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Numerical calculation of flow fields about rectangular wings

of finite thickness in supersonic flow
Jerald Milo Vogel

Under the supervision of Dr. E. W. Anderson
From the Department of Aerospace Engineering and
Dr. George Serovy from the Department of Méchanical Engineering
Jowa State University
'The inviscid flow fields about a thiee-dimensioﬁal réctangular
wing of finite thickness at angle of attack with a sﬁbsonic tip in
a supersonic flow are détérmined by applying a secqﬁd order finite
_differencé technique to the gas dynamic eéuatioﬁs'of motion in
their conservative form. The analysis inciudes a comparison of the
second order technique with a current thir& order method.

The principal obJectlve of the study is to apply a current
finite difference technlque to the equations governlng the super--
sonic flow past a wing to obtain the variation in the gas dynamlc
variables_throughéut the immediate flow field. The sfudy is
separated intd two parts. The first part deals with the comparison
of the secqnd order MacCormack techniqﬁe ah& fhe‘third order Rusanév
technique. The seéénd part is the actual implementation of fhe
numerical method to obtain the flow fiéid about a rectangular wing
with a 7.5 degree half-angie double-wedge cross section-ana a
double=-cone tip at a Mach number of 2 at O and 4 degieés.ahgié-of
attack,

The results obtained in the application”of the MacCormack and



RusanOV'fechniques to thevmodified Burgers' equaficn and the gas
dynamic equaticns‘governing the supersonic flcw-pasf a two—dimensional
wedge indicate that the second order method bx MacCormack 1s as good
as Rusanov's technlque 1n terms of flow fleld resolutlon and better'
vin terms of computer storage requirements and run tlmes,

The flow field about the rectangular wing is separated into
three regions ccnsisting of the forebody? the afterbocy and the
wing wake, Soluticns for the forebody are obtained using chical
flow techniques while the afterbody and fhe wing wake recions are

treated as initial value problems. The numerical solutions are

compared in the two-dimensional regions with known exact solutions.
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NOMENCLATURE
Coefficient matricies of the inviscid equa-
tions of motion in the Cartesian frame

Coefficient matricies of the 1nv1sc1d equa-
tions of motion in the (é' 7’ ¢) and

(£, 0, #) frames

Speed of sound
Xedepéndeht-conservétive variab;es
é:dependent conservative variables.
Constant | |
Y-dependent conservative‘variables

TY or O-dependent conservative variables

Z-dependent conservative Variables

@-dependent conservative variables
Conservative variables
Unlt matrlxr

Imaginary constant (\/- 1.0 )

Unit vector along streamline

Unit vector in radial direction

Grid indicies
Constant

Mach number

Unit normal vectoi
Pressure .
Differential opérator

Total velocity



Subscripts:

c
J
k

max

Superscripts:

n

vi

Tiﬁe

Vecfor of dependent variables

Velocity components in x, y and z directions
Independent variables in:the Cértesian frame
Angle of attack |

Shock angle

Ratio of specific heats

S%ability parametef

Eigehvalues
DNt/Ax <

Independent variables for body oriented
coordinate systems

Density

Corrected Qalue or cone body conditions

Mesh point location in the y,')’or © directions
Mesh.point locatioh.in the z o? [ directions
Maximum

Conditions on the wedge

Free stream conditions

Time or X step location



INTRODUCTION

Tﬁe aerodynanic ahal&sis of the flow fieids about aircraft
capable of operating in the supersonic regimé for extended periods
of time is a formidable task. The complex geometry of such vehicles
in conjunction with the difficulty of-solQing the equétions govefné
ing the aerodynamics preclude the possibility of obtaining exaét
solutions for the associated flow fields. Thgse fundamental dif-
ficulties have prompted the development of numerous approximate
methods for anaiyzing fluid flows. One of the most common of the
simplifying assﬁmptions used is that the flow may be separated into
a viscous boﬁndary layer flow and an outer inQiscid flow which ef-
fectively determines theibddy pressure. This report is concerned
with fhe c#lculétion of the outer inviscid flow‘aboﬁt>a iectangular
wing moving at supersonic speeds.

’The inviscid equationsvof motion govefning the flow generated
by a wing moving at supersonic speeds form a set of‘hyperbolic
differential equations. Since they are hyperbdlic, the equations
can be solved (at least éonceptually) by techniques applicable to
initial valué problems. Up to the present 6nly‘tWo sﬁch techniques
which provide exact solutions have been applied to inviscid’super;
sonic flow problems. The first technique involves the method of
characteristics (1). This method has been successfully applied to
numerous supersonic flow problems. Unfortunately, the'application
of this method is a complex task due to the geometric problems

introduced by body shape, and difficulties in determining the



coordinate system or systems required and the inherent way in which
a characteriétics method works. The second method involves the

use of éhock-capturing fihite difference approximations of the
equations of ﬁotion and the solution of the resulting'approximate
equdtions’at each grid or mesh point. This attack'prdvides a solu-
tion for the inviscid flow throughout the flow field. The technidue
.used advances the initial data throﬁgﬁ the fixed mesh, applying
boundary conditions only at the body and in the free stream. Shock
and expansion waves form and decay automatically without épecial
treatments of any kind. On the other hand, the characteristics
method utilizes logical numerical procedures to isolate shoék.Waves
and requires the application of the Rankine-Hugoniot shock relations
across them to identify their strength and position.

The acceptance of the shock-capturing numerical techniéues is
becoming more universal as these techniques are improved. The
early problems associated with the precise location of the shocks
and the tendency of the techniques to produce spurious oscillations
in the magnitudes éf,the dependent variables in the neighborhood of
the shock are gradually being overcome. Numerical calculations of
inviscid flows based upon the full Eulerian equations have been
carried out for a variety 6f supersonic problems using several
finite difference techniques. The techniques have generally been
first, second and, more recently, third-order. Numerous authors
have applied the Lax (1) first-order mefhod to fluid flow problems.

Notable among the results obtained by these investigators are the



solutions for the time dependent blunt body problems obtained by
Bohachevsky and Mates(?) and Bohachevsky and Rub@p(3) and the none-
equilibrium gas dynamic calculations of_DeJarnette(4). While tﬁe
Lax method provides reasonable results for very émall‘mésh sizes,
second-order methods are being used with increasing frequency.
Kutler(s) has recently applied a version of the second;order Lax-
Wendroff method developed by MacCormack(é) to study flow about
sonic-edged, conical, wing-body combinations at angle of attack.
Results of his work show excellent agreement with conical flow
solutions calculated using other methods and with availéble ex-
perimental data. Mcre recently, a third-order method developed
simultaneousl& by Rusanov(7) and Burstein and Murin(a) gives im-
proved shock and flow field resolution in certain cases.

This study is concerned with Applications of the second-order
MacCormack(6) technique and the more recently developed third-
order Rusanov(7) technique to some simple nonlinear problems lead-
ing to solutions of the full Eulerian equations for flow about a
rectangular wing moving supersonically. The material presented is
separated into four major sections. The first section is an
analysis of the differencing techniques under cohsideration as
well as a discussion of the theoretical stability criterion based
on amplification matrix theory. The second section is concerned
with solutions of a one dimensional parfial dif}erential equation,
the modified Burger's equation. Such solutions aid in understanding

the MacCormack and Rusanov differencing techniques and their



application to ﬁonlinea: hypexbolic éystems. The third section isv
concerned with the application of the two techniques to a more
realistic flow problem;'thé éupersonic two dimensional wedge flow
field, in an attemptito'determine the technique best suited for

the rectangular wing problem. The fourth and final éection presents
the numerical solutions for the flow fields about and in the wake |
of a rectangular, not-so-£hin wing in a Supe;sonic.flow field at

angle of attack.



DIFFERENCING METHODS
Introduction

In recent years there has been an ever increasing use of
finite difference methods in the reduction of continuous systems
in order to obtain solutions to complex flow problems. The dominant
1nfluenc1ng factor in the development of the numerical techniques
has been the advent of the high-speed computing machinery requlred
to process data at many points in a solution f1eld

To utilize a finite difference method one must first degenerate
the cohtinuous domain of interest to a discrete set of points
generally termed the grid. The partial differential equations of
motion governing the flow field are then differenced in some pre-
scribed fashion. This results in a set of finite difference eque-
4 tions which must be solved at each point in the grid subJect to
certain boundary conditions applied at the edge of the grid.

Although the techniques appear to be elementary in nature and
simple to apply one nust be concerned with the accuracy, convergence
and stability characteristics cf the techniques. For the flow
fields that contain shock waves one must be concerned with the
ability of the finite difference technique to develop apparent
discontinuities at the proper locations without producing excessive
fluctuations in the magnitudes of the dependent variables near the
discontinuities. In summary, improperly appliednnumerical'methods

may lead to extremely erroneous results.



Kutler(s) recently 1nvestlgated a series of second-order f1n1te
dlfference techniques including Lax-Wendroff( ) methods and other
somewhat similar methods developed by Lelth( ), Fromm(ll), Richt-

(13) (15)

meyer(lz), Burstein Strang(1 ), Gourlay and Morris , and

Machrmack(6) as well as the classic first-order technique by-Lax(l).
The results of the investigation indicaté that in terms of ease of
programminé, storage space requirements, length of computing time
and shock resolution and stability the method by MacCormack is
superior and, as a.;esult, is here to be:considéred for the study
of the rectangular wing problem.

A second technique, developed by Rusanov(7) and Burstein ahd
Murin(s), will be considered to see if the more recenfly developed
third. order technique performs enough better so as to warrant its
use in the rectangular wing solution.

The following three sections present brief discussions of

accuracy, stability and the finite difference techniques under

consideration.
Accuracy

In general the errors associated with finite difference solu-
tions may be separated into two basic types. The first type of
error is termsd truncation error and is a measure of the degreé to
which the finite difference equations actually represent the
continuous system of equations. Truncation error may‘be viewed in

terms of a set of '"modified partial differential equations'" which



is the éet'ﬁf equétioﬁs the finite difference formulation actually
represents (see Ref. 16, p. 38). 1In this investigation the "modi-
~ fied equations" are studied for each differencing technlque in the
section of the report containing the technique descrlptlons.

The second type of error is termed round-off error wh1ch is
sometimes referred to as computational error. Such errors are a
result of the discrete equgtions being solved exactly only up to a
cerfain number of digits depénding upoh fhe'pérticulér machine used.
to obtain the solution.

The grid point spacing effects both types of errors but in
different fashions. That is, while decreasing the grid point spac-
ing will generally decrease the truncation error, the resuiting in-
crease in required solution steps will tend to increase thé computa=-
tional errors. _Hence,vone cannot always increase.aécufacy by de-

‘creasing the mesh size.
Stability Criteria

One problem encountered in the application of finite difference
schemes involves the numerical instabilities which result in error
amplification. Unstable numerical schemes allow the growth of
error to the extent that the true solution is "masked" yielding
highly useless data. Hence, it is very desirable to have a means
of predicting the parameters and their bounds which causé numerical
schemes to result in instability. |

The stability analysis used in this paper .is that outlined by



(5)

Richtmeyer and Mortoh(17) which was also utilized by Kutler .
Four restrictive condifions must be applied in utilizing the tech-
nique. The governing equations must be locally iinearized, the
coefficienfs must be constaht, the solution must be smooth and the
boundary conditions must be ignored, Hence, the analysis is good
pnly for regions removed from the boundaries and which are devoid
of discontinuities. However, experience has shown that instabili-
ties generally manifest themselves initially'in the form of small
amplitude, short wave length oscillations superimposed on,e smooth
solution in a narrow region of the solution field. Hence, the |
restrictions imposed by the stability theory may not be as proﬁibi-
tive as they first appear. |

Consider the system of partial differential equations in
conservative ferm given by

E,+F =0 o (1)

where E and F are conservative variable vectors. This set of equa-

tions can be written in the form

E,+AE_ =0 (2)

._!

where A is a matrix containihg the Jacobian elements.of F with
respect to E.
If the A matrix is constant one may obtain the exact solution
by means of the Fourier series method‘yieiding
—inAt‘eikxx

E = E;e _ o - (3)



where E; is a constant vector and kx is an arbitrary constant.

To apply the stability analysis to the numerical techhique one
introduces a row of erfors albng a t = constant line and obseryes |
the manner in which the differencing techniqué propagates the erfors
in time. The errors ma& Be represented By a discrete Foqrier series
of fhe form : .

_ if3 O | |
K Bk e T (4)
Usually,-ohly the‘effects of one term (eilgjﬁx) of.the series is
evaluated and a lineaf suberposition process is utilized to evaluate
the total error effects. If, for a fixed mesh, the error increases
without bound as n[ﬁt > o the technique is termed stepwise-unstable;

To illustrate the concept, cc'msider"the following difference |

scheme as applied to Equation (2):

(Bipy” = Bag) (5)

E.n-l-l:gn_Até
2 j+1 J

J i T Ax

with the boundary condition

E.0 = eiBij (6)

J

The use of a separation of variables technique leads to a solution

of the form

Ej" = E, (nlA®) RICEVAC B o

Substitution of Equation (7) into the difference equations (5)

yields



E'n-l-l - EJn l:I - 1/2A (elBAx - e"J;BAX)] = 'G'_Ejn (8)
where I is the identity matrix and V is the mesh ratio.

The matrix G in Equation (8) is termed the amplification'
matrix and the solution, given by Lomax(s), is

. n = \ I

E, = Z C. . . . . 9

J J D ()\J) . ()

where n is an exponent and the kj represent the eigenvalues of the
amplification matrix.

For the solution given by Equation (9) to rémainvbounded as
n » o the eigenvalues of G must be less than or equal to unity.

Hehce, the.stability'criterion is given by
A< (10)
To simplify the example under consideration assume that the

set of conservative variables E contains one member. Then the

amplification matrix reduces to

G=1 - Zf‘- (eiBAx - e'jBAx) | . (11)

In view of Equations (10) and (11) the stability requirement is

that
1+ VzAzsinz(BAx) <1 - (12)

It is noted here that the stability criterion yields stable

values for the mesh ratio V. The results of Equation (12) indicate
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. that the difference scheme under consideration is unStable‘for

any mesh ratio.
MacCormack Technique

 MacCormack has constructed a second order predictor-corrector
sequence for use in solving systems of partial differential equa-
tions in conservative form. When applied to Equation (1), Mac-

Cormack's technique yields

As n+l n JAN
E. = E. - F.
j i T Ax [ J+1 j ]

' (13)
n+l n _ o~ n+l At ~ n+l o~ n+l,
E. = E. + E. F - F.
# [ 5 Y TAx >]

J

The tilde that appears over certain of the variables deﬁbtes the
predicteci value of that particular variable.

