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A UNIFIED DEVELOPMENT OF SEVERAL TECHNIQUES FOR

THE REPRESENTATION OF RANDOM VECTORS

AND DATA SETS

By W. Thomas Bundick
Langley Research Center

SUMMARY

Linear vector space theory is used to develop a general representation of a set of
vectors by linear combinations of orthonormal vectors such that the mean squared error
of the representation is minimized. The vectors to be represented may be deterministic
or random and may be of any dimension. From the extremal properties of eigenvectors,
the optimum orthonormal vectors are found to be the eigenvectors of an operator deter-
mined by the correlation function or matrix of the represented vectors. It is also proven
that the mean squared error in the representation and the second moment of the coeffi-
cient vectors can be determined from the eigenvalues of the operator. An entropy func-
tion defined on the orthonormal coordinate vectors is minimized by the representation,
and its value also can be computed from the eigenvalues.

The general representation is applied to several specific problems involving the
use of the familiar Karhunen-Loeve expansion, principal component analysis, and empir-
ical orthogonal functions.

INTRODUCTION

The representation of a function or vector by an infinite or finite sum of basis func-
tions or vectors is a vital analytical tool in engineering, science, and mathematics. For
example, the Karhunen-Loeve expansion of a random process in terms of an infinite series
with uncorrelated coefficients has become widely used since its introduction by Karhunen
in the 1940's, particularly in communication and radar detection theory. (See DiFranco
and Rubin, ref. 1.) The approximation of a set of data vectors in terms of an incomplete
set of basis vectors has been used by statisticians and others to reduce the dimensionality
of the data set. A representation of this type called principal component analysis was
introduced in the field of psychology in the early 1900's (Hotelling, ref. 2). The same
approximation technique under the name empirical orthogonal functions has recently found
considerable use in meteorology to represent atmospheric temperature and water vapor



profiles. This technique was proposed by Pomalaza (ref. 3) for use in inverting the data

from a multisatellite-microwave-occultation experiment to obtain atmospheric tempera-

ture and pressure profiles on a global basis. One of the many analytical techniques that

has been investigated in feature extraction and pattern recognition studies is the trans-

formation of a set of pattern vectors onto a set of coordinates which minimizes the
entropy of the representation (Watanabe et al., ref. 4).

Each of the representations discussed above can be employed in both finite and infi-

nite dimensional spaces. An investigation of the theory of each of them reveals that they

all share a common basis (viz. the extremal properties of quadratic forms and eigenval-

ues) and, furthermore, all of them share certain common properties.

In view of these commonalities it should be enlightening to have a unified, general,

theoretical development of these representations and of their common properties. It is
the purpose of this paper to present such a development in terms of linear vector space
theory.

First to be presented is the theoretical development of a representation of a set of

vectors such that the mean squared error of the representation is minimized. This will
be followed by an examination, including proofs, of certain important properties of the

representation. Then the general representation will be specificized to several applica-
tions of the theory including those discussed in the opening paragraph of the introduction.
For those readers who desire further clarification, several illustrative examples of the

techniques are included as appendix A.

SYMBOLS AND NOTATION

A amplitude constant

a, a constant

<© a a-algebra of subsets of n

C field of complex numbers

C_ N x K matrix of coefficients

C-, vector with components



cnk Fourier coefficient of vector ^ for \^\ in representation of xn

& Euclidean space

£ error vector in representation of x^

f arbitrary vector in the space If

g arbitrary vector in ^/

H( ) entropy function

K arbitrary self-adjoint transformation

K number of orthonormal vectors in representation of xn

L self-adjoint transformation on ^ defined by Ld>, = E< T*Tk lT~
af 0 Hilbert space of square integrable functionsz

M dimensionality of the space ^

"If— v'— x averaSe of vectors tn, y_n, and xn, respectively

mx(-) average of functions x (•)

l

Tl space of all N-tuples

7] ' subspace of 97 and range of T_

N number of vectors x^

N* number of linearly independent vectors among x

<P probability measure on (&

P power in kth harmonic



-n

pn probability of occurrence of random process x

R(s,t) autocorrelation function

jaf K-dimensional subspace of ^/ spanned by _<£,

s,t real parameters

_T a linear transformation on 2^ onto J\ defined by T^f = [T_-\i,

T period of x(t) in example A3

T_ a linear transformation (functional) on I/ onto C defined by

t atmospheric temperature profiles, °C (see appendix A)

trms root-mean-square error in representation of t , °C,

U 5x3 matrix of row vectors u— —n

u N-dimensional vector with components un

u arbitrary real constant

u three-dimensional vectors defined by u - v - in

un components of u_ defined by un = (Vk, x \

If infinite dimensional Hilbert space or M-dimensional unitary space contain-

2^' subspace of H/ and range of T[*

v vector with N components VQ

v data vectors in three-dimensional Euclidean space—n r

VQ components of v defined by VQ = /W, <



X N x M matrix of row vectors x— —n

x a random vector

x(-) a stochastic process

x,y,z Cartesian coordinates

xn a vector, either deterministic or random, in "y

xn(-) vector xn expressed as function of a parameter

yn imaginary part of un

yQ imaginary part of VQ

Z^ N x M matrix of row vectors z_

_z(0 column vector with N components xn(-) - mx(-)

^n vector x after removal of average; i.e., ^ = x - rn

zn real part of un

I
ZQ real part of VQ

6jij Kronecker delta

C a random variable

error in representation of x

X^ kth eigenvalue of operator L

jLtj jth eigenvalue of operator K

V; jth eigenvector of operator K

H covariance matrix



mean squared value of kth coordinate vector _c,

variance of K coefficient vectors

variance of projected data (example Al)

an interval on the real line

N x M matrix of row vectors m
* .A

_$, kth orthonormal vector

functional form of

constant vector in representation of x

K x M matrix of eigenvectors \jj.

