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ABSTRACT

The Ni-Ni_Ta eutectic and a nickel-base alloy containing 30 wt pet

Ta were solidified unidirectionally in an electron beam floating zone

melting apparatus. It was found that the volume fraction of the Ni»Ta

phase in the Ni-Ni,Ta eutectic mixture was increased from 7.6 to 36

volume pet in agreement with the theory as predicted.

Tensile properties of the randomly solidified and unidirectionally

solidified Ni-Ni_Ta eutectic were determined as function of solidifi-

cation rate and temperature. It was found that the ultimate tensile

strength decreased as both the test temperature and solidification

rate increased. An elongation of 40 pet Was obtained for a nickel-

base alloy containing 30 wt pet Ta at room temperature. This unusually

large elongation was attributed to the superplastic behavior of the

alloy.

The critical currents versus the external fields at 2.5, 3.0, 3.5 and

4.2° for the unidirectionally solidified Pb-Sn eutectic have been

measured. The values of critical fields (H ) at zero critical

currents were obtained by extrapolation. From these data, a plot of

critical field (H ) against temperature (T) was obtained. The H

T 2
versus T curve fits into a parabolic equation, H = H [1 - (—) ],

c
obtained from an IBM 360 least square program. The critical temperature,

TC, was .found to be 6.83°K.

The transition temperature T of the same Pb-Sn eutectic has been

determined experimentally by cooling and warming the sample. The

temperature was monitored with an Allen Bradley 39 ohm carbon thermo-

meter which was calibrated against a T58 He Temperature Scale. The

transition temperature was found to be 7.37 + 0.20°K.
ii
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1. INTRODUCTION

A two phase composite material is attractive for structural application,

because it consists of a strong brittle phase imbedded in a ductile

matrix. The idea is to put dissimilar materials together to achieve

a new material whose properties are different from any of its consti-

tuents. A composite with a phase aligned in the form of thin long

fibers is known as a fiber composite. In a fiber composite, the fibers

could be continuous or discontinuous along the load axis. In recent

years, it has been shown^ ' that fibers shorter than the gauge length

of a specimen can reinforce a matrix in a manner similar to that of
/2\

continuous fibers. Jech, Weber and Schwopev ' have shown that the

properties of fiber-reinforced composites are essentially the same for

continuous and discontinuous fibers. Formerly, it was thought that

the fibers have to span the whole length of the specimen for reinforcing

the matrix.

Composites have the following excellent properties which make them very

attractive for engineering applications, namely:

i) High strength-to-weight ratio.
i

ii) High stiffness-to-weight ratio.

iii) High strength at elevated temperatures.

1.1 Limitations of Fiber Composites

Preparation of whisker or fiber-reinforced, metallic matrix composites

has shown two major problems:

i) Spacing the fiber uniformly over the matrix and aligning them
/-i\

unidirectionally involve a tedious handling task.



ii) Due to weak interfacial bond strength between the fiber and the

metal matrix, composites exhibit considerably lower strengths than

(4)those predicted by the law of mixtures.

1.2 Controlled Solidification of Eutectic Mixtures

Composites can be manufactured by physically mixing fibers or whiskers

in a suitable matrix. Drawbacks of this process have been listed above.

However, these difficulties can be eliminated by growing fibers directly

in a metal matrix by controlled solidification. *

Controlled solidification of eutectic mixture produces a well defined

two phase microstructure. Regulated direction of heat flow during solidi-

fication of eutectic alloys results in the growth of a second phase

in a regular form such as rods or platelets aligned in a matrix of the

(7 8)
other phase. ' This is accomplished by unidirectionally solidifying

eutectic alloys. A planar liquid-solid interface is maintained and a

thermal gradient is established in the liquid ahead of the advancing

interface during solidification. The phases then grow perpendicular

to the planar interface so that they are aligned throughout the rod.

(9)Lemkey and Kraft have shown that fibrous phase grown in a unidirec-

tionally solidified eutectic is a true whisker and exhibits high

strength.

