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ABSTRACT

i A capability for solving elasto-plastic plate bending problems is

developed using assumptions consistent with Kirchhoff plate theory.

Both bending and extensional modes of deformation are admitted with .the

two modes becoming coupled as yielding proceeds. The material work-

hardens and, consistent with the fundamental theory of elasto-plasticity,

loading is incremental and local unloading is permitted to occur.

Equilibrium solutions are obtained numerically by determination of the

stationary point of a functional which is analogous to the potential

strain energy. The stationary value of the functional for each load

increment is efficiently obtained through use of the conjugate gradient

method (CGM) at modest computer storage requirements. The CGM was

modified to take advantage of initial search direction vectors to provide

possible reductions in computing time from one load increment to the next.

This technique is applied to the problem of a large centrally through

cracked plate subject to remote circular bending. Comparison is drawn

between two cases of the bending problem. The first neglects the possi-

bility of crack face interference with bending, and the second includes

a kinematic prohibition against the crack face from passing through the

symmetry plane. Results are reported which isolate the effects of elasto-

plastic flow and crack closure.



CHAPTER I

INTRODUCTION

1.1 General Comments

The stress and strain fields in a plate containing a perfectly sharp

crack subject to a variety of loading conditions has been the principal

focus of a great deal of past and present research. The solution to the

elastic extensional problem was given by Inglis [1]* in 1913. It was

not until 1951 that Williams [2], using Kirchhoff fourth order plate

theory, first published a solution to the problem of elastic bending of

a centrally cracked plate. In 1961, Knowles and Wang [3] solved this

same centrally cracked plate bending problem using sixth order Reissner

plate theory. The principal deficiency with either the Williams or the

Knowles and Wang solutions to the bending problem is their inability to

account for the crack closure phenomena, i.e., both solutions model the

crack face as a free surface either in the Kirchhoff or Reissner sense.

This allows the material to overlap onto itself on the compressive side

as bending and crack face rotation proceeds.

The bending/extension interaction problem has been mainly attempted

through superposition of elastic bending and extensional solutions. The

work of Folias [4] and Wynn [5] are noted in this area. Specifically,
^

the crack closure problem does not exist if the extensional load is large

enough to open the crack sufficiently to preclude contact of the crack

*Numbers in parentheses indicate references listed in the
Bibliography.



face on the compressive side due to the bending load. Unfortunately,

this crack face interaction does exist in many practical instances and

its effect needs to be quantified.

The extension/bending problem becomes even more insideous when

material yielding is present. Under these conditions, not only is the

bending/extension behavior coupled through interaction of the closed

crack face, it is also coupled through material property considerations.

Elasto-plastic solutions are available for the extensional case in

the form of numerical solutions [(6), (7), and (8)] and closed form

solutions in the case of special plasticity assumptions [(9), (10), and

(11)]. Unfortunately, the bending problem has not been attacked with

such success. The principal reasons for this is the additional compli-

cations of crack closure, free surface approximations for Kirchhoff

boundary conditions, and the elastic core that persists in plate bending

problems for the case of work hardening materials. Gonzalez and Brinson

[12] have applied the Dugdale Strip model to the bending problem with

some success but their solutions are limited both due to lack of crack

closure considerations and not accounting for an elastic core.

1.2 Scope of Research

Ideally, the analysis of a plate with a centrally placed through

crack subject to circular bending of such a magnitude to cause large

amounts of yielding would include both the effects of crack closure and

coupling between bending and extension as yielding proceeds. A first

step in that direction is provided in this work.



The bending theory used in this study is based on classic Kirchhoff

plate assumptions. Higher order theories for the bending analysis were
I

deemed prohibitive when considered in conjunction with elasto-plastic

material properties. The general elasto-plastic extension/bending

theory is developed through use of a functional whose minimum corresponds

to the equilibrium state for the elasto-plastic plate. Determination

of this minimum through a numerical procedure constitutes the finite

element approach used. Using this capability, the circular bending of

an elasto-plastic plate with a centrally located crack is treated. The

Problem is essentially broken down into two parts: The first problem

using the classic boundary conditions for a stress free surface (in the

Kirchhoff sense) of the crack face (i.e., no closure) and the second,

which modifies these boundary conditions to reflect the physically

realistic phenomenon of crack closure. This is accomplished by adding to

the functional, constraint equations that require the normal displacement

of the crack face on the compressive surface to be zero. This couples in-

plane and bending behavior through the constraint of the crack face and

not by extending exterior plate boundaries to relieve the crack face

interference.

It should be pointed out that no corrections of the results are to

be made concerning crack face warpage due to either three dimensional effects

at the crack tip or to the wedging effect as the crack closes. Experi-

mental evidence [13] indicates that these effects are important for crack

length to plate thickness ratios of less than four, for which these



results do not apply. Also, no geometric non-linearities are intro-

duced either through the bending or stretching theories. However, since

a circular bending field is applied to the plate, a developable surface

is expected and the geometric non-linearities due to bending, should be

small.

1.3 Summary of Principal Findings

Principal findings of this study clearly show that the mechanics

of a centrally cracked plate subject to circular bending is strongly

influenced both by the effects of crack closure and elasto-plastic flow.

Results are given for in-plane and transverse deflections, transverse

slopes, neutral axis shifts, stress and strain distributions, growth

of yielded zones, and stress intensity factors for plates with and

without closure effects accounted for. Comparison of these results

between the two problems allow reduction of systemic errors and even

though Kirchhoff plate theory was used, a good indication of the effects of

elasto-plasticity and crack closure was obtained.



CHAPTER II

REVIEW OF LITERATURE

Many theoretical and experimental studies have been performed

concerning the problem of a stationary through crack in a plate subject

to bending and/or extensional loading. Although the bulk of these

studies deals with elastic behavior only, elastic-plastic results are

available for the extensional problem mostly in the form of numerical

determination of the stress state or asymptotic studies of crack tip

singularities in plastic materials. There has been relatively little

work reported on the elasto-plastic bending problem.

2.1 Elastic Bending and Extension

The early work by Williams [2,14] dealt with the bending problem by

considering a wedge-shaped section and applying boundary conditions along

radial edges of the section. Williams solved the biharmonic equation

v\ = 0 of Kirchhoff plate theory by assuming a solution of the form

w(r,o) = rA+^F(o,x). He then determined the functional form F(O,A) which

solved the differential equations and obtained eigen solutions appropriate

for various boundary conditions. Williams [15] then made the analogy

between~the-plane-extension v-̂ f = 0 and bending v^w =- O-where.y .is the_

Airy stress function and using the developed techniques, solved for various

boundary condition combinations. In this paper, he suggested that the

wedge-shaped section for the extensional problem be extended to 360° for

the free-free boundary condition case. These conditions represent a



semi-infinite V-shaped notch in an infinite plate. In [16], Hilliams

published the results of the V-shaped notch or crack for the extensional

case using the technique developed in [15].

In 1957, Irwin [17] presented the results of using the Westergard

stress function [18] as applied to the through cracked plate. The

singular stresses at the crack tip for the extensional case are

V

-°xx = , cos 7(1- sin y sin

yy *=cos | (1 + sin f sin ̂
\ t* C. t>

K
sin f- cos f- cos2 2

a = v(o + a )
zz xx yy'

Txz

K = a (vaY
I o

(2-1)

The significant points of this work are the 1 A/r~singularity, the

ratio of the normal stresses at the crack tip (unity), and the angular

variation of the stresses.



Williams [19] continued his eigen solution technique and in 1961

published his results employing fourth-order classical bending theory

with Kirchhoff boundary conditions. His singular stresses were modified

by Sih, Paris, and Erdogan [20] to identify a bending stress and shear

stress intensity factor. Using this later notation Kn, these singularo

stresses are (see Figure 2-1 for plate geometry)

; = 7 + v i i 3 + 5v cos 9 - cos 3e
rr 2(3 + v) V?7 h 7 + v 7 ]̂

a = _L±^_ A. L f5 + 3v cos 1 + cos Ml
99 2(3 +v) Y2r h l_7 + v 2 2_|

(2-2)
7 + v__, KB z f" (1 - v) . e. . 3e 1

T r e = 2(3 + v) W h I" (7 + v) Sin 2 + sin
 2J

6M

Sih, Paris, and Erdogan [20] went on to calculate KB for various

crack configurations using the method of complex variables as applied

to planar problems by Muskhelishvili [21].

Williams [19] results showed that the ratio of the normal stresses

at the crack tip in the plane of the crack are not unity as in Irwin's
\,

extensional problem and, although the (1/r)2 singularity was the same,

the angular variation was different between the extensional and bending

case.
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Knowles and Wang [3] used sixth order Reissner plate theory and

showed that the functional form of the stress distribution is the same

as in the extensional case. Moreover, the stress ratio is unity as in

the extensional problem. The difference between Williams [19] and Knowles

and Wang's results is due to the use of approximate Kirchhoff boundary

conditions for the free surface, while the Reissner theory allows for

the satisfaction of three separate boundary conditions, i.e., vanishing

normal moment, twisting moment, and shear stress on the crack face.

In 1969, Hartranft and Sin [22] applied Reissner plate theory to an

infinite plate of finite thickness and showed that the bending stress

intensity was a function of plate thickness. For vanishingly thin plates,

these results reduced to those of Knowles and Wang [3],

2.2 Experimental Investigations

In all of the theoretical studies mentioned above, the crack face

was taken to be stress free in either the Kirchhoff or the Reissner sense.

In reality, however, this is not the case; on the compression side of the

plate, the crack physically closes on itself. There is ample experimental

evidence that such is the case. For instance, Erdogan et al. [23] found

that even in cases of some extension normal to the crack surface, the

crack closes upon itself on the compression side of the plate. Smith

and Smith [13,24], using a photoelastic technique, also found a strong

influence of crack closure on the stress results and in fact found that

crack closure could produce a non-conservative effect of as much as 40%.

Smith and Smith [24] indicated a shift in the neutral axis that was
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associated with the crack closure phenomenon. They compared their

experimental results with the theoretical work of Hartranft and Sih [22]

and found that as three-dimensional effects became prominent (i.e.,

crack length becomes small compared to plate thickness) crack closure

effects dropped off.

