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Abstract

The basic mechanism underlying the generation of Moire patterns in

line scanner data acquisition systems is examined. A general expression

is developed in terms of typical system parameters for the reproduced

image of such systems and the interaction of the image spectrum; the

raster frequency and digital sampling frequency of the A/D conversion

process are discussed and examples given. System design requirements

for avoiding Moire pattern generation and two-dimensional aliasing are

discussed.



-2-

PATTERNS AND TWO-DIMENSIONAL ALIASING IN

LINE SCANNER DATA ACQUISITION SYSTEMS

I. Introduction:

The flying spot scanner and optical line scanner are widely used

for converting visual or other two-dimensional radiant signals to

electrical form for further processing. When this processing is

accomplished by means of a digital computer, A/D conversion of the

scanner analog output signal is required. Thus in effect, the original

two-dimensional spatial signal is sampled along two approximately

orthogonal axes: by the scanner raster in a direction normal to the

scan lines, and by the A/D sampling in a direction parallel to the scan

lines. Figure 1 shows a typical system of this type used for remote

sensing of the earth's surface from an aircraft. The transverse motion

of the field of view of the sensor is produced by a rotating mirror,

while the forward motion is produced by the translation of the platform

carrying the sensor. A/D conversion may be accomplished at the time of

measurement or later at a data processing center from an analog

recording of the scanner signal.

The measured signal can be reconstructed as a sampled raster by
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Figure 1. Basic Line Scanner Configuration Used in Remote Sensing of
Earth's Surface.
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intensity modulating a scanning light beam and recording the signal on

photographic film or viewing it on a digital display. Figure 2 shows a

typical picture recorded and reproduced in this manner. The signal was

recorded by a line scanner operating in the infrared portion of the

spectrum (0.62 to 0.66 pm). The scanner used to make the picture was

carried in an aircraft flying at an altitude of 215 meters over typical

farmland in central Indiana. It is evident in this picture that there

has been distortion introduced in the form of Moire patterns through

much of the left center of the picture. Since the analog signal is low

pass filtered to half the sampling rate of the A/D conversion process,

the resulting Moire' patterns arise principally from the fact that

sampling and reconstruction were carried out on a signal having signif-

icant spatial frequency components in excess of half the scan line or

raster spatial sampling frequency. Thus, these Moire patterns, because

of the low pass filtering prior to the A/D conversion process, are

primarily a form of one-dimensional aliasing. Figure 3 shows the magni-

tude of the two-dimensional Fourier transform of Fig. 2. Aliasing along

the y-spatial frequency axis, corresponding to aliasing about Integer

multiples of the raster sampling frequency, is clearly evident. If the

low pass filtering is inadequate, then the resulting Moire patterns

arise from two-dimensional aliasing.

This type of distortion is particularly insidious because it cannot

be removed a posteriori without serious loss of information content of

the picture. Its presence indicates that serious undersampling of the

image has occurred and that it is impossible to accurately reproduce the

picture by interpolating between sample points to obtain a continuous

image. Limitations of this kind are particularly important in connection
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Figure 2. Line Scanner Picture of Earth's Surface (Run 66005202, Channel 1,
Columns 11-256, Lines 511-766).

Figure 3. Modulus of the Two-Dimensional Fourier Transform of Figure 2.
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with the problems of correcting geometrical distortion, registration of

data from images recorded at different times, and combining geometrical

and spectral characteristics of images to improve classification

accuracy. The mathematical model of the process whereby this type of

distortion is produced and certain of the methods for handling it are

discussed in the following sections.

II. One-Dimensional Aliasing

The one dimensional aliasing problem will be considered first as an

introduction to a more precise two-dimensional aliasing problem formula-

tion. The generation of Moire patterns by the analyzing of patterns

containing periodic intensity variations has been known for centuries

[12] and much analysis has been performed on this subject [U, 8, 10, 11].

This process can be modelled mathematically as the multiplication of

two or more two-dimensional intensity functions containing spatial

frequency components that are nearly equal to one another. In the case

of a line scanner (or a TV system) where no A/D processing is involved,

the resulting image is taken as the product of the intensity function of

the image and the scanner intensity function. For this case a Moire'

pattern will result whenever there are discrete spatial frequency compo-

nents in the image that approach the spatial frequency components of

the scanner function.