1.2-1 Advantages of Unidirectionally Solidified Composites

i) They have high interfacial bond strength between the metal matrix

and the fiber phase.(10>11)

ii) They are stable at elevated temperatures. '

(14)iii) Fibers are uniformly distributed in the metal matrix.

iv) Handling problem of fibers is eliminated, thus avoiding damage

to them.



v) No separate process is needed to manufacture fibers.

vi) Finally, the process is continuous and thus economical.

1.2-2 Limitations of Unidirectionally Solidified Composites

i) Volume fraction of the fiber phase cannot be increased because

it is fixed by the phase diagram.

ii) Only samples of simple geometrical shapes can be made by this

technique.

1.3 Mechanism of Fiber Reinforcement

The ultimate tensile strength of a composite is dependent on the

following factors:

i) Stress-strain relations of the individual components.

ii) Volume fraction of the fiber phase,

iii) Length to diameter ratio of the fiber phase.

iv) Working temperature.

In case of continuous fibers, the tensile strength a of a composite is

given by

0 - °f V + CP (1 - Vf) (1.1)c t t m t

where

Vf = volume fraction of fibers

q_ = tensile strength of fibers

a' = tensile stress of the matrix at fibers failure,m

Similarly, the Modulus E of the composite is given by

E - E, Vc + .frl q. (1 - V,) (1.2)
c f f ld £J£ f

where

E- = modulus of the fibers

rdCTIT̂ ] = the slope of the stress-strain curve of the matrix material at
£

the appropriate strain.



At low volume fractions, the composite strength is not given by

equation (1.1) because fracture of the fibers does not lead to

immediate failure if the matrix can work harden sufficiently. There-

fore, equation (1.1) is obeyed only if the composite strength <J

given by equation (1.1) is higher than the ultimate tensile strength

of the matrix, i.e.,

c aii ̂  ~ f''

where

7 a ultimate strength of the matrix.

Combining equations (1.1) and (1.3), yields the minimum volume fraction

V . for which equation (1.1) is applicable.

1
Vmin crf

1 +
a - a'u m

For significant increases in composite strength, the volume fraction

of the fiber must be higher than V . .0 min

1.4 The Purpose of this Report are_;

i) To propose a theoretical model which would predict how volume

fraction of the strong fiber phase can be increased by eutectic

solidification in the presence of temperature and concentration gradients.

ii) To evaluate the compressive, tensile and high temperature creep

properties at room temperature and elevated temperatures,

iii) To measure the superconducting property of the Pb-Sn eutectic.

As shown earlier, the strength of a composite is determined by the

stress-strain relationship of its individual constituents. Variation

in temperature affects the properties of the composite elements and



therefore the composite strength. Since the behavior of the fiber

composites is inherently anisotropic, one should take into account

the orientation of the fibers in relation to the direction of

loading.

One of the purposes of this investigation was to study the composite

tensile behavior in longitudinal direction, parallel to the fiber

axis, as a function of test temperature. The material chosen for this

purpose was the unidirectionally solidified Ni-Ni,Ta eutectic.

The range of temperature from room temperature to 800°C was selected

for study.



2. EXPERIMENTAL PROCEDURE

2.1 Alloy Preparation

Experiments to study the effects mentioned in Section 1 were performed

on the unidirectionally solidified Ni-Ni-Ta eutectic of the Ni-Ta

system. Composition of the alloy is depicted in Fig. 1.

Nickel and tantalum of 99.99 pet purity were obtained from Research

Organic Inorganic Company. Tantalum was obtained in the form of

sheared strips and nickel was in 0.040 in. diameter wire. Nickel-base

alloys containing 30 and 37 wt pet tantalum were prepared and melted in

a cold hearth, inert electrode, inert atmosphere arc furnace made by

Zak Machine Works, Inc., Troy (Green Island), New York, as shown in

Fig. 2.

Nickel and tantalum chips were placed in a button-shaped cavity and the

furnace was evacuated and flushed with Argon 3 to 4 times. The initial

arc was started over a tungsten button in the hearth and then taken

over the metallic charge. Input load was controlled with a foot pedal.