M x M matrix of eigenvectors j£,

kth eigenvector of operator L,

<^v(-) functional form of \JA

fi a nonempty set forming the basic space of the probability space (n,(S,(p)

cou frequency corresponding to X^ (see appendix A)

Special mathematical notation:

statistical expected value of xn

*' &/ inner product of vectors f and £

1/2
fll norm of vector f defined as l/f, fN '

|b| absolute value of a scalar b

f complex conjugate of f



* transpose of matrix _£

T* adjoint, or conjugate transpose, of operator T

trE trace of matrix E_

-1 . • f T_* matrix inverse of _*

A bar under a symbol is used to indicate a vector, a matrix, or an operator.

THEORETICAL DEVELOPMENT OF THE REPRESENTATION

Consider a Hilbert space 2^ which may be the infinite dimensional space ^ °f
square integrable functions or a finite dimensional Euclidean or unitary space. In any
case, the dimension of V will be designated as M, although M may be infinite. Further
consider a set of vectors x , where n = 1, 2, . . ., N, which may be deterministic or
random. If the x are deterministic, it is assumed that they are square integrable
(summable) such that they are elements of the space ty. The expectation operator E{/}
is then defined as multiplication by the real constant 1/N. If the x are random, they
are defined on some probability space (£2,©,^) with points w in ft and probability mea-
sure (p. In this case, the expectation operator is defined as the integral \ f.}d(P(oj).Jn
It is further assumed that the vectors are measurable and mean square integrable (sum-
mable). Then, almost every sample function of the random process (vector) is an element
of ^.

The problem to be considered is the representation of the vectors x by a constant
vector Qs\*-1/ plus linear combinations of K = M orthonormal vectors _<£, e ̂  such

that the mean squared error E\6^J is minimized. In other words, let

K

2n
 = ^0 + 2/ °nk^k + -n (n = 1, 2, . . ., N) (1)

k=l

where the cnk are the coefficients of the expansion and the e are the error vectors
associated with the representation. Define the mean squared error in terms of the norms
of the error vectors; that is, let



The problem then is to find the optimum set of vectors £,, the constant vector _C£Q, and

the coefficients cnk such that E\d^j is minimized.

The Coefficients

The error in the representation of the vector x is expressed by:

2
K

,2
(n = 1, 2, . . ., N) (3)

Now the set of all linear combinations of the vectors (£ , , where k = 1, . . ., K, forms a
K-dimensional subspace ^ of the vector space "I/. From the theory of linear vector

K

spaces, the error II£ II is minimized when } cnk.^ *s me orthogonal projection of
k=l

and when coefficients cnk are the Fourier coefficients

defined by the inner product (Berberian, ref. 5, p. 46 and Ficken, ref. 6, p. 303)
x - _<£0 onto the subspace

cnk =
2, . . .,

2, . . .,
(4)

of £ simplifies to
Furthermore, the error vector _e is orthogonal to the _ < £ > , ; thus the square of the norm

2

(5a)

K

k=l

Since the vectors £, are orthonormal, equation (5a) can be further simplified to

K

|cnk (5b)
k=1

The total squared error now becomes

N N N K

n=l n=l
E *

n=l k=l
(6)



The Orthonormal Vectors

To find the optimum vectors _£k, assuming j£Q fixed, first rearrange equation (6)

by interchanging the order of summation; that is,

N K N

n=l k=l n=l

cnk
2

(1)

Write the coefficients as N component vectors £k, where k = 1, 2, . . ., K, with com-
ponents Cffc. The vectors £, are elements of the vector space 71 of N-tuples. Equa-

tion (7) can now be rewritten as

(8)

n=l k=l

Define the linear functionals T_ on <y onto C by the inner product

(9)

where f e ̂  and T_ f e C . Now the linear transformation T_ on I?/" onto 71 '^71

is defined by

Tf_, . . ., Tf = x - , . . ., I X - (10)= i, 2_,

The dimension of 7?' is M or N', whichever is less, where N' is the number of
linearly independent vectors among the xn- Then the vectors £k can be defined by

(11)

Combination of equations (8) and (11) produces

N K

n=l" " k=l



which can be written as

N K

n=l k=l
(12b)

where T_*, the adjoint of the operator T_, is on 71 onto ^'c 2/" with the same dimen-
sion as ?7'- The mean squared error is found by taking the expected value of 02 t0

obtain the following:

or

T N I K
I T^ n I V^

(13b)
L_J \ ** »»-/

(=1 X '

where the operator L, is defined on ^ by

(14)

The mean squared error in equation (13b) can now be minimized with respect to the <p.
—K.

K

by choosing the set of orthonormal vectors £, such that the sum } /^k' — -^k) ^s a

maximum.

