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Abstract

We consider a parabolic partial differential equation u = u + f(u),
\- X-X

where -°° < x < +°° and 0 < t < +•». Under suitable hypotheses pertaining to f,

we exhibit a class of initial data <j>(x), -°° < x < +°°, for which the corresponding

solutions u(x,t) approach zero as t -*• +°°. This convergence is uniform with

respect to x on any compact subinterval of the real axis.



Introduction

Consider the following initial-value problem:

u (x,t) = u (x,t) + f(u(x,t)) (-» < x < +•», 0 < t < +«>) (la)
L XX

u(x,0) = <()(x) (-<» < x < +<*>) (Ib)

Here f is a given function continuously mapping the real line R into itself; <(> is

any bounded continuous function taking R into R; and u is to be a suitably smooth

function mapping R x [0,+°°) into R.

Our interest in (1) centers on the problem of determining the behavior of
i

u(x,t) as t •> +°°. Clearly, this behavior depends on detailed properties of f and

on one's choice of the initial data <J>. In this context, a natural assumption

regarding f is that f(0) = 0. Under this hypothesis, of course, Eq. (la) has a

trivial solution u(x,t) = 0. The question then arises, what are the stability

properties of this zero solution?

Many authors have studied this type of problem for semilinear parabolic

partial differential equations. In particular, we mention the works [1-3], [7,8],

[10,11] and [14,15].

In the present work we shall exhibit a class of initial data <j> for which

the corresponding solutions u(x,t) approach zero as t -> +°°, In doing this we

shall assume that f satisfies the following hypotheses.

(HI) The derivatives f', f", and f" exist and are continuous everywhere

on R.

(H2) f(0) = 0 and f'(0) < 0.

(H3) There exists a number a e(0,-H») such that f(aQ) < 0 and

z

f f(?)dC < 0 (0 <_ z <_aQ) .
^ N
0
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It may be instructive to consider (H3) in relation to the particular func-

tion f displayed in the accompanying figure. If the area A strictly exceeds in

w

W=f(z)

magnitude the area B, then any number a e(a ,a ) satisfies (H3). If, in addition,

the area C strictly exceeds in magnitude the area D and if f(z) < 0 for all

ze(a ,+°°), then any number a e(a ,+°°) satisfies (H3).
o U o

The main results of this paper are stated in Theorems 4-. 4 and 4.5 below. We

can summarize them in the following way. Let Y be the class of all differentiable

functions <f>:R -*• R such that (i) <j) and <)>' are bounded and uniformly continuous on

+°° 2 2
R; (ii) / {<(>(x ) + 4>'(x) }dx < +»; (iii) 0 <_ <j>(x) 1 aQ for all xcR, where aQ is

— 00

as in (H3). Then, for any <j>eY, the corresponding solution u(x,t) of (1) is

defined for all (x,t)eRx[0,+°°) and u(-,t)eY for all te[0,+°°). Moreover, u(x,t) -> 0

as t -> +» uniformly with respect to x on any compact subinterval of R. The par-

tial derivatives u (x,t) and u (x,t) have this same convergence property.
X XX

Our proof of the preceding assertions is based upon techniques associated

with the theory of Liapunov stability and dynamical systems (see [5], [6], [9]).

The first step in this procedure is to interpret (1) as a flow in some suitable

function space. We do this in Section 3 below. Also, in Section 3 we derive some

geometric properties of our flow connected with the notion of an co-limit set.

These properties are set forth in Theorem 3.1.



3.

Section 2 provides some necessary background material for Section 3.

In Section 4 we complete our analysis of (1). With the aid of an appro-

priate Liapunov functional (see Eq. (4.3)), we prove Theorems 4.4 and 4.5 men-

tioned above.

Now suppose that we modify Eq. (1) by restricting x to vary in some proper

subinterval I of R and by imposing some suitable boundary condition on u at the

endpoints of I. At the same time, we continue to assume that f satisfies (HI) -

(H3). The question is, what are the appropriate analogues of Theorems 4.4 and

4.5 for this new problem?

In Section 5 we discuss two problems of this type. For the first we take

I = [0,+<») and the boundary condition u (0,t) = 0. Our conclusions, stated in
X

Theorem 5.1, are precisely analogous to Theorems 4.4 and 4.5. For the second

problem we take I = [0,+°°) and u(0,t) = 0. Again, the conclusions are exact

analogues of Theorems 4 . 4 and 4.5.

In Section 6 we discuss a third problem, one in which I = [0,ir] and u (0,t) =
X

u (tr,t) = 0. Our results appear in Theorem 6.1 and, in this instance, they do not
X

exactly parallel Theorems 4.4 and 4.5.

The author wishes to express his gratitude to Professors C.M. Dafermos,

J.K. Hale, and M. Slemrod of Brown University for many helpful discussions.

1. Notation

Let R denote the real number system and Z the set of all integers H >_ 0 .

