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ABSTRACT

The state of technological development of Si solar cells for

highest obtained efficiency and radiation resistance is summarized. The

various theoretical analyses of Si solar cells are reviewed. It is shown

that factors controlling blue response are carrier diffusion length, sur-

face recubination, impurity concentration profile in surface region,

high level of surface impurity concentration (degeneracy), reflection co-

efficient of oxide, and absorption coefficient of Si.

The theory of ion implantation of charge into the oxide anti-

reflection coating is developed and side effects are discussed.

The experimental investigations were directed at determining

whether the blue response of Si solar cells could be improved by phos-

phorus ion charges introduced into the oxide antireflection coating.

This experimental work included (1) measurements of Centralab

n on p solar cells as diodes; (2) preparation of thermally oxidized Si

and implantation in the thermally grown oxide followed by evaluation as a

MDS capacitor to determine the effect of implanted charge on flat band

voltage shift or surface potential: As expected, the MOS characteristics

shifted along the voltage axis to larger negative values as the implanta-

tion voltage and dosage increased; (3) illuminating the Si solar cell

with an affixed transparent electrode and dielectric, across which both

positive and negative voltages were applied, which shifted the surface

potential in both directions but gave no observable effect on solar cell
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efficiency, (4) implanting at 20, 30 and 40 KeV dosages of 1012 - 1016

phosphorus ions into the oxide at calculated depths of 357, 520, and

682 A, respectively, for the different voltages and measuring the in-

tegrated response I-V characteristics and ISCC and VOC, and the spectral

response of ISCc from 3950-9000 A before and after implantation, which

revealed that with increasing dosage, ISCc decreased, but also evidence

of Si radiation damage and changes in the physical characteristics of

the oxide layer were found and (5) determining the spectral response
0

franom 3200-6500 A of the difference in absorption of the oxide layer

before and after implantation showing both positive and negative values

of this parameter which inferred that the physical characteristics of

the oxide had been changed by implantation.

Thus, these investigations yielded inconclusive results

concerning the possibility of improving Si solar efficiency by charge

introduction into the oxide antireflection coating.

It is concluded, that phosphorus ion implantation as a technique

of charge introduction does not fit the requirements for successfully

monitoring the charge at the SiO-Si interface in the direction of lowering

the QSS at the interface and because the oxide and Si damage produced by

the ion implantation can not be readily annealed out of production solar

cells owing to the presence of low melting contacts.
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PURPOSE

Perform a preliminary theoretical study to determine the effects

of surface characteristics on the blue response or spectral response of

conventional N/P silicon solar cells and outline the physics underlying the

approach of ion implantation as a technique to improve the surface reccm-

bination characteristics of the silicon solar cell.

Conduct an exploratory investigation of the effect of field and

ion implantation introduction of charge into the antireflection covering of

production Si solar cells on the surface recombination and spectral and

integral response characteristics.

xii



BACKGROJND ON SILICON SOLAR CELLS

The structure of the solar cells to be discussed here is shown

in Figure 1. This is a n-on-p (n/p) cell fabricated by diffusing phosphorus

donors into a silicon substrate of unifonrm acceptor doping to form the junc-

tion at a depth xj. Electrical contact is made via an evaporated metal grid

pattern on the incident surface and a continuous layer on the back of the

cell. Shown also in Figure 1 is the evaporated SiO2 antireflection coating.

Absorption of photons with energy greater than the bandgap (a 1.1

eV for Si) creates excess hole-electron pairs. Low level injection condi-

tions prevail for solar intensities and the large junction areas permit a

one-dimensional analysis. Drift and diffusive forces determine the motion

of the excess carriers to the junction region where the minority carriers

are swept across, thus contributing to the short-circuit photocurrent ISc.

While excess carriers are created continuously throughout the cell thickness,

essentially only those minority carriers generated within an effective dif-

fusion length of the junction region will be collected as photocurrent.

Figure 2 is the equivalent electrical circuit for a solar cell

supplying power to an external load RL. The various series resistances

(contact and sheet) have been acombined in PS. Leakage paths around the

junction are represented in SH'

The IL-VL relationship is determined franom the equation

IL = ISC IoA [exp {q(VL+ILRS)/AkT} - 1] - (VL + ILRS)/RsH (1)
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Figure 1. Solar cell structure.
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4,IL
Is(x) Rsh RL VL

Figure 2. Solar cell equivalent circuit.
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Because of the distributed nature of the series resistance RS, as well as

the shunt resistance RSH, an ideal analysis should be performed on an in-

cremental area basis. If is quite high, those cell areas remote from the

front surface contacts would be practically open-circuited. Normally the

terms involving RS and RSH may be neglected by letting RS + 0, RSH C. This

assumption, of course, is largely dependent upon the optimization of fabrica-

tion techniques and device configuration. The second term on the right side

of Equation (1) represents that amount of the photocurrent which flows through

the p-n junction in parallel with the load. In particular, the factors IoA

and A are determined by the recombination mechanism which predaminates at the

operating cell bias. Reccmbination in the quasi-neutral regions on either

side of the depleted junction is characterized by components of the constant

IoA proportional to the square-root of the reciprocal minority carrier life-

time (T- 1/2), and the factor A in the exponential is unity. In the surface

layer, the IoA component also has a complex dependence upon the surface re-

combination velocity. If recombination in the space charge region of the

junction predcminates due to recombination centers at the intrinsic Fermi

level, then IA is proportional to the reciprocal lifetime (T 1 ) and A = 2.

Although the forward junction current will increase more slowly

with increasing voltage when A = 2, the magnitude of the IOA factor is much

larger than when A = 1. Early predictions of ideal silicon cell efficiency

of approximately 22% at 298 °K were based upon the diffusion current daminat-

1)
ing the junction behavior (A = 1) . Similar calculations considering only

the space charge recombination current indicate an ideal efficiency of

3



approximately 16%. Mandelkorn, et.al. ) in discussing their work with sce

of the first phosphorus-diffused n/p Si solar cells mention the factor A as

being a sensitive parameter for optimizing the fabrication process. Typical

cell forward characteristics exhibited A values of 1.95. In a study of boron-

diffused p/n cells Queisser3 ) observed the A value exceeding 3. Apparently

the large and varying value of A is camon for the boron diffusion cell. It

was postulated that this behavior was due to a nonuniform distribution of

recombination centers. Queisser denonstrated that precipitation of impurities

during the initial cell fabrication may be the cause of the excessive values of

A. He heated cells at 825°C in a hydrogen flow and then quickly quenched

them to roman temperature. The quantity A was found to be reduced to prac-

tically 2. At an operating voltage of 0.4-0.5V, n/p production cells today

are reported to exhibit values of A lying between 1 and 2. Thus, it appears

that any detailed analysis of a Si solar cell operating at maximum efficiency

should include both of the components of forward current mentioned above.

The following are considered to be the important design factors

which control conversion efficiency of Si hamojunction solar cells:

1. Reflectivity

2. Absorption coefficient

3. Surface recombination

4. Impurity profiles

5. Lifetime of minority carriers

6. Surface layer sheet resistance

7. Contact resistance.

Several of these factors will be discussed in the succeeding sections.
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Ccmbining the absorption coefficient of Si, the solar spectrum

and the relatively long minority carrier diffusion lengths leads to the fact

that the silicon solar cell is primarily a base-response cell. This can be

contrasted with gallium arsenide devices in which, because of the higher

absorption coefficient across the active portion of the solar spectrum, the

surface region shares an equal role with the base in the overall collection

efficiency. In Figure 3, the relative number of solar photons with energies

greater than 1.1 eV (AMO) which are absorbed as a function of depth in Si

is shown4 ). (It should be recalled that these photons represent about one-

half of the total number of photons in the outer space solar spectrum.)

When a solar cell is designed to operate in a hostile radiation

environment, a further compromise must be made to minimize the relative

change in the characteristics (usually output power) over the useful operat-

ing life of the cell. From the results of early space satellite studies and

laboratory radiation experiments with high energy electrons and protons

(MeV range), three statements can be made: (1) The output of the cell is

quite sensitive to radiation, (2) The current decreases much more rapidly

than the voltage, and (3) n/p cells are more resistant to radiation degrada-

tion than p/n cells. By observing the spectral response of a cell before and

after irradiation, it has been determined that the initial decay in output

is due to a decrease in minority carrier diffusion length, L, in the base

region. The relationship between L after bombardment by a particle flux P

and the prebombardment diffusion length Lo is

L -2 = Lo2 + KO (2)
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where K depends upon the type and energy of radiation, and upon the semi-

conductor material. Base region sensitivity to radiation is due to the

depth of absorption and creation of damage by the bombarding particles,

the base-response nature of the Si cell, and the fact that the diffused

surface layer has such a poor lifetime (or diffusion length) even before

experiencing any radiation flux. Radiation resistance can be increased

somewhat by increasing the resistivity of the base region, compruoised by

increased temperature sensitivity and a reduced initial cell efficiency

[an increase in the I factor in Equation (1)].

Thus, any improvement in surface region response which may be

possible not only increases the absolute efficiency (for fixed junction

depth), but also will tend to increase the useful cell life under radiation

bombardment. Obviously, the surface region loss mechanisms are related

to surface recombination velocity and the effective bulk diffusion length.
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REVIEW OF THEORETICAL ANALYSES FOR Si SOLAR CELLS

The solar cell efficiency analysis performed by Wysocki and

Rappaportl) in 1959, established the optimun range of semiconductor energy

gap (104-1.6 eV). In this canputationseries resistance and reflection

losses were neglected, and a unity collection efficiency was assumed for

all carriers generated by photons with energies greater than the bandgap.

State-of-the-art bulk properties were utilized. Of the common semioon-

ductors available GaAs is probably the most ideal choice for a solar

photovoltage device. Three sets of calculations were performed to determine

the effect of the junction I-V characteristics upon efficiency (diffusion-

controlled, recombination-controlled, and a combination of these two). The

optimum energy gap remained essentially the same but the efficiency varied

considerably with the various types of junction behavior.

Dale and Smith5 ) analyzed the spectral response of p/n Si solar

cells, including a constant electric field in the surface p-layer. Constant

bulk parameters were assumed for the diffused layer. The conclusions were

that, in order to match experimental results, very large surface recombina-

tion velocities, of the order of 105 cm/sec, are required, or alternatively

a very low bulk lifetime in the surface material. Experimentally etching

cell surfaces to reduce the recombination velocity had very small effect on

spectral measurements; therefore, the latter alternative above was assumed.

Surface region lifetimes on the order of 10-10 sec are necessary to fit the

calculated spectral response to experimental device characteristics.
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The study by Wolf6) includes drift fields due to impurity density

gradients both in the diffused region and the base region. It further develops

a two-layer model for each of the regions, which permits investigations of

drift fields in only a portion of each region and effects of spatial variations

of the field strength. As in the Dale and Smith analysis, the spectral collec-

tion efficiency is computed, individual calculations being performed for the

base and diffused regions.

The minority carrier lifetime and surface recombination velocity

of the diffused region can only be detemnined indirectly. In an experimental

situation, knowing the parameters of the base region permits a reliable calcula-

tion of the partial collection efficiency (essentially short-circuit current/

number of incident photons vs. wavelength). The difference between the measured

collection efficiency and that calculated for the base region is the contribu-

tion of the diffused surface layer. Wolf compares this surface layer collec-

tion efficiency (p/n) with his one- and two-layer models which have recombination

velocity and lifetime as parameters. Experimentally obtained spectral response

curves for the diffused region can be matched equally well by considering the

existence of a drift field or by assuming collection to consist purely of dif-

fusion of minority carriers. However, inclusion or cmission of the drift

field necessitates a change of the minority carrier lifetime by a factor of

about 4.4. Again, constant average values were used for the electrostatic

fields and bulk parameters.

