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A THEORETICAL STUDY OF MIXING DOWNSTREAM OF TRANSVERSE
INJECTION INTO A SUPERSONIC BOUNDARY LAYER
AI. J. Baker and S W. Zelazny

Beil Aerospace Company
SUMMARY

This report presents the results of a theoretical and analytical study of mixing downstream of
transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer flow
over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equa-
tions were obtained using a general purpose computer program (COMOC) founded upon a finite ele-
ment solution algorithm. The concepts of two-dimensional turbulent mixing length and mass defect
theories were extended to establish a prototype three-dimensional turbulent transport model.

Excellent agreement between the COMOC-computed flow field and experimental data for a
jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single jet
configuration. Poorer agreement off centerplane may be indicative of the inadequacy of the extrapo-
lated two-dimensional turbulence model that neglects flow field three-dimensionality. A considerable
improvement in off-centerplane computational agreement occurred for a multi-jet configuration, using
the same turbulent transport model.

Some of the ‘computational disagreement with measurements may well reflect initial condltlon
var1ab111ty One alternative to requiring detailed initial data is to employ the “‘virtual source” con-
cept, wherein the complex transverse injection phenomena is computationally replaced by a hydrogen
jet imbedded within the air boundary layer, the distinguising features of which are solely a function of
freestream and injectant parameters. A theoretical model for establishing initial conditions for a virtual
source was derived. Very good computational agreement with experimental data was obtained for the

multiple injéctor geometry for the three dynamic pressure ratios investigated (q;=0.5,1.0,1.5),at
stations up to 60 (injector orifice) diameters downstream. Single jet comparisons could be obtained
using the virtual source concept, if desired by a 51mple change in lateral boundary condltlon specifi-
cations.

The COMOC-computed solutions for the three-dimensional flow field provide considerably de-
tailed information, much more than is typically available by experimental means. Important design
guidance for the engineer may be obtained by integrating these data over the problem solution domain
to generate scalar correlating parameters. Since the prediction of reacting flows is an ultimate goal, a
simple integral parameter, defined as the percentage of hydrogen that could stoichiometrically react in
a given concentration and velocity distribution within the air boundary layer was computed. Shown in
. figure 1 are the COMOC-computed mixing efficiencies, , for the “virtual source”” modeling of multi:jet
injection, as a function of distance downstream from the injection orifice. Mixing efficiency is computed
to be noticeably poorer for q; = 1.5 than the other two dynamic pressure ratio conditions.

COMOC can be readily expanded to predict either equilibrium or finite rate chemistry for the
three-dimensional mixing problem. On a relative basis, however, if reaction is fast, hence diffusion con-
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Figure 1. COMOC Computed Mixing Efficiency for Virtual Source, Multi-Jet
Configuration for Three Dynamic Pressure Ratios

frolled, the computation of mixing ‘efficiency for a cold flow configuration may provide important de-
sign guidance, by capturing the detailed three-dimensional computed flow field description within a
single scalar parameter.

INTRODUCTION

The hydrogen fueled scramjet engine is a prominent candidate for propulsion of the next gen-
eration of hypersonic cruise vehicles, see for example Becker and Kirkham (ref. 1) and Bushnell (ref. 2).
An airframe-integrated underbody engine configuration has been suggested (ref. 3), and design con- .
siderations are discussed by Henry and Anderson (ref. 4). Over the years many alternative designs have
been proposed by the Air Force, Navy, and NASA as well. They all enjoy a certain commonality in
that fuel introduction arrangements typically consist of rows of circular, choked flow fuel injector
orifices mounted flush or normal to the combustor wall or in fins spanning the combustor inlet. The
various proposed component designs have largely emerged from experimentation wherein empirical
relations have established a preliminary configuration for a starting point. Early attempts to estab-
lish a theoretical basis for this developing technology have been confined by lack of detailed data
over the complete three-dimensional flow field. Since the pattern of fuel injection, hence three-dimen-
sional mixing, will exert significant influence on combustor performance, an in-depth analytical analysis of
the complex three-dimensional flow fields is required to lend critical support to design technology.

The results of comprehensive experimentation on prototype injector subsystems are now
becoming available. For example, Rogers has performed detailed measurements over the entire
three-dimensional mixing region downstream of hydrogen injection from a single discrete orifice
(ref. 5), and multiple, laterally-disposed orifices (ref. 6), into a Mach 4 airstream over a flat plate.
Similar measurements for a Mach 2.7 airstream, including Schlieren photographs of the near injec-
tion region, are reported by Wagner, Cameron and Billig (ref. 7). These data are not only useful for
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Excellent agreement between the QOMOC—computed fléw field and experimental data for a
jet/freestream dynamic pressure ratio of uﬁai‘fy was obtained in the centerplane region of the single jet
configuration. Poorer agreement off centerplane may be indicative of the inadequacy of the extrapo-
lated two-dimensional turbulence model that neglects ﬂowffield- three-dimensionality. A considerable
improvement in off-centerplane computational agreement occurred for a multi-jet configuration, using
the same turbulent transport model. Fo

Some of the computational disagreement W[l | measurements may well reflect initial condition
variability. One alternative to requiring detailed i}l‘i'tia data is to employ the *‘virtual source” con-
cept, wherein the complex transverse injection plienomé&na is computationally replaced by a hydrogen
jet imbedded within the air boundary layer, the‘fdistinguis‘i\r}g features of which are solely a function of
freestream and injectant parameters. A theoretical model for establishing initial conditions for a virtual
source was derived. Very good computational agreement with experimental data was obtained for the

multiple injéctor geometry for the three dynamic pressure ra}} s investigated (q, = 0.5, 1.0, 1.5), at
stations up to 60 (injector orifice) diamegters downstream. Sins ¢ jet comparisons could be obtained
using the virtual source concept, if desired by a simple change inMateral boundary condition specifi-
cations. ‘ '
. éﬁ

The COMOC-computed solytions for the three-dimensional flew field provide considerably de-
tailed information, much more thin is typically available by experimen{al means. Important design
guidance for the engineer may b¢ obtained by integrating these data oveg the problem solution domain
to generate scalar correlating parameters. Since the prediction of reacting\flows is an ultimate goal, a
simple integral parameter, deﬁ%ed as the percentage of hydrogen that couldistoichiometrically react in
a given concentration and velocity distribution within the air boundary layer\was computed. Shown in
figure 1 are the COMOC-computed mixing efficiencies, , for the “virtual sourege”” modeling of multisjet
injection, as a function offdistance downstream from the injection orifice. Mixing efficiency is computed
to be noticeably pooregf/or q, = 1.5 than the other two dynamic pressure ratio conditions.
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COMOC can «B?e readily expanded to predict either equilibrium or finite rate chemistry for the

three—dimensional;r‘iixing problem. On a relative basis, however, if reaction is fast, heﬁ‘c‘e diffusion con-
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determining the mixing resulting from various given injector configurations but, of equal importance,
they provide the required accuracy comparison for theoretical analysis of the resultant turbulent flow
fields. Concomitant with the establishment of appropriate models for turbulent mass and momen-
tum transport coefficient distributions in three-dimensional flow fields will be the emergence of the
capability to perform analytical studies for both detailed flow description and design optimization.
The success of this approach depends upon establishment of a proven capability to model the three-
dimensional viscous flow field equations numerically, and to generate computational solutions

for practical geometrical configurations.

This numerical analysis capability is now operational within the COMOC general purpose
computer program system. The theoretical foundation for COMOC is a finite element solution al-
gorithm for a generalized initial-valued, quasi-linear elliptic boundary value partial differential equa-
tion, systems of which typically describe the mechanics and thermodynamics of continuum mech-
anical phenomena. Employing an extrapolation of two-dimensional mixing length/mass defect tur-
bulent transport concepts, as a prototype three-dimensional turbulent transport model, an analy-
tical study of mixing downstream of transverse hydrogen injection into a Mach 4, three-dimen-
sional air boundary layer flow over a flat plate has been performed using COMOC. Detailed num-
erical prediction of the flow field is presented, in a solution domain spanning 30 to 120 injector
diameters downstream, for the single jet geometry of Rogers (ref. 5), for a jet to freestream dynamic
* pressure ratio (q;) of unity, an injection orifice diameter (D) equal to 0.102 cm (0.040 in.), stagnation
freestream pressure of 13.6 atm (1 atm = 101.325 kN/m?) and a stagnation temperature of 300°K.
These conditions correspond to a Reynolds number per meter of 6.19 x 107 ; the boundary layer
thickness at the injector longitudinal station was equal to 2.7 injector diameters. The results of com-
putations for a multi-jet configuration, with injector separation equal to 12.5 injector diameters, are
also presented, for the freestream condmons similar to the smgle-Jet case.

‘Considerable experimental data management is required to establish initial conditions for
numerical three-dimensional solutions. A candidate alternative method is computational replace-
ment of the complex injection and turning phenomena with a “virtual source” of injectant imbedded
within the air boundary layer flow. A theory is presented to establish the initial condition specifi-
cation of a virtual source configuration based solely upon freestream and injectant parameters. Em-
ploying the same extrapolated turbulence model as before, analytical results are presented for pro-
pagation of the virtual source of hydrogen into the downstream mixing region, for a solution do-
main spanning 0 to 60 injector diameters downstream. The computational configuration is identical
to the multi-jet geometry of Rogers, and results are established for the three dynamic pressure ratios
of g, = 0.5, 1.0, and 1.5. The agreement between computed and experimentally measured data is
described in terms of decay of the maximum hydrogen concentration, trajectory of the maximum
concentration, and lateral spreading of the diffusion pattern.

For all computational solutions, COMOC was adapted to compute the integral mixing effi-
ciency parameter, n, of ref. 6. The potential usefulness of this scalar correlation parameter as a
design optimization tool on a relative basis is discussed. Combusion data are required to establish
an absolute comparison basis. Sample results are discussed illustrating how the COMOC predictive
analysis capability can be expanded to compute the actual reacting flows of practical interest in
combustor design and optimization.



THE DIFFERENTIAL EQUATION SYSTEM GOVERNING THREE-
DIMENSIONAL MIXING FLOW FIELDS

The description of a state point in viscous fluid mechanics is contained within the solution
of the system of coupled, nonlinear, second-order partial differential equations enforcing tocal con-
servation of species mass, total mass, linear momentum and energy. Closure of this equation system
requires identification of constitutive laws. For laminar flows, transport properties such as viscosity
and thermal conductivity are describable in terms of mo_lecular behavior and therefore dependent
solely upon the material present. In turbulent flows, the time-averaged Navier-Stokes equations
appear identical to the laminar flow equations, after identification of turbulent or “eddy” transport
coefficients which are dependent upon the kinematics of the flow field and not the molecular prop-
erties of the fluid. In this development, a generalized transport property description is assumed,
which may be selectively laminar or turbulent as required.

An illustration of the subject three-dimensional flow field is shown in figure 2. The pre-
dominant direction of flow is aligned with the x axis. Although the essential character of the flow
is boundary layer, the common three-dimensional boundary layer equations, (ref. 8) are an insuffi-
cient description, since some dependent variable gradients in the lateral direction (z axis) may not be
uniformly negligible (in comparison to those parallel to the y axis). The governing equation system
is thus the elliptic boundary layer form of the parabolic Navier-Strokes equations which retain all
derivatives in the lateral flow direction. The three- dlmensmnal velocity vector U has scalar com-
ponents in the rectangular Cartesian basis, figure 2 as -

— N A
U= ui+v’j\+wk )
It is useful to identify a two-dimensional vector differential operator V5,

v, =50, R0, 2)

and the comma notation sighifies partial differentiation. The three-dimensional, elliptic boundary
layer equations for a multispecies and compressible fluid can then be written as,

Global Continuity:

0=V, (pU) +(pu)y (3)
i $pecies Continuity:

pecies Continuity:

i ple i o i, qi

puY,X=72-(l;V2 YH-pU-7, Y' +8S 4)
Longitudinal Momentum:

puu =V ,+(uV,u)  -pU- Vau  -Piy (5)
Lateral Momentum:

puw,, =V, .(uV,w)  -pU-V,w -p,, (6)
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determining\the mixing resulting from various given injector configurations but, of equal importance,
they provide the required accuracy comparison for theoretical analysis of the resultant turbulent flow
fields. Concomitant with the establishment of appropriate models for turbulent m s'g and momen-
tum transport co\ fficient distributions in three-dimensional flow fields will be the/emergence of the
capability to perfeo\ﬁ analytical studies for both detailed flow description and deésign. optimization.
The success of this approach depends upon establishment of a proven capab111ty to model the three-
dimensional viscous ﬂow field equations numerically, and to generate computational solutions

for practical geometrlcéﬁ)nﬁguratlons

This numerical analysis capability is now operational withih thé! COMOC general purpose

computer program system. Jhe theoretical foundation for COMOC,i i€ a finite element solution al-
~ gorithm for a generalized 1n1t1§1 -valued, quasi-linear elliptic boundary value partial differential equa-
tion, systems of which typically, describe the mechanics and thermodynamics of continuum mech-
anical phenomena. Employmgé extrapolation of two- dlmensl‘gnal mixing length/mass defect tur-
bulent transport concepts, as a prototype three-dimensional tirbulent transport model, an analy-
tical study of mixing downstream of transverse hydrogen inj’éction into a Mach 4, three-dimen-
sional air boundary layer flow ove?&]at plate has been performed using COMOC. Detailed num-
erical prediction of the flow field is pre(sented ina solutl’an domain spanning 30 to 120 injector
diameters downstream, for the single Jet\geometry of Rogers (ref. 5), for a jet to freestream dynamic
pressure ratio (qr) of unity, an injection grifice diameter (D) equal to 0.102 cm (0.040 in.), stagnation
~ freestream pressure of 13.6 atm (1 atm = 101.325 kN/m ) and a stagnation temperature of 300°K.

These conditions correspond to a Reynolds mber per meter of 6.19 x 107 ; the boundary layer
thickness at the injector longitudinal stationx 5equal to 2.7 injector diameters. The results of com-
putations for a multi-jet configuration, with injector separation equal to 12.5 mjector diameters, are
also presented, for the freestream condltlon;;ési ilar to the smgle-Jet case. :

Considerable experimental data mg%agement is required to establish initial conditions for
numerical three-dimensional solutions. A candidaté, alternative method is computational replace-
ment of the complex injection and turning phenomeya with a “virtual source’ of injectant imbedded
within the air boundary layer flow. Aftheory is presented to establish the initial condition specifi-
cation of a virtual source configuration based solely upyn freestream and injectant parameters. Em-

- ploying the same extrapolated turbulence model as befokg, analytical results are presented for pro-
pagation of the virtual source ofili’ydrogen into the downstream mixing region, for a solution do-
main spanning 0 to 60 injector diameters downstream. The\computational configuration is identical
to the multi-jet geometry of Riogers, and results are established for the three dynamic pressure ratios
of gy = 0.5, 1.0, and 1.5. The agreement between computed and experimentally measured data is
described in terms of decayfof the maximum hydrogen concentyation, trajectory of the maximum
concentration, and lateraly spreadmg of the diffusion pattern.

For all computatlonal solutions, COMOC was adapted to compute the integral mixing effi-
ciency parameter, 7, Qf ref..6. The potential usefulness of this scalarycorrelation parameter as a
design optlmlzatlon fool on a relative basis is discussed. Combusion data are required to establish
an absolute comparison basis. Sample results are discussed illustrating how the COMOC predictive
analysis capability’can be expanded to compute the actual reacting ﬂows\{)f practical interest in

combustor demgr‘f and optimization. \
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Figure 2. Three-Dimensional Flow Field for Mixing Downstream of
Transverse Injection from Discrete Orifices

“Energy:
© puH,y =V, '(-I-,’ierH) - pUT, H
, . ‘ "
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¥, (1 - Le) = =hiv, Y1) » )
The ivariables appearing in equations (3) through (7) have their usual fluid mechanic interpretation: '
Y! is the mass fraction of the ith species, Pris the Prandtl Number, and Le is the Lewis Number
specified for essentially binary diffusion. The stagnation enthalpy H is defined as,

H= $hiyYl+1/2@?+w?) ' ' _ (8)
and the static enthalpy of the ith species is expressed in terms of temperature as,
| T | - o
hl = l: cpdT - | )

Each species is assumed to behave as a perfect gas. From Dalton’s law, the equation of state takes
the form
Syl .
p=pRTZ — ' (10)
i W .

-.where R is the universal gas constant, and wi is the molecular weight of the ith species.

Solution is required for the equation system (3) through (10), with appropriate specification
of both boundary and initial conditions, as well as the pressure distribution, p (x,z), in the external
inviscid flow field. The form selected for writing these equations purposefully illustrates the
mathematical uniformity that pervades the system which is of considerable significance in establish-
ing the (finite element) numerical solution algorithm.



FINITE ELEMENT SOLUTION ALGORITHM

Each of the partial diffcrential equations (4) through (7), requiring solution for the three-
dimensional mixing problem, is a special case of the general initial-valued, quasi-linear elliptic
boundary valuc problem of mathematical physics. The global continuity equation (3) is purely
initial value, and requires special consideration as detailed after the general development. For the
numerical algorithm development, full advantage is taken of the mathematical uniformity pervading
equations (4) through (7) by noting that each is a special case of the general equatlon L(@=0,0r
specifically,

puq,y = V,+(kV, q)-pU- Vg +f , . . (1)
In equation (11),qisa generaliied dependent variable, k is the generalized diffusional transport co-

efficient, and f is any forcing function that may or may not be explicitly independent of q. Table 1
lists the functions k and f appropriate to q identified with each dependent variable.

TABLE 1
COEFFICIENTS IN GENERAL EQUATION
Equation
Number q k f
. L i
@ Y! = s
(5) |l u H Py
(6) w H ‘p’z
m | H L 2[00 P) 5 (0 )]
r
9,- [(1 -Le) AL shlv, Yi]
Pr i

"The initial conditions for solution of equations (4) through (7) comprise a specified distri-
bution for each q at the initial longitudinal station, X=X, of the form

a(xy,y,2) = Qg4 (v,2) (12)

All boundary conditions of practical importance, for the elliptic solution domain, can be written
in the form

a, (0aF2+2, 729 G, = a3 ) (13)

The superscnpt bar constrains the independent variable to lie on the closure, dR, of the elhptlc
domain R, and A is the outward pointing unit vector everywhere normal to the domain closure.
Table 2 lists representative values of the aj, equation (13), required to enforce sample boundary con-
" dition specifications for select dependent variables.
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The variables appearing in equations (3) throug‘h (Z;) have their usual fluid mechanic interpretation:
Y1 is the mass fraction of the ith species, Pr is the/Prandtl Number, and Le is the Lewis Number
specified for essentially binary diffusion. The stagnation enthalpy H is defined as,

H=3hivi+1/2 @ +w?) (8)
i
and the static enthalpy of the ith species isfexpressed in\terms of temperature as,
| T | |
hl = L cpdT - 9)

Each species is assumed to behave 45 a perfect gas. From Daltoy’s law, the equation of state takes
the form '

(10)

. where R is the universal ga$ constant, and wi is the molecular weight of ‘the ith species.