2.3 Elasto-Plastic Bending and Extensional Solutions

A considerable amount of effort has been directed toward the

extension of an elasto-plastic plate containing a stationary crack.

There is much current work being done attempting to identify and make

use of parameters which characterize near tip singularities of elasto-

plastic solutions from both analytical and numerical approaches.

Due to the complexity that non-linear material behavior adds to

this problem, most of the analytic efforts reported in the literature

have made use of various idealizations such as perfect plasticity or

power law hardening materials. For example, for rigid-perfectly plastic

materials, Rice [25] has shown that the shear strain exhibits a 1/r crack

tip singularity. Also, both Hutchinson [9], and Rice and Rosengren [10]

have found near tip solutions to power law hardening materials which

have stress and strain type singularity of n/(l+n) and l/(l+n) where n

is the hardening exponent. Much has "been" learned from'elasto-pTastic- -

finite element solutions presented by Lee and Kobayashi [8], Swedlow

et al. [6], Miyamoto et al. [7], and others concerning the growth and

shape of plastic yield zones, transition between elastic and plastic

behavior, and the stress and strain behavior in the vicinity of the

crack tip.
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Experimental evidence [27] has shown that the detailed shape of the

stress-strain curve is of great importance when considering crack

geometries. This has led many investigators to develop numerical capa-

bilities to handle materials with general work hardening properties

(i.e., [6], [7], and [8]). Swedlow, Yang, and Williams [6] using finite

element techniques, indicate that for elasto-plasticity, the singularity

of stresses at the crack tip decreases with load, while that for strain

increases. Efforts (Rice and Tracey [26] and Levy, et al. [28]) have

been made to develop elasto-plastic singularity elements with limited

success. This is mostly due to the changing nature of the singularity

as the plasticity develops, the dependence of the singularity on the details

of stress-strain curve, and the difference between stress and strain

singularities at the crack.

Very little theoretical or experimental work has been done concerning

the elasto-plastic bending of plates containing stationary cracks.

Gonzalez and Brinson [12] have extended the Dugdale extensional model

to the bending case. They performed an experimental study and found that

the plastic zone varied with thickness in both tension and compression

at the crack tip with the compressive zone continuing along the crack

front-on the compressi.ve s.ide.of the plate. ^They a}so found experimentally

a shift in the neutral axis due to the effects of crack closure which

were not included in their theoretical considerations.
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2.4 Combined Bending and Extension

Theoretical solutions to the elastic combined extension/bending

problem for the most part have been obtained by superposition of local

stress .fields due to the extensional load onto local stress fields due

to the bending moment [5], [44]. These solutions do not account for the

crack closure phenomena unless the extensional load is large enough to

preclude contact of the crack face on the compressive surface due to

bending. Adjusting the extensional load and bending moment such that

the crack face is always open was suggested by Wynn [5] as a method of

eliminating the crack closure problem. However, as Wynn's work pointed

out, there are many practical instances of combined extension/bending

where crack closure is of major importance. No elasto-plastic results

are reported in the literature for the case of combined bending and

extensional loading.



CHAPTER III .

DISCRETE ELEMENT FORMULATION.

As pointed out in Chapter II, theoretical solutions are not yet

available for the problem of a through stationary crack in a plate

subjected to bending and extension where the effects of crack closure

are important. Experimental evidence indicates that analytical tech-

niques are needed that can adequately reflect the shift in neutral axis

due to crack closure and couple the resulting in-plane loadings to the

transverse plate behavior. In the elasto-plastic problem, this is

further complicated by the coupling between stretching and bending that

occurs as yielding proceeds.

3.1 Solution Technique

Traditionally, for elastic behavior, minimum potential and comple-

mentary energy theorems have been used either to derive equilibrium

equations with complete boundary conditions or to determine approximate

solutions to complicated boundary value problems. These theorems are

also used in the development of general numerical capabilities for the

sol.utipn qf_elastic structural problems, namely, the finite element

method. Also, by discretizing the structure in question and treating

the potential energy expression as a functional to be minimized, it is

possible to cast the equilibrium problem as a mathematical programming

problem. The minimization process may then be carried out by any
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number of numerical algorithms developed from the mathematical

programming point of view. For non-linear material behavior, minimum

potential and complementary energy theorems are not valid. However, for

incremental plasticity, rate formulations analogous to the minimum

potential and complementary energy theorems can be obtained. Concep-

tually these new functionals may be treated similarly to the potential

and/or complementary energy with the interpretation being applied on an

incremental rather than a total state basis.

The problem addressed here is that of a flat plate that is loaded

in such a way as to cause both extentional and bending modes of defor-

mation at least locally. These displacements are considered to be small

enough so that kinematic assumptions consistent with Kirchhoff plate

theory can be made. Although the deflections are considered to be small,

the resulting stress field is allowed to be of such a magnitude to cause

considerable yielding of the material. The theory for this elasto-plastic

material behavior relating increments in stress and strain to increments

of applied load has been obtained by coupling the Prandtl-Reuss relations

with Drucker's work-hardening hypothesis, [6] and [29].

Due to the complexity of the field equations and boundary condition

-describing the- stretchingTbending .elasto-plastic.plate behavior, only the

simplest cases can be solved in closed form. However, because the problem

is basically quasi-linear (see Swedlow [29]), it is possible to cast

the boundary value problem as a set of linear sub-problems to be solved
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in succession. Each sub-problem is associated with a load increment

and accumulated values of stress and strain. The solution to the

complete elasto-plastic boundary value problem then consists of

solving a succession of linear, anisotropic, inhomogeneous elasticity

problems.

The approach taken in this study is to discretize the structure

and solve the resulting equilibrium problem of an assemblage of elements

approximating the total plate structure. A functional is developed

whose minimum corresponds to the equilibrium point of an elasto-plastic

plate subjected to in-plane and transverse loadings. The assemblage of

the discretized approximations to this functional is then numerically

minimized for a succession of loads incrementally applied allowing the

plasticity effects to build up with each increment.

The plate element used in this work was constructed using two

dimensional cubic Hermite interpolation functions. Bogner, Fox, and

Schmit [30] used these displacement functions to develop an elastic

plate bending element. The attractive feature of using cubic Hermite

interpolation polynomials as displacement functions is that they have

the property of continuity of displacement and slope at intraelement

boundaries. long and Pian [31.] have shown that such an element satisfies

kinematic admissibility for the entire plate while Birkhoff, Schultz,

and Varga [32] have shown that the error bounds are proportional to the

mesh size squared. The extension of this elastic element to the inelastic

case was done using deformation theory for the case of pure bending and

no stretching by Fox and Stanton [33].
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The- discrttized element representation used here incorporates the

kinematic admissibility properties of the bicubic Hermite interpolation

polynomials in addition to the incremental plasticity constitutive

relations. The spatial variation of the material properties caused by

the yielding is approximated by bilinear Hermite interpolation between

additional nodes interior to the element that partition the element into

four sections. The thickness integration is accomplished by a Lobotav

quadrature of nine points.

Using the discretized representation for the plate, a quadratic

functional is developed whose minimum corresponds to the equilibrium

point for the particular displacement-equilibrium problem. A modified

version of Beckman's [34] conjugate gradient quadratic programming

algorithm is used to minimize the functional and obtain the equilibrium

solution. The modifications used take direct advantage of initial guess

of both solution and direction of search. These modifications become

extremely important as far as elasto-plastic solutions are concerned.

Here, the solution from the previous load increment can be used for the

initial guess and direction vector for the next increment.

The primary advantage of the energy search technique to solve the

.equ.ilibriurn problem is .that .of computer .storage. By calculating the

total potential energy as the summation of the energy contributions from

each element, very large problems can be solved without requiring the

assembly of the master stiffness matrix. Also, bandwidth becomes

unimportant as zeros are taken advantage of regardless of their position
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in the matrix. In plasticity solutions where direct advantage of initial

guess solutions may be made, significant reduction in computation time

may be realized.

In this Chapter, the plate element stiffness matrix is derived

and the conjugate gradient method developed.

3.2 Constitutive Relations

Since the mathematical theory of plasticity has received extensive

treatment in the literature (e.g., [29]), there is little need to

present a detailed derivation here. Rather, an outline of the steps and

assumptions necessary to obtain the elasto-plastic flow rule used in

subsequent calculations is presented.

A flow rule for elasto-plastic deformation can be derived based on

the following assumptions [29]:

1. elastic and plastic strains are separable;

2. quasi-thermodynamic postulate known as Drucker's hypothesis

is imposed; and,

3. the existence of a surface is presumed in stress space,

known as a loading function, which is of the form
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where t- is an arbitrary' function having the dimensions of stress whose

arguments are

o . Is s
2 2 ~ij -ji

J = -S S S .
3 3 ~1j ~~jk ~k£

Here , S.. = a.. - a, . 6 . . is the devi ator of the stress tensor o
- ij 3 kk ij

(3-2)

The scalar K is a function of the plastic strain energy density

given by

= J aii d eii« 1 j ' J

From Drucker's hypothesis, the plastic strain increment vector

can be written as

defP) = A Jl_ (3-4)
U 80ij

here A is a constant of proportionality yet to be determined. Under

these circumstances, the plastic strain increment is

The scalar Y is given by

/ .JL
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and

ij Bo, ,•

, , dt
(P) e

eq

= T
eq

The total strain increment can be divided into recoverable and

irrecoverable portions. This suggests the superposition of elastic and

plastic strain increments.

d.«J> * d.<J> (3-6)

The elastic portion is described by Hooke's law. Combining (3-5)

and (3-6), the flow rule takes the form

v 2
2yd£ij = d°ij " T^ dakk6ij + Y

The inverse of (3-7) is

I//
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Equation (3-8) can be divided by dt and by noting that the material

derivative da../dt can be written as 3a /3t = a., for a quasi-
ij ij iJ

static process, it is possible to write the flow rule independent of

the time scale [6]. Hence the constitutive relations Equation (3-8)

take the form

or '' = E {3-9)

(Note: £,••(<£ "is given in Appendix A for plane stress.)

Equation (3-9) has been derived for a monotonically increasing

equivalent stress, equivalent strain curve.

