~

" AUTOMATED MEIHODS.“".

?i eF COMPUTER PROGRAM. -~
; -0~ DOCUMENATATION

. - - Y Ny 7 - .
e Dol T

NN - ot
: - . U

; E ';,\‘ A . '—/\ PR TR T
R ; R

~—— R L Com e -
= S - . TED MWTHODS OF

} AUTOMA

I B %
NASA-TH-X- 6619 N (NASA)
(ROGRAN DOCUMENTATIO (csCL 09B

‘COMPUTER P

:5ff:?;2u5 P

Novsmm,mm

R
’

7
s IS
S A
~ -
S S
-~ By =
- coe
- o
. I LA
Y\
X

- :>‘*/

GODDARD SPACE FLIGHT CENTE —

RE7AN

ﬁREENBELT \ MARYLAND

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE
,SPRINGFIELD VA. 2216

-

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

X-543-73-62

AUTOMATED METHODS
OF COMPUTER PROGRAM

DOCUMENTATION

November 1970

The proceedings of a symposium held at the NASA Goddard Space
Flight Center, November 3 and 4, 1970

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

(

'r-,l

FOREWORD

With the increasing complexities of computers and software, the annual cost of com-
puter software is rising more rapidly than that of hardware. Means must be found to reduce
this cost. One fruitful area appears to be documentation. Well-documented, reusable pro-
grams should reduce the cost of programming because new work can often be built around
existing modules. However, documentation is generally postponed until the work is com-
pleted. Then, because of the pressure of new work, the documentation is often neglected or
not completed.

If means could be devised for automating portions of program documentation, the
time and effort needed to complete documentation would be minimal. This could then lead
to greater standardization of listings, tables, segregated routines, input/output format de-
scriptions, and setup sequences, and other advantages. It could then be expected that pro-
grammers using the automated system could more easily provide acceptable documentation
and make the results of their work more available to others.

This symposium was designed to cover as broad an area as possible on methods for
automated documentation of computer programs. There is much in common between dif-

ferent methods of documentation, and among them considerable cross-fertilization is possible.

These papers were presented at the Goddard Space Flight Center, Greenbelt, Maryland,
November 3 and 4, 1970. Itis hoped that this compilation of current ideas will encourage
further progress in automatic documentation efforts.

Preceding page blank

iii

ACKNOWLEDGMENTS

Darrin H. Gridley, Associate Chief, Computation Division, and Evmenios P. Damon,
Head, Computer Systems Branch, Computation Division, both from Goddard Space Flight
Center, had prime responsibility for organizing this symposium. They wish to thank the
many participants for their knowledgeable viewpoints on the new approach to a very diffi-
cult subject.

.. Preceding page blank

v

CONTENTS

FOREWORD . .
ACKNOWLEDGMENTS

Session |

PROGRAM DOCUMENTATION WITH ADVANCED DATA MANAGEMENT SYSTEMS
Dr. Wayne B. Swift

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE OF

SCIENTIFIC APPLICATIONS e

Martin A. Goetz

THE BELLFLOW SYSTEM
Stephen Pardee

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION
Richard J. Hanney

THE INTEGRATION OF SYSTEM SPECIFICATIONS AND PROGRAM CODING
William R. Luebke

PANEL DISCUSSION .

Session |1

VIEWS ON COMPUTER PROGRAM DOCUMENTATION AND AUTOMATION
Dr. Herbert R. Grosch
AUTOMATIC EDITING OF MANUALS .
Dr. Robert P. Rich
MAKING AUTOMATED COMPUTER PROGRAM DOCUMENTATION A FEATURE OF
TOTAL SYSTEM DESIGN e e e e e
Allan W. Wolf
SYNTAX-DIRECTED DOCUMENTATION FOR PL360
Dr. Harlan D. Milis .
DOCUMENTATION: MOTIVATION AND TRAINING OR AUTOMATION .
Melba L. Mouton
PANEL DISCUSSION .

—%_N_
——————
-

vii

33 ¢
43
6

69

77 /|\

viii AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
Page
Session 111
COSMIC PROGRAM DOCUMENTATIONEXPERIENCE131°
Martha C. Kalar
AUTOMATED DOCUMENTATION OF AN ASSEMBLYPROGRAM 141
Valerie L. Thomas
AUTODOCUMENTATION
Jay Arnold
COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 157
William O, Felsman
AUTOMATIC PROGRAM ANNOTATION (AUTONOTE) 167
Michael D. Neely and Judy W. Tyson
PANELDISCUSSION« v o v v v o v v o oM
Session |V
PROGRAM AUTOMATED DOCUMENTATIONMETHODS 187
Bernadine C. Lanzano
AUTOMATED ENGINEERING DESIGN (AED) AN APPROACH TO AUTOMATED
DOCUMENTATION0 14
Charles W. McClure
PROGRAM ANALYSIS FOR DOCUMENTATION213
G. H. Lolmaugh
TREE-STRUCTURED INFORMATION FILE AND ITS SUBPROGRAMSUBTREE 223
Charles K. Mesztenyi
A SCAN PROCESSOR AS AN AID TO PROGRAM DOCUMENTATION 245

Dr. Paul Oliver
PANELDISCUSSION .. .n253

Session |

PROGRAM DOCUMENTATION WITH ADVANCED
DATA MANAGEMENT SYSTEMS

Dr. Wayne B. Swift
Computer Sciences Corp.

The problems of program documentation posed by modern data management systems
(DMS) are becoming increasingly important as the use of such systems becomes more prev-
alent. There seem to be two types of program documentation: the kind that should be done
and the kind that usually is.

This first kind of documentation occurs when programmers begin a development by
preparing requirements documentation as the very first step. They first develop the top level
specifications that describe what the program will do. Once it is agreed that this is, in fact,
what the program should do, the next level of system design, requirements analysis followed
by general design, begins. After these steps have been approved, the design is broken into
smaller and smaller pieces. The process of breaking down the design into small pieces is anal-
ogous to the engineering practice of detailed design. The process continues until the pieces
are small enough for someone to prepare. A document that sets forth the segmented design
is thus automatically created before any code is actually written.

What usually happens is that a programmer decides what a program is supposed to do,
writes the program, checks it, and satisfies himself that the program does what is required.
The documentation that results from this approach usually consists of only scattered notes
plus a few general reports that do not fill in all the gaps in the development. At this point,
it is usually quite difficult to improve the documentation because the programmer is prob-
ably heavily engaged in a new project or has left to join another organization.

The computer business has liked to think that this kind of documentation has fallen
into comparative disuse recently. It is still, however, far from dead and probably the most
prevalent kind, though everyone in the computer business reports that plans are under way
to change over to good practices very soon. Manual documentation is generally so bad that
even very poor automatic documentation is often better, which underscores the need to
press for almost any kind of automatic supplement to or substitute for manual documenta-
tion. If any help at all can be given to the automation of requirements documentation, it
may also serve to encourage better documentation practices.

The automated documentation aids that are generally available today, however, are
primarily useful at or near the coding level. Automatic flowcharting and the like are, of
course, quite useful in their own way. Full use of all such aids should be pushed, but this
will not help much in settling requirements and assisting in the development of direct docu-
mentation practices of the type that should be followed. This is true even in the traditional

Preceding page blank

4 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

areas of program development where a programmer works on a single job at a time, at least
from a logical point of view. This symposium will deal, to a great extent, with available tools
in circumstances that include a computer with a normal operating system and the usual as-
sociated software. This paper, however, will consider those cases in which the programmer
is using a computer along with an advanced DMS.

This situation presents two types of severe special documentation problems. One has
to do with the high-level description of the approach that the programmer takes in process-
ing data with the aid of the DMS. The other problem is attempting to figure out what the
program has actually been doing. During debugging, many tools are required; this also affects
the general documentation problem. Tools that adequately reveal what has been done are,
in general, not very widely available with the present generation of DMS’s.

_ There is, perhaps, a third type of problem related to both of these: Given a large and
generalized DMS, how does one prove conclusively that this system either does or does not
do exactly what it is supposed to do. Certainly, the answer to this problem involves
documentation.

A DMS is used to produce a wide separation between procedures, on one hand, and
data, on the other. This separation itself creates a considerable number of documentation
problems that are not found in normal computer processing. In proposing DMS-oriented,
automatic documentation tools to solve some of these problems, five specific problem
areas for which some better kind of tool ought to be found come to mind.

The first of these areas is data description. A DMS facilitates data description by sep-
arating the problem. Data description lends itself to generalized documentation much better
than does process description. It seems quite possible that a generalized data description
language may be developed that can itself provide adequate documentation of data without
any automated documentation at all beyond the use of this language itself. In spite of the
fact that processing languages (for characterizing things that are done to data) seem to be
evolving toward a babel of different languages tailored for different purposes, there is real
promise for the development of a single generalized data description. This will be useful at
even the highest level of requirements specification.

The second problem area is the process description language at high macrolevel, really
the level of general design or perhaps even requirements specification. Such languages are
likely to be intended for application areas only. At this highest level of characterizing what
a system does, tools of representation can be automated either by the development of syn-
optic representations of the logic flow or by the development of languages that are more
readily understandable than are typical programming languages. The potential for this is
great, but its realization is much further away than is the development of data description
languages.

The other three problem areas to be discussed all fall into the general area of execution-
time documentation, as opposed to the overall descriptive documentation. Increased use of
automatic documentation tools represents practically the only hope of discovering what the
program is actually doing. Several things must be discussed to provide an understanding of
the connections between overall system description and the actual happenings in the com-
puter at execution time. These connections, or transformations that are made between the

PROGRAM DOCUMENTATION WITH ADVANCED DATA MANAGEMENT SYSTEMS 5

overall program and what is actually being done by the computer, are becoming increasingly
complex. There seems to be no reason to expect that they will not continue to become more
complex, perhaps even at an accelerated rate. The general softwaré and hardware construc-
tion of systems suggests that the use of large machines is going to continue to grow. Their
economies of scale are already sufficiently impressive that larger numbers of larger machines
will probably continue to be developed for a considerable period of time, in spite of the
strong rise in minicomputer use in the last few years.

It seems fair to predict that a program as massive and complex as the average DMS is
likely to gravitate toward the larger and more complex computers. This would be true even
if the economies of scale of large computers were the only factors that affected this evolu-
tion. In fact, there is another factor that tends to encourage even more strongly the use of
very large and complex computers. The DMS deals with situations in which a large and
complicated collection of facts is created. Whenever a large and complex collection of facts
is created, it tends to draw attention from many users in many different places. Therefore,
there is a demand to make that collection of facts available to a large number of people
either by permitting many users to deal more or less simultaneously with the same collec-
tion of facts or replicating the collection.

The factors needed to judge the economy scale of the situation must not be limited to
usage alone, i.e., a large number of users simultaneously on one machine versus one user at
a time on his own machine, but with many machines active at a time. Another factor is the
common data base and the problem of keeping that data base current at many different
locations. The problem of updating multiple copies is so severe that it alone will dictate a
single-system choice in many cases. The multiple-user situation poses many special problems
in the description of whether the right logical things are being done by the DMS. To phrase
the problem in its simplest terms: Is the DMS functioning? The three following areas of
documentation are those for which the prospects of the creation of automatic execution-
time documentation that would be useful in determining how well the DMS is functioning
are particularly promising.

One is the fixing of the binding point, the point in processing when the indexes of a
body of data in the system are actually connected to that data. When DMS performs a
search, it usually does so by following a series of steps. First, search criteria are formulated
in some fashion. Then, a process occurs whereby some type of preliminary search is made.
The term “preliminary search’ denotes an activity that stops short of actually examining the
data elements themselves and checking whether they are hits or misses on the particular
search involved. This is usually done by using the indexes already in the system, as described
in the following example.

An activity occurs that attempts to narrow down the search so that a considerable por-
tion of the total file is somehow excluded from consideration. Thus, when an examination
is finally made of the particular elements of data that eventually emerge from the search, the
indexes, perhaps on several levels, that point toward the body of data in the system are
manipulated continually. Tests are made to find out which data elements may be valid and
may satisfy the conditions of the search. Often, the system is designed to postpone until a
later time the actual retrieval of the surviving elements of data for the final tests of whether
each satisfies the criteria of the search. Some systems delay these final tests until the items

6 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

are recovered from storage; in other instances, the issue is settled completely by examination
of the index. Whether this can be done depends, of course, on how the indexes are generated.
Whatever is done, the programmer, at debugging time, needs to be able to know the binding
point.

From a total processing point of view, it is generally advantageous to delay the binding
point as long as possible because to find an item often involves several levels of index lookup
before a particular physical location on a disk is found and read. This tends to be a relatively
time-consuming operation. Moreover, the item itself is generally much bulkier than its cor-
responding index entries in a well-conceived system. Therefore, a procedure with a delayed
binding point tends to reduce input/output (I/O) load on the computer. In any case, it will
have an important effect on what the machine is doing and therefore, will be found in work-
ing memory whenever a programmer requests a dump. He must understand this to interpret
the dump, to see whether his search is proceeding in the specified way. In other words, he
needs to see whether the DMS is functioning correctly. This is one area in which some kind
of automatic documentation is needed for some indication of how binding points are being
established and when the binding points occur in DMS processing.

The fourth area has to do with things that are concealed from the programmer while
he is writing the program. The programmer need not worry about these points as long as
the system is functioning properly. Many systems try to optimize processes at execution
time. Whatever optimization the system applies to a specified search or to any other process
that is specified by the programmer, it will affect the dumps that the programmer sees in
case of system malfunction. Optimization results from an effort to make things convenient
for the computer at execution time, but it causes the computer to execute steps that are
somewhat different from the ones that were actually stated by the programmer. This process
of optimization is admirable as long as everything in the optimization logic has been checked
out and is valid, but when one is trying to certify that what the program is doing agrees with
what it is supposed to do, sometimes difficulties result.

Typically, a DMS causes processes to be data directed. That is, drastically different
things happen when different values are actually manipulated by the system at execution
time. Systems generally are put into use before every conceivable combination of paths
programmed into the system has been exercised and tested. Therefore, it is important for
the user to have some way of discovering what the optimizers actually did to his original
code. He must know this before he can honestly and sensibly judge whether an apparent
malfunction is his mistake or a system error that needs to be corrected. Documentation suit-
able for this needs to be improved in DMS’s.

The final problem area to be discussed is the need for system-supported traces that are
reflective of the steps that are followed. These are needed both from the system point of
view, so that, for example, the man who is working for the system operator and trying to
understand what the computer is doing can proceed in a step-by-step fashion, and from the
user point of view, so that the activities relevant to a given user’s program can be isolated
for review even though his work may be interspersed with that of many other users. All
these things need to be documented for the user in a form that is sufficiently detailed to be
useful to him in understanding what the system did with his program and, at the same time,

PROGRAM DOCUMENTATION WITH ADVANCED DATA MANAGEMENT SYSTEMS 7

general enough that he is not buried by a mass of paper. One of the things that makes this a
muddy area is that, clearly, the internal design of the DMS affects the values of a trace. The
system features may affect what is worth showing,. :

For example, one particular system being checked by Computer Sciences Corp. (CSC)
has been built with a series of processing modules that are programmed in such a way that
there are queues going into and out from each processing routine. All I/O activity is controlled
by the overall supervisor, and each routine is self-contained. In a case of this sort, a trace that
simply indicates the order in which transactions traverse these individual modules of pro-
cedure, all of which have to run all the way to conclusion because of the rules governing the
system, can be readily automated, but no more is really needed to permit a user to under-
stand the validity or the lack of validity of what the computer did to his program. It also
will facilitate his comparison of what the system actually did with what he programmed.

This will greatly assist him in deciding whether he made a mistake or there is something
basically wrong with the way the system is performing.

In summary, the modern form of DMS, with the discipline that it enforces by separating
the data and the process, often creates a situation in which the process is specified more in a
manner that is similar to that employed with decision tables. That is, the details of the steps
are sometimes of interest to the programmer, but many times they are not. In cases for which
the steps are not of interest to the programmer, it is probably safe to say that, from program
to execution, present-day systems provide very little aid in the discovery of the connection,
or mapping, and the automatic documentation usually produced by such systems to tie
together the things that the programmer does when writing his program and the things that
the machine does when executing the program is inadequate to support a proper check of
system operation. It seems that this is an area in which automatic documentation can prob-
ably make an important contribution, but so little has been done that immediate and im-
portant progress can be made whenever the profession mounts a serious effort.

DISCUSSION

MEMBER OF THE AUDIENCE: Would you say a little more about binding points?

SWIFT: Let me use an analogy. Consider the two ways in which algebraic equations are
solved. With one approach, values are chosen and substituted into the equation at the start,
and the equation is solved numerically. Therefore, the binding point, the point at which the
connection is made between the definition of a variable and its value, occurs at the beginning
of the solution procedure. If the other approach, the algebraic solution of the equation, is
used instead, the binding point occurs at the end of the procedure.

Obviously, what a given system does in developing a binding point is important to our
understanding of what ought to be in a given space and core at a given time. Therefore, in a
certain sense, it is really a debugging tool.

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND
MAINTENANCE OF SCIENTIFIC APPLICATIONS

Martin A. Goetz
Applied Data Research, Inc.

Most documentation of computer programs can be summed up in the phrase, “Even
when it’s good, it’s bad.” Management may occasionally give documentation token priority,
but programmers seem to give it no priority at all, perhaps because of their training. Pro-
grammer training is either formal or informal. In formal training courses, documentation is
usually not a standard part of the curriculum; in informal or on-the-job training, it is usually
not even mentioned. This lack of training is a basic reason for the problem of documentation,
a problem that is compounded whenever management deemphasizes program documentation
simply because past experience has shown that what had been produced was generally
ineffective.

The chief reason that documentation is so poor may be that it has been considered a
manual process when it should have been considered a computer problem. Certainly, no one
considers compiling a manual process today, although, years ago, compiler functions were
performed manually.

The need for documentation seems to be obvious. The primary concerns of both man-
agers and programmers are program productivity, debugging, flexibility, integration, and
reliability. Good documentation helps to fulfill these purposes; poor documentation, on the
other hand, does not. Any organization can obtain good documentation, either manual or
automatic, if it concentrates on program organization rules; programming standards, includ-
ing the naming of tagged lines, proper commentary, modular programming, and restrictions
in the use of certain programming techniques; program monitoring and security, including
systematic recording of changes in programs, systematic recording of reasons for changes,
and protection of programs; technical overviews of programs (using tape recordings, if pre-
ferred); and parallel development of programs and documentation.

Program organization rules are important because, although good programmers have an
organized approach to writing programs, they, unfortunately, usually develop styles of their
own. Rarely will two programmers use the same organization. Because a programmer does
not work on a program forever, it is obvious that organization should not be permitted to
suffer from the idiosyncrasies of the individual programmer. The same can be said for pro-
gramming standards, which, by definition, can be effective only if they are both universally
published and observed.

If programmers followed consistent program organization rules and programming stand-
ards, much of today’s documentation problem would not have arisen. The computer industry

PRECEDING PAGE BLANK NOT FLLMED

9

10 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

is almost 20 years old; it should stop philosophizing about what ought to be and resolve this
unsatisfactory situation.

Only automated documentation of programs offers any hope for realizing what may be
called ““accurate” program documentation. This paper will discuss how to improve automated
documentation and, specifically, how the AUTOFLOW system can be enhanced to provide
acceptable levels of documentation.

Given that programmers may cooperate only to a limited extent in documenting their
programs and that computer programs can be developed to generate information that could
not be produced manually, the following three elements are essential for an integrated docu-
mentation system within the framework of today’s data processing environment:

(1) Logical analysis or graphic dissection of a program

(2) History and control of programs

(3) An understanding of the program

A flowchart produced by AUTOFLOW is much more meaningful than one that has
been produced manually. These logical flowcharts are accurate, present complete references
between all transfer points, and graphically portray the logical flow by automatic rearrange-
ment of those segments of the program that interact. Figure 1 is an example of a two-
dimensional AUTOFLOW flowchart from a FORTRAN program.

The number and type of cross-referenced reports produced by AUTOFLOW depend on
the source language being used. For COBOL, AUTOFLOW can produce four special reports:
procedure division summary, data name cross-reference listing, data division index, and data
record map. For PL/I, four special reports are produced: on-unit action blocks, label-
assignment cross-reference, duplicate declaration map, and condition prefix map. For
FORTRAN, the one special report is the nonprocedural statements listing. Other special re-
ports for FORTRAN could be produced by AUTOFLOW and would be of great value. Fig-
ures 2 through 10 are hypothetical reports that could be produced from a FORTRAN pro-
gram by systems such as AUTOFLOW.

Figure 2 illustrates the header information that is common to all reports. The informa-
tion includes the general title, FORTRAN analysis report; theuser name, e.g., Goddard Space
Flight Center; and the system. The run time for the analysis and the data are also presented.
The report itself is essentially a listing of the local variables used by the program. The infor-
mation presented is the mnemonic label, the type of variable, the definition of the variable,
the line number where it is defined, the type and value of the definition, and then the ref-
erences made by other statements in the FORTRAN source program to the local variable.

References in all reports consist of the source line number and, in parentheses, the
AUTOFLOW page and box number. The variable labels in the first column are sorted alpha-
numerically. The label types are standard for IBM FORTRAN (integer 2, integer 4, real 4,
real 8, logical, etc.). The DECLARATIONS column specifies where and how the variable is
defined (i.e., through a data statement or an equivalence statement). If the variable is defined
by a data statement, the value of the definition will be shown. Doubly-defined variables
would be indicated by the notation DD in the definition area.

Figure 3, a cross-reference of statement numbers, lists only those statements that can
be referenced by other statements within a program, i.e., statements with statement num-
bers. The appropriate line number, flowchart location, and type of statement (e.g., format,

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

AUTOFLOW CHART SET OEMON 10/29/70
CarRn NO rews CTONTENTS save

1 € A SFT MF POYTINFS TLLUSTRATING THE USE ARD MISySF DF VARIOUS
2 [FNORTRAN STATFMEMTS, IT IS NNT INTENDED TN BE AN FXAuPLE‘OS
3 C GOOD, SENSIALE OR EVEN REASONABLE PROGPAMMING.
3 [«
H [«
[C
7 COMMON RCOMI (1000),9C0M2,ARCOM3I(1000) «RCOMA 110000
A COMMNN/LARCM] /LCOML A
e NAMFLIST/NML IST/NL N2

10 OTMENSTNN ACOM211000)

11 DATA N1/10017, N2/37/

12 INTEGFR BONMY, ROUTEY. ROUTF2
13 INTFRFR*2 RAUTEY, ROUTF &

14 LOGICAL LGLY

15 RFAL®Q RCNM2

16 (4

17 FItA,R,NI={A/2¢R/2)esN

18 F2IXa¥Y1={X=,011/2¢lY¥-2001)72

19 o

2n READUINMLIST)

21 0N 300L=1.N1

22 LCoMLa=L

23 CALL READER L5001}

24 LrLCOMIA

25 TEEACPYLILY) 100,120,140

26 to0 ASSIGM 320 TO ROUTEL

27 60 TN 160

28 120 ASSIGN 340 7O POUTEL

29 G0 TN 160,

10 140 ASSIAN 360 TN HOUTEL

31 160 GO TD ROUTEL,0320,3404360)

32 180 R=,01

33 200 K=R

36 42F1(8,5,N21

35 220 TFEALGT,.BOOMLIILYY GO TP 260

34 R=Pe,01

37 GO TO 200

L) 26¢C $2R

39 H = 33 -7

ait HEFZiReSt

L3 caLlL wRITE® (A,L)

“2 tFLL.FQ. 1) GO TN 200

43 DN 280 tL=2,Ll

s ACOMICLL)I=PCOMIILL P +ACDMI(LL-1)
&5 DY 2RAD LLL=2,LL

“b 2R0 ACNMGILLL)=RCOMGLLLL)*S 1 (BCAMLILLL=1)RCOMGLILLL=1},1)

&7 300 CONT INUF

“3 C

49 320 RNOUTE2=]

S0 LGLL =, FALSE.

51 6N 70 3R0

52 340 AOTE2=2

s3 LGLL= FALSF,

sS4 60 1O 380

5% 140 ROUTEZ2=3

56 LGLI=, TRUE,

57 3RO GO TN (400,420,440) ,ROUTE2

S 400 WRITE({6,9000)BCOMIIL) L

%o 60 TO 440

60 £20 WRITE(6,9001)L

81 b4 TFILGLLY 60 YO 180

52 460 RCOM21ILY=0

62 60 YO 300

e <

65 500 NRITE{6,9002)

66 sTre _

67 9000 FNRMAT{1X+*<0', 2710}

60 |00l FORMAT(1X,*=0°', 110}

69 9002 FORMAT(1X,*EDF*)

10 END

doull

'

Figure 1.—AUTOFLOW flowchart for FORTRAN program.

11

L3}
.

'

-l

12

1c/s22/70

FNRTRAN MDDULE

CARD NO

cl

- e e e e e
D <2 NS w N -

1nr729710

EERTONNY wARYLT

R R

°

o

CARD NO

16729772

N

® - > a >

10
1
12
13

10/729/70

10/29/70

Pr.AX

2.0R
2.01
2.09
2,10

PG.AX

5.01

PG, RX

T.01

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

INPUT LISTING

e

500
9000

INPUT LISTIAR

AUTOFLOW CHART SET - DEMON

(NAMSOLLIST)

CONTENTS

SURRNUTINE READFR (*)

COMMNN RCN%Y(1900),8C04201000),RCOM3(1000),BENYS
DIMENSINN RCOM4L{10001+FO1(1000),502(1000},XQ1110)
COMYNN/LARCML/LEOMIA

CNMMON/LARCMZ/LCOM2A

INTEGFR £01,XQ2

EQUIVALENCF (EQI,BCOMII

REAL®BACNM2,XQ2

PEADIS,9D00,END=S00)EQL (LCONLA)Y
X=EQL(LI1COMA)

CAaLL WRITFR (x,LCOM1A)
LCOMIA=LCNN24A

RETURN

F=14

RETURNYL

FORMAT(SAX,1%5)

END

BUTOFLOW CHART SFT - NEMON

(NAMSO,LISTY

LT

2000

PROCFNAUR AL STATEMENT LAREL INDEX

NAVE

100
120
140
160

NAME

READER

PROCEDURAL STATEMENT LARFL

CONTENTS

SURPNUTINE WRITER (X.J)

CNWUNN ACNM] {10001, ACOM2{10001,RCOM311000),ACAM4 (1000}
COMMNN/LABCM2 /1. COM24A, LCOM2R
RFAL®B X

WRITE(6,90001X,J

G = 23 ¢ YY
TFILCCY24,6T,21LCOM2A=LCOM2A-SQRT (3,)
RETURN

Fz21

FORMAT(*0°',F20.4,110}

END

AUTNFLNW CHART SFT = NEMNN

PG.RX NAME PG.AX Nauf en,ax NAME
3.01 180 3.11 2RO 3.17 340
3.02 200 3.14 300 3.18 380
3.03 2720 3.1%5 320 3.19 400
3.05 260 3.16 340 3.21 420
PRNCENURAL STATEMENT LABEL INDEX AUTOFLNW (HART SFT - DEMNIN
PG.BX NaAMF PG.BX NavE 064 AX NAME
5.09 500
INDEX AUTOFLNOW CHART SFT - NEMON
PG.AX NAME PrR.AX NAME PG RX NAMF

Namf

WRITER

saen

seve

o6, RX

3.23
3,74
.29

ohLAX

PG, BX

Figure 1 (continued).—AUTOFLOW flowchart for FORTRAN program.

eARE]
NANFE
440
%60
500
paCe 2
NauE
paGe 3
NAwFE

R |
.

'F

s d

f

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

1nr2e/70 TABLF 0OF CONTENTS AND REFERFNCFS AUTNFLIW CHAPT SET - DPEMDN
fasn 10 pang/anx Naug PEFEPENCES {SOURCE SFQUCNrT ND. AND PARF/ANXY

ENRTRAN MNNULE

CHART TITLE - INTRODUCTORY COMMENTS

CHARY TITLE - PROCFNURES

(0aN0?8) 2.01 120 (0n0025) 2.07
13000822 2,04 100004T) 3.14

tononzay 2,08 100

(0000101 2.09 140 (000025) 2.07

tenanaty 2,10 166 (ononza) 2.01 (000027) 2,08
1anco12) 3.01 180 (000061) 3,23

(¢n0013) 3,02 200 10000371 3,06

[LLLEEES] ‘3,03 220

fanonla) 3,05 260 10000351 3.03

(0rO0k4) 1,00 (000066) 3,13

(rI0068) 3.11 280

(00n046) .11 (oonnas) 3,12

(c00067) 3.14 300 10000421 3,07 10000631 3,24
1000049} .15 320 (000031) 2.10

(0nn0s2Y .16 360 (0000311 2,10

1LR00%S5) 3,17 360 1000” *.10

(00N 7Y 1,18 380 (602.5 - 3.1% (0000541 3.16
€00005R) 1.19 £00 100c0577 3.18

(conne0) 1,21 420 1060057) 3.18

1000061) 3,23 440 (0000S7) 3.1A 1000059) 3.20
1enons2) 3.26 460

10007651 1.25 500 (0n00231 2,05

CHAPT TITLE - NON-PROCSCURAL STATEMENTS

FNRYRAN MADULE

CHART TITLE - SURRNUTINE READER(®)

t500011) S.01 PEADER 1000023 2.05-X
(0000171} 5.0% 500 1000011} 5.03
CHART TITLF -~ NON-PROCFMYPAL STATEMFENTS

FNOTOAN “NR(ILE

CHART TITLE -~ SUBROUTINE WRITERIX.J)

1000007 7.0l WRITFR (0000411 3.06-X 10000131 5.05-Xx
(0n0010) 7.06 1000009} T.04

CHART TITLE - NON-PROCEDURAL SYATEMENTS

Figure 1 (continued).~AUTOFLOW flowchart for FORTRAN program.

PAGE

13

il

14

10729770

CHART TITLE -

10729770

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

INTRODVICTORY CNMMENTS

CHART TITLE - PROLFNURFS

AUTOFLNW CHART SFY = NEMAN

A SET OF ROUTINFS TLLUSTRATING THE USF AND MISUSE 0F VARINUS
1T IS NOV INTENDED TD BE AN EXAMPLE NF

FORTRAN STATEMENTS,

GOOD, SENSIBLE OR EVEN AEASONABLE PROGRAMMING.

AUTOFLOW CHAPT SFT - PEMON

/ ’
/ RFAD FRO% DEV 7/
NMLIST ’/

/
/ N
ZINTERNAL FNRMAT/

' NNTE 03
R I I IR] .
- BEGIN DO _LNOP .
b INO L = 1, N1 *
LRE I BEEERE B R RN A]

03,14~ -)I
04
DT TP |
| COM1A = { |
------------------- *
I 05
................ ———
H
5 READER H
. tes001} H
0 H
1 H
Sy R "
1 ALTERNATE RETURN 1

™ ROUTE

BITITI N

Figure 1 (continued).~AUTOFLOW flowchart for FORTRAN program.

ASSIGN ib(l) ! l

ASSIG
™

N 380
RAUTEY

PAGE

PaAGE

(3]

n2

|
N

f

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

10729710

CHART TITIE - PPOCFMIBES

03.73---)'

AUTOFLOW CHART SET - PEMNN

)

-
Ed
£l
2
n
n

H
H
1AL H
"
H
.

V=2

lm)xsjn
R
- AFGIN NN | NOP .
s 2R LLL = J. UL *
PSR RO RN T A

. . NO
© END OF ON @cecee
o LDOP? e
. .
.
.
YES

. s ND
* END OF ND +-¢
. 7 .

—eee03.070-->

300 14
. .
.

- . N
. END NF €O e-s
* Y LooP? .

LGLY = .TRUF,

1F NUTSIDE THE RANGE
03, 18~--=>
400 19

’ 6 ’
7 VIA FORMAT /
’ e
/ FROM THE LIST /

|N0|‘E 20
e e s

IR
LIST » ACOMLILY,

.
»

seee

7 WRITF TN NEY
’/ VIA FORMAT ’
/ FROM™ THE LIST /

L
® 6000 80
034188==>C¢mmmmammcmmn
440 e 23
. L

RUE
. LGLt "=
.
* »
. »
FALSE .
460 24

PARE 03

/ T

7 WRITE TN PEV 7

+ N1A FORNAT t
9002 o ’

RFTUAN TN SYSTE™

Figure 1 (continued).—AUTOFLOW flowchart for FORTRAN program.

15

16 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

1729470 AUTOFLOW CHAPT SET = REMNN PAGF . 04

CHAIT TITLE = NON-PRNCFNURAL STATEMFNTS

LNMMON RCNM1E1N00) NCDM2,BCOM3 (1000) BENMS{1000)
COMUON/LARCML/ZLCOMNL A

NAMEL IST/NMLIST /NI, N2

DIMENSINN RCNM2(1000)

DATA N1/10017s N2/37/

INTFGER PNCOM), ANUTEL, ROUTEZ

INTFGERS2 AOUTFI, ROUTES

LAGICAaL 6Ll

REAL®A RCOM2

STATCHMENT FUNCTIODN DEF INITION: F1{A,ByN)={A/2¢B/2)0eN
STATEMERT FUNCTION DEFINITION: F2UX,YIm(X=001)720{Y~.01)/2
2020 FORMAT(1X,%<0%, 2110}
Q001 FORMAT{1X, 1 =07, 1102
9002 FORMATU1X, "EOF®)
10729770 AUTOFLNW CMART SET - PEMON PAGE - (=

CHARY TITLE - SURRPIITINE @FANFR(S)

7 RFAD FROM DEV /7
7/ ViA ENRMAT /
’ al ’
7 INTO THE LIST /

'ums 02
[T I A N R R]
. LIST = .
be EQLLLCNMIA) .
8082800 80
1 03
. .
. .
. .
* END OF DATA?
. .
. .
. .

.
NO

PETURN 1

Figure 1 (continued).—AUTOFLOW flowchart for FORTRAN program.

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

10729770 AUTNFLOW CHART SET - DEMNN PAGF O¢

CHABT TITLE - NON-PROCTNURAL STATFMENTS

CDMRON BCﬂ".lHDDDI.Btanl]OOn!-DCOM'JIIOOD’\-BCDN
NIMENSION BCNW&11000},EQI11000),EG2t1000),%01110)
COMMNN/LARCML /L COMLA
COMMON/LARCM2/LCOMZA
INTEGER EQL,.XQ2?
ECUIVALENCE {€01,BCOME}
REAL#ARCONZ . XQ2
q0no FORMAT (50X, 15}

10729770 AUTOFLOW CHART SFT - DEMNN PAGF 07

CHART TITLE - SIMPOUTINE WRITFRIX.S)

Lesnery

LI 7Y
. .
*
FALSE » .
¢omeves LCOM2A oGT. 2
* *
- L
- L

*
TRUE

[I SEP U PR
LCOM2A » LCOM2A -
QR

(34

| F e 21-]

[S R S — 1

16729770 AUTOFLNW CHART SFT - DEMON PAGE n#

CHARY TITLE - NON=PROCEMIRAL STATFMENTS

COMMON RCOM1 {10001, ACNM2 {10001 ,8C0M3 L1000) .ACORS (1000}
COMNON/LABCHM2/LCOM24,LCOM2B
REAL®S X

9000 FORMAT(0" +F20.4,110)

Figure 1(concluded).—AUTOFLOW flowchart for FORTRAN program.