Solution is requ’ired for the equation system (3) through (10), with\appropriate specification
of both boundary ang initial conditions, as well as the pressure distribution,y (x,2), in the external
inviscid flow field. Fhe form selected for writing these equations purposefuliillustrates the
mathematical uniformity that pervades the system which is of considerable sign¥ficance in establish-
ing the (finite element) numerical solution algorithm. ) ‘




TABLE 2
COEFFICIENTS IN GENERAL BOUNDARY
CONDITION STATEMENT

" Coefficients
Boundary Condition | a, | a a; .
" No-Slip at Wall 1 0 0
. Slip at Wall + -1 0
Mass Injection 0 1 t
Adiabatic Wall 0 1 0
Specified Heat Flux 0 1 +
Temperature Dependent Flux + t +
Symmetry Condition 0 1 0

t Non-zero values user spemfled to enforce desn'ed
conditions.

Solution of the d1fferent1al equatlon system, equations (4). through (7) is thus reduced to
establishment of a numerical solution algorithm for equations (11) through (13). The finite element -
method is suggested, as has been presented by Baker (ref. 9, 10). Briefly, solution is sought to
equation (11) using Galerkin criteria within the Method of Welghted Residuals (MWR), see Finlay-
son and Scriven (ref. 11) by approximation of a (each) dependent variable w1th1n the solution

domain, R, by a series expansion of the form.

D= T Oy 52 o ~ )
k=1

In equation (14), the Cy (x) are unknown expansion coefficients modifying members, Py (y,2), of
a set of functions that are complete in the space of the elliptic domain. Certain of the expansion
coefficiénts are evaluated by requiring that the approximate solution, equation (14), satisfies ap-
propriate boundary conditions, equation (13). The remaining unknown coefficients are then de-
termined by setting to zero the differential equation residuals, formed by substitution of q” into
equation (11), multiplication by a set of weighting functions, Wy, typically identical to the spatial
approximation functions, ¢y, and integrating over the elliptic domain R. This produces the N
ordinary differential equations. ..

'](wk (X)L(@*)dr=0 k=1,2,...N , (15)

where N corresponds to the total number of remaining unknown coefficients in the definition of
the approximation function, equation (14}, and L(q ) is equation (11) written on the approximate

solution.

) When non-vanishing gradient boundary conditions exist, a generalization to MWR relaxes
the constraints formed by the boundary condition statement. Form the N boundary residuals, de-

fined from equation (13) as

- 1
,[ Wi (x) [q*- — (a;-a, Vq*.'r\ll do=0 k=1,2,...N . (16)
3R 3 :



Looking to the variational calculus for guidance, mu[tfply equation (16) by a Lagrange multiplier,
A, and subtract the set from equation (15). Noting that the N weighting functions can be written
as,

Wk(X) = ’a—w 4 17)

mtegratmg by parts the differential equatlon term mvolvmg the elllptlc operator, and identifying
\a, with the generalized diffusional transport coefficient, k, Table 1, achieves a cancellation of
terms. The resultant ordinary differential equation system for determmatl_on of the remaining un-

known expansion coefficients, equation (14), is

bq* —
/v (_ Yok V,q*dr - /'5(—:,( pU*v,q* dr
R ,
3q* - aq*
+/a /-— pu q, dr+ fé—akas do
0 aR

aq* ,
. [’af a, q*do=0 (18)
aR - K

Throughout equation (18), the superscript star notation implies an épproximation to the function
and/or parameter, consistant with equation (11).

. Application of these concepts on a local basis may be termed Numerical Method of Weighted
Residuals. Establishment of an assembly procedure for generation of the global algorithm provides
the theoretical basis for a finite element numerical solution algorithm. Since equation (11) is valid
at a point, it is similarly valid in arbitrary subdomains, Rm, of R with closures O0R,. In actuality,
for fluid mechanics, the integral formulation transforming system behavior to a subdomain (control
volume) can be viewed as fundamental, the more familiar differential equations having been derived
therefrom. Hence, in each of M, disjoint interior subdomains, R defined by (y,z,x)eRmx[xo,oo),
and where UR,=R, define a local approximation function

N
am (x) = Eka (x) Oy (v,2) (19)

where the subscript, m, constrains the domam of equation (19) to R . Evaluate equation (18)
within each R, so selected that km(x) is adequately represented by a local value k, (x) within R |
This yields an ordmary differential equation system for solution of the local approximation functxon,

~equation (19), within Ry,. The global solution algorithm is established employing Boolean algebra to
assemble the MxN equatlons {18) into an equatlon system which enforces weighted average global
adherence to the original differential equation system, equations (11) through (13).

The globally assembled equation system ils similarly a first order, ordinary differential equa-
tion system, written on the totality of local expansion coefficients, C_, (x), equation (19), that do
not coincide with locations on the global closure, R, where fixed boundary conditions are applied,



\_ . . TABLE?2

\ : COEFFICIENTS IN GENERAL BOUNDARY : g
CONDITION STATEMENT /

\ ' ‘ ' . r‘/
_ Coefficients ' 4

Boundary Condition a, a, a; . 4 / ,
: A A
No-Stip at Wall 1 0 0 /
Slip at Wall t 1 -0 /
\Mass Injection 0 1 t o4 -

Ad‘labatic Wall 0 1 0 /

Spécified Heat Flux 0 1 T/ '
Temperature Dependent Flux t t /‘{'

Symm\étry Condition 0 1 4 0

t Non- ze‘}'q values user specified to enforce desll':ed
conditions.

Solution of the differential equation system, equations (4) through (7) is thus reduced to
establishment of a numerical solution alggrithm for equatlons/ 11) through (13). The finite element
- method is suggested, as has been presented\by Baker (ref. 9 ilO) Briefly, solution is sought to
equation (11) using Galerkin criteria within the Method of Weighted Residuals (MWR), see Finlay-
son and Scriven (ref. 11) by approximation of a (each) dependent variable within the solutlon
domain, R, by a series expansion of the form.
Q" & = 2 CG0e ) a9
In equatlon (14) the Ck (x) are unknown expansion coefficients modifying members P (y, z) of
a set of functions that are complete in the space/6f the élliptic domain. Certain of the expansion
coefficients are evaluated by requiring that the/approximate solution, equation (14), satisfies ap-
propriate boundary conditions, equation (13) The remainipg unknown coefficients are then de-
- termined by setting to zero the differential equatlon re51dua1 formed by substitution of g* into
equatlon (11), multiplication by a set of weighting functlonss\Wk, typically identical to the spatial
approximation functions, ¢y, and integrating over the elliptic dgmain R. ThlS produces the N
ordinary dxfferentlal equations. .. 4 :

éwk X L@@Hdr=0fk=12,...N (15)

where N correspbnds to the totaglg number of remaining unknown coefficients in the definition of
the approximation function, eqdiation (14), and L(q™) is equation (11) written on the approximate

solution.

) " When non-vanishing’gradient boundary conditions exist, a generahzatlc‘{n to MWR relaxes
the constraints formed by the boundary condition statement. Form the N boundary residuals, de-

fined from equation (13) as

0 k=1,2,...N (16)

fwk‘(x) [q*- — (33'32 Vq Al do
dR



i.e.,a,=0, equation (13). The order of this equation system is less than MxN by both connectivity
of the subdomains and enforcement of fixed boundary conditions.

The' last step to establishment of the finite element solution algorithm. is selection of the
functionals ¢ (y,z), equation (19), and specification of the finite element subdomain geometry.
From the vast choice which exists, experience with general purpose computer codes indicates that
many practical problems are amenable to solution using linear functionals. The natural two-dimen-
sional finite element shape, illustrated in figure 3,isa triangle with (at least) vertex node points.
Equation (19) constrained to a linear representation over the triangular shaped finite element do-
main, where { | denotes a column matrix, becomes .

g = OO+ Cap () y + Cap (X) 2
] _— | AR
= {coo}_{x} ~ (20)
Y
Q,

z

Figure 3. Triangular Finite Element

Evaluating equation (20), at the three vertex nodes of the finite element, produces a linear alge-
braic equation system which can be solved analytically for matrix elements of {C(x)}m, Hence, an
alternate and useful expression for q}"n is :

e* ya) = {xfT N g{Q )y o @n

The elements of the 3x3 coefficient matrix, [I'] m>» are known constants, derived strictly from geo-
.metrical considerations, as

(Tly =

1 1 .
m 2_A_m B; ﬁj By | (22)



where ap = yq Zr-Yyp zq
By =2q-2 : - (23)
Tp =Yr-Yq
and the indices (p.q,r) permute cyclicly in the order (i,j,k). The elements ofl X } are | 1 ,y,z} , and the

three elements of‘Q (x)| m are the local values of the dependent variable, qr';v at each node point
location of the finite element. In equation (22), A is the plane area of the finite element.

The establishment of equation (21) allows direct evaluation of terms within the finite ele-
ment algorithm, which is equation (18) constrained to the subdomain R . The weighting functions
for Galerkin criteria are now expressible as '

*
aqm' _ aqm - [F] T {X} . A (24)

Substituting equations (21) and (24) into equation (18), the solution algorithm for the typical
initial-boundary value differential equation system for the three-dimensional flow field becomes

[C1,{Q}, =-2 (Kl {Q}, + = {Li}, | : | 25)
I=1 1=1 | -

.

In equation (25), the superscript prime denotes the ordinary derivative with respect to the x co-
ordinate. The indicated finite element matrices, common to all q, are ’

c,, =mk Rf fxHx}T (01 {oUlm ix}T ar (D1,

Kl =1 /vzgx}.kmv,{x}"fdr[r]m-

Rm

Ky, =T f fxnx}f[mm({pV}m?+{pW}m?<)-
Rm ‘

v, {x} Tarirly,

T -
. J {x}agy {x} T dolrly

[K3],, =
" m gR.
L, =m_ ai(m{x’ ap,3 do (26)
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i.e., a,=0, equation (13), The order of this equation system is less than MxN by both conpéctivity
of the subdomains and enforcement of fixed boundary conditions. . '

The last step to establishment of the finite element solution algorithm is selection of the
fumtlonals ¢, (v,2), equation (19), and specification of the finite element subdomlam geometry.
From the vast choice which exists, experience with general purpose computer codes indicates that
many practical problems are amenable to solution using linear functionals. The'natural two-dimen-
sional finite. .element shape, illustrated in figure 3, is a triangle with (at least) veftex node points.
Equation (IQ) constrained to a linear representation over the triangular shaped flmte element do-
main, where | } denotes a column matrix, becomes o /

Cipn®) + Co(®) y + C3 (%) 2

fc oo {x}

(20)

Figﬁre 3. Tﬁang&lii Finite Element

Evaluating equation (20), at the three vertex nodes of the finite element, produées a linear alge-
braic equation system which caf be solved analytlc ly for matrix elements of {C(x) } Hence, an
alternate and useful expression for qm is :

ar (uy2) f= {x}T I n{Q (O} 1))

The elements of the 3x3 coefficient matrix, [I'];,, are knownconstants, derived strictly from geo-
metrical considerations, as

s 8 ¢4 ozk
1 1 ﬁj 6 (22)
(Clg, = = B; K
Ao2an )
71 IJ 7k




The source term finite element matrices, for each particular identification of q, are

Y"_;{Lz}m s[r]:1 R/ {x}st dr

q -
m
L T
an e Ry =0, ;{m’xmx ar
T
a=w {L?‘}m E’[F] [ pazdr
m .
| K . ]
q = H: {L2}, = [F]m j{x}vz.(l-Pr)if-:({U}m [pli{x}vz{x}
o Ry
1 {0 +Why, (01 {47 T [F]m{w}m> dr
T [, T T
{13} ‘[l"]m J/ {x }Vz.-(l-Le)I_ﬁ_lr_zi{hl}m [F]m{x'}
R .

- T S, | '
N ix} [l {Y'}, dr eX))

In equation (27), the préssure gradients are assumed specified functions of x and z, and the matrix
elements of {hl}m are the static enthalpy at nodes of R, 'as defined by equations (8) and (9). ’

Equations (25) through (27) define the finite element solution algorithm for the typical _
equation over each finite element. The MxN equations (25) are assembled, using Boolean algebra,
into the global system which enforces a weighted average adherence to the original partial differential
equation. The appearance of the global equation is identical to equation (25) with the subscripts m
removed. This equation system is eligible for integration, as a system of ordinary differential equa-
tions, written on the global column matrix, { Q(x)} by any algorithm. The choice between implicit
or explicit essentially reduces to whether or not elements of the {C] matrix, and the { Q(x)} vector -
on the right side of equation (25), are evaluated at the current or the next advanced X station.

An explicit algorithm, (ref. 12), has been used to generate the reported results. For this
choice, the elements of the |Q(x) } vector are ordered such that those nodes occurring on dR, where
fixed boundary conditions are applied, are loaded into the bottom partition of {Q(x)] The sym-
metric [C] matrix is partitioned, correspondingly, and the rank (r) of the upper partition equals
the number of unknowns in the {Q(x)l vector. The lower partition is contracted with the correspond-
‘ing known (fixed) elements of {Q(x)}, and subtracted from both sides of equation (25). Premultiplying
equation (25) by the inverse of the reduced [C] matrix yields, as the f1nal global solutlon form for
the finite element algorithm, the explicit equation.

fQ) = cy”! <E[KI]r{Q}r_+ EILI}r> - (28)
r r \I I .

The subscripts r in equation (28) indicate that the system is of the reduced rank r, and the
contributions stemming from the lower partition operations have been lumped into an additional

Il



{ LI} vector. The solution of equatlon (28) yields the values of the dependent variable approxima-
tion function q equation (14), at the nodes of the finite element discretization of the solution do-
main R, mcludmg those values at nodes existing on 0R where gradient boundary COI‘IdlthﬂS have
been enforced. ’

The finite element solution algorithm for global continuity follows a similar development.
Equation (3) is strictly initial value on pv, as a function of y, with x and z appearing as parameters
in the form of the corresponding derivatives. Hence, the finite element approximation qm, equation
(213, need span only the transverse coordinate direction, as

am = {Lyy? oy T L {Q ) (29)

and the elements of{ Q(x,2)| ,, are corresponding values (and derivatives) of pv at nodes of the dis-
cretization. These nodal values are functions of both x and z; it is thus required to solve global con-
tinuity at successive z locations, for each x station.

The solution of equatlon (3) by MWR follows the conventional procedure. Identifying the
approximation function, qm for the terms in the equation, and selecting a set of weighting func-
tions, Wk, form the weighted residual of equation (3), and integrate over the finite element domain,
R,- This yields

Y1

| WewL@udy =0 k=1,2..,N (30)
Yo : -

which is solvable on a subdomain (finite elemeht) basis, since equation (3) is an initial value prob-
lem. "

Concerning the formation of particular components of equation (30), since the finite ele-
ment approximation spans the x plane, (pw),, is known from equation (21) written on pw. How-
ever, (pu),y is not available, since this coordinate direction is spanned by finite difference integra-
tion. Actually, no streamwise derivatives, equations (3) through (7), are available until the flow
field is there known. Since pv is required to evaluate these derivatives, an estimation is required
of the (n+1 )St value of (pu),,. In keeping with the use of first order accurate methods, and real-
izing that the required variable is, in the discretized solution, actually equal to (p U)' a first-order
accurate finite difference approximation formula is adequate, and is of the form

[pU)4; -(U)] -(UY, () : EY

(pU)'n+1 zx n+1%n

The truncation error in equation (31) equals 0.1667 h? (o U)""’ (¢), where h is the x direction step
-size, and Xp i< Xp+]-
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The souyce term finite element matrices, for each particular identification of q, are

4 {X}Si dr

m

-] f{x}p,xdr

T
=-[T] [ {x}p
m Rm

T
(rl,,

—

3
=
3

T

T 7] T T
q=H: {L2}, = [I‘]m J{x}vz.(l-Pr)-l;r({U}m {F]m{x}szx}

W) Uy W g, (1) 272 54T lFlm{W}m> dr
_\T K i) T T
{13}, =“"‘\m}{ {x}¥; - (1- Lo g 2t (01 {x}
T .
Wix} Cip{Yyar @n

In equation (27), the pressure gradients are assumed/specified functions of x and z, and the matrix
elements of Ihllm_are the static enthalpy at nédes f Rm,'as defined by equations (8) and (9).

Equations (25) through (27) define the in{te element solution algorithm for the typical
equation over each finite element. The MxN equatlons (25) are assembled, using Boolean algebra,
into the global system which enforces a welgﬂted average adherence to the original partial differential
equation. The appearance of the global eq{latlon is idéntical to equation (25) with the subscripts m
removed. This equation system is eligi ([{ for 1ntegrat10\ﬁ as a system of ordinary differential equa-
tions, written on the global column m {Q(x)l by any, algorithm. The choice between implicit:
or explicit essentially reduces to whether or not elements of the [C] matrix, and the [Q(x)] vector
on the right side of equation (25), are evaluated at the current or the next advanced x station.

An explicit algorithm, (sef. 12), has been used to generate the reported results. For this
choice, the elements of the a{}l x)} vector are ordered such that t ose nodes occurring on dR, where
fixed boundary conditions are applied, are loaded into the bottom partmon of {Q(x)} The sym-
metric [C] matrix is partitioned, correspondingly, and the rank (r) of the upper partition equals
the number of unknowng/in the IQ(x)} vector. The lower partition is’contracted with the correspond-
ing known (fixed) eleménts of {Q(x)}, and subtracted from both sides of equation (25). Premultiplying
equation (25) by the/nverse of the reduced [C] matrix yields, as the final global solution form for
the finite elemer?léorithm, the explicit equation. '

-1 ’ o I
' = {C] <E[Kl]r|er + z{u}r> A (28)
r r \I | A : '

The subscripts r in equation (28) indicate that the system is of the reduced rank r, and the
contributions stemming from the lower partition operations have been lumped intb@n additional

s
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COMOC COMPUTER PROGRAM

The COMOC (Computational Continuum Mechanics) general purpose finite element com-
puter program system is coded entirely in terms of generalized non-dimensional independent and
dependent variables. In addition to producing the results to be discussed, it has been exercised
for problems in transient heat conduction (ref. 13) and the two-dimensional Navier-Stokes equa-
tions (ref. 9, 14, and 15).

The program consists of four basic Modules, as illustrated in figure 4. In the INPUT Mod-
ule, the desired discretization is formed by specification of the plane coordinates (yy, zjy) of the
triad of vertex nodes for each finite element. The node numbering sequence is completely ar-
bitrary, as is the selection of a particular discretization, and both may be chosen for output con-
venience. In particular, nodes are first placed where output information is desired. The remain-
der of the solution domain is then discretized to avoid finite elements with aspect ratios greater
than about 100:1. The closure of the solution domain is recognized as the counterclockwise
connection of the first N nodes, with N an input parameter. These node numbers are then auto-
matically loaded into the bottom partition of the global unknown vectors, {,Q _(x)} .

Input

Geometry '

Integration Algorithm

Output
' Figure 4. COMOC Computer Program Organization

The appropriate non-vanishing element boundary condition coefficients ami" equation
(13), are included as element information for each dependent variable to be solved, since in
general the different Q’s have individual specifications. The input phase is completed by read-
ing non-dimensionalizing factors, various control parameters, information regarding initial con-
ditions for the dependent variable vectors, { Q (xo) | , and the desired output control parameters.

The next two Modules, figure 4, are basically DO loops on the finite elements of the dis-
cretization. In the GEOMETRY Module, the element coefficient matrix, [I'] m’ is formed.
Sequential passes through two subroutines generate and assemble the required moment distri-
butions over areas and lines, and establish the various required finite element matrices, equations
(26) and (27).