Let I be any closed interval, bounded or unbounded, in R.

For any X,eẐ  we let X (I) be the space of all £-times continuously differ-
0 °°

entiable functions (J>:I -> R such that <J>,<f> ,...,<}> are bounded and uniformly

continuous on I. We norm X (I) by setting
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j=0 xel

(a) (a)
For any pe[l,+«) we let X (I) be the space of all those (fieX̂  (I) such that

<{>,<(> ,...,4) are pth-power Lebesgue integrable on I. We define a norm

on X<°(I) by setting

For every £eZ and pe[l,+°°], the space X (I) is a Banach space under

|| || ^ Moreover, if qe[p,+») then X(£)(I) c X()l)(I). Where no ambiguity can

arise, we will usually write X instead of X (I).

(£)
For any SLeZ , pe[l,+°°], and re(0,+°°), we let B (r) denote the open ball in

—X centered at the origin and having radius r. By B (r) we mean the corres-

(2.)ponding closed ball in X

For any &eZ we introduce a Frechet norm | | | | ... on X^ by setting

t
j=0 n=0 2 xel C-n,n]

When we are considering X under | | | | ... rather than | | | | , we shall denote
(a ) ( n ) ( a)

X^ ' by Xl . X). ' is a metric linear space [13, pp. 154-155] but, if I is un-

bounded, then X.,. is not a Frechet space [13, p. 157].

For any &eZn and pe[l,+°°) we may consider the restriction of | | | \.,t to

(£)X . In this connection, we note the following theorem.

U)Theorem 1.1. For a given fceZ and pe[l,+»], let S be a nonempty subset of X .

Suppose that there exists an re(0,+«>) such that SC B + (r). Then, with respect

to II I I * > the set s is relatively compact in X
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The proof is an exercise involving the Ascoli selection theorem and Fatou's

lemma.

2. The Semigroup {T(t)}

In this section and in Sections 3 and 4 below the underlying interval will

be I = R.

We now define a family (T(t): 0 <_ t < +°°) of transformations taking(0)

into X^ by setting

def "T _ 2 ( .
[T(t)<j>](x) = — e n <|>(x + 2n/tT)dTi (<j>eX; ; ,xeR,te[0,+«>)) . (2.1)

/iT J °°
—00

This family arises in connection with the classical heat equation u = u . Our
\- XX

purpose in this section is to state some properties of (T(t)} necessary for our

later work. Except for the briefest indications, we shall omit the corresponding

proofs .

We note the well-known formula

exp[- , V ]<|>U)dg UeXw ,xeR,te(0,+°°)). (2.2)
J 4t
—oo

Also, for any pe[l,+°°), we have

|[T(tH](x)|P < — f e"n |<Kx + 2n/t) |P dn (<J>eX ( 0 ) ,xeR,te[0,+°o)) . (2 .3)
~~ /n~ ' p

—00

The relations (2.2) and (2.3) are useful in establishing the following theorem.

Theorem 2.1. For any pe[0,+<=°] and £eZQ, the family (T(t)} is a strongly contin-
(£)

uous semigroup of bounded linear transformations taking X into itself. For

each te[0,+») and <J>eX(£), we have ||T(t)<f>|| ^ £ I U I I • Also, for each
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te(0,+~) and 4>eX ( J l ) , we have T(t)<)>eX ( U1) and I | T ( t ) < j > | I(U1) < (H-t~1/2) I I 4>| I ( £ ) ,
* T\ T\ ' l ' ' rs ' I I ' I I T-I

Theorem 2.2. For any pe[l,-t-°°), HeZ , 4>eX , and te(0,+«), we have

+°° -x. £ Ij. £

lira {J |̂ -TCT(t)(()](x)|
P dx + J |lT£T(t)<f.](x)|

P dx} = 0 ,

T « ^OO

and the convergence here is uniform with respect to t on any compact subinterval

of (0,+°°).

To prove Theorem 2.2 it suffices to consider the case H - 0. One then uses

(2.3).

Now fix pe[l,+°°], £eZ , and t ,t?eR with t.. < t~- Let v be any function

^
P

(o)
taking Rx[t ,t ] into R such that v(-,t)eX for each te[t ,t ] and such that the

(£)

map 11—^-v(-,t) from [t.. ,t_] into X is continuous. We define a function

w:Rx[t ,t_] -> R by setting

t

w(-,t)= T(t-t)v(-,t)dT (tilt±t2^ (

On the basis of Theorem 2.1, one can prove the following result.

Theorem 2.3. The function w defined by (2.4) has the properties that w(-,t)eX

for each te[t ,t-] and that the map ti—>w(-,t) from [t ,t2] into X is con-

tinuous . Furthermore,

^ |(O

sup

t <T<t



Finally, we state the following theorem.

