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A THEORETICAL ANALYSIS OF THE FREE VIBRATIONS GF
RING- AND/OR STRINGER-STIFFENED ELLIPTICAL

CYLINDERS WITH ARBITRARY END CONDITIONS,

VOLUME I - ANALYTICAL DERIVATION AND APPLICATIONS
By Donsald E. Boyd and C. K. P, Raoc

SUMMARY

An  analysis was made in this study to determine the natural
frequencies and mode;shapes'of ring- and/or stringer-stiffened goncirt
cular cylinders with, arbitrary end conditions, Cases of circulaf,
noncircular, unstiffened, and stiffened cylindrical shells with various
end conditions were investigated and the following observations were
made.

1) Comparisons with previous results from experimental and analytical
studies of circular, noncircular, unstiffened, and stiffened cylindrical
shells with arbitrgfy end conditions showed this method of analysis to
be accurate.

'2) The natural frequencies obtained in this study for a clamped-free
circular cylinder were slightly higher (for the whole range of m and n)
than those previously obtained experimentally. This discrepancy
increases as the-number of circumferential waves decreases,

3) Comparisons with analytical results obtained previously for

stringer-stiffened, freely supported, circular shells showéd that the



frequencies previously obtained (neglecting in8urféce inertias and
employing Donnell's shell theory) were slightly higher than those of the
present analysis. The discrepahcies between the results decreased as
.the number of circumferential waves increased, which is a fypical
characteristic of Dognell's theory.

4) Comparisons with Forsberg's exact results for ring-stiffened
circular shells, showed that fhe results of‘Fﬁelpresent analysis were in
error only by a_méxiﬁum of.Q.Sl% for_zero-éccentricity rings and '1,75%
for negative-eccentricity rings.:

5) Comparisons with Al-Najafi and Warburtcn's finite element and
experimental results (obtained for ring-stiffened circular shells)
showed that the results for freely supporﬁed”cylinders'bbtaihe& from

the present analysis were closer to theit.experimental results than
their analytical results using the finite-element method, For the free-
free case, of the six experimental results presented, the results of the
present analysis were closer té the first three'expé¥iﬁehta11y obtained
frequeﬁcies, whereas their finite element results were closer to the
next three-frequencies.

6) The number of terms required in the displééemént series for con-
vergence of results for ring-stiffened shells differed from problem to
proble@. Shells with positive eccentricities needed more terms for

convergence than those with zero or negative eccentricities.

t




INTRODUCTION
Discussion

The free vibrations of ring- and/or stringer-stiffened circular and
noncircular cylindrical shells are of interest to designers of flight
and marine structurés. Frequently, fuselagés of flight structures and.
hulls of submarines have noncircular cross-section due either to special
internal storage requ{rements or to imperfections occurring during man-
ufacture, The method of analysis developed in this report is capable of
evaluating the free-vibrational chaiacteristics of ring- and strinéer-
stiffened "singly" symmetric noncircular cyliﬁders with arbitrary end

conditions.
Background

Solutions for the vibrational characteristics of the special cases
of unstiffened, circular, isotropic cylinders with specialized boundary
conditibns have been available for many years. Recent investigations
have taken advantage of computers to analyze more complicated moaels of
shell structures, One of the most general cases that can be analized is
a stiffened, noncircular, anisotropic cylinder with arbitrary end
conditions, |

Great attention has been paid to the application of the finite

element and finite difference methods of analysis because of their



generality and adaptability to the computer. However, computer storage
aﬁd the speed of execution are two important factors which have still
prevented economically feasible studies of shell structures. The closely
related and well-known Rayleigh-Ritz method was successfully employed in
the present study to obtain the vibrational characteristics of stiffened,
noncircular cylinders with arbitrary end conditions. This method may
provide significant economical a&vantéées over the finite element and
finite difference methods. The limitation of the Rayleigh-Ritz method is
that the accuracy of the results is depéndent upon the assumed mode.
shapes. 1In cases such as stiffened, noncircular cylinders with arbitrary
end conditions (for which the displacement functions-can be approximated
fairly accurately by a double finite series) the Rayieigh-Ritz method is.
certainly advantageous to use,

Studies of noncircular cylinders. are relatively few compared to
those of circular cylinders. The variable radius of curvature of the
cylinder causes difficulties in obtaining analytical solutions, 1If
finite trigonometric series are used to represent the components of the
assumed displacement functions, there will be coupling of the circuﬁ—
ferential terms due to noncircularity of the cross-section of the shell.,
Furthermore, the resulting set of simultaneous equations is sufficiently
large that a digital computer must be used for the solution of the
general problem,

Kempner (1) presented energy exp;essions and differential equations

for cylindrical shells with arbitrary cross-sections, Kegpgg;;and_his~,A#___,“____

associates have used these equations to study a wide range of problems
dealing with statics, buckling and postbuckling (2-7) of a special class

of oval cylinders. Klosner and Pohle (8, b, 10) studied the free and



forced vibrations of the same class of oval cylinders, but with infinite
length, An approximate method was used in which the frequencies of non-
circular eylinders were determined by perturbation of the equivalent
circular cylinder frequencieéf Culberson and Boyd (11) obtained exact
free vibrational characteristics of the same class of oval cylinders
studied by Klosner and Pohle and showed that the approximate pertur-
bation technique is accurate ﬁpr small eccentricities,

The displacement functions used by Boyd (12) in a static amalysis
of noncircular panels subjected to uniform normal pressures were used in
a free vibrational analysis of noncircular cylindrical panels by Kurt
and Boyd (13).

Herrmann and Mirsky (14) investigated the longitudinal, torsiomal,
and flexural vibrations of elliptical cylinders. Malkina. (15) also
studied the free vibrations of oval cylindéfs. |

Sewall et al. (16, 17) carried out both analytical (by Rayleigh-
Ritz) and experimental analyses of-elliptical unstiffened cylinders with
arbitrary end conditions.,

Analyses.of stiffened shell structures may be classified either as
"smearéd," or as ''discrete" depending upon the treatment of the

. stiffeners. 1In the conventional smearing technique (Which is reasonably
effective if the stiffeners are closely spaced) the effects of the
stiffeners are averaged out over the entire surface of the shell, thus
effectively replacipg’a stiffened shell by an equivalent orthotropic
AShell.» A discrete analysis (which is accurate irrespective of the
number and location of the stiffeners)iggééfé'Ehghsﬁifﬁgneﬁg_ag

t§i§$tic structural elements,

discrete



The present analysis may bé considered as an extension (to include
nonclrcularlty) of the work in Refs. (18 and (19) in which the free vibra-
-ational characteristics of rlng- and stringer-stiffened noncircular cyl-
inders with arbitrary end conditions were developed through the use of
a Rayleigh-Ritz technique. The stiffeners may be arbitrarily located
and all stiffeners ﬁeed not possess the same(geometrié and material
properties; however, the stiffeners are assumed fo be uniform along
theirvaxes.A The anaiysis considers the extension and flexure of the
shell and extension, torsion, and flexure about both cross-section axes
of thé stiffeners, The stringers méy have nonsymmetfic cross-sections
bgt the rings are assumed to have "singly" symmetric cross-sections.
.The rotary inertia of the shell is neglected.

The derivation of the energy expressioﬁs for noncircular cylinders
is described in the Method of Analysis section of this report; The
stiffener energies are ppesenﬁed in Appendix B. The compatibility
relations used in these equations are derived in Appendix A. The
elements of the mass and stiffness matrices are given in Appendix C,
Documentation of the computer program developed for this analysis is

given in Reference (20).




Esl’

@D gy G,

h

IRl1

IRZ1

IR31

IR41

IR51

IR61

X, to X

1

to
to
to
to
to

to

IR3

IR18 \

IR210.

IR.45

IR518

IR6

11 /

5

Isl., to IS1

1

ISZ1

I

IyszZ,

to

yyss’

9
IS2
5

Ixxrk

2 >

SYMBOLS

length of the sheli(ekcept as noted in Figure 1)

. 7 . th . th .
cross-sectional area of the £ stringer, k ring .

isotropic'piéte flexural stiffness
strains of shell (see éq. ()

normal strains of stringer and ring, respectively

Young's modulus of shell

" Young's modulus of Ltb stringer, KB ring

the torsional stiffness of the Ethstringer, kth ring-'

thickness of shell

circumferenttal integrals of ring equations (see eq. C7)

longitudinal integrals (see eq. C3)

circumferential integrals of shell equations
(see eq. C2)

S . th th .,
the moment of inertia of the £ stringer, k  ring
. cross-sectional area, about y'.and X axes passing
~ through their shear centers

. th
product of inertia of the £ stringer cross-sectional
area about y’ and z’ axes passing through its shear
center :



the moment of inertia of the Lth stfinger, kth ring

IzzsL’ —" '
cross-sectional area about z' axis
. th . th
I csz’Ixxcrk the moment of inertia of the { stringer, k  ring
¥y cross-sectional area about axes parallel to y and x
axes passing through its centroid
o th . .
I zes) product of inertia of the } stringer cross-sectional
y area about axes parallel to y and z axes passing
through its centroid
. . th .
1 the moment of inertia of the § stringer cross-
zzcsh ' . . .
sectional area about an axis parallel to z axis
passing through its centroid

K - total number of rings

L total number of stringers

M* final value of m in the assumed displacement series

N* final value of n in the assumed displacement series

qmn(t) generalized coordinate

R radius of curvature of the shell

. . th .
erk radius of the centroid of the k  ring .

t time

T kinetic energy

u,v,w  longitudinal, circumferential, and radial displacements
of the middle surface of the shell, respectively
(see fig. 1)

UV, vy displacements of an arbitrary point in the cross-
section of the ith stiffener in the x, 9, and z
directions
. . th .