The alloy button so obtained was flipped a number of times and remelted

each time in order to obtain a homogeneous button. After about 5 to 6

flippings the button was taken over to a 1/4 in. by 1/4 in. by 6 in. rod

slot and melted in order to give a stock of that size.

Rods were ground, and etched to remove any surface impurity prior to

unidirectional solidification.

2.2 Solidification

Samples of Ni-NigTa eutectic were grown from 1/4 in. diameter rods in a

Materials Research Corporation electron beam floating zone refiner,

Model V4-EBZ-6000, Figs. 3 and 4. The scanner assembly consisted of

a specimen, V-groove mounts and an electron beam gun attached to a

6
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Figure 2. Inert Atmosphere Arc Furnace
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Figure 4. Electron Beam Zone Refiner
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stage that moved the gun vertically and parallel to the specimen axis.

The electron gun was composed of a 0.625 in. diameter annular filament

of 0.032 in. diameter tungsten wire enclosed in a beam focussing pill

box. The focussing device design consisted of two grounded molybdenum

annular plates 0.375 in. apart with an aperture diameter of 0.375 in.

The upper specimen mount was fixed in position while the lower mount

was adjustable from outside the vacuum chamber. The scanner assembly

was enclosed by a gasket-fitted glass bell jar which rested on an

aluminum base. The chamber was evacuated through a liquid Nitrogen

cold trap and a water-cooled copper baffle on a 4 in. diffusion pump

backed by a 'Welch* mechanical pump. The vacuum chamber was maintained

around 2 to 3 x 10 torr during a run. The electron beam power supply,

Materials Research Corporation Model.V4-6000, provided voltage up to

5 KV, and current up to 450 milli-amperes.

The Pb-Sn eutectic was solidified in a resistance-wound furnace at

a freezing rate of 1.00 cm per hour and under an argon atmosphere.

Before solidification, the surface of the rod was cleaned with an

etchant. The starting stock was in two pieces, one about 6 in. long

which was mounted in the top grip, and a small piece of about 1.5 in.

in length was mounted in the lower grip. The lower grip was made of

copper with a provision for water cooling through flexible copper

tubing. The copper tubing was taken out of the vacuum system through

a Teflon block to preyent grounding of the high potential which was

present in the pipes during the run. The two outlets of the tubing

were connected to a pump and water reservoir with a 'Tygon' tubing,

0.25 in. I.D. Deionized water was circulated in the closed system.

11



Prior to solidification, the filament was kept level with the lower

tip of the upper specimen. The upper tip of the lower specimen was

about 1/4 in. below the filament. Following alignment of the rod and

the filament, the bell jar was placed over the assembly and evacuated.

For the 0.25 in. diameter rods, the electrons, emitted by the tungsten

filament, were accelerated towards the rod by a 2 KV potential difference

giving a beam current of 60 milli-amperes. Melting occurred because the

emitted electrons, in striking the rod converted their kinetic energy

into thermal energy according to the following equation,

•••• E = y mv2N (2-D

where

E * energy input to the sample

m = mass of one electron

v = velocity of the electrons

N = total number of electrons bombarding the specimen

The gun was positioned so as to melt only the lower end of the upper

rod, causing it to fuse with the upper end of the lower rod. The length

of the molten zone, determined by the beam current, the applied

potential and the beam focussing pill box design, was maintained

approximately 3/8 in. The zone travel speed varied from 0.300 in.

to 0.600 in. per hour.

All the sample rods were scanned upwards only because of a more stable

molten zone. The speeds employed have been mentioned in the previous

paragraph.

12



2.3 Mechanical Testing

2.3-1 Tension Testing

Tension tests were performed on an Instron testing machine of 10,000

pounds capacity. A loading rate of 0.005 in./min. was used.

Round bar tensile specimens with 1.0 in. gauge length were used,

Fig. 5. Samples were made by grinding as the material was too hard

to machine. The diameter of the specimen was 0.125 in.