Theorem 2.4. Let p, £, t , t? , v and w be as in connection with (2.4) and suppose

that p < +°°. Then for any te[t.. ,t9] we have

+00 —V

>«• rl .4
lim {J |l̂ (Xjt)|P dx + f |l_*L(Xit)|P dx} = o

XI-H- ^

and the convergence here is uniform with respect to te[t ,t_].

To prove Theorem 2.4 it suffices to consider the case 2. = 0. One uses

Theorem 2.2 and the Lebesgue dominated convergence theorem.

3. The Semigroup (U(t))

Throughout this section and Section 4 we shall let f be as in Hypotheses

(HI) - (H3) stated in the Introduction. However, we remark that, in the present

section, we actually only need to assume (HI) and the condition f(0) = 0.

We are going to consider the following initial-value problem. Given any

<j>eX9 , find a real-valued function u defined on a domain {(x,t):xeR,te[0,s)},

0 < s <_+", such that (i) u(-,t)eX^ for every te[0,s); (ii) the map t»—»u(',t)

from [0,s) into X is continuous on [0,s); (iii) the partial derivatives u
£. XX

and u exist and are continuous on R*(o,s); (iv) u satisfies the relations

u (x,t) = u (x,t) + f(u(x,t)) (xeR, te(0,s)) (3.la)
T. XX

u(s,0) = 4>(x)
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When speaking of a solution for (3.1), we shall mean a function u having the

properties just specified.

For a given 4>eX , suppose that u.. and u are solutions of (3.1) with

domains of definition R*[0,s ) and Rx[0,s ) respectively, 0 < s ,s <_ +°°. We

say that u_ is a continuation of u if and only if s > s.. and u_(x,t) = u..(x,t)

for all xeR, te[0,s ).

We say that a solution u of (3.1) is noncontinuable if and only if u has

no continuation.

Using classical arguments of the type appearing in [12, pp. 139-145], one

can prove the following assertion. Let u be a function mapping a domain R*[0,s),

0 < s < +°°, into R and suppose that u has the properties (i) and (ii) stated in

connection with (3.1); then u is a solution of (3.1) if and only if

t

u(-,t) = T(t)<J> -I- f T(t-r)f(u(-,T))dt (0 <_ t < s) . (3.2)

0

Here, (T(t)} is as in Section 2.

On the basis of Eq. (3.2) and Theorems 2.1 and 2.3, one can prove that, for

any <|>eX , Eqs . (3.1) have a unique noncontinuable solution u(4>). The reasoning

here parallels arguments well known in the theory of ordinary differential equa-

tions.

The solution u(4>) is defined on a domain of the form R*[0,s(4>)), where

0 < s(<f>) < +°°. For any xeR and te[0,s(<J>)), we denote the value of u(<j>) at (x,t)

(1)by u(x,t;4>). We define a semigroup (U(t)} on X2 by setting U(t)<j> = u(-,t;<j>)

for all 4>eX and te[0,s(4>)) . This semigroup is strongly continuous on X and

in general is nonlinear.

For any <}>eX.: we let y(4>) denote the orbit corresponding to <J>, by which we
def

mean y(<i>) = {U(t)<f>:0 < t < s(<{.)}.
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We now point out some smoothing properties of (U(t)}.
»

Theorem 3.1. For any tfieX^ and any te(0,s(4>)) , we have U(t)<J>£X^ . Also, for

any integer je{2,3,U}, the restriction of (U(t)} to X^ is a strongly continuous

semigroup on X ̂  .

The proof of Theorem 3.1 is an exercise involving Hypothesis (HI) and Theo-

rems 2.1 and 2.3. We omit all the details. Taking into account Eq. (3. la), we

obtain the following corollary of Theorem 3.1.

Corollary 3,1.1. For any <|>eX the corresponding solution u((|>) of (3.1) has a

partial derivative u (x,t;4>) defined at each (x,t )eRx(0,s(e) ) • Moreover,

u
t(' »t;<{>)eX for every te(0,s(<f>)) and the map t f— > u (-,t;<(>) from (0,s(<j>)) into

X is continuous. These same assertions are valid for the partial derivatives

u(*), uU), uU), u(<0), u U ) , and u

Theorem 3.2. Let <j>eX and suppose that there exists an re(0,+°°) such that

y(<J>) Q %2 ^ n X2 Then, s(<j>) = +°° and, for any t1e(0,+<»), there exists an

Cut
r e[r,+~) such that iKt^eBg (r̂ ) for all te[t1,+~).

Proof. Using (3.2) one can show that there exists a a(r)e(0,+°°) such that for

every i/>eB (r) OX we have s(iji) > a(r). From this it follows that s(<f>) = +°°.
def

Now given t1e(0,+°°), let <}> = U(t +n)(>'for each integer n >^ 1. Then, for

every n > 1 , we have s ( cj> ) = -f-°° and
— 1^

t

U(t)* = T(tH + I T( t -T) f ( [U( r )< |> ] ( - ) ) d x (0 < t < +»), (3.3)n n J n —
0

x } ( 0
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Using Eqs. (3.3) and (3.4) and Theorems 2.1 and 2.3, one can prove that there

(4)
exists a number r e[r,+°°) such that U(t)4> eB (rQ)

 for a11 n — ̂  and tetl,2].