To select the optimum _<£, , a theorem proven by Jordan in reference 7 concerning
the extremal properties of eigenvalues will be utilized. This theorem, restated in the
notation of the present paper, is summarized as follows:

Let K be a self-adjoint linear operator, v_. be orthonormal vectors, and a, be
constants such that a^ = 3.2 = . . . = aj. Then the sum

10



is maximized with respect to the £. when the v_. are the normalized eigenvectors of
the operator K corresponding to the J largest eigenvalues \ii. Furthermore, this

J

maximum value of the sum is equal to y a^pu.

J=1

This theorem can be applied to the present problem since the operator L/ is self-

adjoint; that is, (T*jJ = T_*l\ Thus the mean squared error E{02} is minimized
when the vectors <£•. are the normalized eigenvectors jk of the operator ~L corre-
sponding to the K largest eigenvalues A^ of JL. The representation of the vectors
x in equation (1) now becomes

K

5n=4o + I cnkj£k+£n (n = l,2, . . ., N)
k=l

and the mean squared error in equation (13b) can be written as

K

£ Ak

k=l

A Basis for I/

At this point, it is advantageous to pause before proceeding with the optimization of
the constant vector (ft^ in order to develop an alternate expression for the total error in
equation (16). If the null space of the operator is included in the eigenspace as eigenvec-

! ! f

tors corresponding to the eigenvalue A.^ = 0, then the normalized eigenvectors i/, of a
I i i ! , 'icompact, or completely continuous, normal transformation form a complete orthonormal

basis for the space ^/ ' . (See Berberian, ref. 5, p. 186.) For the moment assume that
the operator L, is compact; this assumption will be verified in appendix B. Under this
condition, any vector f e fS can be expressed in terms of the basis ^/, and the Fourier
coefficients. In equation (16) the vectors xn - _^o may be expanded in terms of the basis

as follows:

M

( n = l , 2 f . . . , N ) (17)
k=l

11



where M may be infinite, depending on the dimensionality of the space V. Using
equations (9) and (17), the first sum on the right-hand side of equation (6) can be written
as

N N /M M

I || *n - 40||
2 = I ( Z

1 ' 'I -i \ i •<n=l k=l
. I ln*k

The orthonormality of the \j/, allows equation (18a) to be written as

N N M

n=l n=l k=l

Interchanging the order of summation and taking the expectation produces the following
expression:

M M / \ M

k^l ^- ') k^l \ ^ V k=l \

(19)

Since the \JA are the normalized eigenvectors of the operator L,, equation (19) can be
expressed in terms of a converging series of the eigenvalues X^

(20)

Substitution of equation (20) into equation (16) yields the following expression for the mean
squared error:

M K M
E fd2i\ — \ \ \ \ v \ \ / o i \\y J ~ / k ~ / k= / k \^^-)

k=l k=l k=K+l

The Constant Vector

Turn now to the problem of finding the optimum constant vector ^. which mini-
mizes the mean squared error. From equation (21) minimization of the mean squared
error can be accomplished by minimizing the eigenvalues X^ for k = K + 1, . . ., M.
Each eigenvalue of the self-adjoint transformation L, can be written as follows:

12



^k (k= 1, 2, . . . ,M) (22)

From equation (10), T^/, is an N-dimensional row vector defined by
— —K

;N - £0\) (23)

Define the N-dimensional vectors u and v by

L, • • •, UN)
v\ — y \ — -y j \ /

and

/ \
= (v0, . . .,v0) (24b)

\ /

Combining equations (23), (24a), and (24b) allows equation (22) to be expressed in terms
of u and v as follows:

u - v ID = E< I I un - VQ *\ = EO (»n - tf + (yn ' y0]
n=l J |n=l

(25)

where un = zn + jyn and VQ = ZQ + jyQ. To find the vector v which minimizes Xk,
take the partial derivatives of equation (25) with respect to ZQ and yQ and set the
results equal to zero

N

( z n - z o ) > = ° (26a)
n=l

N
(26b)

or

(26c)

13



Substitution for un and VQ from equations (24) into equation (26c) produces the fol-
lowing expression:

= 0 (27)

which can be manipulated to give

or

(28a)

(28b)

for k = K + 1, . . ., M. Equation (28b) will be satisfied for any K and the error will be
a minimum if

where m is a solution of
— X

The problem of representing the vectors x with minimum mean squared error
has now been solved. The optimum representation has been shown to be

K

(n = 1, 2, . . ., N) (31)

where the »//, are the eigenvectors of the operator L, m is defined by equation (30),
~~K ~-~ ~~~X

and the cnk are the Fourier coefficients defined by the following equation (32) which
corresponds to equation (4):

' . - 1 , » , . . . , N \
, k = l , 2, . . . , K l

14



PROPERTIES OF THE REPRESENTATION

Now, consider some of the properties of the representation of equation (31). By
hypothesis, the vectors \j/, are orthonormal, and it is obvious that the coefficients
are random variables whenever the vectors x are random. Some additional properties
will now be developed.

Property 1

For any value of K the representation of equation (31) approximates the vectors
xn with minimum mean squared error. Property 1 was the basic property of the general
development and thus has already been proven.

Property 2

Property 2 of the representation is that the coefficient vectors £, are uncorre-
lated; thus

c k , c > = E T^k, T j = E k , T T j f c = < k , L = < k , X = X j6 jk

(33)
where 6jk is the Kronecker delta.