After recognition of the fact that cells experiencing irradiation

degraded because of a decrease in base region lifetime, interest developed
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in the inclusion of an aiding drift field in this region. Kaye and Rolik7 )

made linear approximations to the electric field and diffusion constant

variations with distance from the junction. Various constant lifetime

values were used as a calculation parameter in computing the collection

efficiency. The purpose of their study was to optimize the drift field

strength and distance. Experimentally fabricated devices incorporating a

near-optimum field configuration demonstrated the anticipated minimum short-

circuit current degradation due to fluences of 1 MeV electrons. This was

at the expense of 18% less short-circuit current than a standard field-

free cell at the beginning of bomnbardment.

Calculations similar to those of Kaye and Rolik were performed

by Bullis and Runyan8) . A smooth curve relating the diffusion coefficient

Dn to the logarithm of acceptor concentration NA was generated in order to

obtain the necessary values of Dn and dDn/dx. Also, a linear function of

log Tn vs. log NA (Tn = lifetime of minority carriers) was determined fran

experimental data. It was discovered that only a slight reduction in col-

lection efficiency resulted in going from an exponential impurity distribu-

tion to the erfc case. Short-circuit current degradation under 1 MeV electron

bombardment in the base region was calculated for various field configurations.

In calculating the total cell short-circuit, it is necessary to include con-

tributions from wavelengths as short as 0.22 pm. If the K factor in Equation

(2) is increased as a result of increasing acceptor concentration in the

field region, as indicated by experimental data, the result is to reduce the

improvement due to the electrostatic field at high fluence levels. In an
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experimental study of base region drift fields (n/p) by Runyan and Alexander9 )

it is stated that not only does the field not enhance cell performance after ban-

bardment, but because of poor initial values of short-circuit current, the

cells with base-region drift fields are generally inferior.

Van Overstraeten and Nuyts10) use better approximations for the

electric field and mobility variations than Kaye and Rolik, and Bullis and

Runyan in their calculations of short-circuit current improvement due to a

base region electric field. Optimum drift field region widths are determined

for various lifetime asstmiptions. Criticism and comparisons with the two

preceding analyses are offered.

In the three previous analyses the emphasis has been placed on

maximizing the collection efficiency or short-circuit current of the base

region of the solar cell, or in minimizing the variation of these quantities

with degrading radiation. (Van Overstraeten and Nuyts do not consider the

latter design problem directly.) Since solar cells are utilized as power

sources, a more realistic calculation would be that of power conversion

efficiency. A quantitative analysis of the conversion efficiency (r) of

GaAs and Si solar cells has been presented by Ellis and Moss") . The

labors involved in their extensive calculations have been decreased some-

what by avoiding such approximations as used by References 7,8, and 10),

assuming instead constant average values for electric fields, diffusion

constants and lifetimes. The source intensity distribution is derived

from a 140 mW/m2 6000 °K blackbody and no energy is lost due to reflection.

First, Ellis and Moss develop the currents existing in both the surface and
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base regions, and then determine the efficiency by maximizing the VL-IL

product. Surface recombination is included in the n-layer (n/p cell) con-

tributions to short-circuit and junction diffusion currents. Space-charge

region recanombination current is calculated by assuming a single trapping

level located in the energy gap at the intrinsic Fermi level.

The equation of the short-circuit current generated in the

surface layer, JSC', derived by Ellis and Moss is essentially the same as

developed by Wolf in his single layer model6 )

k=Xco
N ((X) e ca

J+S (surface) = q | (a2+2aB-1lp){ (+)
SC

X=0

fea(s/Dp+20+a) - fe
-
aa [(s/Dp+) cosh fa + f sinh fa]

+ } dx, (3)
f cosh fa + (S+s/Dp) sinh fa

where Es is the (constant) electric field in the surface region, X is

wavelength, N(X) is the spectral density of photons, a is the absorption

coefficient, a is the junction depth, and

= qEs/kT, f2 = 2 + 2 .

A similar equation exists for the base layer contribution to the short-

circuit current.

Since Ellis and Moss have a primary interest in GaAs solar

cells, they do not treat the Si cell extensively. The result of

12



efficiency calculations for a Si cell with constant impurity densities in

both regions is shown in Figure 4. Here the abscissa is measured in terms

of the junction depth. Independence of surface recomnbination velocity,

s, even in the absence of an aiding surface field, is demonstrated by the

very small variation in efficiency between the curves for s = 0 and s =10

am/sec. The fact that the efficiency appears to increase to 15% as a + 0

is a result of neglecting the series resistance. Separate calculations by

Ellis and Moss for various front surface contact grid spacings indicate an

efficiency of 11.5% at a = 0.3 im for a 4 mm contact separation.

In a cell fabricated by impurity diffusion of the surface layer,

the values assumed in obtaining Figure 4 are no doubt unrealistic. In

particular, a strong electric field will exist (, 5000 V/ncm) which is

counteracted by a greatly reduced hole diffusion length L.

For purposes of comparison, the Ellis and Moss efficiency calcula-

tions (neglecting series resistance) for GaAs n/p solar cells are presented

in Figure 5. Here the effects of surface recombination and electric fields

are more apparent than in the case of Si.

It should be noted that the rather high efficiencies predicted

by Ellis and Moss for GaAs cells are the result of assuming a negligible

contribution to the junction current due to recombination in the space

charge region. Since the forward current-voltage characteristics of GaAs

diodes exhibit a considerable degree of space-charge region recombination

dependence at the operating solar cell voltage1 2 ) , this assumption is

perhaps not valid.
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Sahai and Milnes 2a) have considered efficiency calculations

for Si homojunction n/p solar cells in conjunction with their heterojunc-

tion solar cell work. They calculate the spectral reflection losses of

the antireflection coating for SiO2 and evaporated SiO. They consider

three cell regions: (1) surface layer, (2) depletion region at the

junction, and (3) the base region. No attempt was made to incorporate

drift fields or impurity density dependent transport parameters. For a

0.5 pm junction depth their "practical" efficiency is 11.69%. This

includes series resistance losses (Rs calculated on the basis of a

standard 2 x 1 an contact grid configuration), reflection losses, inmper-

fect collection, and reduction of active area by front surface contact

grid. Although the importance of junction recombination currents, Jrec,

are emphasized, it is not clear just how (or whether) these have been

incorporated into the calculation of efficiency. For the ideal case of

perfect collection in the Si and no losses of photons or carriers, Sahai

and Milnes calculate the cell efficiency to be 20.25%.

Production solar cells presently indicate efficiencies of

10-11% for Si and 7-9% for GaAs.

16



FACTORS CCNTROLLING SURFACE REGION RESPONSE

In terms of reducing the dependence of the Si solar cell effi-

ciency on changes in base region parameters due to the effects of radiation

damage, it is desirable to maximize the surface region response. When one

examines the collection efficiencies of the surface and base regions of the

cell (see Figure 6 for a p/n example), it can be seen that the surface con-

tribution is quite small. This contribution represents the blue response

(< 0.5 im) of a Si solar cell. Of course the maximum ideal surface response

is predetermined by the Si absorption coefficient, the solar spectrum and

the junction depth. Fabrication of the device determines ultimately the

losses due to surface reflection, surface recombination and bulk recombina-

tion.

The succeeding sections will consider the absorption coefficient

reflectivity, impurity density profile, and surface recombination. These

are factors which are associated with the surface and the surface region.

A complete discussion of the surface region processes is limited by the lack

of information concerning the degenerate layer introduced by the impurity

diffusion. The analysis and control of this degenerate layer represents

one of the last frontiers in Si solar cell technology.

Absorption Coefficient

Fundamental abosrption of photon energy to create hole-electron

pairs occurs for energies greater than the bandgap of a semiconductor. Cam-

bining the absorption coefficient of Si with the solar spectrum results in

17
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Measured collection efficiency vs. wavelength for p/n Si
solar cell, with calculated contribution from the base
region, difference curve to be matched by calculated
curve for surface layer, xj = 0.5 um [after M. Wolf, Proc.
IEE,, 51, 677 (1963)].
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Figure 3 which illustrates the rate of absorption in the depth of silicon.

Of 6 x 1017 photons/can2-sec in outer space, approximately 2.8 x 101 7 have

energies sufficient to produce excess carriers. A 0.3 jim surface region

collects 21.3% of the active photons in a 350 pm thick cell (neglecting

reflection from back surface).

Near the absorption edge (= 1.1 eV for Si) the absorption co-

efficient appears to increase with increasing impurity concentration. This

increase is due to internal scattering and free carrier absorptionl3 ).

Since the diffused layer is very thin compared to the reciprocal absorption

coefficient at these wavelengths, this impurity dependence is negligible.

Reflection Coefficient

The reflection coefficient of Si varies between approximately

38% and 30% across the 0.4 - 1.1 um wavelength range. Since phosphorus-

diffused n-on-p solar cells do not exhibit the very low reflection

coefficient (< 5%) of boron-diffused p-on-n cells, a quarter-wavelength

antireflection coating is necessary. The wavelength of minimum reflection

is empirically chosen to optimize the cell efficiency. In a study of

thermally oxidized Si1 4 ) the reflection coefficient minimum was 7% for oxide

thicknesses matching the 0.5-0.8 pm range. However, the reflection at 0.4 pm

still rises to 38-40%. In the case of a heavily doped surface region the

smallest reflection coefficient obtainable this way will increase somewhat

with carrier density. Improvement of the effectiveness of the antireflection
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coating results fromn the use of evaporated SiO2 since its refractive index

is almost the desired geometric mean of the Si and free space indices.

No doubt a considerable amount of proprietary research has been

directed toward the development of a satisfactory evaporated SiO2 antireflec-

tion coating, but little has been reported about such a material interfaced

with a semiconductor. (In this discussion, SiO2 refers to the compound

formed at the substrate as a result of evaporating SiO; the actual omnpo-

sitional structure is determined by conditions during deposition.) York
1 5 )

studied the transmission of 920 A-thick SiO2 films evaporated onto Vycor

glass. For wavelengths greater than 0.5 pm the transmission percentage for

various deposition rates varied between 85% and 95%. At 0.4 pm the films

deposited at rates greater than 50 A/sec exhibited a 65% transmission. How-

ever, no distinction is made between transmission losses due to reflection

and those due to absorption.

Of course, unless the increased processing complexity of multiple-

layer dielectrics is incorporated, incamplete cancellation of the reflected

component must be accepted. However, it does seem that this loss should be

considered when attempting to align theoretically efficiency calculations

with experimentally derived cell characteristics.

Impurity Profile in Surface Region

Iles and Leibenhaut 
1 6

) examined submhnicrometer solar-cell type

diffusions by the technique of sectioning and sheet resistance measurements.

They discovered that the impurity profile of the diffused layer did not

20



follow the theoretical error function ccmplement distribution (erfc) which

their diffusion conditions would predict. For a 0.6 om junction depth,

approximately the first 0.2 um beneath the surface had either a constant

impurity concentration with increasing depth (based upon mobility decreas-

ing toward the surface), or a concentration which actually decreased as the

surface was approached (if a constant mobility was assumed). This agrees

with Tannenbaum1 7 . The immediate consequence of the two possibilities is

either a) the aiding drift field due to an impurity concentration gradient

is nonexistent in a region of the diffused layer adjacent to the surface,

or b) there is actually a drift field in this region which enhances the flow

of minority carriers to the surface. Beyond this surface layer in the

region approaching the junction, the impurity profile appears to be more

sharply graded than that expected fram the erfc distribution.