The basic mechanism whereby Moire' patterns are -generated is moat

easily seen by considering the two-dimensional frequency spectra of the

image and scanner functions. Let 0(x,y) be the intensity variation of

the image as a function of the spatial coordinates x and y, cp(x,y) be

the intensity variation of the scanner function, and y(x»y) be tne

resulting intensity function of the scanned image. These functions can
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be related by

y(x,y) - 0(x,y) (p(x,y) (l)

Taking the two-dimensional Fourier transform of Eq. 1 gives the fre-

quency spectrum of the scanned image as a two-dimensional convolution

of the transforms of 0(x,y) and cp(x,y); i.e.,

r(fx,fy) - *• (fx,fy) ** 0(fx,fy) , (2)

where f and f are the spatial frequency variables of the Fourier
x y

transform. In order to more clearly illustrate the mechanism by which

the new frequencies (Moire' patterns) are generated, it is convenient to

consider the image function to be infinite in extent and the scanned

image function to be the product of a raster function, cp'(x,y), that is

Infinite in extent and a window function, w(x,y), that is unity over the

viewing area of the scanner and zero elsewhere. With these stipulations

Eq. 1 can be rewritten as,

y(x,y) « 0(x,y) cp'(x.y) w(x,y)

- 3l{*» (fx,fy) ** 0'(fx,fy)} w(x,y). (3)

Thus the scanned image is just the inverse transform of the convolution

of the image with the infinite extent raster function multiplied by the

window function to limit the extent of the final image.

In order to illustrate in a simple manner the mathematical basis of

the mechanism whereby Moire'patterns are generated, assume for the

moment that the image intensity function and the line scanner function

both vary in amplitude in a sinusoidal manner. The frequencies and

spatial orientations for these two functions need not be the same. The

two-dimensional Fourier transform of this type of function consists of
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a pair of impulses corresponding to each sinusoidal component. Two

representative functions and their transforms are shown in Fig. k.

The product of the raster function and the image function has a

transform given by the double convolution of the individual transforms.

This is readily seen by inspection (since only impulses are involved) to

consist of four impulses as shown in Fig. 5. The two impulses near the

origin represent a low-frequency sinusoidal component. This component

arises from one-dimensional aliasing of the y-spatial frequency

components of the image intensity function about the y-frequency

components of the raster function, and correspond to what is normally

considered a Moire' pattern. This Moire7 pattern has a frequency of

1

fm " ( fi + fr2 ' 2fifr COS a ) * (U)

and an angle with respect to the y-axis of

- f. sin a
(5= sin'1 -i-j , (5)

m

and would appear as shown in Fig. 5- If the high frequency component,

f. in Fig. 5, is not filtered out in the reconstruction process, it will

also be visible as a sinusoidal intensity variation in a direction

parallel to a line connecting the two impulses at f, shown in Fig. 5.

Further study of Fig. 5 makes it clear that there is considerable

interdependence between the Moire pattern and both the frequency and

orientation of the generating signals. For example a change in orien-

tation of one of the generating patterns can lead to a change in both

the frequency and orientation of the Moire'pattern.

With this brief introduction a more precise formulation of the two-

dimensional aliasing problem will now be made.
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Figure 4. Sinusoidal Image and Raster Functions and Corresponding Two-
Diraensional Fourier Transforms for a=l° and f =0.9792 f .
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Figure 5. Moire Pattern and Corresponding Two-Dimensional Fourier Transform
Resulting from the Product of the Image and Raster Functions of
Figure 4.
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III. Scanner-Reproducer System

The block diagram of a typical line scanner and associated

reproducing system is shown in Fig. 6. The variables in the system

of Fig. 6 are defined as follows:

x-,y1 - coordinates of scanned image

9 (x.,y.) - intensity function of scanned image
S L JL

g (x.,y.) - aperture function of scanner

u. (t) - analog time varying output signal of scanner

h(t) - impulse response of signal conditioning and/or low pass
filter of A/D converter

u«(t) - analog output signal of signal conditioner

T. - period of sampling interval in A/D converter

x,y - coordinates of reproduced image

g (x,y) - aperture function of reproducer

d (x»y) - intensity function of reproduced image

The output signal from the scanner at any instant of time is the

integral of the product of the aperture function and the image intensity

function and is given by

N
2

00 00

"I*** " III 0s(xl'yl) s Jx j -v f r -nT) . y l-nfiy]dx ldy l (6)

N — ~n--

where

N + 1 » number of scan lines in scanned image

v •> velocity of scanner aperture in x. direction
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Ay » distance between centers of consecutive scan lines
measured in y- direction

T a time duration of one scan line.

The output of the signal conditioner, u (t), is the convolution of

u.(t) with h(t) and can be expressed as

u2(t) - Ul(t) * h(t)

N
2

»Jt

h (T ) dXĵ  dy dT . (7) *—

The output of the sampler of the A/D conversion process, u (t), can

be approximated by

A
2

u (t) - u (t) Y dft-off.) (8)
3 d U • i

A0-5
where

A+ 1 « number of samples of u_(t) taken during one scan line.