To invesfigate the accuracy of the technique the hoaifiéd
partial differential equation is developed for a system of the form
given by Equation (2) with A = ¢ = constant and E = u which is the

linear wave equation.

u, +cu =0 | : | (14)

The resulting difference equations reduce to

~ n+l n n n
u. = u, = .. - u.
3 ug = YUy, ey
' (15)
n+l n  ~ n+l ~ N+l ~ n+l '
u. = u. + u. - u. - 1.
J % [J J v J J=1 )]



12

The modified equation, which is the equation actually repre-

sented by Equation (13), is of the form
= . ‘ : . 16
u, +cu = Qu (16)

where Q is some differential operator. To evaluate Q one first

combines the predictor and corrector equations yielding

n+l _ 2, n viy-1) n . vy *1) n -
uj = (1-Y )u._j + o u__j_'_1 + > uj_1 (17)

Each term is fhen expanded in a Taylor series: about the pqint

(ndMt, ij)_. Partial derivatives with respect té time thét are

second order and higher are eliminated using Equation (1_6). For

MacCormack's techhique‘Eq_uation (14) reduces to

u, +cu = - 3 (l—V)uXxSc- 3 (1/-1/)uxxxx +evoo
(18)

The Qu term is representéd by the right side of Equation (18).

It is noted that to second order. the modified equétion is
exactly the linear wave equation as it should be since the.tech-
nique is second order. The lowest oxder dispersive error and dis-
sipative error is giQen b& the.‘first and second terms re_spectiveiy
on the right side of Equation (18).

An interesting point to observe is thaf when V=t 1 the
error terms in Equation (18) all become zero resulting in an exact
solution. This condition is referred to as the "shift condition"
by Kutler and Lomax(lg) who have shown that satisfying this condition

as best possible in the nonlinear case geﬂerélly yields good shock
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capturing characteristics..

The limits on V for which the.computatiOnal errors do not
grow in an unbounded fashion may be determined by means 6f the
previously discussed amplification métrix‘theoi&. For the linear
wave équation'the-ampiification matrix, which:has but one'elément,

is given by
Gz 1 - V2 + VzcossBAx) - ii/sin'(BAx) ' : (19)

If the magnitude of the amplification féctor, G, is not to exceed
unity then V, commonly termed the Courant number, must not be
permitted to exceed unity. Hence, the stability bound on the mesh

size is given by

l/=c££-<l ' © (20)

In view of Equation (18) the shift condition is the maximum stable

Courant number.
_ Rusanov's Technique

Recent improvements in high-speed computers has resulted in
increased interest in higher order differencing methods to improve
flow field resolution. One of the more recent is a third-order
method developed simultaneously by Rusanov(7) and Burstein and
Murin(s). This technique, based on the Runge-Kutta method, utilizes
a three-level predictor-corrector sequence which, when applied to |

Equation (1), is given by
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1 : » t ,
EJ._._;E( ) =3 (Ej+1n + Ejn) - 1/3 %; (Fj+1n - an) :

n to,o (1) o (1) |
By - 2/3%;'(1:_-54-1 - i )_ (21)

g (2)
J

n+1l n Atl . n '
j E'Z‘_j - 1/24 75; [-2Fj+2 + 7(Fj+1

- a/e R (v, ) - Fj-l(z)'_

n

E n

n, n
- Fj-l ) + 2Fj-2] i

' . n - n, n n
-O/24 [Ej+2 -4 (By,,"+ By ) v 6B EJ._ZJ

The last term in the third level equation is a stabilizing term
without which the systexh would be unconditiénally unstable for all
values of V. |
Application of Rusanov's technique to the linear wave equation
given by Equation...( 13) yields the following modifi'evd partial dif-

ferential equation:

: '3
- ' 3, .
ut+cuxé-c‘A2§—(-l§--4l/+V ) u

(22)

-4 .
TAC. A 2 L4 g
-C 120 (58 -4- 15V +4V ) u + coces + L]

_It is readily apparent from the modified equation that to third
order the linear wave equation is solved exactly as could be ex-
pected since Rusanov's technique is. third-order. The lowest order
error term which contains the fourth derivative is dis.sii)ative in
nature with the next higher order term being dispersive. It is also

noted that for 8= 3 and VY = 1 the error terms shown on the right



i5

side of Equation  (21) vgnish. Kutler and Lomax(lg) have shown
that under these conditions the shift condition is satiéfied
yielding an exact solution.

(7)

In so far as stability is concerned Rusanov "has shown

that the stability criteria are given by

t
Ve e e <

(23)
aw?® - vi<Sgs |

which indicates that the shift condition also satisfies the
stability requirement. It would appear that when one opeiates at
mesh ratios less than unity the valué of 8 should be set to
mdst nearly satisfy the shift condition, which is a difficult re-

quirement to meet.
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SOLUTION OF THE MODIFIED BURGERS‘' EQUATION 
Introduction

A major problem enéountered in fhe application of finite dif-
ference techniques is the effect of eigenyaiue variétion throughout
the flow fiela. Stability analyses have shown that eigenvalue
magnitudes determine stability bounds which uitimately dictate ac-
ceptable grid mesh ratios. In addition, the modified partial dif-

- ferential equations are used to predict the best_grid mesh ratios
f;bm an accuracy viewpoint. From previous work it has been noféd
that for best results one should operate as closely as possible to
the upper stability bound cor;ésponding to a éourant number of unify.

_ Utilizing a fixed coordinate.system in which the mesh ratios are
constant to detgrmine a flow field in whi;h thezeigehvalues are non=
constant precludes the possibility of operating at the.best Courant
number throughout the flow field. Hence, it is quite desirable to
use a finite difference technique capable of good flow field resolu-
tion through a wide range of Courant numbers.

An investigation of the two numerical techniques under consid-
eration is presented in this section in an attempt to evaluate
their behavior when applied using a variety qf,off-design Courant
numbers. Particular attention is given to the spreading of dis-
continuities and oséillations of the solution near points of réﬁid
change of the dependent variables.

The hyperbolic form of the equation introduced by J. M. Burgers
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is a valuable aid in studying the ability of a given numerlcal
(20)

method to produce a solutlon to a nonllnear equation . The

modified Burger's equationiin conservatlve form is given by

3 2
'—:‘*-éix(g—)=0 | (24)

Kutler has successfully used this equation as an analog of the
inviecid Euler equations and studied the solutions produced by
various first- and second-order methods(s). Shocks and rarefactions
which occur in the gas-dynamic solutions were siﬁulated by introduc-
ing discontinuities in the initial data.

A eimilar procedure is followed in this section to compare
MacCormack's technique, which Kutler found to be a superior second-
order method, with the more recent third-order technique developed
by Rusanov. In order to accomplish thls, two dlscontlnultles of
different.magnitudes are'introduced in the.lnltlal data 51mglat1ng
shocke of different strengths with different propagation rates.

In particular, the problem is to determine the solutioh of
the modified Burger's equation subject to the initiai conditions

shown in Figure 1 which are

u=0 _ x ;>x2

u=u, o x2>x>x1 _ - (25)

u = u, x Xy ‘
where
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u(x, 0)
u=u
uy 1
u =
uyl—=— - u,
u=0 N
| |
X1 %2

Figure'l. Initial conditions for Burger's equation

Figure 2. Space-time solution for overtaking discontiﬁuities
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Since this problem represents the intersection of two drscontlnultles,
the exact solutlon 1s presented in two regions. The flrst reglon

is prmor to the 1ntersectlon of the dlscontlnultles and the second

is after the intersection (Figure 2). The exact solutions in these

regions are’

‘Region 1-
' ' X =X u
u(x, t) =0 . ’ T > B
u_+u u,t
, _ A : 12 2
u(x, t) = u, . X, + =3 _t<>t<x2+——21
. X = X u u
_ 112
u(x, t) = uy r <
. (26)
Region 2 :
N X Yy
u(x, t) =0 .%.>§_
o | x -1
uix, 1) ='uy i<z

Stability Analysis

Next a stability analysis based on anplification matrix theory
is performed on Equation (24) to determine the bounds on the mesh
ratio [}t/[}x for Whlch the numerical techniques are stable.

Equatlon (24) can be written in the form of Equatlon (2) with

E=uand A=u yielding an expression in the form

it
(o]

u, +uu (27)
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which is similar to the linear wave equatibn with the wave4speed
equal to the quantity u.
In view of Equations (20) and (23) the stable range of mesh

ratios for both the MacCormack and Rusanov methods is givén by

uﬁ}c<1 | A (28)
For those points in the solution field where »[kgﬂﬁ}x numerically
exceeds the reciprocal of u one can expect an instability to exist.
Numerical solutions_are usually obtained by uéing fixed intervals
in time and space ( [&;, Ax). Hence, one must search the field to
determine the maximum of the eigenvalue; u; for this value will
determihe the largest stable}[}&/[&x. That is, for.stable solutions
using a fixed mesh ratio theAstability criterion is given by

Lt L | (29)

B S Ty

It is noted here that in more complex problems the maximum.eigén-
values cannot always be determined until the numeriCAl process is -
under way. Hence, it is not an unusual procedure to change the

mesh ratios as the numerical process continues.
Numerical Solutions

Two double-shock geometries were considered for each numerical

technique. In one case u, = 3 and u, = 5 whereas in the other case

u, = 1 and u, = 5. They are termed the 5-3-0 and the 5-1-0 prob-

lems respectively. In both cases the discontihuities, called
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waves, were located at X, = 15 and x, = 36 and were contained within‘
one interval. A total of 100 intervals was used in'thé x direction
with the interval size Zl# equal to unity.

* The integrations in timé were allowed_to proceéd_qu a tofal
of 60 steps, a sufficiént time intexrval to allow the faster moving
wave to overtake the slowef. The time interval for the integratioﬁ
was chosen to be the maximum allowable con;istent with the criferion
given in Equation (28). Under theée circumstances the large émp;i-
tude Wﬁve is always being coﬁputed at the ﬁaximum Courant number
which, according to the linéar analysis, should;yield the best
poésible solution. For the 5-3-0 and 5-1-0 cases fhe smaller
amplitude waves are being computed af suboptimal Courant numbers
of 0.6 and 0.2 respectiveiy.

The dependent variable is held constant at both ends of the

spatial grid which provides boundafy cénditions for the $ysteﬁ;
The integration is terminated well befbre the waves"intetéect fhe
boundary.

The 5=3-0 double-shock problem is soived first. Figures 3,
4 and 5‘représent solutions using Rusaﬁov's technique with a
Courant number of unity aﬁd a stability parameter, ES, of 3, 2 and
1 respectively. Figure 6 représents a solution using the MacCormack
technique with a Courant number of unity. Figure 3 indi;ates that
at V = 1 and 8 = 3 a stable solution exists throughout the field.
The large amplitﬁde wave is being computed at the optimum condi-

tions while the small amplitude wave is beihg computed at a
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Figure 3. Burger's equation solution, Rusanov technigque.
5=3-0 case for 8 = 3,0 and Courant number = 1
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Figure 4. Burger's equation solution, 'Rusanov technique..
5=3~0 case for 8 = 2,0 and Courant number = 1
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Figure 5. Burger's equation solution, Rusanov techhique._
5-3-0 case for 8 = 1.0 and Courant number = 1
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Figure 6. Burger's equation solut_ior_x, MacCormack technique.
' 5=-3-0 case for Courant number = 1
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suboptlmal Courant number of 0.6, The magnitude ef'the stability
parameter, 8 , falls within the stable range throughout’ the field.
As'predicted, the‘large wave resolution is very good with few
osc1llatlons occurring at the discontinuity and, at the same time,
the dlscontlnulty is conflned to one interval. The smaller amplitude
wave, however, is not as well behaved. The off-design Coufant num-
ber at thls point in the solution field causes undesirable osc1lla—
tions to occur at the discoﬁtinuity as a result of the dispersive
termé_in the modified equation. The spreading of the disCohtinuity
caused by the dissipative terms in the medified equation is ﬁot
extremely significant at this Courant numbex eince the diseontinuity
femains captured in essentially one interval. Figure 4 shows the |
results for V= 1 and 8 = 2, For the large wave 8 is iﬁ the un-
stable range‘accordihg te the linear theory.> Although it eppears
that the actual numerical solution is stable an excessive number of
large amplitude oscilletions occur yielding a highly uﬁdesirable
solution. For the lower amplitude wave the 8 value is in the stable
range. The oscillations at the.discontinuity are fewer than the
previous solution indicating that'perhaps the stability parameter
should‘be set at less. than the'meximum value for the best results

at off-design_Courant numbers. In both cases fhe discontinuitiese
remain isolated between essentially two grid pointé; FigﬁreAS in-
dicates a solution for which }V =1 end 8 = 1, For the iarge
amplitude weve the value of é; is far outside the stability range

and, as a result, an instability occurs at this point in the solution
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field. For the small amplitude wave the é; parameter is slightly
outside the linear stability range yielding a solution with excessive
oscillations but apparently marginally stable. Figure 6 shows the
MacCormack solution at a Courant number Of-l,olfor the large wave
and a Courant number of 0.6 for the small wave. Essentially no
oscillations occur at the large wave while even at the off-deSign
Courant number very few oscillations occur at the small wave. Both
discontinuities remain isolated between two grid pOints.

Figures 7, 8 and 9-represent a Rusanov_solution to the 5-1-0
problem with V=1 and for values of é; ofl3; 2 and 1 respectively.
The same'general'trends occur with the addition ofisubstantial
amounts of discontinuity spreading_at the lower‘waye whien is
being computed at a Courant number of 0.2. Figure 10 shows the
MacCormack solution which contains, overall fewer osc111ation
problems and a lesser amount of discontinuity spreading.

On the basis of the information obtained from the solution of
Burger'spequation it appears thatsit_is desirable to use the Mac-
Cormack tecnnique rather than the Rusanov technique. Shock resolu-
tion and over- and under-shoot characteristics are better over the
range of eigenvalues considered At the lower Courant numbers the
shock spreading with the MacCormack technique appears to be less
severe than that resulting from the use of the Rusanov technique.
In addition, the computer storage and computation time requirements

are significantly lower for the MacCormack technique.
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Figure 7. Burger's etjuation solution, Rusanov technique.
' 5-1-0 case for 8 = 3.0 and Courant number = 1
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Figure 8. Burger's equation solution, Rusanov technique.
' 5-1-0 case for = 2.0 and Courant number = 1
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Figure 9. Burger's equation solution, Rusanov techniqué.
5«1-0 case for = 1.0 and Courant number =1



31

\

NUMBER OF TIME STEPS - o

Figure 10. Burger's equation solution, MacCormack technique.
5-1-0 case for Courant number = 1
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TWO-DIMENSIONAL WEDGE FLOW FIELDS -
Introduction

To fufther éévelop the comparison between the numerical tech-
niques under consideration a study of the two-dimensiénal wedge in
supersonic flow is undertaken. The equations of motion governing
the flow about a two-dimensional wedge Qifh the same half-angle as
is éncountered'at the‘leading edge of the three-dimensional rectan;
gular wing are solved at a Mach number of 2 using bofh numerical
techniques. Then a comparison with available exact éolﬁtions ié
méde to evaluate the berformance of the techniques. Of particular
interest is the q&pability_of the techniques to develop crisp shocks
in the proper locations as well as minimize the number of-oscillaf'
tions of the debendent variables in the neighborhood of the shock.