The anomalous impurity distribution has been ascribed to the

effects of impurity precipitation at the high-concentration surface and

field-aided impurity diffusion which is significant in that region where

the impurity density exceeds the intrinsic carrier concentration at the

diffusion temperature1 2 '17).

The electric field, E, created by the impurity concentration

gradient is proportional to the gradient of the Fermi level. For the one-

dimensional solar cell situation at roam temperature (assuming all impurities

are ionized) with nondegenerate doping, the Fermi level is proportional to

the logarithm of the impurity density. Thus the electric field is given by

E(x) kT d in N (x)
q d
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where kT/q = 25.9 mV at 300°K, and ND(x) is the (donor) impurity distri-

bution. If ND(x) is proportional to eCx , then E(x) will be constant with

respect to x.

Equation (4) will be valid when the majority carrier concentra-

tion is nondegenerate. For silicon at room temperature the transition to

degeneracy occurs when ND 1-2 x 1018 cm- 3 13,18). With increasing donor

impurity concentration above this value, the Fermi level increases less

rapidly than in ND. Thus, an impurity gradient at degenerate concentrations

will create a smaller electric field than would a similar gradient at a

lower, nondegenerate concentration. As suggested by Iles' results in

Figure 7, there is an appreciable portion of the surface region in which

a drift field is not present. Wolf6 ) considers this situation in his two-

layer model for the diffused region in calculating the short-circuit current

for a solar cell. The possibility of a positive impurity gradient near the

surface has never been analyzed, but presumably this situation could be

accomodated by many of the numerical analyses, such as Wolf's.

The problem of computation of theoretical cell performance for

analysis or optimization is complicated by the dependence of electrical

transport parameters upon the impurity concentration. Functional approxi-

mations for the electric field and diffusion constant have been assumed

7,8,10)
in calculations of short-circuit current ' ' . These calculations usually

consider onlythe base region of the cell incorporating a drift field layer.

Minority carrier lifetimes are more difficult to incorporate into an

analytical expression since this parameter is also dependent upon the device

technology in the region of the diffused surface layer.
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Surface Recombination

When the density of free carriers in a semiconductor exceeds the

thermal equilibrium value, as in an illuminated solar cell, the excess

carriers recombine in the bulk and at the surface. The primary reccmbina-

tion process in both regions has been found to proceed through centers at

energy levels within the forbidden gap. Shockley and Read1 9 ) have analyzed

statistically indirect bulk recambinaticn by assuming discrete energy levels

for the centers. The analogous problem of surface recombination via surface

states is similarly treated by Brattain and Bardeen 
2

). First, a summary of

the derivation of the dependence of the surface recomanbination velocity upon

the properties of the surface states will be presented. Then the methods of

altering the recombination rate by varying the surface potential will be

discussed. An extensive presentation of semiconductor surface phenmena

has been made by Many, Goldstein, and Grover2 1 ) detailing references to

both theoretical and experimental work.

Consider a homogeneous semiconductor under uniform steady excita-

tion. The bulk densities of excess holes and electrons are assumed equal.

Surface recombination results in equal fluxes of holes or electrons to the

surface. The ratio of the rate of electron (or hole) flow into a unit sur-

face area to the excess carrier density in the bulk just beneath the surface

is the surface recombination velocity s:

s = n'p
anb'Pb

where Un p is the electron or hole flux (number/m2 sec), and Anb = APb
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is the bulk excess carrier density. If the density of excess carriers can

be neglected with respect to the total bulk thermal equilibrium density, i.e.,

b= APb << nb+ Pb' then s is given by 21)
1/2

s = [Kn N t
(
n b + P

b ) (5)
2n. {f(ni/n) cosh I(Ef - Ei)/kT - uO] + cosh (us-uo)}

where

Knp = probability per unit time that an electron or hole will

be captured by a vacant state,

u = 1/2 ln (K ),

Nt = surface density of recombination centers, all at an

energy Ft

nbPp = bulk thermal equilibrium electron and hole densities,

n. = intrinsic carrier density,

Ei = intrinsic Fermi energy,

ni = ni exp [(Fn Fp)/2kT],

Fn
p
= quasi-Fermi levels for electrons and holes,

EF = 1/2 (Fn + Fp), the steady-state mean Fermi level,

u* = (EF - Ei)/kT, the steady-state potential,

Et = Et + kT ln (g/gl)

gorg1 = the number of degenerate quantum states of the center when

it is vacant and occupied, respectively.

The subscript b refers to the bulk semiconductor beneath any surface space

charge region, and the subscript s refers to the surface. If more than one

25



energy level Et is involved, then (5) must be summed for the various

levels.

The surface recombination velocity not only depends upon the

properties of the surface states, but also upon the bulk properties ni and

nb + Pb, and on the level of excitation. The dependence upon bulk doping

was experimentally observed in etched Ge by Schultz22) and in thermally

oxidized Si by Rosier2 3 ) .

Surface preparation and subsequent atmospheric exposures determine

strongly the distribution and density of surface states within the semicon-

ductor forbidden gap as well as the capture cross section of the states.

Traditionally, the surface centers have been divided into two

groups, fast states and slow states, depending upon their relaxation times.

The fast states can follow disturbances up to tens of megahertz, while the

slow states may require hours or days to achieve equilibrium with the semi-

conductor excess carrier density. Since clean surfaces do not exhibit slow

states, these states are normally considered to exist at some depth in the

thin oxide layer on the surface of semiconductors exposed to the normal

atmosphere. Fast states are associated with the abrupt discontinuity in

the crystal lattice at the semiconductor surface. The early studies of

surface states utilizing etched surfaces exposed to various gaseous ambients

were hampered by very high densities of slow states which prohibited the

alteration of the surface potential of the semiconductor with respect to the

bulk under d-c or low frequency excitation conditions. Thermally oxidized

Si is unique in that the slow state density is very low, thus making field

effect devices possible. The basic model for surface recombination has

evolved from consideration of quantitative studies of the fast surface states.
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In thermal equilibrium the presence of acceptor- or donor-like

surface states will affect the energy bands in the vicinity of the surface.

An acceptor state introduced below the Fermi level will acquire electrons

from the conduction band. Thus, the surface becames negatively charged and

a positive space charge region forms beneath it bending the bands upward

until overall charge neutrality prevails. This process is illustrated for

a surface state at Et in Figure 8. Analogously, donor-like states introduced

above the Fermi level cause a downward bending of the energy bands at the sur-

face. The extent of the space charge region is characterized by the extrinsic

Debye length L, 1/2

]k (6)
L = [ q2(nb+Pb) '

where c is the dielectric constant of the semiconductor.

An energy-level diagram indicating the various parameters used

to characterize the surface space charge region for an n-type semiconductor

is shown in Figure 9. Assuming a homogeneously doped semiconductor, the

bending down of the energy bands at the surface indicates an accumulation

of electrons forming a negative space charge region. The potential is de-

fined by qg - EF-Ei. The potential barrier with respect to the bulk is V =

-b and at the surface the barrier height is Vs = Os-Ob . For convenience

two dimensionless potentials are defined:

u = qo/kT; v = qV/kT.

When v < - 2 Ub, an inversion layer exists. If the disturbance to thermal

equilibrium is small compared to even the minority carrier density, then

the starred energies and potentials defined in Equation (5) will approach

the thermal equilibrium values defined above. However, in the case of optical

generation due to the solar flux this approximation is not justified.
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The equilibrium value of us is determined by the requirement for

charge neutrality between the surface states and the space charge region

of the semiconductor: Q0 + Qsc = 0; Qss is the surface state charge den-
ss

sity (per unit area) and Qsc is the space charge density. The superscript

zero refers to the absence of any external field normal to the surface.

Under thermal equilibrium conditions,

0s = q Nt f(Ef), (7)
t

and

0
= q(nb + pb) LFS (8)

The Fermi distribution function is

f(Et) 1 , (9)
t ~~~~~~~~~~~~~~~~~~(9)

1 + exp {+ [(Etf - Ei)/kT -u s ]

where the positive sign refers to acceptor-like states and the negative

sign to donor-like states. The function F is derived from Poisson's

Equation assuming nondegenerate statistics:

F (ub v) = cosh (ub + v _ vs tanhub- . (10)

Acceptor-like states contribute negative surface charge.

By Equations (7) and (8), the equilibrium surface potential is

determined, in principle.

Now consider the situation in which an electric field is applied

normal to the surface, perhaps by placing a plane electrode close to the

semiconductor. An external potential between the field electrode and the
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bulk of the semiconductor will induce an electrode charge QM which must be

equal to the Qss + Qsc

QM/q = + (nb + Pb) LFs Nt f (Et) (11)

The sign of the first term is that of Qsc (negative for vs > 0). Acceptor-

like states employ the minus sign before the second term. Obviously, Eq. (11)

is difficult to solve for us . The rate of change of vs with respect to the

induced charge QM is obtained by differentiating Equation (11)

dvs = - 1 (12)

d(QM/q) (nb + pb)LIdFs/dvsl + Ntldf(Ef)/dvsJ

Equation (12) demonstrates the "anchoring" effect of a large surface state

density Nt. The derivative Idf(Ef)/dvsl is greatest when the Fermi level
·~~~~~~~~~f

EF passes through E . Similarly, accumulation and inversion layers exhibit
t

anchoring since |dfs/dvsl varies exponentially with vs in these regimes.

An n-type semiconductor with a surface-state induced accumulation

layer is considered in Figure 10l to demonstrate the effect of an external

electric field upon the surface potential. A set of uncharged acceptor

states are assumed to exist above the Fermi level in Figure 10a. With the

application of a field directed from the electrode to the surface, majority

carrier accumulation rapidly increases the space charge at the surface as

shown in Figure O10b. The acceptor levels are now below the Fermi level and

begin to trap electrons from the conduction band. After equilibrium is

achieved, the energy level diagram is that of Figure 10c.
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An extension of the electrode-dielectric semiconductor situation

would include the presence of stationary charge in the bulk of the dielectric.

The distribution of bulk and surface charges is illustrated by Figure 11, in

which Qox represents a general charge distribution within the dielectric,

pox(x). Again charge neutrality requires that QM + Qox + Qss + Qsc = 0.

Perhaps at this point it would be beneficial to review the nature

of the insulator-semiconductor interface by considering the extensive work

on thermally oxidized silicon surfaces. Besides the possibility of fixed or

mobile ions in the bulk of the oxide (Qox in Figure 11), the interface region

is associated with various types of charges and states. The fast surface

states have already been discussed with respect to their relation to surface

recombination. Usually they are symbolized by their surface density Nst, and

the amount of charge contained for a particular surface potential has been

previously denoted in this work by Qss.
'N

A second characteristic of the SiO2 -Si system is the existence of

a fixed charge located within 200 A of the interface. This fixed charge

density, Qfc, is a strong function of the oxidation and annealing conditions,

and the orientation of the silicon crystal. Goetzberger, et.al.2 4 )hypothesize,

as the result of experimental observations, that this fixed charge, which

appears to be due to excess ionic Si in the oxide, actually induces the sur-

face states, Nst. The coulombic field of the oxide charges is assumed to

give rise to localized donor or acceptor states. This hypothesis requires

the accumulation of more experimental evidence to put it on firm grounds.
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Another source of charge near the interface is the drifting of

mobile ions to this region as the result of a suitable bias electric field

(usually at temperatures scmewhat above room temperature). Drifting alkali

ions have been a considerable problem in the development of stable oxide-

passivated device structures.

Under bias conditions a positive space charge of trapped holes

near the oxide-silicon interface results from exposure ID ionizing radia-

tion.