U .V ., . displacements of the shear center of the i - stiffener

sci? sci’ 'sci N :
in the x, 6, z directions .

v Van Yo generalized coordinates for symmetric mode dispiace—
ments u, v, and w, respectively '

u ,v._,w generalized coordinates for antisymmetric mode

mn’ mn’ mn N ) 0 SIS HEE
displacements u, v, and w, respectively

U  strain energy



U_(x)
Vm(X)

W (x)
x, 0, z
XI ,y 7 , zI
%, (%)
Yisg
y2sf,

%188 %11k

z'25!,’22rk

5,

Amn,ﬁﬁ’B

Psg’Prk

w

. Subscripts:

a

[+

mn , T

axial mode functions representing displacements in the
X, 0, and z directions '

longitudinal, circumferential, and radial shell
coordinates (see fig. 1)

longitudinal, circumferential, and radial coordinates
of the stiffener, measured from its shear center

Bernoulli-Euler beam eigenfunctions

y-distance of the shear center of the Lth stringer from
the z axis passing through its point of attachment

y-distance of the centroid of the Lth stringer from its
shear center

: th
z-distance of the shear center of the Lth stringer, k
ring from the middle surface of the shell

" z-distance of the centroid of the zth stringer, kth

ring from its shear center

general axial mode function (see eq. 28)

elements of the stiffness matrix (see appendix C)

elements of the mass matrix (see appendix C)

Poisson's ratio
mass density of the shell
mass density of Lth stringer, kthring

circular frequency

antisymmetric

refers to cylinder; centroid



=}
j=]]

sc
Notes:

(D

(2)
3)

refers to the kth ring

. th
refers to the {4 stringer
. . e th -th . .
identifies m  and m  longitudinal modal components
. ‘e th -th .
identifies n~ and n~ circumferential modal components
refers to rings
refers to stringers

refers to shear center

A comma before a subscript denotes partial differentiation
with respect to that subscript;

du Rw
e.g., U, denotes 3% and w,ee denotes 352"
Superscript T denotes transpose of a matrix.

Dots over quantities denote differentiation with respect to
time,

10



METHOD OF ANALYSIS

The analyticai method employed in this analysis was the well-known
Rayleigh-Ritz (i.e. "assuméd modés") energy technique. At the outset
the strain and kinetic energies of the shell, ting, and'stringer were
derived. The compétibility relations were developed to express the
displacements of rings and stringers in terménbf the displacements of
the median surface of thé shell. The total strain energy of the shell
énd’that of rings and sfringers were combined to obtain the total strain
energy of the stiffenea cylinder expressed in terﬁs of displacements of
the shell median surface. - The total kinetic energy of the stiffened
cylinder:wasxfimilarly formulated. Finite series were assumed repre-
senting the circumferential, -axial, and radial‘displaceﬁents of the»
median surface of the shell and satisfying the.shell kiﬁematic boundary
conditions. Simplé trigonometric functions were used to describe the
circumferential displacement distributions and beam functions were chosen
to describe distributions aiong the axis of the shell. The assumed
displacement functions with undetermined coefficients were substituted
into the total energy expressions of the'étructure, apd the regular

eigenvalue problem was formulatéd‘by minimizing the action integral.

11



Geometry

Strain-displacement relations: The classical theories of thin

shells and beams were used to derive the energy expressions for the
shell and the stiffeners, respectively. The geometry‘of_the middle sur-
face of a typical elliptical shell 'is illustrated by Figure 1. The
three orthogonal. coordinates x, 6, and z locate points within the struc-
* ture and u, v, and w are fhe corresponding displacement components., The
variabie radius of curvature of the shell crosé-section»is expressed as
a function Qf the © coordiﬁate. The followinngempner (1) relations were
used to determiné stfains at points within the éﬁell: |

e =u, =~ zZw,
x x S xx

TR N I P R

_ 20 Rez)
R

z(2R+z) w

x  R(R+z) ’x0

exe R+z

b

where e s and ey are normal strains of x- and O-oriented line elements,

respectively, and e, is the distortion angle between these two line

0
elements, Furthermore, u, v, w, and R refer to middle surface (z=0)

values.
For the stringers and rings the normal strains were expressed as
=u
(e,) | @

§,X
s 3

3

- L ) & 2k Yy
(ee)r R Ve,6t ¥r R’Rcr vr,9+ Yy 3

where—the—subscripts—s—and r—indicate arbitrary points—in—the—stringer

and ring, respectively. (e#) is the normal strain of the stringer in
s

the x direction, and (ee) is the normal strain of ring in the ©
r

direction. R r is the radius of the centroid of the ring.
c
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Y,V

Figure 1. Geometry of an Elliptical Shell.
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Compatibility relations: The geometric details of eccentric
stiffeners are shown by'Figures 2 and 3. The compatibility equations
relating the displacemeﬁts of any point in thevstiffener cross-section
to those of its shear center.are presented in Appendix A. The following

equations were derived to determine the displacements in the stiff-

eners; .
. 7
For the stringers: u =u__ - z'w -y'v 4)
s scs . 8CS,X scs,X
XI '
For the rings: v =V - =—nu - = <w - v )
r secr R scr,8 R scr,H scr
scr 4 scr
7
W_o=Ww + x'w 5
T scr SCr,x

where the subscript sc identifies the shear center, and the coordinates
x’, y',,and'z' ére measured from the shear center of the stiffener.

The following compatibility equations relating the displacements of
the shear center of the stiffener to those of the shell's median surface
were derived and are presented in Appendix A,

For the stringers:

u =u - z; w, - v
scs  1ls’x Y18V°x

cv-a, (S8
scs 1s R R

<
I

' W’G v
S Ves ~ ¥ Y ( R R (6)
For the rings:
Yser - U T zlrw’x

<4
I}

z, . Z
_ 1r ) 1r
(1 +-—i— V- ¥

scr 5]

Yeer = w (7)

14
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EXTERNAL RING DETAIL |

Figure 2, Geometric Details of an Eccentric Ring Stiffener
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EXTERNAL STRINGER DETAIL

Figure 3. Geometric Details of an Eccentric Stringer Stiffener
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Strain and Kinetic Energies

Shell energies: From Reference (1), the strain energy in an isotro-

-pie, elastic bo,d}.r subjected to small strains e > € and exe is
_ E gl-\)! 2
i) —I e l:e +Ae 9+ 2ve ee+ 2 "0 ] d(vol) (8)

vol 2(1- %

For a shell of uniform thickness h, the above expression can be written

as

+$_-l ](R+z)dzdedx NG

where Ec is Young's modulus and v is Poisson's ratio of the shell.
After substituting the Equation (1) into the Equation (9) and inte-
grating over the thickness of the shell, we obtain the strain energy of

the shell in terms of the displacements of its median surface; i.e.

(=]
II

12DJ‘ j (1-v) (l h? ) 2
[Ru, + 5 R+t 12R% u,e+2\)u,xv,e

_ _1_.2 S'VZ( v2
+ (1-v) u,ev, +2\au, w + 7 Vg + R +4R
+2v w+(l+——3-)w2]d9dx+DJ I [Zu
. R7’8 R  12R ?

R ' . ..3
by w’
+-O—'il u, w, -&v, w, - 3.1-\) v, W, -G-Rw,2 +—§9- 
‘ R® 0’k R 0 “xx R x "x0 XX B
+-1— ( + v, W ) + b (w W +w ‘w ) '
2 V00T Mree¥ / TR \Vrxa00 T 200" xx .

+ ﬂ;;"l Wl ] o dx

17



ol TR v @) o3 Fone

’0

-5 G, (o) < 2D F oz v 2@, (v

0

o)+ o () (g + ) +v ()
+ W,eeW,e> + RQ o Wse + W’ew + Vv / 5 W’XXW’G

+ w,ew,m():\ ® dx | (0

where
E h®
D= oz
12(1-v° )

The last integral in Equation (10) vanishes for constant R. The first
two integrals are equivalent to those devéIOped by Miller (21) and by
Egle and Soder (19).