The INTEGRATION Module embodies the finite difference integration algorithm for the
system of ordinary differential equations. The basic element operation is formation of equa- .
tion (25) at a given x station, and the assembly of the element matrices into the global represent-
ation, equation (28). In this procedure, the required order of equation (28) is automatically de-
termined, and the matrix [C]r'l obtained. At user-selected points, the OUTPUT Module is called
to record the arrays within the dependent variable vectors {Q (x) } and other desired parameters.

13



The integration algorithm presently used by COMOC is an explicit, single-step, multi-stage
finite difference procedure with a large region of absolute stability (ref. 12). Since it is single--
step, the changing of step-size during solution is easily accomplished. The algorithm automatically
adjusts current step-size by comparison of a truncation error coefficient to a user-specified para-
meter related to an allowable local error magnitude. An extensive discussion on the operation of
this algorithm is presented by Baker and Manhardt (ref. 13).

RESULTS AND DISCUSSION

The Mechanics and Thermodynamics of Binary, Isoenergetic
Turbulent Boundary Layer Mixing

A considerable simplification to the general equation system, equations (3) through (7),
can be achieved for analysis of the specific problem of interest, namely two-component, non-
reacting cold flow mixing of hydrogen injected into a turbulent supersonic air boundary layer
flow on a flat plate (ref. S and 6). Pressure gradients in the external flow field are negligible and
only one species continuity equation is required. As a first approximation, the flow may be assumed
isoenegetic, and the species continuity and energy differential equation descriptions are identical.
Hence, their respective solutions can be linearly related as

HH, | YY,
H,-Ho, Y, Yoo

In equation (32), subscript zero denotes reference conditions at the point of injection, while sub-
script infinity refers to free stream reference values. For the specific case, Y, vanishes and Y
equals unity. The mixture specific heat is a linear function of mass fraction; for this problem, the
specific heat is temperature independent to within about + 5%, in the range 100-300°K. This variation
was assumed negligible, and direct solution of equation (32) for static temperature of the mixture
at any point in the solution domain is

1 U?
a +Y (rToh — =

T -T.)-
o)
a  2gl cpa 33)

- )
T, x) =

1+Y (r-1)

Equation (33) is written on directly measurable reference values of air and hydrogen stagnaiion
temperature at injection (TO and Toh), and the computed local values of longitudinal velocity com-
a

ponent (U) and hydrogen mass fraction (Y). The parameters g and J have their usual interpretation,

Cp, is the specific heat of air, and r is the (constant) ratio of specific heat of hydrogen to air at the air
stagnation temperature. This assumption can be readily replaced by finite element solution of the energy
equation (7), with temperature dependent thermophysical problems, for other problems, €.g., reacting flows.

The equation of state of the two-component mixture, equation (10), is readily reduced to
the following expression for density, p, at any point in the solution domain assuming a constant
static pressure distribution. '
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' \ : COMOC COMPUTER PROGRAM

\

The COMOC (Computational Continuum Mechanics) general purpose finite element com-
puter program system is coded entirely in terms of generalized non-dimensional independent and .
dependent va{iables. In addition to producing the results to be discussed, it has been exercised
for problems in transient heat conduction (ref. 13) and the two-dimensional Nayier-Stokes equa-
tions (ref. 9, 14, and 15).

The program consists of four basic Modules, as illustrated in figure #In the INPUT Mod-
ule, the desired discrftization is formed by specification of the plane coo;dinates (Y 2g) of the
triad of vertex nodes'for each finite element. The node numbering sequénce is completely ar-
bitrary, as is the selectign of a particular discretization, and both may be chosen for output con-
venience. In particular, hodes are first placed where output information is desired. The remain-
der of the solution domain,is then discretized to avoid finite elemen/t’s with aspect ratios greater
than about 100:1. The closure of the solution domain is recognized as the counterclockwise
connection of the first N nodes, with N an input parameter. The/se node numbers are then auto-

matically loaded into the bottom partition of the global unknown vectors,-‘{,Q (x)} .

Y Input

A} 1 7

\ Geometry /"
N1 7

ln\tggration Alg/o{'ithm

N L/

Nouton
\Q}J-tput

,

Figure 4. COMOC Compt‘i-ter Program Organization

_ The appropriate non-vanishingele}nent boundary condition coefficients amj» €quation
(13), are included as element information' for each dependent variable to be solved, since in
general the different Q’s have individual’gpecification:\{he input phase is completed by read-
ing non-dimensionalizing factors, varigus control parameters, information regarding initial con-
ditions for the dependent variable vetors, {Q (xo) } ,and {‘he desired output control parameters.

The next two Modules, figure 4, are basically DO loops,on the finite elements of the dis-
cretization. In the GEOMETRVModuIe, the element coefficier‘}t matrix, [T'] . is formed.
Sequential passes through two }slubroutines generate and assembl‘e‘ the required moment distri-
butions over areas and lines, and establish the various required finite element matrices, equations
(26) and (27).

The INTEGRATION Module embodies the finite difference integration algorithm for the
system of ordinary differential equations. The basic element operation'is formation of equa-".
tion (25) at a given x station, and the assembly of the element matrices ingo the global represent-
ation, equation (28)./In this procedure, the required order of equation (28\2 is automatically de-
termined, and the matrix [C] r" obtained. At user-selected points, the OUTPUT Module is called
to record the arrays within the dependent variable vectors |Q (x)} and other\}iesired parameters.
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In equation (34), Ts.x‘, is the freestream (air) static temperature, T comes from equation (33), and

m is the ratio of air to hydrogen molecular weights.

Finally, for the present problem of flow over a flat plate, w vanishes both at the wall and
in the freestream, as well as along the symmetry plane bisecting the injection orifice and parallel to
the predominant flow vector. A non-vanishing component may well exist on the remaining segment
of the elliptic domain closure. However, since no experimental measurements are available, no
plausible alternative exists but to assume w vanishes over the entire closure. The resultant solution

.to equation (6) is that w vanishes everywhere.

Therefore, the partial differential equation system requiring solution for the subject cold
flow binary mixing problem reduces to equations (3) through (5), less the respective source terms,
in combination with equations (33) and (34). The theory for turbulent transport of mass and
momentum is described in the next section, and the procedure for computation of molecular vis-
cosity for the binary mixture is described in Appendix C. '

Model for Turbulent Transport Coefficien‘i Distribution

To date, no work is reported on the modeling of three-dimensional boundary layer flows
for the conditions of interest in this investigation (ref. 5, 6). For-example, only the incompres-
sible case has been analytically modeled, e.g., Bradshaw (ref. 16), Nash (ref. 17, 18). Therefore,
the most direct approach was to develop a prototype three-dimensional model by extending
techniques proven successful for planar and axisymmetric flows

The three dimensional model developed herein reflects, (1) mass flux differences between
‘the main flow and the jet, and (2) the turbulence due to the presence of the wall. Above the jet
region, i.e., the region bounded by the wall and the zero concentration contour, (fig. 5) of the
concentration profile, mixing is due to the differences in mass flux. Outside the jet and near the -
wall (large values of |z |), the turbulence is due solely to boundary layer phenomena Wlthm the
region of the jet both mechanisms are active. :

“Shown in figure 6 is an axisymmetric flow configuration which was studijed for turbulent
transport characterization by Morgenthaler (ref. 19), and.is being further studied.* The two
flow geometries (figs. 5 and 6) are similar in that they each consider the normal sonic injection
of hydrogen into a supersonic air (or nitrogen) stream. Two important differences are three-
dimensional versus axisymmetric flow, and that pressure gradients may exert influence on the
ducted axisymmetric flow field development. Calculations have since shown that neglecting
pressure gradient in the ducted flow case does not significantly affect the predicted hydrogen
concentration field. Therefore, the primary difference between the flows shown in figures 5 and 6

- is the dimensionality.

Development of the prototype three-dimensional mixing model employed the results of
analysis for the axisymmetric configuration. For this flow detailed experimental data were avail-
able from which distributions of eddy diffusivity coefficients were calculated using methods
reported in reference 19. The objective was to determine whether the determined eddy diffusivity
could be modeled using the mass defect concept and mixing length theory; i.e., techniques proven
successful in modeling planar boundary layers (ref. 20) and axisymmetric free shear layers (ref.
21, 22).

*Zelainy, S.W.: Modeling of the Eddy Diffusivity of Mass in Supersonic, Axisymmetric, Ducted,
Turbulent Flow, IOM 665:72:0320-1:SWZ, Mar. 1972, Bell Aerospace Co., Buffalo, N. Y.
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The mixing region is divided into an inner and outer sub-region as shown in figure 7. In
the inner region. mixing length theory is assumed valid: hence. the eddy diffusivity is of the form

U -1 .
E = ¢2 i—iSc g
Din CwY ay QLT o<y<yy (35)

where v is displacement from the wall. v is height of inner region (defined as that value of'y
where ED- > ED t), U is the mean axial velocity, and ¢ is the mixing length, given by
in ou

Q= cy (36)



In equation (34), Tsw is the freestream (air) static temperature, T comes from equation (33), and

m is the\ratio of air to hydrogen molecular weights.

Finally, for the present problem of flow over a flat plate, w vanishes both at the wall and
in the freestream, as well as along the symmetry plane bisecting the injection orificesand parallel to
“the predominant flow vector. A non-vanishing component may well exist on the r€émaining segment
of the elliptic dpmain closure. However, since no experimental measurements a } available, no
plausible altemat{ve exists but to assume w vanishes over the entire closure. Tht resultant solutron

to equation (6) is kx w vamshes everywhere.

Therefore, the partial differential equation system requiring solution for the subject cold
flow binary mixing problem reduces to equations (3) through (5), less thé respective source terms,
in combination with equations (33) and (34). The theory for turbulent’transport of mass and
momentum is described inthe next section, and the procedure for computation of molecular vis-
cosity for the binary mixturg,is described in Appendix C.

Model for TurBulent Transport Coefficient Distribution

To date, no work is reportell on the modeling of three- drmensrona] boundary layer flows
for the conditions of interest in this investigation (ref. 5, 6). For example, only the incompres-
sible case has been analytically modeled, e¢.g., Bradshaw (ref /) 16), Nash (ref. 17, 18). Therefore,
the most direct approach was to develof)’\ a prototype three dimensional model by extending
techniques proven successful for planar an\d axisymmetric ﬂows

The three dimensional model developed hereiry’reﬂects, (1) mass flux differences between
the main flow and the jet, and (2) the turbulence duefto the presence of the wall. Above the jet
region, i.e., the region bounded by the wall and the z'ero concentration contour, (fig. 5) of the
concentratron profile, mixing is due to the drfferences in mass flux. Outside the jet and near the
wall (large values of |z 1), the turbulence is due so]ely to boundary layer phenomena. Wrthrn the
region of the jet both mechanisms are active.

Shown in figure 6 is an axisymmetric flow config atron which was studied for turbulent
transport characterization by Morgenthaler Gref 19), and 1s\bemg further studied.* The two -
flow geometries (figs. 5 and 6) are similar in { that they each tonsider the normal sonic injection
of hydrogen into a supersonic air (or nitrogen) stream. Two important differences are three-
dimensional versus axisymmetric flow, and that pressure gradients may exert influence on the
ducted axisymmetric flow field development Calculations hav&smce shown that neglecting
pressure gradient in the ducted flow case does not significantly affect the predicted hydrogen ~
concentration field. Therefore, the primary difference between thevflows shown in figures S and 6

is the dimensionality.

Development of the protgtype three-dimensional mixing modeliemployed the results of
analysis for the axisymmetric cofifiguration. For this flow detailed experimental data were avail-
able from which distributions of eddy diffusivity coefficients were calculated using methods
reported in reference 19. Thefobjective was to determine whether the determined eddy diffusivity
could be modeled using the r’ﬁass defect concept and mixing length theory;i.e., techniques proven
successful in modeling planar boundary layers (ref. 20) and axisymmetric free shear layers (ref.

21, 22).

£

!

*Zelazny, S.W.: Modehng of the Eddy Diffusivity of Mass in Supersonic, Axrsymm‘étnc Ducted,
Turbulent Flow, IOM 665:72:0320-1:SWZ, Mar. 1972, Bell Aerospace Co., Buffalo\N Y.
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The constant ¢, equation (36), has been found from boundary layer data to be equal to 0.4,
whereas the turbulent Schmidt number was assumed equal to 0.7, consistent with both boundary
layer and free shear layer data.

‘'von Driest’s (ref. 23) damping factor, w, requires the eddy diffusivity to vanish at the
wall, and is given by

= (1-eY/Ay (37)
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where A isan empmcally determined length scale expressed in terms of the wall values of shear
stress 7, and density Py

= 260N/l (38)

The intermittency factor, v, has been empirically modeled in a number of ways (ref. 24).
- In this study, it was found that

1

1+.01¢° (39

fy =
gave a fair representation of the data where { = y/6 and 6y is the value of y where the hydrogen
mass fraction is one-half its wall value.

In the outer region, the eddy diffusivity of mass is aésumed directly proportional to the
mass defect (or excess) of the concentration layer and inversely proportional to the width of the
concentration layer; hence

E Q[ U-p..U.Irdr/L . 40
PED e foy loU-p Ul rdr/ (40)

where R, is the wall radius, Toy is the distance from the centerline to the point where Y equals
0.05 YWALL’ p is the density on the centerline, Uc is the axial velocity on the centerline, Y
is the mass fraction of hydrogen, and Yy a1 1 is the mass fraction of hydrogen at the wall. Also,

L =Ry, - foy | (41)

Accounting for intermittency at the outer region, the complete expression for Epy is given by,

Ry,
froy lo Up U, Irdr

Ep = Ky 3 - ¥g<y<Ry (42)

where K is an empirical constant determined from analysis of data and found to equal 0.0072
for a case with reliable mass balances (n'1H2 = (0.06 lbm/sec, 90° injection from a 0.03 in.

circumferential wall slot). Thus the Epy model was completely specified in the inner and outer
regions. The eddy diffusivity of momentum was defined by the relation,

Ep = (Ep)(Sep) (43)

Comparisons of the predicted Epy profiles with the experimental values led to the fol-
lowing conclusion for the wall slot injector geometry: :

(1) The eddy diffusivities of mass, E[y, in the region away from the wall (approxi-
mately 80 percent of the duct radius) are predicted with acceptable accuracy
(maximum difference of 28 percent) using the mass defect as a correlating
parameter.
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The constant c, equation (36), has been found from boundary layer data to be equal to 0.4,
whereas the turbulent Schmidt number was assumed equal to 0.7, con§ist_ent with both boundary
layer and free shear layer data. -

‘von Driest’s (ref. 23) damping factor, w, requires the eddy diffusivity to vanish at the
wall, and is given by

w = (1-eYAp/ 37

N\
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(2) Results were inconclusive regarding suitability of mixing length theory in the
inner region to model ED. Additional analysis can determine whether the dif-
ferences between predicted (using mixing length theory) and experimental
Ep’s have a significant effect on the predicted hydrogen concentration.

" For calculating the transport coefficients in the outer region of the three-dimensional flow
field, equation (42) was replaced by equation (44).

ED = K"Y'I/pL' ) . (44) '

where K’ is an empirical constant determined from data analysis, v’ is the intermitancy factor, equation
(39), but with an argument of y/8, L’ is a characteristic length of the mixing region defined as the half
height of the mixing layer on the centerplane, §, and I is the mass defect in the three-dimensional field.
The evaluation of mass defect in the three-dimensional flow field requires integration over the elliptic
solution domain of the form

I(x) E_/R lo U-poo Uooldr o : - (45) |

where the subscripts infinity refer to local free stream reference values. Within the concepts of
finite element formalisms, an entirely equivalent form, using the appropriate approximation func-
tion description, equation (19), and summation over the finite elements of the discretization is

_ _ - % _ - .
100 =2 Iy (%) r>r:1 f lo Uy - . U, Idydz (46)

The form of pUI";,is known and p., Uy, is a local scalar constant. Hence, using equation (21), the
mass defect computation becomes

I(x) = Z lI x) =2 [gRHOUIT T[ x peoU A, (47)
' ml m

where A is the plane area of the mt finite element Since both {RHOU} and p_, U, may be
functions of X, evaluation of equation (47) is required at each longitudinal computational station.
Shown in Figure 8 is a typical COMOC computed turbulent mass mixing coefficient, Ep, distribution
through the boundary layer using equations (35) and (44) for the multlple-Jet configuration of Rogers
(ref. 6). ‘

The turbulent mixing coefficient distribution used for prediction of momentum transport, E
at any point in the flow field requires specification of a turbulent Schmidt number, Sct. As with all
transport coefficients, COMOC can accept multiple methods of specification for such distributions.
" Initial studies employed a uniform constant Scr, equal to 0.7, which neglected the three-dimensionality
of the flow field and con51stently predicted over-diffusion of momentum near the wall. Cons1derable
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experimentation led to an empirical relationship for a geometric Schmidt number distribution, that
enhanced agreement with data, of the form
r(8)
Ser = 1. RO r <R 48)

In equation (48), R(0) describes an ellipse with major axis parallel to the plate and normal to the’
predominant flow direction, whose center is located at the approximate centroid of the imbedded
hydrogen jet (fig. 2). The ellipse selected for the present studies was specified independent of
downstream station and established by equation (49).

w-2s\* , [zp)’ =1. (49)
75 6.0
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(2) Results were inconclusive regarding suitability of mixing length theory insthe
inner region to model Ep. Additional analysis can determine whether the dif-
ferences between predicted (using mixing length theory) and experiméntal
Ep’s have a significant effect on the predicted hydrogen con'centra}i'on.

" Forc Iculating the transport coefficients in the outer region of the three-dimhensional flow
field, equation\42) was replaced by equation (44). ‘

Ep = X47V/pl! - o/ (44)

where K' is an empirical constant determined from data analysis, ' is the in[tetmitancy factor, equation
(39), but with an argument of y/8, L' is a characteristic length of the miin}g region defined as the half
height of the mixing layer\on the centerplane, 8, and I is the mass defect }fl the three-dimensional field.
The evaluation of mass deféect in the three-dimensional flow field ‘requir?s integration over the elliptic
solution domain of the form : /?

1(x) = lp U-po U idr - , . (45)

' \ , o -
where the subscripts infinity refer to local free stream reference v;ilues. Within the concepts of
finite element formalisms, an entirely, equivalent form, using the{appropriate approximation func-
tion description, equation (19), and summation over the finite élements of the discretization is

= = 2 J* ' '- : )
o) =21nx) = X fR o ¥ -p.. U, ldydz | (46)
m ' .

The form of pU;‘nis known and p, U, is a local scalar constaht. Hence, using equation (21), the
mass defect computation becomes - \

m . m - m

- 3| s | TN _
I(x) rznflm (x) =2 [lRHOU‘ (R] o fR 1% dr poéuooAm‘ (47)
!.

where A is the plane ?rea of the mt! finite elemént. Sinde both {RHOU} m and p, U, may be
functions of x, evaluation of equation (47) is required at each longitudinal computational station.
Shown in Figure 8 is-a typical COMOC compute’d turbulent Aass mixing coefficient, ED, distribution
through the boundary layer, using equations (3'5) and (44) for e multiple-jet configuration of Rogers
(ref. 6). ' :

The turbulent mixing coefficient distribution used for prediction of momentum transport, E
at any point in the flow field requires specification of a turbulent Scl_}midt number, ScT. As with all
transport coefficients, COMOC can accept multiple methods of specification for such distributions.