The reproduced image is given by a running average of the repro-

ducer aperture function and the reproducer input signal, u (t), as

M
2

J u3(t) gr[x-v(t-mT), y-mAy]dt (.9)

M-».-- . . _^ -----

where m+ 1 » number of scan lines in reproduced image. Substituting

Eq. 7 and 8 into 9, interchanging the order of integration and

summation and noting that for synchronous reproduction of the raster

All integrals are to be interpreted as having Infinite limits
unless otherwise specified.
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the indices m and n are identical gives

N A
2 2

r (x 'y)a I I JJJ9s (Vyl ) «.[«!- v C o f f j - T - iff). y^
N A

a-

j^- nT), y- nAy] h(r) dX]L dyx dT .

(10)

Considerable insight into the significance of the various factors

in Eq. 10 can be gained by transforming to the spatial frequency domain.

Taking the two-dimensional Fourier transform of Eq. 10 gives

N A
* 2

• (f ,f ) - G (f ,f ) ) )rx x' y' rN x' y' {_, L

n

e

N A

_j2TJ[f V(OT -nT) + f nAy]x l y

Ill VV^ g.[«l-^(<«1-T-rff). yi-

h(t) dx^yjdT . (11)

The triple integral of Eq. 11 can be recognized as a triple convolution.

Rewriting Eq. 11 using convolutional notation

N A

-j 27l[f v(ca. - nT) + f n
* l

-I -I
- nT), nAy] ** g8[-v(oT1 - nT),-nAy]}

* hCoTj- nT)] (12)

where "**" denotes a two-dimensional convolution. Equation 12 can be
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further simplified by writing the double summation as a double integral

over a sum of impulses as follows

**r(fx'V ' Gr(W II [K[vx'yJ ** 88t-
vx'-y]} * h(x)] '

N A
P ?
^ y -J 27f(vf x+ f y)
) } 8(x-o(T, + nT, y-nAy) e X y dx dy
l—t l—i JL

N An--- a--

and using the fundamental properties of convolution and multiplication

of the Fourier transform to give

where

Q(fx , f ) - JJ

N A
2 2

N „ Ag a--

sin7F(N + l) T*fx sin7l(A + l) ̂vf̂  sin7l(N + l) Ay f

(1M>)

s inTTTvf sin TIT vf
™ X .3*

In order to gain further insight into Eq. (lUa), consider the

limiting case in which N-»» and A-»e». For this case Eq. (lUb) becomes

v x* v' TV
N-. X y Tlv,
A-»oo i

Using Eq. 15, Eq. ll̂ a can be written as
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u £ _ n \
> *P __> 9 «• Au *

From Eq. 16 it is evident from the double summations that the

reproduced image contains a superposition of frequency translates, at

intervals off";: *nd T— along the f and f spatial frequency axes,

respectively, of the product of the transfer functions of the analog

signal conditioner and/or low pass filter of the A/D processor, the

scanned image, and the scanner aperture. Each of these translates is

weighted by the reproduction aperture transfer function. Figure 7 shows

how the magnitude of *H (f ,f ) in Eq. 16 might look. The degree to

which portions of the replicated spectra overlap Into the spectral

band - TT- < f < 7:7- , - ~- < f <0=r- is the degree to which2Ay - y - 2Ay 2T v - x -2T v

aliasing occurs and the degree to which Image distortion occurs. If

there are discrete components in the spectrum H(vf ) *& (f ,f )x s x y

G (-f ,-f ) near any harmonics, ~, of the raster frequency or, — t

of the A/D sampling process then these will appear in the reproduced

image as low frequency components and correspond to what are usually

called Moire' patterns. The absence of Moire' patterns in a reproduced

image does not necessarily imply that no distortion is present, but only

that it is not present as a spurious narrow-band isolated component.

Since it is impossible to remove aliasing from a sampled image, it

is important to consider how to avoid the occurrence of this undesirable

phenomenon. Such avoidance requires that the spectrum



-17-

Figure 7. Partial Two-Dimensional Replication of the Original Image Spectral
Components which Contribute to the Spectrum of the Reproduced Image.
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H(vfx)̂ s(fx,fy) Gs(-fx,-fy) have no f^ components abovê ,̂ and f
•t • -L

components above ;rr-. The factor •©* (f ,f ), the spectrum of thes x y

original image, is generally not under the control of the experimenter.