Neglecting the contribution of rotéry inertia, the shell kinetic

energy may be written as
a m S .
Tc=péh'[' f [&3+-%2+&3]Rde dx (11)
S 00

where pc'is the mass density of the shell and the dot represents the
time derivative.

Ring energies: The ring is assumed to be subjected to normal

strains and shearing strains due to twisting. The cross-section of the
ring is assumed to be symmetric with respect to the outward normal to
the shell surface through the line of attachment, The total strain

energy in K rings due to normal strains is

K

g 2
L L) ag g w
k=l 0 a, 5%

(=]
Il

18



Using the strain-displacement relation of the ring (Equation (3)) the

above expression may be written as

E

217 . .
_B.J j —-l—[ +w + VW +wv ] dA . db (13)
2 R r, T r,or rr,d rk

0 A ' e

_t:
1]
il b

1

SuBstituting the first set of compatibility relations of the ring
(Equatlons (5)) -into Equatlon (13) and performing the 1ntegrat10n over
the cross-section of the ring, the strain energy of the ring due to
extension (normal strain) may be written in terms of the displacements

of its shear center as

Ur = Ur (uscr’ Vser® wstr) (14):
. ext ext . :

The i is given in Appendix B. Com-
fynction Ug . (uscr’ yscr’ wscr) is g PP :
X

bining Equations (7) and (14) results in
U =U (u, v, W) ~ (15)

r X
ext ext

The function Ur t (u,v,w) is also given in Appendix B.
ext

The strain energy due to twisting of the rings may be written as
"(Reference 27)

2

(GJ)rk Yser,0 _W’xQ> A
U, —2 f [ Y ] R d® : (16)
tor k=1 0 cr cr X=X

where (GJ)rk is the torsional stiffness of the kth ring. Substitution

of Equations (7) into Equation (16) results in

Ur | = Ur (u,v,w) (17)
tor - - tor
The function U, (u,v,w) is givén in Appendix B.

tor
The kinetic energy of the ring is

19



e ex —— - L —

03 , 23 , o3 ' : 18
p I I [ur + Ve + Ve ] dArk Rcrlde ' : (18)

!\7“"‘
7{ MW

Substitution of Equations (5) into the‘aboveAequation and-integrating
over the cross-section of the rings, and then substitufing the Equations .
(7) into the.resulting éxpfessién we have,

T = T_(u, v, W) : ' | (19)
The functionATr(ﬁ, ;, &) is given in Appegdix Bf Note fﬁgF‘Equation (19)
includes both translation7aﬁd rotation effects. .

Stringer energies: The stringer is assumed to be subjected to both

extension and twisting. The cross-section of the striﬁger may be non-
symmetric. The strain energy due to normal strain in the stringer is
L

E, o S o
o S5l [ [) mye
0 A, 2

gxt £=1

or, introducing Equation (2),

a - .
sl 2
—TT-J I [us,x J dAszdx : A
0 Asz

<]

Us
ext

[}
Pl iy

1 =0,

Substitution of Equation (4) into the above equation and integrating
over the cross-section of the stringer, and then substituting
Equations (6) into the resulting expression we obtain

U =T (u,v,w) ) : (22)
S s
ext ext :

The function Ug (u,v,w) is g1ven in Appendlx B.

The strain energy due to twisting of the strlnger may be written as

. Z(GJ)S!'.[ [ Y0x V_I"E]::ez ax (23)

tor z 1
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where (GJ)S!’- is the torsional stiffness of the L‘ttf stringer, Thus,

L
T (GI) W, ’ vV, W,
U =z SLI [ X _ sze] dx C(26)
tor =1 R e=ez

The kinetic energy of stringer is

L a ’
1 o2
52 J‘ J [ + v + w ] : dA = dx (25)
Psg s J,_ sf
2=1 0 A, =9,

- combining Equations (4, 6, and 25) and integrating the resulting
expression over the cross-section of the stringer results in

TS = Ts(u,v,w) , (26)

The function Ts(ﬁ, :r, ;1) is given in Appendix B.
Displécement Functions ;

The displacements,' u, v, and w were assumedv to be double finite
.series. Each term of the series is a product of a circumferential and
an axial modal fﬁnction weigh-tedvby a i:ime-depeﬂdent generalized
éoordinate (unknown amplitudé coefficiént). Tﬁe assumed displacemeﬁt
functions were:

M* N*

- 3 ’ 4 .
u(x,- 0, t) -Z z (umn cos nf + u o sin nd) Um(x) e

m=0.- n=0

iwt

M* NF

—_ - - ’ - »
v(x, 9, t) —z Z (vlnn sin no v on €OS. no) Vm(x) e
m=0 n=0

imt

o M* N* _ ]
wi(x, 0, t) =Z Z (w_ cos n® + w'_ sin n9) W (x) eiwt (27)
> mn mn 0 Tm _

m=0 n=0



where Um(x), Vm(x), and Wﬁ(x)fare the axial mode functions which satisfy

at least the kinematic boundary conditions of the stiffened shell, Also,

u o Vo and Won are unknown amplitude coefficients of the symmetric

circumferential modes, and u o, v , and w' are those associated
mn mn mn

with the antisymmetric modes.

In this analysis the axial mode functions Um(x), Vm(x), Wﬁ(x)vwere

expressed by a single function §m(x) such that

U ) = -8 () (282)
LRI I CS
W) = E )

The following functions were implemented in this analysis.

Boundary Condition Function Used -} Egn. No.

N2 sin TX | (28

Freely supported: Qm(x)

Clamped-free: Qm(x) = X, Characteristic function of (28¢)

a Clamped-free beam,

Clamped-clamped: ¢ (x) = X_, Characteristic function of (28d)
a Clamped-clamped beam.
Free-free: Qo(g) =1 (28e)
2 x)=2-%
Qm(x) = X _,» Characteristic function

of a Free-free beam, (mz= 2)

The characteristic functions Xm, their derivatives and eigenvalue

properties are tabulated in Reference (22).
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The Frequency Equation

The total strain energy §f the stiffened shell was obtained by
combining Equations (10, 15, 17, 22, and 24). Similarly; the total
kinetic energy was obtained by combining Equations (11, 19, and 26).
Substituting Equations (27 aﬁd 28) into the total energies of the
stiffened shell, the strain energy expression becomes a positive éefinite

- quadratic function of the generalized coordinates u , v. , w , u
- mn’ mn’ mn’ mn

’ / . . : .
Vin® and Won Furthermore the kinetic ernergy expression becomes a

positive definite quadratic function of the generalized velocities ﬁmn’

o o o/ o/ o/
V. , W, U 4V W .
mn mn mn mn mn

The total strain energy of the structure may be written as

Bl e
= L
total zz Z 2 Z Kmn,xiﬁ Yon%En ’ - (29)
m=0 n=0 =0 n=0 . .
where
3%u 3%u '
total total _ K _ =K

g ®%5 O Oy  mEA dfm
are known;égielemgpﬁﬁ of the stiffness matrix.

The total kinetic energy of the structure may be written as

N .
). o i -

where M _. are the elements of the mass matrix.
mn ,mi

The mass and stiffness matrices obtained by the above operations
were used together with Hamilton's principle to formulate the regular

eigenvalue problem resulting in
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K
sa

[K
-3:3

_I_KT | K
sa . aa

‘ M | M q

ss sa s

- w® T =0 (31)
M M . q

sa aa a o

where K, and M represent stiffness and mass matrices of size

3(M*+1)(N*+1), qsand q, denote the symmetric and antisymmetric mode

vectors, respectively, and superscript T denotes the transpose of a

matrix.

In Equation (31) the off-diagonal submatrices of both the

stiffness and mass
stifféned shell is
9 = 0). Thus, the
for symmetric, and

the symmetric mode

A D E
b B F
Bl FT ¢

Each 1-etter in the

ﬁatrices yaniSh if the cross-section of the
symmetric with respect to the verﬁiéal axis (where
above equation iS'uncoupléd into two equations; one
the other for antisymmetrié médes. The equation for

problem may be written as,

-4
E

o

el

]
€
fe)
=
<l

]
(=)

(32)

L)
=]
72}
]

stiffness and mass matrices represents a submatrix

(presented in Appendix C) of order (M*+1)(N*+1).
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COMPUTER SOLUTION
General

A computer program (20) was developed to find the eigenvaiues and
eigenvectors of Equation (32). The mass and stiffness matrices were
generated in this program and the frequencies and mode shapes were
computed using the subroutine EIGENP (23).  The Oklahoma State Univérsity
IBM Model 360/65 computer was employed for this project.

