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A/D
ACN
ACS
AFO
AGC
AGO
ALU
AM
AOS
APP
ASCS
ASR
ASTAM
ATM
ATS
AVE
BDA
BECO
BER
BITE
BOL
BOM
BUR
C& DH

LIST OF ACRONYMS

analog to digital

Ascension Island (tracking station)
attitude control system
Announcement for Flight Opportunity
automatic gain control

Santiago, Chili (tracking station)
arithmetic logic unit

airlock module

acquisition of signal

antenna position programmer
attitude sensing and control system
automatic send/receive

automated system test and monitor
Apollo Telescope Mount

Applications Technology Satellite
Mojave, California (tracking station)
Bermuda (tracking station)
Teledyne-Brown Engineering Company
bit error rate

built-in test equipment
beginning of life

basic operating module

Johannesburg, South Africa (tracking station)

communications and data handling
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LIST OF ACRONYMS (Continued)

C& DHS communications and data handling system
C&W . caution and warning

CAM computer address matrix

CCD charge couple device

CCS contamination control system

CDR critical design review

CcG, C.G. center of gravity

CMG control moment gyro

CMOS complementary metal oxide semiconductor
CPU central processor unit

CRO Carnarvon (tracking station)

CSS coarse sun sensor

CTU command and telemetry unit

CYI Canary Islands (tracking station)

D/A digital to analog

DAU data acquisition unit

DDT& E design, development, test, and engineering
DEA drive electronics assembly

DG double gimbal

DGCMG double gimbal CMG

DOD depth of discharge

DPA digital processor assembly

DSIF Deep Space Instrumentation Facility

DTPL domain tip propogation logic
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LIST OF ACRONYMS (Continued)

DTU data transmission unit

ECA electrical control assembly

EC/LSS environmental control/life support system
EDS electrical distribution subsystem
EDU electrical distribution unit

EIRP effective isotropic radiated power
EM, em electromagnet; engineering model
EMC electromagnetic control

EMI electromagnetic interference

EOL end of life

EOM end of mission

EPS electrical power subsystem

ERTS Earth Resources Technology Satellite
ESE electrical support equipment

ETC Engineering Training Center, Greenbelt, Maryland
EVA extravehicular activity

EVLSS extravehicular life support system
FGS fine guidance system

FHST ~fixed-head star tracker

FM frequency modulated

FMEA failure mode effects analysis

FOV field of view

FRUSA flexible, rollup solar array

FST fixed star tracker



GAC
GDN
GDSX
GESE

GMT
GRARR
GSE
GSFC
GST
GWM
HAW
HEAO
HEPA
HPI
HSK
I/0
I.D.
IESE
I0CC
IoP
ISA
IVA
LCP
LOHARR
LOS

LIST OF ACRONYMS (Continued)

Grumman Aerospace Corporation
ground data network

Goldstone (tracking station)

ground electrical support equipment
gyro hang-up

Greenwich mean time

Goddard range and range rate

ground support equipment

Goddard Space Flight Center
gimbaled star tracker

Guam (tracking station)

Hawaii (tracking station)

High Energy Astronomy Observatory
high efficiency particulate air

high performance insulation
Honeysuckle Creek, Australia (tracking station)
input/output

inside diameter

in-space electrical support equipment
integrated operations control console
in the orbit plane

interstage adapter; interface systems adapter
intravehicular activity

left circular polarized

Lockheed heat rate program

line of sight
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MMS
MNOS
MOJAVE
MOS/LSI
MSFC
MSFN
MSS

MT
MTBF
MTE
MTF
MTS
MTU
NASCOM

NASO
NDRO
NEA

LIST OF ACRONYMS (Continued)

large scale integration

Large Space Telescope

maximum allowable concentration
Madrid, Spain (tracking station)
Mating/Checkout Facility

minimum impulse bit

Merritt Island, Florida (tracking station)
micrometeoroid shell

metal nitride oxide silicon

tracking station at Barstow

metal oxide semiconductor/large-scale integrated

Marshall Space Flight Center

Manned Space Flight Network
magnetometer sensing system

magnetic torquer

mean time between failures

magnetic torquer electronics

modulation transfer function

magnetic torquing system’

magnetic tape unit

National Aeronautics and Space Administration
Communications Network

National Astronomical Space Observatory
nondestructive readout

noise equivalent angle
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LIST OF ACRONYMS (Continued)

