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STATIONARITY CONDITIONS: EQR

STOCHASTIC DIFFERENTIAL EQUATIONS.

i i /

This is a preliminary study o:£ pos.:s.-itxle: necessary and-

sufficient conditions to insure s=ta:t±oiiarity' in the-> solution:.

process for a stochastic dif£erent±ai eqaiat±on.. I.t; indirectly

sheds some light on ergodicity properties'- and: shows.: thatvthe.-

spectral density Is generally inadequate:- a-sr a-, sftutisticall

measure of the SQ'Lutian., Eurth:e-r- war.k; rss prD:c£jgdingr on- a?.

more general theorem. w.ho.ch. g,iv.es? necexssa-ryy and:. s.ufficientt

conditions in a form useful far- ap.p:lii.cati:ons3.
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SECTION 1.

The following definitions and notation will be used

cans is. ten tly throughout, this thesis.
*

CsZ',J,p) will be. a-, fixed (but otherwise arbitrary)

probability space with, points co 6-£V a cr-algebra 3 of

subsets (probabilizable events), and a complete measure

H such that î(r) = I.

& random variable (r.v..) x:=-x(w) will be a finite

real—valued (or complex,valued) measurable function defined

on ft,. î.a..,. we require; that. [w_:x(uj) < X} € J for all real

numbers X. If x(oo) is complex-valued, we require that

x.Coj) = uOuj) +• iv.Coc) where, u. and:,v are real-valued r.v. 's.

Given a r.v.. x('u)', E(x)'or: <-'x> denotes the integral

J x(oi) d^t(w) if this, integral is defined.
fi

Given a parameter, set T. (which we usually take to be

the real numbers), a stochastic process (s.p.) or random

function (r.f.) on T is a real or complex-valued function

X:Txn—> R(C) such that for each fixed t 6T the function

x.(ui) = X(t, w) is a r.v. Very often in our notation we

will suppress the variable c*J and write X(t) for the r.f.

Notice that a s.p. has two convenient interpretations.

First of all, a s.p. is a family of r.v.'s indexed by T,

î..ê.., X - Cjê C'w) :»».—>> FT} ̂ _., On. the other hand, if we

emphasize the variable t and let T = R, then a s.p. X is a



collection of real-valued functions of a real variable

(indexed by rO . These functions are called the sample

paths (realizations, trajectories) of the process. The.

measurabili ty of X with respect to the variable u: says

nothing about measurability with respect to the t,. and in

general the sample paths may be very badly behaved. How-

ever, we will consider only measurable processes,, i_..e...f

functions X(t,o:) which are measurable with respect to

the a-algebra J x .7 where «/ is the family of Lebesgue

measurable subsets of the real line. Then all. the sample--

paths will be measurable.
2

We let L (TO denote the Hilbert space of all. square

integrable r.v.'s on fi making the usual identification. o±

r.v. 's which are equal almost everywhere with, respect to

the measure V- .

We say that a r.f. X(t,u%) is second order* if each
o

r.v. x, t 6 T, is a member of L (ft). Thus X is second

order if and only if Mx(t , cc) |2dM(oe) < « for all t 6T.
° Si

Note that a second order r.f. X induces a map into a

space of r.v.'s Y:T — > L2(r>) defined by (Y(t) ) ( a1) = X(t, w) .

The covariance function associated with the r.f. X is de-

fined by T (s,t) = E(X(s)xTtT).
X

Once again let T = R and let X(t,u:) be a second order

s.p. Let Y be defined as in the proceeding paragraph.

We say that X is continuous in the mean square sense at. t_

if l.i.ra. X(t) = X(t_.). This is equivalent to, saying, that.

the function Y(t-) is continuous at tQ relative to the

t:



standard topology on the reals and the norm topology on [

2 :

L. (i:).. Similarly, we say that X(t) is dif ferentiable in |

mean square at t~ if there is a r.v. (second order) r •— u j
such that l.i.m. X(t?. " *(tO> = r; Thus x is differentiable j

t^o t'to • '
j

in. mean square at tQ if and only if Y(t) is dif f erentiable '.

at tQ., a-nd moreover r = -rr (^Q)- • This same analogy carries

over, to integration (Riemann, Riemann-Stieltjes, Lebesgue-

type) in. mean square of X and the corresponding integration

of Y. Hence, the study of- the mean square analytic properties

of a.' (secxrnd-order) s.p. X is equivalent to the study of the
2

eorres:panding properties of. a function Y: R —> L (ft).

Throughout this thesis: we-will.deal with the concept

of wide-sense stationarity. Moreover, without loss of

genera-lit.y we consider only zero-mean processes, and con-

sequently we: take as the: defining characteristic of a

stationary process X the existence of a correlation function

f such. that. F (s,t) = f (t-s). We define the spectral
A

density, tunctlon of the process by <p(u) = Je ff uf(t)dt.

We use this definition of correlation function in
accordance with Adomian [1]. Often in the literature the
correlation function is defined g(s-t) =E(X(s)X(t)) which
is the complex conjugate of our definition. We let

<p(u) = Je ffituf(t)dt be the spectral density function of

the process whereas some authors.may have lii(u') ~ Je~ uf'(t)dt

as the, spectral density function. This of course will be
the complex conjugate of our spectral density function.



Usually we consider only real processes, however if some

result takes on a much cleaner form in the complex case

we will note it.

The physical interpretation of stationarity is well

known (see Yaglom [11]). The following geometrical

interpretation may provide some insight however.. No.te that

a second-order process with the feal line as. the parameter
2

set is a map X:R —> L (JI) from the reals into a particular

Hilbert space. Hence the relationship E(X(s)X(t)) = f(t-s)

is merely a restriction on the behavior of tb-e inner pro-
2

ducts of points in L (f!) which lie on the curve associated

with X. In particular, ||X(t)||2 = E(X(t)xTt)'): - £(Ct-t:)̂  -

for all t, and so the curve X must lie on a sphere of radius

f (0) centered at the origin. For stationary X,.

E(X(s+T)X(t+T)) = E(X(s)X(t)) for all s, t, and T,. and so

if we think of the inner product as determining an. angle

between say the vectors X(s) and X(t), then this angle is

invariant under translations of the parameter set, £.£.

the angle between X(s) and X(t) is the same as the one
2

between X(0) and X(t-s). A circle in R centered at the

origin is an example of such a curve if the standard para-

meterization is taken: thus, consider the curve

x(t) = e, cos t + 62 sin t where e, and eg are the standard
2

basis vectors for R . In general, we can replace, the unit.
2

.vectors by arbitrary orthogonal vectors in L (fO of equal

norm, call two such (distinct) vectors A and B., Then, the

process defined by X(t) = A cos t + B sin t is really just



2
a circle in L (ft), and a simple calculation shows it. is

stationary. One of the most powerful results in the

general theory of stationary processes is that every

(continuous) stationary process is the limit of sums of

processes of this special type. ,s

One is naturally interested in determining what, sort
»

•
of transformations of stochastic processes preserve SrtationT-

arity. For the moment, we interpret the term."stochastic

transformation" in the loosest sense, namely we call any

rule which associates one or more processes^ with another-
2,

process a stochastic transformation (s.,t..); '.. In thi&

sense there are many s.t.'s which; carry stationary pro—
*

cesses into stationary processes, and we List here: just. a'..

f ew:

i) Let U:L2(n) —> L2(«) be any isometry.. Let.

F(t) be a stationary process. Then the process

G(t) = U(F(t)) is stationary since E(G(s)GTt7) = E(F(s)FTt7)

f(t-s). Let a be any complex number. Then the process

H(t) = aU(F(t)) is stationary since E(H(s)HTtT) - |a|2f(t-s)

ii) Let F(t) and G(t) be stationary processes such

that the smallest closed linear manifolds containing F and

G respectively are orthogonal. Then F(t) + G(t) is a.