The input data to the program may be categorized into four kinds:
The first kind is general data. Fof example, the title of the problém,
number of terms considered in the assumed displacement series, whether
or not the cross-secfion.of the shell is circular, the number of
stiffeners, cte.  The other three kinds of data are shell data, stringer
data, and ring data,

The radius of curvature (R) of the shell was considered to be a
function of the §-coordinate. .The expressions for R,.(%),e, and (R),e,
were calculated (coﬁsidering elliptical cross-section)vin the function
subprograms (RSHL), (RRRT), and (RSHLT), respectively. This procedure
was used. to make the -computer program capabie of analyzing arbitrary
singly symmetric stiffened oval cylinders. However, only elliptical

cylinders were considered in the present study. .
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Natural Frequehcies and Mode Shapes

If the number of circumferential and axial terms considered in the.
assumed displacement series are M* and N*, respectively, (including
m = 0, and n = 0, when needed) then the order of the stiffness and mass

matrices is 3NN Equation (30) may be written as

el

[ K ] -w? [ M ] v =0 (33)

where -
Yoo ] Yo 0 Yo o0
Yo 1 Yo 1 Yo 1
% 2 Y0 2 Yo 2

{:} VA" N . {3} _ Vo N ;‘ _ Yo N*
YT\, ’ - \v ’ B w
: 10 ; 10 10

U1 1 11 Y11
Y12 _ V12 Y12
b Vi Vil | R B Vi o Vi

K= Stiffness Matrix |

M= Mass Matrix

w= The natural frequencies from : Equation (33) in radian/sec.

If the matrices K and M became singular due to the presence of
zeroes in some of the rows and columns, the matrices were condensed by
eliminating those rows and columns of zeroes. The subroutine called

EIGENP (23), with double precision, was used to calculate the frequencies

(w?® of Equation (33) and the resulting eigenvectors
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Once the eigenvalues and eigenvectors were obtained, the corresponding

mode shapes were found.
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NUMERICAL RESULTS -
Introduction -

The analysis described in this report was substantiated by com-
paring the results of this study with some of those obtained by previous
investigators. Some parametric studies of stiffened noncircular

cylinders were made and are also presented in this chapter.
Comparison With Known Solutions

This section presents the comparison of natural frequencies for
(1) an unstiffened circular cylinder with various boundary.conQitibns;A(Z)
ring- and/or stringeréstiffened circular cylihders with yarious end
condition;; (3) unstiffened noncircular shells with various end

conditions; and, (&) ring- and s;ringer-stiffened elliptical cylinders{

Comparison.of results for the unstiffened circular shells:
Forsberg (24) presented exact frequencies for a freely supported
unstiffened circular cylinder, obtained by solving the differential
equations of métion. The results of this analysis and those of

Forsberg's exact solution are.compared in Table I. Both the analyses

uéed—the*Flugge—shell—theory4 As—is-evident_from the_Table I, good

correlation exists-between-the frequencies of both the analyses. Such
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TABLE I

COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY
SUPPORTED UNSTIFFENED CIRCULAR CYLINDER,
OBTAINED BY THE PRESENT ANALYSIS
AND FORSBERG (Hz.)

PRESENT

a

n ANALYSTS ~ TORSBERG
1 718 778
2 2 2449 2449
3 4253 " 4253
1 628 . 627

3 2 1458 1458
3 2682 2681
1 974 o974
2 1304 1303

4

3 2021 2020
4 2947 " 2946

‘a) . Reference: (24), figure 3(a).’
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type of accuracy was expected because the assumed mode functions
satisfy the freely supported boundary condition exactly.

Comparisons were also made with the results of Reference (16) for
the same boundary condition and m = 1 and 2, These are presented in

Table II. 1In Reference (16), Sewall et al,, using Sander's shell theory

(25), applied the Rayleigh-Ritz method as in our analysis. As is evident

from Table 1I, excellent comparisons were obtained,

Figure 4 show3'a comparison between the anaiytical and experimental
;esults of Reference (17) and those of the present analysis (for m = 1)
considering a clamped-free, unstiffened, circular shell, The frequency
curves reveal that this analysis yields results similar to those of
Reference (17). The sliéht differences might be attributed to the
difference in the shell theories, Comparisons were also made with the
experimental results of Park, A, C, et al., (26) and the analytical
results of Egle and Soder (19). These are présented in Table III. In
this comparison four-place accuracy was obtained between the analytical
results of Egle and Soder and the present analysis. The discrepancy
between the analytical and experimental‘reSUlts increases as the number
of circumferential waves decreases, Egle and Sodéf sﬁeéulafed in Refer-
ence (19) that the shell end may not have been absolutely fixed in the
éxperiments.

The experimental and analytical results of Refergnce (16) for free-
frge circular shells were used to establish the validity of the present

analysis for this boundary-condition case. Table IV shows the com-

—-parison- of -the results for-m =-1 and—2.—The-present analysis—yielded---

four-place accuracy,
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TABLE 11

COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY
SUPPORTED UNSTIFFENED CIRCULAR CYLINDERZ
OBTAINED BY THE PRESENT ANALYSIS
AND SEWALL (Hz.)

m = 1 m = 2

PRESENT SEWALL . PRESENT SEWALL
ANALYSIS (Ref 16)  ANALYSIS (Ref 16)

1 1565.3 1565.0 2309.3 2309.0
2 894.1 894.1 1782.4 1782.0
3 529.8 529.8 1314.9 1315.0
4 338.6 338.6 968.4 968.4
5 235.6 235.6 726.3 726.3
6 182.1 182.1 560.3 560.3
7 162.2 162.2 448.6 4L48.6
8 ° 166.9 166.9 377.2 377.2
9 188.6 188.6 338.1 338.1
10 221.3 221.3 325.7 325.1
11 261.7 261.7 335.0 335.0
12 308.0 308.0 361.0 361.0
13 359.5 359.5 399.6 399.5

14 415.6 415.6 447.5  447.5

a) '_’tli*hé,_gedr_ngt‘ry Ic}f the shell is given in Reference (16).



FREQUENCY (Hz)

800

700

600

300

400

300

200

100

1 | | I Rl l

O PRESENT ANALYSIS
& ANALYTICAL, REF (17)
A EXPERIMENTAL, REF(17)

Il | 1 . il

o
2 4 s 8 10 12
CIRCUMFERENTIAL WAVE NUMBER

Figure 4: Comparison of Experimental and Analytical Frequencies of
Clamped-Free Circular Cylindrical Shell (Hz).
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TABLE III

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES
OF A CLAMPED-FREE UNSTIFFENED CIRCULAR CYLINDER?

(Hz.)
m =1 - : - m = 2
™ GGLE & ° PRESENT ° PARKS © EGLE & ° PRESENT © PARKS ©
SODER ANALYSIS et al. SODER ANALYSIS et al.
- 87.2
2 104 .4 10@.4 ',95.1§ - . 508.2. -
3 55.6 55.6 51.5 - 281.3 -
- ' 168.5
4 52.0 ._52.0 . 50.4 - 177.9 177.9 170.2&
5 - 71.6 70.9 - 135.4 132.8
| B 128.8
6_ - A 101.8 }01.4 ' - 132.0 130.1&
7 -139.1 139.1 138.8 154.2 A 154.2 153.6
8 182.6 182.6 182.2 191.2 191.2 . 191.3
a) Reference.(19), configuration 1, p..28.
b) Flugge shell theory, insurface inertias included.
c) Reference (26), model 1.
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" TABLE IV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A FREE-FREE UNSTIFFENED
CIRCULAR CYLINDER (Hz.):

m = 1 m = 2
n PRESENTa SEWALLb . SEWALLb PRESENT 7 SEWALL - SEWALL
- ANALYSIS ANALYSIS EXPERIMENT ANALYSIS ANALYSIS IXPERIMENT
1 2012.0° 2014.0¢° - 2288.0  2293.0 -
2 7.5 7.5 7.7 1613.0 1616;0' " -
3 19.0 19.0 18.9 1066.0  1068.0 -
4 3.2 %.2 35,7  716.9  717.8 -
5 534 53.4 53.0 504.4  504.8 -
6 76.6 76.7 76.4 375.4  375.6 377.3
7 1061 106.1 103.8  299.8  299.9 299.1
8  135.7 135.7  135.3 - 262.6 262.2 .gg;:i&
9 171.4 LS _170.74 | éssig o 253.44_‘= 'gzg:g&
10 2114 2115 210.2  266.5  266.3  268.8
11 255.6  255.7  253.0 294.8 2947  290.9
12 303.9 304.1 ~305.5 3339 334:6 327.6
13 356.5 356.7 352.0 381.2 581.1' | -

14 413.3 413.5 412.5 434.,7 4347 436.6

a) Fligge shell theory; 6 even, and 6 odd axial mode functions
considered.

b) Reference (16).