81

REPCRT NC. 1 FORTRAN ANALYSIS PEPORT PAGE 1
NASA, GCDDARE SPACE FLIGHT CENTER
TIME 16,2021 SYSTEM ‘NAME DAYE CCT 15 1970

PROGRAM: MATLN

LCCAL VARIJABLE REPORT AY PROGRAM
0800000000000 000003808 0008808 ISEARRRRREINREOIRRRRRIRIORURARREINOREIRIONEIRRRRREEREETEitItat It et dtttettetaaitttttdetdteerteenitesdsisskns

LABEL TYPE APPEARANCES: LINE#(PG.BX)
hd CECLARATICAS b4 ASSIGNMENTS . REFEFRENCES
A AL A AL AR L AL A A A LA R a L Rt Ry R e Y R g L PP T I P I 2 ey L Y Y Ry Y Y Y Ry P Y Y P Y P P P Py Y R Y 2 7e)
a REAL*4 * * 24(C3.C2) * 35{03,03)
8 RFAL®& hd * 40(02.C5) * 41(03,06)
H REAL *4 . * 26{02.05) * NCONE
L INT o4 * * 21102.C3) 24(02.06) * 22(02.04) 25(02.,07) 35(03.03) 41103,06) 42(03.07)
. . * 43{03.08) SE(03,19) 60(C3.21) 62103,24)

LGt LCGICes # 14 * SC(C2.15) 53(03.16) 56(03.17) * 611(03.23)
tt INT 4 . * 43(02.08) * 44103.C9) 45103,10)
[N 48 AT 04 * * 45{C3,101} ® 46(03.11)
AMLIST ALIST * 09 * 20102.02) * NCNE
N INTes * 11 CATA 1001 + 11 * 21102.03)
N2 INT 84 * 11 CATA 3 11 38 * 34(03,02)
L] REAL*G . * 32103,01) 26103.C4) * 33103.02) 34103,02) 36(C3.04) 38(03,05) 40(03,05)
RCLUTEL INTo4 s 12 * 26(02.08) 28(02,01) 30(02.09) ¢ 31(02.10)
RCUTE?2 INT o4 * 11 * 45(C3,15) 52(03.1&) 55((3.17) ¢ 57(03.18)
RCLTE2 INT*2 * 13 . * NONE
RCLTE4 INT*2 * 13 . * NONE
S REAL®S . * 23(03.C2) 38(03.(5) * 34(03,02) 4C(03,.CS)

REAL*S * UNCEFINEO * UNOEFINED * 39(03.05}

BP0 00083006 0000000008088 RIRRNIRRAIRANNNINCERRINRAEIRAUEIRAAEECHEEREEEAETIEAEESEIVIONIBICIOSRIICIORSEEICAGIISRRER 0NN OS0E

Figure 2.—Header information.

NOILV.ININNDOOA WV ID0Ud YALNdNOD 40 SGOHLINW AILVNOLNY

BEFNQY MO, 2 FORTRAN ANALYSIS REPORT PAGE 1
N8SA, GOCDARC SPACE FLIGHT CENTER
TIME 14,2031 SYSTEM NAME DATE CCT 15 197¢C

PRCGRAM: MAIN
CRCSS REFERENCE OF STATEMENT NUMBERS
G000400008004000000008800USEREEtCIPEIERRERICRIREIRINNINNNRIORPRIIINRRRRNRVIEEREEOIRREEEIONENINEOINNEBOESEIIEIIOERE00000C004000000000004
LINE STUT TvpPE FEFENPENCES: LINE#(PG.BX)
LB ONEE0000000000R000RRRRRREICTIRTEIRNTIREIRNINIRINAIRIOINNOVNNBRSRNNIRRIIRL IR NENEEPtIEOISEERERENREOIEEEREettesetnertittdtrses

24 170 AS<IGN 25002.07)
2¢ 12¢ assicn 25102.07)
3c 140 ASSIGA 25102.,07)

21 16C ASSIGAEC GO TO 271 25

32 120 CCMFLTATION 61102.23)
23 2CC CCMFLIATION 37
35 220 LrGICAL IF NITNE

28 260 CCMFYTATION
“é 20 CCMFLTATION
47 300 CONTINUE
4¢ 320 Cr¥PUTBYION
52 L) CCevFyTATINN 28(02.C1) 31(C2.1C)
%S 240 CCONMPUTATION 30102,09) 31(C2.1C)
57 3°C CCMFLTED GO TN 51 54

€€ 4OC WRITE 57(C3.18)

&C 420 WPITE 57(03.18)

€1 44C LCGICAL IF 57(03.18) 59

e2 «6C CCvMPUTATION NONE

3€(02,01)

43(03.08) 45(C3.10)
21(02.03) 42(C3.0Q7) 63
26(02.08) 31(C2.10)

[}] S00 WRITE 23(02.05)
€7 9C00 FrAvaY 5¢(03.,19)
€8 SCOL FOFRMaAY 60002.21)
&S 6CJ2 FCRMaAT 65(02,25)

‘itt‘.‘.‘tn.hn-.ntttat...t...t-t.-t----.--n-‘tntaat.--ota.o.......aaoo...o.......-.a-.....‘.......aa..-...‘--.-.‘44.‘..-.-.---.-‘4..

Figure 3.—Cross-reference of statement numbers.

JONVNILNIVA ANV NOILVININNDOA JOd SINIWIINVHNT MOTA0LNV

61

20 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

computational, or assignment), are specified. Again, all references to each statement number
are listed by line number and AUTOFLOW page and box references.

Figure 4 is a cross-referenced listing of global variables used by the specific program
that is being analyzed. This report is very similar to the local variable report, except that it
lists only those variables that reside in blank or labeled common data areas. The information
presented in the report includes the label mnemonic, the type of label, its definition, data
used in the label, and all references to the label by other statements in the FORTRAN source
program. The label type is broken down not only by data type (integer, real, logical, etc.)
but also by the type of common area (whether it is blank common or label common and, if
label common, by the mnemonic name of the label common area).

Figure 5 is a summary of all of the variables used in all of the programs input to a
single AUTOFLOW run and is similar to the local variable report for a specific FORTRAN
program. It contains essentially the same kind of information presented in the local variable
report, mnemonic label for a variable, the type of variable, the definition of the data for the
variable, and all references to that variable. The unique aspect of this report is that it does
not reference only those local program variables that are accessible within a specific program
but rather those variables that can be passed between programs through a common data area.
In the references column, program identification, line number, and AUTOFLOW page and
box number are indicated.

Figure 6 is the program subroutine usage report. This presents the names of subroutines
within an individual program, the call parameters that are used by or passed to the subrou-
tine, and any references (by line number and AUTOFLOW page and box number) to that
subroutine in the specific FORTRAN program being analyzed. In the call parameter area,
the variable name that is being passed to the subroutine and some additional information
are found. If a global variable is being passed to a subroutine for its own use, an ampersand
is appended to the mnemonic label in the CALL statement. A second type of variable that
may be passed is 2 dummy variable, one that is not directly used by the program. This is a
variable that has been passed to the present subroutine by a calling subroutine. A dummy
variable is indicated by the pound sign appended to it. A third parameter is a return address,
indicated by an asterisk. The call parameter portion of the listing also specifies the levels of
all variables that are local to the program.

Figure 7, the system subroutine usage report, is very similar to the program subroutine
usage report. The name of the program containing the call, the subroutine name, and the
local, global, and dummy parameters passed to the called subroutines are specified. The re-
port summarizes all subroutine usage within all program modules processed in a single
AUTOFLOW run. Briefly, this listing establishes the hierarchy of subroutine calls among
the modules for a given execution.

Figure 8 is the DO loop analysis report for a specific program. This listing indicates the
complexity of the DO loop control within the program. The body of the report presents the
source and flowchart locations of the start of the loop, the variables used for starting and
ending values, and the increment used for the variable counter.

The complexity map, a bar diagram constructed of X’s, depicts the logical structure of
DO loops in a histogram format. This histogram graphically portrays the nesting effect.

REFCFT NO. 3 FCRYRAN ANALYSIS REPORT PAGE 1
NASA, CODDARE SPACE FLIGHY CENTER
TIME 16.,20.31 SYSTEM NAME DATE 0OCT 15 1970

CRCSS REFERENCE NF GLCRAL VARTIABLE USE RY PRNGRAM
..0"0O.‘..t.00.0‘0000000‘0.“‘.0‘..‘0‘.O.'.00“00“‘."““0...0..““‘..‘..‘.‘t“‘..O.....t.‘.‘....".‘.‘..t.‘t“..“....‘.‘O‘....
PROGRAM: MAIN
LAREL TYPE APPEARANCEST LINE#(PG.BX)
. DECLARATIONS . = ASS IGNMENTS . REFERENCES
G0000000000006000088080000000RRRRtR IR IItItttttntotestttttatrttsttsstsetsststtottorttiotstnttsssssdostotottseeoteetteeneestotessss

BLAMK CCMMEN * * .
BCCM1 INT#& * 07 12 . * 25(02.07) 35(03,03) 58(03.19)
RCCY2 REAL®3 ¢ 07 10 15 * 62102,24) * NONE
PCC¥3 REAL®4 # 07 * 44(02.09) * 44(03.09)
BCCMG REALS4 * 07 * 46703.11) * 46(03.11)
[] L] []
CCPPCN/LAPCML/ » e . .
LCCM1A INTes s c8 * 22102.04) * 24(02.06)

BOOA0000000000040808030R00EEIIRREEIEREOROBIRINRNRIRNIRROOEIRINROREORRINOESORIEINRIEIINIINNIBEIOIRONIROE0EEOEEIOEIOOEENEOPIOIRINESSES

.Q.O'00"‘0.'00'."..O.‘“0.0‘..00“0.0..0““..“0"‘.‘““t‘t‘ttttttt‘t“tt“t.‘ttt“0.‘.‘0“0.‘O.‘.‘t't...t‘.“.t.‘.‘00.0."...“
PRCCRAM: REACER

LAREL TYPE APPEARANCES: LINE#N(PG.BX)

. DECLARATIONS ¢ ASSTGNMENTS . REFERENCES
l."..'...0“‘.“.“‘.“0.““0.‘.‘.‘.‘.....Q“‘...'.‘.‘“."..“...‘.Q...Q‘...Q"‘."O.".‘"..‘.‘..‘.‘.“."".Q..".‘O.t""....‘
BLAMK COMMON . . *

1424} s €3 G4 07 08 * 11(C5.C1) * 11€05.01) 12105.04)
PCCM2 * 03 09 . * NONE
gccH? * 03 * * NONE
RCCVG * 03 04 . * NONE
L] L] L]
CCV¥CA/LARCPLZ » . .
Lccr1a * 05 * 14{05.06) * 11005.01) 12{05.04) 13(05.05)

- . L 3

CCMMOA/LARCMLY » » .
Leevaa * 06 . * 154(05.06)

‘O‘.l'..‘..‘.."‘Q‘...l.‘.0‘"“““‘O“.‘O“O‘.....“‘.‘..‘.‘“‘t‘.“‘.‘i.“‘.‘t“".‘0‘O'.‘."‘O.‘.O.‘...O..“..“.“".0‘.{00““

..Q.'....‘..“.““...‘.“‘i.t‘.t‘.t‘.t“‘...‘..“....O‘0‘.‘0.'0‘"OO‘0‘00Q‘Q.“‘.0.‘0.0.0.000Q’..O..‘O.‘.‘t‘..“‘."‘....t.‘.tt...‘
PROGRAM: WRITER ’

L2BEL TYPE APPEARANCES: LINEN(PG.BX)
b DECLARATIONS - ASS IGNMENTS . REFERENCES
BOIS 2400000000089 00059000008000RRENRISERRRNINUERRIRRBINNERRIORRNRRRRRINEERt sttt attReIINIOIRIRVIPOESESOREEPOOPIEEIEIECOIOOISSSS
BLAMNC CCMMCN . » *
ECCML * C3 - -% NCNE
aCCv2 s 03 * * NONE
BLCY) s 03 . * NCNE
BCCM4 * 03 * * NONE
. . -«
CCrVEN/ILARCML/ . . *
Leev2a . 04 * 05(07.05) * 09¢(07.,04) 05(07,05)
Leev12 * 04 . -

00..00'......"“t‘.‘.“‘.“.“.“...“"O‘.““.“.O“".“....‘..“‘...0‘..‘..“0.".‘.‘.....‘..00‘..“0‘.'.*‘0...‘.‘00‘..“...‘.‘

Figure 4.—Cross-reference of global variables used.

ADONVNLLNIVI ANV NOILVINIWNDOA d0d SINFWAONVHNIT MOTJOLNV

1T

EEFCPT NCo 4 FORTRAN ANAYLSIS WEPCRY PAGE 1
NASA, GNCNAPC SPACFE FLIGHT CENTER
TIME 16,2031 SYSTEM NAME DATE O0OCT 15 1970

SYSTEM USE OF GLCRAL VARIABLES
G0 000020000000000000 Rttt ts vttt tttttsttttntRtt sttt ittt svstttteddtttatttstetnitittt ittt ttsitstetesttetttaartesttessssstaets

LASEL TYPE APPEARANCES: PGM-L INE#{PG.BX)

. DECLARATIONS = ASSIGNMENTS : REFERENCES
“".O.“..ﬁ.“.“‘.....".“.‘O““““‘..“"“.."".“...‘..?F“ﬁ-«"’...“!“,".‘t“‘.‘.“.‘.“..'."t‘.‘“..'.4'...“..“.'...‘.
8LANX COMMCN . . *

accvl INT#4 * MAIN- 07 12 ¢ REACER- 11(05.01) * MAIN- 25(C24C7) 25(03.,C3) 58(03,19)

* REARER- 03 04 07 = * READER=- 111(05.01) 12(05.04)

. c8 . -

* WRITER- 03 * .
ecer2 REAL*R s vAIN- O7 10 15 * FPAIN- 62102, 24) *

* RFATER- 03 09 * .

* WRITER- 03 . .

ACCM3 REAL®*4 * Maln- 07 * VAIN- 44(03,C9) * MAIN- 44(03.09)

¢ REACFR=- 03 * *

* WRITER- 03 hd *

BCCMG REAL 4 s MATN-Q? * MAIN- 46(03,11Y * MALN- 4B5103,.11)

* REACER- 03 04 . .

* WRITER- 03 . *

» * L 3
CCMMCN/LABCMLY/ . . .

LCCMLA KT 4 * MAIN- 08 * PAIN- 22(02.04) * MAIN- 22(02.04)
* REACER- 05 * REACER- 14(05.06) ¢ READER- 11{C5.01) 12(05.04) 13(05.05)
[] » *
CCyvOA/LERCV2/ . 4 .
LCCM2a INTe4 * REANER- Q& . * READER- 141C5,06)
* WRITER= 04 * WRITER~ €9(07,05) ¢ WRITER~ 09(07.04) CS(07,05)
LCCM2R INT*4 * WRITER- 04 .

AL AR AL AL A AR A2 R4 AR Al A A d Al 2 a2 22 A A e Ry R iy Py P Yy e T L Y I L P Y Y I R YT Y T

Figure 5.—System use of global variables.

(44

NOILVINIZWNDO0d NVIOD0Ud JALNdWOD 40 SGOHLIN dILVAOLNY

:r.»,.

REFCAY NC S FORTRAN ANALYSIS REPORY PAGE 1
NASA, GODDARC SPACE FLIGHT CENTER
TIVE 16.20.31 SYSTEM NAME CATE OCT 15 1970

: SURROUTINE USE QY PGN
$00000 000000008000 00200000R0ER0RRRRERRORRNIRRRINRINIRRIOIRINERIRPRRIRSIRIRRIIOEREREIRRIEIIROEEOIEICEIOEIRIEItEeItstiteeinonseednes
PROGRAM: MAIN
SLRRCUTINE ¢ (ALL PARAVETERS PASSEC (a=CCMMCN VAR, A=CUMMY VAR ,#=NCA,STD RTURN)® CALLING REFERENCES: LINE(PG.EX)
POBBI0RCCEIEIRLOICISSIEREISUNNEIENNERERRNRINRBOREREINGAGEERSIONIERRRNERIECEREREEERNIEIEILOESETURNEESOESEEIEIRNEEERIICREEEORIRSS

. .

REACER () * 23{02.05)
L] *

WRITER (2,01 * 41(03.44)

BEUSEB0000300000880¢24080408000400083080880800003000000800880808000002088880800004080S00SREPIESORREREES02080E000EE020020000000008

Figure 6.—Program subroutine usage report.

JONVNILNIVN ANV NOILVINJIWNDO0A Y04 SINTFWADNVHNI MOTI0LNYV

€T

REFORT NC. [FORTQAN ANALYS[S REPORTY PAGE 1
NASA, GODDARE SPACE FLIGHFT CENTER
TIME 16,20.,21 SYSTENM NAME DATE OCY 15 1970

SYSTEM SLBRAUTINE ANALYSIS

BI85 00 400000000800 K0S ERIPRNIREPERINPREORPIRTHOINIISERI0VREREERCORNRIRRINERRICEROPOITINIIRORECUOEEOUIRIPESIEENSESEREStIOENIES

SYSTEM SUB CALL ANALYSIS
PGP N2ME SLB CALLED PARAMETERS PASSEC (2=CGLORAL VAR, #sCUMMY VAR, #=NCN=-STD RETURN}

AL ALASAA R Il bl i A i dd i d il add Il AR d A AT T e Y T T T L T Y P T Y Y Y P Y I L P Y
MAIN REACER i

WRITER 8,y L

RELCER WRITER Xy TLCOM1A
SO0 00004200 00EERNNNARIRRENREEERREPORINBPORIOTINRININRIEON O AOROIP NN ORRERI PN IESRNRIREINRIROEORIREIEONNEIIOSSININORETSS

BEBESUROE 2200000045000 NISRRIRERENI000RIDNRIIAN400R2000000200 0090 RRELAREREI$0ANRRQIURNBUSCRNNOODNUOREERE050040¢00080090988
SYSTEM SUBROUTINE USAGE
Name s CALL FBRAMETERS (@=CCMMCN VAR, #=CUMMY VAR, #=NCN-STC RTRN)* CALLING REFERENCES: PCM-LINEN(PG.BX)
Oll'l"‘..‘.““‘.“““..‘.““....“..‘..““.‘..“‘..‘.‘.“‘.““.‘.““‘.‘.““‘“.““.“."‘..‘..“.'..‘......‘....‘......'..
CUATER e (e * MAIN= 23(02.,05)
. .
WRITER * (X,J) * READER=- 13(05.05) MAIN- 41(03.06)

CR0000080004000 00884000 LBEEIRBETERERRRIIRNRNCERERSNSINRSINOIEICO0EEPIRIONERIREEIIRNIPORRNOIIRSNOLCOEOROEOEetOREOI0SESS0R00008S.

Figure 7.—System subroutine usage report.

144

NOILVLNINND0d NV ID0Yd ¥I1NdNOD 40 SAOHLINW AILVHNOLNY

REPORT NQ 7

‘]ur

14.20.31

FCRTPAN ANALYS[S REPORT PAGE 1
NASA, GOCDARC SPACE FLIGHT CENTER

SYSTEM NAME DATE OCT 1S 1970

CETAIL CC LCOP ANALYSIS AY PRCGRAM

=‘.tO.l."““....“.'.‘.O““..‘t“‘..‘.O...‘#‘“"0‘..t"t...‘.".“"“0.‘.“.“....‘00..‘0.“‘0.‘0.......“..‘..0...‘..‘...‘....

PRCGRAN: VMAIN

STARY LCCP CONTROL CCMPLEXITY MAP
JINE STuT LINE STMT VARTABLE INIT TEST INCR LINE
A AA A A AR ddd AdAdd A A AL Ll A L L L T Y PP P PSP PP PP PP PPN
21 47 36¢ ¢ 1 Ni 1 X
31 16¢ X EXIT TO 320434C,360
43 L1 28C¢ LL 2 t 1 X X
&S 46 280 L 2 |48 1 X XX
46 280 X X x
©? 300 X
SUMMARY
LEVEL NO OF LOGPs
1 1
2 1
3 1l

$0090500000800 08000 vINISE ‘..‘t‘.“..“.‘.00‘.““"““O.".““0.“.‘0.0‘O‘.““'..0.0..."'.Q‘.O“‘tt“.‘t‘t‘..‘.Ot“0‘0“...‘0"

Figure 8.—DO loop analysis report.

JONVNIINIVIN ANV NOLLVININNOOA Y04 SINIWIDNVHNI MOTJ01NV

Y4

26 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Additional information, such as an exit from within a loop to a statement external to the
loop, is also shown by the histogram. A nest of three loops is represented by three vertical
bars. The longest bar represents the initial DO loop, the next longest represents the second-
level loop, and the shortest represents the third-level loop. The second part of this listing

is the DO loop analysis summary, which specifies the loop level and the number of loops of
different levels used in the program.

Figure 9 is the assigned GO TO analysis by program. This listing presents the sequence,
page and box numbers, and statement number of all the assigned GO TO statements in a
FORTRAN program. Additionally, variable names used in the branch list for each assigned
GO TO are presented. The right side of the report lists all references to particular assigned
GO TO statemenis. If one of the variables in the branch list is not defined within the pro-
gram, this variable name will be listed with a dollar sign indicator. This is particularly help-
ful since undefined variables used in assigned GO TO statements will result in unpredictable
destinations for the branch. The logic analysis section of this report presents program condi-
tions that are probable program errors (e.g., undefined labels, unreferenced statements, un-
defined variables, or transfers into a DO loop).

Figure 10 is the statement usage and complexity factor report, which presents a weighted
summary of statement types within a program. On the left side of the report is the state-
ment type (such as assigned GO TO, computed GO TO, dimension, value, and computational)
and the number of each type within a program. The listing also contains the information
needed for the complexity factor analysis. The assigned weight factors and the weighted
values automatically assigned to the different types of statements. The user may override the
default values and assign his own weighted factors at execution time. The product of the
number of statements of a particular type and the weight factor for that type is the usage
factor. At the bottom of this report is a summary which shows the total number of state-
ments in the FORTRAN program, the total weight (the sum of all the usage factors), and
the program complexity (the computed value of the total weight divided by the total num-
ber of statements). Program complexities range from 0.1 to 0.9. A factor of 0.5 would indi-
cate that the program is of average complexity. The complexity factor is a useful guide for
effective programmer assignment.

HISTORY AND CONTROL OF PROGRAMS

A program represents a considerable asset to an organization because it is usually
costly to develop and is used to control functions within an organization ranging from the
performance of simple accounting operations to the control of space flight programs.

Many programs have a life span far in excess of 5 years. A case in point is the IBM 650
program, which was simulated on the IBM 1401 after the IBM 650 was removed. The IBM
1401 is now being simulated on the IBM 360 and will shortly be simulated on the IBM 370.
Rumor has it that the IBM 650 program was actually simulating an IBM 604 tabulating
function.

Programs survive intact over long periods of time because they are infrequently run
and, therefore, not economical to reprogram, or nobody really knows their contents (the
fear factor). In general, today’s software technology is in such a deplorable condition for

o)

e

REPORT NO A FORTRAN ANALYSIS REPNRT PAGE 1
NASA, GCODARC SPACE FLIGHT CENTER
TIME 16.20.31 SYSTEN NAME DATE OCT 15 1970

ASSIGNED GO YO ANALYSIS RY PRCGRAM
WO 0090020 00004008 AEIGIRIEIPIRIIRNERARINRARINROIRANIENIERIRBERIEICEILRNAEENCICEEVUNNBIPIBEIRCEEEEITRICIGATEIDOOINIOIEVIOSIOOIOOIIITTES

PROGRANM: MAIN

LINE STMT VERIZELE NAME BRANCH LIST ASSIGAMENTS
BO00IS00PEAB0L00CEIEREIESPIIANIPEIPOEEEIAPIPREIRE NI ISIESINEEPETSEORESISCEEERIEENEI00ORRRA0CRORNOPOEINOEOEPREOIEIPRtOROIITISSIS
21 140 PAUTEL 320 34C 3560 26102.08), 28{(02.01) 30(02.09)

BI040 00C0s00000RRNRNISRRNCURIININRORRRNERNRRONERNRIENRISIERRGIPIORINRIENOREENINERPEPNONPBRABNICRENINIIRINNOIENEB 000000 E08000000900

LCGICAL ERROR ANALYSIS BY PROGRAM
G008 000000000000 200004080000 4000RR0RORRttRRtRtREt I tIIetttstt sttt ttttdstessettsdtetttttistetttitsttotiosttsesttnsststsscirctsoe

PRCGRAM: MALIN

LINE/VAR EXPLAMNATICA * LINE/VAR EXPLAMATICA * LINE/VAR EXPLANATICN

LA R T T R Ty e Yy Y T YR P P L P PR LY
L] UNREFERENCED VARIABLE * BCCN2 UNREFERENCED VARIABLE * 35 UNREFERENCEC STMT NO.

RCLTE3 UNREFERENCEC VARIAALE . 24 REDEFINEC DC INDEX * 62 UNREFERENCED STMI NQ,

ROUTE4 UNREFERENCED VARIABLE s 31 TRANS. OUT OF DO LOOP * 63 TRANS. INTO A CO LOOP

GIVED00000000030006408520008004000000800000000000000808980080848088080800208800¢2R00P00RCORNSNERESGCOS0ER08000Id000400800000000009

Figure 9.—Assigned GO TO analysis.

FONVNALNIVIN ANV NOILV.INIWNOOA Y04 SINTFWIINVHNI MOTA0LNY

Le

pred

pooard

EFORT NO 9 FORTRAN ANALYSIS REPORT PAGE 1
) NASA, GOCCARC SPACE FLIGKFY CENMTER
e TIME 16.20.31 SYSTEM NAME DATE OCTY 15 1970

PROGRAM: MAIN
STATEMENT USAGE AND COMPLEXITY FACTORS

TYPE NUVMBER ASSIGNED USAGE

IN PGNM WY FACTOR FACTOR
! 4SSIGN CO TC 1 1.0 1.0
CCMFLEX 0 0.2 «0
CCMPLUTED GO TO 1 1.0 1.0
' : CONTINUE 1 0.2 o2
DATA 1 0.5 .S
DIMENSION 1 0.3 .3
: nc 3 0.5 1.5
. ECULVELENCES 0 0.6 -0
. FORMAT 3 0.3 .9
FUNCTION CEF, 2 C.7 1.4
.- 6C 10 7 0.9 6.3
|- 1F 4 0.5 2.0
INTEGER 2 0.2 o
LCCICAL 1 0.2 o2
[. REAC 1 0.l o1
REAL 1 0.2 2
SUBR CAaLL 2 0.8 1.6
STMT FUNCT CALL 3 0.7 2.1
! ' WRITE 3 0.1 3
ASSICAMENTS 18 Ol 1.8

NAMEL IST 1 0sé oh

eeeeas s REPORT SUMMARYceesacoce
A. TOTAL STATEMENTS 56
Re TCTAL WEICKT 4000 22,2

Co CCMPLEXITY.otB/A) «h0

Figure 10.—Statement usage and complexity factor report.

8¢

NOILVINIWNOO0d WV YDOUd ¥TLNJWOD 40 SCGOHLIN dILVNOLNY

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 29

the latter reason. Programs such as The LIBRARIAN, an adjunct to the AUTOFLOW system,
are available to monitor program activity; produce histories of changes; retain copies of old
versions of programs; protect programs against unauthorized use; and provide complete
indexes that give dates of modifications, reasons for changes, and other information neces-
sary for the orderly maintenance of programs and data.

UNDERSTANDING THE PROGRAM

The next questions to be asked concern the function, organization, and reason for
organization of a program. All these questions can be answered by “picking the brains” of
the programmer and the designer.

Given the aversion of most programmers to documentation, the tape recorder can be
a very effective means of obtaining vital information. It is probably much easier for many
programmers to sit down and record on a cassette all the details of program development
than for them to take the time to write everything down. The taped information can be
easily transcribed and converted to a machine-readable form for input to a system such as
TEXT EDITOR. This system can be used to produce a finished document for permanent
retention as the program history and enables a user to specify format, alter content, and
expedite production of hard-copy documentation with a minimum of manual effort. In
short, the programmer need only talk about his projects, and a final record of such dis-
cussions can be automatically produced.

The final issue that is critical for the overall effectiveness of documentation is whether
it actually reflects the current status of program development. Outdated documentation can
be only partially useful at best, and totally misleading at worst. The systems discussed,
AUTOFLOW, The LIBRARIAN, and TEXT EDITOR, assure all users that the documentation
will be not only accurate, standardized, and complete but also timely and readily available
whenever needed.

CONCLUSION

In summary, the critical needs in the area of effective program documentation involve
the integration of normal programming activities with the requirement for more comprehen-
sive documentation. The ultimate solution to these needs lies in automated documentation
systems that can reduce clerical effort on the part of the programmer, provide timely and
accurate documentation whenever needed, analyze program design and structure, expedite
maintenance and debugging operations, protect source programs from loss or damage, and
provide an understanding of the program. Computer programs can do this and can do it
better, faster, and more economically.

DISCUSSION

MEMBER OF THE AUDIENCE: I understand that AUTOFLOW is applicable to
FORTRAN; is it also applicable to other programming languages?

GOETZ: AUTOFLOW can be applied to all of the major languages in use today, includ-
ing second-generation programming languages and various types of FORTRAN.

30 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

MEMBER OF THE AUDIENCE: To your knowledge, does anyone else employ the
tape recorder in the way that you have discussed, and what benefits does it offer to program-
ming personnel? »

GOETZ: Although I am certain that it must be used elsewhere, I cannot provide any
specific organization names. The technique makes it easier for the programmer to record
information. The information generated is actually of better quality than that which would
be produced if the programmer were required to write his documentation, since the pro-
grammer becomes too self-conscious when he is writing.

MEMBER OF THE AUDIENCE: Do you have any intention of writing a manual de-
scribing the entire procedure that could be marketed?

GOETZ: We have no current plans for doing that.

MEMBER OF THE AUDIENCE: You have mentioned that AUTOFLOW is available
for several different language systems. Does this diversity also extend to different computers?

GOETZ: AUTOFLOW is not available for many machines; it is available for the Spectra
70 series, the Honeywell series, and the IBM 7090 and 360 series.

MEMBER OF THE AUDIENCE: Is there an extended AUTOFLOW available for the
CDC 66007

GOETZ: No. The AUTOFLOW system is written in assembly language and cannot be
transferred between machines. No AUTOFLOW was written for the CDC 6600. We do ac-
cept 6600 programs—assembly language and the various FORTRANS, I believe—but the
AUTOFLOW system does not operate with them. Also, the extended versions of the FOR-
TRAN analysis are hypothetical systems that have not yet been constructed. The flowcharts
and reports used in my paper were manually produced.

MEMBER OF THE AUDIENCE: What use is made of the tape recorder in the develop-
ment of the user documentation?

GOETZ: The program documentation, providing the internal logic of the program, can
best be obtained with the use of the tape recorder, but the user documentation is some-
thing quite different. It should be well organized and produced in a more formal way than
the program documentation.

MEMBER OF THE AUDIENCE: Do the American National Standards Institute (ANSI)
flowchart standards constrain the actual communication of information because of restric-
tions placed on the size and proportion of symbols and the lack of symbols needed to ter-
minate and then continue a line that is not related to the flow of the data or the logic of
the program? Since symbols in modern languages can have as many as 30 characters, the
standards, to a certain extent, inhibit communication because the programmer must limit
what he says.

GOETZ: Our current standards do not quite conform to ANSI standards. The width
of a process box, for instance, must be related to its length, according to ANSI standards,
but AUTOFLOW will produce a process box of virtually any size, so it could be 50 or 100
lines long. We are upgrading our system so that it will conform completely to ANSI stand-
ards, which will restrict or inhibit somewhat the flowchart produced. The user will then
have the option of having ANSI or AUTOFLOW standards.

MEMBER OF THE AUDIENCE: Do you consider the ANSI standards to be adequate
or archaic?

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 31

GOETZ: We think that they are somewhat archaic, but they are standards, and we are
willing to conform. Therefore, we are producing the option.

MEMBER OF THE AUDIENCE: Consider a program that was written without AUTO-
FLOW in mind. If the program were then analyzed by AUTOFLOW, which would be the
most useful: analysis portion or the flowchart portion?

GOETZ: It would depend upon who would be using the report. For the original pro-
grammer, the analysis portion will suffice in many cases. For debugging and making program
alterations, the flowchart is especially useful and would probably be a necessary aid if those
functions were being performed by someone who was not the original programmer. The level
of the programmer’s training would also be a consideration.

MEMBER OF THE AUDIENCE: To what extent is AUTOFLOW used to document
and maintain itself?

GOETZ: The entire system is written in Assembly language and contains chart codes in
the comments portion of the program. By putting these chart codes in the program and con-
sidering what the assembly language coding represents, we obtain very good narrative state-
ments and comments. The very low personnel turnover that we have reduces considerably
the need for producing flowcharts for maintenance purposes.

3V
a

bl

THE BELLFLOW SYSTEM

Stephen Pardee
Bell Telephone Laboratories

STANDARDS

One of the primary reasons for the development of BELLFLOW was the need to meet
certain Bell System standards of documentation. The Bell System has been documenting de-
signs for a long time and, in addition to trying to observe outside standards, has additional
internal standards that must be observed. In the area of flowcharting, most of these additional
standards relate to quality and not to symbol or line character size, legibility, titling infor-
mation, change information, information placement, and format. BELLFLOW had to be
able to meet these quality standards. The symbols incorporated in BELLFLOW are essen-
tially the standard flowcharting symbols. (See fig. 1 for a list of the BELLFLOW symbols.)

MANUAL
OPERATION PROCESS ING
/—_ T m——
PUNCHED CARD PUNCHED TAPE
— | MANUAL INPUT D DOCUMENT

ON-LINE AUXILIARY
STORAGE OPERATION

OFF-LINE
<>DEC|S|0NV STORAGE Golspmv
MAGNETIC
e CDTERMINAL Q CONNECTOR

Figure 1.—Standard BELLFLOW symbols.

INPUT/OQUTPUT

PRECEDING PAGE RLANK NOT FILMED
- 33

vl

[u»d

34 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
ADDITION OF NEW LANGUAGES

Another important reason for the development of BELLFLOW was the need to provide
a flowcharting system structure that would allow the addition of new or unique special lan-
guages. There are many people at Bell Laboratories developing one-time languages or special
languages that are unique to a very small area of design. These languages should be able to be
conveniently added to the BELLFLOW system. By making BELLFLOW a model or table-
driven system, a language has been developed that can be used for defining new programming
languages in terms of BELLFLOW. As an example, consider the standard IF statement:

IFA=BTHENC=D
In BELLFLOW language, this would be
.B.IF.B..T..B.THEN.B..S. /S(B*)

The following shows the entire set of model language statements required to define a
programming language that is very close to PL/I structurally but not quite as complicated:

STATEMENT(";").

.LABEL(*:").

.COMMENT("/*").
.COMMENT(,"*/""}).
(.B.IF.B..T.B.THEN.B..S.) /S(*B)

(B.ELSE.B..S) /S(*L)
(.8.GObTO.B..J.) /5(*2)
(.8.DO.E.=.E.) /S(*D)
(.B.DO.B.) /S(*G)
(.B.END.B.) /F(F1)
(.B.END.B..J.) /(*T)

F1 (.B.CALL.B) /S(*C)
(.B.RETURN.B.) /S(*Y)
(.B.EXIT.B.) /S(*S)F(*X)

This set of statements is not supposed to provide an understanding of the details of the lan-
guage itself but to show how straightforward it is to define a new programming language for
the BELLFLOW system. For example, a new language called CENTRAN was recently added
to BELLFLOW. It took about a week to develop the models, and, within another week or
two, the system was essentially debugged and ready for use by programmers writing in the
CENTRAN language.