The grips that held the specimen were made of Inconel 700. The upper

grip was held through a universal joint in order to achieve pure

axial load.

Required test temperatures were obtained by resistance-wound Marshall

'clam shell* furnace. The specimens were held at temperature for 30

min. before pulling to failure. The 'OFF1 and 'ON' type temperature

controller, manufactured by Instron, was used. Two Platinum-Platinum

Rhodium thermocouples were used. One was connected to a temperature

controller and the other to a potentiometer for measuring the temperature

near the specimen.

Young's Modulus of the Ni-Ni,Ta eutectic was determined by using ultra-

sonic method. The sample was ground at the ends to make the ends

exactly parallel. Two quartz transducers, one on each side, were glued

with an epoxy type Armstrong C-2 and 6% activator, by weight. It

was then hardened and cured at 77°F for 2 hours. Ultrasonic waves

were passed through the sample and the resonance frequency was determined.

Knowing the length of the specimen the wave length was determined and

thereby the velocity, by the formula

X- (2.2)

13



10-32

L = 2.0 inches

D = 0.125 t 0.001 inches

S = 0.50 i 0.005 inches (Threaded)

G L = 1.0 + 0.005 inches

W = 0.20 inches

R = 3/32 inches (Fillet radii)

Figure 5. Tensile Specimen
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where

A = wave length

v = velocity

f = frequency

E = p .v2 (2.3)

where

E = Young's Modulus

p = density of the alloy

v •» velocity

By knowing the density and velocity, E was determined.

2.3-2 Compression Test

Tests were performed on 1/4 in. by 1/4 in. by 1/2 in. long specimens

on the Instron machine. Two Alumina rams were used for compression

at 400°C. Tests were discontinued as the rams gave way before the

samples. Here also, the specimens were ground due to poor machina-

bility of the material.

2.3-3 Creep Test

Creep specimens, 1 in. gauge length and 1/8 in. in dia., were made from

unidirectionally solidified Ni-Ni-Ta ingots, 1/4 in. in dia. and 2 in.

long. These specimens were tested in a constant load creep machine.

Since the elongations of the specimens are small under load, these creep

testings were considered as constant stress experiments.

A resistance-heated split furnace was used and the test temperatures

were controlled to an accuracy of + 7°F. Elongation of the specimens

were measured by recording the lever-arm displacement. This displace-

ment was measured by a dial gauge indicator and was recorded continuously

15



using a cantilever beam with two strain gauges on both sides of the

specimen. The longest time for a test was restricted to 250 hrs.

Specimens that did not fail within this time limit were removed or

ire tested at a higher temperature or a higher stress.

2.4 Scanning Electron Microscope

After the tension test, the fractured surface was examined under a

scanning electron microscope. The microscope basically consists of

high voltage supply, filament supply, lense control supply, and electron

collector. Secondary electron emission from a specimen, caused by

scanning it with an electron beam, is used to reproduce topographical

details.

2.5 Transmission Electron Microscope

A Hitachi electron microscope, type HU-11 was used for thin film work.

Thin slices were cut from many directionally solidified Ni-Ni-Ta eutectic

with a 'Servo Met' oil-immersed spark cutter. Thin discs of 1/8 in.

diameter were reduced to 0.010 in. by mechanical polishing on emery

papers. The thin foils were then jet-polished using the following

solution:

Methanol - 93 ml

Sulphuric acid 5 ml

Hydroflouric acid - 1.25 ml

Voltage - 80 volts

Temperature < 20°C

After standardizing, it was determined that about 12 seconds of jet

was required to remove 0.001 in. of material from the specimen at 80

volts. The foils were then electropolished with the same solution at

liquid nitrogen temperature, in order to reduce the overall thickness

16



to produce a very thin section in the middle of the foil and a per-

foration to obtain diffraction patterns.