From this there follows the existence of the required number r1 , q.e.d.

Corollary 3.2.1. Given <f as in Theorem 3.2 and given any t..E:(0,+<») , there exists

a number p e(0,+°°) such that u ( • ,t;<f>)eB (p ) for all te[t ,,+°°). The same

assertion holds for u (<}>), u (<j>), u (<|>), u (<f>), u (<))), and u .(<)>).
X XX "CX LL XXX XX"C

Corollary 3.2.1 follows from Theorem 3.2 and Eq. (3. la). The following

theorem involves in a restricted way the notion of continuity with respect to

initial data.

i
1 (1)Theorem 3.3. Let <f>eX be as in Theorem 3.2. Suppose that there exist an element

2 and a sequence {T }°° , in (0,+°°) such that T -*- +°° and | |U(T )<|>-4i| |... -> 0

as n -> +00. Then s(iJO = +00 and, for any te[0,+°°), we have | [U(T +t)4>-U(t)̂  [ |*{
2' -> 0

as n -v +00. Moreover, the convergence here is uniform with respect to t on any

compact subinterval of [0,+°°).

Proof. Choose any number t,.e(0,+oo). For each integer n >_ 1 define a function
def

wn:Rx[o,t ] -»- R by setting wR(x,t) = u(x,xn+t;<)>) for all xeR, te[0,tQ].

oo oo
Consider any subsequence {w.}. , of {w } ,. By Theorem 3.2 there existsj j=l n n=l

an r > 0 such that w.(-,t)eB2 (rQ) for all te[0,tQ] and all j >_ 1. Taking into

account Corollary 3.2.1, there exists a pQ > 0 such that

2 2
9w. 9w. 9 w. 9 w.

9x

(3.5)
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Using the Ascoli selection theorem, one can show that there exist a subsequence

— OO CO

(w } of (w.}._ and a continuous function w:R*[0,t,J ->• R such that (a) w has
JC K—J- J ^ —JL U

continuous partial derivatives w and w on Rx[0,tnD; (b) the sequences {w, },X XX U K
- 2- 2

{9w,/8x), and {3 w /8x } converge to w, w and w respectively on Rx[0,tA];JC K JC XX U

(c) the convergence of each of these sequences is uniform with respect to (x,t)

on any compact subset of Rx[0,tn].

It is easy to show that w(-,0) = fy. Also, using Fatou's lemma, one can

show that

w(.,t)eB<2)(r0) (OltlV' (3>6)

Let us regard the .map 11—fe» w(-,t) as a mapping from [0,t ] into X^ . Then,

using (3.5), one can show that this map is continuous.

Now, for each k > 1, we have

wk(-,t) = T(t)wk(-,0) + T(t-T)f(wk(-,T))dT (0 <_ t <_tQ) •

Taking into account (2.1), one can show that

t

w(-,t) = T(tty + I T(t-t)f(w(.,T))dT (0 < t < tn) . (3.7)
} — — u

0

Thus, we have a continuous function w:Rx[0,t ] -»- R such that (i) w(',t)eXco

for each te[0,t ]; (ii) the map t»—>w(-,t) from CO,tQ] into X^ is continuous;

(iii) w satisfies (3.7). Using standard arguments, one can show that w is unique

with respect to these three properties on Rx[0,tQ].

But now, we observe that the solution u(tjO of (3.1) has the same properties

(i) - (iii) on its domain Rx[0,s(ip)). Therefore, w and u(<jO must agree on the

intersection of their respective domains.
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Suppose that s(i(0 <_ tQ. Then, by (3.6) and Theorem 3.2, we have s(4>) = +°°,

which is a contradiction. Therefore, s(̂ ) > t and u(x,t;ij>) = w(x,t) for all

xeR, te[0,tQ].

Recall that {w } is a subsequence of {w.} which, in turn, is a subsequence
K 1

arbitrarily selected from {w }. Also, recall that w (-,t) = U(T +t)(j> for all

f r) \

te[0, t] . Then, one sees that | | u ( T + t ) < | > - U ( t ) i | > | | ). + 0 as n -»• +°° uniformly withn

respect to t on [0,t ]. Since t was chosen arbitrarily, we now have the conclu-

sions required by our theorem, q.e.d.

In the setting provided by Eqs. (3.1), we now recall some definitions from

the theory of dynamical systems [5], [6].

Let <{>eX and suppose that s(<|>) = +». Then, by the co-limit set of u(<t) with

( r\\

we mean e se

. .
'

r\

respect to | | | | jt{ we mean the set

def

where cl[ ].,. denotes closure in X with respect to | | | |j. . In general,

o)((j)) may be empty or nonempty. An element ^eX belongs to to((f>) if and only if

(2) °°ij>eX. and there exists a sequence {T } in (0,+°°) such that T -*•+«> and

->• 0 as n + +-.