Property 3

The mean norm squared values of the coefficient vectors £, are maximized in
turn beginning with £, by the representation of equation (31), and this maximum value
is equal to Xk.

r o)
It was demonstrated in equation (33) that E< lie, II > = Xi,. The proof that theI — " I

C o^lexpected values E ^ l l c , || \ are maximized in turn will be by induction. First,
-

(34)

By the theorem previously used in determining the optimum set of orthonormal vectors,
/^•t, .Lj^A is maximized when j^/j is the eigenvector of Li corresponding to the
largest eigenvalue. Since this condition is true for equation (34), property 3 is true for

15



Now assume that the mean norm squared values of the _c, are maximized in turn
for k = 1, 2, . . ., K - 1 by the representation of equation (31). Suppose the mean norm
squared value of £ is maximized by a vector _£„ * J^. Then

(35)
y i ~ i x n j \~" "/ \~" "7

K-l

I
k=l

Add / Ak' —£k) *° each S1<^e °f equation (35) to obtain

K-l K
>

k=l k=l

But this inequality is contradictory to Jordan's theorem of reference 1. Therefore,

2}c^H > is maximized by <bv = fyir, which is the representation in equation (31).
— -^—r*- EL

J

Property 4

The entropy of the coordinate vectors _<£, is minimized by the representation of
equation (31); that is, when

j£k = j//k (k = 1, 2, . . ., K)

As in Chien and Fu (ref. 8), define the entropy H/^, \ of the <b, as follows: Let
\-~KJ K

pk = E/ l l ck||2j (37)

and
K

k=l

From equations (11), (14), and (37) note that

16



and Pk = Xk when _<£>k = j^k. Arrange the pk such that p^ = p2 = . . . = PK. From
the main theorem with the ak = In pk it can be seen that

K K
In p^, L]^ S / In p^, L£A, (40a)

k=l

or

K K

k=l k=l

Pugachev (ref. 9, p. 156) has shown that

In u ̂  1 - - (41)
u

Therefore

K K . K K K
(42)

k=l "" k=l \ ""7 k=l x ' k=l X ^

where the first inequality results from equation (41) and the second from the main
theorem. Equation (42) can be rewritten in the following form:

K K

/ Xk In Xk = / Xk In pk (43)
k=l k=l

Combining equations (40) and (43) results in the following equations (44):

K K

) \\f In Xi, = ) p,, In p, (44a)
/ i "• *^ / i K K

k=l k=l

or

(44b)

This property 4 is, of course, true when the set j£k is complete; that is, when K = M.

17



APPLICATIONS OF THE THEORY

Consider now some applications of the general representation of equation (31) and
its associated properties. The applications will be divided into two groups: In the first,
the vectors x are deterministic and values for the coefficients c^ can be computed;
in the second, the vectors x are random vectors and only the statistical properties
(variance and correlation) of the random coefficients can be found. Both finite and infinite
dimensional spaces will be considered.

Deterministic or Data Vector Representation

Case I: Finite dimensional.- Given a set of N real M-dimensional data vectors
xn, consider the problem of expressing these N vectors in terms of a constant vector
J£Q plus linear combinations of K orthonormal basis, or coordinate, vectors j£,, where
K < M = N. Let the criterion for optimizing the representation be minimization of the
mean squared error.

In terms of the preceding theoretical development, the current vector space If is
an M-dimensional Euclidean space and the data vectors could be N measurements of an
M component vector. According to property 1, the representation in equation (31) is
optimum in terms of mean squared error. Then the constant vector _c£Q is equal to the
sample mean, which according to equation (30) is defined for this case by

(45a)

or, since the expectation operator corresponds to multiplication by 1/N,

N

xn (45b)

n=l

Furthermore, the coordinate vectors £, are the first K eigenvectors £, of the
operator L_, which in the current case is the matrix

= IzTZ (46)

18



where 7^ is the N x M matrix of row vectors ^ defined by

Z =

-1 —X

(47)

That this is true can be seen by restating the generalized development of L, in terms of
the current M-dimensional Euclidean space £. From equation (10) the operator _T is
equivalent to postmultiplication by the transpose of matrix Zj that is,

(48)

The inner product becomes in

T (49)

Noting that the expectation operator implies multiplication by 1/N, the operator ^

(eq. (14)) is equivalent in £ to matrix postmultiplication by —25 *Z_ as in equa-

tion (46). Thus, the \j/, are solutions of the matrix equation

(k = l, 2, . . ., (50)

1 TNote that if each of the data vectors has mean equal to zero, then the matrix — Z^Z is
N ~ ~~

the sample covariance matrix.

The coefficients c^, as defined by the inner product in equation (32), can be found
from

/ n = l , 2, . . .,
k = l , 2, . . ., K

(51)

19



Let (? be the N x K matrix of coefficients c^, ^ be the K x M matrix of K
eigenvectors j£v, and Jv> be the N x M matrix of row vectors rn . Then the opti-
mum representation of the data vectors is given in matrix form by

where

(52)

C = (53)

and the mean squared error E\6^} is given by

E{02} = tr = tr E< Z - (54)

Substituting for £ and using the orthonormality of the $/,, whereby *__* =1^, equa-
tion (54) reduces to

E e} = trf— Z ZT ] - tr- Z *T# ZT
J N /

(55)

From the theory of matrices, t r f A I J j = t r i^BA). Therefore

E{02} - tr / i_ZTZ_j - tr I- *ZTZ _^T) (56)

1 TLet *jy[ be the MxM matrix of eigenvectors of — ̂ \Z_. Premultiplication and post-

multiplication by _^M and Jlj/r^j respectively, constitute a similarity transformation,
and since similar matrices have equal traces, equation (56) may be written as

E 0 = t r ZZ I * ZTZ (57)

Application of equation (50) produces the following desired expression for the minimum
mean squared error:

M K M

k=l k=l k=K+l

as stated in equation (21).