USE OF GRAFPAC

Bell Laboratories uses a software package called GRAFPAC, which interfaces with all
of our graphical devices. At the present time, the GRAFPAC system supports such devices
as the SD 4060 and FR 80 microfilm plotters; the CALCOMP 718 and 728 and EAI 3500
line plotters; the Graphic 101 CRT terminal: STARE, an on-line hard-copy graphic unit that

THE BELLFLOW SYSTEM 35

possesses quick turnaround features; and several others. The flowcharting system is inter-
faced through GRAFPAC so that, as new graphical devices are brought into Bell Laboratories
and added to the GRAFPAC system, they are automatically available to the BELLFLOW
system.

MULTIPLE-LEVEL FLOWCHARTS

Multiple-level flowcharts (very-high-system-level and very-low-detail-level) should also
be imbeddable in the same source program. In addition, it is often desirable to imbed a sep-
arate flowchart for each procedure of a program even though all the procedures are compiled
as'a unit.

MODES OF OPERATIONS

There are three modes of operation: source mode, comment mode, and mixed mode.
In the source mode, all of the flowcharting information is derived directly from the source
code. This is similar to the way many other flowcharting systems operate. There is no reli-
ance on comments or other information in the derivation of the entire flowchart.

In the comment mode, BELLFLOW ignores the source code completely and derives
the entire flowchart purely from comments imbedded in the program. This has the advan-
tage of being able to imbed comments in any program, whether or not the source language
is supported by BELLFLOW. In the mixed mode, the source and comment mode are com-
bined. The text that is to appear within a symbol and the definition of the symbol to be
used are derived from a comment imbedded in the source code, but BELLFLOW uses the
source code itself to determine the connections among the symbols and the placement and
layout of the flowchart.

SELF-DOCUMENTING SOURCE DECK

Because the mixed mode is unique to BELLFLOW, it may be of interest to explore
the particular advantages of this mode. The goal was to try to provide a self-documenting
program source deck. To achieve self-documentation, the flowchart should be imbedded in
the source deck, and the source deck must be well commented. The question of what con-
stitutes a ““well-commented’ program is too difficult to bring up here. In any event, most
programmers use an intuitive definition of the term in deciding whether a program is well
commented. A brief program description should also be imbedded at the beginning of the
source deck. Given these three features, a subroutine or a program would contain most of
the information needed for program documentation.

If the program flowchart is based on the source code alone (using the source mode),

a very good two-dimensional representation and a poor functional description of the pro-
gram are obtained. Many people feel that FORTRAN and other languages, such as PL/I, can
be documented very nicely by placing the source code within the symbols, but this approach
does not seem very fruitful.

If the flowchart is based only on comments that are imbedded in the program (using
the comment mode), the result may be an excellent functional description of the program

36 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

DO 101~ IEND in understandable language, but no real tie-in
between those comments and the program itself.
IF UGET (12, 1) .EQ. BLANKSIGOTO Il [t js not certain that the comments reflect the
flow and interconnectivity of the program.
Furthermore, the programmers usually have to

ICOUNT = ICOUNT + 1

10 CONTINUE supply a lot of redundant information in the
comments to express the interconnectivity
11 IF (ICOUNT.EQ. 0) ICOUNT = 1 among the symbols.
(a) The mixed mode permits one to put text

inside symbols in a way that is meaningful to a
i person trying to understand a program, and yet,

[po101=1 iEND | the fact that the program flow (the interconnec-
tivity among symbols) is derived from the source
code itself is still retained. No other comments
other than the BELLFLOW comments are re-
quired to produce a well-commented program.
If a preface is added at the beginning of the pro-
gram (a manual operation), a self-documenting

[tCOUNT ="iCOUNT + 1] [60 TOII |

L tocontimue) source program deck is obtained.
<
EXAMPLES OF BELLFLOW
T
Figure 2(a) is an example of the source
. mode in FORTRAN. Figure 2(b) shows the cor-
responding flowchart that would be generated.
(b) Quite often, the source mode is used when im-
Figure 2.—(a) FORTRAN source mode. provements have to be made in an old FORTRAN
(b) Corresponding flowchart. program. Because it is not always possibie to lo-

cate the original program writer, it is very con-
venient to be able to obtain a two-dimensional flowchart listing in the source mode; this
makes the task much easier than it would be if a linear listing of the program had to be used.
The comment mode format is

*F(LEVEL)(LABEL) TEXT /SYMBOL/OUTPUT

The comment begins with an indicator that is the normal comment indicator of the program-
ming language. For an assembly language, the indicator might be an asterisk in the first column.
The letter F indicates that a flowchart comment is being made. The next field is a level indi-
cator that allows one to imbed more than one set of flowchart comments; it is a two-
character identifier that denotes a particular flowchart. If there is only one flowchart im-
bedded in the program, this field may be left blank. The label field is usually left blank un-
less it is needed to specify interconnectivity.

The main body in this statement is the comment text field, which conveys the informa-
tion that is to appear in the symbol. The final two fields at the end of the statement are the
symbol field and the output field. The output field contains information that is to be placed

Pt

THE BELLFLOW SYSTEM 37

*F I MODE SET JU/NG{MD)IYES
wF PUKCiHi A CARD CONTAINING &S /137 (REALS)
*F MD FUNCH A CARD CCONTAINING 3C /i0
*F READ3S FEITHALLLE VARYABLES AMD ARRAYS
@)
YES
NO
MD {
PUNCH A PUNCH A
"CARD CARD
CONTAINING CONTAINING
8C 85
]
READ3 ¥
INITIALIZE °
VARIABLES
AND
ARRIAYS

(b)

Figure 3.—(a) Imbedded comments. (b) Typical comment mode flowchart.

on output branches emanating from symbols, and, in some cases, it specifies the interconnec-
tivity between one symbol and another.

An example of the comment mode format is
* F IS COUNT=MAX+TOL /D/YES,NO

Here, the level is blank, and there is no label. The letter D in the symbol field indicates a
decision symbol. One branch will have the label YES, and the other branch will have the
label NO. Figure 3 shows a typical portion of a comment mode flowchart.

The comment mode is extremely useful in preliminary design for the generation of
system flowcharts when no code exists or as part of the documentation of an early design.
A complicated flowchart can be quickly encoded, run off, modified, edited over a period
of meetings, and kept up to date by using the comment mode without ever having any
source code. The comment mode is also being used to generate nonprogramming documen-

tation such as flowchart-like and program evaluation and review technique drawings, and
input/output relation tables.

38 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

—_ }1 Figure 4 is a flowchart consisting of
five symbols. The lines on the left are used
to indicate statements of source code and

}2 2 are grouped to indicate which statements
A correspond to the five symbols in the flow-
chart. In the mixed mode, a BELLFLOW
c3 2 comment is inserted at the beginning of

3 each one of these functional groupings of
c2 source code.
_— Figure 5(a) is an example of the mixed
J————— }4 4 mode. Note that the comments are very
- similar to the ones that might be placed in
5— a program even if BELLFLOW were not be-
——‘}5 ing used. The second BELLFLOW comment,
Figure 4.—Correspondence of program “ARE SIGNS EQUAL,” is the text for a

to flowchart. decision symbol with two branches labeled
YES and NO. There are two ways to exit

from this functional block. The first one is encountered at the skip instruction (SPA), and
the second one is encountered at the jump (JMP), so the YES text is associated with the
first way to exit and the NO text is associated with the second way to exit. Figure 5(b)
shows the corresponding flowchart. It is important to repeat at this point that the BELL-
FLOW comments are really all the comments that are needed to provide a well-commented
source deck.

BELLFLOW FEATURES

In addition to automatic placement, automatic line routing, paging, and generation of
on- and off-sheet connectors, all of which are standard regardless of the mode employed,
BELLFLOW possesses some additional features. One can request left-to-right rather than
top-to-bottom flow in the flowchart. Normally, BELLFLOW will automatically format the
text that goes in a symbol, but the programmer can do this himself if he considers it desirable.

BELLFLOW will adhere to standard aspect ratios in choosing symbol sizes but also has
the capability of using nonstandard symbol sizes. In the latter case, processing symbols (rec-
tangles, for example), are reduced to fit exactly around the text provided. It is interesting to
note that, in a brief study of this capability, a gain of almost 50 percent in the number of
symbols per vertical row was achieved with the use of the nonstandard symbol sizes. Increas-
ing the number of symbols per sheet reduces the number of off-sheet connectors and, there-
fore, simplifies the flow and makes it more readable.

BELLFLOW permits multiple keypunch codes to be used, and an option is provided
that permits flowcharts to be made without any crossovers. The normal mode will make
crossovers unless too many lines are crossed, in which case an on-sheet connector is
generated.

DAC
«F
SHIFT LAC
TAD
OAC
LAC
CLss
DAC
*F
LAC
XOR
SPA
JMP
*F
cLL

(a)

THE BELLFLOW SYSTEM 39

F2

SUIFT FRACTION (F2) RIGHT DE PLACES

(2R
SHIFTL
w4+

[5]

£2

1
F2
ARE SIGNS EQUAL FD/YES, 60

F1
F2

UNEQ

ADD F1 AND F2,SHIFT FOR »CSSIBLE OVERFLOGW

|

SHIFT FRACTION (F2)
RIGHT DE PLACES

ARE SIGNS

EQUAL
YES

SHIFT FOR ‘

ADD F1 AND F2,
POSSIBLE OVERFLOW | TO SYMBOL CONTAINING

(b)

I SOURCE LABEL = UNEQ

Figure 5.—(a) Comments. (b) Flowchart for BELLFLOW mixed mode example.

SAMPLE OUTPUTS

Figure 6 is an example of the BELLFLOW output produced by the FR 80 microfilm
plotter. Note the placement, line routing, and general quality features of the flowchart. The
cost of such a flowchart sheet, including the analysis and drawing, is about $2 to $3 when

the IBM 360/85 is used.

Figure 7 is another example of the BELLFLOW output; this one was made by a
CALCOMRP line plotter. It is larger than the sheet shown in Figure 6 and has about 50 sym-
bols. Again, the important things to note are the placement, line routing, and general quality
features of the flowchart. Figure 8 shows the same flowchart that Figure 7 does, but it was
made with left-to-right rather than vertical flow.

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Ll TELEPWOM

o it

BELLFLOM QUTPYT AOUTING

OG

APROV AL
0aTL

LEVEL-0I
S1AQUTPISSO0 XM
D.3.S. 1.4 %€

S€EET 1 OF

Figure 7.—Sample CALCOMP output.

THE BELLFLOW SYSTEM 41

£
r
r

] L] 2 L4 » L r I T [T . T F] T e » -

¥,
¥
.

Figure 8.—Sample CALCOMP output, left-to-right flow.

CONCLUSION

The BELLFLOW system has been working for about a year and a half. One project
manager, who heads a rather sizable software development project, stated that with BELL-
FLOW he felt that he had an adequate means for insuring that he had both a well-commented
and properly flowcharted program. He insists that programmers must deliver a flowchart,
in the mixed mode, to him before he will accept their program and consider it complete. By
following this procedure, he reasons that, if a good flowchart can be produced, then the
comments that appear in the deck are also understandable, meaningful, and useful. So he
accomplishes the dual goal of having a program well-commented and properly flowcharted
by using BELLFLOW as an administrative tool.

DISCUSSION

MEMBER OF THE AUDIENCE: In the event that the comments and the actual opera-
tion statements do not match, is there an editing function in the BELLFLOW system that
would point this out?

PARDEE: There is no specific function that points this out.

MEMBER OF THE AUDIENCE: I would like to ask the same question I asked Goetz:
Do you document BELLFLOW with BELLFLOW?

o

”.,WA

42 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

PARDEE: Yes.

MEMBER OF THE AUDIENCE: If the syntax of the modal language is unambiguous
in the program mode, would it be possible to program from the flowcharts using the logic
to work back to a program? Also, is it possible to alter the placement, of things on flowcharts?

PARDEE: Programming from the flowchart is something that we are going to study.
We do not know enough yet to be able to say whether it might be helpful to input a flow-
chart and then have the machine automatically convert the logic into a source code. There
is a manual placement option that can exert a certain amount of control in the relative
placement of symbols, but it does not control specific placement. We are investigating the
possibility of a manual touchup capability that would be able to make specific changes in
the flowchart.

MEMBER OF THE AUDIENCE: Why was not any mention made of the IBM 360/67?

-PARDEE: Our philosophy was to detach ourselves from the compiler and assembler
functions to remain somewhat independent of the machines and any changes involving com-
pilers and assemblers and to deal only basically with the language, which was fairly well
defined.

MEMBER OF THE AUDIENCE: Do you have any plans for making BELLFLOW a
commercial product?

PARDEE: No. There is the possibility of people having access to BELLFLOW, however.

AN AUTOMATED SYSTEM FOR GENERATING
PROGRAM DOCUMENTATION

Richard J. Hanney
Grumman Data Systems

There are several proprietary software packages available that provide the user with
documentation aids. IBM’s AUTOCHART and Applied Data Research’s AUTOFLOW are
examples of flowchart generators. For many years, it has been the flowchart that provides
the key to good program documentation. Flowcharts are invaluable for documenting ma-
chine language programs; they are only slightly less helpful with large FORTRAN and
COBOL programs. However, flowcharts are not necessarily the most important pieces of
documentation for medium-size, compiler-level programs.

With this in mind, a documentation program was developed in which the emphasis is
placed on text content rather than flowcharting. Grumman Data Systems has been using this
program for 1 year to document most of its production-type programs. There are personnel
whose sole responsibility is to prepare these production jobs for computer runs. Each of these
individuals must know how to prepare several different jobs for runs on the computer. This
arrangement permits the programmer to write, debug, and then turn over his program along
with a copy of his documentation to deck assembly personnel for production use.

The documentation that accompanies the debugged program is often called operational
documentation. Such documentation usually includes all parts of the complete document
except the source listings. A typical document would include the following:

(1) Accounting information (deck number, job charge numbers, etc.)

(2) General description (an abstract of the program explaining how it fits into the
overall data flow and subroutine descriptions)

(3) Functional flowcharts (Detailed flowcharts are not considered necessary because of
the type of work done by batch programmers. Few programs of any size are reused
once their primary job requirement has ended. In most cases, if a future task has
need for a similar program, a new program is written, rather than rework an old
program.)

(4) Data card formats, deck setups, and options

These four sections appear in all operational documentation. The programming department
retains a copy of the document with the source listings added.
USE OF THE DOCUMENTATION PROGRAM

The documentation program is used to generate the entire document. It is keyword
oriented, with 26 keywords that control the program. Seventeen of those keywords are

43

44 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

recognized by the flowchart generator, three are related to text generation, and three have
to do with control card and deck displays. The programmer who uses the documentation
program prepares his document on data cards. This is the major drawback of the documen-
tation program because all input is contained on 80-column card images that must be pre-
pared by the programmer. The program cannot yet generate text narratives by inspecting
source decks.

Repetitive use of the documentation program helps each programmer become more
familiar with both this particular program and program documentation in general. The key-
word cards are very easy to understand and prepare, and most programmers become adept
at using the program after their first try. The strongest advantage offered by the documen-
tation program is that it produces the entire document. The document is prepared on 35-mm
microfilm, which is easy to store, and letter-size reproductions can be made inexpensively on
bond paper. The following is a list of features of the documentation program:

(1) Text generator—the program can delimit sections of a document at three levels:
topics, subtopics, and paragraphs.

(2) Flowchart generator—the flowchart generator is activated when the program reads
a flow card (one of the 17 flowchart keywords). Subsequent cards are inspected
for special keywords that pertain to flowcharting. Flowcharting terminates when
an exit card is read. The flowchart generator can be called as many times as
desired.

(3) Coding form displays—cards can be displayed singly or in groups on a coding form
display which numbers each column.

(4) Deck displays—the deck option operates exactly like the card option, with one
added feature: After the coding form display has been completed, the deck option
will cause all displayed cards to be shown in a fanned-deck pictorial representation.
This type of display gives quick information about card orders to personnel re-
sponsible for job preparation.

(5) Underlining—any line of text can be underlined for particular emphasis of impor-
tant words or phrases.

(6) Sample output display—the programmer can include a binary coded decimal file
containing sample tab outputs of his program. The documentation program will
automatically include the samples in the document when it reads an output card.

(7) Auxiliary tape input—a keyword card will cause the program to switch from the
standard input file (usually the card reader) to any other sequential file for pri-
mary input card images. ,

(8) Index—an index of all topics, subtopics, and paragraphs is provided at the end of
the document that gives page numbers of all sections of the document.

To aid the programmer in checking the output of the documentation program, a tab
listing is provided that gives the results of the run. Usually, the microfilm output file is
stored on tape; the programmer can direct this file to the microfilm unit after he has checked
the tap output and is satisfied that his document is correct. The tab listing shows the con-
tents of each frame of output generated by the documentation program. Flowcharts are also

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION 45

printed to show exactly how they will appear on the film. Figure 1 contains a sample pro-
gram output.

FUTURE DEVELOPMENTS

The features of the described documentation program are options; for example, the user
does not have to use the flowchart generator. Thus, program documentation is still controlled by
the programmer. To prevent too many stylized documents from being generated, the docu-
mentation program is supplemented by a set of documentation standards to which all pro-
grammers must adhere. Because the documentation program itself is in total control of the
various formats of its options, program documentation has become fairly standardized; at
least the formats are similar, although content and quality are still the responsibility of the
programmer.

It is clear that this system uses a traditional rather than a new or radical approach to
the problem of documentation. However, these methods suit Grumman’s internal needs.

GRUMMAN DATA SYSTEMS

1.0 GENERAL INFORMATION

PROGRAM NAME PRINAP]

WRITTEN BY R. HANNEY

OECK NO., ooaTrs CSRA 14022
SOURCE LANGUAGE FORTRAN EXTENDED
COMPUTER €CDC-6400 (ATS, PLT. 7}

Figure 1.—Illustration of documentation program.

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

GENERAL DESCRIPTION

PRINAP] wlLL PROVIDE LISTINGS OF SELECTED PARAMETERS (FROM THE 4Pl E. V.
TAPE) AT VARIABLE PRINT RATES (SAMPLES/SEC.). THE LISTINGS ARE COMNTROLLED
BY START-STOP TIMES (IRIG 8). SELECTED PARAMETERS ARE ODEFINED BY DATA
CARDS, UP TO S50 PARAMETERS CAN BE HANDLED AT ANY ONE TIME. IF MORE ARE TO
BE PRINTED. A REWIND CARD WILL ALLOW THE USER TO RE-START wWITH A MNEW SET OF
SELLECTED PARAMETERS.

SUBPROGRAM DESCRIPTIONS

1. 1 EUPROC
EUPROC IS THE MAIN PROGRAM, 1T READS ALL DATA CARDS AND CONTROLS THE
FLOW OF DATA. IT ISSUES CALLS TO OTHER SUBROUTINES TO PERFORM SPECIFIC
FUNCTIONS SUCH AS - DATA CARD DIAGNOSTICS, DATA INPUT, PRINT OUTPUT, MATH
SUMMARIES.

1. 2 EUPRCD

EUPRCD INSPECTS THE DATA CARDS FOR NON-EXISTENT PARAMETERS. WHEN ILLEGAL
PARAMETERS (THOSE NOT ON TAPE) ARE FOUND, THEY ARE SIMPLY DELETED AND AN
APPROPRIATE MESSAGE 1S PRINTED,

1. 3 DATAIN

DATAIN READS THE 4P] E.U. TAPE AND PASSES THE SELECTED PARAMETERS TO EUPROC
FOR FURTHER PROCESSING. IT ALSO RETURNS A FLAG SIGNIFYING THE END OF A
RUMN,

1. 4 PCrMA

PCMMA PERFORMS MATHEMATICAL SUMMARY OPERATIONS AND LIMIT CHECKIMNG (WHERE
REQUESTED) DURIMNG EACH RUN.

1. S MATHI

MATH1 .IS CALLED BY PCMMA DURING A RUN (TIME SLICE), ONCE FOR EACH SAMPLE OF
EACH PARAMETER.

1. 6 MATHO

MATHO 1S CALLED BY PCMMA AT THE END OF A RUN., IT LISTS THE RESULTS OF THE
MATHEMATIC SUMMARY TAKEMN OM EACH PARAMETER DURING THE RUN, AMONG THE
VALUES LISTED FOR EACH PARAMETER ARE -

MINIMU™M VALUE AND TIME OF OCCURRENCE

MAXIMUM VALUE AND TIME OF OCCURRENCE

STAMNDARD DEVIATION

MEAM VALUE

ROOT-MEAN-SQUARE VALUE

HO. SAMPLES OVER LIMIT (IF APPLICABLE)

1O. SAMPLES UNDER LIMIT (IF APPLICABLE)

TOTAL NO. SAMPLES OUTSIDE LIMITS

PERCENT OVER LIMIT

mIeNMOND>

Figure 1 (continued).—Illustration of documentation program.

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

GENERAL DESCRIPTION (CONTD.)

J.

47

1.

OUTPUT LISTS THE SAMPLES SUPPLIED BY PCMPR ON THE OUTPUT FILE,
DATA MAXIMUM,

PERCENT UNDER LIMITY
7 PCMPR

PCMPR SAVES PRINT VALUES AT THE RATE(S) SPECIFIED. WHEN 40 SAVED VALUES
ARE ACCUMULATED, PGMPR ISSUES A CALL TO OUTPUT TO EMPTY THE BUFFER(S).
8 OUTPUT

40 LINES OF

Figure 1 (continued).—Illustration of documentation program.

48

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

.0 4 PI PRINT - FUNCTIONAL FLOWCMART

?

Y

SET ENOTINE
INDICATOR = 1

AL ARRAYS, COUNTERS
10 ZERCES.

INTIALIZATION - SET

PESSAGE MOUNT FIRST
TAPE

STor

STOP CARD

TITLE CARD

SAVE NEV TITLE

LINIT CARD

INCREMENT LINMITY
COUNTER, SAVE CARD
CONTENTS.

Figure 1 (continued).—Illustration of documentation program.

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION

COUNTER, SAVE NEV
PRINT CARD

©

CALL EWRCD

(CARD DIAGNOSTICS!

CALL MAEND

(MATH RESWLTS)

CALL DATAIN
(DATA INPUT ROUT INE}

CALL PREND
(FINISH PRINT)

CALL PREND
IFINISH PRINTY

)

CALL MAEXD
MATH RESA.TS)

START = START TII€
IN SECS., STOP =

STOP TIME N SECS.

REINITIALIZE

3- 2
Figure 1 (continued).—Illustration of documentation program.

49
GRUMMAN DATA SYSTEMS 4
-0 4 P1 PRINT - FUNCTIONAL FLOWCHART (CONTD.)
¥ Y ¢
INCREENT TIME CARD INCRDENT PRINT CARD
COUNTER, SAVE Mw
TIE CaD.

50 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

3.0 4 Pl PRINT - FUNCTIONAL FLOWCHART (CONTD.)

CALL POWR
ISAVE PRINT SAMPLES)

Figure 1 (continued).—Illustration of documentation program.

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION 51

GRUMMAN DATA SYSTEMS 7
4.0 CARD FORMATS
THE CARDS DISPLAYED IN THIS SECTION ARE RECOGNIZED BY THE PROGRAM, ALL
OTHER CARDS WILL BE REJECTED.
4. 1 TITLE CARD
THE TITLE CARD SHOULD BE THE FIRST CARD IN THE DECK. 1T CONTAINS A TITLE
WHICH WILL APPEAR AT THE TOP OF EACH PAGE OF OUTPUT,
SAMPLE T1 [
E TITLE CARD s a s 6 7]
1142,5,4,516,7,8,9,011,2,%,4,516,7,8,9,0]1 3,4,516,7,8,9,0]1,2,3,4,5(6,7,8,9,0]1,2,8,4,516,7,6,9,0]1 3,4,516,7,8,9,0]! 4 7,6,9,0]! 4 748,90,
nx-TnL.EI AL 4 4 .l.T.l"AEl IGIOIEI .HIE.R. saaalaeaels Y PP TTTTE PTETE TT T s satas s e lasasteaans
coLs CONTENTS
1-5 TITLE
11-72 TITLE TO APPEAR AT TOP OF EACH PAGE OF OUTPUT
4, 2 TIME SLICE CARD
THE TIME CARD DEFINES THE IRIG START-STOP TIMES FOR A RUN, IT ALSO ALLOWS
THE USER TO INHIBIT THE MATH SUMMARY WHICH IS COMPILED DURING THE RUN,
AND (IF DESIRED) TO SPECIFY ONE PRINT RATE FOR ALL PRINT PARAMETERS.
SAMPLE TIME CARD
1 2 -3 4 S [7 -]

192,3:4,516,7,8,%0]1,2,5,4,5/6,7,8,9,011,2,5,4,516,7,8,9,0

152,3,4,516,7,6,9,0

15215,4,516,7,8,9,0

1,2,3,4,516,7,8,9,0

1,2,%,4,516,7,0,9,011,2,5,4,516,7,8,9,0

IME X XX XX, XXX YY YY [YY,YYY z AAA. A
212 s be o0 Fovoolone s Toongbtsgaoeleooseloegosloooglovyg oty osaloygeslosaolsencelssaslsaes
COLS., CONTENTS
1-4 TIME
t1-12 ---
14-15 ---— START TIME IN HOURS (11-12), MIN (14-15), SECS (17-22)
17-22 ---
25-26 ---
28-29 ---- STOP TIME IMN HOURS (25-26), MIN (28-29), SECS (31-36)
3t1-3¢ ---
a1 MATH INHIBIT FLAG
= 1, NO MATH OUTPUT AT END OF SLICE
46-51 OVERALL PRINT RATE (MUST INCLUDE DEC. PT.}

IN SAMPLES/SECONMD

Figure 1 (continued).—Illustration of documentation program.

52 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

4,0 CARD FORMATS (CONTD.)

4, 3 PRINT CARD SETS

A PRINT CARD SET SPECIFIES UP TO FIVE PARAMETERS TO BE PRINTED ON A SINGLE
PAGE OF OUTPUT, IT ALSO SPECIFIES THE PRINT RATE (S/S) FOR THAT PAGE. UP
TO 10 PRINTY SETS CAN BE ACTIVE DURING A GIVEN TIME SLICE.

SA"’LE‘ PRINT SETZ(EACH SET PS%.IST HAVE T‘UO CARDS)

8
142,3,4,51647,8,9,0]1,2,3,4,5(6,7,8,3,01,2,5,4,5/6,7,8,3,0]1,2,3, 4,516, 7,8,9,0]1,2,3,4,5)6,7,8,9,0 152,%,4,516,7,8,90
T
PR!uanlunn .'E.'-l.-..PLA.RAAI'.‘E.T.E.R. aalasags A‘A.lllllPlAlRAAl ITAEIR‘ aa g8 dosaalsasedesi
ARAMETERS ARAMETERA! PARAME TERS]
s o0 Lo aa g tosa o)aonolasaslosrsey 3 pg 83) s s s ol s

PN ¥ NN NN 200 1o o9 o0 o s b ah i

FORMAT OF FIRST CARD

COLS. CONTENTS
1-5 PRINT
t1-14 RATE (MUST INCLUDE DECIMAL PT.3 IN SAMPLES/SECOND

THIS FIELD 1S OPTIONAL (IF OVERALL PRINT OPT]ION ON
TIME CARD WAS USED FOR CURRENT TIME SLICE)

21-30 MNEMONIC FOR FIRST PARAMETER
S1-60 MNEMONIC FOR SECOND PARAMETER
FORMAT OF SECOND CARD
COLS. CONTENTS

1-10 THIRD PRINT PARAMETER MNEMONIC
31-40 FOURTH PRINT PARAMETER MNEMONIC
61-70 FIFTH PRINT PARAMETER MNEMONIC

4, A LIMIT OHECKING
AMY PARAMETER ON THE TAPE (INDEPENDENT OF THOSE PRINTED) CAN BE LIMIT

CHECKED. THE RESULTS WILL BE ADDED TO THE MATH SUMMARY AT THE END OF THE
RUMN,

SAPPLE‘ LIMIT Chﬂg-

s a s 6 7 8
{1:2,3,4,516,7,8,9,¢11,2,3,4,516,1,8,3,001.2,5.4,5(6,7,8,3,0]1 ,2,5,4,516,7,8,9,0[1,2,3,4,516,7,8,9,011 .2, 3,4,516,7,8,9,0] :2,3,8,516,7,8,9,01,2,3,4,516,7,8,3,0]
.!."'.XATI LA g ‘N.E‘H‘OP_I_C_ st oo s sl s xnxnxn -‘. .x.x.x. .Y.Y.Y.Yl. .Y‘Y‘V‘ oo s sl o o0 ¢) aaoaleasslanygalasa
coLs. CONTENTS
1-5 WIMiT

11-20 PARAMETER MNEMONIC

S1-40 LOWER LIMIT (IN ENGINEERING UNITS)

41-50 UPPER LIMIT (IN ENGINEERING UNITS)

a- 2

Figure 1 (continued).—Illustration of documentation program.

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION 53

GRUMMAN DATA SYSTEMS °

4.0 CARD FORMATS {CONTD.)

4, S ENDTIME CARD

THE ENDTIME CARD 1S USED BETWEEN TIME SLICES WHEN AN ENTIRELY NEW SET OF
PRINT AND/OR LIMIT PARAMETERS IS TO BE OUTPUT,

SAMPLE ENDTIME CARD

i 2 3 4 S
142,%,4,516,7,8,9,0]1,2,5,4,516,7,8,9,011,2,3,4,56,7,8,9,0|1,2,3,4,516,7,8,9,0]1,2,5,4,516,7,8,9, 0
NDlT‘IrE

a2 a s o200 bl s alagas a2 b1

Lo s 0 las e

COLS. 1-7 CONTAIN THE CHARACTERS ENDTIME .

4. & THE REWIND CARD

THE REW]IND CARD WILL CAUSE THE PROGRAM TO REWIND THE INPUT TAPE(S) TO LOAD
POINT AND REINITIALIZE ALL ARRAYS. THEN THE PROGRAM WILL BEGIN READING

CARDS AGAIN. THE REWIND SHOUWL.D APPEAR AFTER AN ENDTIME CARD TO ALLOW THE
PREVIOUS TIME SLICE TO GO TO COMPLETION.

4. 7 STOP CARD

THE STOP CARD TERMINATES THE RUN. 1T CONTAINS THE LETTERS STOP IN COLS 1-4

Figure 1 (continued).—Illustration of documentation program.

54

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
GRUMMAN DATA SYSTEMS 0

OECK SET-UPS

SAMPLE DATA CARDg

DATA DECK SAMPLE
THE SAMPLE SHOWN BELOW INDICATES A TYPICAL DECK SET-UP. NOTE THE FIRST

ENDTIME CARD AND THE NEW SET OF PRINT/LIMIT CARDS WHICH FoLLOw IT.

EXPLANATION OF SAMPLE DATA DECK
TIME SLICE ' (4/15/11.6 TO 4/16/22.3) WILL OUTPUT AS FOLLOWS -
PAGE ' PARAM NOS. 1, 2, AND 3
PAGE 2 PARAM NOS. 4 AND S
LIMIT CHECKING TO BE DONE ON PARAMS 2 AND S
THE ABOVE OUTPUT GROUPS WILL BE RETAINED FOR TIME SLICES 2 AND 3 WITH TIME
SLICE 3 DOING, ADDITIONALLY, LIMIT CHECKING ON PARAMS 1| AND 3
TIME SLICE 4 (6/13/12. TO 6/13/30.) WILL OUTPUT AS FOLLOWS -
PAGE 1 PARAM NOS. %, 7, 9, AND 2
PAGE 2 PARAM NOS. S AND 6
LIMIT CHECKING ON PARAM NO 4

1 3 4 - (3 7 8
1142,304,516,7,6,9,0[1,2,3,4,516,7,8,9,0]1,2,3,4,5(6,7,8,9,011,2,3,4,5|6,7,8,9,0]1,2,5,4,516,7,8, 3,0 |1,2:3: 4,516, 7,8, 9 0] 112, 5, 4,516, 7,8,9,0] 1 12, 3,4,56, 7,8¢ 34 0}
T.I'T'L. 200 lapetlonny |||-l;-n-PAG.E-hEADAI'\‘JGnn.lJ_LJ 1o ea)l e e v }iraasleeesleresiannse
Tll’:lell_!lll ltll‘ls‘l'_L'l.l nollolll'csl 12('15L[v3_tl 39 lenselovasloseelosentbore s 909 loepse
PIRLllN-TLnnn_‘ L'Aon'J_l A1y |A|R|A| Nlo._l‘ 21 eli sy 2 i e .AJﬁA‘r’ l'ql?l_l 1 ¢ 20 0o g s v e s lesse
PlAlRlAl"l_l':‘loLlsllllll_lll g 009 lssnelarerinnas 14 bagy 212 beeseleranlseselensglae
lenanLLn &Rfﬂm.z 2 s o p e _leslsL.leal F l‘lonsl 'Aen-'usn st s o Lo v e o Qoo nfyey s 9 a0 aase
P.Rll.ld.T". s 8y 1°|'|1_1144| PlABAAIHLJNIOle EENENE NN N W) PnAlRlAa 1N|°| vl e e b naplren e
At ade s as lasealoessg]losredoesss]aoanlanas s a2 leeoaloo s lypoos)oesslonsloessiassy
lelTllJllPIAARGALr‘l'jlqulllllllll L-lsl.lglllll ll‘l‘l.laj_LA 22l 2 aay 2t a0) sa lljllll
T‘XEI.E. Laea PntonlllgEL'n lujoalol‘l 151'l4|_lllll a3 s o) a v et lasealaay 2t | ee g lagselog
TA‘I"AEA Yo s s EAJolz'loA‘A'noAu_ljoalols_jgl'lojd‘lul T A a2 sl epaa]eag ety 20 0) s gt
Lll-".anl..nn P:.“.‘n lrflol -' 28004220 ||4|5 .‘GIIA aa -‘1215;91'451 e s al s s o a) aesadaeaslapestiag
Llnﬂjlnrlnn PIAIRAAAP_‘I .'j?.. sste sy -l'lzl,l: 148y -12.31'4611_11 asa ol s o aglanga)ges aaaadley
E“‘BL’CE‘ aeas bananlosasdangalooanlonaelopsolesaalapaseloeess|sparlons sa s s o2 o
’T‘XIHIE.LLlu El||l!l||lzl'- llltolsjl‘lirsnon'noalun_nn so s d oo v)aaealasselsenelony [T RER N
ST AT fo've'l B s SUTUT TS PRI TN #v'i'e'd B TR DTS PETTS PP
PIAIRIA:\]“IOII sa s dsreslearelogiy PLRAASAN&I A2 0430690 tesesleonsianentary 1 s iy
PIRALNITLI_II_L E'JLLAIIIPIAIRAAI ‘N.Ol. l_l_lLLllllIlll]l‘_ll AAJ‘_!AA:}_L':O:- 10 ¢ 0 oeaoloassloegre

Figure 1 (continued).—Illustration of documentation program.

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

55

s isngy

st 22 boann

saa s oy

108100

s e s lose

s laaay

IMIT
RN FN TN

PARAN 10,

saeelang

A-Asn'ngl_l 142

3.0
2502 laaas

aegslsene

NO T lrE

$ 441 1948

sat s lapas

1o s loess

AN ESERN

1o 0 beone

1902 leets

s 00 2l s

LlolPlJllll

20 s e lan oy

3120 laaase

1at1glsan

22 palaasa

2 eps s Jsoey

lolF Py l(nsn' .-’1' o lsl .!f‘ 1 .C.OII..

'nl‘n)l Laass

s p a0l

eaeeloens

RS FNEN)

1920 lasns

san e laenn

Figure 1 (continued).—Illustration of documentation program.