Let S be any nonempty subset of X . We say that S is invariant with res

pect to (3.1) if and only if, for any <f>eS, there exists a function u:RxR -»• R

such that (i) u(-,0) = <J>; (ii) ii(',t)eS for all teR; (iii) for each tQeR we have

s(u(-,t0)) = +00 and U(t)u(.,tQ) = u(-,t+t0) for all te[0,+oo).

Now we come to the main theorem of this section.

Theorem 3.̂ . Let 4> and r be as in Theorem 3.2 so that y(i}))C B (r) and s(̂ >) =
f n \

+=». Then, with respect to || | |... , the solution u(^>) of (3.1) has a nonempty

compact connected invariant co-limit set u(<{>) C B (r) H X . Also, U(t)<j> -»•
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as t -»• +°°, the convergence here being with respect to | | | |... .

(31Proof. By Theorem 3.2, there exists an r e[r,+«>) such that U(t)<f>eB^ (r..) for all

te[l,+°°). Hence, by Theorem 1.1, the set {U(t)4>:l<t<+00} is relatively compact

in X^2) with respect to || | |12).

The proof can now be completed using arguments of the type appearing in

C5], [6]. In particular, the in variance of o)(<Ji) is established with the aid of

Theorem 3.3.

4. A Stability Analysis for (3.1)

In this section we continue our study of Eqs. (3.1) under Hypotheses (HI) -

(H3).

•Lemma 4.1.1. Let ^eX^ and let t ,t e(0,s(<|>)) with t < t_. Then, for each

te[t1,t(?], we have u(x,t;<j>) ->• 0 and u (x,t;<j>) ->• 0 as |x| -»• +°°, the convergence
_L ^ X

here being uniform with respect to te[t1 ,t9].

Lemma 4-. 1.1 is proved using Theorems 2.2 and 2.4. We omit the details.

Let a e(0,+°°) be as in Hypothesis (H3). We introduce a set Y C X^ by

stipulating that an element (fieX̂  belongs to Y if and only if 0 <_ 4>(x) <_ aQ for

all xeR. Concerning Y we have the following theorem, which is similar to a result

given by Yamaguti [14, p. 728, Proposition 2].

Theorem 4.1. For any 4>eY we have yC^) C Y.

Proof. First, we shall prove that u(x,t;<(>) <_ aQ for all xeR, te[0,s((j>)) .

Suppose the contrary; there exists a point (x ,t. )eRx[0,s(<j>)) such that

u(x ,t -,<{>) > a . We shall derive a contradiction.

Since f is continuous on R and since f(aQ) < 0, there exists a number ;
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a.eCa ,+°°) such that f(z) < 0 for all ze[a ,aQ]. Since the map t >—> U(t)<J> from

[0,s(<|>)) into X is continuous on [0,s(<|>)) and since <{>(x) f_ a for all xeR, we

can assume that a < u(x ,t ;<)>) < a and that u(x,t;4>) < a for all xeR, te[0,t,].
r

Moreover, there exists a number tne(0,t..) such that u(x,t;<{>) < u(x-, ,t.. ;<j>) for all

xeR, te[0,t0].

Now consider u(<{>) on the domain RxCt ,t..!]. By Lemma 4.1.1, there exists a

number be(0,+°°) such that u(x,t;<J>) < a for all xeR with |x| >_ b and all te[t ,t ],

Hence, there exist x*e[-b,b] and t*e[tQ,t ] such that u(x,t;4>) <_ u(x*,t*;<|)) for

all xeR, te[tn,t..]. Now, we must have a < u(x*,t*;(i>) < afl. Therefore

f(u(x*,t*;*)) < 0 (4.1)

and t* > tQ.
i

Now, (x",t-5) is an absolute maximum of u(<J>) on Rx[t0,t-D and, as we have

just noted, t* > tQ. Therefore,

u. (x*,t*;«) - u <x*,t*;4>) 1 0 .
L XX

By Eq. (3. la) we have f(u(x*,t* ;<)>)) >_ 0. This contradicts Eq. (4.1).

Thus, we must conclude that u(x,t;<f>) _<^ a for all xeR, te[0,s(<(>) ) .

Similarly, we can show that u(x,t;<)>) >_ 0 for all xeR, te[0,s(<|>)) . This

completes the proof of Theorem 4.1.

Now we define functions F:R -> R and V:X -»• R by setting

def zf
F(z) = f(c)dC (zeR) (4.2)

j c +00def
- F(«fr(x))}dx ( < t > e X ) . (4.3)
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V is going to play the role of a Liapunov functional for Eqs. (3.1). This brings

us to the following theorem.