NFL St. John's, Newfoundland (tracking station)
OAAR other activities as required

OAO Orbiting Astronomical Observatory

OAS Orbit Adjust Stage

OMS orbit maneuvering system

00C observatory operation center

ORRX Orroral Valley (tracking station)

OSR optical solar reflector

OTA optical telescope assembly

OWS Orbital Workshop

PCM phase change material; pulse code modulator
PCS peripheral communication system

PCU power converter unit

PDR preliminary design review

PEP perpendicular to the ecliptic plane

PGA pressure garment assembly

PM pulse modulated

POP perpendicular to the orbit plane

PRR preliminary requirements review

PSD power spectral density

PSK phase shift keyed

PSU power switch unit

QUI Quito, Equador (tracking station)

R&D research and development

RAM research applications module (studies); reference

alignment mode
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RBV
RCD
RCP
RCS
REC
RF

RFI
RGA
ROM
ROS, ROSMAN
RSDP
RTV
RW
SAA
SBU
SCAMA

SEC
SFP

SG
SGCMG
SI

SIP

SIT
SMS
SPD

LIST OF ACRONYMS (Continued)

return beam vidicon

remote command decoder
right circular polarized
reaction control system‘
recurring cusis

radio frequency

radio frequency interference
reference gyro assembly
read-only-memory

tracking station at Rosman, North Carolina
remote site data processer
room temperature vulcanizing
reaction wheel

South Atlantic anomaly

sensor buffer unit

switching, conferencing, and monitoring arrangc-
ment

secondary electron conduction
solicitation for proposal
single gimbal

single gimbal CMG

science instrument

scientific instrument package
silicon intensified target
secondary mirror sensor

solar power distributor
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SPEH
SPF
SPG
SSM
SSP
STADAN
STDN
2-SPEED
TA
TACS
TAN
TBC
TCS
TDRS
TEX
TMR
TOOMBA
TRW
TTY
TWT
ULA
UPD
USB
USBE
VAB
VGP

LIST OF ACRONYMS (Continued)

special purpose equipment handler
single-point failure

single-point ground

support systems module

Space Station prototype

Space Tracking and Data Acquisition Network
Spaceflight Tracking and Data Network

two scissored pair ensemble explicit distribution
transfer assembly

thrust attitude control system

Tananarive, Malagasy Republic (tracking station)
The Boeing Company

thermal control system

tracking and data relay satellite (network)
Corpus Christi, Texas (tracking station)
triple modular redundancy

tracking station at Cooby Creek

TRW Systems, Incorporated

teletypewriter

traveling wave tube

Fairbanks, Alaska (tracking station)

update buffer

unified S-band

unified S-band equipment

Vertical Assembly Building

vehicle ground point




L1ST OF ACRONYMS (Concluded)

variable permanent magnet

Wolf-Rayet

wide angle sun sensor

wavefront error

Winkfield, United Kingdon (tracking station)

transponder
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FOREWORD

The final report of the study to generatc for the Large Space Telescope (LST) a conceptual design that is
compatible with a Shuttle (Titan backup) launch vehicle in late 1980 is contained in three volumes:

I: Project Planning Data
II: Cost Estimates
*[1I: Design Analysis and Trade Studies

Preliminary design analysis has demonstrated the feasibility of the selected concept and a supporting research
and technology program (SR&T) has heen identified to ensure that the schedule and cost objectives of the program
will be satisfied. The configuration that has been developed is compatible with the scientific instrument
configuration [developed by Kollsman Instrument Corporation under contract number NASS5-23068 to the Goddard
Space Flight Center (GSFC)]. In addition, the study has interfaced with the on-going system support module (SSM)
studies at the Marshall Space Flight Center (MSFC) to assist in the evolution of an overall LST payload
configuration.

This volume, prepared in accordance with the requirements of contract number NAS8-27948 for the Marshall
Space Flight Center, presents the preliminary design of the reference optical telescope assembly (OTA)
configuration. The tradeoff studies and supporting design analyses for the various telescope system concepts that
were studied are also included in this volume.

Comments or requests for additional information should be directed to either Garvin Emanuel/PD-MP-A, LST
Phase A Definition Study, Contracting Officer’s Representative, George C. Marshall Space Flight Center, Alabama
35812, or to Edmund J. Galat, LST Phase A Definition Study, Itek Corporation, 10 Maguire Road, Lexington,
Massachusetts 02173.