18
5.0 OECx SET-UPS (CONTD.)
SAMPLE DATA CARDS
1 2 3 a s 6 7 e
1220314:516,7,8,9,011,2,3,4,516,7,8,%,011 12,3,4,516,7,8,3,011 2,5, 4,516,7,8,3,0}1,2,5,8,516,7,8,3,01,2,3,8,516, 7,8,9,0]%,2,544,516,748,9,0]1,2,%,8,516,7,8,30

56 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

(Eor 16,7,9,9 IN Con. 1

SToP
(munz
ﬂxnn PARAN NO 4 -3.0 3.0

l/mmr s, PARAM NO § PARAM 10 6

PARAM NO 9 PARAM NO 2

INT 20. PARAM NO § PARAM 10 7

('?xr: 06 13 12, 06 13 30.0
(Emmns . |
CIMIT PARAM 0 3 1235 -23.6
CIMIT PARAM fo 1 ez ¢ 1230.5 B
TIvE 95 02 01.0 05 95 0.0 B
(3 05 01 05.6 05 01 25.4 B
ﬁﬂf PARAM 10 S -3.6 44.8 J_
PRINT 20, PARAM 10 4 j “PARAM 1O 5 B
CURT_ maman o 2 15364 4096. 873 J_
l/mun NO 3
l/uum 10. PARAK 10 1 PARAM NO 2 L_
TIvE 06 15 11.6 04 16 22.5
(‘!n,r PAGE READTNG k
-
i}

SAMPLE DATA CARDS
s-

Figure 1 (continued).—Illustration of documentation program.

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

OECK SET-UPS (CONTD.)

'42,5,4,516,7,8,9,0

112)3,4,516,7,8,9,0

JOB DECK SAMPLE

SAPPLE' 4P PRlNTzJOB OECK

) °|8| le RO

s 0 s s lesgy

st alsess

4

192,3,4,516,7,8,9,0]142,3,4,516,7,8,9,0

S
152,5,4,516,7,8,%0

6

1,2,3,4,56,7,8,9,0

10 ool g asa

7

112,3,4,516,7,8,9,0

1,2,%;4,516,7,8,%0

atalas oy

200 el 912

cComMMm

°||lEquTn'AI-AC.C.O-UANIT.‘nlu- 1AEATAcl'nn|4 st oy lesealseapbooseloesalooealogasnslsoefoosoolacense
CO'H.H'EP.T'.l/.AC'C.O'U. Tulecn IIEITICI.QIII v o s s dova s leeogdoov oo lvegelossolonee]sooelossn
REOUEIST,PRIN.HI. Co[798 (PROGRIAM TA{’E)

300 Loa'on I ov’s' s Lo nononeelovsolonnoloene]ornelroselassadlagaalonsnlonesfernglonas
RnenouunefsnTn'nTnAPnEn'n'n’-ﬁvn'.nndpnxnjgilul'l-TIAPIEAIAlnnnn a2 a ol a oo s loeaadoa o o)eoeedogggdoeogsloeeny
RflLl(lsl‘I°|°l°I)|ll||ll!l g a2 s loevelyeoylooeslonnolovyelssgnlooyolooes bensslosealeossne
RlE'D.UlCFl..‘. s v oo bo v e o lannalesaslyen g legos)osealonoeleaaalessolaoeplorerlooeelosesrs
PIRIXlNI'IIAAA s ot g dgeo o foeeoloavefseoylosaslsoesteocesfoosslosceloarselypeygsfoessloees
E°AR||I(|7|'|81'||X|N|lc|°|l'|'| ‘I)IOIIQIII s o v ol s v o sl e s o leeusfasagleesoloeceelsyogfoesrloeey
aLocC OATA DECK (TITLE, PRINT, LIMIT, ETC.)
71°|P|IC|A|R10111|||lnu-n s s o e less o oo toree)ot oy danoslaneelanooloosloosalseaslesasy
ofF 16.7.]8.9 coL. i)
a2 22 1o o's o' ¢° 0 a o1 2o aoalsasedaea sl oosglagasbroaslanss Aaa L s s o sl o900 lspa0)aassloens

Figure 1 (continued).—Illustration of documentation program.

58

(EoR

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

'/Eor 16,7,8,9 CoL. 1)

ﬂm CARD

17,8,9 INCOL. 1}

ﬁm.

l/azoucz.

(amsaooo:
|/R£oussr, TAPE

1LHY. 4P] E.U. TAPE

(uza&sr,mm.nx. C0798 (PROGRAM TAPE)
,/comtm. /aCCOUNT2/ ETC.
COMMENT, /ACCOUNTI/ ETC.

F(=

SAMPLE 4PI PRINT J0OB DECK

Figure 1 (continued).—Illustration of documentation program.

14

NNNNNNNRNRN

Aansbpbad

o n

1

1.
t.
t,
',
1.
L.
1.
t.

NOHONDEUN -

n -

AN AUTOMATED SYSTEM FOR GENERATING PROGRAM DOCUMENTATION

GRUMMAN DATA SYSTEMS

INDEX
GENERAL INFORMATION

GENERAL DESCRIPTION
SUBPROGRAM DESCRIPTIONS

EUPROC

EUPRCD

DATAIN

PCMMA

MATHI

MATIHO

PCHMPR

ouUTPUT

@OV AEUN~

4 Pl PRINT - FUNCTIONAL FLOWCHART

CARD FORMATS
TITLE CARD
TIME SCLICE CARD
PRINT CARD SETS
LIMIT CHECKING
ENDTIME CARD
THE REWIND CARD
STOP CARD

DECK SET-UPS

DATA DECK SAMPLE
JOB DECK SAHPLE

Figure 1 (concluded).—Illustration of documentation program.

59

PAGE

MUNNNNNNDNDR

»

60 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
DISCUSSION

MEMBER OF THE AUDIENCE: Would you comment further on the 26 keywords?

HANNEY: The topic, subtopic, and paragraph keywords are in the text generator.
There is a card keyword for the coding form and a deck keyword for the deck display. The
flowchart generator has 17 keywords, one for each symbol.

MEMBER OF THE AUDIENCE: Are the numerical displays used for text generation
or simply stored on cards?

HANNEY: There are cathode ray tube (CRT) displays at the automated telemetry sta-
tion, and we have a command program that interacts with the CRT unit. The user at this
station can create a display code file and send it to the documentation programmer. It would
then be stored on a disk file and inserted in the program later.

G\
g
,\C"‘a
N
3

THE INTEGRATION OF SYSTEM SPECIFICATIONS
AND PROGRAM CODING

William R. Luebke
Computer Sciences Corp.

This report is a description of experience in maintaining up-to-date documentation for
one module of the large-scale Medical Literature Analysis and Retrieval System 11 (MEDLARS
II). Several innovative techniques have been explored in the development of this system’s
data management environment, particularly those that use PL/I as an automatic documenter.
The PL/I data description section can provide automatic documentation by means of a
master description of data elements that has long and highly meaningful mnemonic names
and a formalized technique for the production of descriptive commentary. The techniques
to be discussed are not common or unusual but are, instead, practical methods that employ
the computer during system development in a manner that assists system implementation,
provides interim documentation for customer review, and satisfies some of the deliverable
documentation requirements.

DOCUMENTATION THROUGH DATA DEFINITION

MEDLARS Il is a very complex system involving more than 50 PL/I programs that
must share approximately 500 separate data variables. Most of the programmers assigned to
the implementation phase had only limited experience in PL/I programming, and only a few
had participated in the design of the system. The delivery schedule required that coding be-
gin before the entire design had been completed and thoroughly reviewed. Therefore, an
efficient mechanism for communicating the original design and any modifications of it to
the programmers was essential.

With the number of programmers involved, each having responsibility for and knowl-
edge of only a segment of the system, it was necessary to have ways to guarantee consistency
in data definition and usage. The PL/I language has features that support these objectives.
The data declaration statement in PL/I was chosen as the basis for design documentation to
achieve data consistency, minimize coding and keypunching, and establish a basis for
computer-produced portions of the final system documentation.

The DECLARE statement is a compiler instruction that defines the attributes and re-
lationships of data variables. The data in the system are arranged in over 30 separate data
structures or arrays of structures, each defined by a DECLARE statement. Figure 1 shows
a portion of one of these structures, PRINT FORMAT _TABLE. Line 1 names the structure
and gives its attributes. The lines beginning with the number 2 name the data variables in
the structure and establish their individual attributes. Comments in the PL/I language are

61

62

VAT

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

DECLAKATIONST PRUGE UPTIUAS{MAINDS

SERCE2 LTISTING

2007 DECLARE ¢
2005 1 PeliT_FR3asAT_TARLE BASFD (LRPRI_FTI,/ /% vTSN %/
2009 /5 ATS .
2010 N /% CCTD x /¢
2011 DATA STRUCTURE NAME THESE PROGRANS ACQUIRE) /> PCED Yz
7512 SPACE FOR THE TABLE \ 7= 111750 wf o
2012 A _ /% CRTS! ® /0
2014 /+ PHISH vy
2015 . e . ’/* PNTSD /.0
5% g . ” cre w/r
;gi; THESE PROGRANS FREE THE /” ;;%&?) ﬁ;:
2018 € FORTHETABLE | o—pc0) %/ 2
2019 . . o , e
2020 /+ ALDBED JUL 22, 197C RM FORTSON %0
2021 - o . c
2022 /% THERE IS A (PJUTENTIAL) OCCURRENCE CF THE PRINT FORUAT N
2023 /% TABLE FOPR EACH INSTANCE UF THE PRINT POSITION GRGUP IN % /0
702% /% CACH CITATICAN FGRMAT TA5LE RECONCs THLRE TS5 A PrINT . /0
2025 L% FURMAT TAsUCE FOR AFFIXES AS WELL. DUPLICATE PRIAT FOPMATS%/3
2026 /% ART DETECTED, AND THUS ALL PRINT FGRYAT TABLES ALLOCATED =/:
2027 /% DIFFER [A CONTENT, THAT IS, PRINT PUSITIONS WITH ThE SAVE =/¢
2006 /% PRINT FORMAT SHARE A PRINT FORMAT TASLE. %/
2029 z
2030 2 LINE_w1DTH\ BIN FIXED (311, /% PFTS /0
20?1 VARIABLE NAME - - - st ottt THESE PROGRAWMS /f CCFD e
2032 ASSIGN A VALUE (/7 779 w
2033 e e i e e - TOTHEVARIABLE /% PHYSD /7
2034 /% &R PUF /0
2035 /% C1 PUF £/
2030 /% C PUF PCD </
2037 ____ 2 ADJUSTHMENT_TYPE . BIN_FIXED (15), /% PFTS /3
2034 /% CCrn %72
2029, PHASE OF PROCESSING e e e e e e e AR OPNYSD O ESC
2040 /% PHTSD s/
2041 /% &PEIS \ 5/ 0
2042 /% PR DYF ; THESE PROGRAMS USE THE VARIABLE */
2043 _ /% C1 PFTS pUs(INTHEPHASE OF PROCESSING INDICATED . &0
2044 /% C PUF , /G
2045 . 2. CASE . BIN FIXED (153, /% PFTS _ %/}
2046 /% CCED w/
2047 /% R _PETS ' %/ 5
2048 /% R PUF ' %70
2069 __ ... _._. . I* Cl1 PFTIS PUF __ e e e e e R A%
2050 /% C PUF : %/
2051 2 DROP_BASE . C__BIN_FIXED (15), /% PFTS /¢
2052 /% CCFD /0
2053 /% & PFIS /7
2054 /* R CCFD PUF %/
2055 e I® CUPFTS PUF . w0
2056 /% C PUF A =73
2057 2 FIELO_SHIFT_SIZE _ BIN EIXED (151, /% PETS N
2058 . /% CRTSD 5y
2059 /% DN CCFD - AN
2060 /% RR PUF 2/
Figure 1.—Sample data declaration.
——— — a— — —— — — — -— — — — - = . —_— —_—— ——

THE INTEGRATION OF SYSTEM SPECIFICATIONS AND PROGRAM CODING 63

delimited by /* */. Notice that most of the DECLARE statement is comprised of com-
ments. It is through the comments that the system’s programs are related to the data.

The comments following the first line on the right side of the figure identify the pro-
grams that acquire storage or free storage (the latter indicated by parentheses) for the data
structure. Below this is a comment paragraph that discusses the occurrence of the table
within the system. Each data element in the structure is named on a line beginning with the
number 2. Notice that long descriptive names are used in the declaration. PL/I permits up to
31 characters. At the right edge of a data-element line are comments that identify which
programs set a value for that data element. For example, PFTS assigns a value to LINE _
WIDTH. Below the data-element name are comment lines that identify the programs which
use the data element’s value. In the first case, the RR signifies one of the four phases of
processing. In the RR phase, one routine (PUF) uses the element. In the C phase of process-
ing, two routines (PUF and PCD) use the data element. The same type of information ap-
pears for all the data elements in all data structures.

Each programmer has a book of all the data structures used by the system. The book
is produced by the PL/I compiler, and, in addition to the DECLARE statements, it contains
an alphabetical listing of all data elements in the system. This listing, a normal compiler prod-
uct, identifies the attributes of the element and the structure in which it appears.

The comments in the declaration are rigidly defined by position to permit simple manip-
ulation of these data by a computer program. At present, a PL/I program processes all the
declarations as input data and produces a listing of data involvement for each program. Fig-
ure 2 is an example of this program’s output. The designer is now able to express any addi-
tions or modifications to the system design through changes in the declarations. These changes
are quickly communicated to the programmer by means of the program data involvement
sheets. Both the DECLARE statements and the program data involvement sheets will be part
of the final documentation of the system.

There is another feature of the PL/I compiler that has been a very valuable aid in the
use of the declarations. Before program compilation, a preprocessor scan is made of the
compiler input, the source deck. The preprocessor phase permits inclusion of data from li-
braries in the system and certain procedural operations to take place before compilation.
Presently, the declarations are being cataloged into the source library under a member name
algorithmically derived from the name of the data structure. The preprocessor system is as-
signed two codes (LR and LP) to identify it within the system. LR is interpreted as data;

LP, as procedure. The declaration statements are cataloged in the library with an LR prefix,
followed by the first letter of each word in the name of the table. LRPFT is the library mem-
ber name of the PRINT FORMAT TABLE. When programs are cataloged, their names are
preceded by LP. For example, on the first line of the example declaration (fig. 2), it is indi-
cated that the core area for the table was acquired by a routine named PTSD. In the library
and in coding, the actual name of the routine is LPPTSD.

To gain access to the material in the source library, the programmer writes a %2INCLUDE
statement in his code, naming the member name of the table (e.g., ZINCLUDE LRPFT).

The member name is derived from the name of the table in the documentation. This state-
ment will automatically cause the acquisition of both that library member and the declara-
tion statement itself (from the source library) and will cause the declaration statement to be

64

BT LI

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

ALLICATSS S¢dd= i) THE R0 On NG

Tl ES

1 PRIRY_FASYAT_TASLT

TASED

(L

I_FT}),

VAR YY)

PNTSD.

ASSIHES VALUES TO THE FLLLCWING Pas

o T INTTIALTZATI AN SYATUS _TARLE SASED (LRINI_ST), /% (5P
2 VELSERT _L{_")-'.A [DTy /% PNTST

2 CLSYIS G aLP_Sutscr1er i FIXSE (417, 75 PTG
— e 2 AU SULNTE_CAGE_BivAER_SiCP Sl FIXSD (15), /% PRTSD

2 C“S”ls QUATABL_TV ey WIN OFEINED (15, n PTYT

1_sASTEN T3l BASED (LREAS_11, = (§9
o - T s »~-z _S17e T T FIXID (1R, = 2TSD
SN FIXTE (15),. PUTSH
AI0 FIXLD (150, DTS)

2 pau__

CHAR
nASED
PT,

(1},

(L#PAG_

c1y,

e TS
L)
#oPNTS.)

DAY ' SR T PT i, PUTSE
2 PECTY ARG PTH, soD5T SR
2 VEUSC_? REEREDH STr
2 Viuga_ox PR_FrE_TAS_AUD PIE,

1:"‘1)’ SIZL
_SEGMERT NUNMedln
T_1asee
WT_TYP e

- W7“9ACC_HUV}7
2 CITAT .
1 PRINT_#97

ADVJUST A

TN

IND

FIXED
(11,

ER X
CHAK
ASED
gInN FIXED

(15

(LitPR]

_l"r)y
(151,

y, o

3
u

N
\
—
-
S L

-‘,’.‘.,Al

\hlkl
—nun

-
2 "‘l'l‘yT
2 FI&ST
2
2

ZJZEWH

T 5IN rxx&“ {

wiN FIXEC
AIN FIXED
HiN FIX:C

HIN FIXSD

(1<),

(15}, B

{15),
(15),

15},

|4
—
e
4

NN NN NS S SN AN NS S S SN N NI NSNS
A¢
]
-
z

<
L}
i
—
(%]

s

PNTSO

seS THE

FOLLTING TABLES

ANT VALUES

TBASED

(Lx
FIXED

SN

INT

_ST),
(31),

Jecs

2 ClimuM_0. r
2 PAGE_CHVROSITION_Ta
1 Page_¢(oS TIN_ThulE

2 <L T Dale Nl Pk _FCPR_TAN

AsLT_anr

ADOD

TBASED

o IN FIXED
AASEN
PTR,
PTE,

PT=,

{210,

(LREAS_T),

(LePaG_CTy,

/:

-(n’.;

F I

2 NLCTL_Prir_Pp AL
o : T4d

M

_p" ’_I G

—cotimy_

T
LENSTH

5
R 3%

2 F}’P" '-I.._ Tii

2_FISST _LIMe

-'. INE VL

~ADD

UF FpC PREC ALK wID

pT: .
PTE,
PTR,
sIN FIXED

BN FIXED

51N FIXED

REE
{
(

[&C1CaT2R

. 2 VEPSO_RECTC
1 PRINT_FisB™

- . - -
> :

+ Y
S W, - e

2 SHI' %A\
l,anVATTFD PRIN

Crak (1),
CLASED
151N FIXED

Figure 2.—Program data involvement.

(LRPRI_FT),

(15),

_BASEC (LRFOIR_PUT)

RN

/5 s
/%

[t

THE INTEGRATION OF SYSTEM SPECIFICATIONS AND PROGRAM CODING 65

INCLUDEN TEXT FOLLUWS FROXM DDLMHENBIRK = SYSLIB oLRPFT
1658 BOOCL (LIN_W,y £DJI_Ts CASy DRC_B, FIL_SS,
1939 FIR_LU, FIR_LSS, FUN_EN, HEL, LIN_D, '
1990 MAX_NOL, OTH_LSS, SkI_8, PRI_FT, UNB_VI,NEW_SI) CHAR:
1991 2 PRI_FT = 'PRINT_FCRMAT_TASLE;
1992 S oLIN_Y CLlte v TSTHY

1695 . % ADJ_T = "ADJUSTUENT_TYPL '3

1964 % CAS = LASE': ~ o ;
1995 . % DRO_S = *GROP_GASE!:)

1996 4 FIE_SS = YFICLn_SHIFT_ST17Ev;

1997 T FIn_LD = CTIRST_LINE G o poe;

©olgoovooolcoonsolcoooc

1998 % FIP LSS = *FIRST_LINE_SKHIFT _SIZC';

1999 G OFUM_EN = "FONTI_ENTRY_NUMYBER?Y;

2000 A HEL = YRELGHT Y

2001 w LIN_D = SLINE_DnhOPf3

2002 BOMAX_NOL = YHMAXTHMUN_NUMBER_DF_LINES?Y S -
2003 % OTH_LSS = SOTHER_LINE_SHIFT_S1zEt;

2004 4 SHI B = SSHIFT _O4SF*;

2005 S ONEW_SI = ¢NEW_SEGMENT_INCICATOR';

2005 .S UNB_ VI = _"UNAREAKABLEC _VALUE_INCICATNRY;

Figure 3.—Preprocessor statements.

physically inserted into the source code prior to compilation. All data declarations exist in
only one place, the source library. All programmers use the same declaration from the library,
and, therefore, changes in the data declaration will be automatically and immediately avail-
able to all programmers because the latest version appears in their program listing. In this
way, data names and table identification are consistent.

Using the full 31 characters for naming a variable is awkward for a programmer and can
lead to keypunching problems. The PL/I compiler helps here as well. In the preprocessor
pass, before the actual compilation, it is possible to replace items in the source code. This
feature is used to convert the programmer’s abbreviation of a data variable name to the full
name. A standard algorithm is used for abbreviating a name in a table: The first three char-
acters of the first word, an underline character, and then the first character of each succeed-
ing word. For example, the programmer writes line width as LIN_W, adjustment type as
ADJ _T, and case as CAS. When he receives the computer listing, all the abbreviated names
will have been replaced, and his listing will include the full descriptive name that was used
in the declaration of the tables. The preprocessor code required to accomplish the conver-
sion from abbreviated name to full name has been included as an addition to the member
in the source library that contains the declaration of the table (fig. 3). Therefore, when the
programmer includes the table declaration in his program, he is also including the preproces-
sor code that will accomplish all the abbreviation conversions for the data elements in the
table. As a result, the preprocessor code is only prepared once, and the conversion is auto-
matically performed any time the table is used. This does not mean, however, that the pro-
grammer cannot use the full version of the name. Either version can be used in this code.

IMPLEMENTATION

One man-week was required to code and catalog the declarations for the system library.
This figure does not include the design of the structures or the keypunch time. Currently,

66 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

table maintenance requires about 1/2 man-week for each calendar week. When system im-
plementation began, 15 man-weeks were expended in coding and testing utility routines
that output the data structures during program debugging.! This coding exercise was useful
for training non-PL/I programmers and as an introduction to the rather complex data
hierarchy.

PROBLEMS ENCOUNTERED

The basic concepts set forth in this paper have been validated by experience, and pro-
grammers find the structures easy to use. Design inconsistencies and program specification
shortcomings appear to surface early in impiementation, as soon as the program data involve-
ment is available. However, if the reader intends to use this approach he should be aware of
the following potential problems:

(1) The name abbreviations in the preprocessor statements must be unique. If they
are not, the program using the declaration will not pass the preprocessor phase of
compilation. This problem has caused several days of table lockout in our
implementation.

(2) The printout material used by programmers must be updated with every non-
comment change to the declarations. Failure to do this will cause the program-
mer to think that he has an error when his program is actually correct.

(3) A change in a data structure requires that all programs using that structure be
recompiled.

(4) Program testing must be suspended while the data structures and related print
programs are being updated in the library.

We found it best to update the tables no more frequently than once a month, to use ex-
treme care, and to anticipate the sacrifice of at least one computer run by every programmer.

DATA FILE DOCUMENTATION

The remainder of this report briefly describes the manner in which user-oriented data
files are documented. Approximately 30 individual files make up the MEDLARS II data
base. A consistent method is needed for the definition of information carried in these files,
a method that could be understood by non-data-processing personnel in the user’s facility
who are interested in the content, but not the structure, of the file and need a great deal of
information about the files.

Nine descripters were devised for every data element in a file, and these files were docu-
mented in machine-readable form so that they would be easy to update while the client
thought about problems and requested changes. The files have been evolving, and the docu-
mentation has been able to keep abreast. Generally, it takes only a few days to document
very sweeping changes in the design of the National Library of Medicine’s bibliographic
files.

IThe structures are based on, and therefore cannot be output by, the PUT DATA instruction nor can the variables
be traced with the CHECK function.

"
.

'

THE INTEGRATION OF SYSTEM SPECIFICATIONS AND PROGRAM CODING 67

FILE DDL NAME

GENERAL COXNTENT

1) BIRLTOI2ADATC OATA IDDETIFYLSEG AMHD DESCRIBING THI MATEWHIAL T1H1DTXED,
2) SUsJEey eanTuNy DATA

3} INDPXTD CITATION CONTZOL AT

OTHER FILES RRFEREMCED

1y IT¥M
2) VOCAMILAYY

3) HAMF AUTHORITY

RECORD CONTENT

EXCHl THULDTNXOD CITATION RECO#D JDENTIFIEZS A SINGL® PIFCH OF XATZHIAL
INDTX3N, THE FFCORD IS 78% BASIT "MUIT RUTRIFEVED EBY A SEARCH I

EFSPONSE TOQ NST2 HUEITES AYD 0% BTULIOGEAPHIC PRODUCTION, ALL FIECLDS
NEENDTD 10 PETET A CITATIOM IN THDPY %7DICUS ADE TINCLUDED T 747 RITCTED.

OTHER DATR TLIMBITS WHICH MAY BE NZEDED FOR PRIKTING OVIEL BTOLIL-
GRAVDHTES OK DYNAYTD SEARCH OUTPJT Cald 3T CHTAINED FROM THI 1TEX PILE

PARENT RFECORD,

Figure 4.—Overview of indexed citation file.

Figure 4 shows the overview of the indexed citation file. The overview describes the
general content of the file, identifies other files in the system that are referenced by this
file in some way, and then generally describes the record content. The record content is
just an overview that is used for a quick introduction to the file. It is followed by a descrip-
tion of the data within the file. Not shown is a pictorial representation of the file structure
identifying all the data elements in the file. Each data element in a record is documented by
punched cards that are numbered to identify the type of information carried. Figure S de-
scribes the numbered data-element listing. There is also a type of card for comments. Several
small PL/I programs for formatting and editing the data have been written. A great deal of
supporting keypunch work is required for implementation of the file, but once the file has
been established, the data are easy to update.

68 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

1. NAME
PUBLICATION MONTH
FIFLD NAMT TN AR3ZRSVIATEDR FORM: pURE)

2. DEFINITION o N o
THE YEAR AND “INTH DUSTHG WHTCH A RECORD IS FIRST AVAILABLE FOR
FORMAL PUBLICATION, IF A CITATIOYN NGUST BE PEVISED AND REPUSLISHED,
THIS FIELD WILL BF UPDATED TC SHCK THE LATEST DATE PHE CITATION W&S
AVAILEBLE FOR FORMUAL PUBLICATION,

3. PURPOSE o
USED FOK COLLECTING CITATIONS BY PUBLTCATION MONTH FOR INDELX
__MEDICHS &ND OTHER ¥UNTHLY PUBLICATINNS. USED AS A CRITERION FOR FILF
SEGHENTATION AHD LETFRIEVAL. A DIRECTORY IS PLOVILTH,

4. OTHER RELATED FIELDS
STATHS SROLUD DAVA HNLEMTATS

5. STRUCTURE . -
11 8T RINLRY FITID -= 7%, TE® VIAP IS COVYRRITED TO hINaKY /19
STORFD TH FHT SEVEYG HIGH 020ER BITS, THY MCUTH IS COLMVERTHD T HiHdruY

AND STORFD I3 T8 TCH: LO& QiDHEER BLITS.

S JNQNE L L L e e

7. INPUT SOURCE

SET BY Y THE
. 5YsTte" ZO5YSTTX
T
LI

5TEM FPON TEE-STATUS GR0UP, THE USEER dUST XNOTIZ

CTTATION T35 CONPLUTE ALD READY TC PUBLISH. TH
£
3 .

|52 BN

WILL 79N GE VTSN VALUZ FOR THIS FIFLD YHICE SHOWS THE B0l
IN 4AICH THE CITATION IS TO A2DPCZAR IN ONE Ok 40RE FORNAL PUbL

[I-Se BN -]

ATTONS,

8..FILE CONVERSTOM DATA
NOYNE, THIS IS A UFW DRTA ELVHENT FOP MEDLA®S II.

9. SYSTEM START-UP INFORMATION
REQUIRED FOP SYSTH' STARTUD,

Figure 5.—Data-element listing.

DISCUSSION

MEMBER OF THE AUDIENCE: Do you feel that it is a worthwhile effort to attempt
to document large programs that are continually changing?

LUEBKE: I think that it is a good idea and should be helpful, as part of the source
documentation, when the system is finally operational. Having the data within the systeni
catalog will permit programmers who did not participate in the development of the system
to identify the relationships between the programs and the data so that they can perform
maintenance.

MEMBER OF THE AUDIENCE: How many programmers are involved in your project?

LUEBKE: At the present time, we have about 27 programmers working in this area.

MEMBER OF THE AUDIENCE: For how many years has your project been in
existence?

LUEBKE: We began programming in August 1967 and should be finished with that
phase in the spring of 1971.

PANEL DISCUSSION

MEMBER OF THE AUDIENCE: I feel one of the most pertinent things that Dr. Swift
said was that using automatic techniques to describe data is one of the most feasible and
valuable things that can be done. In this last paper, there seems to be a suggestion of how to
do that. Does the panel agree or disagree, and what are the relative merits of this approach?

PANEL MEMBER: I agree fully that the independent description of data is something
that can now be done.

PANEL MEMBER: Not only description of data but also typing the description of the
data to the system itself so that the data description entering into the system are basically
the same ones the programmer works from.

PANEL MEMBER: I would like to add that besides describing the data, there is a prob-
lem of analyzing it. It becomes important to know where the data are throughout the pro-
grams and subprograms and how the data interact with each other after being changed.

PANEL MEMBER: My feeling is that as serious a problem as the traditional after-the-
fact documentation is, the most serious part of the problem comes at the beginning of a proj-
ect, what I call the “upstream documentation.” This is the attempt to record information that
everybody can understand, work with, and write code from. A considerable amount of docu-
mentation is brought into existence by going through the various stages of system design,
from the requirements at the start of the project to the various elements and levels of the
design approach to, finally, the stage that can be solved by writing code rather than by de-
veloping a further level of design.

I think the data processing business has perhaps been somewhat deficient in not putting
enough emphasis on the total process of supporting and facilitating development of this up-
stream documentation. If properly done, it should form a body of material that can be coupled
to the kinds of tools that are capable of being developed now for automatic documentation.
This upstream documentation, rather than the problem of building from something that is
already computer processable, is the basic problem.

PANEL MEMBER: I agree. Until program documentation flows naturally out of the de-
signing process, it is always going to be a problem. You have to start at the beginning and
generate most of the documentation in the process of designing a system. Until proper pro-
cedures are followed, good documentation is never going to happen.

PANEL MEMBER: Let me add that managers must also face the fact that certain costs
are going to be incurred and that their project reports are going to reflect cost increases be-
fore any code will be written.

PANEL MEMBER: That comment compares the cost of getting the deck as it comes
out of the computer without any comments to the cost of getting it with BELLFLOW. I think
the manager should compare what it costs to put BELLFLOW comments in against what it costs
to put in the comments that should be put in the deck anyway. Often if you insist on doing

69

70 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

the job correctly in the first place, some of these other additions do not add much of a
burden.

MEMBER OF THE AUDIENCE: The comment that programmiers are undisciplined
has been made several times. I wonder what the panel thinks about this.

PANEL MEMBER: | have a few random thoughts on the subject. One of the roots of
the problem lies in programmer education. When programmers are trained, documentation
very often is not stressed. No organized way to write a program is taught. Programs conse-
quently reflect the idiosyncrasies of the programmer. But the organization of a program,
given the same kind of problem, should be standard. Unfortunately, it is not. The solution
to this part of the problem lies in better training.

Second, I agree that the only way to get reasonably good documentation is to have the
documentation developed with the programming. For one thing, it is the only way it will get
done because programmers are generally working on another project soon after the comple-
tion of one and have neither the time nor the inclination to document once the program is
finished. In addition, they may forget certain aspects of the program. So, the only way to
document is to integrate documentation with normal programming activity.

MEMBER OF THE AUDIENCE: I think you have to recognize that a computer pro-
gram is a very difficult thing to describe in the first place. No system tells how to read docu-
mentation, there is nothing like a flowchart of how to proceed through a particular piece of
documentation, which may be in narrative form.

The programmer works directly with a program and has no way of viewing it as a reader.
I think one of the basic problems in program documentation is that programmers are not
trained to think of how to make their programs readable to others. Most scientists, let alone
most programmers, are not trained to write, and this fact must be recognized as we attempt
to develop tools for automatic documentation.

Finally, the symbols that we use in flowcharts do not fit together with meaningful ways
of expressing this information. I think that something ought to be done if we are going to
have large names in data and procedure names that are 31 characters long. I wonder what the
panel’s comments on this are.

PANEL MEMBER: The situation in data processing is that the tools of documentation
and description for computer programs that have been used are reasonably appropriate for
basic computer program and data processing situations. But they are not really suitable for
establishing and describing things like multiple-application, multiple-user, on-line, and real-
time systems of various kinds. It is in many ways rather surprising that we have been able
to do as well as we have in describing some of these newer situations with tools that were
developed for an earlier kind of problem. Herein lies one ef-the-main challenges for
documentation.

PANEL MEMBER: I think one important question would be determining the amount of
documentation that has to be done by people and the amount that can be done by computer.
PANEL MEMBER: When a building, the hardware part of a computer system, or a
communication switching network is documented, something that can be seen and either
agreed or disagreed with is being documented. Documenting a program is documenting an
idea rather than something physical. It is more difficult to accept the fact that we have to

PANEL DISCUSSION 71

spend money to figure out how to document and convey an idea to somebody than it would
be for something physical.

You could show an executive director of a company, who has not been involved in a
program, documentation of that program, and he would find it very difficult, even if it were
the best documentation possible, to decide whether it is worth doing or not.

PANEL MEMBER: I think documentation should be divided into three stages. The
first stage would be documentation of the planning stage. Then there would be documenta-
tion of the implementation effort. Once the program is implemented, there would be ter-
minal documentation. Possibly, this might be the way to approach documentation. I would
say that the motivation to document is certainly very strong at the beginning of a project.
By looking at documentation in terms of a kind of life cycle, we certainly would get a great
deal of this documentation completed at the very beginning. It may be that a lot of our think-
ing is simply not recorded at the time when it would be easiest.

PANEL MEMBER: I would like to comment on documentation of the implementation
design effort. We are trying to record the development of a program so that if modifications
are to be made to a program, there will be some idea of how complex the procedure of chang-
ing the program will be.

MEMBER OF THE AUDIENCE: One of the problems in documentation is that poor
programs are often written. Very little is known about how to write programs. If you keep
a program long enough, debug it long enough, and patch it long enough, it finally does every-
thing it is supposed to do. Then, we often try to document these programs, which should
not have been written in the first place.

PANEL MEMBER: I agree with you in one sense, and in another sense I do not. Very
often what happens when programs are developed is that they are developed for certain
specifications. The program, however, may be used for many years. If a little more effort
were put into the program and a certain amount of flexibility were built into the program,
then as the program changed, there would be less of a problem in adding to the program.

I know it is difficult to try to foresee what changes may be needed, but I think if, for in-
stance, the initial investment were increased by 25 percent, more than 100 percent may be
saved during the life of that system.

PANEL MEMBER: Another problem is that finiteness is gradually disappearing, es-
pecially from the larger data-driven systems. There are now so many alternatives that to decide
what future alternatives are is almost impossible.

PANEL MEMBER: Documenting programs that should not have been written is a prob-
lem. The programmer is not always at fault, however. Often he receives a specification that
does not reflect the final product.

One company has eliminated this particular hazard by using intermediate personnel
between the engineers and the programmers. They are familiar with the engineer and his
field and also understand something about programming. These intermediaries read the
specifications and translate them for the programmer.

As far as specifications are concerned, the person who wants the program written should
know what he wants it to do. It is not enough to know what the input is and what the output
should be. Good preliminary documentation is needed to write up a correct specification

72 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

for a programmer. You have to have good preliminary documentation before you can give a
specification to the programmer because he does what the specification tells him to and that
is all he can do.