* Initial studies employed a uniform conﬁant Scr, equal to 0.7, which neglected the three-dimensionality
of the flow field and consistently predicted over-diffusion of momentur}i\near the wall. Considerable

b
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Additionally, r(6) is the magnitude of a position vector to any point within the ellipse and aligned
parallel to R(8), and determined as

() = \/(;/D -2.5)? +(z/D)? ” ‘ ‘ ' (50)

Along the plate surface,‘the Schmidt number was uniformly set equal to 0.7. Elsewhere outside
the ellipse, the Schmidt number distribution was held constant at those values used in the initial
studies that determined equation (48).

Prediction of Mass and Momentum Transport Following Transverse
Injection of Hydrogen from a Single Orifice

At some location downstream from transverse injection, as a function of the dynamic pressure .
ratio dy boundary layer reattachment occurs, (fig. 5a), and the three-dimensional elliptic boundary
layer equations become valid. For the configuration of Rogers (ref. 5), reattachment should occur by
station x/D=30, where D is the injection orifice diameter. Therefore, evaluation of the prototype
three-dimensional turbulent mixing model was performed in the downstream region 30 < x/D < 120.

It is necessary to establish initial conditions for the planar distribution of all dependent vari-
ables at x/D=30. The original raw data of Rogers (ref. 5) consisted of pitot-static and hydrogen sam-
pling data points on four traverses in the (y, z) plane (fig. 2). The vertical traverse, in the streamwise
plane through the injection orifice and parallel to the y axis, determined the y locations where hydro-
gen concentration was maximum, (y/ D) max» and where it vanished, i.e., the freestream boundary.
Three horizontal data traverses were then made parallel to the plate surface, at y locations correspond-
ing to (y/D)max, and at a location each side of (Y/D)max approximately bisecting the respective do-
mains. Shown in figure 9 are the horizontal traverse data at x/D=30 for q,=1.0. The curves appear of
Gaussian shape; an apparent symmetry plane exists which is displaced from the geometric plane of
symmetry, i.e., z=0, as Rogers observed.

Although the entire flow field could be computed numerically, the strong appearance of a data
symmetry plane suggests establishing a corresponding solution domain. Therefore, these data were in-
put to a cubic spline interpolation computer program that established the z location of the data sym-
metry plane via a minimization criteria. For the data of figure 9, the symmetry plane was located at
z/D=-0.7, in agreement with folding the data manually and matching the “wings” of the Gaussian
shaped curves. Having thus established the symmetry plane, the spline package curve fit both the Y
and u displaced data, and evaluated the interpolation polynomials at node points of the finite element .
discretization of the elliptic solution domain (fig. 10). A number of different discretizations were eval-
uated; in each case, the spline package provided appropriate initial data.

Shown in figure 11, for planes z=constant of the discretization of figure 10, are the spline-computed
data fits compared to the span of the measured raw data, and the subsequent data range for the ““best
symmetry plane” determination. Data symmetry occurs to within about +0.2% of the maximum hy-
drogen deviation, and computations were performed using only the half-plane discretization of figure
10. These same manipulation operations were performed on Rogers data at stations x/D=60 and 120
to establish comparison bases. Shown in figure 12 is the corresponding, and more familiar (see ref. 5)
contour distribution of hydrogen mass fraction at x/D=30, as computed by the symmetrized spline func-
tion interpolation of the data. In both figures 11 and 12, note that the contours do not penetrate to
the plate surface, since no data are available below the lowest horizontal data survey except on the
geometry symmetry plane.
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Station x/D = 30, From Rogers (ref. 5)
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Figure 9. Experimentally Measured Mass Fraction for Injection from a Single Orifice

Shown in figure 13 is the COMOC computed hydrogen mass fraction contour distribution at
station x/D=60. Superimposed for comparison purposes are the (spread of) data as spline-interpolated
for the best symmetry plane fit. Agreement of the results along the symmetry plane, z = 0., is excellent.

" These results were achieved for the turbulent mixing model previously described for K'=0.1 (equation 44).
Transition from mixing length to mass defect modeling occurred between 0.6 and 1.0 injection diameters
“above the plate, across the entire pattern. The lateral spreading of the jet (parallel to z axis) is predicted
accurately ncar the wall. but excessive concentration levels are predicted in the middle region of the
pattern.

The transition from the initial distribution, and significant detail on solution accuracy, are pre-
sented in figure 14. which contains data and computed concentration profiles along planes z=constant
at x/D=60. The indicated disagreement between data and computations. figure 13. may be directly
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Addition&l y, r(f) is the magnitude of a position vector to any point within the ellipse and aligned
parallel to R(#), and determined as

1@) = V(y/D-2.57 +(@D)* | " (50)

Along the plate surface, the Schmidt number was uniformly set equal to 0.7. Els;where outside
the ellipse, the Schmidt number distribution was held constant at those values used in the initial
studies that determineY equation (48).

Predictiqn of Mass and Momentum Transport Following Transverse
Injection of Hydrogen from a Single Orifice

At some location dowwstream from transverse injection, as a function of the dynamic pressure
ratio q;, boundary layer reattaé ment occurs, (fig. 5a), and the three*!dimensional elliptic boundary
layer equations become valid. Foy the configuration of Rogers (ref/ 5), reattachment should occur by
station x/D=30, where D is the im&gtion orifice diameter. Therefore, evaluation of the prototype
three-dimensional turbulent mixing 'Yiel was performed in thg"’downstream region 30 < x/D < 120.

It is necessary to establish initiakconditions for the pﬂl‘e{nar distribution of all dependent vari-
ables at x/D=30. The original raw data c}f\Rogers (ref. 5) consisted of pitot-static and hydrogen sam-
pling data points on four traverses in the (3, z) plane (fig.j). The vertical traverse, in the streamwise
plane through the injection orifice and parallel to the y q»fiis, determined the y locations where hydro-
gen concentration was maximum, (y/ D)max’\aid wher{e‘it vanished, i.e., the freestream boundary.
Three horizontal data traverses were then made Qarallél to the plate surface, at y locations correspond-
ing to (y/D),,x, and at a location each side of (WD) 1, approximately bisecting the respective do-
mains. Shown in figure 9 are the horizontal traver$¢ data at x/D=30 for q,=1.0. The curves appear of
Gaussian shape; an apparent symmetry plane exists which is displaced from the geometric plane of
symmetry, i.e., z=0, as Rogers observed. ;1

Although the entire flow field could be computed\numerically, the strong appearance of a data
symmetry plane suggests establishing a corre‘spponding solution domain. Therefore, these data were in-
put to a cubic spline interpolation compu%er program that éstablished the z location of the data sym-
metry plane via a minimization criteria. For the data of figute 9, the symmetry plane was located at
z/D=-0.7, in agreement with folding the fata manually and ma¥ching the “wings” of the Gaussian
shaped curves. Having thus established’the symmetry plane, théspline package curve fit both the Y
and u displaced data, and evaluated tle interpolation polynomi}\at node points of the finite element
discretization of the elliptic solutiondomain (fig. 10). A number o\f different discretizations were eval-
uated; in each case, the spline package provided appropriate initial data.

data fits compared to the span/of the measured raw data, and the subsequent data range for the “‘best
symmetry plane’ determination. Data symmetry occurs to within abouti\+0.2% of the maximum hy-
drogen deviation, and compyitations were performed using only the half-plane discretization of figure
-10. These same manipulation operations were performed on Rogers data at}etations x/D=60 and 120

to establish comparison b,ases. Shown in figure 12 is the corresponding, and r\;lore familiar (see ref. 5)
contour distribution of Hydrogen mass fraction at x/D=30, as computed by the symmetrized spline func-
tion interpolation of t % data. In both figures 11 and 12, note that the contouts do not penetrate to
the plate surface, sinﬁe no data are available below the lowest horizontal data suryey except on the
geometry symmetrlyé plane. : -

7

F

B4

Shownin -figure 11, for planes z=constant of the discretization o[{sure 10, are the splinécomputed
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transport model is an extension of two-dimensional concepts, it is insensitive to variable gradients par-

allel to the z-axis. However, the experimental data show that in this region, u,,, and u,, are of about

equal magnitude. This is readily observed in figure 15, which is a three-dimensional surface plot of the
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Symbols are Best Symmetry Plane Fit for Data of Rogers (Ref. b)
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Figure 12. Cubi¢ Spline Interpolated Hydrogen Mass Fraction Contours for
Single-Jet, q,. = 1.0, x/D = 30.

Symbols are Best Symmetry Plane Fit for Data of Rogers (Ref. 5)
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Figure 13. Comparison Between COMOC Computed Hydrogen Mass Fraction Contours
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velocity distribution at x/D=30, as observed from a viewpoint beneath the plate surface. The superim-
posed grid coincides with the finite element discretization (fig. 10) and the hydrogen jet is imbedded
within the centroidal indentation. Obviously, these three-dimensional effects are important, and

should form an integral part of future development studies. The lack of data and subsequent neglect
of lateral velocity (w) would also exert an influence on spreading.
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Symbol Description
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“ Fxgure 14. Computed Single-Jet Hydrogen Mass Fraction D1str1but10n
' at Station x/D = 60, q,=1 0

Note also in figure 14, that the initial data profiles (dashed lines) have been extrapolated to the
plate surface, as is required to establish initial conditions for hydrogen mass fraction, Y. Only after
considerable scrutinizing of the data, and extensive numerical experimentation with boundary condi-
tions for Y on the plate surface, were the illustrated results achieved. Referring to figure 11, con-
siderable option exists for extrapolating the data at planes z=0. and z=1.0. It appears that the hydro-
gen jet is held off the wall in this region by some mechanism, while the Y contours for larger z quite
obviously will intersect the wall in an approximately normal fashion. Employing a vanishing gradient
boundary condition for Y across the entire plate surface always resulted in the maximum local hydro-
gen concentration sinking to the wall by, or shortly after, station 60. This result suggested that alter-
nate wall boundary conditions be considered. Looking at experimental data for stations 30, 60, and
120 (fig. 16), one might conclude that the wall concentration of hydrogen never exceeds about 2%
directly underneath the injection pattern, and that a local maximum may well exist off-axis, i.e., z#0.
- The computational solutions, leading to the results shown in figures 14 and 16, numerically “froze”
the concentration of hydrogen at 2% at the wall nodes, located at z/D=0. and z/D=1.0, while enforc-
‘ing a vanishing normal gradient at the remaining wall nodes, i.e., z/D>1.0. For these conditions, the
. indicated good agreement near the centerplane was achieved.

It is instructive to note that these observations, and the versatility of the numerical experi-
mentation capability to routinely change boundary conditions and test theories, may exert consider-
able impact upon design. In figure 5, reattachment of the boundary layer is estimated to occur at
- some point downstream of injection. This has been largely confirmed; however, the physics of the .
reattachment appear to isolate the peak hydrogen concentration from the plate. The impact of this
‘phenomenon on actual combustion, and wall cooling requirements, could be rather important for actual
combustor design.
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Centerplane

Figure 15. Isometric View of Three-Dimensional Velocity Surface for Single-Jet Configuration,
x/D = 30, After Rogers (Ref. 5)

Figures 17 and 18 compare the computed solutions for longitudinal velocity distribution to
data at stations x/D=60 and 120 as well as the initial distributions. Agreement is generally good.
The experimental data are quite sparse; the apparent acceleration of flow near the plat surtace be-
tween x/D=30 and 60 was computationally encouraged by the Schmidt number distribution described
by equation (48). The CPU ecxecution time on the IBM 360/65 digital computer, including all
turbulence computations and detailed output was 1070 seconds with all operations performed using
single precision arithmetic. '

Prediction of Mass and Momentum Transport Following
Transverse Injection From Multiple Orifices

The computational study described for the single-jet configuration was repeated for data of

Rogers (ref. 6) obtained for transverse injection (at qr=l.0 into a Mach 4 airstream) from a row of
orifices, aligned perpendicular to the main flow vector with a uniform separation distance of 12.5
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Flgure 14. Computed Sm e -Jet Hydrogen Mass Fraction Distribution
at Statlon x/D = 60, =1.0

Note also in figure 14, that the initial d ta profile (dashed lmes) have been extrapolated to the
plate surface, as is required to establish initial co dltlon for hydrogen mass fraction, Y. Only after
considerable scrutinizing of the data, and extensiv numencal experimentation with boundary condi-
tions for Y on the plate surface, were the 1llustrate results achieved. Referring to figure 11, con-
siderable option exists for extrapolating the data at anes z=0. and z=1.0. It appears that the hydro—
gen jet is held off the wall in this region by some mech nism, while the Y contours for larger z quite
obviously will intersect the wall in an approximately nofynal fashion. Employing a vanishing gradient
boundary condition for Y across the entire plate surface ak\tvays resulted in the maximum local hydro-
gen concentration sinking to the wall by, or ortly after, station 60. This result suggested that alter-
nate wall boundary conditions be considered4 Looking at ex erimental data for stations 30, 60, and
120 (fig. 16), one might conclude that the all concentration‘of hydrogen never exceeds about 2%
directly underneath the injection pattern /and that a local maxipmum may well exist off-axis, i.e., z#0.
The computational solutions, leading to the results shown in figures 14 and 16, numerically “froze
the concentration of hydrogen at 2% atf he wall nodes, located at z‘/ D=0. and z/D=1.0, while enforc-
ing a vanishing normal gradient at the, emammg wall nodes, i.e., z/Q>1.0. For these conditions, the
indicated good agreement near the centerplane was achieved.

It is instructive to note that these observatlons and the versat111ty of the numerical experi--
mentation capab1hty to routmely?” change boundary conditions and test theorles may exert consider-
able impact upon design. In flglfre 5, reattachment of the boundary layer\ls estimated to occur at

- some point downstream of injgction. This has been largely confirmed; howgver, the physics of the

reattachment appear to 1solate the peak hydrogen concentration from the plate The impact of th1s
‘phenomenon on actual com’oustlon and wall cooling requirements, could be father important for actual
combustor design.

)

™,
"r‘/"

25



Transverse Disptacement - y/D

Symbol Description

- - Initial conditions, x/D = 30
o Raw data measurements
[ J Best symmetry plane determination

—  COMOC computation

2/D=0 2/0=1,0 2/D=25 z/D=45 L 2/D=65
Tr
- L
\~ -~
\\\ ~. \
~ \\ \
} Y \
Phd - s \
—— - ' AN .
-1 L i == 1 11 | y LN
0 2 4 6 8 o 2 4 6 0 2 o, 20 2
_ 'H\}drogen Mass Fraction - Y (%)
Figure 16. Computed Single-Jet Hydrogen Mass Fraction
Distribution at Station x/D =120, q,= 1
Symbol Description
"""'_ Initial Conditions, Spline Fit, x/D = 30
Experimental Data, x/D = 60
COMOC Computation, x/D = 60
1o s T T T T L e e e e e e i
i E
z/D=45 2/D=65
- -

Traverse Displacement - y/D

1000 2200 1000 2260 1000 2200 1000 2200
Longitudinal Velocity - U (ft/sec)

(_JLLI i 1 LAl 1 ¢t 1 ] [ . L1 L l AL I 1 1 !

300 500 700 300 500 700 7300 500 700 300 500 700 300 500 700

Longitudinal Velocity - u (m/sec)
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Figure 18. Computed Single-Jet Longitudinal Velocity Distribution at Station x/D=120,q, = 1.0

orifice diameters (D). Discretization of the finite element domain parallel to the y axis, figure 10,
remained the same. The discretization in the lateral direction was refined such that the node col-
umns spanned -6.25 < z/D < 6.25, i.e., the half-width of orifice separation.

The raw data were again analyzed using the cubic-spline interpolation package. A data sym-
metry plane was established by the minimization procedure. Shown in figure 19 are the spline-
interpolated data profiles on planes z=constant at station x/D=30, as well as the best symmetry plane
data spread. Therefore, as with the single-jet study, a half-plane computational domain was suffic-
ient. Vanishing gradient boundary conditions were then applied along both lateral planes to simulate
multiple injectors. ’

Shown in figures 20 and 21 are the COMOC computed hydrogen mass fraction profile dis-
tributions at stations x/D=60 and x/D=120, and figure 22 displays the more familiar contour plot
of the hydrogen distribution at x/D=120. These results were obtained using the identical mixing
model of the single jet, i.e., K=0.1 (equation 44) with transition from mixing length to mass defect
occurring in the region 0.6 < y/D < 1.1. Figure 20 indicates that the center plane diffusion is some-
what over-predicted, while a considerable improvement between data and computations has occurred
in the lateral region:i.e., z/D > 2.0, using the same “frozen” hydrogen boundary condition at the
. plate surface underneath the jet centroid (only). These same conclusions hold at x/D=120 (fig. 21)
and figure 22 illustrates how the contour patterns merge between jets for the multiple injector con-
figuration. Agreement between computed and measured velocity distributions at both downstream.
stations was good.
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Figure 21. Computed Multi-Jet Hydrogen Mass Fraction Comparison
Distribution at Station x/D = 120, q.= 1

The apparent over-diffusion within the core of the multijet configuration may be a reflection
of the overall lower hydrogen levels used as initial data. Shown in figure 23 are comparisons of pre-
dicted and measured decay of the maximum local hydrogen concentration as a function ot x/D for the
single- and multiple-jet geometries. The computational curves are essentially parallel; the multiple-jet
data are coincident with the single-jet except at x/D=30 where initial conditions were established. The
decay of the single jet was accurately predicted by COMOC. The indicated lack of agreement for the
multiple jet is perhaps a reflection of differences in initial conditions,

Computational solutions can produce incredible volumes of output data, and integral parameters
are often times useful to establish trends. Since the pertormance prediction of combustion systems is
one ultimate goal of design studies, COMOC was adapted to compute the integral “mixing efficiency”
parameter, n of reference 6, defined as the percentage of hydrogen that could completely react
in a given concentration and velocity distribution within an air boundary layer. For the three-
dimensional flow fields considered. n is a point function of longitudinal displacement, x/D. In plane
regions that are locally fuel-lean. all the hydrogen could potentially react. In fuel-rich regions,stoichio-
metry limits the reaction. The “mixing efficiency” is, therefore, the sum of these terms, divided by the

total hydrogen available, i.e.,

[ puYdydz + l/{‘ puR(1-Y)dydz

_ K (l
n(x) = - (51)
/ puYdydz

Ri+Ryy
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Figure 23. Downstream Decay of Maximum Hydrogen Concentration for
Single and Multiple-Jet Transverse Injection

Regions | and 1l are respectively tuei-iean and fuel-rich, and R (=0.029) is the stoichiometric mixture
ratio for the hydrogen/air system. Note that the denominator of equation (51) represents total hydro-
gen flow rate, evaluation of which is discussed in detail in Appendix A. Equation (51) is readily eval-
uated as a summation over the finite elements of the discretization, as

M

nx) = 2 (0 (52)
m=1

“Determination of region | or Il dependence is made on an averaged Y concentration basis within each
finite element, "

COMOC evaluates equation (52) at each output station. Shown in figure 24 are computed mix-
ing efficiency distributions for the single- and multiple-jet configuration. The multiple-jet efficiency
lies uniformly higher than the single jet, as a direct consequence at least of overall lower hydrogen con-
centration levels starting with the data for initial conditions (see fig. 23). The indicated 15% relative
mixing improvement of the multiple jet by station x/D=85 may also be influenced by discretization
and initial condition differences. The “virtual source” studies. discussed in the next section, circum-
vent these difficulties by providing a uniform basis for relative comparison.