Thus, for a more general situation, the charge density Qss

shown in Figure 11 would be the sum of surface state charge, fixed charge,

impurity ions and ionized traps.

Swystun and Tickle2 5 ) observed an instability in field-effect

transistors fabricated with vacuum deposited SiO2 as the gate insulator.

This instability was observed as a voltage shift in the transistor transfer

characteristics after bias-temperature stressing. The results are accounted

for by a model in which mobile ions are located predominantly in traps at

the SiO2 interfaces (metal and semiconductor).

So, having related the surface recombination velocity to the

surface potential in Equation (5), and the surface potential to an external

electric field at the surface, it is now possible to consider the control of

s by an external field. As mentioned previously, the equilibrium surface

potential of a surface with a high density of slow states is effectively

anchored against the influence of an external field. Thus, the early

measurements of etched Ge and Si utilized pulsed or high frequency techniques
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to obtain large deviations of u
s
fram its equilibrium value. Simultaneous

measurement of the lifetime and change in conductance of a filamentary

sample subjected to a transverse electric field is one method used to de-

termine the s vs. u
s
characteristics2 6 '27) The reverse saturation current

of a thin planar diode has also been used in conjunction with a sinusoidal

field to measure the surface recombination velocity in Ge and Si2 8 ,29' 30).

Rosier2 3 ) used a forward-biased planar diode to study the inversion region

recombination velocity and surface state characteristics of Si-thermal SiO2

interfaces. Goetzberger and Sze3 1 ) present a review of the methods incor-

porating MOS devices to study surface characteristics by means of capacitance-

voltage measurements. With this method no information is obtained concerning

the surface recombination velocity.

In Figure 12 21)the relative value of surface recombination velocity

as a function of uS - uO [see Equation (5)] is shown for a discrete surface

state level at Et. Figure 13 shows the experimental results for the dis-

tribution of surface-state density at a Si-SiO2 interface obtained by

Goetzberger, et.al. 
2 4

) . Frankl32) disagrees with the simple interpretation

of data used to obtain the state densities indicated near the band edges.

Obviously, the behavior of s/smax shown in Figure 12 becomes more complex

when density distributions like those of Figure 13 are analyzed.

It should be recalled that the Fs (ub, vs) function defined in

Equation (10) is valid only for nondegenerate conditions, both in the bulk

and at the surface. An extension for degenerate surface conditions is

made in Chapter 4 of Reference 21.
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Surface Recombination in a Solar Cell

The extensive, although somewhat idealized, solar cell efficiency

calculations by Ellis and Moss1 1 ) will be considered here. They have

assumed constant values for mobility, diffusion length and electric field

throughout the surface region. Nondegenerate impurity concentrations have

been chosen for the diffused surface layer of the cell. With these condi-

tions their short circuit current density contribution due to the surface

layer absorption of photons is given by Equation (3).

When the cell is operating at forward bias, the junction currents

must be subtracted franom the short-circuit current. One contribution to the

forward-biased junction current is the diffusion current Jd expressed as

Jd = Jo [exp (qV/kT) -1],

+ -

where Jo = JO + Jo, the diffusion current cpnents fram the surface and

base regions, respectively. (It should be noted that V is the bias on the

junction which may be greater than the external load voltage due to the

effects of series resistance.) J+ is also dependent upon the surface recambi-

nation velocity:

Jdiff. = Jo + Jo (13)

. ~ ~ ~ ~ ~ . =
j+ =pD { f[f sinh fa + (s/ + ) cosh fa] _ }q (14)

o Pop (s/Dp + B) sinh fa + f cosh fa

The second contribution to the junction current is the recmanbina-

tion of carriers in the junction region, J . This current, which does not
red
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depend upon s, is considered to be responsible for the observed eqV/AkT

(1 < A < 3) behavior of the forward current of the solar cell operating

as a diode.
11)

From Equation (3) it is seen that surface recombination

enters in the factor (B + s/p), or (qEs/2kT + s/Dp). With a junction

depth of 0.3 pm, and an exponential impurity concentration graded from 1019

cm
-
3 at the surface to 1016 cm

-
3 at the junction (neglecting degeneracy;

p-type base region doped to 1 ohm-cm) the electric field Es is 5770 V/cm.

Thus, B becomes 1.16 x 105 can 1 . Assuming the values s = 103 cm/sec, D =.p

1 cm2/sec, the ratio s/Dp = 103 cm 
-
1. Thus, the term involving s is neg-

ligible under the conditions assumed above. Unfortunately, Ellis and Moss

do not perform efficiency calculations for the case of an electric field

in the surface region for Si cells. Their results for a constant donor

concentration (n-on-p cell) are shown in Figure 4. The difference between

s = 0 and s = 103 acm/sec does not beccme significant until the junction

depth exceeds 1 nm.

The insensitivity of cell efficiency upon surface recombination

in the absence of an electric field in the diffused region illustrated in

Figure 4 is attributed to the dominant base region response of a Si solar

cell (because the electron diffusion length is so great).

For the material parameters and electric field suggested by

Figure 5 for GaAs, s/Dp 105 cm1 vs. 0 = 3 x 104 cm 1 . In this situation

the surface recombination is predaminant over the effect of the electric

field.
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Experimentally, the cell parameter which should be observed to

determine the effect of altering the surface recombination velocity is the

short circuit current. Since the surface region response is being studied,

spectral measurements should be made at the shorter wavelengths to determine

the variations in collection efficiency.

The proposed approach to modifying the surface recombination

velocity is shifting the surface potential by means of an external electric

field. This field is to be introduced by ion implanting a fixed positive

charge in the oxide antireflection coating. Under this condition the n-type

silicon surface interfaced withthe oxide will tend to accumulate, the total

oxide charge being equated tothe sum of the surface state charge and the

semiconductor space charge.

Another method of experimentally obtaining the desired external

field is to place a transparent conducting electrode upon the surface of

the oxide layer. In the absence of any charge trapped in surface states

the space charge induced in the semiconductor surface (charge per unit area)

will be Qsc = oxEox, where cox and Eox refer to the oxide permittivity and

electric field, respectively. If the relative dielectric constant of the

oxide is 3.9 and the breakdown field strength = 2 x 106 V/ancm, the maximum

induced space charge is Qsc (ax) = 6.9 x 10- 7 C/om2 . The shift in surface

potential can be obtained by referring to Equation (8). If the bulk elec-

tron concentration is assumed to be 1018 cm 3 (approximately the limit of

nondegeneracy; L = 40 A), then Fs = 10.75. Entering Figure 4.7 of

Reference 21 (see Figure 14) with this value of F
s

(with wb = 4) yields vs=4.3.
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This graph of Fs vs. v
s
takes into account degeneracy in the space charge

region. As indicated following Equation (11), the case of additional

charge present in surface states is, in general, untenable. For degenerate

values of nb, Seiwatz and Green3 4 ) have integrated Poisson's equation to ob-

tain an expression for Fs. This expression requires tabulated Fermi in-

tegrals.

Variations of surface recombination velocity due to an external

field have been observed experimentally. However, the results are often

27)
difficult to explain with the simnple models presented above. Henisch, et.al.

measured s for etched n- and p-type germanium surfaces. The field plate was

insulated from the surface with mica. In both types of material s was ob-

served to increase for positive plate voltages. From this they concluded that

the recombination process is dependent on the electron concentration at the

surface. A similar arrangement was used by Snitko2 3 ) to observe surface

recombination in etched n-type silicon. The surface recombination velocity

was determine by the relaxation of photoconductivity after a light pulse.

As can be seen in Figure 15, the values decrease with increasing positive

voltage on the field plate (opposite to the germanium experiments mentioned

above).

In the preceding analyses the semiconductor was assumed to be in

thermal equilibrium. Any disturbance that results in carrier excitation

generally modifies the surface space charge. However, as long as the excess

majority carrier density is much less than the equilibrium value nb, (lCw-

level injection) this modification can be considered negligible. This is

the situation in a solar cell under normal illumination.
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ICN IMPLANTATION

Ion implantation is the introduction of atoms into the surface

region of a solid substrate by bcmbarding the solid with high energy (keV-

MeV) ions. The theoretical and experimental aspects of this process are

35)
covered extensively in the book by Mayer, et.al. ) . Typically, ions of

the bombarding species are accelerated in a vacuum and mass-separated by

a magnet before impinging upon the substrate surface. Factors affecting

the final implanted distribution are the mass and energy of the incident

ions, and the atomic mass of the substrate material. As the incident ion

strikes the substrate and slows down, it experiences many collisions with

the host lattice, displacing the lattice atoms in the process. The result

is a region of vacancies, interstitial atoms, and other types of lattice

disorder around the track of each ion. If the density of these tracks

is sufficient to cause overlap, an amorphous surface layer is created.

Generally, it is possible to anneal the lattice damage at

elevated temperatures which do not cause significant diffusion of the

impurity ions. This annealing is especially important when imnplantd ions

are to behave as electrically active dopant atoms in a semiconductor device.

If the implanted density is sufficiently low to prevent an amorphous region,..

the disorder can be annealed continuously by heating the substrate ('\ 300°C

for Si) during implant.

Ion implantation has been used as a general technique of semi-

conductor device fabrication and has been applied in the areas of solar

36)
cells, radiation detectors and MOS field effect transistors. Burrill, et.al.
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describe the production of n/p Si solar cells with AMO efficiencies greater

than 9.3 percent by implanting variable energy phosphorous ions into A1-

doped substrates. Reduction of the gate-drain capacitance in a MOS field

effect transistor has been achieved by using the aluminum gate electrode as

37)a mask during the ion implantation of the source and drain regions3 7 ) . In

this situation, the dopant ions are implanted into the silicon substrate

through the oxide layer.

One feature of ion-implanted silicon surfaces is the appearance

of a hazy ormilky color3 5 ) . Two proposed mechanisms for this visual change

are Rayleigh scattering by small disordered regions38 ) and a change in re-

flectivity due to a change in the average dielectric constant3 9 ) . Peaks

in the optical reflectivity in the 3-6 eV range are considerably reduced

by implanting 1013 ions/cm2 . However the latter reference does not extend

the spectral measurements of reflectivity into the visible region. Of

course, these two mechanisms are correlated to Si surfaces, but presumably

similar effects due to lattice disorder would be present in other materials.

Annealing at elevated temperatures returns the optical reflectivity to

essentially its pre-implant value, unless the implant density is sufficient

to cause surface pitting.

Theory predicts that the concentration profile of implanted ions

is a Gaussian distribution characterized by a projected range R, and a

standard deviation Ap. Thus, the density N(x) (number of ions/ancm3) at

a distance x from the surface is

N(x) = Nmax exp [- (x-p) 2/2AR2], (15)
p
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where Nma
x

is the maximumn density at the peak of the distribution. Nmax

can be obtained approximately from

Nma, .= Ni/Y'2;r ARp,

where Ni is the total number of ions implanted per unit area. These

equations are first-order approximations for the region within a few Ap

of the peak at Bp, particularly in an amorphous substrate. When the inci-

dent ion beam is directed along one of the major axes of a crystalline

substrate, nuclear energy losses decrease and the ion penetrates relatively

more deeply than Rp before coming to rest. This process is known as

channeling. A secondary peak occurs in the distribution profile. This

channeling is difficult to analyze theoretically and control experimentally.

The range of a given projectile, expressed in units of mass/cm2 ,

varies only slowly withthe atomic number of the tLrget. Thus, for the

case of SiO2 on silicon, the SiO2 layer can be converted to an equivalent

thickness of silicon for distribution calculations. Since the mass den-

sities are so similar (2.33 gm/cm3 for Si vs. 2.27 gm/m3 for SiO2), it

is assumed in this research that the two materials behave identically with

respect to the bomxbarding phosphorus ions.