Three differenf approaches may be used to obtain a numericai
solution of the wedge equations.of motion.

In the first approach the complete unstéady equations of motion
are integrated subject to bounﬁary conditions'dictated by the wedge
geometry. Since the equations afe hyperbolic in the time variable,
the problem generated is of the initial value type. The integration-
of these equations iﬁ time proceeds from an appropriate set of
initial data and is terminated once the flowﬂvaiiables reach a
steady state condition.,

The sécond approach_is.one used by Kutiéi(s). The full-biown

equations of motion are reduced to a set of steady equations by
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setting ali time defivafives gqual to zero.which would be the situa-
tion in the case of the steady state solution. The resulting equa-
tions are hyperbolic with respect to the_x-coordinatet(the coordinate
most nearly aligned with the.flow direction) as long as the x-compo-
nenf of velocity remains lécaliy supérsonic. Agaih, the system
reduces to aﬁ initial value problem and can be integrated in the x-
direction starting from an appropriate set of initial data and sub-
ject to boundéry conditionsldictated by the wedge geometry. Since
the flow is conical in nature the flow variables in the solution
are constant along rays from the origin, a condition which serves
>as the convergenceacfiterion in the numerical process. It ié readily
apparent that the x-coordihate'in the steady equations is quite
analagous to the time coordinate in the set 6f timé>dependenf
equations.

The third apprbach is one that has bgen ﬁsed by Andexson and>
Vogel(21). The full-blown equations of motion are transformed
from a Cartesian coordiﬁate system to a polér'coordinate System in
which one of the coordinates (r) is the distance'along a ray -from
the origin. Again, the set of equations is hyperbolic in time..
Since the flow is conical, the steady staté Qélues of the r deriva-
tiveS are initially‘;et equal to zero yiélding é simple set of
hyperbolic_eQuations containing one less indépendenf variable than
in. the case of the full-blown sét. The equations are inteéfated
in time starting from ;n appropriate set bf initial data. Thé

‘solution is realized when the dependent variables-no longer change
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with time.
| In genérai, approaches 2 and 3 require less computer stofage
aﬁd coﬁputation time than isrthe case in approach 1, since the
equations of motior:cqntain‘one less independent variable.than’
those 6f approach 1. However, approach 1 is probably'more Versatile'
sinceiit is not dependent upon the conical flow requirement.
Approach 2 is adopted for the investigation undertaken in this
paper. The numerical solﬁtions for the fﬁo-dimensional wedge as
well as the leading edge of the rectangular wing are obtained

through humerical integfafibn of the steady equations.
Steady Equations of Motion

The two-dimensional wedge flow equations of motion in a
Cartesian body-oriented coordinate system for a sfeady, inviécid,

(5),

nonheat-conducting and adiabatic flow are given by

a(,b- ) QPR v) _
a:xu + a yv‘ =0

A(p+Pw®) | d(Puv) _
o X . oV

2(Puv) , d(p+Pv?) _
o x oV

p=,§-[1+22-_1(u2+v2)]' |

These equations are the continuity equation, x- and y-directioh_

|
(@}

* (30)

momentum equations and the integrated form of the energy equation

which is usually referred to as Bernoulli's equation.- Thé. dependent



35
variabies (/3, u, v,»p) in the equati;ns are.iﬂ é dimensiéniess
form. The nondimensiona;iziﬁg parameters for the preséure, density -
and the velogity compohents are gamma time$ the free sfream sfagna-'
tion preSsuré,'fhe stagnatioﬁ aénsity and the stagnatioﬁ Spéed of
sound re#pecfivelﬁs |
Three partial differential equationé of motion are in’ the

conservative form

OF =0 : ' , - (31)

o]

]
Q)
<

where E is-a vector whose elements are conservative variables

"given by
L u ".‘
_ 2 w” 2 o . -
E = P+ Qu ‘ : L (32)

/)uv

and F is a vector whose elements are conservative variables

given by

pv |
puv - - N
P+ f)vz | '

&l
"



36

Exact Solution

The exaét'solution to the two-dimensional supersonic wedge
c ol . - . . (22
is clearly presented in the text written by Liepmann and Roshko( ).

The flow field over the wedge surface behind the shock is uni-
form and is in the direction of the wedge surface. The wedge
surface pressure is given by

P - P " ’ S .
W @ 2 2 .2 , v . :

o 7% (Mg 51n,8 1) , (34)

and the shock angle can be determined using the equation
Mo 2sinZB -1

My 2(’)’+COSZB y+2

Two values of shock angle (ﬁg) satisfy the equation. The smallest

(35)

tan @ = 2 co

vélue, the proper solution, represents the weak solution for at-

AN

tached shocks.
Wedge Coordinate System and Resulting Grid .

The Cartesian coordinate system used for the wedge flow field
analysis is aligned such that the x~axis is in the direction of the
wedge surface with the y=-axis normal to the surface. Hence, the
wedge surface_is a.constant-coordinate surface, a highly desirable
situation with regard to boundary conditions. Applicatioh of
boundary conditions for body surfaces in ﬁonaligned coordinate
systems can be extremely difficult and, at times, may present

stability problems.
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The -grid system for the numerical techhiques generatedrby
the coordinate system is shown in Figure.ll. Sinee only the upper
surface flow field is to be considered the lower wedge surface can
be ignored. The existence of the sublayer is a result of the ap-
pllcatlon of boundary conditions and 1s dlscussed later. It'isA
also noted that for thls coordinate system the free stream velocity.
vector is canted with respect to the x-axls.

A second coordlnate system used in the two-dlmen51onal wedge
analysis but not presented in this section 1s deplcted in Flgure
12. The system is termed a "semi-polar" system. "As with the

Cartesian system, the wedge surface is a constant-coordinate surface.
'Numerical Solution Technique

The integration in the Carfesian system is initiated using free
stream values of the flow variables at each grid-point in the y-
direction aieng‘the x = 1 line. This is commonly termed an
impulsive start. The'integrefion in the x-direction continues
until the x = 2 line is.reached. At this point in the ﬁuﬁerical
process Kutler's stepback procedure is impelemented(s). This allows
the integration to be re-started at x = 1 with updated initial data
taken from the x = 2 line. In Figure 13 it is noted that grid
points numbered glw4,,6,'..,,; m along the x = 2 line are on the
same rays froh the origin as the.grid points 2, 3, 4, ...

m/2 + 1 along the x = 1 llne. Since the flow is copicai,

data may be shifted along the rays from the x = 2 to the
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X = 1 grid points generating new inifial.data; For the scheme to
work properly.thé érid points m/2, ...., m must be outside the,
shock wave in thé free stream. Soigtion convergence occurs when
the initial data.génerated by successive stepbacks becomes constant.

It is noted that for the semi-p&lar system depicted in Figure
12 the stepback procedure becomes somewhat meaningless since the
corresponding grid.points at all x = constant stations lie on rays
from the origin. Hence, the integration can proceéd in the x-direc-
tion until no change occurs in the dependent‘véfiableé alohg'the
rays. |

Boundary conditions must be specified at the outer grid points
and at the sublayer grid points siﬁce these are not integrated
points. The depén@ent variables at_the outer grid points are'moré
easily handled. The grid is set up so that the outer edge is always
in the free stream_fesuiting in known constant boundéry data. The
grid points along the sublayer present a more difficult problem.
The normal - velocity component at the surface of the wedge”must
vanish since flow cannot pass through the surface. To satisfy this
condition the normal velocity componeht is t?eated as an odd func-
tion at the body surface. That is, the sublayer value‘of the normal
velocity componeﬁt is set equal to the negative of the normal vélo—
city component one layer abovg the surface. The values of fhe re-
maining dependent vériables'along the sublayer are evaluated using
the reflection technique as used by Bohachevsky-ahd Rubin(a). The

basic assumption used in this technique is that thé_normal derivatives
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of the ‘dependent variables vanish on the surface; Hence, the
vaiiabl‘es are treated As even functions on the wedge. That ié,
the dependent variablés along the sublayer 'are set equal to their
values one mesh point above the body. In view 6f th_e exact solu-
tion the reflectién téchnique is exact for wedge flow in that the

normal derivatives are zero.
Numerical Solutions

Equations (30) were ihtegrated using the Iowa St#te University
IBM 360-65 computer system for. both Rusanov's and MacCormaék's
,methodg for a wedge with a 7.5° half-aﬁgle at a Mach number of 2.
Two mesh ratios (Ax/Ay) were used. One at 1.272 which is near
the experimental maximum for stability as determined by.Kutler
and the other at 1.0(5). Three values of the stability pa‘ramete.r,
8 , associated with the Rusanov technique at a mesh ratio of 1.0
were used to assess t_he effect of 8 on the solutioh. In éll Acase.s
the‘grid points‘iri,the y=-direction co'nsisf‘e!diof a total of 30 mesh '
points.

Figure 14 shows the pressure distribution normal to the wedge
surface usihg Rusariov's method at the lower mesh ratio of 1.0 for
8 values of 1.0, 2.0 and 3._0. The solution for a 8 of l.Q is
distinctly inferior to those obtained‘ for 8 values of 2.0 and 3.6.
This is a résuit of the excessive overshoots and undershoots in the
vicinity of the shock. The solution for 8 = 2.0 appears to yield

a ci‘isper shock than the solution for 8 = 3.0 as welllﬁas lower
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amplitude oscillations in the free stream after the éhOCR_is
encountered.

Figure 15 shows a similar pressure distribution usipg the
MacCormaék technique for Z&x/zsy = 1.0. Although there is some
overshoot from the shock layer side, the behavior for the free |
stream side is very good with no oscillations occurring.

Figures 16 and 17 show the pressuré distributions for the
Rusanov and MacCormack methods, respectively, at the higher mesh
ratio near the expérimental stability bound. The Rusanov'stability
parameter, 8 , was set equal to 3.0 which, according to linear
stability theory, is the only stablé value when the maximum mesh
ratio is used. The MacCormack technique develops a crisp shock
with few oscillations as the shock ié encountered on either side.
The Rusanov solution, on the other hand, develops a fairly crisp .
shock but exhibits excessive“oscillations on the free stream side
of the shock. Whil_e decreasing the value of. 8 improves thé flow
fiéld-behavior in the free stream, the shock layer portion of the
solution becomes less well behaved in this case.

In all cases, the shock is propérly'located.and the magnifudes
of the dependent variables are correct.

There is about a 30 per cent saviﬁgs in computation time as
well as a substantial decrease in storage.:equirements using the
MacCormack technique. Based on these criteria és well as the re-
sults discussed above, it would appear'that fhe MacCormack.technique

is superior for solving the two-dimensional wedge flow problem in
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wedge surface.

number of 2 for Ax//\y = 1.272 and
'x = 1.0
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the range of Mach numbers and wedge angles examined here;
Additi§nal experiments were perforﬁed usiné the semi-polar

coordinate‘syéfeﬁ described earlier. ‘Although these,solufions

are not discussed hefe,:they proved to be satisfactoryf fhe major

difference noted was thaf computation times required to reach a

solution were longer.
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THE RECTANGULAR OONE-TIPPED WING
Introduction

The primary objective of this investigation is fo develop,
by means of finite difference techniques, the flow field about a
body in supersonic flight; Kutler and Lomax(23) have alfeady
investigated a variety of wings, bodies ahd their combinations
including two-dimensional wedges, two-dimensional and_axisymmefric-
nonconica; bodies, cones, planar delta wings and delta wiﬁgs with
dihedral mounted on.conical bodies. The latter two studies were
restricted to supersonic leading edges. His results obtained
using shock capturing finite differenée téchniques agree weli with
the method of charécteriétics solutions and Available experimental
data.

The body considered in this paper is a three-dimensional
rectangular wing with a symmetric double wedge cross section to
which>is attached a doﬁble cone tip as shown in Figure 18. The
cone half-angle is chosen to be less than that of the tip Mach
‘cone yielding a Subsopic tip. Hence, the upper énd lower surfaces
are not_ihdependent as they are in the case of supersonic edges.

The flow field about the body can be separated into three
distinct regions as indicated in Figure 19,

Region I contains the forebody flow field which begins at the

cone-wedge vertex and ends at the mid-chord point. The wing aspect

ratio and free stream Mach number are_choseh such that the Mach



" ".Figure 18. Symmetric double wedge r_eétangular wing with double cone tip -
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Figure 19. End view of 3-D rectangular wing showing the
three regions of the flow field :
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cones from the wing tips do not intersect on thevforebody. Heﬁce,
thevfloﬁ in this region is eﬁtirely conical. That is, flow variables
along rays from the vertex of the cone aré constant. The flow field
solution is generated using conical flow methods simiiat»to those
discussed in the section on 2-D wedges.

Region II contains the afterbody which begins at the mid-choxrd
point and ends at the aft cone-wedge vertex. The partial différen%
tial equations.governing the flow in this region represent an
initial value problem that is solved using initial data generated
in the forebody solution. That is, the flow vériabie magnitudes in
the plane containing the base of the forebody are the initial déta
for the afterbody.

Region III contains the wake behind the wing which begins at'
the aft cone-wedge vertex and extends downstream indefinitely.
Again, the problem in this reéion‘reduces to an initial value
probleﬁ with initial data generated usiﬁg the afterbody solution.

The sections that follow contain discussions of the pfoblems
and the solutions associated with each of the tﬁree regions. Dis-
cussion t0pi¢slinclude equations of motion, coordinate systeﬁs,

stabiiity, boundary conditions, solution‘techniéﬁes and results.
Equations of Motion

The basic flow equations that govern a supersonic flow are
given by the conservation of mass, energy and momentum. The first

two equations are scalar while the last is a three-comporient vector
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equation yieldiné a tofal of five scalaf equations of motion. Fof
a steady, inviscid, hbnheat-COnductiﬁg and Adiabatic flow these
'equatioﬁs in vecfdr notation are givén by;iréépectivély- 

V: (pa) =0 | |

q-VH =0 - (36
V(a%/2) + (Yx3) %q + Yp/o =0 |

For a Cartesian coordinate system Equations (36) may be written in

the scalar form as follows:

Conservation of mass
(Qu), + (/OV)y + (Qw), = Y

x~direction momentum

1
(o]

(P + Pu) + (puv), + (puw), =

y-direction momentum o (37)

|
o

(Puv), + (b + PV2), + (Pww), =
zfdirection momentum
(puw), + (Iovw)'y'-v- (p + pw2)2= o}

Energy equation
p = -_-yle- [1 - .I_'z-l (u2 + V2 +.W2)]
The dependent variables (p, Qs u, v, w) in Equations (37) are in
" a dimensionless form. The nondimensionalizing parameters for the

pressure; density and velocity components are gamma“ times the free
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stream stagnation préssure, the stagnation'density-and thelstagna; o
tion speed of sound, respectiVeiy.' |
It is noted that only four of Equétions (37)'ére paftial dif-
ferential équations. The fifth equation, the énergy équétion, is
used in its integrated form to simplify the integration pfocedure.
Equations (37) and equivaleht equétions in other co¢fdinate
systéms can be writ£en in the general form

E +F +G +H=0 . | S (38)
x y 2z . :

where E, F and G are vectors whose elements are conservative
variables given by

pu

L 2
P + p«.u

f)uv v

Puw

(39)

]
n

f)uv
p+ pv’

f)vw

Py
puw
f)vw

p+ pw/

).
[{]

(40)

ol
n

(41)
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The vector H represents the non-homogeneous portion of Equatioﬁ (38)
and is identicelly zero for the Cartesian formvof the equation of
motion. Howe§er, it is noﬁzero in the equations of_motion associated
with the forebody and afterbody flow because the Carteeiaﬁ system

is not employed in these regions, only in the wake region. The
coordinate systems and associated equations of motion fof regions

other than the wake are developed and discussed in subsequent sections.
Numerical Technique

Based on the analyses in previous sections concerhing the
modified Burger's equatibn and the twosdimensionel wedge flow solu-
tions, the MacCormack technique was chosen over the Rusanov tech-
nique. The criteria used fo make the comparison were solution time
and eomputer storage requirements as well as flew field resolution.
Over the range of eigenvalues considered the MacCormack technique
produced crisﬁ shocks with few oscillations on either side of the
shock, generally better than the Rusanov'techﬁique., Solution times
were, on the average, thirty per cent less with a‘substahtial de-
crease in the computer storage requirement.