2For a more complete discussion of this term, see*
Section 4. One also may wish to consider the possibility
of mapping a random function into a random sequence. In
his dissertation Adomian presented and discussed the
important example of a randomly sampled random function.
He also sets up conditions under which, a stationary random
function is mapped in this manner into a stationary random
sequence.



stationary process since E([F(s)+G(s)][F(t)+G(t)])

= f (t-s) + g(t-s) = u(t-s) where u = f+g. Note that in

general the sum of two stationary processes is not station-

ary. A necessary and sufficient condition that. F(t) + G(t)

be stationary is that E(G(s)F(t)) + E(F(s)G(t)> be a

function of t-s, and we see that this is a fairly s.trong

restriction. The fact that stationary processes da no.t.

form a linear manifold (in the space of all processes)

causes a certain amount of difficulty in determining what

s.t.'s preserve statipnarity.

iii) Let the stationary process F(.t) be. n times?

continuously dif f erentiable and let GO, ,.c: , bej constants..

n fk^
Then the s.p. G(t) = I c.Fv ' (t) ±s stationary and

k=0 K

E(G(s)GTtT) = L c.c. (-L)̂  f ̂""̂ 'Ct-aX.. We not & that.
k,j=0 k J

limits (in mean square) of stationary processes need not be

stationary, and so it is unusual that linear combinations

of derivatives of stationary processes are stationary. As
s

a rule, the function G(s) = XQ + J F(t)dt is not stationary

even though F is, and so integral operators do not in general

preserve stationarity. Intuitively the solution to a

stochastic differential equation is representable in the

form of applying a stochastic integral operator to the

.forcing function of the differential equation; thus we. see

this operation will not often yield as a stationary solution..

We now seek to determine conditions under which stochastic



differential equations do possess stationary solutions.
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SECTION 2

This section is devoted to the study of analytic ran-

dom functions and their application to stochastic dif-

ferential equations. We'recall tjiat if X(t) is a second

order random function, then X(t) can be thought of as a
2

map X:T —> L (H). Usually T will be the set of real num-

bers or some subset of the reals; more generally, T will be

a subset of a Euclidean space. There is already a general"

theory of analytic maps from finite dimensional Euclidean,

spaces into Banach spaces, so we list here only the: most:

relevant parts of this theory.

Definition: Let B be a real Banach space. Let [c- }' n.

-be a sequence of elements of B. Suppose there is a positive

real number r such that the series L ||c ||t converges for

all real numbers t satisfying |t| < r. Then the series

Let is called a power series centered at 0 with coeffi-

cients in B.

Notice that since a power series converges absolutely (by

definition) in the space B and since B is complete, the

series does indeed converge to an element of B for each

appropriate t. The absolute convergence of power series

allows us to rearrange the series however we- I-ike,, and! the



rearranged series will still converge to the same limit.

Theorem 1. Suppose L a tn and L b tn are ̂ wp power series

for |t | < r with coefficients in ji Banach space B. If

L Ant
n = E b tn for all t 6 (-r,r), then an= bn for each n.

We will find this theorem on uniqueness of coefficients
»

especially useful. For a proof, «see Dieudonne [31]..

Definition. Suppose f is a func.tion from- the: reals., into a

Banach space B. Suppose there are elements, {C } Q. in B

such that f(t) = ZXCa/n.')t
n for |t| < r. Then f: is: said

to be analytic at O.

In accordance with this definition,, a second: order-random

function X(t) is analytic at O (in. the mean, square: sense)

when there are second order random variables-XQ,X,,

such that X(t) = L(XQ/n:)t
n for |.t | < E.. Til we, include the

dependence on Ci in our notation, we see that X(t,<*i) =

L(X (o;)tn)/n.' and so an analytic random function is one

which has this special sort of separation, of. variables.

We have the following theorem which relates analyti-

city of a random function to the analyticity of its co-

variance function.

Theorem 2. A second order random function X(t) .is analytic

if and only if its covariance function F.. (s, t) is~ analytic

at every diagonal point (t,.t).. If this condition is
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satisfied, then F (s,t) _is analytic at each. (s,t).

More simply, a random function is analytic if and only if

its covariance function is analytic. See Loeve [7] for a

proof of Theorem 2.

Returning to more general Banach space considerations,

we have the following very important theorem, again from

Dieudonne.

Theorem 3. Suppose f :R —> B, B a_ Banach space, is analytic

at 0. Let f(t) = L(Cn/n:)t
n. Then f is infinitely differen-

tiate. Moreover. f(k)(t) = Z (C ../nD),. f(k)(.t); is
• n=0 n+K .

analytic, and f(n)(0) = C .'ii— -• *-r --•-' ~™ n

Hence we see that the random variables occurring in: a power-

series expansion of a random function are related in a

simple way to the mean-square derivatives of the random

function.

Let us now turn our attention to the question of

forming a product of two elements each from a (perhaps

different) Banach space. We are motivated by ordinary

differential equations of the form x1(t) + a(t)x(t) = f(t)

but we would like to replace the functions involved in

the equation by second order stochastic processes. Then

we-would have an equation X'(t) + A(t)X(t) = F(t) where

X, A, and F are maps from the reals into the Banach space?
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2
L Ofi). There is a natural way of attaching meaning to the

formal product A(t)X(t), we can form the pointwise product

fA(t)X(t) ](u;) = A(t, uOX(t, ui>. In general, this expression
2

no- longer defines a function into the space L (fi) since

A.(t, udX(t, a.0 may not. be. square integrable (with respect

to ou) for each t. Consequently, some care is needed in
*

handing these products:. •

Consider^ now the general-case of forming products in

Banach spaces.

Definition.. Let K and F be: two (real) Banach spaces. A

map, P:,E x- E—>> El is; called, a:.product on the spaces E and

F if P is; bilinear and. satisfies/the inequality

||P('.e,,f)|| C ||e|| ||f|| f:br every e;€ E and f 6F.

We: usually wri±e: et: for the; product P(e,f) . There are many

examples of products, and the one which we will find useful

is the following.

Let E be a Banach space, let F = L(E,E) be the space of

bounded linear operators on E. Note that F is a Banach

space. Define the. product P: E: x F —> E by P(x,f) = f(x).

It is elementary to verify that P defines a product in our

sense.

We prove now ar few generalizations of well-known

theorems and see hovr they fit into our more general framework,
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Theorem 4. Suppose P: E x F —> E ij» ja produc t. Let

A = Ea € E and B = Lb 6 F be two absolutely convergent
£J 1 ->—- jj - - '"- ~- " " " " " " - l~t - -"*-• "~~ -"

n
series. Define C =- £ a .b. = - E P(a .,b.). Thenn = n-j j = n-j j

EC = AB =- R(A,B).n.

We can prove this theorem by slightly modifying the proof

for' the cas:e:- E- = T?~ —• K found:, in Rudin [9 ] so we omit the

proof here. However, as an important corollary we have:

Let A.: I — >- L.(E,E) and x: I — >- E. be. two functions defined

on; I,, an. open: interval- containing O. If A and X are both

analiytic: a±: 0-,. then. the. map: f : I: — >. E defined by

JE((ty = AiCt;);(6c(t.)) jjs& analytic? a t'.O: .

Proaf . Let A.(t) *- LIA-^tf1" andcx(t) =- E Xnt
n. Let tQ> O

b.e such; tha-t. bocth- A-(t" ) and.X(t_)- converge absolutely. Then

f(t) = A(t)(x(t)) = (S Ant
n)(L Xmt

m) = LAnxmt
n+m =

n m; m, n

°° k kE t Z. A. .X.. Then by Theorem 4, f(to) converges, and
k=0 j=0 K~J J

so f(t) converges absolutely for |t| < t^. Hence f (t)

is analytic.

Keeping this concept of products in mind, we turn now

to the question of differential equations involving functions

from the reals into Banach spaces. Let I be an open interval

containing O and let U be an open set in the Banach space B.

Then. a. func.tion f:: IL x U — > Blis said .to be a time- dependent
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yector field on U. A map a:I —> U is an integral curve

for f if a is differentiable and satisfies the equation

a' (t) = f (t, a(t)). f is said to be Lipschitz a_t_t 6 I

if -there is a constant K > O such__J:hat ||f_Ct,.x) -f(t,g)|| <

K||x-y|| for all x,y in U. f is said to be uniformly

Lipschitz on J[ if there is a single constant K > 0. such
»

that ||f(t,x) - f(t,y)|| < K||x-y|| for all x,.y €. U and all

t € I. , We let CP(I x U) denote the set of all func.tions-

from I x U into B which are p times continuously dif.feren-

tiable. Let Ba(XQ) = [y € B: ||y-Xo!| < a). Now we_ can

state an existence theorem for certain- differential,

equations in Banach spaces.

Theorem 5. Let I, U, and B b£ as_ above.. Let XQ€
: U... Let"

a 6 (O,l) be & number such that B2a^
xo^ ̂  u* Let

f: I x U —> B be continuous, bounded by C.,. and satisfy a_

Lipschitz condition (with constant K) uniformly with

respect _to I. Jf: b < a/C and b < 1/K,. then there is a^

unique integral curve o: (-b,b) x B (X.-.) —> U such that
•*•' 'A" ™- —' -•"- -T-T- £L \J —t—i—-— —"-"• '

a(O) = X_. If f € CP (I x U ) , so is a.u ~~~ ~~~~ ~~~

In particular, we note that if f is continuously differentiable,

it is continuous and satisfies a uniform Lipschitz condition.