Since equation (51) is a relative measure, it should be rather insensitive to computed conserva-
tion phenomena. For both cases, the numerical evaluation of the denominator of equation (51) indi-
cated about an 8% computational hydrogen flow loss by x/D=60, with an additional 10% loss accruing
by x/D=120. Asdiscussed in Appendix A, these apparent losses appear acceptable in terms of comput-
ed solution accuracy for the present study. They may likely become unacceptable for assessing more
_accurate mixing model hypotheses. A finer solution domain discretization. proven to increase solution
accuracy (see Appendix A) should then be used.
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Figure 24. Computed Mixing Efficiency for Single and Multiple Transverse Injection

Evaluation of a “Virtual Source” Concept

The discussed results for single- and multiple-jet injection geometries indicate that the proto-
-type turbulence model has captured at least the essential character of binary mixing within this three-
dimensional boundary layer flow. However, it is equally evident that initial conditions do exert a
strong influence on computed results for each distinct configuration. Starting computational solutions
from a “‘similarity” condition is an alternative to use of initial data, and one candidate method for the
present study is a *‘virtual source”. Within this concept, the complex transverse injection phenomena
is computationally replaced by a hydrogen jet imbedded within the air boundary layer flow, the dis-
tinguishing features of which are solely dependent upon freestream and injectant parameters. Explora-
tory results for a subsonic configuration, similar to the single-jet geometry, are discussed in reference 29.

A theoretical model for establishing initial conditions for a virtual source was derived. The
model captures the essence of the barrel shock-Mach disk hypothesis for injectant-freestream equilibra-
tion, (e.g., ref. 25),and the details are discussed in Appendix B. For the present study, the virtual
source was established in the plane of injection, i.e., x/D = 0.0, and was assumed to be of elliptical
cross-sectional shape and composed of 100% hydrogen The virtual source mass flow through the

-ellipse computatlonally coincided with the hydrogen mass flow rates of Rogers (ref. 5 and 6), for each
dynamic pressure ratio q;. The velocity of the virtual source injectant was uniformly assumed equal to
that velocity (1500 ft/sec or 457 m/sec) computed to occur immediately downstream of the Mach disk,
and was independent of dynamic pressure ratio. Everywhere exterior tc the ellipse, the hydrogen con-
centration identically vanished. Except for directly above the ellipse, the virtual source was assumed
imbedded within the turbulent boundary layer developing in the absence of injection. Above the ellipse
to account for displacement effects of the barrel shock, the air velocity was assumed initially uniform
at the freestream value. e
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Figure 25 is a three-dimensional representation of the initial stationvelocity surface; the unity
hydrogen concentration is imbedded within the centroidal depression. As before, the superimposed
grid is the finite element mesh, only one-half of which was computationally required (from symmetry).
Shown in figure 26 is the corresponding planar view of the discretization for the multiple-jet configura-
tion (ref. 6). Three dynamic pressure ratios (q, = 0.5, 1.0, 1.5) were analyzed; the ellipse corresponding
to ¢, = 1.5 is shown in figure 26. For g, = 1.0, the reduced size of the injectant region excluded the en-
circled nodes (fig. 26) while both the encircled and crossed node points were exterior to the virtual
source ellipse for the case q, = 0.5.

Figure 25. Initial Condition Velocity Surface for Virtual Source
Simulation of Transverse Injection
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Evaluation of a “Virtudl Source” Concept

The discussed results for single- and multi&[ijet injection geometries indicate that the proto-
-type turbulence model has captured at least thefessential character of binary mixing within this three-
dimensional boundary layer flow. However, 1t is e(\iually evident that initial conditions do exert a
strong influence on computed results for each distinet configuration. Starting computational solutions
from a “similarity” condition is an alternative to use of initial data, and one candidate method for the
present study is a ‘“‘virtual source” Wlthmlthls conceptthe complex transverse injection phenomena
is computationally replaced by a hydroggn jet imbedded v&&thm the air boundary layer flow, the dis-
tinguishing features of which are solely dependent upon frégstream and injectant parameters. Explora-
tory results for a subsonic conf1gurat16n, similar to the singlejjet geometry, are discussed in reference 29.

A theoretical model for establishing initial conditions for\a virtual source was derived. The
model captures the essence of ‘t;h‘e barrel shock-Mach disk hypothesjs for injectant-freestream equilibra-
tion, (e.g., ref. 25),and the defails are discussed in Appendix B. Folthe present study, the virtual
source was established in thefplane of injection, i.e., x/D = 0.0, and Was assumed to be of elliptical
cross-sectional shape and co‘ﬁmposed of 100% hydrogen The virtual sotirce mass flow through the
ellipse computatlonally commded with the hydrogen mass flow rates of R gers (ref. 5 and 6), for each
dynamic pressure ratio Sr The velocity of the virtual source injectant was uniformly assumed equal to
that velocity (1500 ft/sec or 457 m/sec) computed to occur immediately dgwnstream of the Mach disk,
and was independentfof dynamic pressure ratio. Everywhere exterior tc the elhpse the hydrogen con-
centration identically vanished. Except for directly above the ellipse, the virtial source was assumed
imbedded withinhe turbulent boundary layer developing in the absence of injeéction. Above the ellipse,

to account for displacement effects of the barrel shock, the air velocity was assuried initially uniform
at the freestreé{m value. o
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Figure 26 Solutlon Domain Finite Element Discretization for Virtual Source Studles

The turbulence transport model used for the virtual source study was identical to that previously . .

. described, except for mmor variations. The mixing length hypothesis was uniformly enforced in the
initial region until the minimum velocity in the virtual source depression accelerated to within ~ 2% of '
the corresponding velocity without injection. This occurred within 3 to 4 diameters downstream of

the injection plane for all q;. Downstream of x/D = 4, transition from mixing length to mass defect .
occurred between 0.5 and 1.0 diameters above the plate surface. Due to the relatively small density
within the virtual source, the computed mass defect, equation (45), was quite large in the initial down- -
stream region. From extensive experimentation, a smaller constant (K = 0.01, equation (44)) was found
to be effective for all three dynamic pressure ratios studied. The turbulent Schmidt number distribution
coincided with that of t};le single- and multiple-jet studies discussed. :

Shown in figures 27 through 29 are the results of the virtual source computational simulation of
the multiple injection configuration of ref. 6 for dynamic pressure ratios (q,;) of 0.5, 1.0, and 1.5, re-
spectively. Superimposed are appropriate single-jet data from ref. 5, as well as the multiple-jet data.

The computational results are compared, in the region of 0 < x/D < 60, on the.multiple bases of:

|
(a) maximum c;oncentration level of hydrogen at x/D

(b) trajectory of the maximum hydrogen concentration level (i.e., transverse displacement
above the plate of the local maximum hydrogen level)

(c) lateral spreading of the jet as determined by the z/D coordinate of the hydrogen concentra-
tion equal to 10% of the local maximum level.
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The computed mixing efficiency parameter 7, equation (48), completes each data set. Listed in table 3
are the parameters pertinent to each solution, the downstream integration station at which COMOC
automatically switched from the mixing length to mass defect model within the jet region, and the total
CPU execution time for the IBM 360/65 computer.

TABLE 3
PARAMETERS FOR THE VIRTUAL SOURCE COMPUTATIONS,
M, =4.57
Virtual Source Flow Area Downstream -
Dynamic _{Square Orifice Diameters) Station, x/D,

Pressure 7 2 for Core Region CPU Time
Ratio, q, Ref. 5 comoc Mass Defect 3 Seconds 4

0.5 2.28 2.22 413 916.
10 272 294 © 353 943.
15 4,08 3.48 4.04 _ 1111,

1 Initial elliptical cross sectional area required to match test injection conditions of

reference 5.
2 Numerical approximation to conditions of reference 5.

3 Automatically established at first integration station past a user-specified value of
x/D.

4 Single precision on {BM 360/65 computer,

The agreement of the computed solutions with data, for q. = 0.5 and 1.0, is quite good (maxi-
mum deviation ~ 20%) on all comparison bases. Poorer (40% deviation) agreement with the data
occurs at q. = 1.5, (fig. 29) on both trajectory and lateral spreading. This dynamic pressure ratio pro-
duces a “stiffer” jet, the influence of which is especially noticeable within the region 0 < x/D < 30,
for the illustrated solution differences on both trajectory and maximum concentration. The lateral
spreading disagreement may result primarily from the relatively undersized initial condition ellipse,
(table 3). This could have been readily corrected by initial condition and discretization changes, but
the uniform comparison basis of the computations for the three vaiues of q, would then have been
disturbed. .

Agreement between the COMOC virtual source computations and experimental data indi-

cates a potential value for practical design studies. In providing such support, it is significantly im-
portant that arbitraty parameters were set uniformly constant for each q, case, as distinct from fine
tuning each computation to match specific data sets. It is thus possible to directly compare the
results of computation without significant interpretation. As opposed to scrutiny of comparative
flow field details, the valuable design criteria may well be the mixing efficiency comparison previous-
ly shown in figure 1. Since combustion systems are of ultimate interest, and if the reaction is fast

" (hence diffusion controlled), the computation of mixing efficiency on a cold flow basis may provide
some degree of design guidance for hardware development. These reported results are representative
of an initial theoretical study; certainly, with the refinements that are possible in modeling and the
significant versatility of the developing COMOC system, analytical support to design optimization
appears practical. - '
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The turbulence transport model uJSed forthe virtual source study was identical to that previously
described, except for minor variations. ‘The mixinglength hypothesis was uniformly enforcedin the
initial region until the minimum veloc}fty in the virtual source depression accelerated to within ~2% of
the corresponding velocity without injection. This oCcurred within 3 to 4 diameters downstream of
the injection plane for all q,. Down?tr_eam of x/D = 4,\transition from mixing length to mass defect
occurred between 0.5 and 1.0 diz}jmeters above the plate surface. Due to the relatively small density
within the virtual source, the computed mass defect, equz}tion (45),was quite large in the initial down-
stream region. From extensive’experimentation, a smaller dpnstant (K = 0.01, equation (44)) was found
to be effective for all three dy"‘”namic pressure ratios studied. \The turbulent Schmidt number distribution
coincided with that of the si'?ngle-‘ and multiple-jet studies discﬁd.

Shown in figuresféls; through 29 are the results of the virttal source computational simulation of
the multiple injection ¢onfiguration of ref. 6 for dynamic pressure\ﬁatios (a;) of 0.5, 1.0, and 1.5, re-
spectively. Superimposed are appropriate single-jet data from ref. S)\as well as the multiple-jet data.
The computational résults are compared, in the region of 0 < x/D < 60, on the,multiple bases of:

4

q

(a) mg)‘fimum concentration level of hydrogen at x/D

(b) gréjectory of the maximum hydrogen concentration level (i.e., transverse displacement
fabove the plate of the local maximum hydrogen level)

Y,
(f’) lateral spreading of the jet as determined by the z/D coordinate ofsthe hydrogen concentra-
/. tion equal to 10% of the local maximum level.

o
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Scramjet combustor systems that may not be predominantly diffusion controlled are cer-
tainly conceivable. For practical design studies it then becomes necessary to perform computations
for finite rate or equilibrium controlled combustion systems to establish a data base, as well as to
" validate the usefulness of mixing efficiency computations from cold flow studies. The COMOC pro-
gram system is readily extensible to analysis of combustion systems by addition of state-of-the-art
kinetics packages, in the same direct manner that the turbulent transport subroutine was adapted
from an operational two-dimensional finite difference computer program. This program (NUMINT)
was extensively utilized as well, for the accuracy and convergence determination of COMOC solutions,
using the single-jet centerplane data of Rogers (ref. 5) as an initial condition (refer to Appendix A).
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" To illustrate the near term potential of a practical combustion calculation capability, the temperature

of these same initial data was elevated to autoignition, and the centerplane run repeated with finite
rate combustion occurring. Shown in figure 30 are the computed hydrogen mass fraction distributions
at x/D = 30 for the chemically reacting system and a comparison frozen flow computation as well as
the initial distribution at x/D = 7.
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These computations serve to illustrate the operational capability for numerical analysis in
chemically reacting systems. Since subroutines are easily adapted tor use by COMOC (as a conse-
quence of its modular structure), a combustion calculation capability tor practical three-dimensional
flow fields could be readily established by borrowing from the state of the art. The prospect for
practical design guidance of complex combustors thus appears achievable in the near term, and
COMOC would benefit directly from accrued pertinent experience, in particular, the quasi-linear-
tion approach of Morretti (ref. 30), used in conjunction with the implicit integration algorithmn of
Tyson and Kliegel (ref. 31). These important features are a part of the kinetics analysis capability
(ref. 32) producing the example results.
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" To illustrate the néar term potential of a practical combustion calculation capability, the temperature -

of these same initial data was elevated to autoignition, and the centerplane ruh repeated with finite
rate combustigf{ occurring. Shown in figure 30 are the computed hydrogen mass fraction distributions
at x/D = 30 £dr the chemically reacting system and a comparison frozen flow computation as well as
the initial/glistribution atx/D =7,
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CONCLUDING REMARKS

A theoretical and analytical study has been made of mixing in the three-dimensional, turbu-
lent boundary layer-type flow field downstream of transverse injection. Numerical solutions of the
flow field equations were achieved using a general purpose computer program (COMOC) founded
upon a finite element solution algorithm. Computations using a turbulent transport model based on

~ mass defect and mixing length concepts, in conjunction with a geometrically defined turbulent Schmidt

number, yielded reasonable comparisons with experimental data for both single and multiple injector
geometric configurations. Refinement of the model is certainly required before any generality may
be assigned to it.

Detailed characterization of the complex three-dimensional flow field has resulted from
this analytical study. The concept of a virtual source was evaluated successfully, and mixing effi-
ciency computations were illustrated as potentially useful for support of engineering design studies.
Of major consequence may be the observation that agreement with data occurred only for the
locally frozen hydrogen concentration boundary condition directly beneath the jet centroid. This
isolation from the wall may well exert great influence on combustor design and operation.

It is clear that the controlling physics of such phenomena cannot be established by numerical
observation alone. However, the COMOC computer program system, with its demonstrated flexi-

. bility and versatility, may have considerable impact on the bringing together of the present and next

generation of digital computers with the engineer and designer. The theoretician will certainly re-
ceive guidance in his work using a versatile computational capability as his laboratory, whereas the
experimentalist can employ the computer to ascertain flow regions requiring especially detailed
measurements by rapid comparison of data and computations.
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APPENDIX A

ACCURACY AND CONVERGENCE OF THE FINITE ELEMENT
SOLUTION ALGORITHM IN COMOC

Favorable evaluation of numerical accuracy, and convergence with discretization, of
a COMOC-generated finite element solution for the two-dimensional steady Navier-Stokes
equations is reported (ref. 15). Accuracy and convergence for the transient intergration of
the finite element solution algorithm for heat conduction is proven (ref. 13). This Appendix
discusses results which establish a favorable assessment of COMOC-generated solution accuracy
and convergence for boundary layer flow of a compressible fluid.

Comparison solutions were generated using an operational finite difference computer

. program (NUMINT) which integrates the equations governing multi-component mixing and

reaction of compressible, two-dimensional and axisymmetric boundary layer flow, cast in the
von Mises coordinate system. The use of derived variables in NUMINT, as distinct from the
physical variables of COMOC, renders available two completely independent methods for
solution of the governing equation system. NUMINT has been extensively evaluated, and is
in everyday use for prediction of practical mixing and reacting compressible boundary layer
flow fields. ' '

The symmetry plane, parallel to the freestream velocity vector and bisecting the
injection orifice, figure 2 was selected as the sample comparison solution domain, since NUMINT
is constrained to two-dimensional problems. The three-dimensional capability of COMOC was
numerically reduced to two by enforcing vanishing gradient boundary conditions on ali
dependent variables on two planes, z = £ constant, and prescribing initial conditions that were
independent of z, i.e., uniform across the discretization. By this procedure, COMOC was
independently assessed to preserve two-dimensionality within about +2% by application only.
of this non-rigid boundary condition statement.

The single jet centerplane data of Rogers (ref. 5), for q;. = 1.0 and at Station x/D=1,
was selected as the initial condition for longitudinal velocity, u, and hydrogen mass fraction,
Y. The cross flow velocity, w, was set uniformly to zero, and COMOC started computations

~ for transverse mass flow pv after sufficient data were generated to allow approximation of

{pu}" equation (31). Vanishing normal gradient boundary conditions were applied on the
closure of the elliptic domain except for enforcing no-slip at the plate surface. Computations
were carried to Station x/D = 30, and to stimulate strong mixing and to control parameter
variation, a constant turbulent eddy mass mixing coefficient was specified, and the Schmidt
Number was set constant throughout, equal to 0.7.

Shown in figure A.l are comparison COMOC and NUMINT computed solutions for
hydrogen mass fraction distribution through the boundary layer thickness at Station x/D = 30.
Extensive diffusion and convection has occurred, as illustrated by comparison to the initial
distribution (x/D = 7). A one-to-one-correspondence exists between COMOC data points
and the discretization through the boundary layer thickness. The curve is faired through the
square COMOC symbols corresponding to the 22 finite element discretization. Agreement
with the 100 zone finite difference NUMINT solution is excellent, with only the values of Y
near the wall being computed as measureably different. NUMINT employs a four-point finite
difference derivative formula to evaluate Y at the wall to enforce the vanishing gradient
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boundary condition. COMOC, of course, handles Y at the wall in a fashion identical to interior
node points, resulting in simultaneous evaluation of the wall value of Y with the interior
solution. The small computed differences might well stem from the distinctly different
methods for handling such boundary conditions.

The important proof of convergence with discretization is also illustrated in figure A.1.
The open circles correspond to the COMOC solution using a very coarse 13-finite element
discretization. Agreement with the 22-element solution is amazingly good, especially when
considering that the initial peak Y distribution at Station x/D = 7 was captured at only one
node. More importantly, the | 3-element solution is observed to depart from the 22-element
solution in directions diametrically opposite to that of the 100-zone finite difference solution.
A 50-zone finite difference solution, also generated by NUMINT, agreed almost exactly with
the 100-zone solution, except at the plate surface, where the inverted triangle data points
confirm the identical solution diametric departure trend observed. From the mathematics
standpoint, since the finite difference solution algorithm is amply proven to converge with
discretization, the same property can be ascribed to the finite element algorithm. From the
practical analysis viewpoint, the excellent solution accuracy for the 13-finite element discreti-
zation indicates the ability to employ rather coarse discretizations, and yet obtain adequately
accurate numerical solutions for practical problems. Additional detail on this subject is
presented in reference 13,

The comparison of the computed longitudinal velocity distributions is shown in figure
A.2. A strong retardation of the flow is indicated, by comparison to the initial velocity
distribution, and negligible differences exist between the COMOC and NUMINT solutions for
22-finite elements and 100-zone finite difference, respectively. The COMOC solution for the
1 3-element discretization was essentially identical to the 22-element case.

- Two versions of a global continuity equation solver are operational in COMOC. The
finite element approximation produces polynomials in the y coordinate only, and analytic
integration of the solution algorithm, equation (30), is directly obtained. The distinctive
feature of the two algorithms is the finite element approximation to the longitudinal mass
flux dependent variable derivative vector pU} equation (31). Both running-smoothing
polynomial representations, over sequential panels of data, and cubic spline fits over the entire
data field have yielded excellent results. Shown in figure A.3 is the comparison between COMOC-
generated solutions using quadratic running-smoothing (over three data points) and the cubic
spline, for transverse mass flux distribution, pV, obtained for the axisymmetric companion
problem to center plane mixing parallel hydrogen injection into a supersonic air stream. The
identical radial distribution of pr} was used for each case, and agreement between the
solutions is excellent. Slight underprediction by NUMINT, in the back flow region, just off
the flow centerline is indicated. This may result from large truncation errors associated with
numerical differentiation of streamline data over a fine discretization near the flow centerline.