The conclusions reached thus far may be somewhat misleeding in
‘that there appear fo be situations in which the Rusanov technique
is quite superior to thet.of MacCormack. Ande:son and'Vogel(21)
have investigated the shock reflection problem in which a_shock‘ﬁave
intersects a flat surface resulting in a.eecond reflecfed Shock. |

The equations of motion governing the flow are the normal fluid flow
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equations discussed in this paper. One encbuhters a ﬁidé variation .
in eigen&alqe magnitudes throgghout the fiéw.field in this situation.
Hence, utiliéing a constant mesh ratio in aépLying the numerical-.
technique qausesra portion of the solution to bé de&eloped at a vexry
low effective Courant humber. In those cases where the eigenvalues
vary as much as-.a factor of ten, Rusanov's teéhnique produces
distinctly superior solutions. However, no reflected shbcks are
encountexed in the rectangular wing problem énd, as a result, such
severe eigénvalue variations do not occur thréughouf the fléw field;
The MacCormack predictor-cé:rector equations as appiied to

Equations (38) are given by

~ n+l ‘n. : . n n
E. = E, - % F. - F.
Jsk J.k y ( J+l,k J.k )
A n n " n
A~ S - G. - H, x
% ( Jak+1 _ _J’k ) J:k A
n+l _ 4 - n., 6~ n+l > ~& n+l n+l,
B =% [Ei,k "Bk T % Fje = Fio,c )

N\x ~ n+l n+l, o~ n+la.
‘&‘Gj,k -Gk ) T Hy o Ox

The tilde that appears bver certain of the variables denotes fhe
predicted value of that particular vaiiable whéreas n, j and k are
the indicies associated with the x; y and z directions réépectively
and serve to define the location of the g:id points throughout the

flow field.
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Stability Considerations

The quality §f solutions obtained using Equations (42) depend
to a great extent upon the magnitudes of the mesh ratios‘ZSX/ZS;
and_[}x/[&z. Operation at mesh rétios outside the stable range
leads to divergence whereas values well below the maximum stable
values lead to poor flow field resolution in the neighborhood of
the shock. Hence, it is quite desirable to have .a priori knowledge
of stable ranges of the mesh ratios in setting up the flow field -
grid.

Kutler and Lomax(23) present criteria based on émplification
matrix theory to theoretically predict_étability bounds in multi-
dimensional problems. To utilize the analysis one must know the
eigenvalues of the coefficient matricies of the gas-dynamic equa-
tions of motion. In his work Kutler(s) developed the coefficient
matricies for the equations of motion in a Caftesian systém-and
determined the associated eigenvalues. For convenience, his work
is outlined in Appéndix A. The stable ranges for the mesh rafioé'

are given by

lé§§ <; :)\:max
Lx<

where x A " and )\B represenf the maximum eigenvalues of the
max max o '

(43)

B
max
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A and B matricies respectively. _Ohe can obtain approximéte values
for the maximum eigenvalues to be used in conjunction with Equations
(43) to set up a grid in which the mesh ratios are near their maximum

value yielding near-optimum numerical results.
Region I Flow Field Analysis

Forebody geometry and coordinate Systems

That portion of the body éohtained between the leading edge
of the wing and the shoulder at mid-chord constitutes the forebody.
The‘geometry of the forebody and the éssociated Cartesian coordinate
system are depictedvin Fiéuré 20. As noted in FigﬁreAZO, the foré-
body can be sepa:afed into two paits,. The first part,'tﬁe wing
proper, consists of a wedge wifh half-angle éw While the second
part, the wing tip, consists of a'half-cohé having the same hélf-
angle Oc as the wedgé, Hence, a smooth t:ansitioﬁ is made from
the wedge to the cone with no discontinuitie; in surface slope.
Since the wing is nbt.cambefed, the forebody croés séction is
symmetric with respect to the choxd pléne.

~ The Cartesian coordinate system aésociated with tﬁe:férébody

has the-origin at the apex of the cone. The y-axis is perpendiéular
to the plane of symmetry, the x-axis is in the chord plane (the
plang of symmetry) and the z-axis extends along the span of the
wing. The positive directions are.as shown in Figure 20.

It has been noted_eérlier that a co&rdinafé sysfem in which

the body can be described by ‘a constant cerdinéte surface is highly
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desirable. For the férebody this is mosf-easily.accomplished using
two systems, one for the ‘wing proper and one for the half-cone.

The coordinate system used to deécriﬁe the half-cone and.the
corresponding.flow field région is shown in Figure 21. The coordinate
' defines the angle bétween'the interface plane (the plané containing
the intersection of the wedge and cone) and the cone meridian plane
containing the point (éE, 9, #). The coordiﬁate é defines the_angle
between the cone axis and the radius to the point of intérest. The
coordinatg E is simply thé X positidn of the boint.

The coordinaté s&stem associated'with the forebody wing.proper
and cdrresponding flow field is shown in Figure 52. Only the upper
h#lf of the body is shown. The coordinate @ represents the angle
between the interfacé plane and the plane normal fo the chord plane’
and conpaining the radius to the poi‘nt‘ V(f » 9, ¢).' The coordinate
© represents the angle between the chord plane and the projection
of the radius on the .ihtérface plane. Tﬁe coordinate E is the x
position of the.point.

The grid system generated by the coordinate system ié defined
by the intersection éf a set of @ = constant planes, a set of @ =
constant surfaces, one of which'defines the body, and a- §:= constant
plane. The grid in a'typical- §-= constant plane is‘depicted in
Figure 23. The grid points associated with the wedge in the inter-
face plane are identical with those of the.half-cone. It isAnoted'
here that corresponding grid points in successive §:= constant

planes lie along rays from the common origin of the coordinate
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Figure 21. Coordinate system used to deScribe;half-cone
and corresponding flow field region



Figure 22. Coordinate system used to _déscribe the wing proper of the
forebody and corresponding flow field region
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systems. Hence, the stepback proceduré becomes somewhat trivial

in the forebody solutions.

Forebbdy flow equations of motion

To obtain flow»field solutions in Régioﬁ I the flow equations
' must be transformed from their Cartesian form given in Equations (37)
to the new systems described in Figures 21 and 22. The mechanics
of the transformations are presented in Appendix B.

The transfofmed equations of motion for bbth the wedge broper
and fhe half-cone for the forebody region as given by Equations (B4)

and (B5) are of the general conservative form

56 + Fy +'§¢+H=o (44)

. . '.' — f— |
The conservative variable vectors E , F

-
, and G as well as the

nonhomogeneous term-H for the wedge proper are given by

- ' —-— . . V
E =¢E - (45)
F = =-sin@coseE + cos OF : ' _ (46)
_r . 2 . ‘

G = -sinfcosgE + cos“@gG (47)
- . -

H = (—25in20 - sin2¢ + coszﬁ)E

: - (48)
+ 2sin@coseF + 2sinfcosdG .

and for the half-cone are given by

E = ftano'B' - | ©(49)
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F = -Bsin 0 + Fsin@cos@cos@ + Gsinecosesing (50)
G = -Fsin@ + Gcosf ' (51)
-t . -
H = (2sinGcose - tan®)E

- 2 = .2 (52)
+2Fcos@sin“® + 2Gsin“@sing -

where the vectors E, F and G are the conservative variables
associated with the standard Cartesian form of the eduatiohs of
motion and éré defined in Equ#tidns (39), (40) and (41).

The scalar cémponenfs of Equations (44) represent the conserva-
tion of mass and the x, y and 2 diréqtiob momentum eqqations. The
energy equation is not included in this set since it is used in the

integrated form as given by the last of Equations (37).

Evaluation of gas dynamic variables from conservative variables

In the integration process, the‘Sét of prédictoi;corrector
equations developed by MacCormack are used to determine only the
numerical values associéted wifh‘the scalar components of the vector
E'. Each time that E' is updated along the integration path in the
6.-direction the remaining conéervative véctors F and G as well
as the nonhomogeneous term T must be numerically e§aluated. Since
F', E;" and ﬁ' are fun;gions of p, ,O , U, V, w one nust extricate
from E' the gas dynamic Qariables.

In the coordinate systems used to describe the various regiohs

-t

of the wing and surrounding flow field the variables E :aie simple

functions of only the Cartésian counterpart E. Hence, it is



65

convenient to evaluate -‘the gas dynamic variables using a two-step
process. In the first step the scalar components of E are e\}alua;:ed.
Secondly, the gas dynamic variables are evaluated using the inverse
of the relationships E (p,/o , U, Vv, w) and the integfated forﬁl of‘
the energy equation. The explicit forms for the 'v‘ariables P> p s

u, v and w are developed in the following work. |

In view of Equation (39) the scalar components of E are given

by
Bl = /Ou | : (53)
E, =P+ ,ouz | | (54)
53 = Quv : (55)
E, = puw ' (56)

Dividing Equations (55) and (56) by (53) yields
v = 53/131 | ' | - (57)
w = E,/E, (58)

Combining Equations (53), (54) and the last of Equations (37),
the energy equation, yields |
W
YEx .+ | [ YE2 ° v+, Y=1 2 -1 2
E, - . + 4 [ ) ( Vi =W - 1£l

1
u = — (59)

(y+ 1)
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The positive sign is used since flow is supersonic throughout the
flow field. Equation (53) may then be used to evaluate density as

follows,
p = E/u ' ; (60)
and the energy equation for préssure

__ R -1 2 o 1

P=—-.>7'(1-l2—q) . (61)
. — ¥

The relationships between E and E for the wedge proper and

the half-cone in the forebody region are given by Equations (45)

and (49) respectively.

Initial and'bouhdary conditions

In the application of MacCormack's technique the grid points
existing on the boﬁndaries of the grid system depicted in Figure
23 are not integrated points. Hénée, a set of bpundary conditions
must be developed to specify fhe values of tﬁe gas dynaﬁic variables
élong the upper and lower two-dimensional wedge boundaries, the
outef free stream boundary and the upper and lower wing surfaceé.

The conditions along the outer free streém boundary are most
easily specified since the grid is always made lé;ge eﬁough that
the outermost grid points always lie outside the shock in the free
stream. ‘Thus, the gas dynamic variables at these locations retain
their constant free stream valués..

The upper and ldwer two-diﬁensio;al wedge boundaries are

placed toward the center of the wing well outside the Mach'cones*
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emanating from the half-cone verticiés of the wing tips. Herice,
these grid points exist in the two-dimensional wedge regions of the
wing flow field for which exact solutions are kﬁown. The gas
dynamic variablesTalong thése boundaries are frozen at tﬁe two-
dimensional wedgé flow values dictated by the exact solution. The
dimensionless shock iayer pressure is given by Equation (34);

(22)

the dimensionless density is given by

R, (Y+1) Mg sin B
’3 3 '(."y"‘l) Mo 2 sin2,8 s 2

(62)

and the dimensionless rectangular velocity components are given

by

u (Y -1) Ma,2 sinZB "+ 2

W
= (63)
Yo (Y+1) sz sinB '
v u |
W w
— = ———— tan @
9 9 w - (64)
w, =0 ' ~ (65)

1 ]
where B = Bupper + (O for the upper surface andIB = ,Blower - a

for the lower surface (see Figure 24). Equation (35) defines the
shock wave location for the upper and lower surfaces in the two-
dimensional regions with @ = S, - d and © = Ow + (T for the upper
and lbwer surfaces respectively.

The boundary conditions that mustv be specified along the

surface of the wing in each f = constant plane are somewhat more
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Upper Surface Shock

Chord Plane

Stream
Velocity

Lower Surface Shock

Figure 24. Forebody wedge cross section in two-dimensional
flow region showing upper and lower surface
shock waves and associated geometry
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complex. Although a variety of techniques has been developed many
of the procedures are fairly difficult to impiement and sometiﬁés
quite costly in terms of COmputing times. Also some yield question-
able resulfs.

Abbett(24) has reviewed and compared many of the procedures
currently in use for calculation of surfaqe boundary points. In;
qluded in the survey are reflection techniques, explicit and implicit
differencing using,one-sided derivative-Approximations, characteris-~
tics techniques and techniqﬁes utiliziﬁg extrapolation from interiorxr
points to the bouhdary. In addition, Abbetf(24) hés developed a
new scheme in conjunction with MacCofmack'svdifferencing technique.
to evaluate the gas dynamic variables aiong the wall. The methodl
is analytically simple, easy to incorporate, computa£ionally fast
andvsatisfies_an entropy condition on the body surface thaf»the
other tééhﬁiques do not. Although the basic Abbett technique does
not appear to givé good results for bodies having high curvAture;

a slight modification yields a very usable scheme which is ;ppliéd
in this study.. The following paragraphs include én explanatidn of
the basic Abbett technique as well as the réquired-modificafions,

The basic Abbett boundary condition scheme is a two-step
predictor-coirector sequence in which the prediction sfép consists
of the original MacCormack predictor. All gas dynahic variables
on the body are evaluated in this step. Ih general, the predicted
velocity at the body will not be parallel to the surface. The

corrector step, then, consists of an application of a simple

'
‘
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isentrépic flow expansion or compression, whichever is necessary,
to turn the flow parallel to the surfacé. Then the body.pressure
is.corrected by the amount dictated by the expansion or compréssion
angle and the body density is determined using the surface entropy
value as well as the éorrected pressure. The modulus of the velo-
city on the body surface is corrected by using the energy equatién.
| The angle (8) through which the flow must be turned after the

prediétor Step to align the flow with the surface is given by
S = sin-1 o S . (66)

where the subscript p denotes predicted value and fi is the unit
vector normal to the surface. |

Now that the turning angle for the expansion or compression
has been evéluated, the corregted preésu;e may be detérmined using

a truncated form of the Prandtl-Meyer function(zs) given by

aM?-1)2

p M2 > 4_ MZ_ .
i -1 \-/_;‘;%8 Y w2 | QN e o) 52 o)

The subscript c¢ denotes corrected value and the parameter M denotes
the predicted value for surface Mach number. It is noted here that
for positive'. 8 quantities the flow must be éxpanded'and for negative
values the flow must be compressed.