Theorem 4.2. There exists a constant ke(0,+°°) such that

+00

lj j U'(x)2 + k<Kx)2}dx (4>eY)a (4.4)

Proof. Since f is continuous on R and since f'(0) < 0, there exists a number

z e(0,a ) such that f'(z) < 0 for all ze[0,z ]. Let

def
y = - sup{f'(z): 0 < z < z }

J_ — ~-~ X ,

def
y2 = inf{JF(z)|: z^ <_ z <_ aQ}.

We note that y.. > 0. Also, y > 0 by virtue of (H3). Now choose keR so that

_2
0 < k < minly-!^, aQ y 2 >.

For any ze(0,z ] we have

(0

< -

1 0
F(z) < - -P

2 1 2 1 2
For any ze[z ,afi] we have F(z) <_ -y^ <_ -ka0

 < ~ T ao i o" z " ence» we

F(z) + j kz2 < 0 (° 1 z 1 a0) •

From this there follows (4.4), q.e.d.

(1)Theorem 4.3. For any <j>eX^ the derivative V(U(t)<j>) exists at every te(0,s(<{>)) and
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V(U(t)<}>) = - j' |ut(x,t;cf>)|
2 dx (0 < t < s(<j>)) . (4.5)

_oo

Proof. By (4.3),

+00

(^ u (x,t;<)))2 - F(u(x,t;<J>))ldx (0 < t < s(<j>)) . (4.6)
2. X — —

Hence, V(U(t)<f>) exists at every te(0,s(<|>)) and

+00

= {u (x,t;<J>)u .(x,t;<J>) - f(u(x,t;<j>))u (x,t;<J>)}dx . (4.7),) x ' x t t -
3

(0 < t < s((|))) .

The differentiation under the integral sign in (4.6) can be justified using Eqs.

(3.la), (3.2) and Theorems 3.1, 2.2, 2.4.

The first term on the right-hand side of (4.7) can be integrated by parts.

This together with Lemma 4.1.1 yields

+00

I
= - {u (x,t;<j>)u (x,t;<J>) + f(u(x,t;<{>))u (x,t;4>)}dx (4.8)

J XX t t

(0 < t <

Eqs. (4.8) and (3. la) lead us to (4.5), q.e.d.

Theorem 4.4. If $eY then s(<j>) = +«> and there exists a number re(0,-H») such that

Proof. By Theorem 4.1 we have y(<(>) — Y. Hence, by Theorems 4.2 and 4.3, we have

+00

l| f |u(x,t ;<()) |2 dx ( 0 < _ t < s U ) ) . ' (4 .9)



def _ '
Now set r = aQ +C2k~

1V(<J>)]1/2 and we see that y(<f>)c Y D B^ (r). By Theorem

3.2 we have s(<j>) = +°°, q.e.d.

Lemma 4.5.1. If <j>eY then

+00

lira I |u t(x,t;4>)|2dx = 0

def
Proof. Let <j> = U(l )<(> and note that sttjO = +°°. Define a function v:[0,+°°) ->•

[0,+°°) by setting

+00

def r
v ( t ) = lu^Xjt ;^) ! dx ( O l t . < +0>) •

i '"
i

By Theorem 4.3 we have 'v(t) = V ( U ( t ) < f > ) for all te[0,+<»). This together with

(4.9) implies

+00

J v (t)dt <^ V((J>1) < -f- oo. (4.11)

0

Using Eqs.'(3.1a), (3.2) and Theorems 2.2, 2.4 and 3.1, one can show that

v has a derivative v on [0,+°°) and

+00

v(t) = 2 I ut(x,t;<f)1)utt(x,t;<(.1)dx (0 <_ t < +•) . (4.12)

On the other hand, by Corollary 3.2.1, there exists an r (0,+<») such that

u.(>,t;<}>,) and u (',t;<£ ) belong to B^ (ri) f°r a11 t [0,+°°). From this and

(4.12) it follows that

v(t) 1 2r (0 <_ t < +») (4.13)

From (4.11) and (4.13) it follows that v(t) •* 0 as t -»• +°°. From this

there follows (4.10), q.e.d.
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/ n \
Theorem 4.5. For any <j>eY we have | | u ( t ) < j > | | .,. ' + 0 as t -> +°°.

( 9 ̂
Proof. By Theorems 4.4 and 3.4, the solution u(<{>) has, with respect to || | |* »

(2)a nonempty co-limit set t o ( < j > ) C X . This co-limit set is compact connected and
(r\ \

invariant and, with respect to | | | |.v , we have U(t)<j> ->• o>(cf>) as t -*• +°°. Clearly,

00(4.) C Y.

Now consider any element 4ieto(<}>) . Since (o(<f>) is invariant, the solution u(t|>)

has continuous partial derivatives u (i|») and u (<f) defined on Rx[0,+«) and
"C XX

u.(x,t;4») = u (x,t;*) + f(u(x,t;t(;)) (xeR, te[0,+«)) . (4.14)
L XX

Setting t = 0 in .(4.14) we obtain

ut(x,0ji|i) = i[)"(x) + f(i[»(x)) (xeR) .