3.3 Variational Formulation

Force equilibrium for a static process is expressed by

°U,jtFi • 0 <3-'°>

For a quasi-static process in which the displacements are small and

F. is both small enough not to cause yielding and independent of time,

differentiation with respect to time yields

" 0.. V =" 0 " """ ~ " "(3-1T)
iJ.J
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Defining oil. as the first variation in the displacement field

corresponding to a change in applied forces and integrating a.. . <5u.

over the volume requires that

u dv = 0 (3-12)

Equation (3-12) can be integrated by parts and the divergence theorem

used to change the volume integration to one along the surface S.

J a. . 6un. n. dS - J a. . 6^ j dv = 0 (3-13)
S V^u

• n
Cauchy's stress equilibrium expression T. = o - - r \ ^ is used along the

surface to produce the equation

ji^u. dS = 0 (3-14)

• •

The strain rate, displacement rate equations e.. = %(u. . + u, .) can
i j i >J J ji

now be used resulting in a rate form analogous to the Principle of

Virtual Work.

f o.. 5e.. dv = j' T? 6u. dS (3-15)
J ij ij J i i
v Su
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Using the constitutive Equations (3-9), the stationary principle

required to determine equilibrium can be established. That is,

su

Defining the functional

Su

and since E i ikJl and T. remain constant at an instant in time,

Equation (3-16) gives rise to the stationary principle

6u = 0 (3-18)

The statement for Equation (3-18) is as follows:

Theorem I.

Of all displacement rates u. satisfying the given boundary conditions,

those which satisfy the equations of equilibrium are distinguished

by a stationary (extreme) value of the functional IT.

For the case of elasticity, it is clear from Equation (3-17) that

the functional ir reduces to the potential energy and that Theorem I is

the minimum potential energy theorem. In the same sense that Equation (3-18)
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is the analogue to the minimum potential energy theorem, a functional

T* can be developed to be analogous to the complementary energy theorem.

This functional is

** = I
Cijk£
2 uij uk£ uv

Su

Since the volume is fixed and C. and u. remain constant at an

instant in time, the adjunct to Theorem I is

6TT* = 0

Therefore, the second theorem is:

Theorem II.

Of all the stress rate tensor fields o-. that satisfy the equations
* J .

of equilibrium and boundary conditions where traction rates are

prescribed, the "actual" one is distinguished by a stationary (extreme)

value of the functional TT*.

3.4 Discrete Element Representation

The basis for the displacement solution is the determination of

the stationary point associated with the functional in Equation (3-18).

Viewing this functional as the summation of contributions from an

assemblage of discrete elements, it is clear that the displacement state

that minimizes Equation (3-18) corresponds to the equilibrium solution.
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By assuming a displacement rate state over each discrete element, the

volume integration can be completed with only the coefficients of the

assumed displacement state as unknowns. Therefore, the most important
/

phase in the development of the discrete element is the selection of

the individual element displacement rate functions. As pointed out by

Bogner [30] and Shieh [36], the displacement rate functions must meet

several criteria to guarantee that the stationary point of the functional

of the assemblage of elements corresponds to the global stationary

point for the complete structure. The formulation for the functional

indicates the requirements that must be met by a displacement rate

function. These requirements are:

1. Satisfy global kinematic admissibility by satisfying boundary

conditions and enforcing intraelement continuity of displace-

ment and slope rates.

2. It must have at least as many undetermined parameters as

degrees of freedom.

3. The assumed displacement rate shape should be complete in

the sense that increasing the number of elements monotonically

increases accuracy of results.

- 4. It must-allow-for rigid body displacements.otherwise element

equilibrium could be violated.

As indicated by Bogner [30], Stanton and Schmit [37], and others, the

use of displacement rate states written as the sum of two-point Hermite
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interpolation polynomials make the satisfaction of kinematic admissibility

very convenient. By allowing for two in-plane and one out-of-plane

displacement rates, there are 12 constants and 12 degrees of freedom per

corner of a rectangular element. Using the two-point bicubic Hermite

interpolation polynomials, these degrees of freedom are matched exactly

with those of the polynomials. Also, rigid body displacements are

accounted for exactly. As Key [38] has shown for the special case of

pure bending of a flat plate, the element displacement rates are complete

and assure monotonic convergence.

For these reasons, the displacements rate shapes considered here

are written as two-point Hermite interpolation polynomials.

When values of f(x) and df(x)/dx = f'(x) are known at two points,

then, using Hermite interpolation,

f(x) = ^ [HQ.(x)f(x.) + H1.(x)f'(x.)] (3-21)

The one dimensional cubic Hermite interpolation polynomials

H . (x), H (x) may be found in Hildebrand [39]. For an interval

0 <. x ̂  a, they are

H (x) = I/a3 [2x3 - 3ax2 + a3]

H,,(x) = I/a2 [x3 - 2ax2 + a2x]
11 , , (3-22)
H02(x) = - I/a3 [2x3 -

H12(x) = I/a2 [x3 - ax2]
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For two-dimensional interpolates, products of two, one-dimensional

interpolation formulas are formed to describe the function over the

rectangular domain of interest. The undetermined parameters are the

values of the function, first derivatives with respect to the arguments,

and a cross derivative.

3.5 Rectangular Bending-Membrane Plate Element

For the plate analysis to follow, several assumptions are made in

addition to those already mentioned. These are:

1. Geometrically, deflections are small compared to plate

dimensions.

2. The plate is thin and a state of plane stress exists, i.e.,

°zz = TXZ = T = 0 (see Figure 3-1).

3. Lines orthogonal to the middle surface of the plate before

bending, remain so after bending.

Expanding Equation (3-17) for the case of plane stress consistent

with assumption 2 yields

a b h/2

" • JJ 1 *{ E11 £x + 2E12 Vy + E22'y + 2E13^xy
o o -h/2

- - - - - . . . . . . . . . . . . . . (3-23)

+ 2E23 ;xy ^y + E33 O dxdydz ' I ^ 6"l dS

S
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FIGURE 3 - I
DISCRETE PLATE ELEMENT
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Taking advantage of assumption 3, the strain-rate displacement-rate

equations are

2-. 3U — 2 v
e = - Z -d——ex ax 9X2

2-
e = -^ - Z £-£ (3-24)
y ^ 3y

2

Yxy ~ 3y ax

2-1
_L_w
3xayj

Using bicubic Hermite interpolation formulas for the displacement

shapes, the displacement rate state for the rectangular element over

region O ^ x s a , O ^ y s b where the unknowns are corner parameters of

a typical element is (see Figure 3-1 for numbering scheme of i,j).
i

au..
u(x.y) - u.. H0.(x)H0.(y),_IiH1.(x)H0.(y)

2 (3-25)
au.. a u..

Vx) Vy)

This equation can be rewritten in matrix form as

u(x,y) = {u}T {P(x,y)> (3-26)

Complete vectors {u} and (P(x,y)> are given in Appendix B.



Combining (3-23), (3-24), and (3-26) results in
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kuu

kuv

kuw

kuv

kvv

kvw

kuw

kvw

kww
v >-< v >{Bn] (3-27)

where {Bn} is the vector of external forces applied on the nodes of

the element, and each of the k1J are 16 x 16 symmetric entries defined

by the volume integrals as follows:

uu =[kuu] =
v ;-

v -
2ZE13PyP

vw[kv] = -
v

4ZE23PyPxy

dv

dv

dv
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v -

2 T 2 T
+ 4E Z P P + 4Z E P P dv23 yy xy Hi 33 xy xy P

In these expressions the P's are the Hermite polynomial vectors

listed in Appendix B. The subscripts on P indicate differentiation with

respect to particular variables.

Since the material properties E. . are in general functions of

both the stress state and spatial coordinates, special consideration of

them is due before the volume integration can be performed. To

accomplish the x-y integration, the element is broken up into four

subregions. Values of
h/2

J Eij(x,y)dZ

-h/2

h/2

Ĉ x.y) = J ZE...(x,y)dZ (3-29)

-h/2

h/2

oljCz.y) = J Z2E (x,y)dZ

-h/2

k H region number as per Figure 3-1
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are subject to bilinear Hermite interpolation within each subregion

where the values of the four adjacent corners are the unknown parameters.

This permits closed form integration in the x-y plane with numerical

evaluation of £. ., C-., D. . required only at the nine connecting
w ' J ' J

nodes of the four subregions. This numerical integration in the thickness

direction is accomplished using the Lobotav quadrature with nine thickness

points. For the elastic case, kuw = kvw = [0].

Equation (3-27) represents the contribution to TT for the n "

element. The total value of the functional TT is the sum of TT" over

all the elements or

NEL
r — i „

TT = > TT where NEL = number of elements (3-30)

The equilibrium position for the plate is the stationary value of the

functional it.

3.6 Minimization Algorithm

The total value of the functional TT is obtained by summing over all

elements their respective contributions to TT as indicated in Equation

-(3-27). By calling the element degress of freedom- {-Y} and element .. ..

stiffness matrices [Kn], Equations (3-27) and (3-30) can be rewritten as

TT" = % {Yn}T[K]{Yn} - {Yn}T{Bn} (3-31)
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Defining a transformation of the element degrees of freedom {Yn} to

the system degrees of freedom {X} such that

{Yn} = [an]{X} (3-32)

it is possible to write Equation (3-30) in the form

NEL

T, = £ / = HX}T [A]{X} - {X} T {F} (3-33)

n=l

where

NEL

[A] = £ Un]T[Kn][an]

n=l

and

NEL

n=l

Since [A] is a positive definite symmetric matrix, the stationary point

of the quadratic-functional in (3-33) -is a minimum. _ I_t _is now possible

to cast the equilibrium problem in terms of a mathematical programming

problem, i.e.,

Minimize: tr(x) = % {X}T[A]{X} - {X}T{F}

(3-34)
Subject: No constraints.



33

In this representation, {X} is the state variable vector of dimension

N (number of system degrees of freedom), [A] is a positive definite

N x N matrix, and {F} is the N-dimensional work equivalent force vector.

There are many techniques for minimizing Equation (3-34). Essen-

tially, they fall into two categories: direct search methods and

gradient methods. Most success in structural mechanics problems has been

through the use of gradient techniques [30], [35], [37], [40]. Although

Gisvold and Moe [40] applied Powell's (see [42]) method of direct search

in solving buckling problems with satisfactory results, it has been

pointed out by both Box [42] and Beveridge and Schechter [41] that

gradient methods rather than direct search methods are best suited for

unconstrained minimum problems. This is especially true when an analytic

form of the gradient of the objective function can be determined. It

is for these reasons that a modified version of the conjugate gradient

method as outlined in Beckman's paper [34] is used in this work.