For a proof of Theorem 5, see Lang [6], i

Let us see how to apply this theorem to stochastic:

differential equations. In particular.,, consider, the. equation

X'(t) + A(t)X(t) = F(t), XC0>) = X, where A'Ct)-and:: F(t)
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are second order random functions and Xn is a given second

order random variable. Solving the above equation for

~X'(t), we-.have X'(t) = F(t) - A(t)X(t), and so the vector

2
-field (on L (f!)) associated with_ihis equation is given by

f(t,x) - F(t) - A(t)x. To insure that the formal product

2A(t)x is well defined for every t€I and every x € L (fJ),

we assume that there is a constant K > O such that

ess sup |A(t, to | < K for all t € I . We will show that for
to € fl

each t, A(t) can be thought of as a bounded linear operator
2

on L (ft) , whereupon the formal product A(t)x will be a

- - 2
product as defined earlier; in particular, A_(t)x fc L. Cft)

2
for every t € I and every x € L (ft), and so th.e function

2
f(t,x) is a well defined vector field on L (?!)>.

Suppose then that ess sup [A(t, to) | < K. Consider the map

A: I —> L(L2(n), L2(fi)) defined by£Tt)x)(a') = A(t ,.to)x( to) .. "

We show first that for a fixed t 6 I, ATtT € L(L2(fJ), L2(TO).

2Thus we must show that if x € L (ft), then A(t)x must be a

square integrable random variable on H. We have

n

,2, , _,._, A ^ ,,2n̂ ii2 ^ m^ ThugI ft * I P ft £t \\ \ £
ess sup |A (t, to) I J x (ui)d^(a:) < K ||x|| <

o ,
A(t)x 6 L (ft). For a fixed t, A(t) is clearly linear, and

moreover '

,1/2
w.'- (I TATtTx)2(aJ>dM(aJ)) < C^llxll2)1^ K||xJ|

Hence A (IT) is a bounded operator and ||A(t) |j < K. This
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00 . k .
K ' KX'(t) + A(t)X(t) = L (t/k.')[X,^,+ £ ()A.X. .]. But this

k=0 K+1 j=0 J J K"J

equals F(t), so by equa.ti.ng coefficients (Theorem 1), we

k .
Xk+l = Fk" - E (i)AtXk-rk+1 * J=0 J J k J

We are given XQ, so this formula allows, us^ to: determine

each X by induction. Now we have to show that the--power

series for X(t) with these coefficients: converges (absolutely)

in some neighborhood of the origin.

We observe that the. expression, for X\ _ ca'n be' putt in..a;

more convenient form.. We claim tha.t.

n-I
Xn = xaX0 * J^ kfn V

where x is the coefficient of X~ in the original expression

for X (after successively substituting the..previously.

calculated X.'s, j < n-1) and .f is the coefficient of F.j """" K n K

in the original expression for X . x and. , f are definedn n k n

inductively «by the relations

,f = O for n <: k.
1C Q — — *

kfk+l= * > kfn+I= - j kfn-j f o r n >
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Notice that the expressions for x and ,f are combinations

of the. A.'s only; the initial condition XQ and the forcing

function E(t) are not involved in these coefficients.

Proof of claim: We use induction on n. The claim

clear Ly holds for n = 1. Suppose the claim holds for k < n

and. examine the case k = n+1.

n-J

- *.- 4 "C <>, ><„-, FK - . V>J «a-J *0 -

ir n n-j-1
(( TV f"\ A' Y \v a. P' —- T~ T" f ^ A f F(< jfa;

(.i:)AjXn-j)X0 P
n £. k,

Z
0
 (j' Aj k fn-j Fk-

n
But — Z (? )A.x . = x ,. so:all that remains is to show

j=o- .T J n-j n+1'

T^~ V* V^ / H \ • -f t™»-~ ^* 4t T^

Fix an integer p such that O'<_ p < n". What is the coefficient

of F in the left hand side of the above equation? Notice
f

that k = p only when j satisfies n-j-1 >.p, i-e.,

j <. n-p-1.. Thus we get an F for j = 0,1, . . . , n-p-1 and k = p.

Hence the complete contribution involving F is

n-p-1
-Fp Z (V)A.. pfn_j. But pfk= O for p > k, so if p > n-j

we have f .= O. Since p > n-j for j > n-p, we have
P n-j
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n-p-1 n-p-1 n

<>., P'n-j - - <?>*J pVj-

n
r f -, F, and the induction. is? complete.

As a consequence of the above: rela.tionshipS-j . v/ei

X ( t ) = L(t n /n!)X = r(ta/n. ')[x X + H f E ] =
n k=O

.
= X_ L(x /n:)tn +- E(ta/a.') C T .f F.)\. We= wliliO n n Q k_a k. n. k.

place additional restrictions on. A.C.t.). so? that, we: can.. prove >

the above power series converge.

Let A(t) = L(A /a.'. )tn,, and; suppose.- ther_e_ isr somê  con.-- •

stant K such that ess sup. |A Cud'' | < Kn for/ each n~. . Then

each A (05) can be thought of as a bounded linear operator.

on L2(C), i.e., Afl€ L(K
2(fi), L2(r*)). Also ess^up |A(s, oil | < K' <

for some K' and for all s in some neighborhood of 0, and so

our original restriction on A(s, ui) (allowing us to form

products) is satisfied. We wish' to show that. A(s) = E(A /n.')s

2 2"
is an analytic map from I into the Banach space L(L (n), L (H)).

First we need to calculate the norm of A considered as ann
2 2

element of L(L (£7), L (R))f and we have the- following- theorem.
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Theorem 6. Lef A: ffT—> R be ja random variable such that

ess sup |A(u;) | < »-. Then the norm of A considered as an
• o o

element of. L(L (Q, L "(H)) is ess sup J

Proof: Let J J A J I denote the norm of the linear operator

generated by A. Then | | A j i =- sup ||Ax||. Let x : f i — > R
lixjhi. /

be, such that x =r- 1~ Then'

= (fA2(w)x2(co>dM(4C»1 / 2< (ess sup A 2 (u<>
ft ft a

nCu' ) ) 1 =-ess^sup; |A(od).l l lx l! = ess sup | A ( o c ) | .
d.

Hence- ||A'|| <_ ess;.(sup": |A.(oi) |.. We^show now that ||A|| > ess sup |A(ui)

Eet: €c >> O; be: given. Let: K .==ess:sup |A(co) | and define the

ae-t D. = { u;,: | A ( us) | >^: K" — € •}. We '.may suppose without loss of

-1/2
generality, that. ji-(D). = 6-X O". Define x(ui) = x<w)6

where \(id ~- 1 for cc,€ or and: x(w) = 0 otherwise. Then

( x ( w ) d / i . ( w ) J = - ( 6 ~ d M ( u ! j ) = (M(D)6"1)1/2

n D:

and ||Ax|| = ( A2(u:)x2(oj)dM(to).)1/2 = (6"1 J A 2 ( a O d M < a > ) )1/2 >J A ( u : ) x ( o j ) d M ( t o ) . ) = (6" J
ft D

> (;6"1(K-e)2M(D))1/2 = K-f. Hence ||A|| > K-c, and since c

is arbitrary, we see that ||AJ| > K. Thus ||A|| = ess sup |A(w)

QED

We: now see that. E(A ' /nl ) t is a power series in

.£),. L2(0)) s-ince:
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E (ess^sup lA n (u : ) | | t |n/n. ') < I (Kn |t|n/n.') = e*'1' < --.

Hence A ( t ) •-- I(A tn /n. ') is analytic in L(L2(fl) , . L 2 (C) ) .
t

Form the function y(t) = -f A(s)ds where integration takes
"0

2 2
place in L(L (ft), L (ft)), and then consider the bounded

linear operator (for each t) exp y(t). This is an analytic,

map, and simple algebra and an inductive proof shows that,

its power series has the coefficients x defined, previously.

Hence applying the corollary to Theorem 4,. the function

X» exp (-j A(s)ds) is an analytic map from I into L (ft).,

Now consider the expression:

t t v
exp (-J A(s)ds) J exp (J A(s)ds) F(y)dy where- the: indicated-

0 0 0

integrations involving the exponentials take place- in

o 2
L(L (ft), L (S"0) and the remaining integration takes place

in L2(C). Since F(y) is analytic (in L2(fS)),

exp (J A(s)ds) F(y) is analytic (in L (ft)) as before, and
0 t -

consequently so is its integral j ; we apply once more

t
the operator exp (-J A(s)ds), so the whole expression defines

O
2

an analytic function in L (fl). Again an inductive proof

shows that the coefficients of this analytic map are

n-1
Z .f F. as previously defined. Hence our power series

k=0 k n k

for X(t) converges (absolutely) in some neighborhood of O,

and analyticity is established. We summarize our resuLts-'

with the following theorem.
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Theorem 7. Let F(t) and A(t) = E(A (u:) /n.1 ) tn be analytic• - ~" ^~~n

second order random functions and let ~ be a square
\J - ™" " — - - . . r _

integrable random variable. Suppose there is a constant K

such that ess sup JA .(w) | < Kn for every n. Then the

stochastic differential equation X'(t) + A(t)X(t) =

K(t) , X(0) --- XQ . has £i unique analytic solution.