¢) Extensional frequency,
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Comparison of results for stringer-stiffened circular shells:

Egle and Sewall (18) presented frequencies obtained for-agﬁfﬁinggﬁf.
stiffened, freely supported, circular cylinder using a method similar to
that of the bresent analysis but using the Donnell shell theory and
neglecting the insurface inertias of the stiffehéd shell. The shell
theory used in the present analysis was modified to Donnell theory in
order to compare the results of this analysis with those of Egle and
Sewall. Table V gives the comparison between the frequencies for m = 2.
The frequencies of Egle and Sewall are slightly higher than those of the
present analysis, evidently attributable to their neglect of the inplane
inertias. It is evident from Table V that the discrepancy betweeﬁ the
results of both the theories decreases as the number of circumferential

waves increases, which is a typical characteristic of Donnell theory.

Comparison of results with ring-stiffened circular shells:

Forsberg (24) obtained exact solutions for the natural frequencies of
ring-stiffened circular cylinders. Bushnell (27) obﬁained the natural
frequenﬁies of ringfstiffene; segmented shells of revolution using an
energy method in conjunction with the method of finite differences.

The compatibility relations and the energy expressions used by Bushnell
are similar to those of the present analysis. Table VI presents the
frequencies obtained by Forsberg, Bushnell, and the‘present analysis for
freely supported circular cylinders with three rings of both zero and
negative eccentricity. The frequencies of this analysis which are
presented in Table VI were obtained by considering l2 even and 13 odd
axiél mode functionsrin the assumed displacement series. The results of

this analysis are in excellent agreement with the exact frequencies

obtained by Forsberg and the approximate frequencies of Bushnell. The
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'TABLE VI

COMPARISON OF FREQUENCIES OF A FREELY SUPPORTED CIRCULAR
CYLINDER? WITH THREE SYMMETRIC AND INTERNAL RING
STIFFENERS, OBTAINED BY THE PRESENT ANALYSIS,
BUSHNELL AND FORSBERG (Hz.)

SYMMETRIC INTERNAL
noo b ¢ PRESENTY o : 'PRESENT
FORSBERG BUSHNELL ANALYSIS FORSBERG BUSHNELL ANALYSIS
1 788 787 787 999 987 994
2 2 2219( . 2219 . 2219 . j 2254 2264 2252
A 3 3796 3802 - 3801 3710 3741 3711
1 1155 1152 1152° 2087 2066 2081
3 2 1661 1660 1660 2397 2382 2386
3 2617 2619 2618 3073 3068 3066
1 1988 1982 ~ 1988 3161 3120 3142
4 2 2132 . 2130 2141 3085 3023 3032
3 2535 2539 . 2548 3014 - 3019 3030
a) Reference (24), figure 3(a).
b) Exact solution obtained by solving the equations of equilibrium.
c) Reference (27), an energy formulatlon is used in conJunction
with the method of finite differences.
d)

Energy expressions of ring are similar to those of Reference (27).
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maximum discrepancy encountered for the case of zero eccentricity ring
stiffener was 0.51% and 1.75% for the negative eccentricity, ring-
stiffened case. The external ring-stiffened shell of Forsberg was also
studied but the frequencies obtained_did not converge for i2 even and
13 odd axial mode functions in_the assumed displacement series; hence
those results are not presented'in_this report.

Comparisons were also made with some of the results of Al-Najafi
:and Warhurton (28), for freely supported and free-free ring-stiffened
circular shells and are presented in Table VII. Their results were
obtained nsing a finite element»techniqne employing five elements per
bay. Significant reduction in the order of the matrices was obtained in
their study by considering.the'syﬁmetry of the structures and neglecting
"insurface inertias. The results of the present analys1s given in Table
VII were obtained by con51dering c1rcumferent1a11y symmetrlc and 10
even and 10 odd axial mode functions in the assumed displacement series
but including ihsu'rface'iner‘t'i_'as'. The values fi_or the- frequencies ‘con-"
rerged for 15 even and 15 odd terms but the difference between the-
results for 10 terms and 15 terms was rather small. Hence, in order to
compare on the basis of the order of the matrices;fthe results'ot 10
terms was chosen for comperison. It is evident from Table VII that the
frequenc1es of the present analys1s for the freely supported case are
lower than those of the finite element method (except for m = 3) and
are also closer to the experimental values. For the free free case,
the finite element results were observed to behcloser'to>experimental
values than the results of the present analysis,. except for m = .1 and 2.
In general, the agreement between the results of this analysis and those

of the finite element and the experiment is good.
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" TABLE VII.

COMPARISON' OF FREQUENCIES OF RING-STIFFENED CYLINDERS,
OBTAINED BY RAYLEIGH-RITZ AND FINITE

ELEMENT METHODS (Hz.)
(n=4); d=0.25 in.

FREELY SUPPORTED FREE-FREE
m o a- D : m ‘ fe
RAYLEIGH- FINITE RAYLEIGH- FINITE
RITZ ELEMENT EXPRTL ) RITZ ELEMENT ) EXPRTL.
1 1867 1873 1867  0° 1550 1547 . .1551
2 2089 2091 2076 .- 1€ 1538 1537 1539
3 2651  * 2650 2600 - 2 1889 . 1895.. 1890
A 3415 3429 3355 - 3 2303 - . 2290 2287
5 4239 4270 - 4 3075 .- 3044 3044
6 4925 5022 - 5. 3955 . 3920 3916
7 5846 - < 6. 4910 - -
8 6585 - - 7 5548 - - -
9 7330 - - 8 . - 6349 - -
10.- 8079 - ° - - 9 7103 - -
a) Present Analysis, number of terms considered in the displace-

b)

c)

ment series is 10,

Reference (28).

Rigid body modes.
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In order to show the rate of convergence of the results of this
study, the frequencies were obtained with different assumed numbers of
terms. These results are presentéd in Tables VIII and IX for the
freely supported and free-free ring-stiffened shells studied by Al-
Najafi and Warburtonf Tables VIII and IX show tﬁat the rate of con-

vergence of frequencies is rather rapid.

" Comparison of results with ring- and stringer-stiffened circular

shells: Park, A. €. et al, (26), presented a considérable‘aﬁoﬁnt of
experimental infgrﬁatidnvqh the frequeﬁcies and mode shapes‘of’stiffened
and unstiffened circular aqd elliptical shells with clamped-free ends.
Egle and Soder (19) compared their analytical results with those of
Park's experimenfal results for a clamped-free circular cylinder with
three equally spaced internal rings and sixteen internal stringers.
The same -shell was analyzed by the present analysis and comparisons are
indicated in Table X. Because the cross-section of the stiffened shell
was symmetric with respect to both the vertical and horizontal axes,
the frequencies of even and odd circumferential modes were able to be
evaluated separately. It is interesting to notice in Table X that the
results of the present analysis are consistently lower than those of
Egle and Soder. This improvement in the frequencies may be attributed
to the improved stiffener theories of'the pfesent analysis. The fact
that the disérepanéy between the analyfical and experimental
frequencies decreases with the increase in wave numbers n and’m
suggests that the boundary conditions of the experimenf and the theory
may not match.

The results of the present analysis were obtained with 10 axial

mode functions and 3 even and 3 odd circumferential mode functions.
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TABLE VIII

SPEED OF CONVERGENCE OF FREQUENCIES OF FREELY

SUPPORTED RING-STIFFENED_CIRCULAR CYLINDER?

(Hzr), n=4
. M 5 10 12 14 15

1 2032.29  1867.32  1853.29  1841.82  1841.83
2 2136.32  2089.33  2076.62  2067.81  2067.81
3 2682.82  2651.32  2640.59  2634.31  2634.30
4 3446.09  3414.67  3414.65  3409.95  3409.9%
5 4263.22  4239.00  4238.98 4238.57 4235.32
6 4924.91  4924.59  4924.58  4924.57  4924.47
7 5877.52  5845.98  5845.97  5845.97  5841.54
8 6613.81  6585.41  6585.39  6580.90  6580.89
9 7348.25  7329.87  7321.17  7316.42  7316.41
10 8098.23  8079.40  8072.23 . 8067.25

8067.24

a) Reference (28), figure 2(c).

b) Number of terms considered in the displacement series.

¢c) Axial wave number,
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TABLE IX

SPEED OF CONVERGENCE OF FREQUENCIES OF FREE-FREE

RING-STIFFENED CIRCULAR CYLINDER2

f

(Hz.), n = 4
2 M 5 10 12 14 15
1*  1591.53  1549.60  1546.82  1546.13  1544.91
2*  1585.73  1538.16  1537.45  1536.33  1535.35
3 2046.65  1888.92  1823.09  1816.19  1816.05
4 2380.46  2303.22  2300.86  2299.44  2299.35
5 3127.52  3075.50  3067.22  3066.92  3066.66
6 3979.47  3955.27  3952.06  3951.22  3950.53
7 4973.26  4909.71  4836.28  4833.91  4833.57
8 5595.02  5548.42  5542.69 5540.21  5539.64
9 6439.71  6348.83  6312.89  6309.63  6308.67
10 7096.81  7093.99  7091.25

7189.93

7102.58

a)
b)

c)

Rigid body modes.