2.6 Microscopic Examination

After mechanical testing, all specimens were examined with a light

microscope along their longitudinal axes to determine their modes

of fracture. Specimens were etched for about 5 seconds in the following

solution:

Hydrochloric acid - 30 ml

Hydroflouric acid - 16 ml

Water - 120 ml

Ferric Chloride - 6 gins

Photomicrographs were taken with a Bausch and Lomb microscope with

P/N 55 type of Poloroid film.

2.7 Superconductivity Measurement

A unidirectionally solidified Pb-Sn eutectic sample, 1/8" in dia. and

1-1/4" long, was clamped with OFHC copper cylinders to eliminate local

heating. Potential taps were first wrapped on the sample and then

were glued with silver epoxy.

The sample current was increased to a pre-set value, using Kepco MP-10

Programmer to control the Harrison 6260 A dc current power supply as

shown in Fig. 6. The sample current was measured by reading the

voltage with a Dana 4470 digital voltmeter across a series standard

10 milli-ohm resistor.

The sample voltage was amplified through a Keithley 148 nanovoltmeter

The amplified signal was fed into the Y-terminal of a Mosley 7000 A X-Y

recorder and the X-terminal of the recorder was used to record the

external magnetic field which was increased very slowly and steadily

by using a Kepco MP-10 programmer. The magnet current was monitored

17
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A: MANY TURNS OF COPPER WIRE BY AIR,
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B: A SHORT SECTION OF STEEL WIRE USED
AS PROTECTIVE SHUNT RESISTOR
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DIGITAL
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Figure 6. Circuitry for Sample Voltage, Current Measurement.
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by detecting the voltage across a standard 1/2 milli-ohm resistor

N as shown in Fig. 7. At a fixed temperature, the sample voltage

changes from zero voltage (superconductiving state with zero resis-

tance) to full voltage .(normal state with normal residual resistance)

when the external magnetic field changes slowly and steadily.

19
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3. RESULTS

3.1 Butectic Microstrueture

The microsture of the directionally solidified Ni-Ni.Ta

eutectic was characterized by a rodiike Ni Ta phase, partially aligned

in the direction of solidification. Various solidification rates were

employed in order to determine an optimum rate to produce the best

microstructure. It was found that the diameters of the Ni Ta rods

ranged from 10 to 30 microns. Figure 8 shows the longitudinal section

of a directionally solidified rod at 0.6 in. per hr. Several

studies (15,16) have shown that the microstructure can be altered by

varying the temperature gradient and the growth rate.

A volume fraction analysis of many longitudinal sections of

specimens by quantitative metallography indicated that the Ni.Ta fibers

comprised of 36 volume pet of the composite while the calculated volume

pet of the Ni.Ta phase at the eutectic temperature (1360°C) of the
0 •

Ni-Ta binary phase diagram is only 7.6. This increase in volume frac-

tion of the Ni.Ta phase in the directionally solidified alloy is attri-

buted to the diffusion of tantalum from the saturated nickel-rich solid

solution to the preexisting Ni.Ta rods and the concomitant epitaxial

growth of the rods.

3.2 Mechanical Properties of Ni-Ta Alloys

Table 1 summarizes the results of tensile and compressive testing

of Ni-Ni.Ta eutectic at various temperatures.

E = 28.5 x 10 psi was determined by the ultrasonic method.

21



Figure 8. Longitudinal Section of the Directionally Solidified
Ni-Ni3Ta Eutectic.
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3.2-1 Tensile Tests

The temperature dependance of stress-strain curve of directionally

solidified Ni-Ni.Ta eutectic is represented graphically in Fig. 9.

Additional tensile data at room temperature for Ni-30 wt pet. Ta in the

directionally solidified condition is presented in Table 2 and is

graphically represented in Fig. 10.

In several tests the directionally solidified specimens fractured

within the elastic portion of the stress-strain curve. For such tests

only the ultimate strength and elongation at fracture have been

tabulated .