Note1 that . the .extension of this theorem to higher

or.der. equations is trivial. If we have the equation

X<n)(t) +-ax(n"1 + • • • + aQ( t )X(t) = F( t ) and the

cr>:ef±icien.ts; are analytic and satisfy esssup |a. (O) | < Kv
^ J J

fixrr some; set . [K . }n
=Qland every k, then we write the equation

«J \j - "*•

in-, a?, vectorv form-

where.

X'(t) = A(t)X(t) + G(t)

A(t) =

O

1

O

O

1

O

O

O

•or()(t)-a1(t)

and G(t) =

o:

F(t)

Note/that analyticity of the a.(t)'s implies that of
J

<y n

t.) (as a., bounded .linear operator on (L (ft)) ) and G(t)

is obviously analytic. Hence the same techniques of our
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theorem extend to this case and to the state.space equations

of stochastic control theory, in particular to the recent

work of Leon H. Sibul (dissertation).

Turning to the question of: stati.onari.ty, we are interested

in f i n d i n g necessary and suff icient conditions that an

analytic random function be. stationary. We. will, assume all

-our-random funct ions satrsfy < X ( t ) >-=-O'. Suppose'then

that X ( t ) = E(X /n!')tn is a real- analytic; random funct ion

with the (analyt ic) covariance func.ti.on F(s-, t). Suppose

also that X ( t ) is stationary. Then, there: is some .-function

f:R —> ft such, that F(s,t) =• £(t-s:).. Note; that". f ( u ) = f (-u) .

Since F(s,O) = f (-s-),, we see? tha-tr f: rs~ analytic: (at O),

so there are real numbers; c such. tha±t f:(s) ==LXc"/n . ' ) s .
n nr

Let us see how these constants:r are:-related, to: X(t). We have

r(s,t)=< X(sXX.(t) > =<-' EJ(smX /ml.) £XtnX /n.'.> =
mr. ra nr. n

08 a . __.
= L L (sj'tn' J/j-.f Cn-j).') <, X.Xn .> =
n=0 j=0 J n"J

00 n . .
- I (1/n.') L (")sjtn"j <-X . X.>. But-
n=0 j=O J J J

f(s-t) = Z (c (s-t)n/n.')= E (1/n.1) E (-l)n~jc (n)s^tn~^.
n=0 n n=O j=0 J

Since f(s-t) = F(s,t), we have these two power series (in
«

two variables) representing the-same function, hence their

coefficients must be equal, thus (-1) Jc =< X _. X.>.
\J *J

Rewriting this last equation, we have. < XX >= (-l)ncn m n+m

Sibul. L. E..,. App.Llca-t-JLon. of- Linear. Stochastic
Opera tor Theory,. Pennsylvania. State University disser--
tation, 1968.
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n

On the other hand, suppose we have a zero mean analytic

random function X(t) = E(X̂ tn/n.') such that" there. exist

Then

the above equations show that X(f) is" stationary. Thus we

have the following" theorem.

constants [c }• satisfying < X X > = (~l-)ncn n nr n-fm

Theorem 8. Let X(t) = E(Xn_t
n/n.'.) be sa (zero mean) real

analytic random function. Then X(t) is:stationary if and

only if there are constants (c } such that < X X _> = (~l)ncn n nr n-fm

It is clear that. a set of: constants" {c' J satisfying

the condition. o£ Theorem 8- canno±t bet completely arbitrary

In. fa.et,. we mus.t have. =

G2k+l '

To see i), note that <-

— °» and: C4k-f2.--0:

and < > = ((-I)

2k+i- (rl])

Since X ( t ) is real-valued,

we have ~cok-fl= °2k+l' —•—-*» C2k+l= ^' Thisr is?: to be ex-

pected since f (t) must be. an even function. Also

X2k-i-l X2k+ 1
i -i\2k+l(-1) c

proved. By defining dn

"' hence

'C2n'' we can

.and iii) are,

e f(t) in the

form f(t) = £ (-1) (d,,/t2nX)t where, d. > O- f or all.n, hence_. n n. —~n=O

fCt) is represen.tabl'e by an even,, alternating power, series.

(Note that d = <X2>).n n.
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Theorem 8 can be reformulated in the following way.

Theorem 9. Let X(t) = L(X tn/n.') be a_ (zero mean) real

analytic random function. Let A = [X~, "X.̂  > • • • > X2 ' ' ' ' ^

and B. = (X, , X0, . . . , X0 , , . . . }'.'" Then X(t) is stationaryJL j ^n+j- ~̂ ~~~~~ —

if: and only if A is orthogonal to B and

*> <X2nX0> =<X2(n-k)X2k> k = O n

i i } < X
2 n + l X l > = < X 2(n-k) + l X 2k + l > k - 0 , . . . , n

a n d iii) < x X > = - < X x > f o r

Proof: Suppose. X ( t ) is stationary. We show that A J L B

first:. < X2nX2k^ > - <-D2nc2n+2k+1= c2-(n+k)+1= O. Hence

X'B.: . Also,

<'X2(n-k)X2k> = (~1} C2n-2k+2k= C2n= <X2nXO>

-
2(n-k).+l 2k+l C2n-2k+l+2k+l

3) <X2n-lXl> = (-1)"c2n = -C2n = -<X2nX0>'

so the first half of the theorem is proved.

Suppos(e now the second half of the theorem holds.

Define [c } by the equations c2 ,= 0 m = 0,l,..., and

c2m =
 <X2m

x
o
> m = O'1 ..... We wil1 show that <xn.-

x->

i
==- (-l)n~̂ c .for 0 < j < n and all n, whereupon Theorem 8

tells us- that X(t) is stationary. Suppose first that n

isvoddi. If :j is --even, n-j is odd and X _.c B, hence
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CX _ .X- > = O since X.€ A. Thus < XQ_ .X. > = 0 = <-l)
n~Jcn

since n = 2m+l for some m. If j is odd, n-j is even, so

X . (: A and X.€ B, hence <X .X . > = O = (-l)n~jc as before.n— j j n-j j n

Now we show Theorem 8 is satisfied for even n. Let n = 2p.

First, consider the case where j is odd, let j = 2q+l.

Then

" " " = < X 2 (p-l-q)-H X2q-H > =

<X2p-lXl> = ~<X2pX0> =

Now,, suppose, j iss even ;. j ,. = 2q . Then

• <X2P
X0> C2p

as- was= to be shown. Hence X(t) is stationary. QED

We now have developed a technique for finding the power

series coefficients of solutions to stochastic differential

equations and. we. also have theorems which tell us when a

given analytic stochastic process is stationary, so in

principle we have. the machinery to determine conditions

under which a given equation will have stationary solutions.

We present some examples to show how this may be done.

Example 1.. We know that the derivative of a stationary

random- function . is?, stationary . When will the integral of
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a stationary (analytic) random function be stationary?

This question is equivalent to determining stationary
!

solutions to the differential equation X1 (t) = F(t),

X(O) -= XQ where F(t) is the giv^h stationary (analytic)

random function and the random variable X- is yet to be

specified. The soltuion to this equation is
t 9 °° n

X(t) = XQ + J F(s)ds = XQ + FQt + Fjt 72.' +..- = I (Xnt
n/n.')

O n=0

where X = F , for n > 1.n n-1 —

We now apply Theorems 8 and 9 to this random function

to see what additional conditions we need to place on Xo

to guarantee stationarity . Theorem 9 tells us that in

order for X(t) to be stationary, it is necessary that

<X2nXQ> = (-l)
n <X^>, i-e., we must have <F2n+1XQ> =

- <X2(n+l)
X0> = ( - 1 ) < X > = ( - D < > . Hence

our first restriction on X~ is that it must satisfy the

relations < F2n+i
xo> = (-Dn+1<F^>. Moreover, Theorem 9

requires that < XQX2 . -,> = 0 for all n, hence our second

requirement is that < XQF2 > = 0 for all n. Since F(t)

is stationary, there are constants [f } such that

,<Fn_.F.> =' (-l)
n"̂ fn. Define constants (cn) by the

relations c2n+1= O, CQ= < XQ >, and cn+2= -f2n- We will

show that <Xn_.X.> = (-l)n":icn. .|

Case 1. Let n be odd, n = 2k+l. We must show

<Xn_.X.> = O for all appropriate j. For j = 0, <Xn ,X.>

- <Fn-lV - <F2kV - °' For J £ 1. <Xn-jXj> =
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^ J- — • "1 * • 1 \ ™ JL / J- O \ ™" JL yn-J-1 j-1 n-2

the f 's with odd subscripts must be zero.