A plot of the computer calculations of Johnson and Gibbons

(Reference 35) for phosphorus ions implanted into Si are shown in Figure 16.

To aid in visualizing the distribution, the full-width at half-mnaximun,

RhPis given rather than ARp, where Rhm = 2.36 AR. The information in

Figure 16 was used to determine the phosphorus ion distribution in the
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solar cell structures in the current research. Figure 17 represents a

normalized Gaussian distirbution with the abscissa in units of Rhm.

The amount of charge implanted into the insulating oxide layer

is determined by the integral for Qox

d
Qox = q N(x) dx, (16)

x=0

where N(x) is given in Equation (15), q is the electronic charge, and d

is the thickness of the oxide layer. By letting the upper limit in the

integral go to infinity the total implanted charge is determined.

Referring again to Figure 16, placing the peak of the ion dis-
0

tribution at the center of a typical 700 A thick oxide layer would require

a 28 KeV energy, resulting in a Rhm of 280 A (AE = 119 A). From Figure

17, the density of ions at the SiO2-Si interface will be 10-2 Nm . For

this example more than 99% of the implanted charge is within the oxide

layer [see Equation (16)]. By Gauss' law the maximum electric field

in the oxide, which appears at the SiO2-Si interface, will be

Eox (max) = Qox/Eox = qNi/Eox ' (17)

where Cox is the oxide permittivity. For Ni = 1013 cm-2, Ecv(max) be-

6
comnes 4.6 x 10 V/cm.

During ion implantation, ejection of substrate atoms (sputter-

ing) occurs. Southern, et.al.40) measured the sputtering yield of metals

and single crystal Si and Ge targets boabarded with 1-5 KeV argon ions.

The sputtering yield of Si (atoms/ion) approached 1.3 for the highest
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energies in their study. If this result can be applied approximately

to SiO2 baobarded by phosphorus ions in the 20-30 KeV energy range, then

roughly one atomic layer will be sputtered off with the incidence of 6 x

1014 ions/cm2 (SiO2 X 2.33 x 1022 atans/ancm3 ).

Contrary to the sputtering effect is the observed elevation of

the surface of ion-irradiated materials41 ) . This volume expansion is

attributed to the highly disordered region at the peak of the impurity

distribution at a distance Rp beneath the relatively undamaged surface.

Silicon implanted with 400 KeV Xe ions experienced an expansion of 30-

0 ~ ~ ~ ~~03-116 in/c2.
125 A over a fluence range of 1013 - 1016 ions/cm2 .

In the present research, it is desired to implant a fixed charge
0

in the deposited 700 A SiO2 antireflection coating on the surface of a

production n/p solar cell. Phosphorus ions are chosen because of the

ease of plasma generation, relative immobility in the SiO2 and compatibility

with the surface layer doping. Experimental variables are the position of

the peak of the ion density distribution and the total implanted charge.

Several aspects of the ion implantation process limit or affect

the proposed benefit of reducing the surface recombination factor which

degrades solar cell efficiency.

1. The effective charge in the oxide must be limited to a quantity which

does not cause dielectric breakdown. Presumably an excessive electric

field at the oxide-Si interface would result in same mechanism such as

tunneling of electrons from the silicon to nieutralize the implanted

ions near the interface.

49



2. An intangible quantity is the energy and density distribution of the

surface states at the surface of the diffused layer. It is well known

that high concentrations of impurities will cause lattice strains which

not only reduce bulk lifetime, but also contribute to surface states.

Local precipitations of diffusant or diffusant-silicon complexes should

be considered as well. How well the post-diffusion etch will improve

these conditions is unknown. Similarly, apparently vacuum-deposited

SiO2 has not been studied with regard to its influence upon a silicon

surface.

3. Possible damage to the silicon surface and bulk due to the tailing of

the ion distribution may actually increase the fast surface state den-

sity. Gianola4 2 ) has measured the surface recombination velocity by

the photomagnetoelectric technique of silicon bombarded with 30 KeV

helium ions. It was found that the surface recombination velocity

increased by 50 timnes. Snow, et.al.4 3 ) examined the effects of high

and low energy electrons, x-ray and ultraviolet radiation on Si sur-

faces. One interesting point is the annealing by ultraviolet light

(energy > 4.3 eV) of the x-ray induced oxide space charge. There is a

rather sharp annealing threshold at the 4.3 eV Si-SiO barrier energy.2

Thermal annealing becomes apparent at temperatures above 125°C.

The volume density of implanted ions at the Si-SiO2 interface is

down by a factor of one hundred from the peak density for a Gaussian

0

ion distribution centered in a 700 A oxide layer. For an implant dose

of 1012 cm -
2 , this density at the interface is -3.5 x 1016 cm

-
3 .
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Implantation would be expected to decrease the Si bulk and surface

lifetimes because of the residual lattice damage. Thennal annealing

simply converts the implanted ions (P+ in the present investigation)

into additional donor centers in the silicon. However, the rela-

tively high annealing temperatures required (400-5000C) would pro-

bably eliminate the oxide charge distribution as well.

4. A final extraneous feature of the oxide processing is the alteration

of its optical properties. Thickness changes may occur as a result

of sputtering or expansion during baTbardment. An increase in

scattering and a change in index of refraction are the consequences

of introducing an impurity into the oxide. These parameters control

the antireflection nature of the oxide layer.
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NATURE OF EXPERIMENTAL INVESTIGATIONS

Somane of the experimental questions which need to be answered in

an investigation of the contribution of surface or interface recombination

losses in the surface n region of n on p solar cells using charge intro-

duction by ion implantation into the oxide antireflection coating to moni-

tor charge effects on surface recombination include the following:

eV
1. What is the value of the A factor in the I = I

o
exp Ak
°AkT

relationship characterizing the cells investigated; that is,

what role do junction recombination currents play in control-

ling ISCC of the cells.

2. Does the method of charge introduction into the oxide

actually produce negative or positive charge effects which shift

the surface potential. MOS capacitor measurements on implanted

and nonimplanted oxides will reveal by the shift along the

voltage axis the quantity and polarity of charge that has been

introduced into the oxide.

3. Will illuminated transparent electrode-insulator-solar cell

structures show variation in solar cell efficiency as a

function of applying positive and negative voltages across

this MOS structure. If surface potential variation by in-

duction is effective in changing Nst occupancy and surface

recombination velocity,this experiment should show changes in

ISCc with applied voltage.
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With such information available for validation and reference,

ion implantation of charge at various depths into the oxide layer and for

various dosages along with measurements of ISOC , VOC and I-V integral re-

sponse characteristics and spectral response characteristics before and

after implant with particular attention focussed on the blue response

region can be conducted to obtain data which should be interpretable as

to whether charge introduction by ion implantation will produce an increase

or decrease in the blue response efficiency of solar energy conversions by

the Si solar cell.

The experimental investigations undertaken in this preliminary

study were directed at providing the above types of information.

These investigations are reported in this order in the follow-

ing sections. First however, the experimental apparatus, procedures and

techniques are described.
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EXPERIMENTAL APPARATUS AND PRDCEDURES

Nonilluminated Cell Current-Voltage Measurements

Nonilluminated Si solar cell I-V characteristics were measured

by varying the forward bias on the cell as shown in Figure 18. The contact

jig for the cell was the same one used in recording the I-V characteristics

of these cells under various levels of illumination in order to determine

the series resistance. These illuminated I-V characteristics were re-

corded with a X-Y plotter to facilitate the series resistance calculation.

MOS Capacitor Measurements

When the bias voltage on a metal-oxide-semiconductor (MOS)

capacitor is varied, the resulting capacitance-voltage characteristics for

an ideal device will analytically depend upon the uniform impurity density

in the semiconductor, Nd, and the oxide thickness, x
o
. A significant

point on the C-V curve is the value of capacitance for which the semicon-

ductor surface potential is zero, i.e., the energy bands are flat from

the bulk to the surface. Ideally this occurs for a zero gate bias voltage,

Vg = 0. If the semiconductor doping and oxide thickness are known, it is

possible to calculate the ratio of the flatband capacitance to the oxide

capacitance, CFB/Cox3 1 ) . In experimental devices the CFB/Cox ratio does

not appear at zero gate bias. This is the result of a metal-semiconductor

contact potential, surface charge at the oxide-semiconductor interface and

charge in the bulk of the oxide. This latter effect results in a flatband

voltage shift of
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xo

AVF 1 | x op(x) dx, (18)
00

where Cox is the oxide capacitance per unit area, x is distance measured

into the oxide franom the metal gate electrode, and p x) is the volumetric

charge distribution within the oxide1 2 ) .

By assuming the Gaussian distribution of implanted positive

ions in the oxide it is possible to calculate the flatband voltage shift

due to the implanted charge.

N-type 1-4 ohm-acm polished Si wafers were oxidized in dry

oxygen at 1050°C and quenched in nitrogen gas. The resulting thermal

0
oxide thickness was approximately 1000 A by comparison with oxide color

charts. Gold was evaporated and alloyed into the back Si surface. Sections

of these wafers were ion implanted at various energies and fluences. Alumi-

num dots 0.5 mm in diameter were evaporated through a mask to form the gate

electrode after implantation.

Capacitance-voltage measurements were performed on a Boonton

Capacitance Bridge 74C-S8 (100 KHz) which contains a variable bias supply.

In some cases the wafers were heated, either under bias or open-circuited,

to various temperatures to determine the stability of the implanted ions.

The contribution to flatband voltage due to the contact potential and

surface state charge was determined by measuring nonimplanted MOS capacitors.

Transparent Field Electrode-Insulator-Solar Cell Structure Measurements

By applying an electrostatic field normal to the surface of an

illuminated solar cell, it is possible to observe the effects of surface
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potential variations upon the cell output characteristics. Presumably,

since surface potential variations are expected to alter the diffused

region short-circuit current via changes in recombination velocity, the

output parameter to be observed is the short-circuit current due to short

wavelength (blue) optical excitation. The maximum variation in surface

potential will be determined by dielectric breakdown, and the density

and distribution of semiconductor surface states.

A liquid electrolyte was first tried as the field electrode on

the oxide-coated solar cell. A nsmall glass tube (a 7 mm I.D.) was waxed

to the cell to provide an electrolyte reservoir. It is necessary to in-

sulate the cell surface contact grid franom the electrolyte solution.

Various waxes, photoresists and resins were tried but- conduction still

occurred between the electrolyte and the cell surface. It also appeared

that the oxide layer had pinholes which fonred conducting electrolyte paths

to the cell surface.

Anodic oxidation was considered as a remedy for the pinhole

problem, but a suitable contact grid insulator was still necessary in order

to anodically oxidize any appreciable area of the cell, as well as during

the application of the electric field.

Because of the above difficulties, the liquid electrolyte field

electrode was discarded in favor of a glass plate with a transparent

electrically conducting coating (Corning Glass Works). A contact grid in-

sulator was still necessary; this was either 1/2-mil Kapton or approximately
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1/2-mil mica. Silicone oil was used to improve the dielectric contact to

both sides of the insulating spacer. The cell current was measured under

tungsten lamp illumination (and various filters) as the voltage applied to

the field electrode was varied. The experimental configuration is shown

in Figure 19. Cell output was measured across the 15-ohm load resistance

with a Leeds and Northrup K-3 potentiometer.

Besides the n/p Si solar cells supplied by JPL, we also had

available some p/n GaAs solar cells (approximately 7% efficiency).

Most illuminated measurements were made with a blue CS 5-61

glass filter (Corning Glass Works).