Since the surface entropy is known.and constant the body

dehsity may be corrected using
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R =R /DY | o (es)

where the barred quantities are known constants.
The corrected velocity modulus fro@'thé energy equatioﬁ is

given by

- P, %
lq_c-|= ‘(:72_—1> (1-%6—%, o (69)

whereas the pioper velocity direction is defined by means of the

unit vector

)
)

2 _ Ep‘f (fﬁ..
I ESEC

Equation (70) is developed by removing the normal component of the

' (70)

A
n
'
n

- Y -

predicted velocity and normalizing the iesulting vector which
effecﬁively defines a unit vector paréllel.to the surface. The
co@bihation of EQﬁations (69)‘aﬁd (70) yields the cofrected |
velocity |

- -] A

9 = chl iq ' : (71)
from whiéh the réctangular components'uc, Ve and w, may be deter-
mined. |

Ferri(26) has shown that fbr cohical flow the entropy along a
streamline remains constant. Hence, the body entropy can be defined
once the body streamline is identified. Since the streamlines that
wet the body surface emanate from the two-dimensional regions outside

the tip Mach cone, the entropy values can be obtained from the exact
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2=-D wedge solﬁtions. For the angle-ofrattack'case'tﬁe upper and
lower surface shock waves in the 2-D ;egions are of di{ferept
strengths yielding different body entropies for the upper and lower
surfaces. Ferfi(26) also shows that vortical singulérities\can, in
fact, océur at thoge points in the flow field where both the normal
velocity component (normal to the radius ffom the origin) and the
crossflow vélocity component vanish. Sipce the normal component
of velocity is zero everywhere on the body surface a vortical
singularity on the body can occur ohly where crossflow stagnafes.
Hence, to apply Equation (68) one simply uses upper surface 2-D
values of E.and jS_along the upper surface 3-D region until the
crossflow stagnation point is reached. Then fhe lowei surface 2-D
values must be used. |

For bodies havihg high curvature the prediction step in the
basic Abbett technique appears to mi§align the flow on the body
surface. The Abbett corrector then continuously compresses (shock
layer region) or expands (expansion region).thevflow throughout the
integration process resulting in very large or near éero body
pressures respectively. To remedy the situation the reflection
technique is used after the predictidn step to produce more realis-
tic body flow variables‘for the Abbett correction step.

A sublayer is added to the grid systém. This yiélds a set
of mesh points Below the body surface as depicted in Figure 23.
The sublayer valuesvof the flow variables are estimated by treating

the normal velocity component as an odd function and the radial and
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crossflow components as well as the pressure and density as even
- functions at the body surface. The normal, radial and crossflow

scalar velocity components are given by
-— A
9 =9 B

— A -
= a1 (72)

C 40
i

q. Q-9, - 9
s TAN ., . R . .
respectively, where 1r is the unit vector in the radial direction.

The resulting equations defining. the sublayer flow variables are

given by

' (73)

&
2

(o]
]
L0

where subscripts 1 and 3 denote sublayer and supeflayer values
respectively.

Once the sublayer values are kﬁown the bbdy surface grid
points may then be evaluated using the MacCormack correctér. The
resulting body flow variables are uséd as inputs to fhe Abbet£

boundary condition routine which satisfies the body entropy condition.
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The integr;\tion procedure is started im'puisively. That is,
the gas dynémiq vafiables at the interior grid points are initially
sét at free strgam valués. Although differént initial data may be
used to initiate the integration fhe impulsive start seems to be
quite cohveniént. - As the integration proceeds from one E plane to
the next, the shock wave moves from the _body 'surf'ace out into the

flow field to its proper location,

Choice of grid system

In view of the stability and accuracy considerations presented
earlier the forebody grid should be chosen such that the mesh ratiqs
Af/AO and Af/Aﬂ are nea'r theiAr upper b_cﬁ;nds for stabilj.ty on
both the wedge proper and the tip half-cone. Failure to do so may
yield.poor solutions in pbrtions of the flow. field. Of greatest im-
portanc:e is the Af/AO ratio since thé shock wave is éhcountered '
in the @ direction. 1In previous work dealing with the 2-D {yedge
solutions :Lt W_a_s noted that the most disastrous effects of suboptimal
Courant nﬁniber operation occur in the viéinity of. the shock. One |
can expect both a smeared shock and severe oscillations.in the
néighborhood of the shock. Hence, the grid work is §onstruc_ted such
that the ratio Aé/AO'is always neér the makﬁnm value for stabil-
ity. The Mach numbers and angles of attack used in this study are
such that no rapid expandions and, as a re'su_lt ’ poésible recompres-
sion shocks areb'encountererdkin the ¢ directioﬁ. Therefore, thé
increment A% is chosen such that the ratio- Aé/A¢ is as close

to its maximum value as possible without having either too few or
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an excessive number of grid points. The latter case leads to
lengthy computation times.

An estimate of the maximum mesh ;atios and, as a result, the
proper grid spacing can be made using the critéria givenlby'Equationé
(43). Hence, the eigenvalues of the coefficient matricies of the
gas dynamic equations of motion in the foreﬁody qoordinate systém
must be evaluated. The development of the expressions for the fore-
bédy eigehvalues is presented in Appendix A. | |

The gas &ynamic equations of métion for the forebody are given
by Equations (All) where the coefficient matricies A' and B' are
defined in Equations (Al12) - (Al5). The five eigenvalues associated
with each of the coefficient matricies are given.ﬁy Equations (A16)
- (A23).

The eigenvalues were determined numerically at all grid points
in various preliminary solutions for a Mach number of 2 and angles
of attack of O and 4 degrees. In all cases observed the triple |
repeated eigenvalues were the smallest.‘ Thus,.the largest of the
eigenvalues given by Equations (Al17), (Al19), (A21) and (A23)
represent the maximum for thé corresponding matricies. For the
wedge proper the maximum eigenvalues for the A' and B' matricies
were near unit& and for the tip half-cone 1.0 and 6.5 respectively.,

Since the eigenvalues of A' for both the wedge proper and the
cone tip have approximatély the same maximum magnitﬁde the corre-
sponding A\@ increments for maximum stable valﬁes of the ratio

Z&{E/[&O for both regions are very nearly the séme. The:eforé,.
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using a. common JAY:) ih both'régions is quite desirablé‘frdm the
Stﬁbility viewpoint and cértainly mékés the computational pfocess
muéh simpler. | |

'On the othér hand, in view of the maximum eigehyalues of the
B‘ méfriciés,.thé JAY] increﬁents fé: maximum stable values of the
ratio Ag/Aﬂvshé_uld. be near /\ @ and 6.5 times O O for the wedéé
~and cone'tip regions reSpectiyely;' o |

The number of grid points in the © direction was set at 20

With the'[}@ increment chosen such that gpbroximatéiy 7 points are
on the free stream side.bf the éhock wave in the_z—Dfregibn ofjthe}
flow field.'_ihe rémainingngrid point§ are in the SHoék iéyei reéion
and subléyer. | | |

" The Z§¢ incremehts for the upper And lqwéx wédge::egibns wére .
- chosen such that 10 grid poinfs exist in each € = consténf plane.
At legst 4 are oﬁtsidé the tip Maéh cone and, as a resulfg,in the
2-D region of the flow field._'The 4§¢ incremeht'fbf the cqné tiﬁ
region iS<chosen‘su¢h that 13 grid points e#isf in‘each Q= céh—
-staht plane, 2 of which are common to the upper and,lowér dege
regions. | | A |
| The resulting cdmputational plane gtid system,:similar to .that
depicted_ih Figure 23, has dimensions 20 by 31 which allowed
réasonable'séiutipn convergenée times.‘ Thevnumeficéi véiues
associated with thé 430 and [Sﬁ aré éivénrin Téb;é‘i.fof the
twd'c;nditions investigéted. |

It is noted upon examination of the numerical values for
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Table 1. Cbmpdtatibnal plane grid spacing for the forebody flow
‘region

Upper wedge Cone tip Lower wedge

a.= o° Q= 4° = o° = 4° Cl"='0° Cf= 4°

 ﬂ. 0.1165 0.1046 0.2618 0.2618  0.1165 = 0.1301
(raddans) .

(rac%gns) 0.04434 0.04470 0.04434 0.04470 0.04434  0.04470.

the angular increments that the conditions for maximizing the mesh
" ratios are nearly'sétisfied. The worst_violation dccurs in the

JAV S increment for the upper and lower_regions Which are about 2.5
times larger than the desiréd values. -Decreasing the increments
to their proper valués; however, would require excessive g;id
points from a computation time viewpoint. Since no shock waves

are encountered in the @ direction, operation at the lower mesh

ratios in these regions should not be prohibitive.

Solution technique

The integration is initiated in the . £ = 1 plane and proceeds
20 steps in the {E direction at which place the solution is checked
for convergence. If cbnvergence has not been achieved the process

is repeated until a solution is established. The iﬁcrement'éxéris
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chosen as large as possible without exceeding the-staﬁility bound-
which is determined experimentally by simply increasing Zkgruntil
divergence occurs. |

In each §:= constant plane (see Figure 23) the integration
proceeds from the body surface to the free stream boﬁndary and
from the upper 2-D wedge Boundar& spanwise alpng the wing, around
the cone tip and to the lowér surface 2-D wedge bouﬁdary.

Care must be taken in the integrafion process at the grid points
in the wedge-cone interface.planes since the equations of motion
for the wedge proper and cone are not the same. Since the MacCormack
prédictor uses forward differences, the cone eéuations are used for
the prediction step in the upper surface interface plane while.the
wedge equations are used in the loWer surfaée interface plane. - On
the other hand, the opposite is true fér the correéfor step since
the corrector utilizes backward differences;

To insure that the predictor differences are always forward
and the corrector differences backward fhe integration steps must
always be in the positive directions. In view of the integration
process de;cribed above, the positive directions for the v ahd z
axes must be reQersed in the lower surfacé wedge region. The_oniy
effect fhis has in the integration process is the revéréal:of signs

associated with the v and w velocity components.
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Forebodx numerlcal solutlons

One w1ng conflguratlon is consrdered in this study w1th a fore-
body wedge half-angle of 7.5 degrees and as a result, a 7.5 degree .
tip cone half-angle. The wing chord length is set at 2 unlts.v

The f;ow fields for a free stream Mach number of 2 are eval-
uated at andles of attack of O and 4 degrees, The O degree case
is used as.a check to see if fhe'numerical technique develops the
proper flow field symmé££9 associated witu the upper and lower
surface flow reglons.

Flow fleld solutions for both the O and 4 degree angles of
attack cases-were obtained using the grid spac1ng defined in Table
1. In both cases the near maximum 1ntegratlon step 51ze was used.
It was determlned by means of a trial and error process. Succes—
sivel& larger increments [&érwere tried until diuergence occurred.
The resulting Zl&?inérements for the O and 4_degree cases were
o. 04434 and 0.040 respectively. Table 2 shows the-corresponding

|
mesh ratios Ag/Aﬁ and Aé/AO used to obtain the solutlons in the
various regions of the forebody flow " fleld._ Also- tabulated are the
theoretlcal maximums based on the linear one—dlmen51onal theory.

It is noted that the ratJ&:Zﬁ{i/[ﬁO is always within 80 pex
cent of the predicted maximum. This procedure should y1eld a
reasonable soluticn in the shock vicinity. In the cross flow direc~
tion the linear stablllty bound 1s exceeded in the cone region whlle

on both the upper and lower wedge surfaces the rat10[§é?2§¢ is

between 30 and 40-per cent of the.predlcted maximum. As expected,



" Table 2. Theoretical and experimental mesh ratios used in the forebody solution

a

O .

Upper

wedge

Tip

cone

Lower

- wedge

Upper

wedge

Tip

‘cone .

Lower

-wedge

Theoretical
- maximum

1.017

0.1571

1.017

0.9793

-0.1250

0.9430

0.895

NE/NS 'Z§§VZ§9
Value Per cént of Theoreticﬁl. Valué Per éent of
used - 'theor?tical .maximum used theor?tical
maximum - maxinum
0.3805 37.4 1.039 1.0 96.25 -
o.1§93’ 107.8 1.110 1.0 90.1
0.3805 ; 37.4 1.039 - 1.0 96.25
0.3825 }39.1 1.088 0.895 82.3 |
0.1526 122.1 1.111 0.895 80.6
0.3075 32,61 1.057

84.7

o8
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increasing the in;iemént A§ Causés ihétabilities in the ‘cro'ss'.flo'w _
direction in the cone region.

The CC= Oo norméi pressure distributions (normal to the wing
chord plane) at various spanwise points in tﬁeAmid-chord.pléne are
shown in Figures 25 and 26 for the upper and lower wedge regions
respectively. Figurés 27 and 28 depict normal‘pressure distribu-
tions_in various péridian planes About the:tip'céne. The index
parameter k defines thé angular location of the & = constéht planes
in all regions. Figure 29 shows the,relétive location of the planes
corresponding to fhe 31 k valués. The index parameter j defines the
angular location of the © = constant surfaces common to all regions.
Table 3 lists the numerical vaiues for © and g in all regiéhs for
both angles of attack considexed.

\ fhe‘distributiong appeaf to be smooth with the bow shock apf
pearing in each distribution. It is quite well defined and ﬁsﬁally
contained in one tb two intervals. As noted iﬂ Figufe 30;,tﬁe |
shock wave lies nearer the wing surface in the cbne-regian. In the
2-D wedge region the bow shock is at an angle.of 36.71 degreeé with
respeqt to the wedgé center line which decreases to~30.5 degrees in
the cone region at the piane éf symmetry (k =;16).' The shock
strength decreases from the wedge region to the cone'region.