Therefore, control of the spectrum must be accomplished by means of the

temporal transfer function of the signal conditioner and/or low pass

filter of the A/D process, H(vf ), and the scanner aperture transfer
X

function, G (f ,f ). By causing the product of H(vf ) G (-f ,-f ) tos x y x s x y

act as a low pass filter having a cutoff frequency ofx=— in the f
1 v *

direction and ;—- in the f direction, all aliasing will be eliminated.

Achieving an approximation to the ideal low pass filter character-

istic in the f direction is somewhat more easily accomplished because

the spectral transmission in this direction is a function of the product

H(vf ) G (-f ,-f ), while in the f direction all the filtering must bex s x y y

provided by G (-f ,-f ). The primary constraints governing the choices x y

of the impulse response of the analog signal conditioner (the A/D low

pass filter), h(t), are that it be causal and decay rapidly with time

having no significant secondary lobes so as not to introduce any ghost

images in the x-direction. However, an additional constraint is imposed

upon the scanner aperture (or point spread function) for physical

realizability, namely that it must not be negative. To simplify the

discussion which follows, it will be assumed that G (f ,f ) is symmetrics x y

with respect to the f and f axes. Thus the problem of choosingx y

G (f ,f ) so that the necessary low pass filtering in the f directions x y y

is obtained will be considered first.

Although not optimal, an excellent choice for g (x,y) from the

standpoint of realizability and shape of its frequency spectrum,

G (f , f ), is a Hamming window function,s x y
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2

gs(x,y) - 0.5U + O.U6 cos f2(x2+y2)1 / 2 . for x2+y2 <; ^2-
8 Z I|

O

« 0 , otherwise

where z is the diameter of the circular aperture. This function,

g (°»y)f and its Fourier transform, G (o,f ) are shown in Fig. 8. The

first null of G (o,f ) is at f « — - and this can be used to specify the

width of the aperture ZQ. Thus placing the first null of G (o,f ) at

•rr- specifies that z » l*Ay, or that the scanner aperture be four times

the width of the spacing between the centers of adjacent scans of

the image. Having specified G (f ,f ), H(vf ) can be chosen so that
B X y X

the product G (-f ,-f ) H(vf ) approximates a low pass filter in the f
s x y x x

direction with a cutoff frequency of — — . Very often it is desirable to
£ lv

have equal spatial resolution along both axes, for such cases TV = Ay.

To illustrate the effectiveness of this filtering action in

eliminating Moire' patterns, an image was generated, assuming TV = Ay,

having two distinct sinusoidal frequency components. Figure 9a was

generated by a low frequency sinusoid

fT (x,y) = cos 0.03 Ay (x sin 1 + y cos 1 )LI

and Fig. 9b is the Moire pattern produced by a high frequency sinusoid

fH(x,y) = cos 0.986 Ay x .

Figure 9c is the sum of fT (x,y) and fu(x,y) after sampling and recon-
Lt ti ^ .

struct ion using an impulse approximation for the scanner aperture

g (x,y)- Figure 9d is the sum of f (x,y) and f (x,y) after samplings Li n

and reconstruction using the Hamming function of Eq. 17 for g (x,y).

It is clear that the low frequency Moire' distortion sinusoid (i.e., the

vertical band of Fig. 9°) is almost completely removed in Fig. 9d.
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Qs(o.y) Gs(o.fy)
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Figure 8. Hamming Window Function and Corresponding Fourier Transform.
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Figure 9a. Low Frequency Sinusoid. Figure 9b. Moire Pattern Produced
by a High Frequency Sinusoid and
the Scanner Raster.

Figure 9c. Sum of the Low Frequency
Sinusoid of Figure 9a and the Moire"
pattern of Figure 9b.

Figure 9d. Output of a Hamming Spatial
Filter with the Components of Figure 9c
as Input.

Figure 9. Example of Moire Pattern Removal by a Hamming Spatial Filter.
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IV. Conclusions

Moire7 patterns appearing in the output of line scanner and

digitally sampled data acquisition systems are a form of two-dimensional

aliasing resulting from sampling at frequencies less than twice the

highest spatial frequency components present in the original data. The

existence of such patterns indicates that aliasing has occurred but

their absence does not indicate an absence of aliasing, only that there

are no discrete spatial frequency components in the data near a harmonic

of the raster or sampling frequency. It is not possible to remove the

distortion due to aliasing although specific components such as

individual Moire' patterns can be removed by narrow band spatial fre-

quency filters. The only adequate way to handle the distortion due to

two-dimensional aliasing is to avoid it by proper design of the scanner

aperture and by low pass filtering of the data before A/D conversion

is carried out.
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