20



Case n: Principal components.- Given an N-size sample (N vectors x \ of an
M component vector x with mean zero, consider the following problem: Represent
the vectors x by linear combinations of orthonormal vectors £, as in equation (1)
(with J£Q = 0). Select <£•. such that the variance of the coefficient vector £, is maxi-

mized. Select </>«, such that the covariance E < / c . , , C r > ) > is zero (coefficient vectors-^ ^V1 -<yj \
£j and £« are uncorrelatedj and the variance of c^ is maximized. In general, select

such that the covariance

is zero and the variance of £, is maximized.

By properties 2 and 3 the solution to the problem is given by equation (31). In this-
case, the space tf is an M-dimensional unitary space. The operator L is defined by
the M x M sample covariance matrix _E, where

H = E/X*X\ = - X*X (58)
~ -

and the vectors £, = j£, , where the j£v are eigenvectors of HI. Furthermore, the
variance of the coefficient vectors c, , averaged over the N components cnV. is equal

— ^^ o
to the eigenvalue Ak. Defining _*_ and X as in case I, the average variance a2 of
K coefficient vectors is given by

K
Ak ' - (59)

k=l

The percentage of the variance explained, or accounted for, by the first K eigenvectors
is

K

I Xk

— X 100
M

/ ^-k
k=l

The representation just described is commonly known as principal component anal-
ysis, and the coefficients c^ are called the principal components of xn> (See Rao,

21



ref. 10, p. 501.) This technique, along with other factor analysis methods, has been
widely used in the field of psychology in analyzing test results, physical characteristics,
and so forth. The original work in this area was done by Retelling (ref. 2).

Note that the principal component representation is the same as that found in case I,
neglecting j>~, even though the objectives were different.

Case III: Feature extraction.- Let x , where n = 1, 2, . . ., N, be a set of real,

/ T \
normalized I x x = 1) M-dimensional vectors. Find a set of orthonormal coordinates

$>•. such that the components of the x are concentrated on a few coordinates, or, in~~K — n
terms of entropy, such that the entropy of the coordinates is minimized.

In terms of the new coordinates d>, the x can be expressed as follows:•" •̂xC — n

M

(n= 1, 2, . . . , N ) (60)

k=l

Define the entropy H as

M

where

N

= £ I (Cnk)2 - Efek' %>} (k = 1, 2, . . ., M) (62)Pk

Now the expansion in equation (60) is the same as equation (1) with Q~ = 0 and
K = M. By property 4, the entropy is minimized when the coordinates _<£, are the eigen-
vectors j^k °f the covariance matrix _H and the coefficients c^ are the Fourier
coefficients.

In matrix notation, let X be the matrix of row vectors x , _* be the matrix of
eigenvectors j//, , and C? be the matrix of coefficients c^. Then
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H = X T X (63)

The expansion of equation (60) can be rewritten as

X = C * (64)

rp

and the coefficients are given by the orthogonal transformation _#

(65)

Furthermore, the entropy is given by

M
H = ~ X xk ln xk (66)

k=l

Transformations of this type have been found useful by Watanabe et al. (ref. 4) and
others in the areas of feature extraction and pattern recognition.

Case IV: Infinite dimensional.- Consider now a problem similar to case I where
the N data vectors x are square integrable functions of a parameter t in the inter-
val a = t = b. The vector space I/ in this case is the infinite dimensional Hilbert space
known as /Q space. It is desired to express the x in terms of orthonormal vectors

, as in equation (1), with minimum mean squared error. !

The constant vector ^ is found from

N

or

xn (67a)
n=l

N

^ X"(t) (67b)n=l
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Define z(t) as

z(t) =

Xl(t) - mx(t)

x2(t) - mx(t)

xN(t) - mx(t)

Then with the usual ^ inner product, the operator T_ is given by

pb r _ _ ~i
, x - m \ = \ 4>k(t) xn(t) - mx(t) dt

/ ^a L -J

(68)

(69)

and T_ is given by

0k(t)z*(t)dt (70)

The inner product becomes

T0 k , T 0 k \ = f f z*(t)z(s)0k(t)0k(s)dsdt
K K/ J J - - K K (71)

from which LJ is defined by

L 0 k = i C z*(s)z(t)0k(s)ds
K Js| J — — J*.

(72)

The operator _L is the integral operator with symmetric kernel R(t,s), where R(t,s)
is the correlation function defined by

N

R(t,s) =Iz*(t)z(s) =i xn(t) - mx(t) xn(s) - mx(s) (73)
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The basis vectors are normalized solutions of the integral equation

(k = 1, 2, . . ., K) (74a)

or

R(s,t)i//k(s)ds = Aki//k(t) (74b)

The coefficients c^ are determined by the £<* inner product

yc= 1, 2, . . ., K

and the mean squared error is given by

\k (76)
k=K+l

Case V: Empirical orthogonal functions.- The problem of representing a set of
data vectors by linear combinations of orthogonal functions has been given considerable
attention in the field of meteorology, where the vectors x represent atmospheric tem-
perature or atmospheric water vapor as a function of altitude or pressure. Numerous
treatments of the subject appear in the literature.