Case 2. Let n be even, n = 2k. For j = 0, <X _ ,X.>
J J

<XnV - <Fn-lV - <F2k-lX0> = < F2(k-l) + lX0> =

(-1) c0, = (-D
nc^ as required. For j > 1, < X_ ,X_.> -&K. n "~

= <F . ,F. > = (-I)n-J- lf = (-l)2k~ j 1

- - i \ f , v ,
~ ^ 1J ±2(k-l) ^ 1; C2(k-l)-f2 <• 1; C2k.

= (-1) ^c as required. Hence we see that necessary and;

sufficient conditions for X ( t ) to be stationary are- that.

< F ( t ) > = O, < F X 0 > = (- l )n + 1<F2>, and <*2[*o> -a .

These last two conditions may be combined by requiring that.

< X Q F ( t ) > = <XQ I(Fn tn /n. ')> = r ( t a /n . ' )<X 0 F n > =

I(t2 n /(2n). 'XX0F2 n> + I(t2n" l"1/(2n+l):)<X0F2n+1> =

= L(t2 n + 1/(2n+l). ') (-l

x - l < F > ,

_i.j3. , we require that the correlation function of F(t)

and XQ be given by

< F ( t ) X Q > = -E((-l)n t2 n + 1 /(2n+l):) < F 2 > .
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Example 2. We present here an example of.a differential

equation in which the coefficient function as well as the

,forc.in£ function- is random. Consider, the equation

X'(t) - Ae~tAX(t) = AB(etA- 1)

X(0) = B

where A is an essentially bounded r.v. Writing the equation
%

la the f;orm.X'( t . ) + - A ( t ) X ( t ) = - F ( t ) , we-calculate that

ACt) = -Ae"tA= £X~A')n+1tn/n.' ±:.e-., An«"(-A)n+1. Also
co:

we have F ( t ) = AB.(e- - 1.) = E.'.A^Bt'Vn.1 so we have

F = Q) and. E =- An B; f:or/ a~ >. I. We^- have -&- solution
viz- rl- ——

n~i:
t /n-:: wherec-X.^-xj^. +- £1 ^.F^ =

K?7©. C

n"l: k+1

n j kn B) ~ B(xn.^ J^n A ' " BCn

wh.ere we. define C. to: be. the:-expression in the brackets.

Remember- tha-t bo-th. x. and- ,_f-_. are: polynomials in then iv, n.

variables A ,...,A ,, and since the variables A, are

k+1
polynomials in. A (A\= (-A) ),, we. conclude that .C is aK n

polynomial in the r/.v.. A. Now if:X(t) is to be stationary,

2
we must have ^XQ^O-* = ~<X,>, and this condition becomes

o 2
<A B > = 0 and hence we know that any polynomial in A is

orthogonal to any polynomial, in B. Thus we have <X X > =
n m

o
= <Bcn

BC
m
> = <B £̂ 0? = ° for n + m > 1 and consequently

Theorem 8 is satisfied. Thus the solution is stationary
2 2

if and only if <A B. > = O. Note that we did not actually

have to calculate, the- solution . to make^ this-conclusion.
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Example 3. Consider the equation X"(t) + BX(t) = O,

X(0) = XQ, X'(O) = X1, where B is a random variable which

is positive a.s. This equation is a stochastic analog of

the harmonic oscillator equation. Suppose X(t) = £(X /n.')tn,

then X".(t) = I(Xn+2/n.')t
n, so O = X"(t) + BX(t) =

= r(Xn+2/n.')t
n + B r(Xn/n.

r)tn = Z((Xn+2+BXft)/n.
r) tn', i.e.,

X 0= -Bx for all n. It is easy to see that the; coefficientsn+2 n

Xn are given by the relations X2n= (-B)̂  and X2n+1= (-B)
nX1.

The closed form expression with these coefficients is

X(t) = XQ cos /B t +CX1//B)sin/B t.

To see when this random function will be statianary,

let us assume that the random variables B,. XQ,, and; X, are

all independent and < X_> = < X,> = O, We apply Theorem 9,

so define A = (XQ, X2,X4, . . . } and C = [x:;L,.X3,,X5, ...... }. Now

A and C are orthogonal since < X2n
X2p+i> = < (-B)nX0(-B)

PX1> =

= < (-B)n+p> <XO><X1> = O. We check the last three

conditions of the theorem:

A) <X2(n-k)X2k> - < (-B)n-kX0(-B)
kX0> =

<(-B')nX0X0
> - <X2nV

Ai) < X2(n-k)+ lX2k+ l> - <(-B)n-kX1<-B)V =:

iii)



Also 0 ,2n-l 1 (-I)11"1 < Bn~l><-

Bui thi'-.o expressions mus i bo negatives ' ' one an;

.i"Uand so <t t > <B > < X . > / < X O > . Let < < X , > /

then < Bn> - c < B n ~ 1 > , i. .e. , < Bn> = cn for every >.. The-

characteristic funct ion for B is <exp i tB> =

I i n t n<B n>/n, ' - I(itc)n/n.' = exp itc, so B = c a.s.

since characteristic functions are unique. Thus if we

assume B, Xo, and X,, are independent and < XJ> = < X,> = 0,

the solution i&: stationary if and-only if

B(ct$ = <X?>/<:x~> a.s. .

Tlrese" three: examples serve, toe indicate a fairly

wide, range of- questions which the-;techniques of this section

can answer. The first example provides us with a criterion

which, we will use in section 3 to: characterize the general

form of stationary solutions to the.equation. Example 2

shows that we may characterize conditions for the existence

of stationary solutions without having to find the solution

itself. Example 3 says that a more general canonical form

of simple stationary processes (i.e. adding randomness in

the time functions of A cos t + B sin t) is not needed.
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SECTION 3

In this section we use some of the tools of random
it

harmonic analysis to develop further conditions guaranteeing

stationarity of solutions to certain stochastic differential

equations. We make extensive use of the harmonic decom-

position theorems concerning stationary processes to find

sufficient conditions to be placed on the initial values

of the equations. We then calculate the correlation

function of the resulting solutions. Moreover, we show

that under fairly general conditions we can get asymptotic

stationarity independent of the initial values. We begin

with the notion of an orthogonal random measure.

Let B denote the family of Borel subsets of the real

line and let (2 denote the subfamily of bounded Borel

subsets. Then a function £:£? x ft—> C is called an

orthogonal random measure if

i) < i (A) € L2(ft) for each A € a

ii) E ( 4 ( A ) ) = O for each A € a

iii) E(4(A)TTBT) = O if A r\ B = 0, A,B € Ct
n

iv) the relation M(A) = E(|£(A)| ) defines a measure

on d. . !
• !

The measure M is called the absolute measure associated with

^. If f:R —> C is a complex valued measurable function

"b 2
such that J |f (X) | dM(X) < °°, we can define the integral

a .
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»**

J f-(X)£(dX) in a natural way (see Rozanov [8])-.
a

We say that a second order r.f. rj(t) ,is separable
2

if the smallest closed linear manifold in L (ft) containing

the r.v.'s tco is separable, ji..e. , it contains a
t

countable dense subset. We remark that a continuous r.f.

r)(t) is necessarily separable, for let V be a basis for

2 • °°
L--'(R) and let [t } , denote the set of rational numbers.n n i

Then for. each n, there is a countable subset of &

(call it H -
'nmW such that 1<V = * E(T»(tn)hn«)hnm'm=l

Let:H = [a } , be an orthonormal basis for the smallestn n=l ^

closed- linear manifold containing wH . We claim that
n=l n

for: every t, T)(t) = £ E(t](t)a )a . This equation obviously
n=l n n

holdsrif:t is rational, so we suppose that t is irrational

and: e > Ol Since 77 is continuous, there is a t, such that

iir)<t) --T}(tk)i| < €/3. There is an N such that if n > N,

n
then i ;T]( t . ) - L E(T}( t , )a )a |l < e/3. Hence, for n > NK , K m m —m=l

n
i J T } ( t ) - E E( t ) ( t ) a ) a , | <i m m ~~

n
- L

•- e/3.+-e/3

n n

m
E(7I(t)am)aJ

n
I E [E ( t j ( t . )a m ) - E ( r j ( t ) a ]
m=l k m m

< 2 c/3 + iiT)(tk) - 7j(t)|| < £. . . 1

Hence, the curve r?(t) is contained in a separable manifold

and so T](t) is separable.
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Rozanov proves that every separable stationary process

(with measurable correlation function) is representable in

-the form .