*This volume.
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A. INTRODUCTION

REFERENCE OPTICAL TELESCOPE ASSEMBLY

The purpose of the phase A Definition Study conducted by Itek was to design conceptually an LST optical
telescope assembly (OTA) that would be compatible with the Titan IIIE and Shuttle launch modes. The OTA
reference design was established by tradeoffs and analysis of feasible candidate configurations. A supporting research
and technology program was defined to accomplish the orderly execution of a telescope hardware definition
program. Cost and schedule data were also developed, and the overall program content was defined in broad terms.

The phase A study program evolved in two distinct phases. Initially, a pre-phase A study was directed at
evolving a baseline configuration compatible with a set of preliminary requirements defined for the program. As a
result of extensive configuration optimization studies, during which the performance and physical characteristics of
various payload configurations were investigated, the configuration that evolved was a Ritchey-Chretien Cassegrain
optical system with a primary mirror focal ratio of £/2.2 and a system focal ratio of f/12. The 3-meter aperture of
this telescope was compatible with the launch capabilities of both the Titan IIl and the Space Shuttle. It was
estimated that this telescope could be launched in 1978, with the phase C/D program starting in 1973. In the second
phase of the phase A study program, the design studies of the reference configuration were continued, with specific
emphasis on the focal plane design, the metering and instrument structure material selection, and the optimization
of the fine pointing system error sensing and error correction subsystems.

The telescope focal plane configuration presented in this report is compatible with the instrument
configuration developed by Kollsman Instrument Corporation under contract to GSFC. The system support module
(SSM) studies at MSFC provided spacecraft SSM interface data to the OTA design studies. At the completion of the
design effort, the programmatics were updated for the phase C/D program for concurrence with the latest MSFC
program schedules.

ASTRONOMY COMMITTEE REVIEW

As the study progressed, the results were presented to the Astronomy Steering Committee, chaired by Dr.
Nancy Roman. The selection of primary mirror focal ratio and the system focal ratio was tentatively accepted
contingent upon further review in phase B. The present approach to fine guidance, which encompasses artificial stars
to maintain alignment and uncorrected astigmatic images in the error detectors, was suggested by Dr. Lyman Spitzer
and Dr. Robert Danielson, of Princeton. The Astronomy Committee also recommended that a provision be made for
observing the position of the spectrograph slits with respect to the target object and that a capability be included for
the introduction of offset motions between the target object and the offset guide stars so that the target object can
be optimally placed with respect to the entrance slits of the spectrographs.

OTA PERFORMANCE REQUIREMENTS

Optical performance must be significantly superior to that obtained from earth-based telescopes. In space, this
is obtainable because of the absence of an atmosphere and gravity effects. the NASA Blue Book has translated these
requirements into a specification that is achievable with the application of the best existing technology. Therefore,
diffraction-limited resolution (0.25 microradian at 300 nanometers) with image motion less than 0.025 microradian
rms over a spectrum ranging from 110 nanometers to more than 2,000 nanometers will be provided.

OTA ENVIRONMENTAL REQUIREMENTS

Structural load requirements for this study were supplied by MSFC and are consistent with the worst-case
combination of Titan IIIE and Space Shuttle boost and return environments. To ensure optical quality on orbit, it is
necessary that the telescope be manufactured at a temperature convenient for handling and testing and that this
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temperature be later maintained during the orbital phase of the operation. This requirement is conditioned by the
dispersion of thermal expansion coefficient in critical telescope optical and structural components. A second
environmental requirement peculiar to optical systems is that scrupulous cleanliness must be maintained during all
handling and mission operations. This has been tentatively set as maintaining class 10,000 clean room conditions
during system construction and integration. The system is designed to be man-maintained in a shirtsleeve
environment inside the spacecraft.

OPTICAL TELESCOPE INTERFACE REQUIREMENTS

The Titan IIIE/OAS launch vehicle envelope determines the maximum outer dimensions of the OTA as well as
its weight. This envelope is the principal determinant of the primary optical parameters of the OTA — aperture,
primary f/number, system f/number, and weight — which are discussed later. In addition, g-loadings and acoustic
environments characteristic of this vehicle determine the working stress levels in the OTA, where more stringent
requirements are not imposed for optical reasons.