In the theoretical development of the orthogonal functions, the literature frequently
treats the data as a continuous function of pressure; thus the problem is analogous to
case IV. However, the computational work is done using data measured at the standard
pressure levels (1000, 850, 700, 500, 300, 200 mb, etc.) in which case the vectors have
finite dimension as in case I. In any event, the functions are designated "empirical
orthogonal functions," or occasionally "characteristic patterns," and the objective is to
reduce the dimensionality of the data by a minimum mean squared error approximation.
Empirical orthogonal functions have been proposed for use in inverting the data obtained
via a microwave occultation satellite experiment to obtain atmospheric temperature and
pressure (ref. 3).

Example A2 in appendix A is an illustration of the use of empirical orthogonal func-
tions to represent a set of temperature data.
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Random Vector Representation

Case VI: Karhunen-Loeve expansion.- Let x(t) be a zero mean second order
random process, continuous in quadratic mean, with continuous autocorrelation function
R(t,s). Let it be desired to represent x(t) on the interval a = t = b by a series
expansion

x(t) = c k t f > ( t ) (77)

such that the coefficients are uncorrelated.

Let x(t) be written as x(t,w) to emphasize the fact that the process is a function
of both t and w, where u> is a point in the probability space (fi,(@)(p). In the repre-
sentation of equation (77), the coefficients ck are functions of u> and the vectors $.
are functions of t so that the effects of the variables t and w are separated.

Since the process is mean square continuous, almost every sample function, x(t,o>)

fb 9for fixed w, has finite energy; that is, \ x^(t,w)dt < °° almost surely. This property
Ja

is consistent with the assumption at the beginning of the theoretical development that the
vectors x are square integrable. It follows that almost every sample function is a
vector in ^^ space, and by property 2 the representation of equation (31) with mx(t) = 0
is a solution to this problem as posed in equation (77).

The operator T_ is defined by the following inner product in <£n space:

Ilk = \ <*>k(t)x(t,w)dt (78)Ja

/ \
The inner product /T (b, , T <6, ) in 7T can be expressed as

\ K —^V

— \bb
t,o))dtll \ (^k(s)x(s,w)ds

/ W Q/ \ a

and equation (79) can be rearranged as

-b

(79)

3. 3,

x(t,w)x(s,w)4>k(t)<f>k(s)dt ds

pb pb - -
= \ 0k(t) \ x(t,w)x(s,oj)0k(s)ds dt

J J
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where the inner product /^,, T[*^T^,N is in </2
 sPace- Take the expected value by

integrating over all u> in the space (&,(&,(?)

x(t,w)x(s,w)0k(s)ds dt
a

dt
a

rb rb f - •) -
= \ </>k(t)\ E x(t,w)x(s,u>)Uk(s)ds dt

Ja K Ja C J K

•
E x(t,w)x(s,u

a a

R(t,s)0k(s)ds dt
3,

(8D

The operator JL is then the integral operator with kernel R(t,s), where R(t,s) is the
correlation function of the random process x(t). The functions <£k(t) are the eigen-
functions (t) of R(t,s); that is, they are solutions of the integral equation

r°\ R(t,s)i//k(s)ds = A.k^k(t) (82)Ja

The coefficients in this case are determined from the integral

c = (t)x(t)dt (83)

This solution is, of course, the familiar Karhunen-Loeve expansion, and it converges
uniformly in mean square to the process x(t). According to property 3 this expansion
maximizes, in turn, the variance of each coefficient (random variable) ck, and this vari-
ance equals Ak. Furthermore, if the expansion is truncated at K terms, by property 1
the Karhunen-Loeve expansion minimizes the mean squared truncation error, whose value

oo

is X xk- These latter two properties of the series frequently are not discussed in
k=K+l

developments of the expansion in the literature.

Case VII; Generalized Karhunen-Loeve expansion.- Following the development of
Chien and Fu (ref. 8), suppose xn(t), where a = t = b, n = l , 2 , . . . , N , are N sto-
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chastic processes with probability of occurrence pn, where ) pn = 1. In equation (2)
n=l

let the squared error in the representation of each process be weighted according to the
probability of occurrence of the process. In other words, define the expected value of
the total squared error as follows:

(84)

With this definition of mean squared error, the processes x can be represented by a
generalized Karhunen-Loeve expansion as in equation (31), and this representation is
similar to the standard Karhunen-Loeve expansion in case VI in that both expansions
exhibit properties 1 to 4.