An important and independent assessment of computed solution accuracy is numerical
evaluation of properties of the flow field that would be rigorously conserved if an analytic
solution to the governing differential equation system could be achieved. As an example, the
species continuity equation for hvdrogen mass fraction, equation (4), can be written in
explicit conservation form, using the three-dimensional gradient operator v, as

- Le
v- (puy-“P-—r— %,Y) = (A.1)
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APPENDIX A

ACCURACY AND CONVERGENCE OF THE FINITE ELEMENT
SOLUTION ALGORITHM IN COMOC

Favoryble evaluation of numerical accuracy, and convergence with discretization, of
-a COMOC-genérated finite element solution for the two-dimensional/steady Navier-Stokes
equations is reported (ref. 15). Accuracy and convergence for the transient intergration of
the finite element\solution algorithm for heat conduction is proven (ref. 13). This Appendix
discusses results which establish a favorable assessment of COMQ -generated solution accuracy
and convergence for\boundary layer flow of a compressible fluid.

Comparison solutions were generated using an operational finite difference computer
program (NUMINT) which integrates the equations governing multi-component mixing and
reaction of compressible, two-dimensional and axisymme/tfic boundary layer flow, cast in the
von Mises coordinate system The use of derived variablés in NUMINT, as distinct from the
physical variables of COMOC \renders available two coln/1pletely independent methods for
solution of the governing equatign system. NUMINT/has been extensively evaluated, and is
in everyday use for prediction ofypractical mixing and reacting compressible boundary layer
flow fields:. '

The symmetry plane, parallel to the freestream velocity vector and bisecting the
injection orifice, figure 2 was selected as\the sarfple comparison solution domain, since NUMINT
is constrained to two-dimensional problé s. /The three-dimensional capability of COMOC was
numerically reduced to two by enforcing?'.a,nishing gradient boundary conditions on all
dependent variables on two planes, z = £ constant, and prescribing initial conditions that were
independent of z, i.e., uniform across the/diskretization. By this procedure, COMOC was
independently assessed to preserve two/di'rner} ionality within about 2% by application only.
of this non-rigid boundary condition statement. '

The single jet centerplane ddta of Rogers (re{; 5), for g, = 1.0 and at Station x/D=17,
was selected as the initial condition for longitudinal ¥elocity, u, and hydrogen mass fraction,
Y. The cross flow velocity, w, was set uniformly to zexo, and COMOC started computations
for transverse mass flow pv aftef sufficient data were geyerated to allow approximation of
{pU},, équation (31). Vanishing normal gradient boundaty conditions were applied on the
closure of the elliptic domairYexcept for enforcing no-slip 4t the plate surface. Computations
were carried to Station x/D/= 30, and to stimulate strong mixing and to control parameter
variation, a constant turbulent eddy mass mixing coefficient Was specified, and the Schmidt
Number was set constant/throughout, equal to 0.7. ’

Shown in figure A.l1 are comparison COMOC and NUMIN‘I\‘ computed solutions for
hydrogen mass fractign distribution through the boundary layer thickness at Station x/D = 30.
Extensive diffusion 4nd convection has occurred, as illustrated by comparison to the initial
distribution (x/D v/ 7). A one-to-one-correspondence exists between GOMOC data points. -
and the discretizgtion through the boundary layer thickness. The curvé,is faired through the
square COMOC/symbols corresponding to the 22 finite element discretiza\tion. Agreement
with the 100 gone finite difference NUMINT solution is excellent, with only the values of Y
near the wall being computed as measureably different. NUMINT employ§a four-point finite
difference derivative formula to evaluate Y at the wall to enforce the vanishing gradient

/
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Figure A.1. Comparison Computed Hydrogen Mass Fraction Distributions on Symmetry Centerplane
of Mixing Region

Identify a three-dimensional, rectangular parallelepiped control volume, figure A .4, withsides

normal to coordinate directions. Employ Gauss’ theorem to recast equation (A.1) as a surface
integral over this control volume:

> uL
%[[pUY -% v,Y] -Ado = 0 (A.2)
r .
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Figure A.2. Comparison Computed Longitudinal Velocity Distributions on Symmetry
Centerplane of Mixing Region

Integrand evaluation over the subject control volume yields, alternatively.

Apquo —Apquo +/) pvYdo
Le A
s =0 (A.3)

ule ule
- / m——— Y. Zdo + —I)—r— Y, ydO + . ‘"P_r" Y. ydo =

In equation (A.3), the integral subscripts identify control volume surtaces. and the symmetry
properties on face E and the no slip wall have been accounted for.
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Identify a three-dimensional, rectangular parallelepiped control volume, figure A.4, withsides

normal to coordinate dlrlectlons Employ-Gauss’ theorem to recast equation (A.1) as a surface
integral over this control volume:

A N\ '
#@[pUY - ‘; © v,Y] Ado = 0 _ (A.2)
r .
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Figure A.3. Computed Transverse Mass Flux Distribution Comparison for COMOC and
NUMINT Solutions

For all computations reported herein, the hydrogen mass fraction vanishes on face D.
Selective terms may vanish from within the square bracket, equation (A.3), dependent upon
applied boundary conditions, e.g., Y,, vanishes on surface C for the multijet, virtual source
and centerplane computations, while Y, essentially vanishes on surface D for all computa-
tions, since the solution domain extends well into the freestream.
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If vanishing normal gradient boundary conditions are enforced at the plate surface
as well, the conservation expression reduces to the familiar form

ouYde = constant (A.4)

A _
which states that the hydrogen mass fraction flux is analytically constant in every plane with
normal parallel to the predominant tlow direction. The approximate adherence ot computed

solutions to equation (A.4) is considered important for veritication of the proper operation
of a computer program.

The finite element solution algorithm provides a mathematically consistent and
readily obtained numerical approximation to equation (A.4). From equation (21), written
on both pu and Y. obtain the following approximation to equation (A.4) within a finite
element.

T
n

FLOW,, = {RHOU] I {x}{x{Tdo [T1, ¥}, (A.5)
1

m R
n

The integral in equation (A.3) is readily evaluated. A simple DO loop over the finite elements

of the discretization sums M terms of this form to vield a numerical approximation to
equation (A.4) which contains the details of the computed distribution of both pu and Y.
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For all computatlons reported herein, the hydrogen mass fraction vanishes on face D.
GXA 3), dependent upon

applied boupdary conditions, e.g., Y,, vanishes on surface C for the multijet, virtual source
and centerplane computations, while Y essentially vanishes on surface\D for all computa-

e the solution domain extends well into the freestream. S
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COMOC computes the sum of equation (A.5) at every output station. Excluding a gross
programining error or inconsistent theory, discretization exerts the predominant influence
on the sum. In actuality, solution surtaces are complexly curved; equation (A.5) performs a
piecewise planar interpolation of the surface, yielding a multi-faceted approximation to the
true surface.

The previously discussed centerplane computations employ the correct boundary
condition distribution for equation (A.4) to be rigorously valid. Shown in figure A.5 are
COMOC-computed deviations from absolute hydrogen flow conservation for the 13- and 22-
finite element solutions of the centerplane problem. The comparison data base in both tests
was total computed hydrogen flow at Station x/D = 7. The 22-element COMOC solution
numerically conserves total hydrogen flow to within £1.5 percent. There is a computed
continual loss of hydrogen mass flow for the 13-element solution, amounting to about 10
percent of the original computed flow at Station x/D = 30. Referring to figure A.1, this
computed hydrogen flow loss corresponds to a maximum solution deviation for hydrogen
mass fraction of about 3 percent, occurring at the peak of the initial input distribution, to
about -4 percent, occurring at the plate surface, and near freestream. Considerable additional
experimentation is, of source, required to establish a firm correspondence between computed
hydrogen flow conservation and actual solution accuracy. At this juncture, a 10 percent
computed loss appears as an acceptable indication of adequate solution accuracy.
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O 13 Elements
] 22 Elements
g [
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g5
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£§ o
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c 3
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Longitudina!l Displacement - x/D

Figu;e A.5. COMOC Computed Deviations from Hydrogen Flow Conservation
for Different Discretizations

The centerplane tests were repeated with hydrogen mass fraction held constant at the
initial value at the wall, for 7 < x/D < 30. The maximum computed deviation from hydrogen
conservation was +0, -2 percent. Thus, equation (A.4) is probably reasonably accurate for
those cases in the present analysis where the diffusion terms (in square brackets), equation
(A.3), do not rigorously vanish by gradient boundary condition statements.
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APPENDIX B

VIRTUAL SOURCE INITIAL CONDITIONS

The complexity of flow in the near injection region requires that detailed initial data distri-
butions be known to start computations at a downstream station where the elliptic boundary layer
approximation is valid. The alternative is establishment of an analytical and/or empirical model of a
numerical *‘virtual source”, as discussed. This approach requires establishing simplified initial condi-
tions at a station upstream of the mixing region as a function (only) of undisturbed freestream and in-
Jectlon parameters.

Iﬁjection of a jet from an orifice in a plate into a transverse supersonic air stream has been the
subject of a number of investigations (ref. 25 through 28). An important correlating parameter is q,, de-
fined as the ratio of the dynamic pressure in the jet to the corresponding freestream value. Except for
the investigations by Rogers (ref. 5 and 6), available experimental data are typically for large values of
qp, whereby the jet has sufficient momentum to penetrate the boundary layer and produce the com- ;-
plicated separation region and bow shock ahead of the jet. In references 5 and 6, q ranges between
0.5 and 1.5. The jet lacks the necessary momentum to penetrate the boundary layer. Therefore, mix-
ing occurs within a turbulent boundary layer velocity profile. Consequently, the referenced empirical
models are not directly applicable to analysis of the present data, and other means of characterlzmg
the near mjectlon region were 1nvest1gated

The proposed barrel shock model of the turning jét is shown in figure B.1. For large values of
d,, a similar configuration with an interaction bow shock-has been considered in reference 25. An
analysis based on one-dimensional flow was developed for the present case of small q, to characterize
the turnmg jet. The parameters for the present model are listed in table B.1.

M, Regions (4) Jetinlet
—_—— . .
Freestream Stagnation . (5 Upstream of Mach Disk
@ ) Locat Freestream . (6) Downstream of Mach disk
Turbulent Boundary Layer Edge \ Jet Stagnation (D Local bounda'ry layer
Disk Shock

Barrel Shock Streamtube through Disk Shock

(/777 222

Flat Plate

727

Sonic Throat
Figure B.1. Transverse Injection into a Turbulent Boundary Layer -
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TABLE B.1 .
BARREL SHOCK PARAMETERS

¥ =  specific heat ratio WA = molecular weight of freestream (air)
M, =  local Mach number of region 2~ Wy =  molecular wéight of jet (hydrogen)
P¢] =  total pressure in region 1 C; = orifice discharge coefficient

p;3 =  total pressure in region 3 W4 =  orifice diameter

Ti; = total temperature in region | M5 = local Mach number in region 5

T(3 = total temperature in region 3

The effective diameter of the stream tube that passes through the Mach disk is described by a dis-
charge coefficient. The isentropic one-dimensional flow relations, and the condition of a sonic jet
throat, M4 = |, are used to determine conditions at stations 3 through 5. The normal shock relations
yield the flow quantities in region 6, and the jet is expanded in region 7.

The analysis procedure is an iteration to find the Mach number upstream of the Mach disk,
M5, that allows jet static pressure equilibration with local freestream, i.e., Py =Pj. From M5 and the
normal shock relations, the velocity immediately downstream of the Mach disk is determined (Ug).
Ilustrated in figurc B.2 is the determination of Ug for Roger’s test conditionsof q;=0.5 and q; = 1.0;
assuming Cy = 1.0, i.e., all the injectant passes through the Mach disk. For the virtual source compu-
tations discussed, the initial velocity within the hydrogen jet was identified with Ug., as determined by
this procedure.

) A FORTRAN listing of the barrel shock computer program is included as figure B.3. The re-
quired input for a problem is shown in table B.2, and a representative output sample is attached as
figure B.4.

TABLE B.2
INPUT SPECIFICATIONS FOR BARREL SHOCK COMPUTER PROGRAM
Card No. FORTRAN Input Variables* Format
] GAMMA, M2, PT1 3F10.5
2 PT3,TT1, TT3 3F10.5
3 WA, WH, Cl 3F10.5
4 w4 F10.5
5 XMS5 ‘ F10.5
6 NCASE 13

*See Table B.1
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.APPENDIX B

VIRTUAL SOURCE INITIAL CONDITIONS

The complexity of flow in the near injection region requires that detailed initial data distri-
butions be known to start computations at a downstream station where the eﬁiptic boundary layer
approximation is valid. The alternative is establishment of an analytical and br empirical model of a
numericlgl “virtual source”, as discussed. This approach requires establish}pg simplified initial condi-
tions at ak{i’t‘ion upstream of the mixing region as a function (only) of u idisturbed freestream and in-

jection parameters.

lnjec}t of a jet from an orifice in a plate into a transverse stipersonic air stream has been the
subject of a numiber of investigations (ref. 25 through 28). An impo’;tant correlating parameter is dp» de-
fined as the ratio\of the dynamic pressure in the jet to the corresponding freestream value. Except for
the investigations bx\Rogers (ref. 5 and 6), available experimental data are typically for large values of
dp, Whereby the jet hag sufficient momentum to penetrate thefboundary layer and produce the com- .
plicated separation regign and bow shock ahead of the jet. In references 5 and 6, q, ranges between
0.5 and 1.5. The jet lacks the necessary momentum to penetrate the boundary layer. Therefore, mix-
. : s bt ; ] ;
ing occurs within a turbuleént boundary layer velocity profile. Consequently, the referenced empirical

models are not directly applicable to analysis of the presént data, and other means of characterizing
the near injection region were\investigated. :

The proposed barrel shock model of the turping jet is shown in figure B.1. For large values of
q;, a similar configuration with an interaction bowfshock-has been considered in reference 25. An

analysis based on one-dimensional ﬂ'}){v was deve}oped for the present case of small q, to characterize
the turning jet. The parameters for the.\l’)\resent model are listed in table B.1.
M, Regions Jet inlet -
4 Freestream Stagnation Upstream of Mach Disk
Local Freestream . Downstream of Mach disk

©)

Jet Stagnation ’ @ Local boundary layer

Turbulent Boundary Layer Edge —\§

Disk Shock

Barrel Shock

.

I’:igure B.1. Transverse Injection into a Turbulent Boupdary Layer -

\

vy

Flat Plate
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F igure B.3. Listing of Barrel Shock Computer Program
NEAD(5,101) G,x2,PT1,PT3,77T1,TT3,VA,WI,C1,W
22 WRITE(6,204) o

TTT20l4 FORMAT (11i1)
READ (5,101) Y5
101 FORMAT (3I'10.5)
READ (5,16) 1iC2ER

716 FORMAT (I3) o
G1 =G + 1.
G2 =G6 - 1. o - T
G3 = 0,5 * (1
G = 0.5 *¥ G2 T
LG5 = 2, * G/G1 e
YI58 = XM5 ¥ 15

G3/G2
-7
G3 ** 1117

nin owin nin

ZM\:SZ 1. + Git * M58 T o B

AS3 = AS2 ** TY e

ASHL = AST * XM5 * AS3 -
. ....55084r = 1./AGH ‘ SR

W28 = X2 % M2

RA = 1545, /Wl e

RII = 1545, /WK

X¥ = Rp * TT) — e e

= (1su, * pp1)
= (144, * PT3)
1.7+ Gy * %112

13N
S

DY />
/(R * 973)
g

DT3
72

El=-1. . _— - .
B2 = =G/c2

L3 = -1./G2 )
B —IpE e .

VK1 = 72 **pB1

VK2 = 72%%72 T
MKR3 = 22 ** 3 - e

XKL = 72 *% pu

TT2 = 71

pe2 = P71 T o T i

DT2 = D1

AT1S = G * 32,2 * RA * TT1 T T
AT1 = SQRT (AT15) - S .

A2 = AT

AT3S = G 32,2 * Ri1o* 973

AT3 = SQRT (AT3S) T -

T2 = TT2 * ¥KI S, -
P2 = PT2 * K2 o
D2 = D72 * ¥IK3 e -
N2 = AT2 * YF4

_ V2 = NT2 * XM2/(SQRT(Z2)) S

Tl = el

PTH = PT3 .

DTU4 = DT3

A4 = A3 )
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XM4 = 1,

Figure B.3. —Continued |

S5 = SUP * S50S4P

W58 = CS4 * S5

74 = 1, + GU * XMU4 * XMU
TQT =70 *FET
Q2 = 74 ** E2 , :
Q3R YETFR L3
L QB = m4 Rk 1y
T4 = TT4 * Q1
PU = PT4 * 02 o
D4 = DTU4 * Q3 A
AL = ATH * Od
Vi = AT * YMU/(QORT(UQ))
QR = D4 * Vi * V4/(D2 * V2 * V2)
PI = 3.1416 : o e
HY = PI * Wy * wu/(u *tmua.r»«
FU = DU * Vi * HU -
FuM = 453,6 * Fu4
EX1 = G/G2 — -
. EX2 = 1./G2 -
W4P = C1 * 14 B
.Cs4 = 4./PI
SUP = W4P * WuUpP / CSu e

" AS = G3TF¥ Ri58
.BS = 1./P60P5

W5 _= SQORT (WS5S)

XM55 = XM5 * XM5 e e
75 :_]" + GU * XIM58

AQ1 = 75 %% 11

AQ2. a,Ls *k 12

AQ3 = 25 *x E3 e ———
. AQL; = 75 * %k EU .
TTS5 = TTH - ene

PT5 = PT4

DTS5 = DTU e e
_AT5 = ATH

T5 = TT5 * AQ1 -
_P5 = P75 * AQ2

D5 = D75 * AQ3

A5 = AT5 * AQ4

V5 = AT5 * YM5/(SQRT(25)) - - e

PEOP5 = (2, * G * XM5S - G2)/G1

D60OD5 = G1 * XM5S/(G2 * XM5S + 2.) - et e

T60TS5 = P60OP5 * (G2 * XM5S + 2,)/(G1 * XM55)

V6OVS = 1. = B, * (XM55 = 1.) * (G * XM55 + 1.7/ ((GI¥¥XMBS)F+2 )

AGOA5 = SORT(T60%5) ’ o _ i

" TT6 = TT5 o
_PT6 = P5 * (AS ** EX1) * (BS ** EX2)

"DT6 = PT6 * 14L4. * WH/(1545. * TT6) -
AT6 = ATS5 . iy X

V6 = WS -

T6 = T5 * T60T5

“P6 = P5 ¥ PgOPS

D6 = D5 * D60D5 ~




Figure B.3.
A6 = AS * AGOAS ’
DELD = P() - T’2

—Continued

"IF(DELPL.LT.D.0) GO ©0 1718
XKHM6S = (G2 * X586 + 2.) /(2. *

G * XM5S8 - G2)

'Vil6 = SORT (XM65)

mg o= 1. + GU * 116S
V6 = AT6 * 6/ (SORT(TEY) T T T
7 = TT6
P77 = pve T T T
LT7 = D76
AT7 ="AT6 T oo T
F7 = p2
Pr = D7/D07 oot T
PFG = PF ** (=G2/G)
hd = (‘
‘H;O- ség_(>n7s))/
IR L ISP
77 =1, + G4 * JM7S
BT = 27 **11
BQ2 = 27 ** 52 . . e -
BO3 = 27 ** B3
BOY = 77 ** . E4 L
m7 = ”M7 * 101
p7C = P77 _* BO2 S
D7 = DT7 * BO3
A7 = AT7 * BOU L
V7 = ATT7 * ¥MT/(SORT(N7))
Can = 1. + G4 * xr6s -
CIDh = 1., + G4 * yr78 77 T
CJL = CJIN/CJID. o ]
CJF = XM6/3N7
CIG = -G3/62 e
CJI = CJF * (CJII ** CIG) ' ‘
CJI = SQRT(CJH) o B A
©7 o= W6 % CJI T T T T
FCONl = PI/576. :
FU4 = DU * V4 * vig % Wi * Fcom 7 T
FU4P = DU * V4 * 4P * Wup * FCOIl
F5 = D5 * V5 * 15 % 5 * [FCon
F6=D(*V6*‘6_:'“__w_(_*I‘COT' )
F7 = D7 * V7 * 17 * W7 * FCON -

118 CONTINUE o o
VRITL(6,120) NCASE

120 FOREAT (T10, 'SECOLDARY. JET',/,T10, 'PRCARMIMTN RV F D HATNE
* OKULEWICZ',////,T10,CASE NO. '13)‘
VRITL(6,121) G,XM2 ) S

121 FOPIAT(////,T1O YINpUT Y ///, n,'G',m10,'=",n12,u,702,
*'SPECIFIC HEAT RATIOC',/T1 'VW?' m1n '=',m12,4,7482,
*'iiacH 110. IN REGION 2, FPFTSLRPAH ) ~
WRITE (6,122) PT1, P”3,2?1 e . .

