

given by

-singcos + vcos Qcos + wcos Qsin(A20)
1, 2, 3 u(A20)u

-22 2
-sinQcosg(c -u ) + uw(cos QsinO

4 (c2-u2 ) (A21)

2 2 12 ±C COS 0 v cos
2
O+u

2
-c2 +(vcosg+wsin$)J

2u
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and for the B matrix

X = -v cos e sin 0 + w cos cos 0
1, 2, 3 u

X = _ -uw cos9 cos0

4, 5 (c2 _u2 )

c os 0 2 2Cv u sinu u2wcos

~ (c2_u2 ) [c C
2

+ (v sin 0 w cos 0)21] 

(A22)

(A23)

Afterbody Eigenvalues

For the afterbody, the transformed equations of motion using

the Jacobian elements of Table B4 in the Cartesian equations of

motion, Equations (Al), are given by

U I A U7 + B U + C = O
~`*~4'~~'' 0

Where for the wedge proper

AI = I sin- cos YA=

B B cos
2

I sin 0 cos 0

and for the tip half-cone

(A24)

(A25)

(A26)

2
I A cos cos0 B c

A - " cos_

B' t B cos
B = y 

6tany +2tan Qc

-os2 'sin0 I si.lY

A sin 0
ttany + 2 tan °c

cosZ (A27)

(A28)
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* !
The A and B matricies for the afterbody wedge proper are the

same as those for the forebody with the > parameter replacing the

e parameter. Hence, the matricies A and B for the afterbody are

given by Equations (A12a) and (A13a) respectively and the resulting

eigenvalues are given by Equations (A16) - (Ai9) with the Y param-
eter replacing the e parameter.

The fully expanded form of the A and B matricies for the

tip half-cone, as defined in Equations (A27) and (A28), are given

by Equations (A27a) and (A28a) on the following two pages. The

matricies are similar to the corresponding matricies in the forebody

region in that three of the A eigenvalues for the tip cone, (A29),

are triple repeated. The remaining two eigenvalues are given by

Equation (A30). For the B matrix the eigenvalues are given by

Equations (A31) and (A32).

-sinY cos v os+ w (sin29)
1,2,3 u u (A29)

-sin cos (c -u ) - uw cos sin0
4, 5 (c 2_u2) (A30)

+ a-~~2, 12 2 2 2 2 1-+ cosY c v cos (u/c +1)+2vwcos0sinO+wsino-c2+u2]

C (c2 -u2)

k -vsino ' WCOSA
1, 2, 3- u( Ctany + 2 tanc) + u(tan + 2tan(A31)

_ -uwcos WCOS-s -c +u +u v sin 

4, (c2 2 (A32)
(c -u )(Ctany + 2tanOc)
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APPENDIX B - FLOW EQUATION TRANSFORMATIONS

Introduction

Integration of the equations of motion via MacCormack's tech-

nique requires that the equations be cast in a conservative form

using the independent variables associated with the various coordinate

systems describing the body and-flow field. Hence, the Cartesian

conservative form presented in Equations (37) must be transformed

in Regions I and II to the various systems defining the forebody

and afterbody. The Jacobian elements of the transformations as well

as the transformed equations of motion and resulting conservative

forms are presented in subsequent sections.

Forebody Equations of Motion

The coordinate systems used to describe the forebody are given

in Figures 21 and 22. Although the coordinate labels (, , Q)

are identical their definitions are, in general, different.

In the Cartesian system it has been shown that the equations

of motion can be written in the form

Ex + Fy + Gz = (B1)

where the vector conservative variables E, F, and G are given

by Equations (39), (40) and (41). Noting that
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x = x(, 0, Q)

y = Y(%, , s) (B2)

z= Z((, 0, Q)

the equations of motion (Al) can be written as

x + E0x e x

+F y + F (B3)
y

where the terms (x ' J' x' ox , y z, Ox' Q , and Q represent

the Jacobian elements of the transformation.

The transformation equations for the wedge proper and the half-

cone are given in Table B1. The resulting Jacobian elements are

given in Table B2.

Substitution of the Jacobian elements of Table B2 into

Equations (Al) yields for the wedge proper

•[4E; + [-sinecosZE + cos2F]

+ [-sinocosE + cos2 ] J (B4)

+ [(-sin -sin 6+cos 0)E + 2sinQcosQF + 2sinocosG] = O

and for the half-cone



168

+ [-Esin 2 + Fsingcos + 5GsinQcosQsin ]

+ I -FsinO + Gcoso] (B5)

+ [(2sinecosQ - tanQ)E + 2Fcos0sin2 9 + 2Gsin2 sin = 0

Equations (B4) and (B5) represent the conservative form of the

equations of motion in the forebody region.

Table B1. Forebody transformation equations

Wedge proper Half-cone

x x

tn-1 -1tan Z/x tan /y

Q tan
- 1 y/xtan

-
x
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Table B2. Jacobian elements for forebody transformation

Wedge proper

1

0By

0

Half-cone

1

0

0

-sin_ cosO
0

-sin0cosQ

cosOcos9

0

2
cos 0

-sinQeose

I'
-sinQcosQ

cos29 cos 2coso

os2sin
0

0x

0z

x

y

Z
z
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Afterbody Equations of Motion

The coordinate systems used to describe the afterbody are

given in Figures 38 and 39. The equations of motion in the

Cartesian form are given by Equation (B1) and in the (I f6, 7)

system by Equation (B3) with the e variable replaced by the

variable. The transformation equations

x = x(t, 0,7')

Y = Y( 0,7)

z = z(V, %,7)
(B6)

are given in Table B3 for the wedge proper and the tip half-cone

with the resulting Jacobian elements x, y, , 0x, 0y 0 

X, %7, and 7 given in Table B4.x y~~~

Table B3. Coordinate transformation equations for the afterbody

region equations of motion

Wedge proper Half-cone

x x

0( tan- (/x) tan (z/y)

7 tan- 1 [tan-2 
. .~~~~~~~~~~~
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Table B4. Jacobian elements for the afterbody transformation

Wedge proper Half-cone

1 1

0
y

0

0 0

-sincosO

0

0

-sinf
~tany + 2tan Q

c

+ 2tan Q
c

oss n/i

0x

Oy

0z
Co2 cost

(tany

X.y
cos2

0

-sin" cos r

cos !sin l
COS2,yCSi
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Substitution of the'Jacobian elements of Table B4 into Equa-

tions (A1l) yields for the afterbody wedge proper

r[ ·E] + [-sin coser + c.s e]

+ [-siny cosy E + cos 2 yj + [ 2sin 2

7
(B7)

-sin y E + cos E

and for the tip half-cone

[(tanY 2tanOg)

+ 2sin~cos0 + 2sin ycosyPJ = 0

+ L-sinycos7E + cos 2 (cosOF + sinG)] (tan + t Y

L[t ·~~~~7
+ Gcos0]O

0

2tang
- (tay y+ c)

(B8)

[(1-2cos2 )-2cos7 sin7(cosF+sin$)] = 0

+ [-Fs inO

1

-·