Ion Implantation Apparatus

The ion implantation apparatus employed in this research is

shown schematically in Figure 20 and in perspective in Figure 21. The

target holder is shown in Figure 22. The phosphorus source is powdered

red phosphorus which is heated by means of a tungsten halogen lamp in a

focusing reflector to increase the vapor pressure. An external coil

couples a 12 MHz oscillator to the vapor to produce ionization. Focus-

ing and defining apertures form the accelerated P+ ions into a 5 mm-

diameter beam at the substrate plane. Since the amorphous SiO2 layer on

the solar cells stops (and scatters) the majority of the ions, no attempt

was made to angle the solar cell with respect to the incident beam in

order to reduce channeling effects.
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System vacuum of 10
-
5 Torr with the plasm are obtained with an

oil diffusion pump and liquid nitrogen cold trap. Additional liquid nitro-

gen trapping surrounds a portion of the implantation chamber. A feed-

through electrode connects the plasma to the variable high voltage power

supply. The drift tube and substrate are at ground potential. Since the

ion current is fairly constant, it is possible to obtain the quantity of

implanted charge from the product of implantation time with the current

in the microammeter coupling the insulated sample holder to ground. The

indexed rotating vacuum seal enables up to six samples to be implanted

during a single pumpdown.

Previously, the system described above has been used in

studies of phosphorus-ion-implanted CdS4 4 ) .

Power Supply for I-V Monochramator Measureents

The power supply used to provide power for the lamps used in

both I-V and monochromator measurements is shown in Figure 23. The 10A

autotransformer controls the line power up to 1 kW. The 5A is connected

in parallel such that a fine adjustment is possible by connecting 110 V

to a 6.3 V transformer in series with the main power line.

An anmmeter with a mirror background is in series to help obtain

accurate readings of the line current. A Sola constant voltage trans-

former is used to eliminate nsmall fluctuations in the line voltage.

Set Up for Monochromator Measurements

Monochramator measurements were made on all cells as shown in

Figure 24. To have a uniform beam over the face of a solar cell, cells
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Figure 25. Spectral response measurement apparatus. 

I I 1 1 1 1 ( 1 1 



are separated by 4-3/4" from the monochromator exit slit guided by a

cylinder painted black inside. Cells are mounted at the end of the

cylinder.

An Eppley themnnopile was used to calibrate the system and a

Keithley 148 nanovoltmeter was used for the measurements of cell response.

All the connections and wires are appropriately shielded from the en-

vironment during the measurements. A photograph of the arrangement is

shown in Figure 25.

I-V Measurement Apparatus and Method

OCV, ISC
C
and I-V measurements were made as shown schematically

in Figure 26. A secondary standard cell and a test cell are mounted on

the same brass holder with a relatively large volume to provide a heat

sink. These are connected with a switch S, which allows a quick check

with the secondary standard cell of the flux level whenever necessary.

The secondary standard cell was calibrated with a standard cell obtained

from JPL.

The short circuit currents are measured by extrapolating currents

through the set of calibrated resistors ranging in values from l-90 under

139.6 mW/anm2 sec radiation level.

Two 1.5V batteries in series with 1 KM, 10-turn potentiometer,

is used as a cell biasing circuit for X-Y recorder plots of the I-V

characteristics. A 27 Q resistor in series with a solar cell is used to

determine cell current. A photograph of the arrangement is shown in

Figure 27. Figure 28 shows a close up view of the sample and secondary

standard cell holder along with the standard calibrating cell and lamp.
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Apparatus and Technique for Measurement of Reflectance

Since implantation can change the spectral behavior of the cells,

measuremnts were made using a Cary 14 spectrophotonmeter to determine re-

flectance changes after ion bxanbardment. Measuremnts were made by provid-

ing the sample beam with a reflectance attachment. The only slide wire

available at the time was for absorbance A, where A = ln l/T, and T is

the transmitted,or for our case, the reflected beam. No means were available

however, to obtain a measurement of the amount of incident radiation scattered

from induced defects in the oxide or silicon surface layers.
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EXPERIMENTAL RESULTS

Nonilluminated Cell I-V Characteristics

In previous experiments iii which the current-voltage character-

istics of the solar cells under various levels of illumination were re-

corded, the series resistance was found to be considerably less than 1 ohm.

Thus, no correction was applied to the nonilluminated I-V data for series

resistance. In some cases the data was obtained with a high input impe-

dance battery-operated voltmeter or a d'Arsonval ammeter.

The V vs. log I data for the nonillumninated cells is not linear

in general. The value of A in the expected I = Io exp (qV/AkT) relation-

ship was calculated at room temperature and V = 0.45 volt. For the three

cells measured, this A value was greater than two. I-V characteristics

for various cells and the A value at V = 0.45 volt are shown in Figure 29.

The A values are compared with previous reports for n/p cells in Table 1.

A recent ccmmunication* indicates that the measured A value for this type

of cell actually lies in the 1.3-1.35 range. No explanation is presently

available for this discrepancy, lunless it is a consequence of neglecting

the series resistance or perhaps an unrecognized circuit factor.

MDS Capacitor Measurements

By comparing the ratio of minimum capacitance in inversion to

the oxide capacitance (strong accumulation), the best fit of experimental

o
data occurs for x

o
= 1000 A, Nd = 1 x 1015 an . From the ideal MOS

curves4 5 ) CFB/Cox 0.7. Aluminum on n-type Si with Nd = 1015 cm
- 3 has

a contact potential of - 0.32 volt31)a contact potential of - 0.32 volt
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I - eqV/AkT

CELL A(O.45V)
o 2xlcm-#l 3.0

( IXlcm-#17 2.42

A IXlcm-#19 2.73

0.4
VOLTAGE (V)

0.5 0.6

Figure 29. Forward current-voltage curves for Si solar cells.
A-values determined at V = 0.45 V.
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TABLE 1. VALUE OF A IN CTELLT I-V RELIATIONSHIP

Cell

Mandelkorn

Wolf

Centralab

Reference

(2)

(48)

This research

TABLE 2. INFLUENCE OF HEAT TREAMENT UPON FLATBAND VOLTAGE

Heat Treatment Total AVFB (volts)

Initial - 10.5

10 hr @ 63°C - 9.5

10 hr @ 106°C - 5.5
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In Figure 30 are the results of C-V measurements on unimplanted

MOS devices. With CFB/Cox = 0.7, a flatband voltage shift of -2 to -3

volt is apparent. Implanted MOS devices are illustrated in Figure 31 for

various energies and fluences. The additional negative flatband voltage of

devices in Figure 31 over that in Figure 30 is attributed to the implanted

positive charge in the oxide layer. Distortion of the C-V curves is due to

fast surface states. Included in both figures is the ideal MOS C-V curve

for x o = 1000 A, Nd = 105 -3 .

Heat treatments were performed in order to determine the thermal

stability of the implanted charge. One 20-KeV implanted device had a

total flatband shift of -13.3 volts. After heating in N2 at 420°C for

15 minutes, the flatband voltage was altered to - 1.0 volt, essentially

the same as an unimplanted device.

Device 2-4-4 (see Figure 31) was heated in the atmosphere while

open-circuited. The changes in total flatband voltage are shown in Table 2.

The changes occurring in the total flatband voltage of unimplanted devices

during the treatments listed in Table 2 were not significant. (Device

2-4-6 in Figure 30 is from the same chip as device 2-4-4; the unimplanted

flatband voltage is - 3 volts.)

Device 30-1 was bias-taemperature cycled by applying a constant

voltage while heating in the atmosphere to 100°C, removing the bias after

the sample had cooled to room temperature. With a negative gate bias the

charge distribution in the oxide will tend to drift toward the gate elec-

trode, reducing the magnitude of AVFB. A positive gate bias will increase
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|AVFBI by drifting the charge distribution closer to the oxide-silicon

interface. This effect is demonstrated by following the bias-temperature

sequence in the C-V characteristics of Figure 32. Curve D was plotted

after 40 days of open-circuit roam temperature storage. Also observed

in the history of device 30-1 are apparent changes in oxide capacitance

(heavy accumulation, Vg = + 50 volts).

Calculated flatband voltages using Equation (18) did not agree

favorably with the observed values. Both higher and lower values were

calculated for the various implanted samples. In the case of device 30-1

(see Figure 31) for which the oxide-charge induced AVFB is -22 volts, the

calculated AVFB was - 282 volts. The fluence in this case was 2.4 x 1014

ions/cm2 , a value about ten times higher than that predicted to produce

dielectric breakdown at the oxide-silicon interface.

Effects of Illuminating of Transparent Field Electrode-
Insulator-Solar Cell Structures Under Various Applied Voltages

The external electric field dependence of the cell output was

observed by changing the polarity of the transparent electrode with

respect to the cell surface contact. Voltages on the order of 200 volts

were applied without dielectric breakdown. For the 200-volt electrode

polarities no change in the Si cell current was observed. (Microvolt

voltage differences can be detected with the K-3 potentiometer.) With

the p/n GaAs cells, current changes of X 2 x 10
-
7 A (average current 

4.5 x 10- 5 A) were observed; the current increasing when the field
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electrode was negative (accumulation). No changes in output were observed

for nonilluminated cells (zero average current).

Investigation of Effects of Phosphorus Ion Implantation
Into Oxide Antireflection Coating

In this section, a discussion is given of the implantation con-

ditions and measurements made on the silicon solar cells received from JPL.

The selection of the experimental conditions was consistent with the objec-

tive of the work which was to make a precursory examination of improving

silicon solar cell response to blue light by implantation of charges in the

oxide of standard cells. Additionally, selection was based on the amount

of time allotted and also allowed expenditure. Although the latter limited

the approach to be taken, the data accumulated does however, allow for in-

terpretation and discussion. Annealing of samples could not be done because

the cells used were previously contacted. Therefore, any damage in the oxide

and the diffused layer could not be removed.

Calibration, Experimental Accuracy and Reproducibility

During the course of data accumulation, emphasis was placed

primarily on reproducibility of measurements although the accuracy was of

considerable concern. Constant energy from the B and L monochromator was

obtained by leaving the entrance and exit slits set at 3.5 and 2.0 mm,

respectively, for all wavelengths and adjusting the bulb temperature.

This permitted spectral purity and resolution to more approximately remain

a constant over all wavelength settings as opposed to the method of chang-

ing entrance slit settings.
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Monochraomator output was recorded and adjusted using an Eppley

Laboratory thenropile, Serial No. 7017, calibrated with a standard lamp

fram the National Bureau of Standards. For the spectral nmeasurements made

on all cells, the incident flux was 18.53 x 10-6 watts/cm2 at all wave-

lengths. The resolution of the monochromnator was 12.8 mp for the slit

settings. The nvriochmator bulb temperature was set by tabulating its

current as a function of wavelength. These data are shown in the first

two columns of Table 3.

Reproducibility of this method is also shown in Table 3 where the

potential drop across the series 56.2 ohm resistor is given. Measurements were

made on one of the experimental cells with a 1/4" diameter mask on 4/15/71

and later on 5/26/71. The selection of the sample used was at random and data

are shown for cell # 12. Data of this nature were taken on GaAs cells to

set up this measurement apparatus prior to receiving the silicon cells used

in this investigation. Similar reproducibility was obtained for GaAs cells.

For the I-V characteristics, an incident flux of 139.6 mW/cm2

was established for test cells using the BFS 602 obtained from JPL. This

cell had a 67.22 my output at 28°C for the required incident flux level.