Clearly, u±( • ,0 ;>

OO

Since (jjea)(<})) there exists a sequence {T } in (0,+°°) such that T ->• +°

and | |i|>-U(Tn)<{>| 1 1
2 -> 0 as n -»• +». Hence, | |ut( • ,0;i|;)-ut( • »Tn;<()) | | i° •* 0 as

n ->• +». By Fatou's lemma and by Lemma 4.5.1,

+00 +00

r 2 f 2
0 <_ |u.(x,0;î )| dx <_ lim inf |u (X,T ;<|))| dx = 0 .

Therefore, u (',0;i|)) = 0 and

0 = i|)"(x) + f(4»(x)) (xeR). (4.15)

(2)
From (4.15) and the condition iJieX there follows

0 = I,j,'(x)2 + F(iJ,(x)) - (xeR)

Using Hypothesis (H3) and the condition i^eY, one can now show that i|> = 0.
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( 2) %

Thus, o)(4>) = {0}. Therefore, | |u(t)<j>| |); -*• 0 as t -> +», q.e.d.

5. Two Problems on the Interval [0,+°°]

In this section we shall briefly discuss two initial -value problems similar

to (3.1) but in which the variable x has as its domain the interval [0,+°°) rather

than the real line R. Thus, throughout this section our underlying interval will

be I = [0,+°°).

As in Sections 3 and 4-, we shall let f be as in Hypotheses (Hi) - (H3) stated

in the Introduction.

Our first problem is as follows. Let <f>eX [0,+°°) have the property <f)'(0) =
| *•

0 . Given any such $ , find a real -valued function u defined on a domain

{(x,-$:xe[0,+°°) ,te[0,s)}, 0 < s <_ +=°, such that (i) uC'jtJeX^ [0,+°°) for every

te[0,s); (ii) the mapping ti-»u(-,t) from [0,s) into X [0,+°°) is continuous on

[0,s); (iii) the partial derivatives u and u exist and are continuous on
XX T_

Rx(0,s); (iv) u satisfies the relations

u (x,t) = u (x,t) + f(u(x,t)) (xe[0,-t-°°), te(0,s)) (5. la)
T. XX

u (0,t) = 0 (te[0,s))
X

u(x,0) =

Now we state our second problem. Let <|>eX [0,-fco) have the property <{>(0) =

0. Given any such <{>, find a real -valued function u defined on a domain

{(x,t):xeR, te[0,s)}, 0 < s <_ +«, such that u has the properties (i) - (iii)

stated in connection with (5.1) and such that

u.(x,t) = u (x,t) + f(u(x,t)) (xe[0,t»), te(0,s)) (5.2a)
\, XX

u(0,t) = 0 (te[0,s)) (5.2b)
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u(x,0) = <J>(x) (xe[0,+°°)) . (5.2c)

For each of the preceding two problems we can perform an analysis similar

to that given for (3.1) in Sections 3 and 4. In the remaining part of this section

we shall indicate how we do this for (5.1). The reasoning for (5.2) is similar.

,(1)

Let X, be the closed linear subspace of X [0,+°°) consisting of all those

[0,+°°) such that <f>'(0) = 0. 31 plays the role of a phase space for (3.1)

just as X (R) plays the same role for (3.1).

For each <£e j£ we let <{>eX (R) be the unique even extension of 4> to R;
def -1 l

i.e., 4>(x) = <J>(|x|) for all xeR.

Let u be any real -valued function defined on a domain [0,+°°)x[0,s),

0 < s < +°°, and suppose that u satisfies the conditions (i) and (ii) stated in

connection with (5.1). Also, suppose that u(',t)e36. for all te[0,s). Then u is

a solution of (5.1) if and only if

t _

u(-,t) = T(tH + I T(t-T)[f(u(-,T))]dT (0 < t < s) . (5.3)
J ~~
0

Eq. (5.3) is our analogue to Eq. (3.2).

Using (5.3) one can prove that for any <f>e3C, Eqs. (5.1) have a unique non-

continuable solution u(4>). This solution is defined on a domain [0,+co)x[0,s(<f>)) ,

0 < s(<f>) <_ +°°. Thus, in the obvious manner, (5.1) induces a semigroup (U(t)} on
~ def

3C . For any <j>e3C, we can speak of the orbit Y(<J>) = {U(t)4>:0 _f_ t < +°°}.

Now one can state and prove analogues of Theorems 3.1 - 3.5 for Eqs. (5.1).

We omit this part of the analysis.

Given aQ as in (H3), let Y^ be the set of all tfe- such that 0 <_ <f>(x) f. aQ

for all xe[0,-H»). As a Liapunov functional for (5.1) introduce V: >£, -*• R by setting
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= I {j - F(<Kx))}dx

Here F is as in (U.2). With reference to (5.1), one can now repeat the reasoning

contained in Section U.