MEMBER OF THE AUDIENCE: After a program is debugged it is assumed to operate
perfectly. That is not true about hardware. In hardware, fault indicators and other safeguards
are built in so that if a system does not operate properly it stops. The equipment is often
capable of indicating why the machine is failing. Documentation certainly is often used to
try to track down problems, but not to the extent it could be. The typical commercial appli-
cation is developed so that you can check for data errors, but the program will not check to
see that it itself is performing properly. :

PANEL MEMBER: Many of the things we do, of course, have been done by the systems
approach but because of various factors including the undependability of Government fund-
ing, we often start and then stop programming efforts. Another problem is that badly docu-
mented programs are often inherited.

MEMBER OF THE AUDIENCE: This brings up an interesting point. I think all the
panel members have operated under Government contract. What do you think of the specifi-
cations laid down for programming documentation and the followup action on the part of
the Government from the start of a program to the delivery of the final product?

PANEL MEMBER: I believe that all contracts should stipulate that the contractor
maintain and document his program for a specified length of time after the completion of
the contract.

MEMBER OF THE AUDIENCE: How do you handle the problems of having to take
over a system that is already set up and documenting for others?

PANEL MEMBER: One case that I happen to know about concerned a defense-oriented
system of considerable size. It became necessary for another group to take over its mainte-
nance. In that particular instance, the company worked backwards. They began by specifying
what the requirements were when the requirements specification was developed. They then
proceeded to go through the first level of developing the end-item specification, called the
general design specification. These appeared to be in agreement with what was going on.
Then the next levels of specifications were produced and checked until, finally, all the speci-
fications that ought to have been produced in the process of developing the program in the
first place were written. Some “fudging” brought the actual code into agreement with the
specifications thus created. Only at that point did it really become possible for the company
to relax and begin actual maintenance.

MEMBER OF THE AUDIENCE: One of our principal customers has a requirement
that many of our programs be sent to COSMIC for further distribution. In the past, we had
a great deal of difficulty in getting the programs accepted. We solved that problem by setting
up a review team independent of the original programming group. The review group is com-
posed of operations, engineering, and programming people that take a program and work
through the program library, program by program, to see whether it is completely under-
standable and can be shipped out to someone else with the assurance that it works and can
be run elsewhere on the same machine.

The original programming group has a fixed budget for each program sent through the
review group. If it costs more than the allotted amount to review, the originating cost center

PANEL DISCUSSION 73

gets tabbed for the excess cost. We have not had enough experience to see how this is going
to work out, but this factor of economic accountability would seem to guarantee its success.

MEMBER OF THE AUDIENCE: The talk about developing the documentation for the
life cycle of a program sounds very nice; however, for some programs that is not necessary.

I think automation can really be useful by keying information on data in different ways.

I think there should be a file of information about a program that can be called upon
when necessary, but there is no need for reams of information that you cannot find your way
through. The trouble is not having enough documentation but having so much that you can-
not begin to understand how to use it or how to be able to get into it. There are times when
you have to change a program in a short period of time. Then you need a certain amount of
assurance that you have documentation for and know the location of all the data of a cer-
tain kind for each program. You do not need to have something printed out every time one
factor in a program is changed. Maybe we should look upon the computer as being an infor-
mation retrieval system of documents and documentary information about various elements
of the program and its logic and not let it become a producer of printed documents.

PANEL MEMBER: I agree that we do not need to print all the necessary documentation.
We find a tape recorder very useful in documentation in two ways. General descriptions and
information about the program are recorded but not printed. We keep the tape for reference
only. Generally, the original designer talks about where you might change the program and
certain idiosyncrasies of the program. This tape gives a very good picture of how the pro-
gram was developed and why and where you might have to be very careful if changes have
to be made.

We also use’the cassette to record basic information that a programmer should write
but never gets around to doing.

MEMBER OF THE AUDIENCE: If you had clear-cut specifications in advance, then
clearly all you need is somebody to code it. That is one thing. But in advanced theoretical
research, you probably cannot get clear-cut specifications in advance that will lead to effi-
cient ways of eventually writing the program. I think that we may lose some creativity in
programming if we force too many specifications on programmers.

PANEL MEMBER: I would say that 90 percent of all the programming done in the
United States is not creative. I would also say that there is certainly no reason why one
should not have complete flexibility in the other 10 percent of the cases.

PANEL MEMBER: If you are generating a system to be used only once, you do not
care much about how it is evolved. If you are generating something that is going to be used
many times, then you should not be so creative that you ignore efficiency and good design.

MEMBER OF THE AUDIENCE: You mentioned a 25-percent increase in cost to make
programs easier to handle. How do you decide which programs will persist and thus need
additional effort to make them meet future requirements?

PANEL MEMBER: In some situations, for example, a payroll system, it is relatively
easy to see how the system might have to change in the future as the company changes. In
other cases, for example, the space program, how the system will change is not so obvious
but the fact that it will is. So some allowance for change has to be made and is worth the
extra 25 percent. But even in these obvious cases, little is being done.

74 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

.PANEL MEMBER: It seems to me that almost any program of reasonable size that is
being developed is worth spending that extra 25 percent on. You may be wrong, and it may
have only limited life. But if you think that it is going to have long life, you ought to put in
extra effort.

w2l

Session |1

15

0
A\
1”’)@}
o

VIEWS ON COMPUTER PROGRAM DOCUMENTATION AND AUTOMATION

Dr. Herbert R. Grosch
National Bureau of Standards

The topic of this talk is not really computer program documentation and automation.
Because the Bureau of Standards is not very advanced in these fields, this paper will confine
itself to comments about various aspects of the problem of documentation and description.
The first aspect I will discuss is what has been called the problem of semantics.

Scientists have access to three levels of data. The first is the personal information that
is often written on the backs of IBM cards or 3 by 5 cards: the kind of information that is
used to make a particular project work. The second level, more formalized and organized,
but usually not more mechanized, includes printed catalogs, formally kept laboratory note-
books, and computer printouts with comments for a unique program. Finally, there are the
mechanized data banks and the mechanically formalized documentation of the computer.

The topic of this symposium is how to transform the second level of information into
the third level of information with a minimum of thought, time, and attention. This will be
much more difficult than you may realize. Information has no independent life of its own.
What it means to each of us depends on our individual backgrounds, training, and experience.
The same set of figures that means a useful window for blastoff to an engineer on the ground
means an extremely narrow passage for an astronaut who is going to have to squeeze through
that same window.

Similarly, the information produced by documentation of a program, if presented to
several different groups, may mean entirely different things to these groups. The solution
to the problem of documentation, in my opinion, is not strict formatting or extensive use
of standards. Nor is heavy investment in professional regularization of documentation and of
the surrounding data the solution. Instead it is the recognition of the fact that people look
at problems differently.

If this recognition were taken to an extreme, it could be argued that everybody should
document his own work and do everything by hand. But that would be an impractical
solution. After all, the purpose of the English language, of installation standards, and of
programming manuals is to provide a common ground for the transmission and use of
information. The goal of this symposium is to look for ways to provide this common ground
quickly and inexpensively. This is an admirable goal. But unless work toward this goal is
accompanied by a recognition of the differences between the ways men look at information,
the goal will not be realized.

An example of the problem created by these differences can be seen in the field of
software exchange. If a programmer tries to keep track of his system so that he can hand

PEECEDING PAGE RLANE NOT FILMED
77

78 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

it on to a successor working in the same position for the same organization on the same
computer and solving essentially the same problem with just a different set of input numbers,
the chances are that there will be very few problems. One reason is that the information

to be exchanged is done almost always between men of similar backgrounds and training, at
least as far as this particular problem is concerned.

However, when a company decides to send a program to COSMIC so that it can be
distributed to people with similar backgrounds and training to be used in solving a similar
problem on similar equipment, the task of transmitting the same information is much more
difficult, as most of you know. The paper presented by the COSMIC representative illustrates
this perfectly.

Finally, if a person decides to go into the business of selling programs, i.e., transmitting
programs to strangers working on different problems on different machines, the problem of
documentation becomes almost insurmountable. If you talk to people who are in the
business of selling and maintaining programs, you will find that perhaps 80 percent of their
costs are essentially maintenance and documentation costs.

The prospects for using machine language alone in seeking a solution to the problems
of documentation are quite discouraging. The problem with machine-independent language
is that it fosters the illusion that it is possible to document without rethinking; i.e.,
without thinking about what needs to be changed to use a program in a new system or
new machine,

The difficulty of documenting cannot be eliminated because documentation cannot be
done automatically; thought must be involved. However, the automatic approach does
have the important advantage that changes can be made easily while documenting. Auto-
mation streamlines the process of picking out and putting together the elements needed to
document a particular program.

Another aspect of the problem of documentation is its cost. Nobody knows within
30 or 40 percent just what computing and data processing cost the Federal Government.
One probable estimate is that computing and data processing, communications, and library
science information technology with its information retrieval, documentation, and micro-
film cost the Federal Government well over $10 billion a year. It costs the United States
as a whole perhaps $50 billion a year.

One reason for this enormous cost is that all the computers, information retrieval
devices, and other specialized devices operate at no more than 5 to 30 percent efficiency
at best. This is certainly not very efficient.

Despite the fact that it is patently impossible to run anything at 100 percent efficiency,
there are seme ways-of reducing costs by a factor of 2 or, keeping costs the same, increasing
throughput by a factor of 4. This symposium is an attempt by the technical community to
do this singlehandedly. It is doomed to failure because management and administration ‘
have not kept up with technological advances. To put it somewhat facetiously, the tech-
nologist makes things as good as they are, and the manager makes sure they do not get any
better.

The kind of organizational and administrative change and the detailed management
needed to see that technological advances are used is lacking not only in Government but
also in business to a great extent. Moreover, it is almost impossible for technological

VIEWS ON COMPUTER PROGRAM DOCUMENTATION AND AUTOMATION 79

improvements to be used properly. The principle by which people are promoted from
technical positions to high-level managerial positions effectively excludes anyone with a real
desire to achieve efficiency. .

The only solution to this problem seems to be to attack the problem this way. There
do exist large-scale, on-line systems that work because they have to. NASA is an example
of one, the airline reservations systems are another, and the stock market is yet another.
These systems are publicly visible and are subject to economic accountability. If the astro-
nauts do not land alive, if an airline reservations system does not work properly, or if some-
one loses $50 million worth of stocks, then somebody will be fired. These systems should
serve as models for the solution to the problem of how to keep our costs within reasonable
bounds.

\0‘?’\\
N

AUTOMATIC EDITING OF MANUALS

Dr. Robert P. Rich
Applied Physics Laboratory, Johns Hopkins University

Documentation for a computer program is usually understood to include some or all
of the following items:

(1) Program listing

(2) Flowcharts

(3) Problem description

(4) Programmer’s reference manual
(5) Analyst’s reference manual

(6) User’s manual

(7) Management information

The documentation problem that one encounters arises from the difficulty of getting all of
these items prepared in a timely fashion and the near impossibility of keeping them all cor-
rect and mutually consistent during the life of the program.

A useful approach to the problem is to collect all of the necessary information into a
single document, which is maintained with computer assistance during the life of the pro-
gram and from which the required subdocuments can be extracted as desired.

Implementation of this approach requires a package of programs for computer editorial
assistance and is facilitated by certain programming practices that are discussed in this paper.
Experience shows that this approach not ohly provides documentation at a reasonable cost
but also facilitates program implementation and management, especially for large programs
requiring a team effort.

THE INFORMATION PACKAGE

The present approach to program documentation was made possible by the existence
of a general-purpose information package for the management of files of textual material.
This package was originally developed for document retrieval with the IBM 1401in 1962.
It has been rewritten with successive improvements for the IBM 7094, CDC 3300, and IBM
360; this last version, INFO 360, is discussed in this paper. The package contains three ma-
jor programs: the EDIT program for maintaining standard files, the PRINT program for
printing a standard file, and the SEARCH program for selecting records from a standard
file. ’

Preceding page blank

81

i

82 . AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
The Standard File

For a specific application, INFO 360 works on standard files. Each file consists of a
number of standard records. Each record consists of a format code followed by a comma
and then by the body of the record, which is a string of characters whose number cannot
exceed 4000. The master file contains the text of the current draft of the document. Most
of the records are text records, with a hyphen as format code:

-,This is a text record.

Another type of record that is important is the title record, with format code Td, where d
is a single decimal digit specifying the level of the title:

T3, 37. Title at level 3.

These records are used as section headings within a document; the body of the record begins
with a section number (37 in the previous example).

The EDIT Program

The EDIT program permits a master file to be established or modified in a way that is
specified by a file of changes. One or more records may be inserted, deleted, or modified.
The details of how the changes are specified are not of concern here, but it should be noted
that a good secretary can learn to type the changes without much difficulty. The cross-
reference feature of the EDIT program is important in the present application. As an exam-
ple, consider the section numbers of title records. The EDIT program can be instructed to
renumber all the sections in the sequence 1,2,3, . . ., throughout the file. It also corrects
cross-references, replacing the old section number with the new one, so that cross-references
by section numbers remain correct if the file is modified.

The PRINT Program

The PRINT program outputs a standard file in a variety of formats that are determined
jointly by the format codes of the individual records and the values assigned to various print
parameters. Text records are broken into lines (with hyphenation and justification) to fit the
specified margins. The listing is broken into pages to fit the assigned page length; page head-
ings and numbers are printed as requested; and footnotes and white space for figures are appro-
priately positioned, no matter how the page breaks fall. In addition, multicolumn printing
may be specified.

The treatment of the title records is-especially interesting. When-the PRINT program
encounters a title record, it uses this record in three ways:

(1) The body of the record is printed in the text at its point of occurrence and set
off by lines of asterisks.

(2) The body of the record is saved as a page heading, to be repeated at the top of
following pages until it has been replaced.

(3) The body of the record, with the current page number added, is saved for inclu-
sion in the table of contents.

When printed, each title record is indented by an amount proportional to its level.

AUTOMATIC EDITING OF MANUALS 83

This treatment of title records by the PRINT program, together with the automatic
correction of cross-references by the EDIT program, provides an extremely powerful cross-
referencing mechanism for the complex type of document involved in the present application.

THE MONODOCUMENT

What is being proposed is that the complete documentation for a particular program be
included in a single document, the monodocument for that program, and that this docu-
ment be maintained with the assistance of a computer employing INFO 360 or any local
equivalent. When such a program is begun, the monodocument consists of only an outline
that may be in the form of title records at appropriate levels so that the indentions will pre-
serve the correct outline form in the table of contents.

If several people are to work on the program, then the first coordination meeting might
result in the assignment of responsibilities for the various sections. Each such assignment is
recorded temporarily as the text of the section, to be replaced by the actual text when it be-
comes available. As each section is completed, it is put into the monodocument by the
EDIT program; the section then becomes immediately available for proofreading and fur-
their correction by author or editor and for reference and negotiation by all members of
the team. Once a section has been approved and proofread, it remains correct until changed.
Hence, all people involved can concentrate on the currently active sections of the document.

As agreement is reached on such matters as file formats, subroutine specifications, and
programming conventions, they are incorporated into the document. Since at any given
time, each person is using a copy of the same draft, it is much easier to maintain consistency.
Each programmer has the responsibility of ensuring that his part of the program remains
consistent with the other relevant parts of the monodocument. The cross-reference capa-
bility makes this part of his job such simpler. If the monodocument grows in this way as the
program is written, it will be completed when the program is completed, and the documen-
tation problem will have been solved.

The Symbolic Program

The symbolic program itself is one of the major sections of the monodocument. It is
easy to incorporate the symbolic cards for a checked procedure into the master file or to
punch such cards from the master file. Hence, the monodocument can easily contain the
program as it was checked out; in fact, it becomes the official record of the final version of
the program. This is particularly helpful if the program has a long production life.

Although the general approach being discussed is fruitful for assembly language pro-
grams, the symbolic program is especially elegant when high-level languages are used because
a moderate amount of commentary and proper style conventions make the program self-
documenting in a very useful manner. It is assumed, of course, that the program is written
in a modular fashion. Such helpful techniques as assignment of labels in lexicographic order,
systematic indention to show logical levels, and explicit declaration of variables deserve more
attention than is given to them in this paper. The fact that program commentary can con-
tain cross-references to other sections of the monodocument is potentially very helpful but
has not yet been exploited.

pret

84 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
Flowcharts

A set of flowcharts is a traditional part of the program documentation package. Re-
cent experience indicates that a program properly written in a high-level language, especially
when cross-referenced to an appropriate functional description, is easier to understand than
the flowcharts that purport to describe it. Those who hold this view would ignore flowcharts
in the monodocument. (This opinion does not apply, of course, to the informal, working
flowcharts that the programmer uses while he is writing the program.) However, if they are
required, they can be prepared by AUTOFLOW after everything else has been done. Those
who still feel that final, hand-drawn flowcharts are worth what they cost will, of course, con-
tinue to produce them; that job will not be made more difficult if the monodocument ap-
proach is used for the rest of the package.

Problem Description

Problem description means a description of the problem the program is to solve, the
function it is to carry out. This section of the monodocument will obviously be one of the
first ones actually written, although it may be modified from a brief qualitative description
to a detailed technical specification in some instances as the work progresses.

Programmer’s Reference Material

The programmer’s reference material portion of the monodocument contains informa-
tion of interest to a programmer who has to correct, modify, or explain the program. It is
complementary to (and can be cross-referenced to) the symbolic program.

Analyst’s Reference Material

The analyst’s reference material includes details of interest to the user that are not in-
cluded in the user’s manual. For example, the convergence characteristics of the numerical
algorithms and the nature of the approximations used are among the items included. Some
material could equally well be placed here or in the programmer’s reference material.

User's Manual

The user’s manual includes the material needed to use the program: input formats, con-
trol cards, file designations, alarm messages, restrictions on ranges of input variables, etc.

Management Information-

Management information, such as time logs of personnel assignments, computer time
for checkout, and comparisons between original estimates and actual performance, can
easily be kept current as the monodocument is periodically updated.

DISCUSSION

MEMBER OF THE AUDIENCE: What can be said of the system’s ability to produce
machine-readable charts, tables, and illustrations? Many document programs have a need
for them.

AUTOMATIC EDITING OF MANUALS 85

RICH: Those displays that consist essentially of computer printout, such as AUTO-
FLOW charts, could very easily be imbedded in the document and updated in the same
manner as text. Those displays that are produced by a plotting device or by a draftsman
would be incorporated into the document when it is bound.

MEMBER OF THE AUDIENCE: Some of the IBM systems that are available have
languages for producing machine-printable charts, illustrations, and diagrams that are not
flowcharts.

RICH: The system that I discussed, as well as a number of other systems, have features
that were not covered in my presentation. For instance, our system will not only accept
tables but will even perform the arithmetic of tabular work.

Currently, we have over 200 pages of documentation for our system. For instance, the
PRINT program has approximately 30 different format codes that indicate the different
types of records: text and heading records, indexing records, records that leave space for
figures and captions, etc. _

MEMBER OF THE AUDIENCE: How does your approach handle the engineering as-
pects, such as representation of algorithms in text? A very important part of scientific pro-
gramming is the ability to display the equations being used.

RICH: There are essentially two solutions to this. Space can be left in the text so that
typed equations can be stripped into the document. This is quite troublesome. I take the
view, however, that if we are going to achieve the documentation of a program, the problem
is best described in a programmable notation. If the engineer wants an alpha, then 1 spell
ALFA; if exponents are required, then two asterisks should be used, or some other represen-
tation that would depend upon the programming language. If an algorithm is clearly defined
for the computer and an appropriate language is being used, the engineer can easily verify
his statements. It is best to help the engineer write his formulas in a programmable language.

MEMBER OF THE AUDIENCE: Is it your feeling that another individual, a documen-
tation specialist, should be working with the programmer and handling all of the evolutionary
documentation?

RICH: When I work on a program, I take personal responsibility for the documenta-
tion. For the usual systems team (project engineer, physicist, analyst, programmers, etc.), a
secretary and an individual willing to take responsibility are needed in order to achieve good
documentation.

MEMBER OF THE AUDIENCE: What are the advantages of using the computer for
documentation instead of an MTST or similar device?

RICH: The computer generates text that is truly machine-readable; this is not always
the case with MTST’s. For updating text efficiently, the computer approach is far superior.

Y
0(\}

A
NIk

MAKING AUTOMATED COMPUTER PROGRAM DOCUMENTATION
A FEATURE OF TOTAL SYSTEM DESIGN ~

Allan W. Wolf
System Development Corp.

The “paper-mill”” character of large-scale computer software systems is a condition that
is all too familiar to anyone involved in the computer programming business. Program manuals,
design specifications, administrative reports, system descriptions, and user’s manuals are just
a few of the kinds of documents necessary to support a big software system, These docu-
ments, besides being complex, abundant, and subject to change, are frequently afterthoughts
to the systems they support rather than part and parcel of the system design, This factor,
when coupled with deadline and money pressures, unfortunately leads to another all too fa-
miliar condition—inadequate documentation.

Program documents are too often fraught with errors, out of date, poorly written, and
sometimes nonexistent in whole or in part. This condition need not exist, however, Data
stored on the printed page should be accurate, accessible, and helpful to the user, and it can
be if a systems approach and existing computer technology are employed. This paper de-
scribes how many of these typical system documentation problems were overcome in a
large and dynamic software project.

The project that will be discussed is the U.S. Air Force Satellite Control Facility
(AFSCF) orbital prediction and command system, It is both large and dynamic and consists
of about 2.5 million machine instructions in some 900 programs, over one-half of which are
being modified during a typical 6-month period. The documentation supporting this system
amounts to some 65000 pages, and an average of 5500 new and modified pages are pub-
lished each month.

At one time there were numerous system problems that could be attributed to a lack
of quality in the software documentation. More than 10 subcontractors produce the satellite
computer program subsystems for AFSCF operations. It is common to have several of these
agencies simultaneously produce programs that must interact (or interface) with each other
and also with existing software, Before the development of the current system, this proce-’
dure led to problems in computer storage sharing, program calling sequence interpretation,
interface data design, and other areas, In addition, there were all the usual problems associ-
ated with poor documentation.

(1) Users did not know how to call or use existing programs. Required input parame-
ters and data could not be determined, and, in some cases, it could not even be
determined whether routines existed to perform a particular function. Expen-
sive computer time was wasted experimenting, or essentially duplicate routines
were produced because it was felt to be cheaper than the process of decoding
existing ones.

87
PRECEDING PAGE RLANK NOT FILMED

88 AUTOMATED METHODS OFF COMPUTER PROGRAM DOCUMENTATION

(2) Analysts could not determine whether existing routines were adequate for certain
applications. References to the mathematical bases for programs were lost, or ori-
ginal work was never documented, '

(3) Maintenance and development programmers spent much time and money attempt-
ing to modify programs. Great savings could have been realized if there had been
adequate standards and conventions or system documents to provide some insight
into what had already been done.

As the AFSCF system grew larger and more complex, and as these documentation prob-
lems manifested themselves in various ways, it became obvious that they would have to be
solved, or the system would become totally chaotic. System Development Corp. (SDC) was
given the task of designing and developing a new software system to support AFSCF, There
were several design goals for the new system, but the one of primary interest for this paper
was the alleviation of the types of problems emanating from inadequate documentation,

To fulfill this and the other design goals, a total systems approach was used. For docu-
mentation, this means that each system component was designed with the documentation
problem in mind, instead of a procedure that designs the system and considers documenta-
tion as an appendage to be developed after and around the basic design, Naturally, there
were compromises because of conflicts among the several goals, but the final result was a sys-
tem that directly incorporated features in the basic design that overcame many of the previ-
ous documentation problems. The systems approach encompassed such items as—

(1) Configuration management (a closely monitored software management scheme
that guides products through the various design, development, and acceptance
milestones) _

(2) Standards and conventions (guidelines, restrictions, and quality assurance meas-
ures covering many of the program design and development activities; application
handled by configuration management)

(3) Collection of program information into central data banks to which all system
components will have access, permitting easy and accurate documentation)

(4) Interaction among executive, compiler, central data banks, and configuration man-
agement (to provide a check and balance system that will prevent errors)

(5) Automatic documentation (to provide timely and accurate documents)

Figure 1, which will be discussed in detail in the section entitled ‘““Configuration Manage-
ment,” shows the flow of new products through the milestones in the AFSCF system. This
illustrates the interaction among some of the items just mentioned.

This paper shows how the system approach guarantees the accuracy of various portions
of the documentation, provides the user with a total picture of the system, provides calling
sequence and internal information on the various system programs, and, in-general, eliminates
many of the problems that typically arise from poor documentation. Specifically, the follow-
ing elements will be discussed:

(1) The data-base definition, or common pool of information (COMPOOL), which is
a data base in itself, contains descriptions for every program and piece of interface
data (between programs) in the system. It plays a major role in the generation of
automated documentation, the simplification of program maintenance, and the
minimization of program development costs,

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 89

ASSOCIATE ZONT:ACTOR

(:) (PROGRAM J7S1GM & PRODUCTION)

PROGIAM DeSIGN DOCUMENT

[}
i
1

Contains Program
Matrematics, Calling
Saauence, and System
Interface Information
Inciuding New & Existing
Comcool Information

1]

O) |

4

R

INTEGRATION CONTRACTOR
(E) (P30DUCT QUALITY ASSURANCE
CRITIQUE DESIGN PREPARE

SYSTEM INPUTS FROM
INTERFACE INFORMATION

Critique for Design and Document
Conformance to System Standards,
Prepare New Compool Inputs, Verify
that Usage of 01d Items is Correct

®

INTERFACE DOCUMENT CONFIRM-
ING ALL SYSTEM INTERFACES
IN PROGRAM DESIGN

PROGRAY, AND PROGRAMMING
DOCUMENT

|

Documert all Compool Information,
Calling Sequences, etc.

®

‘ COMPOOL
ASSEMBLE COMPOOL DOCUMENT

Incorporate New
Compool, Items

®__ 4

COMPILE PROGRAM

/

PROGRAY i
2| CRITIQUE PROGRAM- LISTING lg
MING DOCUMENT) i

Criticue Program Document for
Conformance to System Standards

@___ ¥

PLACE PROGRAM
ON MASTER TAPE

TAPE CONTENTS
SET/USED .
DOCUMENTATION it

TURNGVER SYSTEM TO AIR FORCE
FOR OPERATIONAL SUPPORT

Figure 1.—Product flow through AFSCF configuration management milestones.

90 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

(2) The configuration management scheme, although not specifically a part of the
software system, is so basic for insuring product quality that any discussion of
documentation would be incomplete without a description of it. How production
and quality assurance functions check and balance each other, and how new prod-
ucts flow through this controlled scheme will be discussed.

(3) The computer-produced documents, when combined with manually prepared por-
tions of the design and programming documents, provide high-quality, total-system
documentation. When and how these documents are generated and the information
that they contain will be discussed.

DATA-BASE DEFINITION

There are five basic elements in the AFSCF orbital prediction and command system
that will be referenced throughout this paper. These are COMPOOL, the library tape, the
master tape, configuration management, and the system programs. Of these, COMPOOL is
the most fundamental, for it provides, in one centralized location, the basic definitions, ref-
erences, and formats used by all the programs in the system.

Specifically, COMPOOL consists of names and calling sequence descriptions for all
AFSCF system programs, along with descriptions of all system intercommunication data.
Initially, COMPOOL takes the form of a punched card deck containing all the necessary de-
scriptive information in the prescribed format. A special COMPOOL assembly program then
processes these cards and compiles the data into tables that are an efficient input for the
system compiler. During the COMPOOL assembly, a tape is produced that contains all the
information on the input cards. This tape forms the basis for later COMPOOL updates, and
it also serves as an input to a program that generates all the COMPOOL documentation.
Data in the COMPOOL are organized according to the following hierarchy: blocks, tables
(or arrays), and items, blocks being the gross data sets and tables and items being subsets of
the blocks. As has been mentioned, COMPOOL also contains program descriptions and
calling sequences.

Figure 2 is an example of the program calling sequence that is a part of the COMPOOL
output. The explanation for labels a to e are as follows:

a: The notation SUBR indicates that the data that follow are for a subroutine (com-
puter program). All programs are identified by SUBR.

a b c
/) ; e
) CZDaMED CADAYS, AMIN=THETAGR, THETADOTIDS #2ATOMIC TIME TQ SQAVK g
STUEREAL TIME AND RATE COWVERSION SUBROUTINE, S08VK532360
COMPUTES SIDEREAL TIME (RIGHT ASCENSICN AT
d GREENWICH) AND SIDEREAL RATE (EARTH ROTATION SOBVKS32500
RATE) FROM AN INPUT ATOMIC TIME, 27 S08VK532600
1TENM ADAYS DS 2#CURRENT OFFSET TIME## ##AND RATE PROCX¥S08ANS532700
ITEM AMIN $ ZZATOMIC TIME, FL MINS FROM.OQOFFSET2#2 S08ANS32800
1TEM THETAGR
ITEN THETADOT

$ ##SIDEREAL TIME(RT ASC)AT GRNCH,RADNS MOD 2P1#2S08ANS532900
S ##SIDEREAL (EARTH ROT) RATE, RADIANS/DAY## S08ANS33000

Figure 2.—Program calling sequence (excerpt from COMPOOL document).

rv,l
P

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 91

b: DOME represents the name of the program (the # symbol precedes all COMPOOL
names).
¢: These are input and output parameters. All parameters to the right of the # sign are
output by the program.
d: These are format definitions for the input and output parameters. The symbols I,
48, U, and F designate such information as floating, integer, signed, and the number
of bits occupied by this item. The general data structures are defined in a system
standards and conventions manual.
e: These are sequence numbers that permit updating the data definitions on tape with-
out having to work with the entire card deck.

The definitions, enclosed within the # # symbols, are not required by the software system
but are supplied for almost all entries. This is, of course, one of the capabilities that makes
the COMPOOL document so valuable to users of the system.

Figure 3 shows a sample of the program interface data. The explanations for labels a and

b are as follows:

a: The notation BLK indicates a data block, V indicates the type of block (variable
length), and R means that the data are automatically retrieved and stored at set inter-
vals during a run to allow for restarts and subsequent runs. All entries are either
SUBR or BLK entries, although the type of block and the retrieval information may
vary. The balance of the information describes the data and format of the BLK in a
form that is similar to the calling-sequence item descriptions in figure 2. All of the
format information is defined in the system standards and conventions manuals.

b: The symbols C and I to the right of the sequence numbers indicate changes to and
insertions in, respectively, the previous version of COMPOOL, which was used to
produce this one.

2044
a

TaBLE
BEGIN
ITEM
1TEM

1TEm
1Tew
ITEM
1Te~
ITEm
11gn

A0AJTHL

20AJND
ZASTAB

ZASTAT
FAENGIN
ZATIM
#ADUR
ZAWT

BAFFR

R 48 RV $ #£0RBIT ADJUST TALLE PLUS POINTERS FOR
CONTAINS ORBIT ADJUST

SUBROUT[NE, #U0AR BLOCK,
INFORMATION FOR A VEHWICLE., 2¢

V64 P 10S

138U00S #20AJ NUMBECR##

S 2 VCINERTIAL)Y V(GEODETIC) V(GEDMAG) 0 8 §
£#STABILIZATION TYPE22

S 2 V(PLANNED) V(LOADED) V(EXECUTED) ¢ 10 §

Z£STATUS OF THIS ADJUSTx#

S 4 V(MAIN) V(SEC) V(RV1) V(RV2) VI(RV3) V(RV4)

V(RVS5) V(RV6) V(AMAIN) V(RMAIN) V(RSEC) 0 12 §

ZZENGINE TYPEx« -

F 108 #2TIME, FL MIN FR OFFSET##

F 2 0 S ##BURN DURATION, MINUTES2#£

F 3 0 (SLUGS,SNAILS,SEUGS) & #ATOTAL VIH MASS
2ZSNAILS3(LBS.MIN2/E.R.)

F 9 0 (SLUGEMN,SNAIL#MN,SLUGZMN) § ##FUEL FLOW

RATE

S08VK199100
S08VK199200
§08VK199300
S08A0199400
" S08AN199500
SO08VE199600
S08AN199760
S08AR199860
S08AN199900
S08AR200000
S08A0200160
S08A0200200
S08A02003C0
S08AN200400
S08AN200500
#2508#S200600UP
#2508XS200700UP
S08WS200800UP
##508WS200900UP

b

Figure 3.—Program interface data (excerpt from COMPOOL document).

92 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

a
CBLK #PHYCON oNS'rANTSu S08VF1630¢
ITEM ZBE C(KM, ER KHD § #2EARTH POLAR RADIUSZ# S08ANZ16507
LTEM Zay 3 ZFEARTH RADIIZASTRONOMICAL UNIT## S08AN21623%
ITEM ¥BLATE F\S #2%x31-ECCoe2#/¥% SD8AN216300
ITEM #ECC F Y GEENIRICITY %% S08AN216400
[TEW #ECLPT F QQEG.RAD.DEDY § #ECLIPTIC ANGLE## S08AN216500
ITEM #ECLSIN F S O THE ECLIPTIC ANGLEZ# S08AN216600
ITEM #ECLCOS F § ##CCS OF THE ECLIPTIC ANGLEZ# S08AN216700
ITEM #FE F s F#FLATTENING, EARTH, 1/EPS## S08AN216800

Figure 4.-System constants information (excerpt from COMPOOL document).

Figure 4 shows an example of the system constants information (CBLK), which is simi-
lar in form to the VBLK interface data (fig. 3). The C means constant: If a program refer-
ences an item in this block, it is automatically loaded by the system executive each time the
program is operated. The set of three units in the item definition (examples noted by a) in-
dicates input, internal, and output units, respectively, for this item. These are nominal and
can be overridden on the program request cards.

It should be recognized that COMPOOL does not contain any system data itself. For
instance, the PHYCON block in figure 4 does not actually give the values of the constant,
but only the description. The constants will ultimately be placed in a block by the input of
their values and names (e.g., 10.25 and OMEGA, for Earth rotation rate) into a utility pro-
gram that uses the assembled COMPOOL to determine the proper block, format, and units
for the items. The PHYCON block would then be stored on tape for later use by the opera-
tional programs.

The operational programs will not use COMPOOL once they are compiled, however.
When a program is first written, COMPOOL items are referenced by name. When the com-
piler encounters one of these COMPOOL data (or program) references during a compilation,
the COMPOOL assembly tables are consulted, and the proper machine code is inserted for
manipulation of the data. No computer program in the system, then, contains any interface
data definitions, and the program does not directly reference any COMPOOL definitions,
it references only the data names..

A number of controls insure the integrity of the COMPOOL document. First, the over-
all design of the system rules against the inclusion of programs in the system that are not in-
cluded in COMPOOL. For instance, both the executive and compiler print error messages if
a program is used that does not exist in COMPOOL. Second, interface data items cannot be

‘used at all if they are not in COMPOOL before compilation. (However, test and development
COMPOOL’s may be used before formal submittai of the program for inclusion in the sys-
tem.) Third, the configuration management system, discussed in the next section, insures
that all programs and data in the system are properly entered in COMPOOL. Consequently,
the COMPOOL document is a current, thorough, and accurate guide to the descriptions and
calling sequences for all system programs and the descriptions and formats of all interface
data. COMPOOL and the COMPOOL document simplify program access, use, and mainte-
nance in several ways:

{ vr.alt

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 93

The document is always current because it is produced automatically with each COM-
POOL update; it does not depend on the update being done manually. (The actual document
production is discussed in the section entitled “Automated Documentation.”)

Users can quickly ascertain whether a system program already exXists to meet a certain
requirement and, if it does and can be called by another program, what calling parameters
are necessary. The document excerpts discussed in this section indicate the various COM-
POOL entries and the amount of information that is available to the users.