All gradient techniques locate the solution {H} to the minimization

problem as the limit of a sequence {XQ}, {X-j}, {X2},..., where {X } is

an initial approximation to {H}. (Note that subscripts refer to particular

vectors and not their components.) The movement from one approximation

{X.} to the next approximation {Xi+-j}-proceeds along-some.specified

direction {p^} a distance a.. That is

{X-+1} = {Xj} + a-,-̂ } (3-35)



34

The techniques of determining ai and {p^ comprise the primary

differences between the various methods. By constructing the {p^} to

be linearly independent, one forms a basis for the solution space {H}

and hence, in linear problems, convergence to the solution in N steps

is guaranteed. Beckman [34] constructs the (p^}'s by a Gram-Schmidt

orthogonalization process using the gradient of TT evaluated at the {X.}'s.

Hence the name, conjugate gradient. The distance of travel «• is

determined by minimizing TT(X^+-J) with respect to a-. This gives the

maximum distance of travel along any direction vector.

It should be noted that in this method as in the conjugate gradient

methods used by Stanton and Schmit [37],,Bogner [3 EG. Bogner, et al. [30],

and Fox and Stanton [33], the initial direction vector is in the direction

of steepest descents. A common characteristic of this starting direction

is that the number of iterations to convergence for a particular problem

is independent of the initial guess {X } and hence (P0K This behavior

was found by Beckman [34] and Stanton and Schmit [37]. Although this

characteristic may be an advantage in many instances, for incremental

elasto-plastic problems, a distinct advantage could be gained by making

use of the solution at the previous load step as a starting point for the

present load step.

The following method is based on Beckman's method but instead of

starting in steepest descent direction, an arbitrary initial direction

is used. Constructing the solution vector sequentially as

* a2{p2} + '•• + aN-l(PN-l}
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it is possible to size a. such that the distance a. in the direction

{p^} minimizes the objective function ir. This is if

{5W = <VWPi}

Then a. is such that

.
'

Carrying out this operation gives

where the residual vector {R.} is defined as

{R.} = (F) - [A]{X.}

It is now necessary to pick a new direction vector. This vector is

determined by an [A] - orthogonalization of {pQ}, {R-|}, {R2>, • ••, ^RN_"|

using a Gram-Schmidt process. This results in a set of linearly inde-

pendent vectors spanning the N-space describing the solution vector of

Equation (3-34).
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The algorithm described above may be summarized as follows:

1. {XQ} = An arbitrary initial guess to (H>.

{R0} = (B> - [A]{XQ}

{p } = an arbitrary initial guess to the direction from

{XQ} to (X̂ , or {RQ}.

2. u. =

4.

3. {R,.,} = {F} -

or

5-

Steps 2 thru 5 are now repeated until the solution to the desired

accuracy is obtained. This takes at most N-steps for linear problems.
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The choosing of the initial guess {X > and direction {p } is

very critical in this routine. However, for linear problems, choosing

{XQ} to be {0} and {p } to be proportional to the solution, results in

the exact solution in only one iteration. This is easily seen as a

then simply scales {pQ} to the correct magnitude. For elasto-plastic

analysis, this is very helpful for it has been found that from one load

step to the next, the displacement states are roughly proportional.

Hence, using the old solution for both {X } and {p } should pjrovide very

rapid convergence behavior. For elastic problems, approximate solutions

are often available that may be used as {XQ} and {pQ}. If not, {p } may

either remain arbitrary or determined by steepest descents with convergence

still guaranteed in at most N-iterations.

In the course of their work using the conjugate gradient method for

geometric non-linear structural problems, Fox and Stanton [33] uncovered

a strong scaling effect significant in the convergence of their problems.

Essentially, the difficulty stemmed from large variation in diagonal terms

of the [A] matrix. They found that by making all diagonal terms equal

(say 1.) and the sum of off-diagonal terms as small as possible, convergence

of the conjugate gradient algorithm was greatly increased. This behavior

was suggested by Gerschgorin's disk theorem. Geometrically, this scaling

transforms the N-dimensional hyperellipsoid described by -rr(X) = constant

into a more hyperspheroidal shape. The scaling transformation is

accomplished by premultiplying the state vector {X} by a diagonal matrix

whose diagonal entries are d. • = 1 ./V̂ ^ •.
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Convergence may be determined by one or both of two methods.

Either the magnitude of the residual vector may be forced to be very

small or convergence to a certain digit accuracy of the objective function

may be required. In practice, both methods can work well. The minimum

residual vector criteria seems to be more restrictive, however, its

value does not necessarily decrease monotonically from iteration to

iteration. On the other hand, the objective function does converge

monotonically to the minimum value and is thus attractive as a convergence

criteria.

It should be pointed out that linear constraint equations of the

form

[C]{X> + {D} = 0 (3-41)

can be introduced into Equation (3-34) through the use of Lagrange

multiplier concepts. For the linear constraint equations of Equation

(3-41), Equation (3-34) can be written as

- {X } T {B } - {X}T [C] {X} - U}T{D}. (3-42)

or

TT = HX}T[A]{X} - {X}T{B} (3-43)
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where

(X) = c' — > [A] =
A -CT

--i —
-C 0

{B}
-w

f * \
•< —) D /

V. J

For m linear constraint equations, [C] is a nxm connection matrix, {A}

is an m dimensional Lagrange multiplier vector, and {D} is an m

dimensional constraint vector where n is the dimension of the original

{x} vector. With zeroes along the main diagonal, [A] is no longer positive

definite. However, [A] [A] is positive definite and a new conjugate

gradient method for this case can be derived (see Beckman [34])

following the same reasoning as above.

3.7 Numerical Implementation

The procedures outlined in the previous sections were assembled into

a computer program called PLATER [47]. An outline of the program organi-

zation is shown in Figure 3-2. As input to the program, material properties,

element geometry, and intraelement communication data are required.

Boundary conditions and constraint equations are necessary on an incre-

mental basis. The material properties include elastic constants and

discrete point values of octahedral stress vs. octahedral plastic strain.

Figure 3-3 shows the PLATER element along with nodal load and displacement

sign conventions.

From an operational standpoint, the program evaluates the constitutive

relations of Equation (3-7) for each element at the beginning of each

load step. The properties are then considered constant over the subsequent



FIGURE 3-2

PLATER Program Flow Diagram
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loading increment. Elastic unloading is systematically accounted for in

the procedure. Isotropic hardening is assumed for subsequent yielding.

The program was verified by comparing available closed form solutions

with numerical results from PLATER. A variety of boundary conditions

were used for bending, extensional, and combined bending/extension

problems. Table 3-1 lists the verification problems and gives some

results for stresses and displacements. An indication of the discreti-

zation error is given in Table 3-1 by comparing the results as the

number of elements is increased. Obviously, certain types of problems

require higher degrees of discretization than others. For example,

resolution of stress results under point loads is poor until the number

of elements in the vicinity of the load gets large. However, as

Table 3-1 indicates, as the number of elements in a given area was

increased, the results (displacements and stresses) converged monotonically

toward the correct answer.

The convergence properties of the conjugate gradient method (CGM)

were also investigated extensively. Particular attention was paid both

to ill-conditioned master stiffness matrices and to the effects of

initial guess values of both {x }and{p }. In this context, ill-conditioned

matrices imply those which have large weighting of off diagonal terms.

Ill-conditioned matrices were examined since it was expected that zeroes

would appear on the main diagonal and that there would be large weighting

of off diagonal terms due to extension/bending stiffness representations.
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Verification Solutions for PLATER
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ELASTIC.PROBLEMS

Bending Results

Number

of

Elements

1
2
4
8

EXACT*
Solution

Number

of

Elements

1

EXACT

Circular Bendi ng
Square Plate

W 1
Jmax

M a2

0

D(l +v)

1.0
1.0
1.0
1.0
1.0

Mx|
max

M
Mo

1.
1.
1.
1.

.1.

0
0
0
0
0

Simply Supported Square Plate

Center Load

w l
Jmax

2
Pa i<)3

D

11.11
11.25
11.45
11.59
11.60

H*Jmax

2
10
D 2

Pa

...
—
1.65
1.88
1.88

Uniform Load

wJmax

2

D

_..
3.45
4.00
4.03
4.06

Mx|
max

2
10

2
qa

...
4.98
4.80
4.79
4.78

Clamped Square
Plate

Center Load

w-lmax

2
Pa .3

D 10

5.32
5.37
5.47
5.54
5.60

Extension/Bending Results

Circular

^Jmax

+.12 x 10"2

+.12 x 10"2

Bending Plus Uniform Compression

uJmax wJmax °y|
-1 MEMBRANE

-.36 x 10"3 .0605 1000.

-.36 x 10"3 .0605 1000.

0 1yJ BENDING

3000.

3000.

* NAVIER Solution, see Ref. [43].
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TABLE 3-1 (con't)

Verification Solutions for PLATER

ELASTO-PLASTIC PROBLEMS

Bilinear Stress-Strain Curve; E^ = 10 x 106, E^P^ = 40 x 104
Circular Bending

^ield
0

wyield
max

The

WJ
Jma)(
z/h

0.5
0.4
0.3
0.2
0.1
0.0

PLATER

5490

1.82

EXACT

5490

1.82

Following Data is for

M - 8125 IN-LBS
o BI"D IN

4.85 4.85

Normal Stress Distribution

37500
36000
34500
32700
17500
0

38500
37000
35500
33700
18500
0

Applied Twisting Edge Moment

f^yield
0

wyield
n̂ax

PLATER

3130

1.95

The Following Data is

Edge Twisting Moment of M£

Wj
max

z/h

0.5
0.4
0.3
0.2
0.1
0.0

5.55

EXACT

3130

1.95

for

) = ^30 IN-LBS
,y ^̂  IN

5.55

Shear Stress Distribution

20100
19600
19000
18300
10500
0

20300
19800
19200
18500
10750
0
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Results of these studies indicate the following:

1. Convergence of the CGI'i is strongly influenced by i l l -

conditioning of the [A] matrix. This can be somewhat

alleviated by the scaling transformation suggested by Fox

and Stanton [33].