T?(t) =

where. £ is an orthogonal random measure. (£ is called

the spectral random measure associated with 77). This is one.

of the most powerful results in random harmonic analysis

and we will make extensive use of this theorem throughout,

the rest of the paper. Relevant discussions of these

integrals and decompositions are presented in Rozanov's

text [8] and in Irzhina's paper [5].

In particular, we are especially interested in; the

equation

(D X'(t) + aX(t) = F(t)

X(0) = XQ
2;where a is an essentially bounded r.v., Xo 6- L '(ft), and

F(t) is a stationary continuous r.f. We will also suppose

that a and F(t) are independent. As is well known, the

solution to the above equation can be expressed as

-ta . -ta -*

We

X(t) = X0e'
ta + e-ta J eya F(y)dy.

i ' / . O
00

write F(y) = J e2TriyX£(d\) where £, is the spectral

random measure associated with the process F(y). Assume

for the moment that the following calculations are. valid and

calculate jV^yOdy = J^V*/" e2 T r i y XC(dX)dy =
0 O -«
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= j ^ ^ d y 4(dX) - ((et

-oo 0 -°°

Thus

X ( t ) =

(2)
GO * 00

-•= e" ta[X - J (£ (dXy27r iX+a) ] + J (e2 f r i t X /2ffiX+a)
— 00 . — CO

— V f t- o Y TT ^ -L. V f +• ̂— n. \ t, a , A... , r ) T i v L /

where K and Y are the respective summands from above.

We show now that the random function Y(t) is a stationary

process.

E(Y(s)YTt7) = E(J (e 2 f f i s X / 2 f f iX+a)C(dX) •

- jE ( l / | 2Tr iX+a | 2 ) e 2 f f i X ( s ~ t ) G(dX)

where G is the absolute spectral measure of F. As we

see E ( Y ( s ) Y ( t ) ) is a function of t-s only, hence Y is
i

stationary and its correlation function is j

f ( T ) - = jE ( l / | 2 f f iX+a | 2 ) e 2 T r i X T G(dX) .
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If: F(t) is a real process and a is a real valued r.v.,

the above equations reduce to the representation

X(f) = K(t) + Y(t)-where

00

Y ( t ) = j' (a cos 2TrXt+27TXs in2TTXt / a 2 + 4tr 2X 2)u(dX) +
0 ' I
00 O 9 9 'f

+ J (a sin 2 f fX t - 2iTXcos 2 r rX t / a + 4ff X ) v ( d X ) f
o / i.

03: 00 ' '

where F( t ) = J cos-2irXt u ( d X ) + J sin 2ffXt v (dX) is the i
0 O ; . [

-spectral representation of F. Also then E ( Y ( s ) Y ( t ) ) = , :
t

°K I
J E. ( l /4Tr 2 X 2 - fa 2 )cos^2ffX(s- t )G(dX) and Y ( t ) is again stationary \

00 }

with correlation .function f (T) = J E(l/4772X2+a2)cos 2 f f X r G ( d X ) .
O

& get

K(t) =e~ta[X0-a.,J(u(dX)/a
24-4Tr2X2) + J(2frX v (dX)/a2+4ff2X2)

and so if a(cu) >-_t-> 0.for. almost all u>, we see that

l>Lm KCt.cc) = O a.e. and ..then X(t) is asymptotically stationary
tr--°° "

(independent of the initial conditions). See also Adomian's

discussion of a similar problem in his dissertation.

We now need to investigate carefully the various

integrations involved in the above calculations. In particular,
t

the. problem may be phrased as follows: let I and J be
2

intervals, f:R x d,—> C measurable on the product space

R x R x £1, 4 a random orthogonal measure; 1) can we define

See Doob [4] also.
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the. integral Jf (x, y, oo) £(dx) in a consistent way?, 2) if
J

so:,, when, can wer say that" the-interated integrals

jj f (x,y, u.04(dx)dy, and j'J f (x, y, tc)dy4(dx) are equal? Let
IJ JI

us answer the first question. Let g:R x ft—> C be a function

with the property that there exists a mutually disjoint

s:equexic:e:-of. bounded: Borel_sets. tA.}. , an<* a sequence

2- n .
fek.^k-l' gk€ L-(fJ)> such..that g(x, to) = E C(Ak,x)gk( uj)

K~.l.

where CCA^x) isi the characteristic function of the set

A'*... Moreover wei will., require-that the families (g. } and

{£(&.))) be. ijidependen.t'. . Then .define Jg(x, oi)*k'
n.

,,ai)... Werget-.

EX|Jg.(x,u)H(dx) |2) =-E:( I g g 4 (A.) ITAT))
j,k=i.J k J k

- E: E.(g.̂ )E:(̂ (A.)lTA— )) - !E(lg |2)M(A )
i-.Jc-n J k J- k k=i k k

= jE(|g(x) |2)M(dx) =- J||g(x)||2M(dx),

where M is the absolute spectral measure associated with £•

Now consider the set J of. all functions g(x,cd) = 2E(A. ,x)gk(oi)

where igk). is independent of. the' family- U(A) }, & = all

bounded Borel sets. J is clearly a linear space, and if g €

Jg(x)£(dx) is defined. Define ||g||y= ( J||g(x) ||2M(dx) )1/2,

then ( I ' l l . is a norm on J. Complete J with respect to this
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norm and'denote the completed space S. If g €S and

II&-&-'I! i—> O> define fg(x)£(dx) as the limit in the mean
II . or v

of the. random variables J*g (x)£(dx). Note that equation (3)

guarantees that this limit exists. Just as in the case

of. ordinary stochastic integrals with respect to orthogonal

random measures, we have that g(x) is integrable whenever

Jlig;(xOi|2M(dx-) < » and g is the limit of elements of J. Note

tha±-. if:g.yh. €-S,- then E( Jg(x) £(dx) Jh(y)£(dy)) =

== JcDv-(g.(x) , h(x) )M(dx) since the corresponding relation

ho'l'ds? for elements . of J. Note also that if g(x) is continuous

iir.meaur. square {-and independent of (£(A) }.,ff, then g is

Inrtegrable: if:andionly if f||g(x)|| M(dx) < «.

Consider, now the question of interchanging the order [.
it-

of. iterated, integrals. Suppose we have a function £
nr o F

fiR~~x ST.—> CTwhich is measurable, f ( x , y , - ) € L (ft) for |:
2 2 \each pair ( x , y ) , and the natural map from R into L (ft) •

induced-by f is continuous. Suppose also that the family

[f (x,y) }(X)y)£R2
 of r.v.'s is independent of (^A)iA€^-

Let II and J be intervals. Then g(x) = Jf(x,y)4(dy) exists

if: and, only if J||f (x,y)||2M(dy) < «. We want to integrate

g(x) over the interval J, and ||g(x)|| = ( JE( |f (x,y) |2)M(dy) )1/2

so let us require that f satisfy the condition

(4) f(J E(|f(x,y) |2)M(dy))1/2dx < ».
J I

Then- the integral fj f (x, y) t(dy)dx exists. Now we want toI!'
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insure that |j f(x,y)dx£(dy) exists, so we need to know
IJ

P I /o
that j (E(|f(x,y)| )) dx < °°. Note that independence is

J

preserved under this integration, so all we need to check is

that j E( |h(y) |2)M(dy) < » where h(y) = J'f(x,y)dx. But
I J

E( |h(y) i2) = E J'J f (s,y)f (t,y)ds dt = j!j E(f (s, y)f (t, y) )ds dt,
JJ JJ

so..we require that f satisfy

,(5) JJ'J E(f (s,y)f (t,y))ds dt M(dy) < ».
IJJ

Now if f satisfies (4) and (5), both the iterated integrals

exist. Consider now a subclass of function integrable with

respect to 4. We say that g 6 U if g 6J and there is a sub-

2 •
set H - H(g) C L (ft) whose finite linear combinations are

2
dense in L (SI) (call such a set linearly dense) with the

property that E(g(x)£(A)h) = E(g(x))E(£(A)h) for x € A,

A't G, h 6 H(g). We sometimes write this relation as

E(g(x)£(dx)h~) = E(g(x))E(4(dx)h). If g is a simple function,

then

E(j'g(x)?(dx)h) =

= J E(g(x))Mh(dx)

for h €H(g) where Mh is the measure defined by M^A) =E(4(A)1T).