122 FORMAT(T10,'PP1',T19,"'=",C12.4,742, '"TOTAT, PRTSSURD, PIATON
*mpd , Y(PSIA) Y, /,T10,'D03 ,m0, v r12. u ™y, 'TOTRI, PPISAIPT PraIn3
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Figuré B.3. —Continued |

M4 = 1,
74 %% 1, + G4 * XMA * XMy
TOT =\ 24 *¥gT /
02 =\72U4 ** g2 - E
Q3= ZW F®E3
QU = z.u‘_** ol
TY = TTU * 1
P4 = PTUN* Q2 e
D4 = DT4 * Q3 ‘
AL = ATU N\Ol ' A
WL = ATH * mu/(quT(uu)) /
QR = DU * VI * \_{u/(Dz * V2 * v2) . o L
PI = 3.7416 7
HU4 = PI * wu * wu/(u . 4n,) £ — . -
Fli = D4 * vu * Y4 /
FUIl = 453,6 * FO\ ;{“’_ e
EX1 = G/G2 ‘\ f
EX2 =_1./G2 N - 4 e
'W4P =-C1 * Wi \ i
Q§‘} = 4./PI i e - S
GUP = Wup * wup / CSH £
S5 = SUP * S50SUF_ \ o
W58 = CS4 * S5 Vi
W5 = SQRT (W5S) ' L
XM56 = XM5 ¥ XM5 \{
75 = 1. + G4 * X158 ), ) -
AQ1 = 25 ** L1 / \
AQ2 = 75 ** p2 4 — —
203 = 75 ** B3 /f’ \
AQL‘ = 75 ** EU4 ‘41 e e
TT5 = TT4 / \\ ‘
PT5 = P74 i ) .
DTS5 = pTH T / \ -
ATS = %’1_‘.‘.‘% I _
TT5 = TT5 ¥ AQ1 3
P5 = PT5 * BO2
‘D5 = DT5 * AQ3 / \X
A5 = AT5 * A4 [/ ) .
V5 = ATS * ¥MS5/ASQRT(Z25)) \
PEOP5 = ( 2, *fG * XM5S - G2)/G1 L ) L
D6OD5 = G1 * XM5S/(G2 * XM55 + 2.) N\ -
T60T5. = Psops‘“* (G2 * XM5S + 2.)/(G1 * XM5S) '
VeoV5 = 1. 54, * (XM55 - T1.) * (G ¥ XM55\+ 1. )/((r1**“§‘3‘€)'***2“°y
_ A6OAS5 = SORT (T60T5) _ : e
AS = G3 * 15§
BS = 1./PEOP5 o
TT6 = TTY
PT6 = P * (AS ** EX1) * (BS ** EX2) o
DT6 = BT6 * 14b, * wu/(15u5. * TTE)
AT6 =;A'§_EL,.M T
W6 = V5
m6 = T5 * TEOT5
“P6 = P5 ¥ P60OP5
D6 = D5 * D60OD5 -




Figure B.3.—Continued '

138 [FORMAT(//,T 10,'OUTPUT',// T, TP, TSRS “'T“2

¥V, 783, V(PSIA) ¥, /, 10, "I T19,gf EZS
*GIoN 1',T82, (DFG.RANRINE)‘) L
WRITE(6,123) TT3,WA, WII ’

,123 FORMAT (T10,'TT3"', 'I‘1q ,B12,4,T42, '*TOTAL TI‘MPFRA'T‘URE REGION 3!,

*782, ' (DEG. RANKINE)',/ T10,'WA',T1 ’ —',E12 §,T82, "MOLECULAR WEIGH
W*TJA1R ,T82,'(1/MOLE) ',/ T10, 'WH',T19 Y=t E12 u Tuz *MOLEGCULAR: WEIG
*IIT ,IIYDROGEN ', T82, ' (1/}MOLE) ') ; T ~ T

WRIT (6,124) C1,W4, xms -

124 FORMAT(T10,'L1' 19 = ,n12 u, Taz 'OPIFICF DISCHARFF COFFPICTFPT'
*,/ " ;
Tk T1o,"wu',fr1n Y= E12 u, Tuz 'DIAMFTPR OF ORIFICE‘,TBZ '(INCHFS)r
'*/,l1o 'XM5',T19, ,B12.4, Tuz "MACH MO. IN REGION 5') o

IF(DELP.LT. 0 0) GO 'I'O 202
_WRITE(6,125)PT1,DT1;TT1 .

ok 'TOTAI, PRESS
*URE;REGION 17,782, V(PSIA) ¥, /, 710, 'DTTY, T19, "=T 124, Th2, TEOTAL, DE
,*NSITYLREGION;l' m82; ' (EBM/CU.FT,) " ,/LT10,'mT1' 19, 121 B2, 4 ,T42,
¥ "TOTAL TEMPERATURE ,REGION 1',T82," (DEG, RANKINE) ) :

'WRITE(6,126) AT1,PT2,DT2 )
126 "FORMUAT (T10, "AT1Y, 719, '= 1,512, 8,743, "TOTAL SPIED OF SOUND, RFCTON T'~

*,782," (F%,/SEC.) ', /, 710, P72, 710, b=t RAPAY ;742 , ' TOTAL PRESSURE,RE

#GTon 2%,782, '(PSIA)',/ T10,'D”2' 719, F12 4,Th2, "TOTAL DFNSTTY,
*REGION 2',T82,' (LBM/CU.FT.)"') s
WDRITE (6, 127) TT2 AT2,P2

127 FORMAm(T1o itpmot 719, '= ’12 4,742, 'TéTAL TEMPERATURE. REGTOM 2y,

*782,"' (DEG. RANRINF)',/ T10 2',T1° =7 F12.4,T42,TTOTAL, SPEED OF -
* souuu REGIOH 2',T82, '(PT /SEC. )',/1T10, P2',T10 ! l,E1ngL?uzl

_ E 'PPFSQURE REGION 2' "‘82, (PSIA) ')
WRITE (6,128) D2,T2 A5

128" FORIiAT(TTU"'DZ' ™9, = ,L"IZ a7, 'ISL'F'ST['I‘v RF'Z'IIN 2' g2, (LBM/C.T

*FT.)',/,T tp2',T19, ,E12.4 Tuz 'mFMerAmURF RPGION 2' T2,
%' (DEG, RANKINE)',/ T1O 'Az' T1° 1=t ,E12., u,Ta2 'SPEEDTOF‘SOUND;REGI
... *om 2',782,'(FT./SEC. )')

WRITE(6,129) V2,PT3,DT3 o :
129mEQBMA$L$JO,fV2',T19,'='LE12;Q,Tu2,?VELOCfTV REGION 21782, PT /5
*£c.)',/,T10,'PT3',T19,'="',F12.4,T42, ' TOTAL PRESSURRE REGION , 782,

Lk '(P%IA)',/,TJO 'Dm3',T10 '=',E12,4,T82, 'TOTAL DRNSITY, REPION 3,

* T82,' (LBM/CU.FT.) ") , — , R

WRITE (6,130)7T3,AT3,PT4

130 Fonnpm(T1n vep3t 719, '="',E12, u,Tu2 "TOTAL TEMPERATURE,REGION 37,
_*782 ' (DIG. RALIIUE)' /.T10,'AT3',T19,'=" ,E12.4,T42, 'TOTAL SPEED OF
* SOUMD,REGIOH 3',T82,'(FT. /SEC )',/,T10,‘Pmuf;T19 =V E12.4,T042,
*'"TOTAL PRESSURE,REGION 4',T82,'{(PSIA)"') . '
7RITE(6,131) DT4,TTU, ATu
131_FORMAT (T10, 'DTu' L1q =' E12.4 Tuz,'TOTAL DENSITY,REGION 4',T82,
* V(LBM/CU.FT.)" ,/ T1o,'TTa',T1o =',E12.4,T42,'"TOTAL TEMPEPATURF,R
*pGIoN 4',T82,' (DEG. RANYINE)',/ijo,lATa),T19L'=',E12.a,qu,'TOTAL :
* SPEED OF SOUMD,REGION 4',T82,'(FT./SEC.)') )
WRITE(6,132) P4,DU,TU
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Figtire B.3. - Continued'

132 ronMAT(T1o,'Pu',T1q "=V, E12.4,T42, TPRESSURE, RFGION uT'm fYﬁ@fi)'
*,/,210,'D4',T109, LE12.4,TU2, 'DFNSITY REGION . ', '(LBM /PU T,
*)',T1o,'Tu',T19, —',F12 u,Tuz 'TEMPERATURE RFATON u'

#7282, ' (DEG, RANEINE)') -
TRITE (6,133) Ab,VH, W4, W4P
133 T'QRIAT (1 1p_jAu' m10 1o E12 u,Tu? 'SPEED _OF SOUND, PFGIOP ut,T82,
% VY (FT,/SEC.) " ,/, 'Vu' T10, ,E12,.0,707, 'VVLOCITV PRGION u', med
*, " (PT./SEC.)" ,/,T10 "y T19, JE12.,0,702, igff_qlggy_hrcgnv ur,
* 7e2, '(INCHDS)',/,T10,'qu',T19,'=',n12.u,Tu2,'EFrncTIVE JET vIDTI
*,REGION-HljgﬁzJ'JJNCHRE)')
(WRITE(G,134) PT5,DT5, mms

134 OHnAm(T1Q ,LPTst, w10, '=", 112, 4,742, "POTA], PPRSSURR, PRGION §' ,ma2,
* '(psin)',/,T10, 'DJS',T10 =V E12. u,AHZ,'TthI DENOITY,PEGION &Y,
* 182, " (LBM, /CULFT, L[,T10 tpTs ,T10,'=1 ©12 4,742, ' TOTAL TFMPERAT

*ULF REGION 5',ﬂa , ' (DIG., RANKIHF)')
“ITI(G 115) ATS, P5 ns S ) _
135 FPORIAT (110, 'ATS', m10 '=',E12. u,ruz 'momAL SPI'TRD OF SOUMD,PEGION R
*,ma:,'(rr./sng.)? /T10 'p5',T19, ,F12.,1t,T42, 'PPLASURE, RREATO 51,
* T82, '(PSIA)',/”10 'p5Y,T10 ﬁ=' v1? u, mu° 'nnnszwv,nrcror 5°,
v r—v8 '(LB” /CT’ ].wn ).') B - -
‘”ImI(G 136) 7©5,:5,V5
126 roruAU(m1n voge, ~1n '=' 1112, a,muzA'ﬁv"vrvAmrvr PEGTION 5' W00,

r. ,
' (DEG. RANKINE) ¥, /, T10 'AS',T1° JT12.4,T42,"SPEED OF SOU'™M,PRAT
%11 5',T82, ' (FT./SIC. )[,/ 'vs‘,:nn ';-_“17 It,muR, "URLACTTY  PRAT

*Ou 5',782,' (FT./GREC.) ")
RITE(6,137) XUS,05 . .
127 yo““\“(T1n,"r”' w10, '=",n12.4,702, VIRCH VURDY, DRCICT 5, /, 710,
#1510, =", E12.0t, 1u° ,'OLT WIDTH,PIGION 5,780 j(I“Px*")')

‘PI”Y(6 138) P”i,DW(,TT

138 POPLAT(110 PGt , w10, =" ,r12,4,T02, ' TOTAL P“F‘"TP“ PIGION 6',Te0,
x v(psIR) Y, /, 510, '3”(',zih[ SVYT2.0,Th, TROTAL DRNSTTV, REATAT 61
* T2, f(Lnﬁ./CU ),/ 10'f2T6',Tlflw_"_fj° u,mun '?PTAL TIMPT AT
“URL, REGION 6',782 '(DLG. RALKINE) ') '
URITE (6, J}Q)_p?( PG,LGM‘~ L

139 rornﬂT(L1n Arﬁ' "10 WSV T12.0,702, 7 00TAT, SPIED O s0nn, PRaTor f
£oon2, 1 L/anc.) b, /210, 160,710, T=E R12, 6, mh2, TPPEASTET, RERTer 6
* '(PQIA)',/”10,'U6 JE10, V= 12, 05,50Y, POrRETTY, TRGION Y,

* "82 '(LBM./CULPT,) ')
’“I”I(( 140) 76, N6, vc
140 TOIAAN(110 e, r'1<\ =1, .u,ngijgggrggppnr,nrcxnn 6',T82,
* ' (DLG. RAulIl])',/,T 0 T10 , 120,742, 'SPERD OF €OU™D, PRAT
L [ ]
v

'‘r6°, ’

*QO11 €' ,T82,'(FT./SCC.)"',/,T10,'V6" T1° =", T12.4, T2, 'YELACITY , RRGT
*O17 ; ,TRZ '(I‘;./.)TC ) 7 :
WRITE(6,101) "ﬂc_w6_
-1 “ORLA”{T10 'Vhﬁ , 719 Tmu2, "*ACH NUMBER,REGINN 6! { ™10,
"R, 719, ni2.u, 1&2 'JF" ‘IﬁTh,ﬁfctnn 6", ma? ' ITCPV°)

WRITE (6, 142) PT7"3T7 T
142 FORIWAT(TI0, 'PT7',T19,'=',E12.U,T02 '”OmﬂT PRESSURTE, RIICTION 7',ﬁ 2,
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3

A\
‘1\ : Figure B.3. — Continued .
s ;
¥7, 782, (PSIA) ',/ ,T10, FTT1T, TG, =T E12007Th2, 'TOTAL TFMPERA”URF RE
*GION 1,782, ' (DEG.RANKINE) ') Tr g g A

WRI;L(G 123) TT3,WA,WH
123 FORMAT(T1O ‘tr3', T1q '=' FE12.4, xugLfTOTAL TFMPFRATURF REGION 3°',

T TR2, '(DEG. RANhINE)',/ T10,'WA',T1 ,Ei2.10,Th2 /" MOLECULAR ercH
B *T‘glg .T82,' (1/MOLE) ', lT10,'hH' 19,'= ,E12 u TwQ "MOLECULAR: WEIG
*HT,IIYDROGEN',T82,"' (1/MOLE) ") 4/
Vuyglmn(s 1ggomg1_quxns 7
124 FORMAT(T10, "¢1',T19, '—',512 4, Tuz 'OPIFICF DISCHAPGF COFvPIcIva'
*
* T1o,'wu';T1o "=V E12. 0 Tuz 'DIAMTTFR OF ORPFICE',TBZ '(INCHFS)'
*/,;10,'XM5' 1qw'— ,B12.0 Tuz "MACH MO. IN /REGION 5°')
IF(DELP.LT.0.0) *GO TO 202 4 -/ N T
_ WRITE(6,125)PT1,DT1,TT1 / i
125 FORMAT(//,T 10,'OUTPUT',// T10,"PT17,T19 /'= T R12.4,T47, “‘
ok 8 / 'TOTAL PRESS
*URE,REGION 1',T82,'(PSIA)',/,T10, 'Dm1y¢m1o L,E12. u Tuz YROTATL DFE
*usxmy REGION 1',T82 "(LEM/CU.FT,) " ,/,E1OLjTT1' T1° _____ E12 4,742,

* “TOTAI, TEMPERATURE, REGION 1',T82, '(?EG,RANKINE)')

VIRITE(6,126) AT 1_P;2 DT2 .