2. The initial solution guess vector {XQ} has very little effect

on the convergence properties.

3. The selection of the initial search direction vector {p }

has a strong influence on convergence. However, the selection

of {pQ} for a multidimensional problem is very difficult and the

steepest descents direction (used in standard CGi-1 formulations)

is better than a bad guess for {p }. Much advantage can be

obtained where good approximate {p } vectors can be found from

previous solutions. In particular, incremental plasticity

solutions can take direct advantage of this property by

constructing {pQ} from one load increment to the next.

4. CGii convergence properties can be greatly influenced by judicious

choice in orientation and numbering of both system degrees of

freedom and element descriptions. The more uniform the element

map, the better the convergence. No attempt to optimize a

particular element map was made. Non-uniformity of the element

map has a much greater effect on the convergence properties than

having elements with large aspect ratios involved.



CHAPTER IV

STATIONARY THROUGH CRACK IN A PLATE
SUBJECT TO CIRCULAR BENDING

The elasto-plastic plate bending capability, PLATER, is now applied

to the study of the through cracked plate. The plate is to be of sufficient

dimension as to model an infinite plate where the crack length is large

compared to the plate thickness. The plate width and length to crack

length ratios are to be large enough so that the plate exterior boundaries

do not interfere with the crack behavior. Essentially, two problems

are to be analyzed. The first one neglects the effects of crack closure

and the second includes these effects. Comparison of the two solutions

permits elimination of any systemic errors resulting from the numerical

procedures and isolates the closure phenomena. Geometrically, both

problems are dimensioned as show in Figure 4-1. The boundary conditions

for the two problems are identified in this chapter.

The exterior dimensions are set so that the finite plate models as

closely as possible an infinite plate. No corrections for finite plate

effects are made. Also, no corrections are made for crack face warping.

Although crack face warping may be expected physically, the Kirchhoff

assumption of planes remaining plane preclude the realization of the

warping effect. However, as indicated by Smith and Smith [13], at crack

length to plate thickness ratios greater than four, three dimensional effects

become less important compared to crack closure effects. As shown in

Figure 4-1, the plate under consideration does have 2a/h = 4.0.



FIGURE 4-1

CRACKED PLATE GEOMETRY 47

T

B

= 4.000

=4.000

77 ELEMENTS

96 NODES

M

16

i
I

CRACK FACE U|g



48

The material properties are listed in Figure 4-2. The work hardening

material chosen is felt to be rather typical of many common materials.

The Ramsberg-Osgood power lav; is cited only for convenient comparison

to other published results [6] as the PLATER program uses discrete

points on the T vs. y ^ curve. This curve is shown in Figure 4-2.

4.1 Boundary Conditions Without Closure

The boundary conditions for the first problem neglecting the crack

closure behavior are identical with the ones used by Williams [16], i.e.,

the crack face is modeled as a free surface while the exterior plate

boundaries are subjected to constant applied normal moment.

The free surface boundary conditions in Kirchhoff plate theory

are obtained by coalescing three conditions (i.e., normal moment, twisting

moment, and average shear force equal to zero) into two conditions

admissible by fourth order differential theory [43]. These conditions

along a line parallel to they axis are

(MJ = 0

(4-1)

x x=a

<«x -
3M

Also, reaction forces at the crack tip and plate corners warrent particular

attention in Kirchhoff theory. As shown in Appendix D, no additional

contributions to the boundary conditions are required for this analysis.
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The complete boundary conditions for the plate with -no closure

considerations are as follows:

Along Y axis,

X = 0, Y = Y N=0 M = M
X X 0

N - 0 V - 0

Along X axis,

X = X, Y = 0 N = 0 M, = My y o
Nxy ' ° vy • °

Along line X = A,

X = A, Y = Y u = 0 u - z ^ = 0
9A

- n IM. 4. 11 ?7
 9w _ n~ " ̂ z

Along line Y = B

0 <; X =; A-a, Y =

Along crack face,

- . .Txy ~ ay ax

OJ

4.+xy w ay 3x " axay

A-a < X s A, Y = B N = 0 M = 0

Nxy = 0 Vy - 0

At X = A, Y = B w=0
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The applied moment, M , is applied incrementally by scaling the

first elastic load so that the most sensitive element is brought to the
4

proportional limit. The next three load steps are at 5% of this initial

yield load. The remaining load steps are applied at 10% the initial

yield load. Table 4-1 lists the load increment and accumulated load

level for the no closure problem.

4.2 Boundary Conditions With Closure Effects

The problem described in the above section is to be reanalyzed

including the effects of the crack face interference as the crack face

rotates due to applied moments. Clearly, the only boundary conditions to

change are those along the crack face. For this problem, the crack

is no longer traction free but subject to a normal compressive load due to

the crack face interaction which prevents material overlap as the

plate is bent. Since the PLATER program is quasi-three dimensional (the

through thickness behavior being assumed in the Kirchhoff sense) the

wedging effects of the compressive surface must be modeled in terms of

mid-surface quantities. The constraint of the crack face on the compressive

surface can be obtained from the Kirchhoff displacement relations of

Equation (3-24). Referring to Figure 4-3, the displacement in the Y-

direction (v) of the compressive contact edge (Z = - h/2) is required to

be zero. The Kirchhoff displacement relation is

v(x,y) = v (x,y) - Z 9w(x'y) (4-3)
S ay



TABLE 4-1

Incremental Load Steps and Accumulated
Values for the No Closure Problem
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Load
Step

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Applied Edge Moment
flN-LBSl
1 IN J

266.7
13.3
13.3
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67
26.67

Accumulated
Value

flN-LBSlL IN J

266.7
280.0
293.3
320.0
346.7
373.4
400.0
426.7
463.3
490.0
526.7
553.3
580.0
606.7
633.3
660.0
686.7
713.3
740.0
766.7
793.3
820.0
846.6
873.3
900.0
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FIGURE 4-3

BOUNDARY CONDITIONS FOR THE CLOSURE PROBLEM
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Along the crack face,

v(x.B) = 0 = vs(x,B) +' (x.B) (4-4)

Therefore the constraint equations are

<V * 1 f

When these constraint equations are used in PLATER, the in-plane exten-

sion and transverse bending behavior are coupled. The constraint equations

are introduced into PLATER through the use of Lagrange multiplier concepts.

The resulting Lagrange multipliers are given the interpretation of in-

plane loads and transverse moments. Although the mid-surface line along

the crack face is actually free, these Lagrange multiplier couples give

rise to pseudo-stresses in the results. Physically, this result is

very realistic with the neutral surface shifting reflecting the wedging

effect of the crack face.

Loading was incremental for this problem as it was for the no

closure problem. Table 4-2 lists the load increments and accumulated

values for the closure problem.



TABLE 4-2

Incremental Load Steps and Accumulated
Load Values for the Closure Problem

Load
Step

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Applied Edge Moment
flN-LBS"]
L IN J

370.
18.5
18.5
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37

Accumulated
Value

flN-LBSl
L IN J

370.
389.
407.
444.
481.
518.
555.
592.
629.
666.
703.
740.
777.
814.
851.
888.
925.
962.
999.
1036.
1073.
1110.
1147.
1184.
1221.
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4.3 Discretization of the Crack Problems

Geometrically, both problems have 77 elements and 96 nodes with

the elements in the vicinity of the crack tip being (a/16) square. For

the no closure problem where bending variables only are considered, there

are 353 system degrees of freedom. For the closure problem, both bending

and extensional modes of deformation are excited which results in 1046

degrees of freedom plus 9 constraint equations.



CHAPTER V

NUMERICAL RESULTS

4.

The numerical data extracted from the PLATER analysis of the

centrally cracked plate bending problems are put into graphical form for

ease in distinguishing the effects of crack closure and material yielding.

The detailed elastic results reported are from the first load increment

of the elasto-plastic incremental solutions normalized to a common load

level. The elastic results for the no closure case allow not only for

direct comparison with the closure case but for detailed verification of

the finite element solution with the analytic solutions of Williams [19],

Equation (2-2).

5.1 Elastic Displacement Data

The deformed shapes of the elastic plate with and without closure

effects are shown in Figure (5-1). These figures clearly indicate that

the kinematic boundary conditions on the plate were met. Of particular

interest is that the in-plane displacement normal to the crack face along

the compressive surface of the plate was essentially zero (on the order of

10 in.). Also of importance is that the crack face remains flat,

consistent with Kirchhoff plate theory.

Figures (5-2) are contour plots of the transverse displacement, w.

These plots have been normalized to the quantity MQ/2D(1+v) which is the
? ")coefficient of the (x +y ) solution to the circular bending problem of a

plate without a crack. These contours are circles whose radius is the
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FIGURE 5-1
ELASTICALLY DEFORMED PLATE
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FIGURE 5-2
CONTOURS OF TRANSVERSE DEFLECTION W [2D (I +u)/M0],

FOR ELASTIC PROBLEMS
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square root of the quantity plotted. As can be seen, the presence of the

crack changes the circle into an ellipse around the crack. The ellipse

for the crack closure model has a larger minor axis than that for no

closure. Note that the transverse displacement is not a particularly

sensitive parameter in studying the closure phenomena and that the

elliptical contours of the transverse displacement caused by the crack,

quickly (within three plate thicknesses) degenerate into circular contours.

This circular contour is the developable surface of a sphere which is

generated by the circular bending of a plate without a crack. Hence, it

is expected that the errors due to neglecting large transverse displace-

ments are small, especially since the transverse displacements are small

(compared to the plate thickness) in the vicinity of the crack tip. In

all cases, the slopes are small (approximately 0.03).