Hence if gC U, we have E(J g(x)£(dx)h) - J E(g(x))Mh(dx) for

h€H(g).

Return now to the consideration of our function f. We

require now that the range of the function g:R —> J defined
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by [g(x) ] (y, u.0 = f(x,y,co) be contained in U. Then there

2 "'is a linearly dense subset H C, L. (fi) such.-that i f . h € H

then

E(JJ f ( x , y ) d x t ( d y ) h ) = J (E(J f (x, y )dx) )M. (dy) =
IJ I J

E.( f ( .x ,y) )dxM (dy) = JJ E(f (x, y ) )M. (dy)dx =
J ' JJ. n . ,

= J E(J f Cx. ,y)£( 'dy)h)dx = EX JJ f ( x , y) 4(dy)dxF) .
J I Ji:

Since H is linearly dense and the: above.relation holds

for all h € H, we conclude, that.

Jj £('x:,.yX£X'dy.-)dx =- JJ fi(x;y;)dj
IJ JJ1

c

under these conditions.

To summarize these resuLts, we? havec the ;following

theorem:

«• »

Theorem 1O. Suppose f: R x R x -ft —> C: is~ measurable and

independent from the orthogonal random measure £. Let M

be the absolute measure associated with t,. Let f (x, y, • )

be square integrable and continuous when considered as a_ •
2 t

mapping from R x R into L. (̂).. Suppose there 2J5._.iL linearly

dense subset H of L2(fi) such that E(f(x,y)£(dy)K) -

E(f(x,y))E(^(dy)h) for h €H. If for the intervals I and J

we have

(4) J Cj* E(|f(x,,y) |2)M(d.y.))r/2dx.<.« =
j n
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(5) and JJ7 E(f(x,y)f(t,y)ds dt M(dy) < »
IJJ

then JJ f(x,y)£(dy)dx = JJ f (x,y )dx 4. (dy).
U JI

In our calculations involving the differential equation

(1), the function f is defined by

fCx.y.w) = e2'ff±xy eax = e2"ix* e
a~(u>)x

Suppose that K = ess sup: ja(oi)| and, a. is rearll valued. Then

relation (4) becomes

t OD t °°

j (J E(|f(,x,.y) |2)M.(dy))1/2dx:=- J (J E(e2ax)M(dy))1/2 dx
O —°° Q~-> —o^

CO

But (/ M(dy)) 1 / 2 = l|FtQ)|| « -, and E~(e:2ax) ^e"^ sor
— CD

£

J E(e ax)dx < « for t fini.te. Henc:e: (4) hol'ds-. Consider
O

now relat ion (5).

|E ( f (x ,y ) fT t77) ) | <

» t t
hence |J J J E(f (s,y)f (t, y) )ds dt M(dy)| <

-« 0 O .

< ||F(0)|!2 j j eK(u+v)dudv < » for t < ». Since a isJo o

independent of F, f is independent of 4 (being a Borel

measurable function). Hence- the o.nly additional, requirement

we. place on a and F is that there exist a linearly dense

set H for which
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E(eya£(dy)h) = E(eya)EU(dy)h),

for then we have v

E(f(x,yH(dy)h) = E(e2TTixyeya£ (dy)h) =

= e2l7ixyE(eya<-(dy)h) = e2fflxyE<eya)EU(dy)h)-

= E(e27rixyeya)E(4(dy)h) = E(f<x,y))E(4(dy)h).

Note that if a is not random, then all these conditions are

trivially satisfied.

So now we can decompose the solution X(t) = K(t) + Y(t)

into the sum of a stationary Y(t) and (in general) non-

stationary K(t). Thus if we set K(t) = O and solve for XQ,

we obtain a sufficient condition for stationarity. In

particular, if

(7) XQ = J (!/2ffiX+aH(dX)

then X(t) is stationary. Note that a new difficulty arises

in this expression. Namely, if a = 0 (in general, if

/j{u;a(oc) = 0} > O) and 0 is in the point spectrum of F, then

(7) is not defined. This does not contradict our exchange

of integrations however, but it does say that we cannot

split up the integral in equation (2).

The condition in (7) may actually be a necessary

condition for stationarity. For example, consider the

equation X'(t) + X(t) = f, f €L2(ft). F(t) = f, so £(S) =f

if 0 €S and £(S) = 0 otherwise. Hence the condition is
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XQ = J(l/2TriX-t-lK(dX) = f and the resulting solution is

X ( t ) = J(e 2 T r i t X /2ir iX+l) i (dX) = f. Note that F ( t ) is

analytic, so solving by power series we get X ( t ) =f+ (XQ-f)e

jl .ej . , X = (-1) (XQ- f), n > 1. Calculating the covariance

function of this process, we see that a sufficient condition

that X(t) be stationary .is that <f2> = <fXQ> = <X
2>. We

show now that this is necessary. For if X(t) is stationary,

<XQX2> - -<X
2>. But <XQX2> = <X

2> - <fXQ> and <X
2> =

<X2> - 2<fXJ> + <f2>. Also O = <X/,X1> = <X
2> - <fX_>, i.e.,

U O tj J. U U — ~~

<X2> = <fXQ> and so we have

O = <XQX2> + <X
2> = 2<X̂ > - 3<fXQ> + <f

2> =

= 2<X2> - 3<X2> + <f2>, i.e., <f2> = <X2>.

2 2
Hence <XQ> =

 <fx
o
> = <f > is a necessary and sufficient

2
condition that X(t) be stationary. But then <(XQ-f) > =

= <X2)> - 2<fXQ> -f <f
2> - O and so f = XQ. Thus the condition

XQ= J(l/2ffiX+l)4(dX) is actually necessary. (Note that

we have incidentally proved that if a and b are r.v.'s,

then a + be" is stationary if and only if b = O).
»

Of course the condition on XQ expressed by (7) is not

always necessary for stationarity. Consider the following

interesting example. Let X'(t) = F(t) and suppose that

F(t) is real valued and analytic and 0 is not in the spectrum

of F(t). Then the sufficient condition we get on XQ is
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X = -J ( ! / 2 f fX)v (dX)
O

CD CO-

where F ( t ) = J cos 2 . r r t X u ( d X ) + J sin 2tr tX v ( d X ) . Note
0 6.

00

that E ( X Q F ( t ) ) = -J (sin 2Tr tX/2 t rX)M(dX) in this case.

If we calculate the coefficients in the power series

expansion for F(t,), we. get /

(2ffX)2nu(dX)
O

F2n+l= <-̂ /W)2n+1v(dX>.

OS;--

Hence in general, we. haver <F. > — J (2rrX) nM(dX). Thus
n 6:

applying, the? Eesul.tr. off example-; 1, we: have-that a necessary

and! suffici.en1; aondLtijon-forrX(t) to^be .stationary is that

<F (t)XQ> = -E( (-1.) t / (2h+l) . ' )

= -K C-I) n
t
2n+L/ (2n-hl). ') J (2 i rX) 2 n M(dX)

= -I jVl)n((2ir tX)2 n + 1 / (2n+l):2trX)M(dX)

= -J(sin 2 t r tX /2 t rX)M(dX) .

Thus we see that if XQ is any initial condition for which

XXt)" is stationary, then the: projection of the r.v. XQ onto
2

the smallest closed linear manifold in L (R) containing
00

the process F(t) (call it .7) is the r.v. -J (v(dX)/2irX).
O

Hence in the case of analytici.ty, a necessary and sufficient

condition, tha.t. X( t ) be: Sitationary; is: that .
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or

X = Y- J (v(dX)/2rrX)
O

where Y is any r.v. orthogonal to 3~.

In this section we have restricted ourselves to the

case of an equation with a constant (r.v.) coefficient.

This restriction was made purely to facilitate the various

computations made in. the- interchange:- of: order.- of. integrations.

Examining the more general case (time-varying coefficients)

the author has been unable to extract- a likely candidate

for the stationary part of the general:, solution. Neverthe-

less, the idea of using random harmoniccanalysisrespecially

in conjunction with the analytic: method: of section 21 appears
£

valid, and progress in this direction:seems, likely in the

future.
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SECTION 4

In section 2 we presented a general method of determin-

ing, when stochastic differential equations with random

(analytic) coefficient processes, random (analytic) forcing

function, and random initial conditions have stationary

solutions. In section 3 we presented a method of applying

random harmonic analysis to a simpler first order equation

andrwe also presented an extension of integration techniques

allowing us.to use these more powerful tools. In this

section we'wish to relate our work to that done by-others

and;, to also make a few remarks concerning the abstract

notion of.stochastic transformations. We also indicate some

future.work.