The spanwise distribution of presSﬁre along the body surface
is sﬁown in Figure 31. The body ﬁ;essufes decrease from the 2-D
upper wedge;value of 0.137 to aAneaf consfaanVAlue of abbﬁt 0.1145

around the cone surface  then increases again to 0.137 at the lower
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Figure 29. Plan form and frontal view of wing showing the
relative location of the @ = constant planes
.defined by the index parameter k
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‘Table 3. Numerical values for the angular orientations of the
@-= constant and @ = constant planes defined by the
indicies j and k respectively :

@ degrees © degrees
k . J :
- a=0° «a=4° | c=0° «=4°
1 -60.07 -53.92 1 5.140 4.939
2 ~53.40 -47.93 2 7..500 7 .500
3 46,72 -41.94 3 9.860 10.06
4 -40.05 -35,94 4 12,23 12.62
5 -33.37 = =29.95 5 14.59 15.18
6 " =26.70 -23.96 6 16.95 17.74
7 -20.02 =17.97 7 119,31 20.30
8 -13.35 -11.98 . 8 21.68 22.86
9 .=6,670 ~5.990 9 24.04 25.42
10 0] o) 10 26.40 27.99
11 15.0 15.0 11 28,77 30.54
12 30.0 30.0. 12: © 31.13 33.11
13 45.0 45.0 13 33.49 35.67
14 60.0 60.0 14 38.85 38.23
15 75.0 75.0 15 38.21 40.79
16 ~90.0 90.0 16 40.58 43.35
17 105.0 1 105.0 17 42,94  45.91
18 120.0 120.0 .18 45,31 = 48.47
19 135.0 135.0 19 47.66 51.03
20 150.0 150.0 20 50.03 53.60
21 165.0 165.0
22 180.0 180.0
23 -6.67 -7.450
24 -13.35 -14.91
25 -20.02 -22.36
26 -26,70 -29.81
27 -33.37 -37.27
28 -40.05 -44.72
29 ~-46.72 -52.17
30 -53.40 ~59.63

31 =-60.07 -67.08
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wedge 2-D region. Slight pressure‘oscillations occur aiong the
Body surface near the wedge-cone intérface planes probaﬁly caused
by the large values of the mesh ratLa[}é?Zk¢. These are thé
regions in which crossflow instabilities occur when the [Sﬁfincre-
ment is increased.

Invan attempt to demonstrate the reliability of the numerical
technique uséd in this study, a compariéon is made with flow fields
developed by Babenko(27) for a circular cone with a half-angle of
7.5 degrees at a Mach number of 2 at zero degrées angle 6f attack.
The normal pressuré.distribution in the 90 degree meridian plane is
plotted in Figures 27 and 28, fhe body surface distributibnj(Which
is constant) plotted around the cone surface from the 0 to the 180
degree meridional planes is shown in Figure 31. The no:mal'distri-
butions_ip the 90 degree meridional plane as wéll as the body surface
distribption for béth the wedge-cone and the.Babenko cone are similaf
in form with the nﬁmérical pressure valués associated with the latter
somewhat smaller. This is to be expected since the bow shocks asso-

_ciated with wedge shaped bodies are stronger than fhose assoéigted
with those of cones havihg the séme vertex angie.

In general, the nume:ical technique appears to generate tﬁe
required flow field symmetry for the zero angle of attack case.

The (= 4° normal pressure distributions at various spanwise
locations on the upper_and lower wedge surfaces are shown in
Figures 32 and 33 respectively. The distriﬁﬁtiﬁns for the tip éone

region in various meridional planes are depicted in Figures 34 and 35.
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Again the distributidns are‘very smooth with a_well'défined boﬁ
shock contained in one to two intervals,‘ - | ‘ | ;

The normal pressure distribution in the 90'dégreé meridional
plane (k = 16) for the Babenko cone at a 4 degree angle of #ttack
is included in Figures 34 and 35. As expected, the pressured in
the Babenko cone'flow field are generally lesé than in the wedge-
cone field. |

The‘shock shape in thé §7= 1 plane for (= 4? is shown in
Figure 36. The shock. angles with respecf to the wedge center line-
in the upper and lower Z;b wedge regions hAve numerical values
36.95 and 37.0 degrees respectively.. In the cone region the bow
shock lies generally near the body surf;ce with the smallest center
line shock angle (29.5 degreés) occurring in the ¢ = 113 dégreé |
meridion#l plane on the lower surface. It is noted that the shock
shapes for the (I = o° and = 4° cases are quite'similai,

Although the center line shock angles in the upper and lower
wedge regions are very néarly the same, the corresponding shock
strengths are quite different as noted in the iateral body surface
pressure distribufions depicted in Figure 37. The surface pressure
associated with the weaker upper surface shock is 0.1108 which de-
creases only slightly.axound the cone then incréases to 0,1681 in
the lower 2-D wedge région'cbntaining theAétrqhger boﬁ shock. Tﬁe
'slight pressure oscillations experienéedlin the (€ = 0° case neér

the wedge-cone interface planés also appear in the ([ = 4° data.
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Region II Flow Field Analysis

Afterbody geometry and coordinate systems

That,porfion of the body contained between the mid-chord
point énd'the trailing edge of the winé constitutes the afterbody
which is a mirror image of the forebody. As with the forebody,
thé afterbody is separated into two parts. One part consists 6f
the.wedge proper and the other part the ﬁip half-cone.

The ;oordinate systems defining the aftefbody tip cone-and
surrounding region_is depicted in Figure 38. The Cartesian system
is the same as that for tﬁe fé?ebody. The system into which the
equations of motion are cast consists of fhe.(éf,’)’, @) system.
The coordinate @ denotes the angular oriéntation of the meridian
plane containing the point (E, ')/ , @) and the‘axis of the tip half-
cone. The coordinate 7/ (measured iﬁ the meridian plane) denotes
the angie between the wing chord plahe and'ﬁ line in the me:idiaﬁ

plane passing through the point (€,7 ’ ¢) and the circle given by
2 2

v+ zT = (2 tan-QC)2 ) ©(74)
Note that the circle defined by Equation (74) is the_infersectibn
of the (y, z) plane and the extension of the tip cone. The
coordinate 5 represents simply the x position of the point
&, Y., 9.

The coordinate system used to define the wedge proper portibn
of the afterbody flow field is depicted in Figure 39. The coordi-

nate ’y'is the angle between the wing chord planévand the line that
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z

"Figure 38. Coordinate system for the »afteArvbod.y' cone flow region
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contains the.pointA(éf,')’, Z) and the poinf.y = 2 tan Gw; The .
coofdinate # represents the angle between the x éxis'and the plane
containing the y axis and the point in queétion. “Again, the
coordinate {E is simply the x coordinate. |

The grid system generated is defined in the tip region by
the intersection of a set of # = constant meridian planes, a éep
of ')’= constant conical surfaces and a.'§-= coﬁstant piéne. In
the wedge proper region fhg grid syétem is defined by theiinter—
section of a set of ’)’= constant wedge planes, a set of_¢ =
constant planeé and a €T= éonstahtvplane. It is noted that the
afterbody Surfacé is represented by a ')/= constant surface, one
reason for chosing the particular coordinaté systems desc;ibed.
A typical grid network would be similar to that depicted iﬁ Figure
23. Once agaih,.the grid points in the»wedge-éone interfgce

planes are cohmonvtb_both fhe wedge and'tip half-cone.

i

Afterbody equations of motion

Ih order to perform the integration in the afterbody region
the_equations of motion given by Equations (37) must be transfdrmed
from _the Cartesian form to the '(E, y s §) system. The trans-‘.
formation'is presented in Appendix B.

In the afterbody region the equations 6f motion for bbth.the,

wedge'proper and the tip half-cone are of the general form

E€+FY+G¢:+H=O' o (’f5)
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- -t | . . ’
The conservative variables E . F and G and the nonhomogeneous

term H for the wedge proper are given by

. —
E = €E
F = -sin’)/coé‘yﬁ' + cosz’yf

g -singcosgE + coszﬁ

(76)

e o
L]

(cosz')/'-Sinz')/ - 25in2¢) E + 2singcosgG + 25in’)/cos')/F

and for the tip half-cone

E = (ftan’y + 2tane ) E
. _ 5 Q)’_ _ ‘ZE _ 2tanGC
F = -si E F i t
s:m’Ycos’_)l + cos *)/(cos + s%n ) ¢ an')"" 5 ) )(77)
G' = -Fsing + Gcosg |

o 2tan@ | 5 | | - (78)
= -(tan’)/-o- -TC) ’ (1_-2cos'y )E-2cos’>/sin (cos@F+singG)

xl
]

As in the forebody case, the variables E, F and G are the vector
conservative variables associated with the Cartesian form of the

equations of motion.

Evaluation of the gas dynamic variables from conservative variables

The same process is used to obtain the gas dynamic variables
in the integration process over the afterbody region as. is used in
the forebody region. The first of Equationé (76) is solved for the
vector variable E which is then incorporated in Equations ('57).-- (61)

to evaluate v, w, u, O and p.



103

Boundary conditions

As in the-forebody region, the afterbody boundary points must
be specified in some‘fashion since the points along the edges of
the grid are not integrated points. |

Tﬁe grid spacing in the 'y'direction is chosen to bé large
énough that the outermost of the grid points are always in the
free stfeam outside the shock layer. Hence, the gas dynamic
variables along these boundaries are retained at the free stream
valués.

Two methods are available for the specification of the variables
along the 2-D afterbody wedge boundaries. Since the @ increments
utilized in the afterbody region are the same as those used in thé
forebbdy integration, the boundary grid pbints as well as those in
the thfeé adjacent_¢ = constant planes are all outside the.tip
Mach cone and in the 2-D flow region. Hence, the gas dynamic_
variables at the boundary may be set at the 2-D solution values that
are known, a technique that was utilized in the forebody integration.

A reflection technique may also be used at this boundary. The

reflection occurs across the ¢2 plane as shown in Figure 40.

2N 22 %\

\X& 3 | £- const‘ant
\ \ | plane

/

Figure 40. Geometry of the reflection technique
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The gas dynamic variables at grid point 1 are set equal to those at
giid point 3 as they must be if the points‘are in the 2-D region of
the flow field. In effect, the techhique generatés its own Zfﬁl
solution. |

The reflection techniqué was adopted in this study. 4It pro-
vides a means by which the integratién téchnique can be.tested.
That is, if the solution in the ¢1 plane doés not correspond to
the known 2-D solution, the integration téchﬁique is not perfé:ming
properly.

The boundary conditions along the surface of the afterbody in
each 5 = constant plane are spec;i.fied in the same fashion as on
the forebody. A sublayér set of grid point$ is added and the
modified Abbett technique is épplied'at tﬁe afterbody surface. It
is noted here that the body entropies remain unéltered throughout
the expansioh at thé midechofd point of the wing. Hence, the

entropy values are known from the forebody solution.

Initial data

The initial data required to start‘thebafterbody integration
are taken fromAthe forebody solution. Since the grid poinfs asso-
ciated with the forebody and afterbody s&stems in a specified £:=
constant plane do not_coincidé, point for point, some logical
method must be used to transfer the data from the forebody to the
afterbody grid system. In this study a s&heme:is utilized iﬁ
which the four neaiest forebody grid points for each aftérﬁody

grid point are located (see Figure 41).
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Figure 41. Data transfer technique from the forebody
to the afterbody grid '

The data are then transferred by means of.a simple linear inter-
polation scheme in both the @ direction and ')/ direction. The
specific £= constant plane in which the ;:iata'transfer occurs
depends upon the particular case under consideration. Even though
the data transfer occurs near the mid-chord the exact location of
the initial data plane for the afterbody depends upon the step

size used in the afterbody integration process.

Choice of grid system

The afterbody grid dimensions are established somewhat once
the forebody system is defined in that the same JAY' increments are

used. This is to insure that the outer boundary points rémain in
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the 2-D region of the flow field. The increment [X)/is chosen

such that at least four grid points. always remain in the freg Stréam
fegion outside the shock layer throughout the afterbody regiﬁn.
Numefcically, the values associated with A’)’ for the afterbody and

/\6 for the forebody are very similar in all cases.

Solution technique

.The'initial data plane for the afterbody is located such that
the first integration step in the f direction contains the mid-
chord point at the half-interval. That is, the iﬁitial data pléne
in which the forebody data transfer occurs is j.ocated at 5 = c/2 -
Z&§72 where [&é:is the initial integration step size and c is the
wing chord length. The initial integration step, then, is from the
forebody region to the afterbody regioh. The integration then
proceeds.along tﬂe afterbody to the vicinity of the trailing edge.
The magnitude of the integration step size [k{;is governed by the
linear stability criteria.

It was noted in earlier work that the gas dynamic equation
coefficient matricies A' and B' in the'wedge proper region of the
afterbody are identical in form to those associated with the fore-
body. Hence, the same eigenvalues that dictate the maximum mesh
ratios in the forebody wedge region now dict%te the maximum of
[§§7Z§¢ and[&&)[&)’in the afterbody wedge proper region. These
eigenvalues_remain nearly constant over the afterbody region.

For the tip cone, the eigenvalue structure is quite different

t 1
in the afterbody region. The maximum eigenvalues for the A and B
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matricies are given by Equations (A30) and (A32) respectively.
Although the eigenvalues given by Equation (A30) are the same order
of magnitude throughout the afterbody region, those defined by
Equation (A32) become_infinife as the trailing edge is approgched.
Hencé, if constant.[&ﬁrincrements based on initial data were used‘
in the integration process one might expect a crossflow instability
to develop since the maximum stable value for[§§?2§¢‘decreases
rapidly near the trailing edge. In fact, fhe stable integration
step size approaches zero near the trailing edge presenting dif-
ficulties in the afterbody integration process.

To insure that the crossflow instability does not occur the
increment [&éris set equal to the value dictated by the linear
stability criteria given in Equations (43) at eéch step in the

integration process. The value [xgris given by
ANB__
cone
Zkén? TK—T__”
| A2 e
m

The integration moves quickly initially along the afterbody-

(79)

but slows down radipally near the trailing edge. Furthermore,
since all other eigenvalues remain nearly constant throughout the
afterbody field, one can expect a lower quality flow field solu-
tion near the trailing edge as a result of the very suboptimal mesh

ratio operation, especially in the vicinity of the shock wave.
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Afterbody numerical solutions

Afterbody solutions are obtained using initial da‘l;a from both
thev a = o° and a= 4° forebody solutions at a Mach number of 2..

The grid spacing in each €= constant plane is quite similar
to that of the forebody. The system contains 31 points in the &
direction and 20 points in the ')’ direction. The A@ increments
for the afterbody region are the same as for the forebody region and
are defined in Table 1. The A’)’ increments, common to all afterbody
regions, are 3.0286 degrees and 3.0556 degrees for the = 0° and
a .= 4° cases respectively. The angular orientation of the various
# = constant planes defined by the index .paramete'r k are given in
Table 3 and the angular orientation of the various ')’= constant
ﬁlanes defined by the index parameter j are given in Table 4.

An initial integration step size (Af) of 0.01 is used to
‘move from the forebody region to the afterbo_dy region. Hence , the
initial data plane for the afterbody is at f = 0.995 with the first |
integration advancing the data to the f = 1.005 plane. The shoulder
of the wing ( 6 = 1.0) occurs at the half-interval of the firsf
integration step.