Reference (28), figure 2(c).

Number of terms considered in the displacement series.

Axial wave number.
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TABLE X

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE
RING- AND STRINGER-STIFFENED
CIRCULAR CYLINDER (Hz.)

| PRESENT® EGLE & ©  PARK ©
n ANALYSIS SODER et al.
80.2,
1 100.2 105.8 g8 2
2 2 432.2 433.9 -
3 907.0 - -
1 207.6 216.9  184.6
L 2 276.0 285.9 251.5
: 397.0
3 437.2 4471 130 45
1 308.5 315.0 -
6 2 345.9 353.8 -
3 402.6 414.0 -

a) n=2,4, 6;m=1 to 10.
b) Reference (19).

c¢) Reference (26), model 15.
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The reason for considering fewer number of circumferential terms than
the axial terms is that the coupling between the circumferential mode
functions (due to the presence of stringers) is rafhe: weak.‘ This was
also noticed experimentally by Scruggs et al. (29). The coupling
between the axial mode functions (due to the presence of rings) is
considerable; hence 10 terms were coﬁéidered'in the longitudinal
direction. To detefmine wﬁetﬁertor’not 10 termslﬁeré sufficient for
obtaining reasonably well-gogverged frequenéies; M% was increased to
30 and only one circumferential term was used. The comparison between
these results is shown in Tab}elXI. ‘Since the diffefﬁﬁéé in the results
was found to be»négligible,'it Qas conciuded that lO-te:ﬁs were suffi-

cient for convergence.

Comparison of results with unstiffened noncircular shells: Having

established satisfactory results for stifféﬁed and unstiffened circular
shells of arbitrary.end conditions, comparisons were then made for
unstiffened noncircular shells. Sewall et "al. (16, 17) presented
analytical and ex?erihental results for elliptical shells with arbitrary
end conditions. Tables XII and XIII compare the analytical symmetric
and antisymmetric ffequencies for freely supported elliptical shells of
eccentricities of 0.526‘and 0.760 for m = 1, It is evident from Tables
XII and XIII that the agreement between ﬁhe results of both Sewall and
the present analysis is generally satisfactory and is excellent for n
less than 10,

Comparison of results obtained for elliptical shells.wifh free-
free and clamped-free end conditions wefé also made and are presented

in Tables XIV and XV, respectively. The results of this analysis
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TABLE XI

CONVERGENCE OF FREQUENCIES OF CLAMPED-FREE RING-- AND
STRINGER-STIFFENED CIRCULAR CYLINDER (Hz.)
(Circumferentially Symmetric)

n m a b
1 99,32 100.19
2 2 428.66 432.19
3 903.77 906 .96
* k3
a) N =2, M =30.
b) N* * = 10.

u
&

=

I
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TABLE XII

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY
SUPPORTED ELLIPTICAL CYLINDERS? (Hz.)

e = 0,526, m = 1

n SYMMETRIC ANTISYMMETRIC
e R
0 - 2550.2 2550.,0 - -
1 1439.7 1440.0 1685.7 1686.0
2 876.6 876.6 888.9 888.9
3 524.1 524.1 524.,2 524.2
4 335.5 335.5 335.6 . 335.5
5 234.3 234.3 234.3 234,2
6 184.2 184.2 184.2 184.2
7 1%.9 157.1 156.9 157.0
8 160.1 160.2 160.2 160.2
9 189.7 189.8 189.4 189.8
10 221.5 221.9 .221.8 221.9
11 260.8 261.9 _261.7 261.9
12 307.6 308.1 307.9 308.1
13 348.9 359.5 355.8 359.5
14 405.7 415.6 413.9 415.6
a) The geometric and material properties of the shells
are given in Reference (16). '
b) Number of terms used is 13,
c¢) Reference (16).
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TABLE XIII

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY
SUPPORTED ELLIPTICAL CYLINDERS? (Hz.)

€ =0.760, m = 1

n SYMMETRIC ANTISYMMETRIC
zﬁiigggz SEWALLS igiiggis SEWALL
0 2611.8 2612.0 - -
1 1237.7 1238.0 1855.7 1856.0
2 785.1 785.2 858.5 858.5
3 491.1  491.1 492.5 492.4
4 319.8 319.4 318.9 319.4
5 - - 226.6 226.9
6 - - - -
7 138.5 138.5 138.5 138.5
MOﬂ‘ 140.1 40,1 140.1
8 & & & &
177.8 - 178.3 178.5 178.3
182.3 184.1 184.0 184.1
9 & &
226.1 226.9 - -
10 221,7 223.9 223.5 223.9
11 261.6 263.6 259.2 263.6
12 310.6" 307.3 296.9 307.3
13 378.4 359.4 338.6 359.4
14 464.8 . 417.1 399.6 417.1
a) The geometric and material properties of the
shells are given in Reference (16).
b) Number of terms used is 13,
c) Reference (16).
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TABLE XV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE
ELLIPTICAL CYLINDER (Hz.)
a= 12,95, b = 11.01

m=1
SYMMETRIC | ANTISYMMETRIC
n PRESENTEl " SEWALL SEWALL PRESENT : SEWALL SEWALL
ANALYSIS ANALYSIS EXPERIMENT ANALYSIS ANALYSIS EXPERIMENT
1 736.6 739.2 - . 838.0 840.1 -
2 3842  390.6 - 387.6 394,1 -
212.4  217.5 201.9 212.4 - 217.5 204.8
3 ' & : .
- - 2011 - - -
133.6 136.4 129.5 133.6 - 134.0
P . N - .
- - 129.1 - - S
5 97.5 99.5 96.4 97.5  99.5. 100.2
9%.6 95.9 94,2 . 9%4.6 95.9 .  94.5
6 ' & ’ .
- - 93.1 - - -
7 113.2 114.2 115.1 ©113.2 114.2 116.5
138.4  139.6  141.8 - - 136.4  142.3
8 ' ' & S , '
- - 140.6 138.4 . 139.6 -
9 171.2 171.4 176,0  171.2 171.4 176.2
210.0 - 210.1 217.2 ©209,9 210.1 216.3
10 ' &
- - 217.1 oL - -
11 253.6 253.7 ~ 260.4  253.5 253.7  260.8
12 301.4 301.7 309.5 301.6 - 301.7 310.6
13 353.8 . 35,1  365.0 354,9 354.1 -.
14 409.8 410.7 - 423.6 412.8 . 410.7 -

a) N* =20, M* = 2,
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are similar to those obtained analytically by Sewall. Also included are
Sewall's experimental results and analytical results obtained by Klosner

(9, 10).

Comparison of results with'ring- and stringer-stiffened elliptical
shells: Park, A. C. et al. (26) presented experimental frequencies and
mode shapes for a clamped-free elliptical cylinder with four equally
spaced internal rings and sixteen intermnal stringeré.‘ This shell was
also analyzed by the present analysis, and some comparisons a;é pre-
sented in Table XVI. Due to the symmetry of the cross-section with
respect to both the vertical and horizontal'axes, the frequencies of
even and odd circumferential modes were evaluated sgparﬁtely;m As is
evident form Table XVI, the theoretical results are consistently
higher than the expgrimentél results, The discrepancy between
the analytical and experimental frequencies may again.be attributed to
the possible difference in the boundary conditions of the experiment
and the theory. However, storage limitations of the IBM 360/65 computer
prevented the consideration of a sufficient number of terms in the dis-
placement series to assure convergence of frequencies. The results of
the present analysis wefe obtained with 5 axial mode functions and 6

even and- 6 odd circumferential mode functions,
Studies of Stiffened Noncircular CylindersA

'Having obtained satisfactory-gdﬁbaii@bnéiWigﬂ known solutions of
the circular, noncircular, unstiffened, and stiffened cylindrical shells,
two studies of stiffened noncircular shells were made. This section

presents the results of those studies,
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TABLE I

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF
A CLAMPED-FREE ELLIPTICAL CYLINDER® WITH FOUR RINGS
AND TWELVE STRINGERS

m=1 m= 2

PRESENT c PRESENT .

ANaLysis  PARKT  inarysts TARK
1 177.92 163.5 - -

. 60.8

2 92.08 a3 .
3 151.75 141.1 242,64 226.7
4 - - 377.68 352.6

a) The geometry of the stiffened shell is
given in figure 32, model 48, Park, A, C.
et al., dynamics of shell-like lifting
bodies, Part II, the experimental investi-
gation., AFFDL-TR-65-17, Part II, June, 1965.

b) Rayleigh-Ritz method N* = 12, M" = 5,

c) Experimental results.

51



Study of the effect of number of stringers: Egle and Soder (19)

studied the variation of the minimum frequency of a stringer-stiffened,
circular cylinder with the number of stringers, keeping the total cross-
sectional area (I,AS) and the total torsional stiffness (L(;JS) of the
stringers constant. This is a reasonable approach for studying the
explicit effect of the number of stringers. However, the implemenﬁation
of "total" stringer properfies being constant While the number of

the analytical study.