The requirements of the Space Shuttle are not so confining as the Titan IIIE/OAS with respect to weight and
space. However, structural loads are higher and were used in sizing system elements where relevant.

The SSM is the principal interface of the OTA, i.e., power, structural support (excepting Shuttle cradle),
command multiplexers, and the operational interfaces. The OTA now influences the thermal and structural design
approach behind the préssure bulkhead ring to prevent loads from being transmitted into the surface figure of the
primary mirror. The OTA also provides part of the pressure structure that will maintain the integrity of the SSM for
manned operations.

The OTA provides structural support for the scientific instruments. The optical interface is at the f/12 focal
plane, which is controlled so that the telescope image is stationary with respect to a reticle fiducial in that plane
regardless of thermal drift of the system structure. Instruments that are sensitive to this drift because of large
dimensions or high resolution must contain the means to sense the fiducial position and correct the effects of this
drift internally to the instrument. The ability to mount one end of the instrument directly to the reticle plate focal
plane structure will be allowed for in the OTA design. The OTA provides structural mounting interfaces for each
scientific instrument.

KEY SYSTEM TRADEOFFS

The key tradeoff performed in the phase A study was the determination of the primary mirror focal ratio. A
variational analysis showed that a balance could be achieved between the effects of central obstruction reduction on
one hand and of alignment sensitivity, vibration sensitivity, and difficulty of manufacture on the other hand. It was
possible to show a weak optimum near {/2.2. However, it must remain clear that the variation in performance was
very small, of the order of a few percent in terms of Strehl ratio. The strongest driving factor was the length of the
system and the boost capability of the Titan IIIE/OAS, which leads to the choice of the shortest, lightest system;
i.e., it was reasonable to pick a system near the optimum in spite of its weak relationship to performance.

Considerations of system length also apply to the choice of system f/number. If the f/number gets large, the
tracking field gets large and it becomes difficult to ensure the geometric integrity of the focal plane area. A clear cut
advantage would accrue if the system f/number were to be of the order of f/30 to f/100, since it would be possible
to place directly in the telescope focal plane image sensors whose modulation transfer function (MTF) would not
degrade the system angular resolution and would maximize system transmission and minimize geometric thermal
disturbances. Unfortunately, such large f/numbers imply an excessively large guide field (and central obstruction and
reduction of MTF) as well as demand extreme compromises in spacecraft design arrangement, since the focal plane
would have to be placed at the rear end of the spacecraft. Therefore, if these slow f/numbers are not possible, an
intermediate optical system is required to match the telescope MTF to the sensor. Consequently, there is no
advantage to using a slow f/number of the order of f/24, for instance, if the instrument complements and guidance
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can be accommodated by a faster system without vignetting. Therefore, /12, which was chosen in the GSFC
instrument studies, was adopted for the reference configuration.

Structural systems considered [or the LST include athermalized trusses of aluminum and titanium, titanium
and Invar, graphite-epoxy composites and Invar, and composite semimonocoque shells. To damp the response of the
structure to orbital isolation so that thermal drifts do not affect image blur, it is necessary to wrap the metering
structural systems with thermal insulating blankets. The meteor protection, the baffles, and the sunshield are
noncritical and can be made of aluminum semimonocoque. The graphite-epoxy composite metering truss that was
selected was least sensitive to thermal loads and was the lightest. This material was also selected for the instrument
support structure:

The finc guidance approach selected from the initial trade studies depended on static structural stability for
the control of image blur at f/96 with respect to the telescope f/12 focal plane. The Astronomy Committee objected
to this approach, since it depended on very tight thermal tolerances provable only by analysis; they recommended an
active closed loop approach. Based on Dr. Lyman Spitzer’s suggestion, a guidance arrangement was devised where
fiducial marks are actively tracked by sensors in the /96 focal plane. The drift corrections in the f/12 focal plane

can then be applied to the magnetic lens of the image intensifier section of the sensor or as an offset to the optical
micrometer device in the guide heads.

Two materials are suitable for the OTA primary and secondary mirrors Cer-Vit (Owens-Iilinois) and ultra low
expansion (ULE) glass (Corning). The technical differences between these two materials are not sufficient to justify
selection of one over the other, at least until a very rigorous set of measurements is made on the dispersion of
expansion coefficients of the two materials. Presently, there is a 2:1 cost difference for the primary mirror blanks,
and on this basis Cer-Vit is the material recommended.