Subsequent integration step sizes are set to the maximum
value dictated by the linear stability analysis" given by Equation
(79). The resulting numerical values for the mesh ratios Ag/A;d
and Ag/A’)’ are given in Tables 5 and 6. Included in the tables
are the maximum values for the ratios iﬁ the various flow field

regions as predicted by linear stability theory. Since the cone
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Table 4. Angular orientation of the various ')’=' constant planes
in the afterbody grid system o

_ Y (degree's)
3 . _
= 0° a=4°

1 -10.53 -10.56

2 -7.50 . -7.50

3 -4.47 , -4.44

4 -1.44 -1.39

5 1.59 . 1.67
6 4.62 4.72
7 7.64 7.78

8 10. 67 - 10.83
9 13,70 | - 13.89
10 16.73 . 16.95
11 19.76 20.00
12 22.39 23.06
13 25.82 | 26.11
14 . 28.84 - 29.17
15 31.87 32.22
16 - 34.90 35.28-
17 37.93 38.33
18 40.96 | 41.39
19 43.99 | 44.44
20 47.02 47.50




- Table 5. A comparison of the theoretical maximum values and the actual values of the
mesh ratio Ag/AQ used in the afterbody 1ntegrat10n

Per cent of
theoretical
maximuwn

Theoretical = . Value
maximum . ‘ used

£=0.995 f: 1.97 E: 0.995 £=1.97 £=0.095 &= roo7

Upper wedge . ' '
( a= oo) - 1,055 2.185 0.7523 0.0205 71.30 0.940
Tip cone

‘( o = Oo) : 1.129 2.208 0.7523 0.0205 66,60 0.93

Lower wedge .
('CI'= Oo) 1.055 2.185 0.7523 0.0205 71.30 1.16

Upper wedge

‘ ( = 40) 1.112 1.997 0.7815 0.0397 70.30 1.85
"Tip cone , : :
( = 40) : 1.140 2,011 0.7815 0.0397 68.55 1.97

Lowexr wedge : _
( = 40) 0.984 2.183 1 0.7815 0.0397 79.39 . 1.82

OTT



Table 6. A comparison of the theoretical maximum values and the actual values of the

- mesh ratio.Z§§72§¢ used in the afterbody integration

Theoretical
maximum

Value
used

Per cent of
theoretical
maximum

f = 0.995 6: 1.97

Upper wedge

( @=0°
Tip cone
(@ =0°)

Lower wedge

( =0

Upper wedge

( = 4%
Tip cone
(@ =4

Lower wedge

( =4

§= 0.995 E: 1.97

1.015

0.1519

1.015

1.098

0.1592

1.053

1.933

0.00415

1.933

1.904

0.00808

2.174

£ = 0.995 £=1.97

0.3414

0.1519

0.3414

0.3986

0.1592

0.3204

0.00932
0.00415

0.00932

0.02024
0.00808

0.01627

'33.64

100.0

33.64

36.% .

100.0

30.43

100.0

0.480

1.060
100.0

- 0.750

I1T
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cross flow eigenvalues vary extensively khroughout the integra-
tion, the tables include values in the initial data plane ( 67
‘O 995) as well as the final integration plane ( é'- 1.97).

As noted in Table 5, the ratio Af/A’)’ decreases from about
70 per cent of its theoretical maximum initially to about 1 per
cent near the trailing édge in order to satisfy the crossflow
stability criteria. Hence, one can expect the flow field solution
to degenerate somewhat in the vicinity of the shock as the trailing
edge is approached.

Normal pressure diStributioné at various spahﬁise locations oh
both the upper and lower wing surfaces at three different é{= con-
stant locations along the afterbody chord are presented in Figures
42 - 65. 1In partiéular, Figures 42 - 53 depicf the normal pressure
distributions for the . a= 0° %—mgle of attack case in the f = 1.2,
1.5 and 1.76 planes along the afterbody. Figures 54 - 65 depict
.the normal pressure distributioqs for the CL'='4o angle:of attack
in the €7= 1.25, 1.5land 1.76 planes. The relative locations of
the points on the wing surface (defined by the index parameter k)
at which the normal distributions are displayed can be obtained in
Figure 29-wifh the exaét locations defined in Table 3.

The exact 2-D solution for a symmetric doﬁble Qedge afterbody
is included oﬁ each set of dpper and lower wedge surface éressure
distributions. The exact solutions are used as the standafd with
which the numerical solutions in the 2-D region (k = 3) are com-

pared to test the behavior of the nuﬁe:ical technique.
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The distributions, which now contain an expansion region as
well as a bow shock, appear to be fairly smooth except in the
vicinity of the shock where mild oscillations develdp early in
the integration process and become Quite severe in the trailing
edge region where the very low mesh ratios are used to safiéfy
the cross flow stability criteria. The shock waves in all dis-
tributions, however, are quite well defined and usually contained
in one to two iﬁtervals. The expansions are quite smooth ahd iﬁ
the 2-D wedge regions follow the exact solutions quite closely.

The nuﬁerical technique does, however, appear to overexpand the
flow in both the wedge regions and cone regions on the body surface.
The 2-D wedge body pressure for the (I = o° case is 0.0588, and for
the (O = 4° cése:the upper and lower 2-D wedge body pressures are
0.048 and 0.075 respectively. The numerical solutioh values are
initially somewhat lower. However, as the integration~§roceeds to
the trailing edge the 2-D body pressures increase again to nearly
their proper values. The overexpansion also propagates into the
flow field normal to the wing chord plane.

With the exception of the overexpansion situafion near the
body surface, the nﬁmerical technique generates a 2-D solution that
compares favorably with the exact solution. In addition, the pres-
sure distributions for the (O = 0° case indicate that the.proper

flow field symmetry is generated.
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Region III Flow Field Analysis

Afterbody;ggometryl qootdinate system and equations of motion

That portion of the flow field aft of the trailing edge of
the wing is termed the wake. This regiop,'void of any solid
Bqundaries, is bounded 6n three sides by fhe free stream and on
the fourth side by the 2-D flow field aséociated wifh the wake of
a symmetric double'Wedge.

fhe.coordinate.ﬁystem used to défine fhe wake flow fiélq is
a Cartesian system with the origin centered at the forebody cone
apex. The same frame was used to describe the body geometry
associated with the forebody and the afterbody} The grid in each
X = constant plane is defined By the inter;ectiéﬁ of a set of y =
constant and z = coﬁstant planes, resulting in a réctangular
arrangement of mesh points.

The equations of motion in the CArtesian frame are given by
Equétions (38) with-the conseFQative variables E, F and G;givén in

Equations (39) - (41).-

Initial and boundary conditions

The boundary conditions applied at the outer extremes of the
grid.are similar to fhose used in the afterbody integration. The
grid dimensions are.chosen large enough such that the outer gfid
points always lie in the free stream along the upper and lower |
grid boundaries as well as 6n the boundary off the Wing tip. Along

the 2-D flow regidn boundary the reflection tééhnique is used to
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determine the.fiqw variables. Hénce,.as long as the“flow élong
this boundary remains two-dimensional the numerical solution may
be compared witﬁ the known 2-ﬁ exact solution in an attempt to
evaluate fhe performancé'of the numerical technique. It is noted
here that if the tip Mach cone intersects.this boundary the flow
will no lonéer be two-dimensional and the 2-D exact'solution no
lénger applies. However, the 3-D solution generated by the numer-
ical techniéue in this case is still legitimate with the z = constant
plane about which the reflection occurs represénting the center of
the 3-D wing. |

The initial data used in the wake integration are generated
in the afterbody integration and are contained in the final integra-
tion plane of the afterbody. Since the grid points associated with
the afterbody and wake systems do not, in general, coincide the
data must be transferred from the afterbody grid to the wake grid..
The linear interpolation scheme used in the forebody-afterbody

data shift is used here.

Grid System and solution technique

The wake grid in each x = constant plane contains 40 mesh
points in both the y and z directions. The grid is positioned in
the wake region with the j = 20 and 21 ﬁéshvpoints at y = Ay/2
andv-ZXy/Z respectively (see Figure 66). Hence, half the grid

points lie above the wing chord plane and half below.
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Figure 66. A portion of the wake grid system showing the
relative location of the wing : '

The numerical values for Ay and Az used in the wake inte-
gratioh are 0.195 and 0.176 respectively for the (f = 0° case and
0.195 and 0.1584 respectively for the (O = 4° case. The incremental
magnitudes were choéen such that in the wake initial data plane the
3-D portion of the wing flow field is contained within a region -
bounded on the lower and upper sides by gfid pointé_with indicies
j = 10 and 30 respectively and 6n the left and right by.grid points
with indicies k = 10 and 30 respeétivelyﬁ Hence, the outermost 10

grid points in the system lie either in the free stream or in the
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2-D double-wedge flow field. Howe§er, as the‘integration procéeds
into the wake the 3-D flow field propagatés fhroughout_the gridstd
the‘grid boundaries.

- The afterbody integration was terminated at x = 1.97. Heﬁce,
the flow variables at the grid points in the x = 1.97 plahe provide
the initial data for the Wake integration. The data are transferred
from the afterbody grid to the wake grid, and a single integration
step of magnitude Ax = 0.06 generates the data in the first x =
constant plane in the wake behind the wing. It is noted that the
wing trailing edge is located at fhe half-interval of the first
integration step.

Subsequent integration step sizes were chosen to be the.maximﬁm
alléwed as predicted by the linear stability theory. The eigenvalues
associated with the eqﬁations of motioﬁ for the.wake are developed
in Appendix A. Equations (A6) and (A9) represent the maximum eigen-
va#ues of the A and B matricies respectively énd, as a result; are
used in conjunction with Equations (43) to determine the maximum
stép size Ax. For both cases qonsidered the integration was
terminated weil before the shock wave intersecté the grid boundaries

which occurs at about one chord length behind the wing.

Numerical solutions

Figures 67 and 68 show various pressufe'distributions normal
to the wing chord plané for the L = 0° case in the x = 2,57 and

x = 3.0 planes reSpectively. Figures 69 and 70 show similar
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distributions for the ([ = 4° case in the # = 2.12 and x ; 2.6 planes
respectively. Each contains an exact 2-D solution for comparison.
It is noted again here that the index values k = 1, 20 and 40 define
grid points in the 2-D double-wedge wake flow_region, the wing tip
and free stream region off the wing tip respéctively.

In moving along the pressure distributions point to point from
j = 1 to j = 40 one encounters a bow shock, an expansion and a re-
compression shock all a;sociatéd with the lower surface flow, then
another recompression shock, an expansion and a bow shock associated
with the upper surface flow.

The distriﬁutions appear to be shobth with.well defined
shocks as in the forebbdy'and afterbody solutions. The numerical
2-D solution (k = 1) appears to agree quite weil with the exact
2-D solution. The bow shocks have proper strengths as weli as loca-
tions. However, the sfrengths of the recompression shocks asvpre-
dicted By the numerical method éppear to be excessive. For the
= 0° case the pressure behind the recompressidn shock should
be 0.0935 with the worst numerical solution yielding 0.101, re-
sulting in an 8.02 per cent error. For the (O = 4° case the e#act
and worst numerical values are 0.94 and 0.1075 fespectivély,
yielding a 14.4 pef cent error. The recompression shock locétions
in the 2-D region seem to be well predicted by.the.numerical méthod

in all cases.
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IRECOMMENDATIONS FOR FURTHER STUDY

One of the major difficulties associated with tﬁe wake region
analysis 1s that the Cartesian coordinéte system uSed to generate
the wake grid system severel& limits fhe distance into the wake
that the integration can proceed.’ Once the shock intersects the
grid boundary the integration must be terminated for lack.of
proper boundary conditions. To proceed farther into the wake the
grid system must be enlarged. This increases the computer storage
requirements and quickly becomes prohibitive in terms of combuter
capacity.

This problem can be eliminated by changing the wake_coqrdinate
system to a conical system with an origin at the apex of'the‘fbre-
body cone. Then a grid-system can then be developed such that the
3-D flow field is contained within the grid boundaries regardless
of distance behind the wing.

?he analysis could also be extended to include a variety of
wing cross-sections such as parabolic or circular arc sections,
cambered as well as uncambered. In addition, a wider variety of
tip geometries could be investigated.

Although exact solutions are available for comparison With
the numerical solution in the 2-D regions of the flow field no
such standards exist for the 3-D flow regions. Hence, the pexr-
formance of the numerical technique can only be e#trapolated from
the 2-D results. It would be quite desirable to have experimental

evidence to verify the numerical results in the 3-D regions.
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Although in so faf as the author knows no experiﬁental investiga?
tions have been made on the particular wing configuration uged in
this analysis, experimental studies have been made on rectangular
wings of other cross sections. In particular, Davis(zs} conducted
experimental tests on various nonlifting rectangular planform wings
with parabolic cross-sections. The numerical technique used in this
invesfigétion could be easily adapted to the Davis Qing configura-
tions. Hence, the‘3-D regioh performance of the nuﬁerical technique
could be checked.

The recommendations suggested abdve are based on the experience
gained in applying the MacCormack technique to-the wing configura-
tion used in thisvstudy. The method yielded satisfactory results
in most cases and, as a resuit, appears to. represent a powerful
tool which could be used to investigate‘flow fields about.various

other configurations.
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APPENDIX A
Eigenvalue Evaluation for Cartesian System

The stable tange of mesh fatios contained in the finite
difference equations can be.theoretically,predicted using am-
plification matrix theory. Application of this theory requires an
evaluation of the eigenvalues associated with the coefficient
matricies of the gas dynamic equations of motion.

Kutler(5 ) shows that the steady equationé in a Cartesian

frame can be written in the form
U + AU + BU +C=0 (A1)
X v z

where U represents a vector of state variables

(A2)

DU E<E

and where A and B are square matrices given by
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0 (Cz_uz).

-1/}3u

u(c2-u2)

w/u

In the development of the matrices A and B the energy equation

was used in the differential form

q - [vp - ( ap/ap)SVp:] =0

(A3)

(A4)

(A5)
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For the A matrix, three of the eigenvalues are identical and
given by

>‘1, 2, 3° v/u ' - (A6)

while the remaining two are given by

\ o Suv ;;9\0G27+ v - c2 (A7)
4, 5 2

In a similar fashion, three of the eigenvalues of the B matrix

are identical and given by

>‘1, 2, 3° w/u o  (n8)

whereas the remaining two are given by

(A9)

x . =uw p é“th + w2 -.cz
4, 5 2 2
u - c

Forebody Eigenvalues

The steady gas dynamic equations for the forebody wédge proper
and the tip half-cdne can be developed by a simple transfofmatioﬁ
of independent variables in Equations (A1) usihg the Jacébian B
elements in Table B2. In terms of the (6,’ o, #) system the

equations become
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Uggx + U09x+ Uﬂ¢x
+A (% gy + Ugo§ + U¢¢y) : : | (A10)
+B(tJ§€z+Ugoz+U¢¢2)+c=o |

Substituting for the Jacobian elements yields a set of equations

given by
1 1
Ug +AU9+BU¢+C=O (A11)

where, for the wedge proper

v _A cosz ) I sin 6 cos ©

A = ¢ - Z (A12)
, 2 :
g' = B.cos g I sin @ cos & (A13)
3 3
and for the tip half-cone
o Acoszecos¢ BcoszesiQ¢ IginecosO
A = 5 —— § - f (Al4)
' _ Bcos@cos® Asingcoso (A15)

B = é; - -
3

The matrix i is the identity matrix. In their fully expanded form
showing all the elements the matrices defined by Equations (Al2) -
(A15) are presented on the following four pages, Equations (A12a) -
(Al5a).