In order to avoid this difficulty in the present study, the Cross-
sectional properties of all the stringers were‘assumed to be the same
while their total number varied. Table‘XVII preseﬁts the variation of
the naturai frequencies of various circumferential modes of an internal
stringer-stiffened freely supported elliptical cylinder with the number
of equally spaced stringers. The geometric and material properties of
the stringers are given in the footnotes of Table XVII. 1In order to
visualize the variation of the frequencies of various circumferential
modes with the number Qf stringers, some of the resﬁlts of Table XVII
are plotted in Figﬁre 5.' As is évident frdm.Figure 5, the overall
effect of the striﬁgérs is a lowering of thé frequénciés. This effect
is greater on the ffequencies pertaining to lower circ;mferential wave
numbers, The rate of decay of freqﬁencies due to the presence of
stringers is greater for small numbers of stringers and diminishes with

an increase in the number of stringers.
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TABLE XVII

STUDY OF THE EFFECT OF NUMBER OF STRINGERS. ON
THE FREQUENCIES OF A FREELY SUPPORTED
ELLIPTICAL CYLINDER® (Hz.)

e = 0,760, m =1 :

0 . S 4 8 ST
1 1238.0 1159.0 1090.0 984.5 - 831.3
3 491.1 470.4  448.3 450.2 4337
7 139.5 121.1 121.1 1227 114.5

183.5 184.2 . 184.3 45,7 141.9
’ 226.6 214.8 212.7 208.5  204.9
1 263.7 o 262.1 256.5 258.1 .. 224.6
13 380.0 -  373.7 - 368.5  347.8 | 290.6

a) The geometry and material properties-of the unstiffened shell are
given in Reference (16).

b) Circumferential mode number.

c) Number of equidistant internal stringers, The properties of the
stringers are:

o = 0.1037 sq. in. z._, = -0.0475 in,.

A =, 1sé

I ey = 0-005957 in® | gy 770230 inu

Izzsé = 0.001285 in? _i '_ Yigg = .0-0 in.

Iyzsl?, =0 ‘. y2$2_= 0'9 i?’ .

(GJ)si =:912.5 1b.-inf Py T o.ppozsaé 1bs.-sec?/in?
E = 10.6 X 107 1bs.-sec?/in?

si
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Figure 5. Study of the Effect of Number of Stringers

on the Natural Frequencies of a Freely
Supported Elliptical Cylinder with

€ = 0,760, m = 1.
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Ring- and stringer-stiffened elliptical cylindefsi This section

presents results for a stiffened, noncircﬁlar freely supported cylinder
with large numbers of rings and stringers. The frequencies of the
unstiffened freely supported elliptical cylinder with € = 0,760 are
presented in Table XVII., To study the effect of large numbers of ring
and stringer stiffeners, 16 internal stringers and 11 internal rings
were added to the above elliptical she11. The geometric and material
properties of the rings and stringers are assumed to be the same and are
listed in the footnotes of Table XVII. The frequencies and the mode
shapes of this shell were obtained using the present analysis., Table
XVIII presents some of the frequencies. Figure 7 shows some of the
axial mode shapes and Figure 8 shows seme of the circumferential mode
shapes. To visualize clearly the effect of the large number of rings
and stringers on the natural frequencies, some of the frequenciee pie-
éen;ed in Tables XII, XIII, and'XVIIi are plotted in Figure 6. The
results presented in Table XVIII were obtained with 5 axial mode func-
tions and 6 even and 6 odd cifcumferential mode functiomns. It is quite
evident from Figure 6 that the frequency curves of the ring— and
stringer-stiffened she}l under consideration, are mofe or less similar
to those of the unstiffened shell; ﬁowever, they are bodily shifted to
the left. The minimum frequency'of tﬁe etiffened ehell,is mere than
three times the minimum frequency of the unstiffened shell. The fre-
quencies bf_the stiffened shell are consistehtly higher than those of
the unstiffened shell., It shoula Ee noted that even though the ratio of
number of rings to number of stringers in this problem is about 3:4,

the effect of rings is predominant. Figure 6 reveals that the frequency

curves for various m values tend to merge as n increases, The
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TABLE XVIII

FREQUENCIES OF 16 STRINGERZ? AND 11 RING® INTERNALLY
STIFFENED FREELY SUPPORTED ELLIPTICAL CYLINDERb

WITH ¢ = 0.760 (Hz,)

]
m
C
n
1 3
1 741.0  1703.0
2  44h.9 1303.0
3 " 437.9 974.3
4  743.7 973.5
5 ©1155.0 13400
6 ' 1868.0 1998.0
7  2924.0 2959.0

v_b)

d)

The stringers and the rings have
identical material and geometric
properties which are given in the
footnotes of Table XVII,

The geometric and material pro-
perties of the shell are given in
Reference (16).

Circumferential mode number,

Axial mode number.
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6. Comparison of Frequencies of Unstiffened, and Ring-
and Stringer-Stiffened Freely Supported Elliptical
Cylinder with € = 0,760,
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LOr

Rl AXIAL MODE m=1, n=1: 741.0Hz

AXIAL MODE m=3, n=3; 974.3 Hz

1.0¢

.10l . ~ -
AXIAL MODE m=5, n=5; 1739 Hz

Figure 7, Axial Modes
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1.0r

L

™

-1.0
AXIAL MODE m=7, n=7; 3615 Hz

Figure 7. (Continued)
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CIRCUMFERENTIAL MODE m=1,n=3; 437.9 Hz

Figure 8. Circumferential Modes
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N/ \J N\

CIRCUMFERENTIAL MODE m=1, n=5; 1155 Hz
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L.

CIRCUMFERENTIAL MODE m=1,n=6, 1868 Hz

Figure 8. (Continued)
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v

CIRCUMFERENTIAL MODE m=1,n=7; 2924 Hz

Figure 8. (Continued)
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CIRCUMFERENTIAL MODE wm=3,n=3; 974.3 Hz

Figure 8, (Continued)
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CIRCUMFERENTIAL MODE m=3,n=5; 1340 Hz

107

( | |
O-
CIRCUMFERENTIAL- MODE m=3, n=6; 1998 Hz

Figure 8. (Continued)
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CIRCUMFERENTIAL MODE m=3, n=7; 2959 Hz

Figure 8. (Continued)
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Conclusions

1) There is weaﬁ circumferential modal coupling due to the presence of
stringers in both circular and noncircular cylinders.

2) fhe stringers contribute more to the total kinetic energy of the
structure than to the strain energy. Therefore, the stringers tend to
reduce the natural frequeﬁciés.

3) The rings contribute more to the strain energy than to the kinetic
energy of the structure. Therefore, the rings tend to increase

the natural frequgncies; The influenge:dué to the presence of rings

is more than the stringers.

4) Reasénably acpufaté‘results for ring- and stringer-stiffened shells
may be obtained by considering the same number of ciréumferential mode
compbnenfs as are necessary wﬁén the stringers are.not présent.

5) The rgduction-of-frequencies effect due to the presence of. stringers
is greater én the frequencies associated with.the lower circumferential
wave numbers.

6) The rate of decay of frequencies due to the presence of stringers
is greéter'for'small numbers of stringers and diminishes with the

increase of number of stringers. .
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APPENDIX A
DERIVATION OF THE COMPATIBILITY RELATIONS

The compatibility relations of the stiffeners were derived based
on the assumption that the stiffeners are attached to fhe shell élong a
line of attachment of infinitesimal width. This assumption is proﬁably
' valid when the stiffeners are closely riveted with a single row of
rivets,

The displacement vector of any p;int in the cross~-section of the

ith gtiffener can be written (in vector algebra notation) as

-1 _[- - = . _f r for ring '
{q;} {qsci } +{m}.x{Ri/sci} ’ lv— { s for stringer. (A1)
where . q = The displacement vector of an arbitrary point in the

cross-section of the stiffener;

Ueei = The displacement vector of the shear ceqter of the
stiffener;

® = The angle of rotation vector of the stiffener;

Ei/sci = The position vector of the point with reference to the

shear center,

These vectors may be expanded as follows:

i sci
q = <v 3 qa_ . = (v i=r,s
4 i ? sci sci k
w W,
i sci
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€
[
&

where (see for example, Reference (30))

W . v

sci,b sci .

W . = - : i=r,s

xi R . R . ?
: sci sci
Woi T T Wgei,x
Yscr

————L— - for rings

w

zi

‘for ~stringers
scs, co T .

Also, (see Figures 2 and 3)

. x/ ’ 0
- - ,
Rr/scr - ;Og > ,Rs/scs - y

7 7
z z

. I
where the vector components x', y', and z’ are referenced to the shear

center (sc).