The various instrument support approaches investigated on this program and previous programs contain radial
and axial instrument orientations. It is necessary to make the instrument support structure of a material having as
low an expansion coefficient as is available to maintain thermally induced image blur to a tolerable level.
Furthermore, it has been shown that, to minimize instrument sensitivity to thermal growth, the f/12 focal plane
components should be configured so that they move as a rigid body with respect to each other and to the fine
guidance error sensor. These two approaches have lowered the thermal sensitivity of the instrument support
structure by about an order of magnitude, simplifying the detailed structural design requirements. Image tubes
located in the instrument bay are cooled by direct radiation to the SSM walls. Peltier devices are used for those
sensors requiring low temperature operation. The definition of the image tube complement and the image tube
thermal analysis was done by Itek under subcontract to Kollsman Instrument Corporation.

REFERENCE OTA DESIGN CONCEPT

The reference concept that resulted from this study is a Ritchey-Chretien telescope, 3 meters in aperture,
which is depicted in Fig. A.1-1. The primary mirror is a Cer-Vit monolith and is supported at three points with Invar
leaf springs attached to a titanium supporting bulkhead. A metering truss, manufactured from graphite-epoxy,
supports the four-point secondary mirror spider and support ring to which is attached the secondary mirror, its
alignment system, and the fine guidance actuation and drive.

The telescope assembly is enclosed in an aluminum semimonocoque meteoroid shell to which is attached the
extendible truncated light baffle, designed in a related contract by The University of Arizona. The inner light baffles
are attached to the meteoroid shell by standoffs, and the metering truss is fully insulated from these inner and outer
shell assemblies. Aperture doors at the forward end of the telescope are provided to prevent inadvertent illumination
of the primary optics by the sun, as well as to seal off the telescope aperture during maintenance visits by the
Shuttle. A pressure bulkhead door is provided directly behind the primary mirror to seal the pressure compartment
during shuttle revisits. The telescope system is maintained in alignment by means of tip, tilt, and decenter sensors
mounted in the primary mirror that sense the alignment of the primary and secondary mirrors and activate position
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control mechanisms located in the secondary mirror assembly; these correct for misalignments due to gravity release
and the orbital and thermal environment. The focus sensor is mounted to the fine guidance assembly and corrects
focus by axial displacements of the secondary mirror.

The telescope wavefront error can be periodically measured by observing reference stars brighter than 6th
magnitude with a shearing interferometer whose output is relayed to the ground for analysis. Subsequent figure
control commands developed from these interferograms are transmitted to the satellite and converted into actuation
forces to restore the surface of the primary mirror to the desired figure.

The thermal control concept developed for the LST includes active thermal control for the optical elements
and passive thermal control for the supporting structure. The primary mirror and the secondary mirror are actively
controlled at 21 £ 3°C by means of multizoned heaters. Furthermore, these items are thermally isolated from their
surroundings by multilayered insulating blankets to reduce thermal power consumption. Passive thermal control of
the metering structure and the instrument structure is accomplished with multilayered insulating blankets that
insulate the trusses from the structural shell and/or heat-generating components.

The fine guidance system includes a reticle plate error detecting system that develops fine guidance error
signals for the suppression of high frequency errors by the introduction of compensatory motions with the
secondary mirror. Misalignment signals from the secondary mirror then provide error signals to the vehicle for coarse
pointing of the telescope line of sight. Acquisition, which is initiated from star trackers attached to the instrument
truss, provides initial pointing to approximately 30 arc-seconds. At this point, two of the three guide star trackers
available, located in the reticle tracker assembly, acquire the guide stars and initiate development of intermediate
and fine error control signals.

The telescope electrical system internally effects fine guidance operations, thermal controls, and telescope
realignments and calibration. Activation commands and power are supplied from the SSM to the OTA.

The telescope concept described above is based on applying currently available technology to the required
design, development, and fabrication program. Scientific research and technology requireme‘nts have been identified
so that no schedule slips and their attendant cost overruns need occur as a result of the application of this
technology to the LST. A study program is now under way to verify that the current optical surface technology is
compatible with the LST goals. This program is scheduled for completion in June 1973 and should provide the
confidence necessary for full acceptance of the /2.2 aspheric primary mirror selected as the reference configuration
for the OTA.