Each of the four matrices contain at least one row or column
in which all but one of the elements are zero. Hence, one of the

eigenvalues in each matrix is immediately available. In all cases
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A =
e - T . - N
-5in@cose
CZCOSZO vcos ©
-uVCOSZO SR ——————— . o Jp——. 4 ‘ 0
2.2 £ (c%u?) P& (P-u?)
(c®~u®) _
-$inecose 5
cos © o
° svcds®e ° pEw
u
-$in@cose
u

 =5in@cose
vczcoszep - uc2c0529 ,0 0 o
(22 E 2 2 - +uvgos e
E(C -u ) (C -u )
' éf(c -u )
-$in@cose

2 2 ) 2
_".C_‘ﬂ.@ - ucos'@ O vcos“p |
£(c*?) £ ° gu(cﬁ,_qz')“ +vu§s_zo.

(Al2a)
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B =
.F—' — e
-si (o) o C2 6s : Wweos < _
2 2 2
—uwQos 2 E(c -u’) Pf(cz-u )
2 2 . ’
(c”=u™)
-si 08
0] +wcC (0] (0]
u
' =sin@cos@ cosz
0] 0] '
_ _._wc%SZ PE Y
u
2 2 ' . 2 2, =sin@cos
wccosgp 0 cucosgp 5
2 2 2 2 =uwcos Q
E(C =u’) - £ () 2 2
| £(c2-u?)

' wcoszg R ° uqoszg R —wcos?
E(c2u?) - E(Pu?) z'u(cz-uz)

(A13a)
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-5ine@cose ‘ 2
- . vCOS ©OCoSs

'-uvg 26cos ccos 20¢os¢ 2cos’es ing ,O€ (c“-u’) | o)
(Cz-uz) f (cz"uz)’ E(c‘:Z_u2) +wcoszcéﬂ'
uwcos®0sing PE (2m?)

i E (c2-u2) .
~-51in0cose

o +v£szocos¢ ' o COszecos : o
E u : PE '
+wcos20$i '
U
: ~sin@coso
E : coszesi
o) o] +vcos Ocos¢ -~ o)
. E'u R .

+WCOS20S ing

EU
~s5inO@cos®

vczcos Qcos
ﬁc cos Ocosg —ucZcos 951n¢n +uv§520co§£ o
E (c -u )

(c —u?)
ngc cos 951n¢ f(c =u ) E(c -u )
E (cz_uz) _ =uwcos Osqﬁ _
' f(c -u )
-$in0cos®

HDvcos 6cosd vcoszgcos EZ
2 oS Os:m u(c -u ) +veos Ocos¢

€(C-u> Jucos_ecosf

#Owcos gslngf f(cz-uz) é(c -u ) -WCOS 051 +wcos 051n2'
f(c -u ) u(c -u )
L

(Al@a’”




«~UWCOSOCcos
2
RIS

+uvcosOsng

3

2 .
C C0Osesin

(c®-u®)

o

(cz-u2>

Ruic cosOcos¢

€ (22

cosOsin

(cz-uz)

(c”-u)

#Qgcos@cosg
6’ 2
L
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-C c05051n¢ c cosOcos¢

€ (c®u?) {E(c %)

-VCcosOsin
u

- +WCbsBcos 0
u .

-vCcosesin
u
0
+WCOS0COoSs
u

wcosOcosQ
P& (*-u?)

-CcOos@si

p u

cbsOcosQ
pEY

-uvcosesigg

Qgc cosOsan ﬂc cosOcosg §(C2_u2)
6(‘: -u ) g(c —u ) ~uwcos@cos@

-vcosOsng-vcoSOsin
Qucoses:l.ng ﬁucosgcosg 5 (c =u ) u
E(c -u ) 6 (c -u ) -wcosecosg +wcosOcos
€ (>?)

£(c??)

(AiSa)

D ——



161

it can be shown thét the first eigenvalue is a triple repeated
eigenvalue. The remaining two eigenvalues»are'then determinéd
by solving the appropriate quadratic expreséion.

For the wedge proper the eigenvalueé of the A"matrix'aré

given by Equations (A16) - (Al7).

. 2 . '
~-51necose vCcos ©
A\ - + Al6
1, 2, 3 5 E (A16)
x -~ =sin6cose
4,5 : (A17)

1
cosg 22 K 22 2 2] 2
u v - C + Cc u - VvV C .

D

1] .
For the B matrix the eigenvalues are given by

A _ -sin¢cos¢ weos-g  (a18)

1,2,3' 5 éu

)\ " _ -singcos@ uwcos ¢

4 s '3 f(cz'_“z), N | (A19)
+ c'cozzgz [uZ _ C2 _ w%].z
€ (7-u)

' '
For the tip half-cone the eigenvalues of the A matrix are

given by
. 2. .
A _ =sin@cos® ., vcos 20cosf . wcosZ@sing
1, 2, 3° 3 + I + £e (A20)
x_ = -sinOcosO(cz-uz) + uw(cos“@sing .
4, 5 2 2
’ f (c®=u®) (A21)

C COS 9 &,v

f(c —u [_c

2
cos ¢4u2fc2+(vcos¢¥wsin¢)2
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.
and for the B matr'ix

-vc05051n¢+wcosgcosgf

1, 2, 3 f‘u
A _ -uw _cos® cosd@
= 2 2
£ (c®-u)
c cos © 0 2 2_v2u-2$in2¢ u2w2coszg
vome T2 - 2
f(c -u ) c c

+ (v sin # w cos ¢)2

'Afterbody Eigenvalues

(A22)

(A23)

For the afterbody; the transformed equations of motion using

the Jacobian elements of Table B4 in the Cartesian equations of

motion, Equations (Al), are given by

%f + A'u)/ + B'U¢ +C=20

Where for the wedge proper

' A cosz'Y _ 1 sinY cosY
2 . .
'_Bcosﬂ_151ngcosﬁ

3 3

and for the tip half-cone

A

Al = A cos> cosg@ . B cosz'Y sinﬁ _ 1 sin Y cosY
3 | 5 3
' B cos @ sin @

?tan’)’ Toiom o, —gtan’y + 2 tan o,

o
i}

(A245

(A25)

(A26)

(A27)

(A28)
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.:’i‘he A' and B' matricies for the a;fter.body wedge proper are the
same as those fo.f. the forebody with the 'y paraméter .replacing the
© parameter. Hence, the matricies A' and B' for the afterbody are
given by Equations (Al2a) and (Al3a) respectively and the resulting
eigenvalues are given by Equations (A16) - (A19) ‘with the ')’ param-
eter replacing the © parémeter. |

The fully expanded form‘.of the A' and B' matricies for the
tip haif-cone, as defined in Equa;‘tions "(A27) and (A28), are given
by Eqﬁationé (A27a4) and (A28a) on the following two pages. The
matricies are similar to the corresponding mat:?icies in the forebody
region in ﬁmat three of the A' eigenvalues for the tip cone, (A29),
are triple repeated. The remaining two eigenvalues ére éiyen by
Equation (A30). For the B' matrix the e:i_.genvaiuLes are given by

Equations (A31) and (A32).

)\ _ =sinY co;'y

f \Y
1, 2, 3 f Y E

c0527cos¢ . w COSZYSinQ ' (A295
u

3

)\ _ =sin__cos (cz-uz) - uw cos2 sing _
4. 5 =
) 5 6 (P2) (A30)
+ \ 2 2, 2, 2 ) 2 2 1{7‘
- coszyc[v cos“(u/c“+1)+2vwcos@sing+wsing-c“+ ]
2 2 :
& (c7-u%) :
X = =-VS in¢ + ; WCOS¢ (A31 )
1, 2, 3 uf é’tan’y + 2tan0c) u( E‘tan’)/ + 2tan0c)
%
) - -uwcosg c[(wcos¢-vsinﬁlz-c2+u2+u2v2/c2 sin.zd (A32)

(cz-uz)v(ftan’y + ZtanOC)
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A =
-g8in Y cos : ‘
-—%4 vCOS COS
2 2 . p
~uvcas cos c cosyY cos c cos si (c.-u) o
2 2 . v 2 - 2 +WCOS si
(co-u®) () (c“~u®) =43
 =UWCOS sin ‘ fD{F(c -u )
2 2 '
(c7=u")
-sin')’cos’)'
o +vcds cos o cos cos o
. u p u
+wcds2Ysi
u
-sinYcosY
+vcds2VYcosd  cosZYsin
0 (0] 2 p 0
+wc§szy sing
u
vczcos cos -s:L:jn cos'y '
(c -u ) ﬂc cos :y_ osg@ ﬁuc cos 251ng +u os cos
ﬂc cos Z ng f(c -u) f(c -u) (c -u)
f(c - ) -uwcos 51n
(C -u )
c os . 51n! os!
vCOoSs co
(c -u ) ﬂcos Zcosg ﬂcos z ing 2 2" +vds2VYcos
cos? s:Ln ( é‘ ( ) u(c_);u )
c -u ) C -u -wcos?2 51qg
EXC -u 3 5. twcds
u(c =u’) u

(A27a)



uv 5 .
#(cz_u ) =C Zlgg
~uUwcos H(c =u")
(c®-u®)

2 2 2 ..
(cy=u™) Quc_sing
| f'mczc:sg . ;c(:c.’s).izz)
K(c-u?)
sin .
Me(c -u2) Rusing
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-vsi .

M(c™=u™) +wWCos

K (c2-u?)P

-sing |
P

o

(A28a)

> M(c®mu® P

-VS E'EQ
+WCOSQ
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APPENDIX B — FLOW EQUATION TRANSFORMATIONS
Intrdduction

Integration of the equations of motion via MacCormack's tech-
'niquevrequires that the equations be cast in a conservative form
using the independent variables associated with the various coordinate
systems dgscribing the.body and flow field. Hence, the Cartesian
conservative form presented in_ﬁquations (37) must be transformed
in Regions I and II to the various systems defining the forebody
and afterbody. The Jacobian elements of the t;ansformations as well
as the transformed equations of‘motion and resultirig conservative

forms are presented in subsequent sections.
Forebody Equations of Motion

The coordinate systems used to describe the forébody are given
in Figures 21 and 22. Although the coordinate laﬁels (é;, g, ©)
are identical their definitions are, in general, different.

In the Caftesian system it has been shown that the equatiohs

of motion can be written in the form

Ex + Fy + G, = o : (B1)

where the vector conservative variables E, F, and G are given

by Equations (39), (40) and (41). Noting that
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x(€, &, 9) |
v(&E, &, 9) | | | (82)
2(63 ¢’ e) |

b
1]

«
"

N
1]

the equations of motion (Al) can be written as

_5 ¢¢ o

;

+F_ 0 (B3)

+

PN RPNC

€, +
Eaagc

where the terms fx’ Ey’ 'éz, ¢x’ ¢y’¢z’ e Oy, .and 6 represent
the Jacobian elements of th_e transformation.

The transformation equations for the wedge proper and the half-
cone are given in Table Bl. The reéulting Jacobian elements are
given in Table B2,

Substitution of the Jacobian elements of Table B2 into

Equations (Al) yields for the wedge proper

[fﬁ] + [-sinOéosOE + cosZO-F_‘]
E e
+ [-sin}dcos;b'g + cos’#G ]¢ . . = (B4)

+ [(-sinzo-sihzgf-o-coszgf)g + 2sin@coseF + Zsinﬂcosyﬁ] =

and for thé half-cone -
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[fta’neg] + [-F:sinze + Fsinecosg + asinOcosesinﬂ]_
. ) Je

+ [-Fsinﬂ + acosjd] ' ' (B5)
g
+ [(25in0cosO - tano)E + ZFcos?fsinzG + ZESinzfesinﬁ] =0

Equations (84) and (B5) represent the conservative form of the

equations of motion in the forebody region.

Table Bl. Forebody transformation equations

Wedge proper - Half-cone

[ tan~t z/x tan™t z/y

2] tan~! y/x tan X
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Table B2. Jacobian elements for forebody transformation

Wedge proper Half-cone

X
é‘y : (0] 0]
¢ : :

P -singcosg _ 0

0 -sin@cose
g, —'d_g ,

¢ cOS Q cosgcose
z g . 6
-5$in@cose ~-51ine@cose
* & 3
o c0529 coszecosg

N

o) o cOS 605 1ng '
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Afterbody Equatiohs of Motion

The coordinate systems uséd to describe the éfterbody are
given in Figures 38 and_39;~ The equations of motion in the
Caftesian form are given by Equation (B1l) and in the '(6, ?f, ’)’)
system by Equation (B3) with the © variable replaced by the

variable. The transformation equations

b
1]

x(E, 8,7) |
Y(fs ¢’7) ' (B6)
z(é—’ ¢,7)

< .
0

N
]

are given in Table B3 for the wedge proper and the fip half-cone
with the resulting Jacobian elements gx’ fy, fz, ¢x’ ¢y, ¢2,

Vs ’);, and Y, given in Table B4..

Table B3. Coordinate transformation equations for the afterbody
region equations of motion

Wedge proper _ Half-cone

tan-l(z/x) tan-l(z/y)
_1[ y-2tane ' 1 y2+22-2tan9
Y tan tan” =
\/x2-22 x
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Table B4. Jacobian elements for the afterbody transformation

Wedge proper Half-cone

3 ; :
¢ : :

¢ -5 1ng COSQ 0

¢ 0 -.Sin¢
y gtan'y + 2tan OC
4 cos? ) cos@ :
z gtan’y + 2tan OC
’)’ -cosYsi'n"Y -sinycos')’
x 3 3
2 .
cos cos” Y cos

<

cos sinl

3

o=
(@)
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Substitution of the Jacobian elements of Table B4 into Equa-
tions (Al) yields for the afterbody wedge 'proper
. - 2= . 2 ' :
+ [-s:.n')’cos'y E + cos ')’F:\ + [-251n Q{E (B7)
L2 = 2 = . : =
-51n'>/E + cos 'yB + 2sin@cos@G + 251n')’cos')’ F] =0

+ [-sin¢cos¢§ + éoszﬁﬁ]¢

and for the tip half-cone

[(é' tany + 2tanoc)§]

A 2tan@
+ [-sin')’cos’)/E +,cosz'>/(.cos¢F + singf-é)] .(tan'}’ + __éi__‘i)
| | Y
(B8)

+ [-Fsin;d + acosﬁ]
g

2tan®

- (tarfy+ —E——-g) [(I—ZCQSZ’)/ )E-Zcos')’sin’)’(cosﬁff‘_‘-bsinﬁ)}= 0