Availability of the COMPOOL document helps maintenance and development person-
nel decipher portions of programs that reference COMPOOL data. Also, well-documented
and accessible data definitions aid considerably in the production of new and modified
programs.

The ability to reference data by name instead of having to include actual values in a
program eliminates many mistakes and insures consistency in program results. This, in turn,
aids in keeping the program and documentation in close harmony.

Constant data can be changed in one place, and all program references are automati-
cally made to the new value. This is because the data can only be calied by name in the pro-
gram. The compiler converts this name to a location reference, and all references are made
to this single location. The actual value of the constant need never be stated in the program,
it need only be given in the library tape document (described in the section entitled ““Auto-
mated Documentation’). The automated documentation of constants in a single location,
then, is made possible by COMPOOL.

COMPOOL table or format changes require the recompiling of the programs that ref-
erence the altered items. However, programmers are not burdened with manual modification
of data and definitions in the several programs that may require recompilation. All such
modifications are accomplished automatically by the interaction between the COMPOOL
and the compiler. Thus programmer errors are eliminated.

The next section will show how the configuration management scheme for the AFSCF
software interacts with the software to keep the system user’s information sources current
and accurate, '

CONFIGURATION MANAGEMENT

The COMPOOL document and COMPOOL itself are extremely valuable aids in the
standardization and use of the software system. They offer no guarantee, however, that
programs will conform to all system standards or that other program documentation will be
adequate. To insure that deliverable products are complete, correct, and consistent, checks
on product development, adequacy, and compliance with schedules and standards and bal-
ances among the skills, methods, and resources available to do the job effectively and effi-
ciently are needed. In AFSCF operations, these checks and balances are provided by a con-
figuration management system.

Configuration management refers to the planning, direction, and control of all factors
affecting the state of the system. Some examples of configuration management tasks in the
AFSCF system are new program scheduling, review of inputs and determination of COM-
POOL content, determination of programs to be included on the master tape, and quality

94 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

assurance through the critique and testing of new programs and documents. The balance of
this section explains who fulfills the configuration management role in AFSCF, how prod-
ucts flow through the check and balance system, and what some of the specific controls are
that provide for quality documentation. '

Agencies and Responsibilities

The customer, while having ultimate authority over the system configuration, lacks
adequate manpower to directly manage the overall effort. At the same time, the program
production, or associate, contractor is too involved with costs and schedules to provide the
necessary unbiased support, particularly in the area of quality assurance. Consequently, a
third party, known as the integration contractor, is employed to support the customer’s
configuration management efforts, particularly in the quality assurance and product
acceptance areas.

For the past 9 years, SDC has fulfilled this role for the AFSCF software system. The
specific tasks performed in this integration role are the detection, definition, and resolution
of interface problems (between contractors, programs, and hardware); checking individual
programs for conformance to design specifications, standards, and conventions; integration
of the programs into a complete computer program subsystem; and validation of the sub-
system to insure that all elements of the package are operational and compatible.

Product Development

The checks and balances, then, are between the integration contractor and the associ-
ate contractor. Figure 1 delineates the roles of these two contractors as new computer pro-
grams pass through the AFSCF product development cycle. The configuration management
scheme, based on U.S. Air Force Exhibit 61-47B, was designed by SDC specifically for
AFSCF. The following are some aspects of this scheme that aid in securing quality documen-
tation and a quality software system.

The mathematical development for a program is presented in the program design docu-
ment (step 1, fig. 1). The integration contractor has time to evaluate and digest this infor-
mation (steps 2 and 3, fig. 1) before the actual program release. The integration contractor
also reviews the design document to insure that provision has been made to place new inter-
face data elements in COMPOOL, to properly use the existing COMPOOL information, and,
in particular, to insure that no data are imbedded in the program that should be COMPOOL
definitions.

When the integration contractor receives the program (step 4, fig. 1), it is manuaily
compared with the programming and design documents. The two products must conform
before the program is accepted. This conformance is also required for design logic or any
other portion of the design document that could cause problems in later development or
analysis work. Programmer analysts rather than computer programs are used to perform
these checks. This work is done manually for the simple reason that although the automatic
flowchart program can track any arithmetic and logic, no automated method exists that will
deduce mathematical derivations or the logical bases of certain techniques from the program
(computer code) itself.

4

ped
et
-

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 95

The conformance between programs and the COMPOOL items they use is imposed by
the system itself. The COMPOOL inputs are prepared from the design document (steps 2
and S, fig. 1), and the program is then compiled with this COMPOOL. This procedure auto-
matically forces conformance between the program and COMPOOL and also guarantees that
the program matches the design document (in the COMPOOL area), the design document
being the source of COMPOOL inputs. It follows, then, that COMPOOL, the COMPOOL
document, the program, and the design document are all consistent.

Quality Control Measures

The system standards and conventions are enforced throughout the review of the docu-
mentation and the final program acceptance. There is a single standards and conventions
document for the AFSCF orbital prediction and command system. Briefly, some of the
areas covered by this document are—

(1) COMPOOL mputs—conventions, format standards, necessary description infor-
mation, block sizes, etc.

(2) Data cards—format standards, use of special columns, error processing conven-
tions, etc.

(3) Documentation—format and content standards, program calling sequence, illus-
tration conventions, etc.

(4) Executive interface—illegal instruction standards, input/output (I/O) usage, pro-
gram size requirements, successor call and nesting standards, compiler usage, etc.

(5) 1/0O usage—choice of units, access methods, record sizes, internal tape label infor-
mation, lines per page, and heading information required by system

(6) Messages/error detection—requirements for error messages, error message output
devices, system error messages, etc.

This list is only a sample of the areas covered; however, it indicates the extent to which
the system is governed by standards and conventions. How these restrictions and guidelines
aid the documentation task can be illustrated with an example of input parameters for time.
Suppose that the time “1330 hours, 59.2 seconds, 3 June 1970” was an input parameter on
a data card. The possible variations in input format for these data are almost innumerable.
Some of the possibilities are:

36 70 13 30 59.2,

3 6 1970 1330 59 2,
3 JUNE 70 13 30 59.2,
JUNE 3 1970 1330 59 2

Definition of a standard input format for this example accomplishes several things. The pro-
gram documentation is easy to read, the interpretation of each of the parameters comprising
the time is unnecessary because there is only one format, and typographical errors are of
little concern because a single format removes all ambiguity or misunderstanding. Users can
quickly format data cards without fear that a particular program does things a little

96 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

differently. Finally, a common system program can be used to convert the time input to
different reference bases, thus relieving the programmer of a task that would have to be
tested, with both the test and program logic requiring documentation. The development

and enforcement of system standards, then, can be a great step forward in the solution of
documentation problems. The application of standards, incidentally, is generally enforced
by the program system as well as by the configuration management scheme. This is because
many of the standards have to do with interfaces among existing system programs; violations
in these circumstances generally result in error messages and unsuccessful computer runs.

When a new or modified version of a program is delivered to the integration contractor,
that program must have a unique identification to differentiate it from all other versions of
the same program. That identification is known as the “mod.”” The mod identifier is com-
piled with the program and is automatically transmitted whenever the program is loaded
onto the master tape. Because the configuration management scheme “‘freezes” the program
upon formal submittal to the system (by directing that the programs be stored on specially
controlled tapes), all listings bearing the same mod number are guaranteed to be identical
and are an accurate reflection of the program bearing that mod on the master tape. Similarly,
the master tape has an identification that is printed out on all computer runs, logs, etc. This
identification changes whenever a change occurs in the master tape.

Automated documentation is produced and maintained for each version of the master
tape. This documentation shows the exact contents, including program mods, of the tape.
Because each configuration of master tape and program is unique and because each is cov-
ered by documentation, all guesswork concerning the identification of a configuration un-
dergoing maintenance or troubleshooting is removed. The high degree of interdependence
among the system programs in the AFSCF system makes knowledge of the correct config-
uration particularly essential because different versions of the master tape may be current
at the same time in support of different projects.

Many phases of configuration management, such as change control and scheduling, are
not discussed here, not because they are unimportant to documentation, in fact, they are
quite important, but because their importance is somewhat less tangible and more difficult
to explain. The aspects that are presented, however, show how a strong quality assurance
endeavor, backed by software expertise and well-defined standards and procedures, can
greatly improve the quality of system documentation.

AUTOMATED DOCUMENTATION

The AFSCF automated documentation touches on all elements of the system: COM-
POOL, master tape, library tape, configuration management status.information, and all the
computer programs. Figure 5 shows these elements and the inputs and outputs that com-
prise the automated documentation scheme. A major factor in the functioning of the auto-
mated documentation is the centralization of data: the master tape contains all the pro-
grams and configuration information, the library tape and COMPOOL contain data normally
found only in the individual computer programs, and the status information provides com-
plete details for the three areas of status shown in-figure 5. Along with the centralization of
data, of course, the accuracy of the documentation depends on the use of the strict config-
uration management methods described in the previous section.

pame
re.
“\4

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 97

PROGRAM DESIGN DOCUMENTS] DATA BANK OF
DESIGN CHANGE ALL SYSTEM STATUS DATA:
l INFORMATION
A1 1 DESIGN
CHANGES
DATA
DATA CONVERTED TO SYSTEM SOFTWARE ERROR & ERROR
DEFINITIONS |~ PUNCAED CARDS|__CONSTANTS CORREGTION REPORTS REPORTS
PRODUCT
] PROGRAM, DOCUMENT, & DELIVERY
v ERROR CORRECTION STATUS
DE|IVERY REPORTS,
LIBRARY
TAPE

| COMPUTER PROGRAM DECK
!

A

ER PRODUCED
i— T e, RAM FLOW DIAGRAM
: i
i COMPILER |
COMPILE
{covpiLen procRaM
iT0 MASTER A0

v TAPE BASIC SYSTEM ELEMENTS

. COMPOOL

MASTER . MASTER TAPE

TAPE R PRODUCED . LIBRARY TAPE

' 2) TAPE DOCUMENT . CONFIGURATION MANAGEMENT
EXECUTIVE
MONITOR

. SYSTEM PROGRAMS UTILITY PROGRAMS

COMPILER

OPERATIONAL PROGRAMS

Figure 5.—Automated documentation scheme.

98 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

The documents depicted in figure S are not necessarily useful as separate entities but
are quite useful when taken together as a system document. For instance, the library tape
document provides the names and values of system constants, but the COMPOOL document
provides the actual description of the data. The master tape documentation is supported by
the configuration management data base, which describes significant features of the new pro-
gram mods and the status of all errors and corrections affecting the tape. COMPOOL and
library tape documents and the automatic flowcharts complement the manually produced
mathematic and logic documents of individual programs. The balance of this section de-
scribes some of these computer-produced documents.

COMPCCL Documentation

The actual production of the COMPOOL document is governed by a program that ac-
cepts the list tape (effectively a card image tape), places heading information on the page,
and then prints approximately 50 lines of card images. The heading information is requested
by a program control card and consists of date, document name and number, starting page
number, etc. This program is general purpose; it will accept all AFSCF system list tapes as
input and will allow sources of input to be alternated so input cards can be used to annotate
information coming from the tape. Figure 6 is an example of the heading output of this
program.

Library Tape Documentation

In most systems, the library is the respository for programs, but, in the AFSCF system,
the library tape contains the system constant information. The basic form of the input to
the library tape program is punched cards, with a list tape being produced along with the
library tape itself. Both tapes are processed by the same program that produces the COM-
POOL document. Figure 7 is a sample of the library tape document. All the element names
are COMPOOL entries, and the sample shown here conforms with the COMPOOL entries in
figure 4.

Master Tape

The master tape contains all the computer programs in the system. During the compila-
tion of a program, the compiler sets up tables containing information on all COMPOOL ref-
erences (both programs and data). These tables are then transferred to the master tape when
the program is loaded onto the tape. The program that documents the master tape references
these tables, and, along with a log of the programs.on the tape, it can preduce complete set/
use references for all programs and data items. This output can then be placed in the indi-
vidual program documents (see fig. 1) for subsequent use by the system users and mainte-
nance personnel. Samples of the master tape documentation are shown in figure 8.

System Status Documentation

Figure 5 shows the three areas of status information that are handled by computer
documentation. The types of data in the data bank include

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 99

SYSTEM DEVELOPHMENT CORPORATION
15 JUNE 1970 44 THe(L)=4164/314/00

Figure 6.—Page heading produced by automated documentation program.

ELEMENT xPHYCUN/G 3 ADG 062700
#3E 0.6356775E+4 $ ADG 062800
2AU 0.25454710E+5 % ADG 062900
#SLATE 0.9933054E+0 $ ADG 063000
#ECC: 0,81820k-1 S ADG 063100
2cCLPT RAD 0.409206212 3 ADG 063200
#ECLSIN 0.397881208 3 ADG 063300
#ECLCUS 0,917436945 $ ADG 063400
2FE 0.298250E+3 $ ADG 063500

Figure 7.—Values of system constants (excerpt from library tape document).

(1) Design changes—descriptions of all proposed design changes, identified by control
numbers. Status conditions include accepted for future implementation, rejected,
and pending action.

(2) Error reports—descriptions of all reported errors in the AFSCF software system,
identified by control number and program or by document number, priority,
responsible agency, etc.

(3) Product delivery status—description of all program, document, and program cor-
rector deliveries, identified by control number, delivering agency, applicable error
report numbers for correctors, etc.

Special report-generating programs employ these data for regular status reports and
user information documents when new master tapes are released to the customer. These
programs can produce reports with data sorted by control number, status (open or closed
problems, scheduled or rejected design changes, etc.), program names, priority of problem,
etc. The programs also compile status summaries for the three areas of information, Sample
outputs are shown in figure 9.

Flowchart Documentation

The individuality of programmers affects flowcharts more than any other portion of a
program document. Although symbols can be standardized, the level of detail is very diffi-
cult to regulate, flowchart accuracy is almost as difficult to monitor as program accuracy,
and the flow invariably reflects what the programmer wants the program to do and not
necessarily what it does. An automatic (computer) flowcharter overcomes all these prob-
lems; it is consistent in level of detail and reflects exactly what the program does. Further-
more, it is available as soon as the program is available, which is much more timely than the
typical manually produced diagram.

100

33
Pe13.,3"0D “43TER TAPE CIRECTORY P AGE
NA T TY?Z CLASS LEN3STS 12 400 COOSYS aJxCad
ZLRy” 2R33 75050 (73025%) RE558 WS
2UR020JT PROS 000 ($33553) R4355 AS
SNTRANCES 2J2UPUTL
AURTE P03 $6060 (n30711) 4334 RE)
LOG OF MASTER TAPE CONTENTS
ZyayR SLEIENT ZAVIRIMAZHT
2AUDLK Iw 2 IAFLT
2412 7ELTFIX
¥JAT1IME 1 FUETHLS I
23ATyY 1 ZINTEAP I
ZIORAAT (THLK) 3 Zi04A (1aLy) »J
2HRTIME (T3LK) *3 Zi0P (+/CHECK)
ENVIRONMENT LISTING FOR PROGRAMS
xTa, 1S REFEREMCED oY
Z0EPLOY Z00PE
#oETR ZDORSEL
ZJIVERSE 200NN
XTAPE]C 1S REFERENCED 3Y
#SYSRES
2TATV0S (T3LK) * |S REFERENCED oY

22A0 U

2UELSEL U

REFERENCES TO PROGRAMS

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

ThaTe

NIV e

ZJUk?

29UL7¢

(#PGAL)
(ZSKIPF)

ZiCP
ZicH
FlCP
2HAVETST
ZaLiiCuN I

¥PRYCUM (CALK: VU

#IRTE
ZIRTFG
ZDRTK

ZDIRE

U

Figure 8.—Excerpts from computer-produced master tape documentation.

The AFSCF system has an automatic flowchart program (FLOW) that is currently ap-

plied to a majority of the system

program documents.

FLOW is designed specifically to work with the system compiler (JOVIAL) and to
analyze JOVIAL language statements. It will recognize direct, or machine, code, but it
merely sets these off in a box on the diagram.

FLOW accepts prestored tape or card decks (of the object program), and a printer then
outputs the flowchart. A more ideal output device for a flowcharter is a plotter, but there

!
l-w\ 4

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 101

*see SUMNARY OF DRFsS = (| OSEU eese

ors PROG.NAME MIp=HOD PARI- STATUS SUBITS. ORIG. ORF QaATE S/V paATE b_n'u_ll_ ol15PO~ PROG, NAME WID*MOD MTM eaCHANGED DaTa
LILTN oNF~ DRF VRITY co. CLOStY BITION s/u $/U NUM3, eesNEM ENTRY
Losse sSPRP PeIVC Lov CLOSED E/V soc 11704768 02/2p9/770 NEM P13.1 PEND #SDARE Po4NG Too .

11291 sCARDIV Pya¥a MED CLOSED E/V SOC 08/07/89 07720770 NEW P13 1 PEND 4CARDIO Pr4wd Tgo .
11449 sTAPELY P73WD Lo¥ CLOSED EsU SDC 09/22/69 07736770 NEW Pi3.1 PEIID gTAPElO PIINE Tpg .
13582 $YmON LO¥ CLOSED €/V SDC 11713769 07/20/70 ME¥ PL3,1 PEND SSYSRES 010ME Yoo .
11393 sOEpLOT 1210C Low CLOSED o¥s SDC 11/20/89 07/14,70 wEW p13,L PEND DEpLOY T215€ ToO
1139 spePL07 T210¢ LON CL0SED ors soc¢ 11730789 07744770 NEM P13, PEHD SDEPLOY T219€ Toe

SUMMARY INFORMATION

eee DRF#S ON OPERATIONAL SUBSYSTEM CLOSED SINCE 8/18/70 « 27 wee

MIGH PRIORITY » 1
22280

MEDIUM PRIORITY = 13
22023 22050 2118 22138 72148 I2147 20163 22166 22172
22182 22235 22238 22091

LON PRIORITY = 13

21889 72013 22022 22148 z215% 72171 22234 22237 22233
22267 12271 72292 22312

SUMMARY INFORMATION

#DECOR 076 RO EO5 21643 02704770
OCTAL CORRECTORS TO #DECOR TO CORRECT THIS DRF, THESE .OCTALS SUBMITTED
12210-69 WILL CORRECT THE PROBLEM ONLY AFTER A NEN CONPOOL IS BUILY 70
INGREASE THE NUMBER OF 81TS IN #PASREV, a CCR HAS BEEN SUBHITTED,
S/U 02704770 DRF 231643 #DECOR EQS 076 RO MTM SUBMITTED
EXPLANATION ACCEPTED, CLOSURE WILL BE POSTPONED UNTIL INTFGRATION
OF CCR,

STATUS FOR SPECIFIC ERROR REPORT

Figure 9.—Excerpts from computer-produced system status reports.

are no plotters available in the AFSCF hardware inventory. Examples of the construction of
various flowchart symbols made with printer characters are shown in figure 10.

FLOW can produce flowcharts at several levels of compression. The initial level is ap-
proximately one box per input statement. Starting at this level, a set of seven rules is
applied to collapse the diagram. The amount it can be collapsed depends ultimately on the
logic of the program. In any case, the prime value of this capability is that the amount of
collapsing can be controlled at many interim points between the first and ultimate

102 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

levels. Thus, flowcharts can be produced that are shorter than the initial level but are still
at a level of detail that fully reflects the program logic.

FLOW produces the charts in a form that is suitable for inclusion in a document. The
output is small enough that it is suitable for the conventional 8- by 11-in. page, and all
heading information, such as document number, page numbers, and date, are provided.

The program offers options for processing only portions of a program; complete state-
ments in JOVIAL can be output rather than their translations, etc.

The basic advantage gained by the use of FLOW (or any flowcharting system) is that
it permits timely and accurate logic flows of the program to be made. In the AFSCF soft-
ware system there is the additional advantage of being able to cross-reference FLOW output

127

,0809, o,
A4 *,
' ® 1S o,
+* CHN(S]S) », YES ecee
*,GR 7 <TRUE»>» ,e>>»>>»»>»>(0813)
", e . coes
., s OCTERR
'. "
* NO
¢
.0810, ¢ 2 ENTRIES
PSR OO R ORRRGTONORORPORRNOTYS
» SET DCONJ INCREMENT |
*BY 1, .
(1342232211422 2221 X1 1))
¢

".
A4 .,
' ¥ ‘s *,
cane YES .* | LO LCOL *. NO ecve=
(0806) cccccecec<ces, <TRUE>> ,e>>3322233>(0814)
seee ., . ® evow
., o
, o

*

0813, OCTERR ¢ 2 ENTRIES
(X222 2221212 22X 222]
**ENTER PROCEDURE .
«*F_DERR, e
0."""'00"".'0t'.tt"t

¢

, 0814, ¢ 2 ENTRIES

(22221 A2 1222 T Y 2y 1)
+ RETURN FROM PROCEDURE

LI DL A T T T P R T)

I TP T T T I T2 S
¢ PROCEDURE FLDERR .
(21T D Y T P T T Y

> & & o

Figure 10.—Automatic flowcharter output.

MAKING AUTOMATE>D PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 103

with the library tape and the COMPOOL documentation. This provides the equivalent of an
annotated flowchart with considerably more information content than is available from flow-
charts of self-contained programs. '

CONCLUSIONS AND RECOMMENDATIONS

The benefits and advantages of the AFSCF system, thorough, accurate, timely, and
automated program documentation, are features that would be desired by the users of any
system. The question of how to relate the design concepts in this paper to other systems can
be considered with the following three facts concerting both this paper and the AFSCF
system.

First, the purpose of this paper is not to show specifically how a system should or
must be designed but rather to show what can be accomplished by integrating documenta-
tion into the basic design. It is unlikely that the same design would be the best approach in
any other system, but certainly the principles of design, such as centralization of data, rigid
control of the configuration, and program-imposed standards, are valid in other systems.

Second, the AFSCF system was designed under ideal circumstances in that the com-
piler, executive, monitor, and configuration management techniques were all part of the
design effort. This is a tremendous advantage over having to develop a system around al-
ready existing compilers and executives, the most common approach to system design.

Finally, the cost of a potential error is so high that AFSCF invests very heavily in ‘“‘in-
surance” procedures. The rigid configuration management controls described in this paper
are a good example of that. Certainly, it is expensive to critique and review every document
and intensively test every program brought into the system. Controlling the master tape,
library tape, and COMPOOL is also expensive, but the cost of losing one satellite because
of software errors makes the error “insurance” an excellent investment. There are some
systems for which errors may be less costly and would not warrant the type of procedures
that AFSCF employs.

In spite of the specialized aspects of the AFSCF system, the design concepts are valid
for any system. For instance, the centralized data approach is highly desirable, but it is not
necessarily practical to implement this approach in an already existing system. However, a
data base containing all the desired information for documents can be compiled by requiring
that information be incorporated in each program in the form of “pseudodata” (information
not required by the compiler, such as comments). These pseudodata must not affect operation
of the system compiler. A preprocessing program could then be used to extract this informa-
tion for documentation. Further, setting standards for the pseudodata and incorporating
legality checks on these standards in the preprocessor would help one secure information
with a minimum of manual intervention.

Standards and conventions are of value even if they are not rigidly enforced; this is
particularly true for documentation content and input formats. The mere fact that programs
are produced under standards can provide the user with a good deal of information, even
without the use of any specific program documentation. Furthermore, programmers will
generally conform to reasonable standards and conventions if they are available. The real
interest in automated documentation is not the production of documents; it is making

104 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

information available, and standardization can help make information available with fewer
documents.

Finally, whether the system is large or small, designed from scratch or only added, the
key point is to plan the documentation and not let it just happen. The planned approach,
along with some application of the principles presented here, will guarantee better quality
documentation for any software system.

DISCUSSION

MEMBER OF THE AUDIENCE: Does the master tape documentation consist of the
text or is it a set of module text descriptions?

WOLF: Basically, it is an index, containing program names, dates of loading, number
of cells used, etc. One can go from the master tape documentation to the COMPOOL docu-
ment, which contains the text. The several documents discussed, taken together, constitute
the system document.

MEMBER OF THE AUDIENCE: How often do you produce a master tape?

WOLF: At the present time, one is produced every 2 months, although the need for
documentation in certain circumstances will occasionally shorten this period to a few days.

>
‘s“"l\
L

b

SYNTAX-DIRECTED DOCUMENTATION FOR PL360~

Dr. Harlan D. Milis
IBM

PL360, due to the efforts of Niklaus Wirth (ref. 1), is a phrase-structured programming
language which provides the facilities of a symbolic machine language for the IBM 360 com-
puters. It is defined by a recursive syntax and is implemented by a syntax-directed compiler
consisting of a precedence syntax analyzer and a set of interpretation rules, as discussed by
Wirth and Weber in reference 2.

Syntax-directed documentation refers to an automatic process which acquires program-
ming documentation through the syntactical analysis of a program, followed by the inter-
rogation of the originating programmer. This documentation can be dispensed through re-
ports or file query replies when other programmers later need to know the program structure
and its details.

The interrogation of an originating programmer consists of a relisting of the program
text, with certain syntactic entities, which are classified as documentation units, set off ty-
pographically in lines and labeled with an ordinal coordinate system and a sequence of ques-
tions about these documentation units. These questions are generated automatically by com-
pleting prestored skeleton questions with coordinates and/or programmer-generated identifiers.
The programmer’s responses to the questions are stored and indexed to these documentation
units for retrieval.

A key principle in what follows is that the programming documentation process is man-
aged solely on the basis of the syntax of programs. The semantics of the documentation, as
embodied in programmer responses to interrogation, are not analyzed by the process except
in mechanical ways such as keyword indexing. In this way, a programmer’s responses are
treated as ‘‘black messages” in the process, in analogy to the idea of a “black box.”” That is,
a programmer’s responses are requested, accepted, stored, and later retrieved with no seman-
tic analysis of their contents.

SYNTACTIC PRELIMINARIES

We use the notation and definitions for PL360 in reference 1. In defining documenta-
tion units and lines, the following device is used. First, denote the grammar in reference 1
by G, which defines the language PL360, L(G). This grammar G will be transformed finitely
into a new grammar G* such that

L(G*)=L(G)

*Copyright © 1970, Associatioh for Computing Machinery, Inc. Reprinted by permission.

105

106 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

1 ok e and such that G* contains syntactic en
2 EE::éS{)EgL,) si= FOR <ASS STEP> <LIMIT> <DO> <STATEMENT®> ﬁtieS we Want tO classify as documenta'
UN

7 Core s> ii2 Goro <io> tion units and use to define lines.

8 <IF THEN ELSE ST> ::= [F <KCOND THEN> <TRUE PART> <STATEMENTS> . .

(3 GIFTMEN ST> o iie IF CCOND THEN> <STATEMENT®> The basis for the transformation of
L3

i% :::EE A:)EZn 212 <PROC HD6> CSTATEMENT®> G into G* is a finite number of elemen-
<PR >

15 <50 bEce> 1ix CSEG MEAD> BASE <K REG> tary steps as follows. If X is any finite

16 <SYN DC2> .

gL s 3% €T CELLY = <K REG> sequence of tokens and/or syntactic en-

19 <HHI:E ST 3t= CWHILED> <COND DO> <SVATEMENTS> tities Which OCCUI‘S aS part Of the right

side of a production rule in a grammar
G*, and (4) is not a syntactic entity in
Gk, we can define a new production (4) ;= X and substitute (4) for X in the right side of
any rule we please in Gk, to get a grammar G¥*1_ 1t is clear that L(Gkt1) = L(G¥) by this
construction. Then, we consider a sequence

G=G%G!, ... G"'=G*

Figure 1.—Documentation units.

where 7 is the (finite) number of additional syntactic entities we want to be defined in G*
which are not in G.

We note that even though additional syntactic entities can easily be introduced in a
grammar while retaining the identical language, the question of keeping it a precedence
grammar (ref. 2) is a delicate matter. This general point is not pursued here. However, we
use only transformations which label the entire right side of a rule; in this case the grammar
obviously retains its precedence properties.

In what follows, the grammar G is augmented to G* just to provide a basis for invoking
additional interpretation rules which define documentation files and generate questions. It
will also be apparent that the same device can be useful in extending syntax processing be-
yond documentation to questions of execution control and dynamic storage allocation in
multiprogramming operating systems. For example, better use of core may arise if core is
allocated to the machine code responding to syntactic entities such as “for statements” and
“while statements” rather than simply arbitrary “pages” of machine code which may break
up such natural units of execution.

DOCUMENTATION UNITS

We classify as a documentation unit any right-hand side of a rule which reduces to one
of the following syntactic entities in reference 1:

(SIMPLE STATEMENT)
(STATEMENT)
(DECL)
(PROGRAM)

There are 19 such documentation units given in figure 1. If the right-hand side is already
defined in G, it is used directly. Otherwise, a new syntactic entity is defined, with the under-
standing that G is augmented by each such definition, as described above.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 107

In effect, this classification of documentation rules is a convenience for identifying
productions whose recognition in an analysis corresponds to having additional interpretation
rules that deal with documentation processing.

Given a PL360 program, we consider every realization of such documentation units,
which can be structured on the basis of syntactic membership, as follows. A documentation
unit is a member of a second documentation unit if its program text is a subset of the pro-
gram text of the second. It is an immediate member if it is not a member of any third docu-
mentation unit, itself a member of the second.

The relation of immediate membership defines a nested structure of documentation
units in a program, beginning with the program itself as the highest level documentation
unit and continuing through “blocks,” “compound statements,” etc., to “‘single declarations”
and “‘single statements’ at the lowest levels. This nested structure can also be described as a
rooted tree, with the program as the root, and other documentation units as remaining inter-
mediate and endpoint nodes in the tree.

Notice any given statement or declaration may be included in the program text of
many documentation units. In fact, every documentation unit is a member of the program
and of every other documentation unit whose text contains it.

SYNTAX-DEFINED PROGRAM LISTINGS

Next, we consider the question of listing programs written in PL360 in a standard way
for readability and referencing during programmer interrogation and later examination.
When programmers make an informal effort to arrange their programs for readability, they
typically start each documentation unit, as defined above, on a new line and use indentation
to correspond in a general way with syntactical nesting in the program. We recognize that
the problem is a subjective one, but we give a syntax-defined listing algorithm which is be-
lieved to satisfy the intuitive intentions observed in informal programming efforts.

For the purpose of typographical listing, we partition a PL360 program or procedure
into a string of substrings. Each substring is to be a printed line, and the string of lines con-
stitutes a listing of the program. Associated with each line are two numbers: one which
specifies its order in the program or procedure, and one which corresponds to the indenta-
tion (or starting column) of the line. If a line exceeds the width of paper available, its con-
tinuation is further indented a standard amount.

The partition of a PL360 program or procedure into lines is defined by marking the
starting text for each documentation unit, and each label, BEGIN, END, ELSE, and . (dot)
symbol. The lines are numbered consecutively. The indentation number is the level of nest-
ing of the documentation unit it begins, if any, based on syntactic membership as described
above. The only lines not beginning a new documentation unit are BEGIN (in CASE state-
ments), END, ELSE, and . (dot). In each case they are indented according to the level of the
documentation unit which they help define. Labels are given the indentation level of the
program or procedure being listed.

To refer to a line from outside a procedure, we qualify the line numbers with the pro-
cedure name. While the concept of program is defined in PL360, no provision is made for
naming a program in the syntax.

108 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

<BLOCK>

Q1 PURPOSE OF BLOCK {COORDINATES)?

S1 BLOCK (COOROINATES) 15 FO (RESPONSE).
<CASE ST>

QI PURPOSE OF CASE STATEMENT (CODRDINATESI?

S1 CASE STATEMENT (COORDINATES) IS TO (RESPONSE).

Q2 CASE SELECTED AT (COORDINATEN?

§2 CASE SELECTED AT (COORDINATE) IS (RESPONSED.
<FOR ST>

Wl PURPOSE OF FOR STATEMENT (COURDINATES)?

S1 FOR STATEMENT (COORDINATES) 1S TO (RESPONSE).

w2 FOR CUONDITION AT {COOROINATE)?

§2 FUR CONDITION AT (COURDINATE) IS TO (RESPONSE).
<FUNC DECLT>

QL FUNCTION OPERATION AT (COORDINATE}?

SL FUNCTION OPERATION AT (COORDINATE} 1S TO {RESPONSE}.
<FUNC 10>

Q1 PURPUSE OF FUNCTION STATEMENT AT (COORDINATES?

S1 FUNCTION STATEMENT AT (COORDINATE) 1S YO (RESPONSE).
<FUNC ST>

Ul PURPDSE OF FUNCTION STATEMENT AT (COORDINATE}?

S1 FUNCTION STATEMENT AT (COORDINATE) IS TO (RESPONSE).
<GOTg sT>

Q1 GO TO WHERE AT (CUGRDINATEN?

SL AY {CONRDINATE) CONTRCE GQES TO {RESPONSED,
<IF THEN ELSE ST>

QL PURPOSE OF IF THEN ELSE STATEMENT (COORDINATESE?

S1 IF THEN ELSE STATEMENT AT (COORDINATES) IS TO (RESPONSE).

Q2 IF CONOITIUN AT (COORDINATE}?

S2 1F CONDITION AY [COORDINATEY TESTS (RESPONSE).
<IF THEN ST>

Q1 PURPUSE UF IF THEN STATEMENT {COORODINATES)?

St §F THEN STATEMENT (COOROINATESE 15 TO {(RESPONSE}.

42 IF CONDITION AT (COOROINATEN?

$2 IF CUNDITION AT (CGORDINATE) TESTS (RESPONSE).
<K REG ASS>

Gl VALUE OF (<10>) AY (COOQRDINATEN?

S1 VALUE OF (<ID>) AT (CODRDINATE) 1S {RESPONSE).
<NULL ST>

Q1 PURPOSE OF NULL STATEMENT AT (COORDINATE}?

ST NULL STATEMENT AT (COURDINATE) IS TU (RESPONSEl.
<PROC DECL>

Q1 AUTHOR UF PROCEDURE (<ID>})?

S1 AUTHOR OF PROCEDURE (<ID>F 1S (RESPONSE).

Q2 PURPOSE OF PROCEODURE?

S2 PROCEOURE {<ID>) IS TO (RESPONSE).

U3 INITIAL DATA?

$3 INITIAL DATA OF PROCEUURE (<ID>) IS (RESPONSES).

Qe PROCESSING LOGIC?

Se PAUCESSING LCGIC OF PROCEDURE (<ID>} IS5 TO (RESPONSE).

Q5 FINAL DATA?

S5 FINAL DATA OF PROCEDURE (<10>) IS (RESPONSE),

Q6 REFERENCES?

S6 REFERENCES FOR PROCEDURE (<ID>} ARE (RESPONSE).
<PROC D>

Ql PURPOSE OF PROCEOURE STATEMENT AT (COORDINATE)?

$1 PRUCEDURE (<PROC 1D>) AT (CNORDINATE) 1S TO (RESPONSE).
<PRUGRAMD>

@l AUTHOR OF PRCGRAM (<ID»)?

SL AUTHOR OF PROGRAM (<ID>) 1S (RESPONSE).

Q2 PURPQOSE OF PROGRAM ?

$2 PROGRAM (<lD>} IS TO (RESPONSE).

Q3 ENLTIAL DATA?

$3 INITIAL DATA OF PROGRAM (<ID>) IS (RESPONSE)N,

Q4 PROCESSING LOGIC?

$4 PROCESSING LOGIC OF PROGRAW (CID>) 15 YO (RESPONSE).

Q5 FINAL DATA?

S5 FINAL DATA OF PROGRAM (<CID>) IS (RESPONSE).

Q6 REFERENCES?