126 FORhAT(T10,'AT1' T19, "=NE12.0,T42/"TOTAL SPEED OF' SOUND,REGTON T1'~
%082, 1 (P, /SEC.) 1, /,T10, VBr2t  m1afi=t (E12.4,T42, ' TOTAL PRESSURE,, RE.
¥GTom 27,782, '(PSIA)',/ T1oﬁ'Dm2'fW1° F12 4,Th2, "TOTAL DFNSITV '

*REGION 2',782,' (LBM/CU.PT.)') S - . - o

WRITE(6,127) TT2,AT2, P2 /
127 FORMAT(T10,'wT2' . T19,'=";E12, W Tu2, 'TOTAL TEMPERATURE RREGION 21,

*782,' (DEG. RANRINF)',/,T10 ARV, 710, V=1, F12.4,Th2, VTOTAL, &PEED OF

* SOULD, REGIOU 2',T82, ' (IT. /sré\)',/,T10 'p2',7T19,'=',E12.4,T42,

% "PRLSSURE REGTION 27 782, (PSIMY)
 WRITE(6,128) D2,T2,A%
128 FORMAT{TTO, " DZ™,T 19“”“*"FT ‘ENSITV“RFPIUW’ZT’mEZ”'(an7tr
*FT.)',/,T10, 720,719, '=" 12,4 Tug\\?EMPFRAmURF PEGION 21,782,
~*' (DEG. RANKINE)' /e T1O ?AZ' Tqa, vt ijz u,Tu2 'SPEED OF sounb;REcI

*Ql _2',T82,'(FT, /src )')i

WRITE (6,129) V2,PT3,DTA ‘\>;l
129 FORMAT(T1OL'V2'1T19 ;; ,E12,4,T42 , '"VELOCITY, REGION 2',7T82,"'(FT./S
*Bc.)',/,T10,'Pr3',T19,'=' ,E12.4,T42, ' TO AL PRESSURT REGIOF 3,782,

% T(PSIA)',/.,T10,'DT3",T19, =" E12.4,702 N TOTAL DENSITY,REGION 3',
* T82,' (LBM/CU.FT. ) ’ , T
o URI”E(G 139)7T3, Am3 PTY4 ' o
130 FORMAT (T10, 'mm3',m1° '=",E12.4, mﬂ? 'TOTAL xgonRATURr (REGION 37,
~*782 ' (DEG. RALIIHE)',/ T10 'AT?' m1q 4,742, 'TOTAL SPEED OF
* SOUND,REGIOHN 3),T82," (FT. /SEC )',/ T10,'PT¢\\T19 =V E12.4,7042,

* ' TOTAL PRESSURE,REGION 4',782,'{(PSIA)™") e

WRITE(6,131) BT4,TTH, ATh T
131_FORI!AT 1T1o;;%Tu',;1q  E12.4,T42, ' TOTAL DFNSITY REGION 4',T82,

* T(LBM/CU.FY.)',/, T1o,'TTu' T19,'=',E12.4, TUZ"TOTAL TFMPPPA”URF R

*EGION. Q'LT82 ' (DEG. RANYINE)', ,T10 'ATu!1T19-'3\ E12.4,TU2 ﬂTO@AL :
* SPEED OF ' SOUND,REGIOM 4',T82,'(FT./SEC.)"') '
WRITE(6.132) Pu.nu.Tu
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Figure B. 3.~ Concluded ]

* '(PSIA)',/,T10,'DT7',T19,'=" ,E12.¥ Tuz 'mOTAL DENSITY,REGION 7',
e X _T82, ' (LBM. /Qﬂ;ﬁi;i L T10.'TT7'LT19 -{.E12 4,T42, 'TOTAL TEMPERAT
*URE,REGION 7',T82,'(DEG RANKINE) ') * ' ' :
- WRITE(6,143) AT7,B7,D7 _ e
“143 FORMAT (T10, 'AT7' ,T19, ',E12.u,Tu2,‘TOTAL‘SPEED OF SOUND,REGIOM 7'
. *,T82, ' (FT. /SEC., )"/;10 'p7',110,'=',E12,04,T42, ' PRESSURE ,REGION 7',
* T82 '(PSIA)' /T10,'D7',T19,'s! ,E12,4,T42, "DENSITY, REGION 7%,

- ¥ T82,°' (LBM. /CU FT, ) ")

WRITE(G 144) T7,A7,V7
144 FopMAl($1Q4'm7' T1° '=',E12.4, Tuz 'mEMPERATURFLRFCION 7',T82, i
*' (DEG, RANhINE)',/,T10 'A7',T19 E12 u T42, "SPEED OF SQUND,REAT
_.*oN 7',T82,'(FT./SEC. )'./.T10,'v7'lT1° : ,F12 4,T42, 'VELOCITY REGT
*ON 7',782,'(FT./SEC.) ")
R VRITL(G 145) ¥XM7,4W7
145 FORMAT(”10,'XM7' T19,'=',E12,4,T42, MACH NUMBER RFGION 7! ,/,T10
*'w7',m19,'="',512.4, ;42,'JET WIDTH,REGION 71 T82,'(INCHES) N
hRITE(G 146) F4, ruP F5
146 FORMAT(T1O 'ry',T10,'="',E12,4,T42, "MASS FLOW,REGION U4', . (LM, /.
*SEC.)',/, T1o,'rup' T19 'r ,E12 u, Tuz EFPECTIVE MASS FLOW RFGION b.
mthLEQZHfLBM /SEC.)" ./ T1O SF5T T19.ﬁuqu12 4, Ty, "MASS FLow,RFrIov' )
*51, ,"(LBM./SEC.) ")
B WRITF(( 147)F6,F7,0R
RV FORMAm(T1o,'F6',T19,'~',r12 u Tuz,'MAss FLOW, REGIOM 6',T82 ' (LBM, /
_*SEC.)',/.T10,'F7',T19, '=",B12,4,T42, '"MASS FLOW,RFGION 7', T82, ' (LBM
*./Sec.)Y,/,m™0,"Qr',T19, '="' ,E12.4,T42, 'DYNAMIC PRESSURE RATTO )
. .__VRITL(6,119) SSOSUPA - - o
119 FORMAT (T10,'S50S4P',T19,'="',812,.4,742, 'ARCA RATIO REGIQON 5 TO REGT
_.*ON 4p') ; o . P S L S A P s
GO TO 22 : ,
..202 YWRITE(6,203)
203 FORMAT (10X, 'DELP LESS THAN -0.0%) . v o won'y

.294.6._.

.6

1.4 4.03 300.3
e 5170509,
29.0 2.016 0.5
040

999
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Figure B.4. Sample Output from Barrel Shock Computer Program

N.1U00T

0.49301%
0.3003%
0.200GH
0.5170%
0.5090F
1.2°900F
0.20165
0.5000L
0.4000%
D.Ue001

N.2003Y
n.1570L
N.5170%1
D.11101
0.200310
D.157910
2.5170E
De11105,
J.1000E
d.02217:0
0.12171
RIET T FY
T.21700
J.2006T
N.10R81
d.509001
N, 41037
0.294Ci:
0.10801;
1.50901
0. 01931
D.15561
D.u282%m
N.3820%

D.39281

D.0808051-

~-01

01
01
23
03l
n3
03
a2
01

01

M
N3
Ny
01

.—;']1

sk
03

-.“,ig.
A3
nni
na.
an'
23!
nn
a3
Ny
03!
93]
0%
a1l
01

0.20901.~-01

D.20067
0.10881

2kl
09!

| TOTAL
| TOTAL
1o

' LATOL

SPECTIFIC HEAT RATIO
MACH 1
mOTAT,
ORI

PPESSURL, RIGION 1
PPESSURL REGTION?I

TOTAL TEMPERATURE,REGION 1
TOTAL TEMPERATURL REGIOM 3
POLTNCULAR WRIGHT,A1R
HOLPCULAR WEIGHT, I'YDROATT!
ORIFICE DISCHARGE CQOUFRICIRTT
DIMMETER OF ORIFICE

MACH 110, I REGION 5

meTAL PRESS UNE,DRAINT 1
DRMSITY, PECTON 1
TEMPLPATIINT, PROTON 1
OPETD OF SO, nroTer
PRI eUrE RLOTOY D
DENOTOV, DEGION 2
TEMPLRATURL, RIGIoN 2
SPIIEN OF &QUIM, BRaIer 2
PRDOSURD PDIGICH 2
DIMGITY,REATION 2
CHHPIPATURE, REGTON 2
SPREDR OF SOUND, RICIA
NEATON 2
PPRGAURT REGTON 3
DEISITY,RECTON 3
TEMPRPATIRD, PIGT T 2
CPERD OF €AUID,NRaTer 3
PRISCURDT, PRATIMT &
DINSITY,RNOION 4
PEMPIDATIRD], RIATIOT U
mOTRIL, SPIIID OF SOUNR,PnaIn o
PRLSSURT, RRAION &
TLHPRRATURD, RECGIOCH O
SPEED O 801D, PHGIOT 4
VETLOOINY , nPaIOn U
JET UIDTH,RLGION U
EFFLCYIVE JRET WIDTI,RNGION U
TOTAT. PROSSURE,RECION §
TOTAL DEMNSITVY,RFGINT 5

NPT

TOTA]L

IBTalRYN
_(,_, :,;’1]‘.:

vnLeoIny,
T()TI\II
mOTAT,
ORI,
TOTAT,
TOTNL
TOTATL

TOTAL

60

IM REGION 2,TRETSTROAM'

(PSTIN)
(PETA)

(PP, RANETIT)
(111017
(1/107F)

(TV0TTRA)

\ -

(PeTn)
(1M /0T, P Y
(MTA , PAMETIIT)
(e, /on0,)
(PaTR)
(/e ET )
(DT, RAFTITINT)
(rm, /arC.)
(roTa)

(Tnf’:'/x’“” LTy
(PP, TDAUFINT)
(re,[/ore))
(rm./870,)
(PoTn)
(11 /0T T ,)
(hra, PRI
(rm,/anr,)
(reTr)

(T/7U L TTL)
(™1, n’"??"'{‘\-r\)
(rm./870.)
(PSIN)

(DT, RAMMINT)
(ro,/8rc))
(P, /8TCL)
(ICYES)
(TTICHER)
(reIn)

(LPM, /CNT, 77 ,)



Fxgure B. 3 - Concluded

“(PSIA)',/,T1O 'D77',T19, ,E12.14 Taz 'TOTAL DFNqITY REGION 7!,
w_"_mmszL*iLBu JCUFT.) !, /e T10.'TT7'.T19 '=',E12,4, Tuz 'TOTAL TEMPPRAT
*URE\REGION 7',T82," (DEG. RANKINP) Yy 7 _
o WRITE(G 143) Am7 P7, D7 £ )
143 FORMAT(T10, 'AT7',T10,'=',E12, u uz 'TOTAL SPLED OF 'SOUND , RRGION 7'
k,T82, @gz /SEC.)',/T10,'P7" T1° ,E12,0,T42, ' PRESSURE, RFG;QN 7',

BT *(PSIA) ', /710, 707" ,T19 —',E12 A, TQZJ;DENSITY ,REGION 7%,

* 782, ' (LBM. /CU FT.)")

WRITE (6, 1¢n) 77,77, v7
144 FORMAT (T10,™ 7! T1° =',E12,4,T42, ' TEMPERATURE ,REGION 7',T82,

*V (DEG. RANRINE)' o/ T10,'A7',T19 _—',n12 4, T42, 'SPEED OF SOUND,REAT
_*0N. 7',7T82,' (FR./SEC.) "/, $10, V7Y B0 020 (ET2 . 0,102, 'VELOCITY,REGT
*ON 7',T82, '(FT\/ SEC.) ') ‘if
_ WRITE(6,145) XM7,u7 ' ¥
145 FORMAT (T10,'XM7',¢19,'="',E12,4,T42/ *"MACH NUMBER, RFCION 7v,/,T10,
*1g7t w10, 1= B12. 0T 742, \JET WIDTHJRFGION 7',T82, ' (INGHES) ')
WRITE(6 1u6) Fi4, ruﬁ\rg
146 FORLAW(T10,}Fu' 19}\= L,E12.4, Tuz '"MASS FLOW,REGION 4',7T82,'(LBM,/
*SEC.)',/,T10, VLD ,T19, '=" E12’4 THZ"'EFFECTIVE MASS FLOW REGION
mmtngszwiggMnlgpc.) S 10, 'FS'mT19.'=' E12.4,7T42, 'MAoS FLOV,REGION '
*5' T82,' (LBM./SEC.)") \\ ﬁg
N WRITE (6,147)F6,F7,0R
47 FORMA”(T10,'F6',T19 =" E}2.4,Th2, "MASS FLOW,REGION 6',T82," (LBM./
*snc )',/.T10,'F7',T19," vaqz 4,742, "MASS FLOW,R :GION. 7',T82 ' (LBM
*,/SEC.)Y,/,T 10,'OR' T19 /'="' E12.4,T42, 'DYNAMIC PRESSURE RATIO')
URTTL(6,119) S5084p & \

e+ ettt e e a5 wwnrmrEs

119 FORMAT (T10,'S5084P',T49,'="' ,12.4,T42, "AREA RATIO REGION 5 TO REGT
. xon 4p') A A
GO TO 22 !/ E \\ o ' _ ,

202 WRITE(6,203) | ' .

" 7203 FORMAT (10X, 'DELP FESS THAN 0.0') . \‘Q:_;.:ﬂéyiﬁ
_1.sTop. | £ S e A

— > e~ = \ .
J/PATA - ‘ e e e

e o+ o o i e et

1.4 4.03 300. 3
. 2948.6.. .. S517...... £.509, - .
29.0 2.016 0.5
L0U0 - - e
b,6
L9999 L L L4 - e
[0 ,,;4;‘
: ¢
/
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Figure'B.4. — Concluded . .
TOTAL TEMPFRATURE RTGION 5 (DEG. RANKINFT.

0.5090E 03
0.4193E 04 TOTAL SPEED OF SOUND REGION 5 (FT./SEC.)
0.8993E 00 PRESSURE,REGION 5 . (PSIA). |
0.1737E-02 DENSITY, REGION 5 {(LBM./CU.FT.) !
"0.9729E 02 TEMPERATURE,REGION 5 [PEG. RANKINE)
_0.1833E 04 SPEED OF SOUND,REGION 5 ~_|(PT./SEC.)
"0.8433E O4 VELOCITY,REGION 5 - . - . |[(FT./SFC.) !
_0,4600E 01i MACH NUMBER,REGION 5. . T %
0.8489E-01 JET WIDTH,REGION 5 . (INCHES)
_0.2492E 02; TOTAL PRESSURE,REGION 6 (PSIA)
0.9199E-02| TOTAL DENSITY,REGION 6 , (TBM./CU.FT.) |
_0.+5090E 03| TOTAL TFMPERATURF,REGION 6 (DEG. RAMKINME) |
0.4193EF OU4| TOTAL SPEED OF SOUND,REGION 6 (FT./SEC.)

0.2205E 02| PRESSURE,REGION 6 o (PSIA)
0.8429E-02 DENSITY,REGION 6 T(LBM,./CU.FT.Y

_0.4915E 03| TEMPERATURE,REGION 6" _(DEG. RAMKINE)
0.4121E O4| SPEED OF SOUND,REGION 6 (FT./8EC.)

. 0.1738L_04] VELOCITY,REGION 6 o (FT./SEC.)
0.4217E 00| MACH. NUMBER,REGION .6 T : S
0.8489E-01| JET WIDTH,REGIOM 6 + - _(INCHES) .
"0.2092% 02| TOTAL PRESSURE,RREGION 7 (PSTA)
0.9199E-02| TOTAL DENSITYIREGIOU 7 (LBM. /CU.FT.)
0.5090E 03| TOTAL TEMPERATURE,REGION 7 (DEG. RANKINE)
0.4193E 04| TOTAL .SPEED OF SOUND ,REGION 7  (FT./SEC.) ..
0.1900E 01| PRESSURE,REGIOM .7 . (PSTA)

~ 0.1463E-02| DENSITY,REGION 7 (LBM, /CU.FT.)
0.2440E 03| TEMPERATURE ,REGION 7 I ) : e 8 RAFKINGY | -

_0.2903E 04| SPEED OF SOUND,REGION 7 ____.(FT./SFEC. ) R
0.6766L 04| VELOCITY,REGION 7 T AFF.78ECYy
~0.2330E 01| MACH NUMBER,REGION 7 - _J
0.1033E 00| JET WIDTH,REGION 7 . B (INCHEG) ;
_0.2303E-02| MASS FLOW,REGION 4 !(LBM./SEC.) |
0.57581:~03} EFFECTIVE MASS FLOW REGION U4 5B, JSEE.Y T T

. .0.5758E-03' MASS FLOW,REGION 5 . (LBM, /SFC.) .
0.5758E-03 MASS FLOW,REGION 6 [(LBM./SFC.) ;

...0.,5758E-03 MASS FLOW,REGION 7° ___(LBM,/SEC.) .
0.5042FE 01 DYNAMIC PRESSURE RATIO '

AREA RATIO REGIOMN 5 TO REGION up

" 0.1802E 02
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APPENDIX C
MOLECULAR VISCOSITY FOR H2/N2/02 MIXTURES

In modeling of turbulent transport coefficient. distributions, it is necessary to know the
molecular viscosity at the wall. This parameter, iy, is used in ‘'von Driest’s damping function,
and is also the limiting value for the transport coefficient of momentum at the wall where € = 0,
ie.,

Heff = €+ Hmix (C.1n
where € is the turbulent eddj/ viscosity.

‘.For flow containing mixtures of gaseous hydrogen, oxygen, and nitrogen, the molecular
viscosity may be calculated as follows (ref. 33): '

N _
Fmix = ii | X; wy/f | (C.2)
N _
fi = 2 dyx (C.3)
; j= 1 . ) . .
where -1/2 " ‘ v 2
1 1 W M (Wj
v = —_—— + — s 1 + j— —_— C4
LI < W; ) <#> 'W-> 9
) i
W, = Molecular weight of species i
u; = Viscosity of species i
Xj = Mole fraction of species i
N = Total number of species considered

A computer program was written (fig. C.1) to solve equation (C.2) for Kpnix» and calculat-
tions were performed to check the subroutine and determine the dependence of Kmijx O mass or
. mole fraction of hydrogen. The program was debugged against hand-calculated and redundant check
cases. Figure C.2 shows the computed dependence of Kmix ©f a hydrogen/air mixture. The high
degree of nonlinearity between Hmix and XH, is consistent with comments in reference 33.
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1.0001
L.0002
L.0003
L.00O4
L.0005
L.0GO6
L.0007
L.0008
L.0009
1..0010
L.0011
L.0012
L.J0013
L.0014
L.0015

L.0016 .

L.0017
L.0018
L.0019
1,.0020
L.0021
L.0022
L.C023
L.oo24
L.0025
L.0026
L.0027
L.00Z8
L.0029
L.0036
L.0031
L.0032
L.0033

oo nn

[Ss]

SUBROUTINL XMUMIX(X,XMUBAR)
CALCULATE VISCOSITY IN H2/02/312 GAS MIXTURES
ENTER ROUTINE WITH MOLE FRACTIONS X(I)...I=1(H2),2
LEAVE VWITH VISCOSITY XMUBAR (LBM/FT-SEC)

SEE PG. 24 O BIRD,STEWART AHD LIGHTTOOT
FOR 1i2,02,i12 MIXTURES
DIMLNISION Vi (3),XMG(3),X(3), HI(10,10),7(10)
DATA i7/2.016,32.,28.01G/

DATA XIiU/.00835,.0189,.01657/

W Iil CLUTIPOISE
DATA IOMNCE/D/
IT(IOULCE)L,4,5
IOIICE=1
PHHI(1,2)=1.8564
PHI(1,3)=1.219
PLI(2,1)=.2G6472
PLiI(2,3)=.993847
FLUI(3,1)=.27403
ruI(3,2)=.999386

PLHI(1,1) = 1.
FHI(2,2) = 1.
PHI(3,3) = 1.

CONTINIGLE

,3
r(I) = X1
MHAUEAR = 0
Do 2 I=1,3

XIWWBARS

RETURH
LD

Figure C.1. Listing of Mixture Viscosity Computer Pfogram

Y*PHI(I,1)+4(2)*I'IT(

= IMUBAR+X (I) *:210(X) /7 (1)
X IUBAR = XIUBAR*6,72E-4

64
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APPENDIX C
MOLECULAR VISCOSITY FOR H2/N2/02 MIXTUR;S:/;J
In modeling*of turbulent transport coefficient . distributions, it is‘{ecessary to know the
molecular viscosity ati¢he wall. This parameter, p,i, 1s used in ‘'von Driest’s damping function,

and is also the limiting %alue for the transport coefficient of momentum at the wall where € = 0,
i.e., ‘

Mefr = €timix (C.1)

where € is the turbulent eddy viscosity.

For flow containing mixtures\of gaseous hydrogen, oxygen and nitrogen, the molecular
viscosity may be calculated as follows\(w ef. 33):

Fmix = c.2) -
fi = (C.3)
where
W, = - Molecular we}éht of species i
p; = Viscosity o?’épecies i
Xj =  Mole fractjon of species i
N = Total number of species considered

A computer program was written (fig. C.1) to solve equation (C.2) for Kpix» and calculat-
tions were performed to check the subroutine and determine the dependence, of Hmix ON mass or

mole fraction of hydrogen. The program was debugged against hand-calculated and redundant check

cases. Figure C.2 shpws the computed dependence of My ofa hydrogen/air mixture. The high
degree of nonlinearity between Mmix and XH, is consistent with comments in reférence 33.

/ N
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Figure C.2. Computed Molecular Viscosity of Hydrogen/Air Mixtures
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