Assuming, that there is no plastic deformation in the fibers and

that the composite material fractures when the fibers fracture, the

elongation in the composite will be equal to the elongation in the

fibers and also in the matrix, i.e.,

e = e,. = ec f m

The basic equations of a continuously reinforced composites, where

both matrix and the fiber are elastically loaded are given by equations

1.1 and 1.2, i.e. ,

a - a, V. + a1 (l - v,)c ± i m r

01 °r - < U - V

In this equation the value Vf has been determined from the actual

photomicrograph (36 pet), a is the ultimate tensile strength of the
c
3

composite which was 82.0 x 10 psi. 0' is the matrix strength
3

50 x 10 psi at fiber fracture strain (E,.) . By inserting these

values, the ultimate strength of the fiber was found to be
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Figure 9. Stress-Strain Behavior of Ni-37 wt pet Ta Eutectic in Tension
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Figure 10. Stress-Strain Behavior of Ni-30 wt pet Alloy in Tension at Room Temperature

26



af = 138.8 x 10
3 psi

This value is lower than that expected of strong fibers. This is prob-

ably due to the presence of defects in the Ni,Ta fibers.

Fracture in different tensile specimens of directionally solidifi-

ed eutectic had taken place at different places within the gauge

length. Typical examples are shown in Figs. 11 (a), (b) arid (c) which

show practically no necking except in one case where the reduction in

area was found to be 0.9 pet at a test temperature of 400°C.

Figure 12 shows the fractured surface of a tensile specimen under

a scanning electron microscope. This photomicrograph shows the absence

of dimples and the presence of steps. This type of fracture is typical

of brittle materials.

As expected, the tensile strength decreases with increasing test

temperature. Figure 13 shows the variation of ultimate tensile

strength with test temperature for the directionally solidified

Ni-Ni.Ta eutectic.

Solidification rate also has some effect on the ultimate tensile

strength. Figure 14 graphically represents the decrease in tensile

strength with an increase in solidification rate. With faster solid-

fication rates, diffusion of Ta atoms to the reinforcing phase is slow

and incomplete thus the low strength.

An interesting feature was noticed in the tensile tests of Ni-30

wt pet Ta alloys at room temperature as shown in Fig. 15. The sample

elongated about 41 pet and the fracture had occurred without any

visible necking. In one of the tests the fractured surface was a

knife edge. The average 0.2 pet off-set yield strength was
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Figure 11. Fractured Tensile Specimens
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Figure 12. Fracture Surface Under Scanning Electron Microscope.
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Figure 15. Fractured Tensile Specimen of Ni-30 wt pet Ta.
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50.5 x 103psi.

3.2-2 Compression Test

The compression test on a randomly solidified Ni-Ni Ta eutectic

was carried out but could not be continued because the Alumina rams

fractured during testing. At 400°C the strength noticed at that point

was about 150 x 103 psi.

3.3 Transmission Election Microscopy

The thin foils prepared for determining orientation of the

Ni-Ni3Ta eutectic by electron diffraction technique were not of good

quality. Too much of oxide formation accompanied electropolishing and

as a result good diffraction patterns could not be obtained.

3.4 Creep Property

High temperature creep curves of unidirectionally solidified Ni-Ni_Ta

eutectics are given in Fig 16.

Comparison of curves of specimens tested at the same temperature (1000°F)

and the same stress (AOKsi) reveals the prestraining effect, i.e., a

specimen that was prestrained at 30Ksi exhibits a lower creep rate in the

steady-state region. On the other hand, both specimens tend to elongate

equally with increasing time. Whether the prestraining of the specimen

would improve the creep resistance can not be established definitely in this

study because -more experimental data are needed for the proof.

The second or perhaps a more significant result of this study is the temp-

erature sensitivity of the unidirectionally solidified Ni-Ni,Ta eutectic.

Two specimens, tested at 40 Ksi and at 1000° and 1100°F, had no effect on

the creep resistance of the specimens. When the test temperature was

increased from 1100°F to 1200°F at the same stress level (40Ksi), the

specimen failed after 15 hrs. of loading.
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The same behavior was observed also with a specimen that was prestrained

at 1000 F for 192 hrs. and at the same stress level. These results suggest

that a critical temperature range above which the creep resistance would

be greatly reduced, exists in the unidirectionally solidified Ni-Ni Ta

eutectic. Based on the experimental data obtained from this study, a

critical temperature range is between 1100°F and 1200°F.