Substituting the above equations into equation (Al), the compati-
bility relations of rings and stringers result.
For the rings:

-2 w
scr,x

, -x' ‘ wscr 0 Vscr
{q}={q }+ u -z ( L ) (A2)
T scr Rocr scr,0 Roer Recr

w
scr,x
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For the stringers:

-2 scs,x R4 5C8,X
-l E o ¥scs,0  Vscs
= = - AR A
qs {qs} {qscs} + z ( R R. ) . ) (43)

W v

+f{"scs,0 scs

Y(R - TR )
scs scs

Another set of compatibility relations were obtained to relate the

shear center displacements of the stiffeners to those of the shell at

1r’
. . p ’
, and Rscr by R in equation (A2) and s by scs, 9ees by q, z by

the line of attachment by replacing r by scr, deor by q, z’ by z x’

by xlr

- ' . -
le’ y by yls’ and RScs by R in equation (A3).

For the rings:

<
N

-X w
1r ’9
= + —_— - —_— -
{qscr} {q} R %o %1r ( R (44)

X, W
1r ’x

The cross-section of the ring was assumed to be symmetric with respect
to the normal to the shell surface. Hence, the above equation reduces

to

{qscr}_ = {q} + 'er(%"e - %) (45)
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" APPENDIX B

ENERGY EXPRESSIONS OF RINGS AND STRINGERS .

Ring energy functions:
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APPENDIX C

MATRIX ELEMENTS AND INTEGRALS

The matrix elements of Equation (32) and the circumferential and

longitudinal integrals involved in these elements are presented in this

appendix. The closed-form expressions for the longitudinal integrals

were obtained with the help of a table of formulas for integrals derived

by Felgar (31). The circumferential integrals were evaluated numeri-

cally using the 8-point Gaussian quadrature method with four subintervals,

The elements of the mass and stiffness matrices of a ring-" and

stringer-stiffened noncircular shell may be written as follows:

mn ,mn
D -
mn ,mn
mn ,mn
mn ,mn

F -
mn ,mn

mn ,mn

N -
mn ,mn

,mn

" Contribution of'théhﬁgncircular Shell

S, IS1 IX; + (S2ISl2 + 531313) nn IXg

S4 nIS1gIXy - SonIS1gIXs

S4 IS15IXg ~Sg IS1GIX + Sg nAISl, X
S,nnIS1gIXg + (SzISlg + Sg IS1)IXz + Sg ISZIIXS

§ nISlgIXg - S,mIS1gIX, + SEnIS1oIXy - S,IS241X,
-5gIS825 (1-n®)IXg+ S nIS2,IXs

' - - ]
(S,IS1g + SSIS1,)IXg + 55{15111x1 + (n® 02 20?181 JX4
-S,I51 (n%IX; + n®IX, ) + SgnnIS12IX, + Sg {nﬁrsz1 + (on?
-n)IS25 + (n®n - ﬁ)ISZ4§ IXg - S, (DIS2g IXg + nIS2, IX4 )
2 pchISHIXB

2 p hISle IXg
- 86




- = 18
Son.on = 2 Pch ]?IXS _ (c1)

where IS1, to IS2, are circumferential integrals, IX; to IXg are
longitudinal integrals, and S; to Sg are constants defined in Appendix D.

The circumferential integrals are defined as follows:

m

181, = J‘R cos nb cos nd do
0

v i

IS1: =f % sin 0 sin np 49
0
i

IS1, =J 1 sin n6 sin ﬁe de
o ®°
i

"1IS1, =J R_l:a cos nd cos nd de
0
i

1S1g =I cos nf cos nd do
0

. T ~

1S1lg =f sin n® sin nd do
0
l

1517 =.J‘ —l; sin n® sin no do
0 R
i

IS1g =J -l% cos n® cos nb dod
0
u

IS1lg =j R sin no sin n6 do
0
i

152, =J l{(l) }asin n0 sin 76 do
o R R ’9
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I1S2, =J' L (—) sin n® cos no do
RZ ’9

Iszs'=.[ (%) sin nd cos nd do - . I
0 5]

m
‘ - _L(l) -
1524 = f g? JR/,gcos nd sin n@ do

o -
182 =J (%) cos nd sin n® do ‘ _ (C2)

The matrix elements of the antisymmetric mode equations for the
shell are identical in form to the above equations and ‘are obtained by
interchanging Sine terms with Cosing terms and vice versa, Fufthermore,
(%)’9 must be replaced by -<%),6. It was found that if the ‘cr‘oss-
section of the shell is éymmetric with respect to the'horizontai axis of
the shell, there is no coupling between the even and odd te;ms.of n and
n. Thus, in the analysis of elliptical cylinders, two computations mﬁst
bé made in both the cases of symmetric and antisymmetric modes‘(with
respect toithe vertical axis); one with all evén;tefﬁs of ; and ﬁ; and
the other with all odd terms of n and n.

The longitudinal integrals may be defined by a'generaf a;ial mode

function

as follows:

IX =1 & ¥~ ax
1 m m

Xy = & 81 ax
m m

!
!
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X =I§m§ﬁdx o . (C3)

Substituting Equations (28b to 28e) into the above equations, the
1ongitudina'1 integrals for various boundary conditions may be written
as:

For freely supported cylinders: .

4 4
X, = m 1y
2a®
m>5° -
Xz = -IX3 = -IX4 = 5a For m = m
IX5 =%
IX; toXs =0 For m # m v (C4a)

For c 1 amped- free cylinders:

B *a , m=m
D{l - m . . . Lo . .
0 o . . m#m
oszm(Z + oszma) . m=m
I ) 4B B_
X, = [( -p™ (amﬁm -a B3
B 54 m # m
B, msm = i
amBm(z - ar;l_Bma) m = 1
Xy = 482 (0.8 - o B o |
..3 m' m M {( 1)m+1'i'1B +8 :‘ m#d

R gt
pi— gt
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o”mBm(2 B amﬁma) m=m
IX4 = Y .2 - -
Baloby - ofp) [(-1)’“+m B24p 2] ‘m# @
g% - g2 m m.
m m .
a m=m
IXg =
0 m #
For clamped-clamped cylinders:
_ : B;a m=1m
i le = o
0 m# &
dmsm(dema - 2) ) m=mn
IXy = =IXy = -IX, = B2 B B ), . -
i m 4mm m m [(_1)m+m+1] m# &
5m -B T
a m =
IXg =
0 m#m
For free-free cylinders:
m=0
IX, = IXy = IXg = IX, =0 .
' @=0
IXS = a ’
IX = IXz = TXg = X, = IXg = 0 { Fo1
IX, = IXz = IXz = IXg = O a2 2
. 4“&-1 =1 m > 2 -‘even only
4=
0 m> 2 odd only
m=1 - )
IX; = Xp = IX = IXg = IXg = 0 | fi=0
IX, = IXg = IX4 = 0 T
m=1
1 a
Xy =<3 Xs=<%
IX, =IX3 = IX5s = 0 o= 2
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The longitudinal integrals in Equationms (C4a,rc4c; and C4d) vanish if

m+m is odd and are nonzero if m+1 is even.
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where SS, to SS3o and T; to T4 are constants defined in Appendix D.
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. where IR1; to IR6,; are circumferential integrals and X= Ql'n@éJ xex,

and Xo= éméﬁl‘xq and Cl to C4p are constants ,defined in Appendix D.

The circumferential integrals are defined as follows:
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The quantities X, and X, for different boundary conditions are

defined as follows:

For freely supported cylinders:
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a - (C8a)

For clamped-free cylinders: |
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For clamped-clamped cylinders:
Expression is same as clamped-free but am's and
Bm's are different,

For free-free cylinders:
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APPENDIX D

CONSTANTS OF MATRIX ELEMENTS
This appendix contains the constants used in equations (Cl, C5,
and C6) of Appendix C. These are various combinations of the stiffner

properties given in the list of symbols.

Sl = glig
h
s, = 1(-v)
h2
Sa = D(l"\))
s, o 24DV
h2
Ss = 2D
Se = 3D(1-\))
S7 = ZDV
Se = 4D(1'\))

S, =E_A,

582 = Eszlzzsﬂ

885 = EsLIyysz

5S4 = EszAsEzlsz
SSS_ = EsLIzzszzfsz
8¢ =2 EsEIzzszzlsz
887 = ESLIzzszzlsE
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S5e = EsZAszzlsz
SSg = ESf;ASZZZSE
8810 = 2 EsLAstlsE?ZSL
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8812 = E A Z y
sl sf 284’ 1sk
SS12 = E_,A_,y2
13 sl sk’ 1sk
SS;4=E ,I 2
12 = BgptyyseYise
S$15 =2 EsLAsLZZSEYISL
5516 = EszAsLylszzlsZ
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_ 2
SS1e = ESLASLZZSLYISL
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SS20 = Eg,T oo
S529 = Esilyzsﬂzlsz
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SS30 = Eszlyzszylsz
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