Our final result for Eqs. (5.1) is as follows.

f f\\
Theorem 5.1. For any <j>eY we have s(<}>) = +», y(<{>) £ Y , and | | u ( t ) < j > | |;. -»• 0 as

t -> +<*>.

We leave it to the reader to formulate a similar theorem for (5.2).

6. A Problem in the Interval [0,ir].

We shall now consider the following problem. Let <f>eX [0,ir] have the prop-

erty (f>'(0) = 4>'(ir) = 0. Given any such <j>, find a real-valued function u defined

on a domain {(x,t):xe[0,Tr],te[0,s)}, .0 < s <_ +<=°, such that (i) u(',t)eX̂  [0,Tr]

for all te[0,s); (ii) the map t *— :>u(-,t) from [0,s) into X̂  [O,TT] is continuous

on [Ojs); (iii) the partial derivatives u and u exist and are continuous on
5OC ~C

[0,ir]x(o,s) ; (iv) u satisfies the relations

u,(x , t ) = u (x,t) -f f (u(x , t ) ) (xe[0,ir],te(0,s)) " (6. la)
"C X5C

u (0,t) = u (ir,t) = 0 (te[0,s)) (6.1b)
X X

. u(x.,0) = <J>(x) (xe[0,Ti]) (

Here we assume that f is as in Hypotheses (HI) '- (H3) stated in the Introduction.

Our purpose in this section is to acquire information about the asymptotic

behavior of solutions of (6.1) as t -»• +°°. We shall obtain a result not quite

analogous to Theorem 5.1.

Clearly, we have I = [0,<1. As our phase space for (6.1) we take the subspace
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C X C O j T r ] consisting of all ( f r e X ' C O . i r ] such that < j > ' ( 0 ) = <j>' (ir) = 0. Given

a as in (H3), we let Y be the set of all ij>e'3C such that 0 <_ 4>(x) <_ a for all

xe[0,ir].

Proceeding as in Sections 3 or 5 , one can prove that , for each <|>e 3f_ , Eqs .

(6.1) have a unique noncontinuable solution u ( < j > ) . This solution is defined on a

domain [0 , i r>[0 ,s(<f>)) , 0 < s ( < f > ) < _ + < * > . Thus, for (6.1) we have a semigroup (U( t )}
def

on 3c~ given by U ( t ) < f > = u ( - , t ; < { > ) for all <f>e;^ and te[0,s(4>)) . For any <|>e 3£ we
^ j _c ^- ^def

have the orbit y ( < t > ) = (U( t )4» :0 <_ t <

Our discussion of (6.1) continues in this manner, paralleling the treatment

of (3.1) contained in Sections 3 and 4. As our Liapunov functional for (6.1) we

take the functional V : 3c -»• R defined by

v(4») =
o

At the final stage of our analysis we have the following assertions.
fr\ \

If <{>eY then s(<}>) = +« and y(<l>) C Y . Also, with respect to || \\\ , the

solution u((J>) has a nonempty compact connected invariant u-limit set <j(<J>)C

Y O X̂ 2 [̂0,7r]. With respect to || ||i2 , we have U(t)<J> -»• u((j)) as t ̂  +°°.

Since the interval [O,TT] is bounded in R, the norms | | | (^ and | | | |ft

(2)generate the same topology on X [O,TT]. Therefore, in the preceding paragraph

we may replace by .

Now consider cu(<J>). Arguing as in Section 4, one can show that any i|>eo)(4>)

satisfies the relations

0 = iji"(x) _ _
(6.2)

i|>'(o) = iji'U) = o .
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Eqs. (6.2) are the analogue of (4.15). Thus, to characterize u)(<j>) we want to

find all those if;eY which satisfy (6.2). The crucial observation is this: if

i|>eY_ satisfies (6.2), then we do not necessarily have fy = 0. Of course, the

converse is valid; if fy = 0, then i^eY^ and 4* satisfies (6.2). Nevertheless, we

are still left with the possibility that u>(<(>) ? {0}.

An interesting problem is: find all those solutions ij> of (6.2) which belong

to YO. An approach to solving this problem is to use a phase-energy diagram.

However, to obtain a definitive answer, one must have more information about f

than is contained in (HI) - (H3). We shall not pursue this matter any further

here.

Thus, our final results for (6.1) are as follows.

Theorem 6.1. For any <f>eY we have s((f>) = +°° and y(<f>) £ Y . Also, with respect

(2 )t o II II » t ne solution u(<(>) has a nonempty compact connected invariant co-limit

set CD(<()) C Y Pi X^ [0,ir] and U( t )<J> -> co(<|>) as t •* +°°. Finally, each ijjeco(<j>) is a

solution of (6.2) .

In closing we remark that any solution of (6 .2) is a steady-state solution

of (6.1a,b).
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