3.5 Superconductivity Property

A plot of the critical current (J ) versus the external magnetic field for

2.5, 3.0, 3.5 and 4.2°K is given in Fig. 17. . At the high-field region, the

extrapolation to zero critical current gives the J value of the critical

field. This critical field at zero critical current versus temperature is

plotted in Fig. 18. The curve is nearly parabolic and can be represented by

the following parabolic equation:

H « H [1 - (£-)2]c o T C

where H is the critical field at 0°K and is equal to 1.44 Kg and TC is

the critical temperature and is 6.83°K. The lower values of HC in Fig. 18

were the start - transition fields and the upper values were the complete

normal fields. It can be seen from Fig. 18 that the transition is rather

'-broad and it is completely reversible (no hysteresis as one increases and

decreases the magnetic field).

The transition temperature T of the unidirectionally solidified Pb-Sn eutectic

has been determined experimentally by cooling and warming the sample. The

temperature was monitored with an Allen Bradley 39 ohm carbon thermometer which

was calibrated against a T58 helium temperature scale. The transition

temperature was found to be 7.37 - 0.20 K.
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4. DISCUSSION

4.1 Eutectic Microstructure

the microstructure of the directionally solidified Ni-Ni Ta

eutectic had a rod-like Ni^a phase in a matrix of a - solid solution

Ni. No significant improvement in microstructural alignment was

obtained by varying the solidification rate.

The increase in volume fraction of the Ni Ta phase in the eutectic

is attributed to the diffusion of tantalum to the Ni-Ta phase. This

can be explained by the Fig. 1.

When a tube of rectangular cross section of eutectic liquid of

composition C£ is solidified unidirectionally, a eutectic mixture

consisting of a - solid solution Ni matrix and Ni.Ta intermetallic

fibers is nucleated and grown from the eutectic liquid at a temperature

1^, as indicated in Fig.l, which is lower than the eutectic temperature

TE 3̂60 C). The amount of undercooling needed to nucleate and grow

the eutectic mixture is ( T£ - TI>. A schematic drawing showing the

initial growth of a thin layer of fiberlike eutectic mixture is

given in Fig.19. A water-cooled copper block is placed at the end of

a eutectic mixture of composition C for two purposes:

(i) A steep temperature gradient is established between the

advancing liquid-solid interface and the initial interface

as indicated in Fig. 19 to promote thermal diffusion of the

solute atoms in the matrix,

(ii) The extraction of heat from the liquid phase to the solid

mixture is unidirectional so that the grown-in fibers may
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Figure 19. The Steady State Solid-Liquid Interface of a Schematic Fiber-Like Eutectic
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be perpendicular to the liquid-solid interface as depicted in Fig.19.

To simplify the solid state growth process, we consider the growth of a

single fiber in the y-direction as illustrated in Fig.20 for six various

stages. At stage (1), the OL solid solution is in equilibrium with Y

intermetallic at temperature T as indicated in Fig. 20(a). I , I and d
-*• i a i

are initial solid-liquid interface, the advancing interface -

and the initial diameter of the fiber, respectively. The

corresponding temperature and concentration distribution in the a phase

and in the x-direction are T(x,0) and C(x,0) as shown in Figs. 20(b) and

(c). X is the inter-particle distance. As growth proceeds from stage (1)

to stage (2), the composition of the initial strip o^ (Figl5(a)(l) changes

to a« (fig.20(a) (2) ) because the temperature descends from T.. to T-. Under

this condition the supersaturated la atoms diffuse to the pre-existing fibers

under the influence of a radial concentration gradient dc/dr. Those near the

fiber diffuse to the fiber faster than those far away from it because the

diffusion distance is shorter. Consequently, a concentration gradient Is

generated in the y-direction of the matrix at each diffusion temperature.