In case VII the operator L is again an integral operator with kernel R(t,s), where
R(t,s) is a generalized autocorrelation function for the N processes defined by

xn(s) - mx(s) > (85)

and the functions c^(t) are the eigenfunctions ^(t) of R(t,s). The function mx(t)
is the expected value of the xn(t), that is

n=l

and the coefficients cnk are determined from the integral

c nk=
r - - =\
Un(t) - mx(t) dt (87)
L J

Case VIII: Discrete Karhunen-Loeve expansion.- Suppose the zero mean random
vector x of case VI is finite dimensional. Now the operator L. becomes the covari-
ance matrix H

E - E X * X (88)
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and the basis vectors are the normalized eigenvectors i//, of H. The properties of the
—j£ —coefficients c^, which are determined by

ck = <^k, x) = ±^ (89)

remain unchanged; that is, they are uncorrelated with variance A.k

If the expansion is truncated at k = K, the expected value of the mean squared error is
again

M

k=K+l

CONCLUDING REMARKS

A comprehensive development of the representation of a set of random or determin-
istic vectors of any dimension in terms of a set of orthonormal vectors has been pre-
sented. Four important properties of this representation have been proven. These are:
(1) the representation approximates the vectors with minimum mean squared error,
(2) the coefficient vectors are uncorrelated, (3) the norms of the coefficient vectors are
maximized in turn, and (4) the entropy of the coordinate vectors is minimized. The gen-
eral representation has been specificized to several applications including the familiar
Karhunen-Loeve expansion and the use of empirical orthogonal functions to reduce the
dimensionality of atmospheric temperature profiles. For further clarification some
illustrative numerical examples are included in an appendix.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., January 16, 1973.
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APPENDIX A

SOME ILLUSTRATIVE EXAMPLES

Example Al

Consider the set of five data points with Cartesian coordinates x, y, and z as
tabulated below and illustrated in figure Al.

Point

1

2
3
4
5

X

-1

-2
-2

2

3

y
-2

0
3
3

0

z

5

3
3

0

1.6

Find the plane upon which the data can be projected with minimum mean squared error.

In terms of linear vector spaces the data are vectors v in a three-dimensional
Euclidean space. The problem is to determine the constant vector _<£„ and orthonormal
coordinate vectors _c£, and ^>2 which define the two-dimensional hyperplane (or flat)
upon which the data vectors can be projected with minimum error.

The constant vector is the average m of the vectors v

n=l

The operator L is the 3x3 sample covanance matrix H

(Al)

I T
4U U
N — —

22.0 2.0 -12.2
2.0 18.8 -11.1

-12.2 -11.1 13.8
(A2)

where U is the 5x3 matrix of row vectors u = v - m . The eigenvalues of H— —n —n —v ° —
are

(A3)
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APPENDIX A - Continued

Data

Projected data

Figure M.- Coordinates and data vectors for
example Al.
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APPENDIX A - Continued

The coordinate vectors

ing to the eigenvalues
and j£« are the eigenvectors

and A 2
and \j/q correspond-

= (0.630, 0.484, -0.607)

= (-0.654, 0.752, -0.079)
(A4)

Note that the new coordinate vectors j//.. and j//« are orthonormal (within round-off
error) since

= °-000

(A5)

The hyperplane then is the plane through the point m containing the vectors j^1 and
translated by ni , as illustrated in figure Al.

The coefficients, or coordinates, c^ are found from

Xn - m < * = ! , . . . , 5 \ (A6)

The mean squared error E\$} produced by representing the data as points on the

plane ^f is given by

2

E

n=l

- ni -

k=l n=l

;n3 (A7)

where the cn3 is the coordinate of u along j//o-

Note that the average variance a ^ of the projected data is

5 2

(A8)

n=l k=l

The average variance a2 of the data is

(A9)
n=l k=l k=l
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APPENDIX A - Continued

The percentage of the variance explained by the projected data

2

02 \i + A2

is 98 percent.

(A1Q)

Example A2

Consider the set of atmospheric temperature profiles obtained by radiosonde at
Charleston, S.C., during January 1 to 15, 1966. The set consists of the temperatures
taken at 0000 GMT and 1200 GMT at the nine standard pressure levels of 850, 700, 500,
400, 300, 250, 200, 150, and 100 mb for a total of 30 profiles, or data vectors tn, where
n= 1, 2, . . ., 30.

It is desired to reduce the dimensionality of the data set by approximating the pro-
files by a linear combination of K < 9 orthonormal vectors as follows:

K

tn = I Cnk^k (n = 1, 2, . . ., 30) (All)
k=l

Find the set of vectors _<£, , or empirical orthogonal functions, that best approximate the
data in terms of mean squared error. The vector space <%/ in this instance is nine
dimensional, with each vector having as its components the temperatures at the nine pres-
sure levels. From equations (29) and (30) the optimum J£Q is the average temperature

profile rnt found as follows:

30

n=l

The temperature deviations z from the mean were then computed

zn = t n - m t ( n = l , 2, . . . ,30) (A13)

The 9x9 sample covariance matrix _H (the operator L; for this problem) was cal-
culated from

E = — ZTZ (A14)
- 30 '

where ^ is the 30 x 9 matrix of temperature deviations z.
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APPENDIX A - Continued

The empirical orthogonal functions are the eigenvectors i//, of H correspond-
— j£ •—

ing to the K largest eigenvalues. The eigenvalues are tabulated in table Al, and the
first three eigenvectors are plotted in figure A2. The percentage of the variance
explained by K eigenvectors ar?/a^ a°d the root-mean-square temperature error
trms were computed using the following equations (A15) and (A16), respectively:

K

k=l (A15)

k=l
1/2

trms - 1 I (A16)
k=K+l

The results are tabulated in table Al.