First let us relate our results to Adomian's [1]

r.esults concerning stochastic Green-'s functions transforming

a?~ given statistical measure of an input process to the

corresponding measure of the output process. Suppose we

have.a stationary r.f. F(t) with spectral representation
I

F( t) = J e
2f f i tX t ( d X ) .

We:have defined the correlation function

f.(t) - < F(s)FTiTt) > J e"2ffitXM(dX)

where M is the absolute measure associated with £.
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M is absolutely continuous with respect to Lebesgue measure

on the line, we call, the Radon-Nikodym derivative

m(x) = dM/dX

the spectral density of. the process F, _i .^. , we have

f.(t) =-.J e~ 2 f f i t Xm(X)dX

and m-(X-) -- J e? f f i ± Xf( t )dt

Now in. the equa-tlon. discussed. in section 3

) — F.-(t), X(0) = XQ

with, the; r. v. c:oefficient a, weicali: F(t) the input process

and: X.(<t), the- output, procesŝ . Moreover, applying the results

of section 2- we know that; we~can have a stationary F(t)

resulting in. a, stationary. X(t). Now let

F(t) = J e2fritX£(dX)

and X(t) = J e2:ffitXp(dX)

be the spectral representations of F and X respectively.

Suppose also that F has the correlation function f and

spectral density f.unation m. We calculated in section 2

the correlation function x for X given by

x,(t) - f E(17|2ffiX-i-a|2)e~'2TritXm(X)dX.

Hence we immediately, recognize., that the spectral density of

X: must be given by

n(X) = E(l/|277iX+a|2)m(X).
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Now the Green's function transforming the spectral, density

of an input into the spectral density of the output, is a.

(perhaps generalized) function H(t,u) such that

n(t) = J H(t,u)m(u)du

whereupon we see that H is given by

(1) H(t,u) = 6(t-u)E(l/|2ffiu+a|2)

Note that this form of the Green's function is the-same as

Adomian's [l] if the r.v. a is a constant,, for then we. ge.t.

H(t,u) = 6(t-u) |Y(u) |2

where Y(u) = l/(2ffiu+a)..

Similarly, the stochastic Green's function. G(!t,.u) trans.—

forming the correlation function f into, x by the relation.

x(t) = J G(t,a>f Cu)du

can be expressed in terms of H by the relation

G(t,u) - JJ e27ri(TU-CTt)H(0,r)d<7dT

and so applying (1) we get

GCt.u) = J e2ffit(u-t)E(l/|2trir-fa|2)dr.
\

In both cases we see that these Greea's functions are. ex--

pressed in terms of the statistics of the coefficient in

the stochastic differential operator.

Let us make a few remarks concerning the. idea of. a--

stochastic transformation (s*t.), a concept due to Adomian

[l]. If X(t,ui), t € T, u>€ £}, is a s.p., a stochastic trans-
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formation or stochastic operator T on X carries X into

another process Z = T[X.], and T. in general depends on t

and to' € Zi' (where £V may not be identical, to. ft) . Thus

T includes all deterministic transformations as a special

case and we usually deal with integral, operators, differential

operators, partial differential, operators, etc.

We wish now to, indicate a general! framework .in which

these ideas can be precisely expressed. In .general . there

is a natural desire to, distinguish between an operation of

the form

(2) X:Ct,. ctf == HX t:, u,) Y (u , .w) du..

where the kernel H-(t, u) is: a; complex, valued, function and X

and Y are r.f. *s and an operation of: the form-

(3) x:et,,w) = J 'H.('t:fu,.a$Y.(u., oaJdu-

where the kernel H also depends on the stochastic variable

ox The transformation expressed by. (2) in which the process

Y is mapped into the process X is. of ten calledia. deterministic

transformation whereas (3) expresses an operation which

includes (2) and conforms more closely with our intuitive
i

notion of a stochastic transformation.. Indeed- (3) is the

general form of a stochastic integral operator. Similarly

an equation of the form

(4) X(t,.co) ~ aY(t:, cc) + bZ(t, ui).

where a and b are' complex constants- and X,Y, and Z" are r.f.'s

is rightfully considered a deterministic mapping of the
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pair (Y,Z) into the process X. On the other hand, an

equation

(5) X(t,u>) = A(t, o;)Y(t, u£ +. B(t, uilZXt, cd

mapping the pair (Y,Z) into X is a "truly stochastic"

operation. Also we need to consider maps of the form

Y. — > X defined by

(6) X(t,w) = Y(f (t), ud

where.f:T — > T indicates a re-parameterization of the

time ̂variable. One wants to think of (6) as expressing

a^-deterministic relationship whereas

(7) X(t, to) = Y(f (t),<p(w))

where -f :T — > T and <p:fi — > ft would again be "truly

stochastic". Bharucha-Reid's [2] "random transformation"

refers to a map

(8) T: ft X R — > R

with the property that the function T(-,x) is a r.v. for
\ i

each x € R and such a random transformation may induce a

stochastic transformation defined by

(9) X(t,w) = T(<4Y(t, o£)

carrying Y into X. One would call such a transformation

deterministic if the function T did not depend on the

first coordinate of its argument. The examples of trans
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formations in the introduction, to this:- thesis indicate more

different forms that a s.. t. can take.

We propose to examine-a function^ space approach of

representing a r.f. as a measure on a fixed collection of

functions; then a change of measures on this function space

will be identified as a stochastic transformation. In

particular, let X:Ct). be- a real-valued. s%p. with parameter

set T = (a,b)\. Following the construction-outlined in

Skorokhod [1O], we let $ be the space of all functions

xr(a,.b) —> R.. If. A. is? a Borel. set in:. R and tQ€ (a,b),
i

we let C. CA.) = be: G 4>:x(tn). € A'.].. A set.which is the% (X

intersectioa of. a. fiiniitee number.'of:'setssof: the:form C. (A)
0

is a cylindrical set. We. Te.tl E-~ be: the; minimal, o^algebra

of subsets of $ generated by all-cylindrical, sets. Now the

measure \JL determined, on. E" by. the: relations~

k
(10) M( ̂  C. (An)) = P(X(t. ,02) <E A i = 1,.. .,k)

n=l rn " r x

for all k, t,,... ..,tk in (a,b) and. all. Borel sets AI(...,A.

is called the measure in the function space corresponding

to the process X(t). Kolmogorov's theorem guarantees us •

that (10) defines a unique measure, on F.'..

Conversely, suppose that we have a measure p defined on

F such that ji($) = 1. Then. we. have a probability space

(R,7,P) where ft. = $, ̂  - F, and: P.-= ̂i and so we can define a

process X(t), t 6 (a,b) by the. relation

X(t, as) = X(t,x) = x(t)
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We remark that X(t,-) is measurable, for let A be a Borel

set. Then (u:X(t,ui) 6 A} = ix:x(t) 6 A) and this: is. a.

cylindrical set and so X(t,«) is measurable, î .̂ e.,

X(t) is a s.p. Note also that the function space measure

corresponding to X is just ji.

Hence every process on (a,b) is associated with a

measure on $ and conversely. Now let M be the. set- of: all!,

measures jj on <f> such that (̂$) = 1^ Then, any function

f:D —> M where D C M could be called a stochastic trans-

formation. More generally, a function f :D —> M where.

D C Mn can be a stochastic transformation..

The above interpretation of a stochastic process as=

a measure on an appropriate function space does no.t. in

itself obviate any computational difficulties associated

with the analysis of s.p. fs. However, we can: now use the?,

full power of general measure theory to gain new insight.

For instance, the author is currently attempting to

prove theorems answering the-following questions: Let. F.

be a stochastic transformation and let X(t) be a stationary

(in some sense) process. Suppose that Y = F(x) is stationary

(in the same sense). Let p and'u be the measures associated

with X and Y respectively. Let M be the manifold in
Jt

2
L (^) generated by X. Let Z = Z(t) be the process obtained

by projecting Y onto M and let 77 be the measure associated.
J*

with Z. Is v « p? Is rj « p? If v = VQ + v^ is the

Lebesgue decomposition of v with respect to p-,. does

T) = v.? If not,, is T) « v^ or v, « TJ? Theorems along
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these lines would give information concerning stochastic

transformations which, carry stationary processes into

stationary processes. Also we naturally ask.what effect

on a measure associated with a s.p. is'induced by a

stochastic differential operator on the process. Also using

our interpretation of s.t.'s in this way, perhaps we can

discover measure-theoretic properties'of. "deterministic"

transformations (equations (2), (4),. (6)) that distinguish

them from "truly stochastic" transformations ((3), (5), (7))

and thus allow us to give a more useful*., and: precise inter-

pretation of these: nations..
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