Figures (5-3) and (5-4) are contour plots of the transverse slopes —
oX

and -^ . These quantities are normalized to MQ/D(l+v) so that comparison

with the solution of the plate with no crack can be made. Note that

without a cr-ack, -^ is straight line parallel to the Y axis and -̂ J- is a
dX dj

straight line parallel to the X axis. Deviations from this straight line

behavior are indicative of the crack presence in the analysis. Comparisons

of Figures (5-4a) and (5-4b) shows that |^ is affected by the crack
O A

presence but not markedly different with and without the closure effects

present. Since this is the slope parallel to the crack face, this result

is expected. On the other hand, Figures (5-4a) and (5-4b) show that the



FIGURE 5-3
CONTOURS OF TRANSVERSE SLOPE,

dw/dx[D(l + tO/M0] , FOR ELASTIC PROBLEMS
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FIGURE 5-4

CONTOURS OF TRANSVERSE SLOPE dw/dy[D( I +v)/M0],

FOR ELASTIC PROBLEMS
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transverse slope normal to the crack face is strongly influenced by the

presence of the crack and exhibits a very pronounced change due to crack

closure effects. Hence, |^- is a very sensitive measure of the crack

closure phenomenon. Again, |^ and -f̂ - indicate that the region of influence
oX ojf

of the crack is about 3h.

The in-plane displacement normal to the crack face is plotted in

Figure (5-5). A plan view of the tensile side of the plate is shown so

that the overlap of material is indicated by negative displacements. This

is the case for the no closure model with the compressive edge being

overlapped onto itself (shown in Figure (5-5)) and the centroidal surface

being at zero displacement. The closure model shows the compressive

edge being at zero displacement and the centroidal surface being displaced

exactly one-half of the value on the tension surface. The crack opening

displacement is seen to be higher for the closure model. This implies a

higher stress intensity factor if a linear elastic fracture mechanics

approach is taken. (For further discussion of this, see Section 5.3.)

5.2 Elastic Stress Results

In Figures (5-6a), (5-7a), and (5-8a), the moment components, (M ,
A

M , M ) are plotted vs. r/a along the e = 0 axis for the elastic response.

These moment distributions for the no closure problem compare favorably

to the Williams [19] solution near the crack tip. For example, MX and My
-kexhibit the (r) singularity with MX/M going negative near the crack

tip as a consequence of Kirchhoff boundary conditions. Also present is
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FIGURE 5-6
ELASTIC MOMENT (MX /M0) AND
STRESS DISTRIBUTIONS (CTX/CTO)
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FIGURE 5-7
ELASTIC MOMENT (M y /M 0 ) AND STRESS
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the singular behavior of Mvu at the crack tip as approached along the
•V7

crack face. This is a consequence of the approximate nature of the free

surface assumption in Kirchhoff theory. It should be noted that the force

boundary conditions remote from the crack are satisfied and that the zero

normal moment along the crack face is also satisfied for the no closure

problem.

Figure (5-7a) shows the non-zero normal moment along the crack

face for the closure problem. This moment is the result of the wedging

of the crack face during crack closure. As shown in Figure (5-9),

there is actually an in-plane load normal to the crack face generated

as a result of the crack face interference along the compressive edge

during bending. Transferring this load to the centroidal surface of the

plate (Figure (5-9)) requires the addition of a couple to satisfy equili-

brium. As shown in Figure (5-9), although the mid-surface is actually

a free surface, there are these pseudo forces and moments calculated at

the mid-plane of the plate. The shift in the neutral axis resulting

from the in-plane load is further discussed in Section 5.4.

In Figures (5-6b,c,d), (5-7b,c,d) and (5-8b,c,d), the stress distri-

butions through the thickness are shown for (r/a) = 3/32 and e = 0°, 90°,

180°. For the no closure case, these plots show the symmetrical stress

distribution (about the mid-plane) required by pure bending. Also, the

linearity of stress and the resolution of the zero a at the crack face

for no closure (e = 180°) is noted. The shift in neutral surface and the

moment at the crack face is evident in the closure case.
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FIGURE 5-9
VARIATION OF IN-PLANE MEMBRANE LOADS

FOR THE ELASTIC CLOSURE PROBLEM
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The variation of the stress components with the angle around the

crack tip are compared with the Williams solution in Figures (5-10),

(5-11), and (5-12). Fairly good agreement is achieved with the usual

difficulty in resolving finite element stress results across inter-

element boundaries being present.

5.3 Fracture Mechanics Interpretation

As discussed in Section 5.1, the elastic results may be given a

linear elastic fracture mechanics interpretation. This approach requires,

among other things, the extraction of the bending stress intensity data

from the finite element results. Since displacement data are more accurate

than stress data in finite element studies, the displacement results are

compared with the Williams 09] solution in terms of the bending stress

intensity factor. For convenience, data along the crack face are used.

That is, using the expression from [19] for the transverse deflection w

results in in-plane displacements u = -z-gtr and v = -z-̂ - of the form

u = - 3| b/Ccos e(- cos ̂  +^1 cos |) - sin e(sin ^ - Ufg- sin |]

- 2zb9r[cos e(cos2e + Tr̂ -) + sin e sin 2e] - zYr ' - '"
t- I +V

(5-1)

v • - f zb/{sin e[- cos ̂ f +̂ -̂ cos f] + cos e[sin ̂-{7̂ } sin f]}

T

- 2zrb0 sin e[cos 2e + TT"4 - cos e sin 2e - zar
C. \ ~f\j

T / 9
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FIGURE 5-10
STRESS VARIATION WITH ANGLE COMPARING THE NO

CLOSURE SOLUTION WITH WILLIAMS [l9] SOLUTION
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FIGURE 5-11
MOMENT VARIATION WITH ANGLE

FOR ELASTIC RESPONSE
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Along the crack face where e = 180 , the expressions for u and v at

z = - h/2 are

2hb2r 3/2
u = -- — + -yr

1+v

6hblr 3/2
v = + - + ar

7+v

where b» t,a. are constants and

3(3+v)EhV2Tr

ora)

, .
(5-2)

B h2

Dividing both sides of Equations (5-2) by Vr/a, it is possible to get

the v displacement in the form

= a() + 3 (5-3)
Vr/a

where

a is a constant coefficient for the higher order terms of the

Williams solution, and

3 = -
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As in all finite element studies, the results near the crack tip are not

as good as those away from the crack tip. However, by plotting v/Vr/a

from the finite element results and extrapolating to the crack tip,

values of a and e are obtained from which KD is calculated. Figure (5-13a)
D

shows results of this procedure for the no closure model with the value
2 kobtained from the extrapolation being 14% lower than Kg = 6M /h (ira) .

This is indicative of the systemic error of the finite element model and

is unimportant since a comparison between the closure/no closure model is

of prime interest. Figure (5-13b) shows the closure results obtained

through the same process. Figure (5-14) compares the results through the

thickness for the closure/no closure problems. Note that 1C is zero at

the compressive edge for the closure problem and at the mid-plane for the

no closure problem. The value of JC is also negative on the compressive

edge in the no closure problem. This leads to ambiguity as to the physical

interpretation if any, that can be applied to the bending stress intensity.

The linearity is due to the Kirchhoff assumptions. The 1C is about 20%

higher on the tension surface for the closure problem than for the no

closure case. This is trend is fairly consistent with experimental observation

in photoelastic materials [24]. Actually, from photoelastic studies,

Smith and Smith [24] obtained 40% higher values of 1C but they could not

entirely isolate the closure effects in their experiments because of a

number of other events that operate simultaneously (e.g., three-

dimensional effects such as crack extension and crack face warping.)
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FIGURE 5-14
COMPARISON OF BENDING STRESS INTENSITY DATA
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5.4 Neutral Surface Shifts

The strongest indicator of the crack closure phenomenon is the shift

in the neutral surface. Actually, the definition of a neutral surface

is arbitrary in the sense that either zero forces, strains, or displace-

ments may be used to determine it. Only kinematic quantities will be

used here; specifically either e = 0 or v = 0 will define the neutral

surfaces.

In his work on the combined bending/extension elastic problem,

Wynn [5] applied an extensional load at the exterior plate boundaries in

such a magnitude as to preclude contact of the crack face surfaces

during bending. Under these circumstances, crack closure is obviously

no problem. However, adjusting the superimposed extensional load in the

exact amount to relieve the contact on the compressive surface does not

correctly model the crack closure phenomenon. This, process puts the plate

in tension while the actual mechanics along the crack face applies a

compressive loading along the line of contact. Also, these forces are

variable along the crack face as the wedging actions of the crack

closure changes. This difference in mechanism is indicated by the shift

in neutral surface defined by e = 0 shown in Figure (5-15). If an

exterior tension had been applied, the neutral surface would shift toward

the compressive side of the plate. However, the constraint against

material overlap is guaranteed by contact of the compressive surface which

adds a compressive force and a normal bending moment along the crack face.

As shown in Figure (5-15), this results in a shift of neutral surface (as

defined by e = 0) toward the tension surface.
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By defining the neutral surface as v = 0, the shift is toward the

compressive surface as shown in Figure (5-16). In fact, the neutral

surface is identical to the compressive contact line at the crack face,

and decays toward the mid-plane away from the crack face. The neutral

surface is coincident with the mid-plane at a distance of three plate

thicknesses from the crack face. The maximum shift is at the plate center

and gradually becomes less pronounced as the crack tip is approached.

Figure (5-16) shows the neutral surface shift at various stations of x.

5.5 Elasto-Plastic Results

The growth of plastic yield zones is the most dramatic feature of

the elasto-plastic results. Yielding is defined at those points for

which TQQY vs. YQCT 1S nonlinear. For the no closure problem, the yield

zones are symmetric about the mid-plane as required by the Kirchhoff

bending theory (see Figure (5-17)). Also a consequence of the Kirchhoff

theory is the dominance of the singular shear stress term along the crack

face approaching the crack tip. This dominates the plasticity behavior

and forces the yield zones to generate along the crack face first and

then to propogate into the material. Without the singular shear stress,

it is presumed that the yield zone shape at any surface parallel to the

mid-plane, would be .similar to that found in extensional plane .stress

(see [6]).

Comparing the no closure results with the analyses of Brinson and

Gonzalez [12] and Brinson, et al. [48], using the Dugdale model, indicates

that the elastic core present in this analysis is a very important feature
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FIGURE 5-17
YIELD ZONES FOR THE NO CLOSURE PROBLEMS
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in the elasto-plastic bending of the plate. Being a rigid/perfectly

plastic model, the Dugdale (or strip) model requires full penetration of

the yield zones, i.e., no elastic core present at the crack tip. .

Figure (5-17b) shows that the yield zone shape through the thickness

obtained from this analysis is not cusp shaped as in the strip model and

that the plate has a definite elastic core.