The size of the standard did not permit using it with the test apparatus

constructed prior to receiving it. Therefore, one of the 1" x 2" cells

was provided with wire contacts and calibrated against the standard to

serve as a secondary standard and located adjacent to the test cell in a

holder provided for this purpose. All measurements were made against this

standard. The flux level was determined by adjusting, each time a
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TABLE 3. REPRODUCIBILITY OF SPECTRAL RESPONSE MEASUREMENTS

across 2 ohms V(56.2 ohms)mv
X mp V Lamp (volts) 4/15/71 5/26/71

395
405
415
425
435
445
455
465
475
485
495
505
515
525
535
545
555
565
575
585
595
600
610
620
625
635
645
650
655
665
675
685
700
750
800

.8685

.8480

.827

. 800

.783

.761

.752

.735

. 719

. 700

.690

.678

.668

.653

.650

.644

.643

.642

.641

.640

.640

.638

.635

.629

. 621

.620

.615

.610

.606

.600

.595

.591

.591

.576

.566

.0330

.0470

.0480

.0520

.0590

.0630

.0720

.0770

.0835

.0855

.0958

.100

.106

.100

.110

.110

.115

.119

.122

.129

.137

.138

.146

.149

.140

.149

.151

.150

.149

.148

.146

.150

.160

.163

.164

.0326

.0400

.0480

.'0515

.0592

.0640

.0739

.0773

.0835

.0974

.0945

.0980

.105

.102

.110

.112

.117

.120

.122

.128

.137

.139

.143

.148

.139

.148

.139

.150

.148

.144

.143

.150

.158

.161

.162
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measurement was to be made, the lamp current to give 0.432 volts across a

7 ohm resistor in series with the secondary standard. No provision was

made for temperature regulation. It was therefore, left to the experimenter

to maintain as carefully as possible near roam temperature conditions.

Experience showed that as much as 1.4% error in reproducibility

of OCV could be obtained due to temperature changes of the cell under test.

For this case, the cell was exposed to the incident flux for a period slightly

exceeding any of the normal measurements, thus obtaining an upper limit in

error for this data. Care in data accumulation however, was used and it

is believed that reproducibility was better than 0.7% in the measurement of

OCV.

Since the same argtments apply to the I-V Characteristics, these

measurements could have a reproducibility error of the same amount.

Further, but perhaps critical for our work, the absolute values

of OCV, ISC
C
, and I-V characteristics could have a greater error owing to

color temperature differences between Centralab and OSU light sources

and relative spectral response differences between the tested cells and

the calibrated BFS 602 standard cell.

Camparison of Production Solar Cell Characteristics Before
Implantation Obtained by Centralab and OSU

The results of measured OCV, ISc and maximum power Pmax on

cells received from JPL are given in Table 4. Shown are results obtained

on the 12 cells used to obtain implantation characteristics only. The

remaining cells were used for other measurements and experimentation.
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TABLE 4. OCV, ISCC AND Pmax ON PIRDDUCTION CELLS

OSU CQn-ra1lah.
Cell No. TyNpe O CVI raCell No. Type OCV ISCC Pmax OCV ISCC

in volts in ma in nw in volts in ma

1 x 2

1 x 2

1 x 2

1 x 2

Secondary
Standard

Secondary
Standard

Secondary
Standard

lx 1

lx 1

1 x 1

1 x 1

lx 1

lx 1

.563

.560

.561

.563

.558

.555

.556

71.3

27.7

28.9

28.6

29.2

29.7

27.9

26.4
Average Average
.585 76

10.81

11.69

11.87

11.82

11.84

11.5

30.1

31.7

31.2

31.5

32.2

30.4
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Our measurements show consistently lower values of OCV and ISCC.

As mentioned earlier in the discussion of measurement error, we made no

attemnpt to control the temperature of cells. Emphasis was placed on re-

producibility. On the other hand, the color temperature of the lamp used

could well have been different from that used by Centralab and the relative

spectral response of the BFS 602 and the production cells may have been

different. Therefore, even though the flux level set on the basis of the

calibrated BFS 602 standard cell was maintained constant; the possible dif-

ferences in color temperature and relative spectral response may explain the

lower values of OCV and ISCC obtained in these measurements.

Measurements were not obtained on all cells for the full cell

response since implantation could only be made on a 1/4" diameter region in

the bombardment apparatus. Only data before and after implantation over this

1/4" diameter region was considered significant. These results will be shown

later, taken before and after implantation on the same region of the cell.

Implantation Conditions and Techniques

Following initial measurements of OCV, ISC
C

and maximum power

(on some of the cells) they were mounted in the implant unit for bombard-

ment at three voltages, 20, 30, and 40 KeV and different total dose of 1012

1013, 1014 and 1016 phosphorus ions. Since the cells had a layer of oxide

0

approximately 700 A thick, the voltages were selected such that the peak

of the range distribution was within the oxide layer. This amounted to

0

250, 370, and 490 A for the respective energies. The full width at half

0

maximum for these energies were 215, 300 and 385 A, respectively. These

combine to give a maximum range at the distribution half width of 357,

0

520 and 682 A, respectively. Therefore, it was expected that little
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damage to the silicon would occur providing the oxide layer was free of

defects and of uniform thickness. It was observed however, that the oxide

layers had pin holes and were also slightly nonuniform in thickness.

Implant dose is determined by taking the beam current-time

product. Deposited positive ion phosphorus concentration is approximated

by taking the dose area density and dividing by Rhm.

Open Circuit Voltage and Short Circuit Current
Before and After Implants

Data giving the OCV and ISC
C
obtained on all test cells before

and after implant is presented in Table 5 for the different bxribardment

conditions. For ease of reading these have been ordered by increasing

voltage and implant dose. These data were taken with the 1/4" diameter

mask in place. Recall that reproducibility error in OCV is approximately

0.7% or approximately .004 volts. For the lower implant conditions, the

recorded data for saome of the cells show an increase well within this

limit so an improvement in OCV cannot be inferred. In general, all cells

show a decrease in these values as a result of implant.

The change in ISC
C
resulting from implantation also shows a

decrease for all bombardnent conditions. The values of ISCC were obtained

by extrapolating measured current in decreasing values of series resistance

to a zero series resistance value. As expected due to unwanted series re-

sistance in the measurement circuit obtained values at the lower loads of

1 and 2 ohms were in error. Figures 33, 34(a) and 34(b) show the plotted

data before and after implantation from which ISCc values were obtained.
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Figure 34(a).
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These correspond well with values obtained on I-V curve plots on the X-Y

recorder. Ho~wever, the latter were less accurate.

There is evidence of large error in determining ISCc after im-

plantation for cells 6 (1 x 2) and 9 (1 x 2) in Figure 34(a). Apparently,

sufficient cell damage occurred in Cell 9 to account for this behavior.

Cell #6 gives results which are not consistent with other mneasurements and

therefore should be neglected from consideration with regard to this

measurement. No cause for these anomalous results could be found.

A plot of (AI/Io) x 100 vs. implant dose is given in Figure 35

neglecting Cell #6 (1 x 2).

Considerable scatter is observed below 1014 ions. Above 1014

i
however, the current after implant ISC can be written as,

o 1/2.
IJ.= ISC

C
(1 aN s ) (19)

SCC 5C 

and is apparently independent of the implant energy. Since Ns , is very

approximately proportional to PS the implant density in the oxide as

determined by Ns and the Rh, for different energies, then Equation (20)

can be written as

1i I0 1/2
ISCC ISCC (1 - b p/) (20)

Energy dependence would appear in the determination of the average value

of p through the Rhm values. Since this does not vary greatly in Oo-

parison with the accuracy of determining Ns, the plotted data is not

expected to show energy dependent behavior.
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To be noted is the scatter in data below 1014. This is in the

region of small changes in ISC
C
. Therefore, the error in AI is larger

and as mentioned is on the order of 1 percent in reproduction. The

limited data of one information point per implant conditions is insuf-

ficient to determine a mathenrmatical model or to conclude that AI is always

a negative value.

The density of charge deposited in the oxide as determined by

taking Ns and dividing by the implantation area of 0.316 ca2 and the

distribution FWHM as shown in Table 6.-

The upper limit implantation was set by the implant density

being very nearly equal to the atam density of solids. The lower limit

was established by the minimum value that could be reproducibility set

with the available implant apparatus. It would have been desirable to

extend the lower limit by two orders of magnitude to better approximate

the surface state density at the oxide-silicon interface.

Under all conditions of implant the surface of the cell where

the beam impinged became visibly different than before implant. The dif-

ference increased with increased implant dose and ranged from being just

distinguishable to a mirror-like finish which looked much like the surface

of polished silicon. More will be said on these differences later when

discussing the Cary 14-reflection data.

I-V Characteristics Before and After Implant

I-V characteristics obtained on cells 1-6 (lcm x 1 cm) are

shown in Appendix A. These curves obtained with the X-Y plotter served
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TABLE 6. DENSITY OF POSITIVE PHOSPHORJS IONS IN OXIDE

NS o1 2 o1013 1014 1016

V (KeV) p in ND/cnm3

20 1.45 x 1018 1.45 x 1019 1.45 x 1020 1.45 x 1022

18 19 20 2230 1.05 x 10 1.05 x 10 1.05 x 10 1.05 x 1022

40 0.81 x 10.8 1 x 4 0.81 x 1020 0.81 x 1022
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primarily to obtain cell power data as shown previously in Table 5, since

accuracy for determining ISC
C

and OCV using this technique was poorer than

for the previously described method. Both full cell and 1/4" diameter

masked cell data are presented in Appendix A before and after implant.

Spectral Response Characteristics Before and After Implant

Measurements of spectral response of the 1/4" diameter masked

cells were made over the region 3950 A to 8000 A and are shown in Appendix B

for all the cells tested. Typical of the response is the curve shown in

Figure 36. The curve after implant was found to be always below or equiva-

O
lent to the response before implant. The peak in the curves at about 5200 A

0 0
was common among the cells initially. The curve between 4000 A and 6000 A

became increasingly straighter as Ns is increased to the point of knee in-

version observed for the highest implant level as may be seen for Cell #8

in Appendix B.

Also characteristic of these curves are the bumps. These were

not present when GaAs solar cells were evaluated during setting up of the

equipment. Possible explanation of these are: (1) Possible change in lamp

position prior to testing of the silicon cells since other investigators

were using the monochromator. These uses preceded the silicon investigation

and no perturbations occurred afterwards. (2) Possibly the 1/4" diameter

mask which was made fram photographic print paper wrapping had a spectral

characteristic. The black side of the paper was in contact with the cells.

(3) There could be characteristic 1/4" wavelength coupling fran the oxide

layer. Since the oxide refractive index is V where Er is nearly equalr r
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0

to 3.4, then wavelength in air, characteristic of 700 A of oxide is X =

0 0

4 x 700 A x Y7 = 5200 A. This corresponds to the lowest peak position

of all curves.

In regard to the objective of this work; however, these peaks can

be ignored since changes are of importance only. In general, the greatest

change is observed in the position of the original knee between 5000 A

and 5400 A. A lesser decrease is observed at near 4000 A and even a lesser

decrease at 8000 A. For most of the lower density implantations, there is

no decrease in the spectral response above 6800 A.

Since the blue region response is of interest the percent change

0
in the relative spectral response curves at 3950 and 4800 A are shown in

Figure 37 and 38. From Figure 6, shown earlier, these two wavelengths are

in the front layer (n-layer) response region of the cells. Within experi-

mental error of single data points the percentage decrease in cell response

is very nearly the same. Also, any dependence on implant energy is not

evident. Further, the very approximately same dependence on Ns is observed

as found for ISCc data presented earlier in Figure 35.

The above observations show that blue response is decreased due

to implantation of phosphorus ions. This could be due to (1) n-layer

damage predominantly, (2) spectral shifting of the oxide layer, (3) charge

effect on interface states is in the wrong direction for the highly doped

layer of silicon.