At temperature T-, the weight percentage of the intermetallic is , * \ as
•*• \&'")

shown in Fig.l. Knowing the crystal structure and density of the Ni«Ta

intermetallic, its volume fraction can be calculated. As the eutectic

mixture continues to cool slowly from T- to T, the matrix changes its

composition from a., to a_ which is depleted in Ta in comparison with a...

At T_, weight percent of the Ni.Ta intermetallic is ,' ° .. which is much

greater than , '.». As a result, the volume fraction of the Ni,Ta inter-

metallic increases as the temperature of the eutectic mixture decreases

from T.. to T . Under the combines effect of temperature and concentration

gradients, the supersaturated Ta atoms diffuse to the pre-existing fibers,

thereby increasing the fiber diameter from d. to df and the volume fraction
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Figure 20. Growth of a Single Fiber in the Y-Direction for Various Growth Stages
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3. Cfrom . ̂ .^ to ; - . > , epitaxially. At any temperature-below T_, -it is

assumed that the diffusion process is ineffective. Therefore, the

supersaturated Ta atoms are present in the matrix as random precipitates,

similar to those in age hardening alloys..

4.2 Tensile Properties

The low strength of the Ni,Ta phase may be explained by a mechanism which

has been applied to other alloy systems to explain their mechanical

behaviour . The presence of solute (Ta) atoms in the intermetallic

phase can be considered equivalent to the introduction of point defects

into the lattice. The lattice strains, induced by microsegregation of

solute atoms would lead to the generation of dislocations causing plastic

flow to occur at small strain levels, It is also possible that residual

stresses, set up upon cooling from the eutectic temperature may generate

dislocations in both phases of the alloy. In either case; once dislocations

have been introduced into the Ni.Ta rods, it is expected' that the strength

of that phase would be sufficiently lowered.

The stress-strain curves show the usual drop in level with rise in temperature,

it also flattens out because of reduced strain hardening. Temperature has a

large effect on the strain hardening rate of FCC metals. The stress-strain
s

curves shown in Fig. 9 are steeper at room temperature than at higher

temperatures. At elevated temperatures the thermal recovery is high and the

effective rate of work hardening is much lower.

Tensile tests of Ni-30 wt pet Ta produced some interesting features. Both

3are samples, Table II, showed an average yield strength of 50.5 x 10 psi.

The samples showed an average elongation of about 41 pet at room temperature.

This could be indicative of superplastic deformation which is mostly prevalent

in eutectic and eutectoid mixtures under tension at elevated temperatures.
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The occurrence of superplasticity at room temperature iii a solid

solution alloy is a new phenomenon.

The fracture occurred with practically no necking. One of the samples

broke with a knife edge fracture indicating a single crystal.

4.3 Superconducting Property

Since the experimentally determined critical temperature of the unidirectiori-

ally solidified Pb-Sn eutectic was 7.37 + 0.20°K which is higher than that

of Pb (7.19°K) and that of Sn (3.72°K), it is reasonable to assume that the

Pb-Sn eutectic is a type II superconductor. To substantiate the above statement,

it was decided to determine the relationship between the sample voltage and

the external magnetic field. The experimental results yielded a broad and

reversible transition from a superconducting to a normal state. However, to

establish an affirmative bases for type II superconductor, it is necessary

that a magnetization curve for the Pb-Sn eutectic be determined.
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5. SUMMARY

5.1 Summary

Unidirectionally solidified Ni-Ni.Ta eutectic samples were produced

by the electron beam floating zone melting technique and were tested

in tension and creep. The presumed rodlike, microstructural elements

were not aligned parallel with the growth direction, indicating that the

nickel solid solution phase and the Ni Ta phase may have a high entropies

of melting (18 .̂

Under tension, the material behaved in a brittle manner at room temperature

and these are very little elongation at higher temperatures.

The nickel-base alloy containing 30 wt pet Ta showed exceptionally high

elongation, indicative of superplastic behaviour at room temperature.

The Pb-Sn eutectic behaved as type II superconductor.
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