The formation of yield zones is completely different in the case

of the closure model. As shown in Figure (5-18), the yield zones form on

the tension surface first and proceed through the thickness before

yielding on the compressive edge. It is noted in Figure (5-18a) that

the in-plane yield zone growth appears to be a combination of the plane

stress extensional case and the bending case with no closure. The

important feature, though, is that yielding progresses on the tension

surface first prior to initial yield on the compressive contact surface.

The yield zones tend to grow along the crack face for the closure

problem due to the compressive stress field built up by the contact of

the crack face and the shear stress due to Kirchhoff boundary conditions.

Although the stresses are a bit higher in the closure case, the yield

zones are smaller. This is due to the greater constraint of the crack

surface in the closure case causing compressive fields along the crack

face which inhibits yielding.

The through thickness stress distributions in Figure (5-19) show

neutral axis shifts and nonlinear stress behavior as loading builds up.

The crack closure results in shifting the neutral surface and in causing
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FIGURE 5-18
YIELD ZONES FOR THE CLOSURE PROBLEM
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initial yielding to occur on the tension surface. As yielding proceeds,

the elastic core takes up more of the load until yielding is initiated

on the compressive surface.

The moment redistribution as loading proceeds is indicated in

Figure (5-20). By comparing the closure case with the no closure case, it

is seen that for a given load, more redistribution takes place with the

closure model. This is consistent with the fact that for a given applied

moment, less material is yielded due to the constraint of the crack face

for the closure model.

The neutral axis shift, as defined by the surface where v = 0, is not

greatly affected by the yielding process. The neutral surface does shift

back toward the mid-plane of the plate as the plasticity builds up, but

this behavior is only local to the crack tip. It does appear though, if

large scale yielding would take place, crack closure would have a

lessening effect on the plate behavior.

A further indication of greater constraint of yielding in the crack

closure case is the relatively less crack tip blunting in the closure

case than in the no closure case. The relative crack openings are shown

in Figure (5-21)-. The craekbopening displacements 'are;a - -

normalized to the crack opening displacement at the plate center. It

can be inferred from the data that for a given load, less plastic straining

occurs in the closure case than in the no closure case.
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FIGURE 5-21
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In Figures (5-22), contour plots of w, —, and -^7 are shown.
oX oj

Comparing these with the elastic results of Figures (5-2), (5-3), and

(5-4) show that yielding has caused little change in behavior. This

is due to the very local character of the crack tip yielding not affecting

overall plate behavior.
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CHAPTER VI

FURTHER REMARKS

A numerical solution to the problem of a centrally cracked plate

subject to a circular bending field has been obtained. The distinguishing

features of the solutions are that they allow isolation of the effects

of crack closure and elasto-plastic material behavior. The numerical

capability used to generate the solutions incorporates classic Kirchhoff

plate theory assumptions with elasto-plastic work hardening material

behavior. The results indicate that crack closure and elasto-plasticity

are important considerations in the mechanics of through cracked plates

subject to bending.

6.1 Conclusions

Specific conclusions with regard to this work are as follows:

1. The effects of crack closure are significant in the mechanics

of through crack bending and must be given consideration

in the physical assessment of the problem.

2. Neglect of the crack closure phenomena results in non-

conservative calculations for crack opening displacements and

bending stress intensities based on linear elastic fracture

mechanics concepts.

3. The most sensitive parameter to the crack closure phenomena is

the transverse slope with respect to the direction normal to

the crack face. (9w/3y)
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4. Neutral axis shifts, based on displacement measurements,

clearly monitor the crack closure phenomena. As plastic

yielding builds up, neutral axis shifts become less pronounced.

5. Superimposing tension on exterior boundaries to preclude

contact on the compressivex surface due to bending does not

model the crack closure phenomena in a physically realistic

fashion.

6. The Dugdale or strip model as applied to plate bending does

not adequately model the elasto-plastic problem as it does

not include the elastic core consideration.

7. Plastic straining first occurs on the tensile surface of the

plate and proceeds part-way through the thickness before

yielding occurs on the compressive edge for the closure case.

8. Inclusion of crack closure in the analysis inhibits plastic

straining when compared to analysis neglecting closure, at

least for the circular bending problem.

6.2 Recommendations for Further Research

The principal difficulty encountered in this work was the free

surface approximation required by Kirchhoff plate theory. Knowles and.

Wang [3] have shown that reformulation of the problem in terms of Reissner

sixth order theory precludes this difficulty and results in solutions more

compatible with the extensional case. Still, the crack closure phenomena

has not been included and, based on these findings using Kirchhoff theory,
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its significance needs to be evaluated using the higher order theory.

A possible approach in this direction would be to employ Reissner plate

theory in conjunction with the crack closure treatment used here.

The inclusion of the geometric non-linearities with the associated

coupling of in-plane and bending behavior needs to be evaluated especially

with reference to the combined extension/bending problem. Formulation

of this type of complex problem can be made more tractable through

numerical determination of stationary points of functionals as used in

this work. The conjugate gradient method may be formulated to find

stationary values of non-linear problems as in [30] and [33].

Short of solving the complete three dimensional contact problem,

experimental investigations are required to verify the assumptions made

here regarding crack closure and to further evaluate the three dimensional

^effects of the crack closure phenomena. Particular interest lies in the

evaluation of crack face warping, generation of through thickness stress

variations, plate thickness to crack length ratio effects, and the

influence of plate exterior boundaries on the stress and strain field

data.

Use of the solution capability to solve other bending problems of

technical interest is also indicated. Elasto-plastic solutions to plates

with patterned cutouts and under various boundary conditions are possible.

Using the linear constraint equation concept, connection matrices between

structures can be developed that model many different boundary flexibilities,

This is a useful capability both in the practical engineering sense and as

a research tool.
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APPENDIX A

CONSTITUTIVE EQUATION FOR PLANE STRESS

For plane stress, the constitutive relation of Equation (3-9) is:

[E] =
(l-v2)A

JEsZ V.FSS +lis
2

I+v xy x y i +v xy

o 2 2F 2
:* 1+FS + —— S'xy l+^x 1+v bxy l^^Sx+Sy)Sxy

"y ' rSxy
1-v 5y+2vSxSy]

v;here

Sy)

l/3(2cx - oy) Sy = l/3(2oy

2"eq = dTeq/dTeq

For relations useful in Equation (3-8),

= 2J2/3, ..

eq 1J
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APPENDIX B

BICUBIC HERMITE INTERPOLATION FORMULAS

Displacement rate vector {u} and bicubic Hermite interpolation

formulas used in Section IV.

A
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xy22

(P(x,y)} =

HQ 1(x)

Hn(x)

H01(x)

Hn(x)

Holt*)

HH(X)

HOI(X)

Hn(x)

HQ2(x)

H12(x)

H02(x)

H12(x)

%(*)

Hi2(x)

H02(*)

H]2(x)

HQ1(y)

HoiCy)
Hn(y)

Hn(y)

H02(y)
• H02(y)

• H12(y)

• H ] 2(y)

' H01(y)

• H01(y)

• Hn(y)

• Hu(y)

• H02(y)

• H02(y)

• H12(y)

• H]2(y)

u .. •=
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Displacement rates (v> and {w} are similar to {u}.
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APPENDIX C

ON THE DERIVATION OF FIELD EQUATIONS CHARACTERIZING
THE ELASTO-PLASTIC BEHAVIOR OF VARIOUS SITUATIONS

Using Theorem I developed in Chapter III, it is possible to

derive field equations of elasto-plastic flow for various physical

situations. Using the strain-rate, displacement-rate relation

;.. . Kijj'ij.,) (on

Equation (3-18), which is the condition for equilibrium, can be written as

VVS = ° <c-2>
v

Integrating Equation (c-2) by parts produces surface and volume

integrals plus constants of integration. Using the fundamental lemma of

calculus of variations, this procedure will lead to field equations and

complete boundary conditions.

In the following sections, theories for plane stress/strain, St.

Venant torsion, simple beam theory, and plate bending theory are presented

to show both the adequacy of Equation (c-2) and to provide a convenient

reference for the various elasto-plastic field theories.
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C-l Plane Stress/Strain

Referring to Figure C-l, the usual plane stress assumptions are

= V

The constitutive equations are of the form

(c-4)

where [E] is given in detail for plane stress and plane strain in

Appendix A. The volume integral can then be written per unit thickness as

x yo o

J
O O

>VE33("y

The surface integral is

yo yo ^o Xo

J t^u.dS = -J Nx6ddy - J Nxy6vdy - J N fiiidx - J Ny<svdx (c-6)
S o o o o
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Integrating by parts and apply ing the fundamental lemma of

var ia t iona l c a l c u l u s results in the f i e ld equations

En°xx + 2El3axy + (E33 + E12^xy + E13*xx + E23^y

ME11
(E12 x 23»y »x »y

(c-7)1

and

2E23*xy * E33*xx + E120xy + E13uxx

(E22 23»y
E13 A

+E23>x ,y
(c-8)1

with the complete boundary conditions at y = y or y = 0

El3Qx + E23;y + E33(°y + ^ or u Specified

N
E12l'lx + E22vy

.
+ vx^ -- = ° or v sPecified

(c-9)

* See 0. L. Swedlow, "Character of the Equations of Elasto-Plastic Flow
in Three Independent Variables," Int. vh Non-Linear Mechanics,
Vol . 3, pp. 325-336, 1968,for vervfTcation of these equations.
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at x = x or x = 0
o

Ell"x
or u Specified

E13% + E23*y + E33( = 0 or v Specified

(c-10)

C-2 St. Venant Torsion

The usual St. Venant torsion assumptions using the notation of

Figure C-2 are

0 = 0y = T = 0xy (c-11)

and kinematically

u = - e(t)yx v = e(t)xz w = w(x,y,t) (c-12)

The constitutive relation is

"xz 1
y

82,2 32T T
yz xz

r T
yz xz yz

xz

(c-13)
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This can be inverted to be in the form

(i) = [£]{£} (c-14)

The strain-rate, displacement-rate equations are

Equation (c-2) can now be written as

w + u wx z x„ i <\ i. i i /\ t i r •
I [E]< W > dV - T .6u .dS = 0 (c-16)

J I vi -1- ui I 1 w 4- hi ( J 1 1

with the surface term being

dxdy (c-17)

x y
v o o

J T.6u.dS = J J (TZXV + T2yu)

S -x -y 2=Z0
a o'o

Integrating Equation (c-16) and (c-17) by parts and applying the fundamental

lemma results in the following theory for St. Venant torsion of an elasto-

plastic rod;

Differential equation
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where

subject to the boundary conditions at z = ZQ

E-i-iW + E-i-iU + EIO(W., + v7) - T = 0 or u Specified
I I /\ lib \ £ j *• J\£

and

E I O ( W + u ) + E9o[v + W ] - T =0 o r v Specified (c-19)12V
 x z1 22L z y j

 yz

E-|-|(w + u ) + Ei?^y + ''z^ = ° @ x = XQ or w Specified

E,?(wx + u ) + E99(W +v) = 0 @ y = y orw Specified (c-20)
I £ Z £.£. jr Z U

where

v = e(t)x and u = - e(t)y

T , T are specified on the boundary such that the applied torque atxz y z
the z = z end would be

T =

-y -x
30 O

* See J. L. Swedlow, "Character of the Equations of Elasto-Plastic Flow
in Three Independent Variables," Int. J^. Non-Linear Mechanics,
Vol. 3, pp. 325-336, 1968, for verification of these equations.
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C-3 Simple Beam Theory

The usual assumptions accompanying simple beam theory consistent with

the notation of Figure C-3 are:

1. Planes remain plane; i.e., the total strain distribution

through thickness of the beam is linear.