S6 REFERENCES FOR PROGRAM (<ID>) ARE (RESPONSE).
<SEG DECL>

NO QUESTION

KO STATERENT
<SYN DC2> (FOR EACH IDENTIFIER DECLARED)

Q1 SYNONYM (<ID>) TO (<lD>) AT (COORDINATE)?

S1 SYNONYM (CID>} TO (<ID>) AT (COORDINATE) 1S (RESPONSE).
<T CELL ASS>

Ql VALUE OF {<ID>) AT {COORDINATE)?

S1 VALUE OF (IKID>) AT (COORDINATE) IS (RESPONSE}.
<V DECLT>

Q1 (<ID>) AT (COORDINATE)?

$S1 {<10>) AT (CCORDIMNATE) IS (RESPONSE).
<MHILE ST>

Ql PURPOSE OF WHILE STATERENY (COORDINATES)?

S1 WHILE STATEMENT (COOROINATES) IS TO (RESPONSEL.

Q2 wWHILE CONDITION AT (COORDINATE) ?

$2 WHILE CONDITION AT (COQROINATE} TESTS (RESPONSED.

Figure 2.—Skeleton question/statements for

documentation units.

For convenience, we introduce a
new basic symbol PROGRAM and the
redefinition

(PROGRAM) 1=
PROGRAM (ID) (STATEMENT)

which permits the naming of programs and
reference to documentation units by line
numbers, qualified by program names.

CANONICAL DATA FILE

For convenience in documentation
processing, we define a canonical data file
as consisting of a record for each documen-
tation unit of a program or procedure dec-
laration. Its function is not only to store
relationships between various syntactic en-
tities but also to provide data for driving
interrogation, report generation, and query
processing concerning the program or pro-
cedure. Each record describes three proper-
ties of the documentation unit: its coordi-
nates in the program text, its syntactic type,
and an identifier list. The coordinates are the
first and the last lines of the documentation
unit (which may be the same when text is
contained in a single line). The syntactic
type is the entity identified as a documen-
tation unit in figure 1. The identifier list
depends on the syntactic type—denoting
identifiers which are declared, assigned
values, used in assigning values, used in con-
trol logic, etc.

It is clear that a deeper syntactical
structure, described -only informally here,

is relevant below the generic level of

documentation unit. For example, the identifier list itself is definable in terms of productions
within a documentation unit, and such productions determine whether each identifier is
being declared, assigned a value, used in a computation, used in control logic, etc. Thus the
additional interpretation rules required for documentation processing are distributed through-
out the syntax, all the way down to the identifier level, but are not discussed in detail now.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 109
SYNTAX-DIRECTED INTERROGATION AND RESPONSE EDITING

We consider an automatic interrogation process, which uses the canonical data file to
complete prestored skeleton questions with program text coordinates and/or identifiers.
The interrogation process proceeds through the file, a record at a time, and generates a
series of questions from each record, depending on the syntactic type and identifier list
found therein. The responses to such questions, made by the programmer, are indexed to
the records which generated them.

A set of skeleton questions associated with different documentation units in PL360 is
displayed in figure 2. At the end of each interrogation, the programmer is given a final oppor-
tunity to volunteer any additional information.

Associated with each skeleton question in figure 2 is a skeleton statement which con-
tains the programmer’s response to that question as one of its parts. These statements, filled
in with responses and other data from the canonical data file, as shown, represent basic unit
messages which can be assembled into reports and query replies.

The construction of skeleton questions and skeleton statements to elicit and edit pro-
grammer responses is a substantial and still open problem. It is evident that careless ques-
tioning can bury programmers in questionnaires and alienate them to the whole idea. Limited
experience (refs. 3 and 4) has indicated that skeleton questions should be terse and highly
selective. An involved question, which seems reasonable to read once or twice, can have a
very negative effect on a responder when repeated many times, even though this kind of
question requires no more effort to answer than a terse one. Thus a first principle in question
construction is that the burden of understanding what the question means must be put into
a separate orientation course, outside the interrogation itself, and the questionnaires must
be kept as short as practicable.

A second principle in question formation is that program text itself must be depended
upon for later programmer reference. The questions and responses are intended to illuminate
the program text, not to replace it. Otherwise, questions become too involved with points in
plain sight in the program text.

Similarly, the order of questioning is also important. Some experience indicates that a
“top-down” sequence is a better basis for questioning than “bottom-up.”” Fortunately, due
to the structure of PL360, interrogating documentation units in the order in which their
starting text appears gives a top-down approach, which seems easy to follow and reference
from both syntactic and typographical viewpoints.

It has been suggested that the matter of question formation might be related to the
problem of proving the correctness of programs. Naur (ref. 5) discusses an approach to prov-
ing the correctness of programs by ‘‘general snapshots,” e.g., the state of all variables at
various points in programs. These general snapshots could be defined at the entries to and
exits from documentation units. This raises the possibility of forming such questions as:
“What variables can be modified in this documentation unit?” and “What relationships be-
tween the variables must hold (a) on entry to or (b) on exit from this documentation unit?”

At the moment, no suitable way of forming such deeper questions for automatic in-
terrogation is known. But this is an area where future progress may be possible.

110 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
DOCUMENTATION PRODUCTS

As already noted, two principal documentation products are—

Documentation reports: complete descriptions, in a prescribed format, of programs or
procedures.

Query replies: partial reports in response to queries made by programmers familiar with
programs or procedures to probe specific details.

It is to be noted that both interrogation and query reply processing lend themselves to
conversational techniques (ref. 4). The canonical data file can be used to drive a conversa-
tional interrogation of a programmer quite directly. Similarly, the same file, with an asso-
ciated file of indexed programmer responses, can be used to generate “computer-assisted
instruction courses” automatically when the subjects are particular PL360 programs or
procedures.

It should be emphasized that the documentation discussed is addressed to a programmer
who understands PL360 and will be reading the PL360 text concurrently. The documenta-
tion products are not intended to replace this text as the ultimate authority of what the
program does. Rather these products are intended to supplement the program text with
perspective, motivation, identifier meanings, processing rationale, etc. In this way it is ex-
pected to increase the power and precision with which a programmer can deal with the pro-
gram text, to modify it, to verify its functional logic, and to assure the integrity of a pro-
gramming system containing it. v

The documentation products will not themselves fill needs of higher level documenta-
tion related to user directions, instruction manuals, etc. However, technical writers con-
cerned with such higher level documentation should find these products extremely useful
as source material.

DOCUMENTATION REPORTS

We define a standard documentation report with three parts:

(1) Program text
(2) Edited responses
(3) Cross-references

The program text is the relisted, labeled text used in interrogation. The typographical
arrangement of this relisting itself shows the overall syntactic structure of the program and/

~ or procedures.

The edited responses, listed in the same order as the questions which generated them,
proceed through the text in a systematic way so that one can refer back and forth between
the relisted text and the responses efficiently in reading them together. It is expected that
the program text and edited responses will be read together by programmers. It would be
feasible to intersperse the responses, as comments, in the text, but it seems more desirable
to treat them as separate documents with easy interference facilities.

In fact, as a programmer becomes more familiar with the details of a program, the
presence of extensive comments tends to inhibit the visual perception of program structure

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 111

and logic: first, by simply taking up space and expanding the size of material to be looked
at; and second, by interrupting and masking typographical features corresponding to the
syntactical structure of the program. _

The cross-references assemble identifer, function, and procedure usage into cross-
reference tables. Identifier usage in the text is categorized into “declared,” ‘“‘assigned,”
“used in assignments,” and “used in control.” It is expected that these cross-references serve
most of a programmer’s needs for evaluating and/or modifying small programs or procedures;
for example, to assure that all implications of a changed data declaration are accounted for.

Note that such cross-references can be assembled directly by interpretation rules dur-
ing program analysis at the time various productions are recognized but then are referred to
only informally here.

One particular use of cross-references in PL360 of some potential importance is the
recognition of commonality of data references. In particular, the use of identifiers synony-
mous with hardware registers, which add considerably to the readability of PL360 text, can
be found with the aid of such cross-references.

QUERY REPLIES

It is possible to generate a documentation report for any size system of programs or
procedures, of course, as a sequence of documentation reports of all its component pro-
cedures and programs. However, where documentation reports for a small procedure can be
examined rather easily for any information in it, the human eye and mind cannot take in
the scope and details of a large system so readily. Thus simply listing a documentation re-
port of a large system, while perhaps of value as a hard-copy reference, is still unsatisfactory
for a programmer seeking to understand, modify, or augment a procedure interacting with
many other parts of the system. This may be even more critical for a system manager, who
is trying to verify the correctness of a new procedure and to assure that no ill effects occur
in the system in accepting that new procedure.

This very problem has motivated the foregoing acquisition of documentation as re-
sponses to specific questions so that the documentation can be indexed down to the state-
ment and identifer level. Thus the documentation in a large system can be enhanced by the
capability for automatic selective retrieval and analysis of documentation. In this sense, the
problem of a programmer is not so different from other information systems where data
must be stored for retrieval from many points of interest.

A query language for accessing the type of data in these documentation files can be
readily imagined and is not defined in detail here. Its output could simply be a selection of
edited responses, as defined above. As already noted, such a query capability would lend
itself well to conversational methods of programmer access to the documentation. Its capa-
bilities should include, for any given documentation unit, finding identifier usages, extract-
ing “‘purpose of”’ responses for all its members, identifying all branch points, and locating
all references to keywords in responses.

PROGRAMMER ADAPTATION

In the final analysis, it is expected that the important issues in making such a syntax-
directed documentation process effective will be the soundness of the structural approach,

112 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

553,&:,‘3‘,’",:;2'&:33;%5,(;“gl;;s“:“Ms o MAGLC SQUARE OF OROER M. [F N IS rather than niceties of question phras-
e R ¢
R NG Ak Usko. AND REGISTEA RO INITIALLY CONTAING THE BARAMETER ing or report formation. This is be-
.N. ALGURITHM 118 CDHN.' ACH 5 (AUG. 1962) ; .
ash::lézf:'ﬂ;g:gggz E‘:gc;‘ ROy I SYN Rl, J SYN R2, XX SYN R3, Cause programmers’ aS human belngs’
1J SYN R4, K SYN H .
NSQR := Ni Rl = N ® NSQR; NSQR := R1: have a large capacity to adapt to mat-
fon N': : SNRII; ::U:Tl:: :;QR o0 :
BEGIN XX :-S:Esutt 6 14 3= J SHLL 2 ¢ XXi XX 1= X(1J); ters of Enghsh usage but a small capac-
IF XX ~= 0 THEN
BEGIN [ox 1= L3 J im d = 2 ity to deal with extended program syn-
IF 4 < 1 THEN J == J ¢ N; . .
R A tax structures in detail.
T N e i et et o In the interrogation process, pro-
J o= g+ 15 IF J >N THEN J 2= § ~ N;

ot : grammers will soon learn how to phrase
their responses gracefully in matters of

Figure 3.—Procedure Magicsquare (ref. 1, p. 53). English usage such as parts of speech
and tense simply by examining the
edited responses'which their answers

| PROCEGURE MAGICSQUAKE (Kol generate. Also, they will learn how the

3 TS e s details of their rationale should be al-

1J SYN R&, K SYN RS;

located among responses by experi-

5 Ni

) z * NSQR; R . . .

! NSUR Bx LG eL 1 ence in interrogation and by examin-
9 J = N§ - . -

1o FOR K ix 1 SIEP 1 UNILL NSOR DO ing the resulting documentation

1 e ﬂuiﬁgt 5 xxs reports. It will still take ability to doc-
14 Xx = X(1J)3 ey .

15 ".;Z%;F ? THEN ument programs, but an ability which
17 = - 13 . .

18 gma-a is adapted to the automatic process

3 '] Then being used to acquire and dispense

22 Jd = J ¢ N3 .

2 . ol e the documentation.

25 ND 3

2 X ek For example, a programmer new
%a T to the process may respond to a ques-
30 J = g+ 13 . . .

4 SRR tion about a block by going into the
33 ND; . . .

30 o details of statements inside the block.

After going through several interroga-
tions and realizing he will be ques-
tioned about the included statements
later anyway, he will learn to confine his response about the block to the block as a unit.
Similarly, by learning that conditions for branching IF statement will be taken up sepa-
rately, a programmer, following the treatment of the IF statement as a unit, will address his
response to the IF statement itself.

In using the documentation of others, a programmer, from his own experience as an
originating programmer, will be aware of the questions which generated the responses. He
wiil know, simpiy by examining program text himself, what questions were asked about any
documentation unit or identifier he may be interested in and where they were asked. Thus
he can exert considerable intelligence in selective queries of documentation files.

Figure 4.—Syntax-defined listing of Magicsquare.

AN EXAMPLE

Figures 3 to 9 simulate the foregoing methods on a sample PL360 procedure, found in
reference 1, showing the relisting and interrogation, the canonical data file, a set of responses,
a documentation report, and, finally, a set of query replies.

CUUK~
DinaTES

by 34 12 FAGICSUUARE, RO
2134 1

3,3 18 NSQK

494 16 Ny 1o J¢ XXy £y
545 17 NSUR, N
b6 10 ®1, N» NSYR
1,7 17 NSUK, R1
LRy 10 e N

.9 10 J» N
106,133 E] Ky NSQR
t1,33 1

12:12 10 XXy 1
13,13 10 1Je Jy XX
Lay s 1 Xk, X{IN)
15425 9 xx

Loeld 3

17,47 10 1, 1
18,10 1o e J
19,20 9 1

20,20 10 Ie 14 N
21,22 9 J

22422 10 Je Joe N
23,23 10 xXe 1
24,24 10 14, 4y XX
20,26 17 Xy IJy K
27,27 1w 1, 1
28,29 9 be N
29.+29 10 Iy I, N
30, 30 10 Je J
31432 9 Je N
32432 10 Jr Js N

SYNTAX-DIRECTED DOCUMENTATION FOR PL360

puc. IVENTIFIERS

UNLT

K

Figure 5.—Canonical data of

FILE KEY

1e3441
Ly3442
1334,3
1934,%
1,34,5
IAELTY)
25341
343,1
“rhel
4e6,2
“e4r3
dohyh
4ehy S
4e4et
ETETRY
646,11
Te741
8,8,1
9591
10,33,1
10,33,2
11,33,1
1241241
13,13,1
Leglianl
15,251
15¢25.2
16,251
17,17,1
18418, L
19420,1
19,2042
£0420.1
21,2241
2162242
22,2241
23,23,1
24424,1
20642641
27,27,1
2842941
28,29,2
29,29.1
30,30,1
31,3241
31,3242
32,32,1
Le34,7

Magicsquare.

QUESTION

AUTHOR OF PRUOCEDURE MAGICSQUARE?
PURPOSE OF PROCEDURE MAGICSQUARE?

INITIAL DATA?
PRULESSING LOGIC?
FINAL DATA?
REFLRENCES?

PUHPOSE OF BLOCK 2,34 ?
NSQR AT 3 ?

N AT 4 2

1 AT 4 7

J AT & 7

XX AT 4 7

14 AT 4 7

K AT &4 7

VALUE OF NSQR AT 5 7
VALUE OF R1 AT & ?
VALUE OF NSQR AT 7 7
VALUE OF | AT 8 ?
VALUE OF J AT 9 ?

PURPUSE OF FOR STATEMENT 10,33 ?

FOR CONDITION AT 10 7
PUHPOSE UF BLOCK 11,33 ?
VALUE OF XX AT 12 ?

VALUE OF IJ AT 13 ?

VALUE OF XX AT 14 7

PURPOSE OF [F THEN STATEMENT
IF CONDITIUN AT 15 7

PURPUSE OF BLOCK 16,25 ?
VALUE OF 1 AT 17 ?

VALUE OF J AT 18 7

PURPQOSE QF IF THEN STATEMENT
1F CONDITION AT 19 ?

VALUE OF 1 AT 20 ?

PURPOSE OF IF THEN STATEMENT
IF CONDITION AT 21 ?

VALUE OF J AT 22 ?

VALUE OF xx AT 23 7

VALUE OF 1J AT 24 ?

VALUE OF X{1J) AT 26 7

VALUE OF I AT 27 7?7

PURPOSE OF IF THEN STATEMENT
i1F CONDITION AT 28 ?

VALUE OF [AT 29 7

VALUE QF J AT 30 7?7

PURPOSE OF I[F THEN STATEMENT
If CONDITION AT 3% ?

VALUE OF J AT 32 7

ANY FURTHER COMMENTS 7

15,25

19.20

21422

28,29

31,32

~

-~

?

~

Figure 6.—Syntax-defined interroga-

tion for Magicsquare.

113

Figure 3 is a PL360 procedure named by Magic-
square, just as formulated by Wirth (ref. 1), including
the typography. This procedure, adapted from an
ALGOL procedure published in the Algorithm depart-
ment of Communications of the ACM (ref. 6), builds
magic squares of odd order n when 1 <n < 16.

Figure 4 is a syntax-defined and labeled relisting of
the same PL360 procedure Magicsquare, less comments,
with its typography determined by the rules already
given for recognizing lines and their indentation. This
relisting is independent of the typography of the pro-
gram text in figure 3. It is expected that such a standard
yet flexible form of program text will, in itself, help
programmers read each other’s programs.

Figure 5 shows the contents of the canonical data
file generated by procedure Magicsquare. All further
interrogation, response editing, and other documenta-
tion processing will use this canonical data file and not
the program text. This particular file contains 31 rec-
ords with some 157 separate items of data in them: two
coordinates, a syntactic type, and an average of about
two identifiers per record.

Figure 6 gives the syntax-directed interrogation of
Magicsquare, using the canonical data file and the skele-
ton questions of figure 2. There are 48 questions in alli,
which refer to the coordinates of the relisted program
text and represent a systematic coverage of the text.

A final question gives a programmer an opportunity to
volunteer additional information not already solicited
by the previous questions.

Figure 7 contains a set of responses to the inter-

rogation of figure 6. There is a file key associated with

each question, which is used to label responses so that
they may be indexed to the proper questions. The
author has presumed to speak for “programmer
Wirth” in constructing these responses.

Figure 8 provides a resulting documentation re-
port in the three sections described already: source
code, edited responses, and cross-references. For a
short procedure or program such as this one, it is

expected that a documentation report itself will be sufficient to allow a programmer to
find out anything he wants to know about the procedure or program.

114 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

FILE KEY RESPONSE

l1edaal NIKLAUS WIRTH, STANFORD UNIVERSITY, DECEMBER 20, 1966.

1e3402 ESTABLISH A MAGIC SQUARE OF ORDER N, IF N IS ODO AND 1 < N € 16,

1,34,3 THE ORDERy N, DF THE MAGIC SQUAREL DESIRED.

ITELTYY FILL SQUARE MATRIX #ITH SUCCESSIVE INTEGERS ALONG CEATAIN DIAGONALS
AND THEIR EXTENSIONS TU ENSURE MAGIC SQUARE PROPERTY. THME MATAIX TO
BE FILLED [S ASSURED TO CONTAIN ALL ZEMGES INITIALLY. .

+34,5 TME MAGIC SQUARE X AS A MATRIX IN LINEARIZED FORM.

ls34se ALGORITHM |18, COMM ACM, AUGUST 1962, P 436; M. KRAITCHIK,
MATHEMATICAL AECREATIONS: P 149,

2,34, CARRY OUT THE PROCEDURE MAGICSQUARE.

3:3,1 THE NURBEA OF ENTARIES IN THE MAGIC SQUARE.

LI THE ORDER |NUMBER OF RDWS AND CDLUWNS) OF THE MAGIC SQUARE.

4r4,2 THE HOw INDEX FOR THE NEXT INTEGEX VALUE GOING INTO THE MAGIC SQUARE.

“rdyd THE COLUMN INOEX FOR THE NEXT INTEGER VALUE GOING INTO THE MAGIC
SQUARE .

R TRY INTERMEDIATE VALUE IN X DFFSET CALCULATION AND TO TEST X VALUE FOR

48,5 THE X OFFSET FOR ROW §, COLUNN J OF MAGIC SQUANE.

44506 THE NEXT [INTEGER VALUE GOING [NTO MAGIC SQUARE.

505,1 INTERMEDIATE VALUE N FOR NSOR,

6,001 TEMPORARY STORAGE OF NSQR

Telsl EINAL VALUE OF NSQR, THE NUMBER OF ENTRIES LN THE MAGIC SQUARE.

B48,1 INITIAL VALUE FOR 1.

999y 1 INITIAL VALUE FOR J.

10,33, 1 FILL MAGIC SQUARE wITH INTEGEAS.

10,33,2 STEP K THADUGH INTEGERS FROM 1 TO NSQA, WHECH WILL APPEAR IN THE
MAGIC SUUARE,

11433,1 FIND CORRECT LOCATION I[N MAGIC SOUARE FUR INTEGER K.

12,1241 X OFFSET FOR ROW [OF MAGIC SQUARE.

13,13,1 X OFFSET FOR ROW | AND COLUMN J OF NAGIC SQUARE,

CURRENT VALUE OF POINT 1, J IN MAGIC SQUARE.

ideingy
1552541 BEGIN NEW DJAGONAL I[F CURRENT DIAGONAL 1S ALREADY FILLED.

15425,2 1S OIAGONAL FILLED (AN INTEGER ALREADY STOURED AT POINT 1,417
164 25,1 FINU STARTING LOCATILN FOR NEXT DIAGONAL TO BE FILLED.
17,17.1 NEW RO% INDEX OF STARTING LOCATION.

18,48,1 NEW COLUMN |NDEX OF STARTING LOCATIUN.

19,20.1 RESTORE AOW INDEX YD CORRECT RANGE, (F NECESSARY.
19,20,2 1S5 ROw INDEX QUT OF RANGE?

204 20,1 ROWw INDEX [N CORRECT RANGE.

210221 RESTORE COLUMN INDEX YO CORRECT RANGE, IFf NECESSARY.
21,222 1S COLUMN INDEX IN CORRECT WANGE 7

22422014 COLUMN INDEX IN COMRECT AANGE.

23, 23,1 X OFFSET FOR ROw 1 OF MAGLC SQUARE.

240264,1 X OFFSET FOR ROW | AND COLUMN J OF MAGIC SQUARE.
28642641 FEINAL INTEGER VALUE AT POINT 1, J IN MAGIC SQUARE.
27,21 ROW INOEX STEPPED ALONG DIAGONAL.

28,29,1 RESTORE ROW SNOEX TO CORRECT RANGE, IF NECESSARY.
28429:2 1S ROw INOEX IN CORRECT RANGE?

294291 ROW INDEX [N CORRECT RANGE.

30,301 COLUMN INDEX STEPPED ALONG OJ AGON.

31,3251 RESTORE COLUMN INDEX TO CORRECT IMGE. 1F NECESSARY.
31,32,2 1S COLUMN INDEX KN CORRECT RANGE?

32,32,1 COLUNN INDEX IN CORRECT RANGE.

1e34,7 N0,

Figure 7.—Interrogation responses for Magicsquare.

TeTsl VALUE GF NSOR AT 7 IS FIMAL VALUE OF NSQR, THE MUMBER OF ENTRIES IN
THE MAGIC sQuaR

MAGICSQUARE PROGRAM TEXT

1 PROCEDURE MAGICSQUARE (Ré); 80401 VALUE OF 1 AS L VALUE #OR 1.
2 Beein 49,1 VALUE OF J 1S INITISL VALUE FOR J.
3 SHORT INTEGER WSQA: 10,331 FOR STATEMENT 10,33 1S TO FILL MAGIC SQUARE WITH INTEGERS.
« INTEGER REGISTER N SYN RO, I SYN RL, J SYN R2, XX SYN R3s 10,33, FOR CONDLTION AT 10 §$ TU STEP x FMAOUGH INTEGERS FROM T 7O WSOR.
1d SYN R&, K SYN KS§ WHICH WILL APPEAR TN VHE MAGIC SQUARE.
s NSQR ze N: 11,33,1 BLOCK 11,33 (S 1O FEND COARECT LOCATION IN WAGIC SQUANE FOR INTEGER K.
. RL 3= N @ MSOR: 12012,1 VALUE OF XX AT 12 IS X OFFSET FDR ROw I OF WAGIC SQUARE.
7 NSOR 3= 13 1201301 VALUE OF 12 4T 13 1S x OFFSET FOR AOW | ARO COLUAN) OF MAGIC sQuare.
x [RERLONE 34318,0 YALUE OF XX AT 14 IS CURRENT ¥ALYE OF POIKT v 4 1w MAGIC SQU
15025, IF THEN STATEREMT 15,25 [S 10 SEGIN NEW DIAGONAL IF CURRENT nucnnn
10 m- K i» 1 STEP 1 UNTIL NSQR DO 1S ALREADY FILLED.
11 €GIn 15,25,2 JF CONDITION AT 15 TESTS 1S DIAGONAL FEILLEO (AN INTEGER ALREADY STORED
12 AR 1e L SMLL &3 AT POINT [,4)7
134 14 36 2 SHLL 2 ¢ XK; 164251 BLOCK 16,25 IS TO FIND STARTING LOCATION FOR MEXT DIAGONAL 1O 6E
1e XX 1= XE0JIG FILLED.
15 1F XX =z O THEN 17,17,1 Valuk CF 1 AT 17 15 wEw ROw [NDEX OF STARTING LOCATION.
is 18,10,1 VALUE OF J AT §B 1S NEw COLUNN INDEX OF STakTING LOCATION.
17 10,2001 1% THEM STATEWENT 19,20 IS TO RESTORE ROM INCEX ¥O CORRECT RANGE, IF
18 NECESSARY.
19 19,20,2 1F CONDITION 47 19 TESTS 15 ROW INOEX OUT OF MANGE?
20 20,020,1 VALUE OF 1 AT 20 IS ADw JMDEX IN CORRECT RAMGE.
21 21,2241 1% THEN STATERENT 21,22 IS TO RESTURE COLUNN INOEX TO CORRECT RANGE.
22 16 NECESSARY.
23 21,22,2 Lf CONDITION 43 21 TESTS IS COLUMN INOEX IN CORMECT RANGE?
24 14 10 5 SHLL z o reg 22,221 VALUE OF J AT 27 IS COLURN INDEX [N CORRECT MANGE.
25 [T 23423,1 YALUE OF XX AT 23 IS X QFFSET FOR #0W 1 OF WAGIC SQUARE.
26 PO 5 2442441 VALUE OF IJ a7 24 IS x OFFSET $OR #OW I OF COLUMN J OF MAGIC SQUARE.
27 1am Lo 20026,1 VALUE QF X(14) AT 26 1S FINAL INTEGER VALUE AT POINT L. J IN MAGIC
F1) ESE © SQUARE .
29 1m0~ w3 27.27,1 vaLug 121 IS AOW INDEX STEPPED ALONG 01AGONAL
30 4w ges 28,291 IF THEN suvuuv 20029 15 10 RESTURE AOW INDEX TO CORMECT RANGE. IF
n 1 3 > N THEN NECESSARY.
32 ERTRET 20,29,2 1 CONDITION &7 28 TESTS 1S ROW INOEK (N CORNECT RANGE?
33 EnD; 29,29¢1 VALUE OF | 4T 29 IS ROW INDEX N CORNECT RANGE.
3¢ o 3U.350,1 VALUE CF 2 &Y 30 IS COLUMN INDEX STEPPED ALONG DI1AGONAL.
31¢32¢1 IF THEN STATERENT 31,32 [S TO RESTORE COLUMN INOEX TO CURRECT RANGE.
RAGICSOUARE EDITED RESPONSES 1F MECESSARY.
31,3202 IF COMDITION AT 31 TESTS 1S COLUMN INDEX [N CORMECT RANGE?
3243201 YALUE CF J AT 32 IS COLUMN INDEX IN CORRECT RANGE.
FILE KEY EDITED RESPONCE 13007 NO FURTHER COMNENTS.

123441 AUTHOR OF nn(fount MAGICSQUARE TS WIKLAUS WIRTN, STANFORD UNMIVERSITY.
UVECEMBER 20,

NAGICSQUARE CRDSS REFEREMCES

Lodee2
L34,

1434,4

Lleda,s

LIS LY

PROCEDURE ncl(.snuﬂt £S TO ESTABLISH A MAGIC SOUARE OF ORDER W, EF %
15 000 AND 1 < N ..
INITIAL DATA OF rmcwuu: MAGICSQUARE IS THE OROER, N, OF THE WAGIC
SQUAME DESIRED.

OCESSING LOGIC OF PROCEDUAE MAGICSQUAAE IS TO FILL SQUARE ll'lll
WK SUCESSIVE IMTEGERS ALONG CEMTALN DUACOMALS AND. THE
T EhSuke RACICTSQUARE PROPERTY. THE MATAIA TO 8€ FILLED IS Aswutu
VO CONTAIN ALL ZEROES INITLALLY.
FINAL OATA OF PROCEDURE MAGICSQUARE IS THE WAGIC SQUARE X AS & MATRIX
IN LINEARIZED FRON.
MEFLRENCES FOR MAGICSQUARE ARE ALGORITHN 113, CONN ACH. AUGUST 1942,
P oa3a: M. BRATTOMIR, WATMEMATICAL RECREATIONS, P 149,
BLOCK 2,34 13 TO CARRY DUT THE PROCEQURE WAGICSQUARE.
NSOA AT 3 IS THE NUMBER OF ENTAIES IN THE MAGIC SQUARE.
N AT & IS THE ORDER (NUNBER OF AQWS OR COLUMNS) OF THE NAGIC SQUAAE.
1 AT & IS THE ROW KNOEX FOR THE NEXT INVEGER VALUE GOTWG NTD ThE
MAGIC SQUARE.
J AT & 1S TME COLUMN INDEX FOR THE NEKT INTEGER YALUE GDING INTD THE
MAGIC SOUARE.
X2 AT 4 1S INTERMEOIATE VALUE IN X CFFSET CALCULATEION AND TO TEST X
VALUE FOR ZERD,
1 AT & 13 THE X GFFSET FOR ROW 1, COLUNN J OF NAGIC SOUARE,
% AT & 1S THE MERT (NTEGER VALUE GOING INIQ TME WAGIC SQUARE.
VALUE QF NSOR AT 5 [5 INTERMEDIATE VALUE FOR NSQA.
VALUL OF R1 Af & 15 TERPONAKY STURAGE OF WSQR.

DATA CROSS REFERENCES

B:0C A 17,20,27,291 UA T.12017,20:23:27,29; UC 19,2

141 DC 45 AS 13,245 VA Le265

A5 9,18.22,30.133; A 431
103 UA 10,283 WL 107

5 uC 28,313

A3: aS §2,18.23; UA 13,242 uc
13,205 UA 14,283
105 A 10,265 WC 102

X(Labe AS 201 UA 16
XKt OC &: AS 124040235 UA 13,24, UC 1S3

UNCTION CROSS REFERENCES

NO FUNCTEDN CRUSS REFERENCES.
PAOCEOURE CROSS REFENEMCES
MO PAOCEDURE CADSS REFEREMCES.

Figure 8.—Documentation report for Magicsquare.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 115

QUERY: ALL REFERENCES TO Kk
QUERY REPLY:
LYRIE] K AT 4 IS THE NEXT INTEGER VALUE GOING INTO THE MAGIC SQUARE.
109331 FOK STATEMENT 10,33 IS TO FILL MAGIC SQUARE WITH INTEGERS.
10+33,2 FOR CONDITION AT 10 IS TO STEP K THROUGH INTEGERS FROM 1 TO NSQR.
WHICH WILL APPEAR IN THE MAGIC SQUARE.
2642601 VALUE OF XCIJ) AT 26 IS FINAL INTEGER VALUE AT POINT 1.,J IN MAGIC
SUUARE.
CUERY: ALL BRANCHES
QUERY REPLY:
10433,2 FOR CUNDITION AT 10 IS TO STEP K THROUGH INTEGERS FROM 1 7O NSOR.
WHICH WILL APPEAR I[N THE MAGIC SQUARE.
15¢25,2 IF CONDIVION AT 35 TESTS IS DJIAGONAL FILLED (AN INTEGER ALREADY STORED
AT POINT 14J) 7
19420,2 IF CONDITION AT 19 TESTS 1S ROW INDEX OUT OF RANGE ?
24e22+2 IF CONDITION AT 21 TESTS IS CULUMN INDEX I[N CORRECT RANGE 7
28¢29:¢2 IF CUNDITION AT 28 TEST IS ROW INDEX IN CORRECT KANGE 7
3)¢32,2 IF CONDITION AT 31 TESTS IS COLUMN INDEX IN CURRECT RANG: ?
QUEKRY: ALL REFERENCES TC KEYWORD *OIAGONAL® IN RESPONSES
QUERY REPLY:
143404 PROCESSING LOGIC UF PROCEDURE MAGICSUUARE IS TO FILL SQUARE MATRIX WiITH
SUCESSIVE INTEGERS ALONG CERTAIN DIAGONALS AND THEIR EXTENSIONS TO
ENSURE MAGEC SQUARE PROPERTY. THE MATRIX TO BE FILLED IS ASSUMED TO
CUNTAIN ALL ZEROES INITIALLY.
15¢25,1 IF THEN STATVEMENT 15,25 1S TO BEGIN NEW DIAGONAL IF CURRENT DIAGONAL
1S ALREADY FILLED.
15942542 IF CONDITION AT 15 TESTS 1S DIAGONAL FILLED {AN INTEGER ALREAQY STORED
AT POINT 1,412 .
16¢25,2 BLOCK 16,25 IS TO FIND STARTING LOCATION FOR NEXT DIAGONAL Tu BE
FILLED.
27+27,+1 VALUE OF 1 AT 27 15 RUW INDEX STEPPED ALONG DIAGONAL.
30,30, VALUE OF J AT 30 1S COLUMN INDEX STEPPED ALONG DIAGONAL .
QUERY: ALL USES [N ASSIGNMENTS OF IJ
QUERY HEPLY:Z
L14¢14,1 VALUE OF xX AT 14 IS CURRENT VALUE OF POINT L,J IN MAGIC SQUARE.
26926,1 VALUE OF XULJ) AT 26 1S FINAL INTEGER VALUE AY POINT I,J IN MAGIC
SQUARE .

Figure 9.—Some query replies for Magicsquare.

Figure 9 indicates how certain queries might be used to probe more specifically into
the procedure via syntactic, identifier, or response keyword criteria. Note in each case a
subset of the edited responses of a full documentation report is simply compiled according
to a query condition.

In all these listings, the file keys have been listed to make the storage/retrieval process
transparent. In practice, they could be suppressed in documentation reports and query
replies.

ACKNOWLEDGMENTS

The author acknowledges useful suggestions from referees, particularly on some spe-
cifics of PL360 and on the automatic formation of questions. The relationship between
proving the correctness of programs and the interrogation process was suggested by a referee.

REFERENCES

1. Wirth, N.: PL360, A Programming Language for the 360 Computers. J. Ass. Computing Machinery
15: 37-74, Jan. 1968.

2. Wirth, N.; and Weber, H. Euler: A Generalization of ALGOL, and Its Formal Definition: Pt. I.-
Commun. Ass. Computing Machinery 9(1): 13-23, Jan. 1966.

3. Mills, H. D.; and Dyer, M.: Evolutionary Systems for Data Processing. IBM Real-Time Systems
Seminar, Nov. 1966, pp. 1-9.

4. Meadow, C. T.; and Waugh, D. V.: Computer Assisted Interrogation. Proc. AFIPS 1966 Fall Joint
Comput. Conf. Vol. 29, Spartan Books, Inc., pp. 381-394.

116 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

5. Naur, P.: Proof of Algorithms by General Snapshots. BIT 6: 310-316, 1966.
6. Collison, D. M.: Algorithm 118, Magic Square (Odd Order). Commun. Ass. Computing Machinery
5(8): 456, Aug. 1962.