TABLE AL- RESULTS OF TEMPERATURE-PROFILE REPRESENTATION

K

1

2

3

4

Xk'
oc2

44.65
7.62
4.40
3.61

9 / 9
"P/"2.
percent

67.7
78.8
85.1
90.4

*rms'
°C

2.23
.92
.70

.63

From table Al it can be seen that for this set of data one empirical orthogonal
function accounts for two-thirds of the temperature variance and that three functions can
approximate the temperature with a root-mean-square error of 0.7° C.

Example A3

Consider the random process shown in figure A3, where
with uniform distribution. The probability density function for

is a random variable
is then

(A17)

(elsewhere)
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APPENDIX A - Continued

100 f

150

200

250

Pressure,
nib

^00

500

700

850

1000
-1.0 -.8 -.6 -.4 -.2 0 .2 .k .6

Temperature, °C

Figure A2.- Empirical orthogonal functions for example A2.

.8 1.0

-*-t
T
2

0
1
2

-A

Figure A3.- Random process x(t),
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APPENDIX A - Continued

pr T
l_2 ' 2"_

by a series of the form

x(t) =

k=l

where the coefficients

(A18)

are uncorrelated.

From property 2 the coefficients ck are uncorrelated when the functions i//k(t)
are the eigenf unctions of the integral operator j-j whose kernel is the correlation func-

tion R(t,s) of the process x(t). The correlation function is triangular function with

period T, as shown in figure A4.

(s - t)

Figure A4.- Correlation function of x ( t ) .

The eigenfunctions

eq. (82)):

are solutions of the following integral equation (from

rT/2
R(t,s)<Ms)ds =

J-T/2
(A19)

The infinite set of sines and cosines, sin w^t and cos w^t, are solutions to the integral

equation (A19). These functions are substituted into equation (A19) to determine the
eigenvalues X^:

(A20)

Evaluation of the integral in equation (A20) is somewhat tedious since the interval of

integration must be divided into several subintervals, because the analytic expression for
the correlation function is different for different areas in the s - t plane. This is

36
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sin w^s

cos wks
ds = Ak
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APPENDIX A - Continued

illustrated in figure A5. The area of integration is the square corresponding to

-!*s t^
T

2 - S > t - ~ 2 -

Figure A5-- Autocorrelation function in the s - t plane.

Evaluation of the integral for cos wkt yields the identity

1 - cos —^—Icos

+ sin sin o>i,t

This identity will be satisfied if

cos

or

(k = 1, 2, . . .)

(A21)

(A22a)

(A22b)
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APPENDIX A - Continued

Then the eigenvalues A^ are determined by

(k- 1, 2, . . .) (A23a)

or

4A2T
o o

kV

The normalized eigenfunctions then are

(k= 1,3,

(k = 2, 4,

[ cos
T T

( k = l , 2, . . .)

where ^(t), for k even, are members of the null set of the operator

Now the process x(t) can be represented by the series

k, odd

where the random coefficients are determined by the stochastic integrals

and

(A23b)

(A24)

(A25)

(A26a)

(A26b)
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APPENDIX A - Concluded

Evaluation of these integrals yields

ak =

and

bk =

The variance of a is

k?r T

2A\|2T~ _ k2ir%
kvr T

0

V*

(k

(k

(k

- A, o,

= 2 ,4 ,

= 1,3,

= 2 , 4 ,

(A27a)

(A27b)

or

E ak
( k = l , 3, . . .)

(k = 2, 4, . . .)

(A28b)

which agrees with Xk in equations (A23b). The variance of
ak. The total power P^ in the kth harmonic is

is the same as that of

:ti
JT 2

( k = l , 2 , . (A29a)

or

( k = l , 3, .

(k = 2, 4, .

(A29bj

which agrees with the results obtained by conventional Fourier series analysis of a
square wave.
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APPENDIX B

PROOF THAT THE OPERATOR L IS COMPACT

The linear self-adjoint operator L on the vector space tf was defined by equa-
tion (14) as follows:

The operator _T is defined by equation (10) as follows:

If the space US is a finite dimensional Euclidean or unitary space, the operator L
is finite (has a finite dimensional range) and is thus compact. (See ref. 11, p. 37.) If the
space 2S is </0 space and the vectors x are deterministic, the operator L is

£i *~H —

again finite and compact.

The remaining case of interest is that when the vector x is a random process with
sample functions in X ' s p a c e . Assume the process x is measurable on fi x r and

rb To ^is, \ E x2(t)
Ja L

mean square integrable; that is, \ E{x^(t)}> dt < °°. The operator L is defined by

(Bl)

where z_ = x - _<£,.. In /g> equation (Bl) becomes

L f = f f f(t)z(t,cu)dt z(s,o>)d<P(a>) (B2)
«J Q JQ

0 C a.

By Fubini's theorem on iterated integrals (ref. 12, p. 135)

pb r pb r —^ pb
L f = \ f(t) \ z(s,w)z(t,w)d(P(w)dt = \ f ( t )E<z(s )z ( t )>d t = \ R(s,t)f(t)dt (B3)

e\ O 3 L J a

Since the process is mean square integrable the kernel R(s,t) is square integrable on
the square interval [a, b] x [a, b). Thus the operator L, is compact because every oper-
ator with square integrable kernel is compact (ref. 11, p. 47). The proof is complete.
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