2. Effects of z-direction are neglected.

3. Transverse deflection is a function of x only.

From assumption 1, the strain, displacement-rate equation can be

written as

. S
e = u - yv , e = e = y =Y, = Y,,, = 0 (c-22)x x xx y z xy xz Tyz v '

where u implies the extensional displacement associated with the mid

plane of the beam.

The constitutive relation of the plane stress problem reduces to

a = En .. ex 11 x

The volume integral of Equation

Zo ^o *

TE ' ' r r r TE >s >s F r>s •
V -z -y o

o o
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Defining

y0
C, = 2t E,,dy CL = 2t En,ydy C, = 2tl En

-y -y -y^o o o

-i - L\. ^muy • **9 - *<• cnJfUJr ^^1 J I I C. i) I I J

-y

then Equation (c-23) becomes

L

• S '

V o

+ v 6uS ) + C-v 6v ]dx (c-24)xx xx ' 3 xx xxj

2 2Note that for elasticity, E-j, = E/l-v a constant. Hence, C-| = 4EtyQ/l-v ,

Cp = 0, and C3 = EI/(l-v
2). Since C2 = 0, the bending and stretching

modes decouple in the elastic case. However, the coupling between in-

plane and transverse displacements is present in elasto-plastic beam

theory.

The surface integral is written as

L

| TSu.dS = I p6vdx - M r6v + M, 6v + Q0<5v
J 1 tj U A . I L X I I

S o 0 -JL ^0
a

- QL6vJ +F L 6u| - F>| (c-25)
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Integrating Equations (c-24) and (c-25) by parts tv/ice and applying

the fundamental lemma, the resulting differential equations theory for

elasto-plastic beams is

- <Vxx>xx = - P

<Cl°x'x - (c-26)

subject to the boundary conditions at x = L

Cl°x - C2<xx - FL

( C°> - ( C < >2 x x 3 x x x or

.sor u Specified

Specified

0 or tf Specified
A

(c-27)

at x = 0

.S
. C 0 v + F =0x 2 xx o

0
3 xx

s
C0u - C 0 + M = 0
^ x 3 xx o

.s
or u Specified

- Q = 0 or v Speicified

or v Specified
X

(c-28)

For elastic problems as noted, C- = 0 and the above equations

reduce to uncoupled elastic simple beam and uniaxial tension problem.
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C-4 Plate Bending Theory

Elasto-plastic plate bending theory may be derived by making

kinematic assumptions similar to Kirchhoff bending theory. These

assumptions include:

1. Deflections are small compared to the thickness of the plate

and the slope is small compared to one.

2. State of plane stress exists in the plane of the plate, i.e.,

*Z
 = ̂ xz ' ̂ = °"

3. Total strain distribution is linear through the plate thickness.

For elasto-plastic plate theory, it is necessary to include the in-

plane or membrane behavior as they do not decouple from the bending

behavior as in elasticity. The plate and coordinate system are shown in

Figure C-4.

The strain displacement relations are

e = u - Zft
x x xx

e , = V - Zwy y yy

and the constitutive law is identical to the plane stress case given in

Equation (c-4).



FIGURE C-4 O
GEOMETRY AND LOADING FOR BENDING -

STRETCHING THEORY

N M

Nyx /_
yx

MEMBRANE (AVERAGE)
LOADS

BENDING (LINEAR)
LOADS
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Using Equations (c-29) and (c-4), the volume integral of Equation

(c-2) can be written as

y """\/V/U — — -i TU — .. —•• y y W U — w "v

JrJr I »J A AA jr A

xy]
2}dV

(c-30)

Since E-. is the only quantity that is a function of z, the inte-
' J

gration can be reduced by defining

zo

E..dZ C. . = J ZE,. .dZ

z z z
o o o

-z -z -z
o o o

With E.., C... and D.. introduced into Equation (c-30) and expanding
' J ' J IJ

terms, the volume integral may be written as

yo xo

f f i r r ' + r ' + r ( ' • « • •
V o o

+ 3̂"x + Vy + E3

~ CCll*xx

V

(This equation is continued on the next page.)
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V*xx + CD12*xx

D23*yy

The surface integral of Equation (c-2 ) is

V °

f T.6U.dS = + f [N 6u + N 6v + M 5w + M 5w - Q 6w]dyJ i i J x xy x x xy y xx
Sa x0

+ f [N 6V + N 6u + M 6w + M 6w - Q 6w]dxJ V xv w v VY x vy xy y y yx x y
o
x. y.

o o
where

f p6wdxdy (c-33)

= J

-z
O

(c-34)

Integrating by parts and applying the fundamental lemma of varia-

tional calculus results in the field equations which couple the in-



xxxx ,
12

+0

23
•*y

,
ij s- equatfons

"xvyy*0-!** 7**W '3 xxx vjxxxy-

,0
'**

n

. c .

I? +C + 2C v,xx 12 CL]3 Jut<yjr .*\/ x

fc-35)

U -f- ?F •
XX ^£11

.x

r w

. .
C23w

(c-36)
yyy
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Vyy Vxx

[I22 »«

- C13*xxx - 3C23*xyy + C22*yyy

- C C12 , xx
»y »«

]*-2[c23 33
y t«

C C22/C23 >yy»y >^

The complete boundary conditions are:

At the corner point x = XQ and y = y

= 0

or ft Specified (c-38)

Along the line x = x for all y, there are four conditions as follows:

ril°x + Vy + ri3(Gy+ \} - Cn*xx " C12*yy ' 2C13*xy ' 2Z = °

or u Specified (c-39)
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N

C13*xx ' C23»yy ' 2C33»xy

or v Specified (c-40)

$ ) ] = o or w Specified (c-41)
33 X y

or * Specified (c-42)

Along the line y « yQ for all x,

- 13xx 23yy 'f,,u +!,,vu +r,,(u +vj - [C,Av*CM*tf«
+2C33*xv3 - 2f = °

or 0 Specified (c-43)

or v Specified (c-44)



) * Af -
'v * 4(0pnW ) .+ 4,n •

"""'

p
X 23

or

fc-45)

4

23

(c-46J
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APPENDIX D

BOUNDARY CONDITIONS AT CORNER POINTS IN KIRCHHOFF PLATE THEORY

As noted in Equation (c-38), there are reactive forces present at

corner points in fourth order plate theory. In this appendix, the

boundary conditions at points where boundaries are discontinuous are

derived via the variational principal stated in Equation (c-2). The

plate under examination (Figure D-l) has no applied in-plane loadings and

is assumed to be elastic.

The volume integral of Equation (c-32) is reduced to include only the

transverse deflection noting that for elastic behavior, C^ = 0. However,
p v . 1J

the surface integral, T.u.dS, which includes the bending moments M
n

and M . , and the transverse shear force Q along with the transverse

pressure p, becomes

f T.u.dS = - [fw jj*+M tff- Qnw~J i i J I n 3n nt at n
dS (d-1)

By setting the first variation of the volume plus surface integrals

to zero, the boundary conditions for the case where surface tractions

are applied over the surface Sa and Sg- in Figure D-l can be found. At
1 2

the intersection of Sa and Scr , either the transverse deflection w is
1 2

zero, or

- [(wxx- wyy)(sin 2Wl -sin 2a2)

- 2wxy(cos 2a] -cos 2«2)] - MntJ + MntJ = 0 (d-2)

on S, on S2
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FIGURE D-l
PLATE GEOMETRY FOR CORNER EXAMINATION

n

n

NOTES :

1. APPLIED TRACTIONS ON Sa, a Sag

2. APPLIED DISPLACEMENTS ON Su

3. n a t REFER TO NORMAL AND TANGENTIAL

DIRECTIONS AT A POINT

4. X a Y ARE CARTESIAN COORDINATES
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The various corner configurations of Figure D-2 are examined in

light of Equation c-47 and are listed in Table D-l. It is noted that

the reactive conditions at the intersection vary from zero for a smooth

intersection to a maximum for the exterior corner, back to zero for the

crack tip, and to a minimum for the interior corner.



FIGURE D-2

CORNER CONFIGURATIONS

D-4

0. SMOOTH INTERSECTION

D 02=90°

b. EXTERIOR CORNER

C. CRACK TIP d. INTERIOR CORNER
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TABLE D-l

Corner Reactions in Elastic Plate Bending Theory

FIGURE

Smooth Intersection
Figure A-6.a

D-2

Exterior Corner
Figure- A-6.b

D-2

Crack Tip
Figure A-6.c

D-2

Interior Corner
Figure A-6.d

D-2

"l

o

0

o
90°

o
90

"2

a

O
90

r\
-90°

f\

0°

M .nt
on

Mnt

Mxy

Mvxyx

Myx

Mnt
on

Mnt

V

Myx

Mxy

CORNER REACTION
EQUATION (d-2)

' 0

Myx-Mxy = v2D(l-v)wxy

o

M - M v = - 2D(l-v)wxy yx xy
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