COST SENSITIVITY

The present study has produced a reference design and initial cost figures. In forthcoming work, it will be
necessary to perform an analysis of cost sensitivity to performance for the largest cost centers and to identify cost
thresholds as a function of design configuration so that management decisions can proceed on a completely objective
basis. Of particular importance is the balance between image blur and optical wavefront error. The present system is
specified at a point that is a compromise arrived at in previous studies. In future studies, the present error allocations
should be frequently reviewed for a cost-effective balance of all error sources.

Typically, if it can be shown that the entire pointing function can be fulfilled by means of telescope star
sensors commanding SSM attitude actuators, significant savings are likely in the resultant simplification of the OTA
secondary mirror design. However, backup design work on the secondary drive should continue until a high
confidence level can be achieved by the SSM attitude control system performance.

At the completion of the present design cycle, it has become evident that a somewhat slower primary mirror

could be fitted within the SSM and the Titan IIIE/OAS. The advantages to accrue from such a reduction should be
explored in cost and performance terms. The impact of Shuttle-only operation should also be analyzed.

A.1-4




S-1°V

(1 199ys ‘Q1cegT *ou ‘Smp) uoneansuod JIS/LST — 1-1°V 910

R : . ) -
IROW 39X 313 WXV INOd © [SLINYIE TrwyIHL ONY SYILYIH _
— INOZILINA HIM GITTOHINGD ATTYWEIHL] 1 o
F TR AT LS T — ST RIS e Oniy mw_zs_% s 22/ 3 INIav 4110 ¢ SoBR AeviTEa [ETS Qomoﬂu_zN SIIUNVTE NOIY SN EREFT=RNETY] ISMIONGIS Senu
[SCERERS! SIe— ! / -ty .
e D 0 Mt Sz WPt Wi
1 \ _ [  — 7 7 < Ty X |V N N N S
i ) || ——n: T - ety —r —
v S S ~ B i . > e T
, Ny . I T K,\:ﬂ:m RN e prim - n
T RS - < SIS ERTEES] I ﬁ ] - == i T~ < > -~
_ YT © ——
| 0535 SohTa G b i,
BOSh3 v H37ovEl BYIS i ' S~ T )
\ | T - EELEH
! | - GRE/YERERCTINEIFE! i - - @
. AN ! AL 4333 _ §8000 FunLuaaY
_ | I HOIOINNOD . - I
- el _ _ |
v W L~ [i1 -
i D g Iy
3ENLINF LS 190 ~ \ T~ u | A - ! . e
) : | | s i
e = - ; 3733v8 [HSTT §INNI— b g1 :
. ﬁ g ----- S [ ) | ___ A ST i W
n PENTS CEEY ~. . 4 ~ — '
HAvEO0 10345 103080 LNVl 7 R ! i Lle . (o) RIS . m
=gy . HOSKTS i | A ;
. e I e : ] SO0 35 ] -
Pl v N N i TOSRE ,T\\ 0 ! /
THOIVWITION « B D e | e s et - 34N913 I JA
// - - ; L — N ] HONAIN AVAN0D 38
—IT ettt s dt s —— -3 ~ T~ Ly I y
*SUVLIA aNY 15719 - ——] G g Y . .
SMIUA HIHI0 TT¥ HO3 § L33HS 335 : - Ll \N - ) -— hle W 1 AN tvia 'S
“BIE) ONYNFNF SM3IA 803 2 133M5 335 v , - - .. vig we'e
CALIEYID HO4 3NV Id MIAA OL \ \ —
031v108 SINIWMILSNI DI41LNFIDS 1TV © - — o \ :
"SHONI 3V SISIHINIEVY NI SNOISNIWIG 2 ~—_ e — e \4 —~——SL[DNT B NCLVIIE
:
NOILZ3S 31508400
v 5S¢ NMOHS M31A NOLWENDIANGD 1 - }
S3ION \\\\\
SIINSVI NOIvHLITSI0
/ ’ ) B e ! 08 SONORIDTT
SGOSNTS IR IANOTTY P NN
YO LVNI 1100 \ TNV g W03~ \ NG
., i STNE TaNERTE AN
pe %m‘u\ , o TG ARG N
% IR EIE— T \\\ NN
V//
@ / - N\
HIVEIOBIDISS I TI1IADI —<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>