Cell Reflectivity Before and After Implant

In order to partially understand the observed behavior, the cells

were examined for changes in reflectivity. The Cary 14 strip chart
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recorder was set up to measure on the log response slide wire resistor. A

decrease in light output in the sample side was noted as an increase in

recorder response; i.e., the recorder measured absorbance A, as

A = log 1 + C
Ir

where Ir is the cell reflected intensity and since air was used as

reference, C is some arbitrary constant. Measurements were made for AO

on a nonimplanted region of the cell over the wavelength region 3000 A to
o

6500 A giving

Ao = log -+ C

r

The implanted region was then positioned in the beam and measured for

Ai giving

Ai logi + C

The difference A
o
- Ai gives then the change in absorbance as

.Ir

AO - Ai = log 
Ir

Plots of A
o - Ai for the 30 keV and 40 keV implants are shown in

Figures 39 and 40, respectively. These data, in general, show that

the cells reflect less light at the shortest and longest wavelengths and
0

a decreased reflectance near 6000 A over a varying region. One exception

occurs for cell # 9 in Figure 39 and # 1 in Figure 40. Since an increase

in the wavelength response previously discussed is always decreased, the

light not reflected after implant must somehow be lost by a mechanism

other than the one which increases cell performance. At the shorter
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wavelength, it is expected that defects produced by the baombarding energetic

ions provide scattering centers which remove photons froma the beam thereby

decreasing the reflected light intensity which would appear as increased

absorption. This need not be totally responsible for cell spectral response

degradation since it is possible for deeper penetrating ions causing damage

in the silicon. As nmentioned before pinholes and nonuniform oxide thickness

would allow damage to the silicon to occur.

At the long wavelength where scattering would be minimized and

where increased abosrption is observed, which could be due to a change in

oxide thickness and dielectric constant, the beneficial effects are

perhaps cancelled by the cell surface damage.
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DISCUSSION

The primary objective in this research has been to reduce solar

cell losses due to surface recombination of excess minority carriers. In

silicon cells, the theoretical analyses to date usually consider 0 < s <

1000 cm/sec as the range of recombination velocities for calculations of

the surface region short-circuit current (or efficiency in the Ellis and

Moss article). In attempting to match experimental p/n Si solar cell

spectral collection efficiencies with theoretical calculations Wolf6)

found it necessary to employ s = 104 cm/sec either with or without a

drift field in the surface region (xj = 0.5 pm). He also states that

surface recnombination velocities below 104 cm/sec do not affect the dif-

fused region collection efficiency with drift fields of 4700 volt/cm,

and that s = 104 cm/sec has little effect on collection efficiency for

the field free case.

Thus, the importance of surface recaombination in Si solar cells

cannot be stated specifically until the actual recambination velocities

have been determined. In his gate-controlled surface recombination

velocity diodes Rosier2 3 ) observed maximumn values for s on 0.8 ohm-cm

n-type Si of 3 x 103 to > 104 cm/sec. In these thermal SiO2 -Si inter-

faces there are no measurable surface states in the range from 0.15 to

0.55 eV below the conduction band, and there is a significant density

of donor states in the 0.15-0.45 eV range above the valence band (5 x 1012 -

5 x 1013 states/cm2 - eV). The former result is contrary to the results
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of Figure 13 in which a large acceptor state concentration is observed

- 0.15 eV below the conduction band. Again it is emphasized that the

above results refer only to presumably clean thermally-grown oxides on Si.

Since surface recombination is related directly to the fast

surface state density, and those surface states closest to the intrinsic

Fermi level have the greatest effect on recombination (both in the bulk

and at the surface), there are two apparent approaches to reducing surface

recombination. In the research reported here the goal has been to intro-

duce excess positive charge into the bulk of the oxide for the purpose of

bending the energy bands at the surface and increasing the surface po-

tential (accumulation of electrons at the surface of the n-type diffused

layer). As pointed out previously in the theoretical discussion, the

anticipated degeneracy of the diffused layer near the surface requires

modification or greater development of the theory of recombination.

The second approach to the reduction of recombination involves

the overall reduction of the surface state density. According to the

Goetzberger hypothesis24) this requires the elimination of surface charges

in the oxide at the SiO2 -Si interface. First, the source of these charges

is probably the result of several effects: Excess ionic Si in thermal

oxides, ionizing radiation, etc. High temperature annealing in appropriate

atmospheres tends to reduce the surface charge in clean thermal oxides4 6 ) .

However, surface states are not completely eliminated. Typical surface

densities of 1012 cm-2 imply one surface state in an area 100 A square.
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The effective range of the coulomnbic field of the surface charge inducing

O

the surface state is on the order of 30 A. This distance is therefore

the approximate thickness of the surface charge layer.

Perhaps further consideration and development of this surface

charge/surface state theory will indicate the possible reduction of a

particular group of surface states (acceptor or donor) by charge ccmpensa-

tion. These charges would be introduced in the critical 30 R oxide layer,

by chemical or vapor deposition, or ion implantation, before the remainder

of the oxide is deposited.
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CCNCLUSIONS

Briefly, these investigations have yielded inconclusive results

concerning the possibility of improving Si solar efficiency by charge in-

troduction in the oxide antireflection coating. It is concluded however,

that phosphorus ion implantation does not meet the requirremnts for success-

fully monitoring the charge at the SiO-Si interface.

In this study, the data obtained indicate that as the implanta-

tion dosage and energy of phosphorus ions is increased, the cell efficiency

in the blue response region decreases.

These results, although apparently negative from the standpoint

of the thesis that charge implanted in the oxide should be able to in-

crease cell efficiency to higher values in the blue response region, are

considered incomplete and inconclusive.

The incompleteness of this investigation stems from the ex-

pectation that negative charge placed at the interface could be expected

to decrease QSS and thus decrease Nst while positive charge should in-

crease QSS and Nst. Phosphorus ions implanted in SiO give positive

charge thus increasing QSS and also increasing Nst. Ion implantation does

not readily lend itself to introducing negative charges. Consequently,

to investigate this case, another technique of introducing negative charge

at the oxide-Si interface may be needed. There is saome evidence available

in Chou and Crowder's work4 7 ) on O+ and Ne+ implants that negative complex ions

were possibly achieved at the SiO-Si interface by ion implantation. It is

recommended that further research be conducted on charge effects in the oxide
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antireflection coating on blue response since if the above thesis is

correct, it would be expected that Nst and therefore surface reccmbina-

tion velocity would decrease if negative ions were introduced at the

SiO-Si interface.

In addition to the thesis that the sign of charge introduced in

this experimental investigation was the wrong polarity for increasing

blue region efficiency of solar energy conversion, two other experimental

observations in the research lead to the conclusion that the data on

implanted charge effects gathered here are scmrewhat inconclusive.

1. The oxide antireflection coatings of the production cells

investigated had pinholes and nonuniform thicknesses.

Therefore, although the average oxide thickness was greater

than the depth of ion implantation for all the implantation

voltages investigated, the thinner regions and particularly

the pinholes allowed the impinging ions to be implanted

in the Si surface beneath the oxide. Thus, some degree

of n-layer Si damage was incurred. Since the cell con-

struction would not allow post-annealing, to remove damage,

it was not possible to eliminate such damage that occurred.

Radiation damaged Si is known to cause reduction in solar

cell efficiency.

2. Ion implantation produced physical changes in the oxide

layer. Thickness was increased with increase in implanta-

tion dose. The blue color was changed by degrees to the

color of the Si surface as dosage was increased to 1016.
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In general, the reflectance of cells became less at the

shortest and longest wavelengths suggesting more blue

light will penetrate to the Si and implying that the

observed decrease in cell efficiency is perhaps greater

than the experimental results reveal because of the

greater number of photons which reach the Si interface.

In order to avoid both the pinhole and nonunifonn thickness

difficulties characterizing deposited SiO encountered in implantation

which can result in surface damage of the Si thermally oxidized Si would

be desirable since such oxide has pinholes and nonuniformities. However,

the temperatures involved in such processing may be prohibitive for

maintaining the impurity distribution desired in a solar cell.

Furthermore, in view of the physical changes which ion implanta-

tion introduces in the oxide layer which tend to mask the effects of the

charge implanted in the oxide layer on the efficiency of the solar cell,

it also appears that ion implantation is not satisfactory for introducing

charge.

It follows that a more controllable and positive approach to

introducing charge in the oxide layer of the SiO-Si interface is needed

which will allow both negative and positive charge introduction and

maintenance of oxide physical characteristics.

The apparent negative result obtained in the transparent elec-

trode-insulator-solar cell structure investigation does not preclude

that charge at the interface can not affect blue response of Si solar

cells. In the transparent field electrode structure, only the interface
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surface potential is influenced, not the number of charges, QSS at the

interface. On the basis, that QSS controls Nst, a direct interface

coupling of the existing QSS with negative charge in order to lower

QSS is required if Nst is to be changed.
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RECMMENDATIONS

This preliminary investigation has essentially demonstrated that

ion implantation does not fit the requirements for monitoring charge at

the interface of the SiO-Si in Si solar cells. If some means of annealing

the cells after implantation were provided, however, the interpretation of

the present results could be more completely carried out and the usefulness

of ion implantation for charge introduction would be improved.

However, the thesis that monitoring charge at the SiO-Si inter-

face of a solar cell is a reasonable approach to improving blue response

of Si solar cells has not been proven or disproven.

Therefore, it is recommended that investigations be conducted

on introducing both positive and negative charge concentration at the

SiO-Si interface at the start of deposition of the oxide in order to

further evaluate the possible benefits of interface charge monitoring on

the blue response of Si solar cells. Also, attempts to form negative

ccmplex ions by O+ and Ne+ charge implantation should be conducted.

The former perhaps could be done by spraying negative and/or

positive charges on the Si surface at the start of SiO deposition by

evaporation. Another possible way may be by using other insulators than

SiO which can produce negative interface charge at the Si surface rather

than positive charges.

Since part of the cause of the inconclusive results in this

study was the inability to anneal out Si and SiO damage after implanta-

tion, it is also recommended that the present studies be continued and
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expanded by using nonelectroded solar cell structures to which an anneal-

ing step can be applied after implantation followed by oxide masking,

etching the oxide and electroding to achieve a completed solar cell.

Further, in view of the in-depth theoretical analysis con-

ducted during this program and presented herein, the following investiga-

tions are recnmmended.

1. Theoretical studies using computer calculations aimed

at accounting for degeneracy in the surface region of

the Si and the presence of various types of impurity

profiles should be conducted.

2. Si solar cells should be made using epitaxial proces-

sing and epitaxial doping to vary both the surface

concentration of impurity and impurity profile in the

surface region fram the conditions characterizing

diffusion profiles to nondegenerate surface concentration

and greater than exponential impurity gradients in the

surface region. This experimental effort would not

only strike at the problems facing further optimization

of the Si solar cell, but also provide experimental

data useful in the theoretical study recommended in (1).

It is recommended that the above types of investigation be

considered as a follow-on to the present effort.
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NEW TECHNOLOGY

No reportable items of new technology resulted

from this brief experimental study.
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APPENDIX A

X-Y PLOTS OF I-V CHARACrERISTICS BRFOE AND AFTER IMPLANT
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Figure A-1. I-V characteristics for full cell and 1/4"
diameter nmask before and after implantation.
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Figure A-3.
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Figure A-4. I-V characteristics for full cell and 1/4"
diameter mask before and after implantation.
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APPENIDX B

SPECTRAL RESPCNSE CHARACIERISTICS BEFORE AND AFTER DIPLANT
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