DISCUSSION

MEMBER OF THE AUDIENCE: Could you in the running program have asked some
questions beforehand, such as what are the ranges of your variables, so that this could be
incorporated into the program for error analysis? Could you also use this question-and-
answer sort of thing for compiling optimization, so that you actually had a sort of interac-
tive compiler? Do you think these kinds of things might be feasible?

DR. MILLS: Well, I think they probably can. I have not thought about them, but |
think that what you say sounds reasonable. I really laid out a very austere kind of thing. It
is easy for the mind to boggle at the idea of trying to do computer-assisted interrogation of
almost any subject. The computer programs are particularly well structured. I mean we can
actually define the syntax. But doing this in other areas may be far-fetched.

MEMBER OF THE AUDIENCE: How long would it take to develop this system?

DR. MILLS: Well, what I described here to you is a paper system because we do not
have PL360. But I hope I can get a couple of graduate students to do this quickly. '

DOCUMENTATION: MOTIVATION AND TRAINING OR AUTOMATION

Melba L. Mouton
NASA Goddard Space Flight Center

One of the eternally discussed problems in almost any technical or administrative setting
is the problem of communications. The subject of this symposium indicates the concern
about that problem in programming activities. In fact, it indicates not only concern but that
many people are involved in trying to do something about it. Because of this deep concern
and because of a tendency of many people in and out of electronic data processing (EDP)
management to feel that anything and everything can be fully automated, it would be a
good idea to consider what can be done to relieve the roadblocks or mental blocks in those
areas where automation is not taking care of the basic documentation problem.

In the development of any sizable computational project, it is common to involve all
the organizational elements that are related to the project design and use. These organiza-
tional, as well as functional, entities usually consist of people called managers, analysts, data
analysts, and programmers. For the moment, consider these as the implementers of the
project.

Table 1 indicates that for the first version of such a project, considerable attention is
given to planning who will be responsible for developing the various manuals that make up

Table 1.—Original Project Documentation

Type of manual Implementer Users Inte.n ded
audience
Requirements Analysts Analysts Managers
Programmers |Programmers
Managers Managers
Data analysts | Data analysts
Analysis Analysts Analysts Programmers
Programmers
Managers
Program specifications | Analysts Analysts Programmers
Programmers |Programmers
User’s Programmers |Data analysts |Data analysts
Programmers
Analysts
Programmer’s Programmers | Programmers |Programmers

117

118 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

the system documentation. On the left, the various types of manuals, requirements, analy-
sis, program specifications, users, and programmers, are listed. In the next columns, the
implementers, the users, and the persons for whom the document was written are listed.

The implementers for the requirements manual should involve all four disciplines; the
analysts, programmers, managers, and data analysts are therefore listed. The users are nor-
mally a similar group of people; however, it is good practice to consider that it is being
written for the manager.

The analysis manual is written by the analyst for the use of programmers, analysts, and
managers. It is necessary for, and thus documented for, the programmers. Because of this
need, some persons consider it as the first part of the next document, the program specifica-
tions manual. In any case, this specifications manual, too, is documented for the programmer
and used by both programmers and analysts, the two groups that usually work together in
developing it.

Next is the manual that is most often developed and has the least problem in imple-
menter motivation and training, the user’s manual. This is usually prepared by programmers
for data analysts, but it is quite useful for the analysts and programmers as well.

Last, but not least, is the programmer’s manual, written by programmers for program-
mers and, consequently, written with their knowledge or understanding in mind. This is the only
manual for which the author, or the implementer, is the same as the principal audience and user.

Since the persons who need this manual the most are also the persons who are under
the greatest pressure to get the program code written and debugged, it is not uncommon that
this is the most neglected aspect of system documentation. Until managers, analysts, and
programmers begin to make programming equivalent to planning, documenting, coding, doc-
umenting, debugging, and documenting, the checked-out, or almost checked-out, code will
continue to be considered the end product of a programming effort. However, the goal of
programmers’ efforts must be both the checked-out code, the communication necessary for
the machine, and the checked-out programmer’s manual, the communication necessary for
people, especially programmers, to continue to develop and maintain the system.

Documentation as a part of planning a program may have a relatively higher initial
cost, but if the planning and associated documentation is done well, problems that could
cost 10 times as much to solve later may never arise. In addition, for problems that do arise,
solutions can be found and implemented more easil‘y. It is difficult to determine who is
most responsible for not allowing the time to do adequate documentation of the program,
but it is clear that if programmers consistently give time and manpower estimates that do
not include documentation, they will not be able to create a document that can give-the
recognition and reward that should accompany any good programming effort. However,
the fauit lies equadlly with those analysts or managers who accept a low bid in time and/or
money for an undocumented or a half-documented system rather than a reasonable bid in
time and money that allows for an up-to-date, good, clear description of the program. The
time not allowed now will be allowed later, not for documentation, but for difficulty in
program change and difficulty in the analyst user finding out what is in the system, as the
continually changing but undocumented program persists.

For either or both of these reasons, the phase in which everyone is involved in this vital
new project changes to what is commonly referred to as the programming maintenance

DOCUMENTATION: MOTIVATION AND TRAINING OR AUTOMATION 119

Table 2.—Documentation for Project Maintenance

ende
Type of manual Implementers Users Int . ded
audience
Requirements
Analysis
Program specifications
User’s Programmers | Data analysts | Data analysts
Programmers
Analysts
Programmer’s

Table 3.—A Comparison of Preliminary and Final Documentation

Steps in documentation dil:::::::ﬁryon docurlzli::ia tion Automation
Description of the problem X X
Method of solution X X
User instructions X X
Flowchart X X ?
Subroutines used X X
Program listing ‘ X X
Test documentation X X

phase. Table 2 indicates what happens to the manuals that initially may have been adequately
done. It only takes a “few” minutes to put in a “simple” change and check it out. Thus the
cycle begins of quick change of code, but there is no allowance on the part of managers,
analysts, or programmers to keep up what might have been reasonably good documentation.
Thus begins the refrain, “it is documented, but it is not up to date.” Not allowing the time
needed to code and keep supporting documents updated comes at the point in the life of a
system when programmers are the only ones seemingly responsible for updating all the rel-
evant documentation, not just the programmer’s manual. Thus, standards, guidelines, and,
possibly, automation that will really have an impact on the entire problem of keeping com-
puter program documents up to date must be considered.

The biggest problem, however, seems to be in the programmer’s manual, and table 3
indicates what could and should be done as preliminary documentation. The only thing
that cannot be done then is the listing. As soon as programmers are motivated and trained
to plan (including the adoption of useful automatic procedures) and document prior to

120 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

coding, they will see how well it pays off, especially once it is realized that the manual is
written by the time the listing is available. With the source code and the basic documenta-
tion available, more automatic procedures may be used for ease in updating and verifying
a program and its documentation.

Because a good, descriptive planning flowchart is very important to the development of
a program, delaying the generation of flowcharts until after the code is completed is detri-
mental to programming efforts. At this point, it should be emphasized that current automatic
flowchart techniques should use the descriptions from a well-planned flowchart. The em-
phasis should be on how to produce planning block diagrams, flowcharts, and -other docu-
mentation that can be updated automatically. A flowchart automatically determined from
the source code without such preplanning is almost useless. This is best stated in the follow-
ing excerpt from reference 1:

Flowchart—this must be a structural flowchart of the sequential logic and decision points in-
cluded in the program. Machine-produced flowcharts of the exact programming techniques can-
not be used to satisfy this requirement as they merely amount to a listing of the programs and
do not briefly and concisely refiect the inherent logical flow of decisions.

This refers, it seems, to ‘‘source-code-only’ flowcharts.

Figure 1 is a simplified version of some information given in reference 2. It summarizes
the importance and attention that must be given to documenting during the whole lifetime
of a program or system of programs for good system development and maintenance. Figure
1 simply indicates that documenting, like management, must be considered an integral part
of every phase of system development and use.

fm i —_———— e ——— f

MANAGEMENT !
ANALYSIS
SPECIFICATION

Mttt

{POCUMENTING
CODING
DEBUGGING
INSTALLING |
OPERATING
MAINTAINING |
Figure 1.—The relative importance of
documenting and management.

REFERENCES

1. Anon.: Documentation and Program Standards Handbook. COSMIC, Univ. of Georgia, Nov. 1968.
2. Control Data Corp.: Seminar in Documentation, Sept. 1968, p. 13.

DOCUMENTATION: MOTIVATION AND TRAINING OR AUTOMATION 121
DISCUSSION

MEMBER OF THE AUDIENCE: You talked of motivating the programmers. Have you
been at all successful in actually motivating them?

MOUTON: 1 find that it takes more than motivation; it takes a little bit of control on
the scheduling. When programmers operate in a very hectic atmosphere, it is very difficult.
You can motivate and train them to do a particular job and get them really interested in
doing it, but when another job comes across the desk that should have been done yesterday,
then you are almost always forced to document after the fact. Where I have seen documenta-
tion done properly, it was a requirement. The documentation was done before the job could
be put in an operational status.

MEMBER OF THE AUDIENCE: How was that requirement imposed?

MOUTON: The jobs came into the programming shop in the form of an analysis doc-
ument or something like that and what was to be done had to be specified. The programming
branch then developed the program that was turned over to an operational group to run. So
before the job was turned over to another group to run, you had to have not just the operat-
ing instructions but the complete document. This operation was for the Army Map Service,
and because it was sent out of the installation for safekeeping, all of this was done system-
atically. The time for documentation was included in the original estimate.

PANEL DISCUSSION

MEMBER OF THE AUDIENCE: 1 am very sympathetic with the need for documenta-
tion, and I am searching for ideas that can be used to persuade the users of programs that
documentation is needed. We are here because we are interested in and see the need for it.

I have worked for several different companies, Bendix, GE, and RCA, where job-shop pro-
gramming on a commercial basis for a profit is done. The biggest problem is getting the
users of the final outcome of the data to let us document programs and include that in the
cost. What arguments can we offer to our managers that they can use in management dis-
cussions to get this carried through for us?

PANEL MEMBER: It might help if the managers begin to talk in terms of the overall
cost of such a project rather than just the initial cost because I am convinced, even though I
have not kept any books, that the overall cost of maintaining or developing new systems
because of undocumented systems is much higher than planning and documenting your
project carefully.

PANEL MEMBER: I think this is the crux of many of our problems. I think that we
do have to get management to recognize the problem that we are faced with. One of the
topics to be discussed is what items can be automated to cut some of the costs of
programming,.

MEMBER OF THE AUDIENCE: Do you think we should recommend standardization
for types of program development so that they could be implemented with program auto-
matic techniques? This morning we saw some examples of coded comments that feed into
automatic flowcharting. That enables you to develop a higher level of program flowchart of
the structural variety rather than the detailed variety. Should we go on in this vein of stand-
ardization? Should we attempt to define standards?

PANEL MEMBER: I feel that standards are essential to operating a system, particularly
considering the size of the systems that I am used to working with. For example, we have
standardized input of time recently. If you have worked with a system for which you input
time, you know you have to worry about the kind of time to be used because every pro-
grammer puts the time in a different format. We standardized the time and wrote one con-
version routine. For all practical purposes, now, in our programs time is no longer a problem.
Programmers take this standardized input, pass it on to the program that converts it, and
have five or six options as far as the output. There is only one form in which time can go into
the system now. It means that when someone is writing a program he can omit this test
because we have already checked it out for him, and he does not have to document it and
does not have to document the test that was run.

There are many other things that we have standardized in our system. I do not know
whether there are standards that you can set up or whether it is worth the trouble for smaller
systems.

123

PRECEDING PAGE BLANK NOT FILMED

124 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

PANEL MEMBER: I think the imposition of standards depends on how wide an area
you are trying to cover with standards. Standardizing within your own particular area could
be quite useful. '

With reference to flowcharting, if you wrote a planning block diagram or flowchart
initially and the programmer could then hand that hand-drawn flowchart and specify what
he wants to do to specialized keypunch people and then that could be keypunched in a form
that would be the beginning of source code for this document, I think you would then have
the plan becoming a part of something that the programmer would be interested in updating.

PANEL MEMBER: Let me point to some of the problems involved in practical stand-
ards work. When you are doing something that varies little or where a consensus has almost
been achieved, the amount of work involved in setting a standard is not very great. That ap-
plies, for instance, to standardizing time. It applies with somewhat less force to standard-
ized flowcharting, symbols, and so forth. But when broader kinds of standards are discussed,
there is a greater problem. If someone else tackled Dr. Mills’ problem for a different language
or even for a PL 360 in a different institution or from a different viewpoint, the chances are
there would be a different set of questions.

To achieve a consensus, you need a consensus. To achieve a consensus around a con-
ference table takes forever. In the meanwhile, the project moves on. I think that you have to
work on the problem of standardization both theoretically and practically. You should try
to reach a formal consensus about what the standard ought to be. At the same time, you
should package your own system as best you can and see what kind of workable standards
you come up with. But to develop a whole standards book that will enable you to document

~ blindly seems to be almost impossible.

PANEL MEMBER: Another problem is the nature of the individual that you are work-
ing with in programming. Inevitably, the best programmer is the brilliant but undisciplined
one. He can solve singlehandedly a problem that a whole team has not been able to, but he
is incapable of keeping a laboratory notebook or of doing detailed documentation as he goes
along. You need something, perhaps an automatic system, to document for him.

PANEL MEMBER: | have to agree with you. In our organization really productive peo-
ple often do their own programming. We think that they come up with new ideas and new
approaches that would be valuable to programmers in general, but they consider the pro-
gram to be only a tool to an end. We have to help them document their programs so they
can be distributed. This brings up a point that we can perhaps discuss here. We have had a
lot of discussion about the documentation of entire programs. My question is whether we
should concentrate on the documentation of an entire program or of an element that is
usable in-many programs.

PANEL MEMBER: May I answer that slightly indirectly? Programming is only 20
years old as a profession, and we have certainly not experienced all the problems that it has
to offer. It seems to me that our standards have to be somewhat ad hoc and built around
the machines we use and the circumstances we use them in.

One problem is that we have no way of objectively deciding when a program is need-
lessly complex. I think that we must work on measuring the complexity of a program, and
I would be interested in Goetz’s progress in his work on weighting statements and his

PANEL DISCUSSION 125

attempt to estimate complexity that way. It seems to me that our standards problem is very
much predicated on our immaturity or is very much hurt by our immaturity as a profession.
We are at the beginning of a growth curve, and 20 years is a terribly short time.

PANEL MEMBER: I am not sure but that we may not have reached a maximum in
setting standards. The process of achieving a human consensus has not speeded up very much,
but technology is moving faster and faster. I am inclined to think that the time to standardize
is now. We are enthusiastic, we are rich, there are a lot of things worth standardizing, and we
are trying hard to do it. I think it is going to be increasingly difficult to standardize in the
future,

MEMBER OF THE AUDIENCE: I am a programmer, and 1 would like to take the side
of the programmer here and say that perhaps we are going in the wrong direction. Program-
ming is becoming ever more complex. For example, it takes a newsletter that comes out every
couple of weeks just to keep abreast of the latest change in OS 360. The proliferation of
programming languages requires us to keep up with new requirements and learn new lan-
guages. Standards of documentation that we must become familiar with are being developed.
Why should the programmer be asked to do the documentation? You need very little infor-
mation from the programmer to generate a lot of documentation. I suggest the development
of another specialty within the field of computers, that of the documentation specialist. He
would work from the very beginning with the analyst and with the specifications and start
documenting at that time. He would talk to all the programmers in a large-scale system to
get the information at each stage of the design and implementation of a system. Finally, at
the end of his programming task, he would generate the manuals and documentation needed
to reach different audiences, like the user, the analyst, and the operator. Would you comment
on this suggestion please?

PANEL MEMBER: I think we have moved into a specialized mode of operation in the
software houses that are building and selling packages. These people do have documentation
specialists. 1 have never worked for them, but 1 do know enough people who have to know
that they are developing and have developed documentation specialists.

MEMBER OF THE AUDIENCE: I noticed that the documentation and its automation
comes partly beforehand in the case of Dr. Rich and Dr. Mills, that some of it is ongoing
documentation, and that there seems to be some after-the-fact documentation in forms like
AUTOFLOW programs. But it is better to document a program before it is written. I wonder
what value these after-the-fact automatic flowcharts have, or whether they are programs
that were written because it is possible to write them.

PANEL MEMBER: When you analyze source code, you analyze what the machine is
actually seeing. When you look at flowcharts that a programmer has written beforehand,
you may or may not be looking at what the machine is seeing.

PANEL MEMBER: I think from a practical point of view you have to combine the two.
[think the usefulness of any automatic flowchart technique is that you can combine your
planning flowchart and make it into something that programmers will not mind updating.
This motivates them to keep your planning document up to date so that you do not get into
the situation of the flowchart not representing the code.

PANEL MEMBER: The assumption that there is a flowchart to start with is basically
false, I think, from most of the programs I have seen. As 1 indicated, AUTOFLOW or any

126 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

automated flowchart will show exactly what is there. That is the first time you get to see
what logic was really implemented, as opposed to what the programmer wished or thought he
had implemented. If you did not need it for documentation at all, it would still be very val-
_uable as a checkout tool for the program.

MEMBER OF THE AUDIENCE: I would like to make just one comment about AUTO-
FLOW. We have several modes of operation. One mode is the preimplementation mode, used
before you write your program. We do that internally. We draw manual high-level flowcharts.
We then get them keypunched through a documentation specialist who assigns track codes.
We then program. After we program and assemble, we can get several levels of documentation.
We can get the logical flow in detail, which reflects the comments, the instructions, or the
flowchart of the instructions, which shows the actual micrologic, a good debugging aid.

Now, if you plan your documentation before you implement your system, the programs
are written, and the flowcharts really are marginal. With AUTOFLOW, however, you get
high-level, detailed flowcharts.

I really feel that programmers have no real excuse for documentation problems. First-
generation computers had more programming aids than computers now have. As a matter of
fact, I think program productivity has fallen off, while the computers have gotten faster. If
the programming aids had kept up with the hardware improvements, I think programs would
now be developed more easily, and I think the problems of documentation would be less.
You would get much more information from the machine.

Finally, the analysis of a FORTRAN program to produce a flowchart is very similar to
the analysis of the compiler. Had these things been combined, there would have been a lot
less machine time and a lot more use of automatic systems.

MEMBER OF THE AUDIENCE: I think the observation about more programming aids
being used in the first generation than now was a very penetrating one and points up a very
interesting fact. The process of designing and building the first generation of computers was
a very unstructured one. The machines built then were extraordinarily simple. Now they are
extremely sophisticated and yet are designed and built semiautomatically, almost completely
automatically in this generation. What is more, when they are tested, highly automated and
very sophisticated ways of checking them out, both in terms of system design and in terms
of whether the indivudual machine is working, are used.

The exactly opposite process has been at work in the software business. There is ob-
viously something wrong, and I think it must be the management of the software. I do not
think it can be just the failure of individual programmers because hardware engineers are no
less individual and undisciplined than programmers. But somehow or other, hardware engi-
neers have been organized into groups, and results have been achieved that have not Yet been
achieved in software.

PANEL MEMBER: Let me illustrate what I mean by saying that I think we are 20
years young. There are essentially no mathematical theorems about programming itself. In
the past few years some mathematical theorems about programming have been developed
that are going to revolutionize the practice of programming. For example, a theorem now
exists that states any program can be constructed out of tests and loops, and so on, with
simply three standard figures. This corresponds to theorems in algebra that say any circuit

PANEL DISCUSSION 127

can be designed in terms of AND/OR and NOT gates. Until programming has this kind of
theoretical basis, teaching people how to program is very difficult. Now programmers are
told to do it instinctively. A theoretical base is bound to come, and I think it is going to rev-
olutionize programming. I think it will take several years, but I am trying to point out that
we are just in our infancy as far as knowing how to program with a theoretical foundation.

MEMBER OF THE AUDIENCE: I feel that we do have some of that basis already; for
example, the algebra that has been used in designing hardware. If we hang on to a larger
entity of a program, if we can identify these, perhaps we can put them together in a more
sensible manner, such as you are proposing.

PANEL MEMBER: I am just trying to state that people are now beginning to be con-
cerned with the programming construction process itself and with the subject of writing code.

MEMBER OF THE AUDIENCE: I think there must have been a documentation problem
in going from one system to the other in the diagnostic area because we have fewer diagnos-
tics when a system comes out, and I think this is the impact in the applications programming
area that we are talking about now.

PANEL MEMBER: I think that programming will change from an art into more of a
science, in which programs that are correct almost all the time will be written.

MEMBER OF THE AUDIENCE: We have talked about standards, and AND/OR gates
were mentioned. I think there are some basic standards, for instance COBOL and FORTRAN,
which limit the language and what you can write. The syntax is varied. However, when you
look at AND/OR gates you might look at the 350 or 400 IBM instructions, which let you do
one particular function an infinite number of ways, which I think is a mistake. I think in the
area of assembly language there are too many instructions, which then proliferate the com-
bination of things you can do and the ways you can do it. But there are standards for
COBOL, FORTRAN, and PL/I. It is just that they can be combined in different ways, just
as adders and resistors can be combined. So I do not think that the problem of standards is
really a problem when we talk about writing the program. The problem is how you structure
and build a program, just as it is how you build hardware.

Session 111

129

PRECEDING PAGE BLANK NOT FILMED

COSMIC PROGRAM DOCUMENTATION
EXPERIENCE

Martha C. Kalar
University of Georgia

As indicated by the title, this paper deals with the experience of the Computer Soft-
ware Management and Information Center (COSMIC) in computer program documentation.
The first part of this paper will be a brief history of COSMIC as it relates to the handling of
program documentation; the second part will summarize the items that seem to be essential
for good program documentation.

On July 1, 1966, the University of Georgia was awarded a contract by NASA to receive
computer software developed by NASA and its contractors and to supply copies of such ma-
terial, on request, to all interested domestic parties through COSMIC. Originally COSMIC
was to have been a clearinghouse type of operation;i.e., it would send to the requester a
copy of exactly what was submitted. No checks were made on either the documentation or
the program. This type of operation led to a number of dissatisfied customers.

In order to insure that the user received adequate documentation and a complete,
workable computer program at a minimum cost, COSMIC established documentation and
program checkout procedures, Time and experience have brought about changes to the origi-
nal procedure.

COSMIC, today, is composed of 18 employees, 12 of whom are professionals familiar
with electronic data processing and hold degrees in a variety of fields, and understand the
disciplines to which the programs apply.

The professional staff is divided into two groups, one concerned with the evaluation of
the documentation and one concerned with the checkout of the submitted computer pro-
gram. The evaluation staff checks the documentation for completeness of vital material and
assigns a class code to the document. The amount of detail, the complexity of the program,
and the uniqueness of the solution all play a part in determining which class code is assigned
to these programs. The programmer staff performs a check on each program submitted to
the library to determine whether all nonstandard routines are present in the program deck.
There are four machine types available to our programmers, the IBM 360, the IBM 7094,
the CDC 6400 at the University of Georgia, and the UNIVAC 1108 at the Georgia Insti-
tute of Technology. Programs written for any one of these machines are compiled before
dissemination ; however, programs written for other machines must be assumed to be execut-
able when they are disseminated. '

Of some 2800 program packages submitted to COSMIC, 60 percent have been rejected
for one reason or another by either the programmer or the evaluation staff. The poor

Preceding page blank 131

132 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

quality of the documentation received is a major factor in the rejection of the program
package. Many times illegible documentation has been received, and the program has there-
fore been rejected. Programs have also been rejected because they are too short or too spe-
cial purpose to have any value to organizations other than the originator’s. Other submitted
packages have not contained vital segments of the documentation, making them unusable.
For example, COSMIC has received documentation that was a Xerox copy of a listing, with
penciled notes on the sides. Documentation of this caliber cannot be disseminated.

COSMIC has encountered a variety of problems in the content of the documentation
submitted. Experience has shown that the problem is most often in the user instructions. It
is assumed that a purchaser of a COSMIC program is buying the program because it will
solve his problem directly or because it can be modified slightly to solve his problem. There-
fore, the user knows most of the technology involved or is at least familiar with its purpose.
The reason the user needs the program is to obtain the desired results without having to
write the program himself. The user, therefore, needs detailed user instructions that are easy
to follow. The following is an example of poor user instructions: A Xerox copy of the hand-
written instructions, “Use standard IBM OS/360 job control setup,” was submitted as docu-
mentation. Needless to say, the documentation was rejected. Complete instructions would
have contained a listing of a sample deck setup and samples of input and output format.
These are needed because machine configurations differ and what is standard to one instal-
lation may not be to another. The input and output formats are needed so the user can test
his results and knows what to expect of his output appearance.

Because of deadlines and overlapping projects, documentation does not always receive
its fair share of the time allotted for these projects. When one works closely with a program
for a period of time, certain terminology and concepts become very familiar, and when the
documentation is updated, these terms and concepts might be omitted or overlooked. The
potential user of the program, however, most likely will not know its routine terminology
and familiar concepts; therefore, problems arise. The programmer should be aware of his
users and should gear his documentation toward the novice, the user who knows very little,
if anything, about the program.

COSMIC’s purpose is to disseminate programs that any potential user can employ.
Certain areas of documentation are essential and shall be outlined here:

(1) Program name (official name, acronym, and program title)

(2) Identification number (NASA, contractor, or other number; COSMIC references
programs in our library by the NASA-assigned “flash-sheet” number)

(3) Installation name (name and location of the center where the program was
developed)

(4) Date (date which program was completed)

(5) Author(s) and affiliation(s) (The author of the program is usually the person who
does the actual programming and design work. If these tasks are separate, both
names should be given.)

(6) Language (the programming language in which the program was written)

(7) Computer or machine requirements (computer, minimum configuration, level of
compiler, and other requirements for the execution of the program)

1

poard

COSMIC PROGRAM DOCUMENTATION EXPERIENCE 133
(8) Functional abstract (approximately 300 words) including the following:

(a) Description of the program (The problem that the program is designed to
solve should be presented in such a way that the reader may identify ele-
ments that are analogous to his own problem.)

(b) Method of solution (When the method is well known or documented in
standard publications, it should be identified by reference. Modifications to
well-known methods, new methods, or novel combinations of methods
should be fully described to indicate their applicability.)

(c) Special features of the program (Processing features and options that con-
tribute to the uniqueness of the program should be summarized. Types of
input and output should be discussed in terms of their potential value in
solutions of problems.)

(9) User instructions

(a) Input preparation formats and options (precise definition of all variables,
exact format and arrangement of input parameters, required card or tape
format for all input data, and sequence of control statements)

(b) Output formats and options (These should clearly explain all output vari-
ables; some note regarding accuracy of results also should be included.)

(¢) Data restrictions (The user should be provided with a full explanation of any
data restrictions such as those constituting illegal input, numerical or data-
set limitations, and the number of or size of the data sets that can be handled
by the program.)

(d) Procedural references (manuals and detailed documentation required to use
the program)

(10) Sample input and output models

The documentation that COSMIC receives, in most cases, does not include all these
items. Standards at COSMIC have been minimal in the past but are constantly being up-
graded. (See appendix.) If the documentation is deemed insufficient, more information is
requested from the originating center. If more information is not available, the program must
be rejected. On some programs, this is all that can be done. The turnover among program-
mers is fantastic. A programmer remaining at one job for 2 years many times will have senior-
ity in a department. Therefore, contacting the originator becomes a difficult task. But on
the programs being written now, we hope to establish standards to obtain complete docu-
mentation initially with as much information as possible in order to anticipate later
questions.

134 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

APPENDIX—-COSMIC DOCUMENTATION AND PROGRAM STANDARDS
HANDBOOK

1, INTRODUCTION

COSMIC (COmputer Software Management and Information Center) was established to
evaluate computer software developed by governmental agencies and then disseminate the
evaluated submittals to other governmental agencies, as well as industrial, educational, and
research institutions, To expedite the technical aspects of this process, it is necessary for COS-
MIC to receive properly prepared documentation and program packages from submitting field
centers and contractors, To explicitly state COSMIC’s requirements for submittal packages is
the primary purpose of this handbook.

COSMIC is cognizant that ail documentation packages received will not meet the exact
format as outlined in this pamphlet; however, it is imperative that all information requested
herein be included with the package regardless of the format chosen.

It is anticipated that this volume will—

(1) establish a much needed and easily implementable standard for documentation;
(2) clarify the definition of a complete program deck;

(3) promote a better understanding among all offices and agencies involved; and thus,
(4) increase the efficiency and effectiveness of the entire project.

I1. DOCUMENTATION CRITERIA
A. General

Documentation which meets the COSMIC standards must include the amount of informa-
tion necessary to inform a prospective user of the precise problem which the computer program
is designed to solve and to enable a qualified programmer to input the required data, success-
fully run the program, and obtain the desired results, Below is a chart of documentation criteria,
each of which will be defined in the following text,

DOCUMENTATION CRITERIA

SPECIFIC REQUIREMENTS

1. Description of the Problem
2, Method of Solution

3. Program Language

4, Machine Requirements

5. User Instructions

6. Operating Instructions

OPTIONAL REQUIREMENTS

1. Program Timing

2. Accuracy of Results

3. Sample Input and Output
4, Flowchart

5. Listing

COSMIC PROGRAM DOCUMENTATION EXPERIENCE

B. Specific Requirements

The following information must be included in the documentation for it to meet the
COSMIC standards:

1. Description of the Problem—The description must include a complete definition of
the problem which the program solves, The thoroughness and sophistication of this definition
is determined by the sophistication and degree of difficulty of the problem itself, For instance,
a simple mathematical routine may be described in one sentence, whereas a description of a
program designed to construct electronic printed circuit boards may require a multiple number
of pages,

2. Method of Solution—This requirement must include the programming techniques or
methods used, supporting theory, design, and computational equations with their derivations
to substantiate or illustrate the program,

3. Program Language—A statement of program language must include all levels of lan-
guages found in the submitted deck (e.g.,, FORTRAN IV, MAP, OBJECT) as well as the com-
piler necessary to process the languages.

4, Machine Requirements—An explanation of machine requirements must encompass
not only the computer system for which the program was developed but also all peripheral
equipment utilized by the program (e.g., disks, drums, consoles, tape units, display devices,
plotters, etc.). Also mandatory is the level of the operating system on which the program ex-
ecuted (e.g., IBM-360/65, Release 14; CDC-6600, Scope 3.1; etc.) as well as the amount of
core a program occupies once loaded.

5. User Instructions

a, Input Instructions—These instructions must provide the user with the information
necessary to prepare his data for input to the program, They should include:

(1) precise definition of all variables;

(2) the exact format and arrangement of all input parameters (object time vari-
ables); and

(3) the required card or tape format for all input data to be processed. It must be
noted if the input requirement is for a specialized format, e.g., NASA for-
matted telemetry tapes.

b. Output Requirements—The user instructions must also contain a description of the
output data formats and types of output devices; e.g., card punch, printer, mag-
netic tape, etc. In addition, the instructions must include an example to illustrate
both the input deck setup and the corresponding output,

c. Data Restrictions—The assumption must be made that the user knows nothing of
the mechanics of the program; therefore, any data restrictions or illegal input
should be specified. For example:

(1) x cannot equal zero;
(2) y must be less than 200;
(3) x cannot equal 5 uniess y is less than 4. .

d. Program Structure—A list of all decks in the program, the main program as well as
any subroutines called, must be included. If a routine is to be included in more
than one subsection (e.g., chain, overlay, etc.) of a program, please so indicate.

6. Operating Instructions—This information must provide the computer operator with
step-by-step instructions pertinent to the execution of a program, It must include:

a. tape assignments or selection (Designate tapes required for input, working, and
output for successive runs.);

136 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

b. deck setup;
¢. control and sequencing information; and
d. special controls and requisite cperator actions (e.g., console instructions).

C. Optional Requirements

The following information, although not essential, will facilitate processing and
use of a program,

1. Program Timing—Timing information should include the computer time re-
quired for a run with a certain number of data points or check points, or the
computer time required for an average run.

2. Accuracy of Results—This section should include the number of decimal points
or number of significant digits which can be expected in the answer, Where
some inputs are based on sampling, both the accuracy of the estimates and the
reliability of the output should be supplied.

3. Sample Input and Output—A description of a sample problem, an example of
the input data required to run the program, and resulting output from a run of
the respective input should be included.

4, Flowchart—This must be a structural flowchart of the sequential logic and de-
cision points included in the program, Machine-produced flowcharts of the
exact programming techniques cannot be used to satisfy this requirement as
they merely amount to a listing of the programs and do not briefly and con-
cisely reflect the inherent logical flow of decisions.

5. Listing—This must be a post-list of the assembled program submitted to COS-
MIC to be used as an in-house aid in processing programs. '

1II. PROGRAM CRITERIA
A. Card Deck and Tape Submittal Formats

Following is a list of requirements compiled by COSMIC in an attempt to stand-

ardize program handling processes and to eliminate misidentification of submitted
programs:

1. Card Deck Submittals—These must be clearly marked with the respective pro-
gram identification numbers,
*2. Tape Submittals—It is requested that 7-track tapes be used. If this is impossible,
9-track will be accepted.

a. Tapes must be recorded:

(1) at 556 or 800 bpi,

(2) in unblocked card image format (84 characters per record for BCD or
168 characters per record for binary), '

(3) with a complete program package (main deck, subroutines, data, etc.)
in the same file,

(4) with each complete program package separated by an End-of-File card
(blank except for a 7-8 multiple punch in column 1),

(5) with multiple 7-8 cards following the final program on tape.

b. Programs must be identified by number, title, and file position sequence on
tape. This may be accomplished with a cover letter or a label on the tape reel.

*Note added in proof: These conventions have been revised in line with improved computer technology. The
conventions stated here are not presently in use.

ol

COSMIC PROGRAM DOCUMENTATION EXPERIENCE 137
B. Definition of a Complete Program

An explanation of COSMIC’s definition of a complete program is pertinent at this
point. To be considered complete, a program must include:

1. main program;

2. all non-standard (not included with operating system as normally installed by
manufacturer) subroutines called within the main program or by other sub-
routines in the package; and

3. all plotting routines called (If this is impossible for proprietary reasons, submit
a dummy subroutine deck with all user called entry points; also, include with
the documentation complete input and output variable formats for the routines
used.).

C. Mode of Submittal Programs

It is imperative that COSMIC receive source decks rather than object mode decks.
It is seldom that a disseminated program can be implemented by a purchaser without
modifications being necessary, To facilitate modifications and, thus, wider usability of
COSMIC programs, we publish only source programs.

DISCUSSION

MEMBER OF THE AUDIENCE: 1 wish to raise the question of standards versus guide-
lines, My understanding is that standards are something required, and guidelines are some-
thing to be desired. It seems to me that if documentation standards are insisted upon, many
programmers will simply refuse to adhere to them,

KALAR: If most users can use documentation in a certain form, then I think the best
thing to do is to try to put it in that form, If the form is pretty well agreed upon, then I
think that people ought to try to conform to it. Call it standards or guidelines, I cannot de-
termine between the two. I do not think you can enforce anything.

MEMBER OF THE AUDIENCE: I would like to try to answer that. I do believe that
some minimum amount of information should be available to a potential user so that he can
make some choice as to whether he wants to make a substantial investment in some of the
documentation, which may run into thousands of dollars. I do believe that a standard or a
standard requirement or specification may be needed in this area,

MEMBER OF THE AUDIENCE: You have given us a list of things that you desire to
see in documentation. Has this been disseminated to your customers?

KALAR: A partial list is in the appendix of my paper. This is a little bit different from
the one that COSMIC is now disseminating to its customers,

MEMBER OF THE AUDIENCE: Is it a regular procedure to advise the customers or
the people that send you programs of the problems that you see as you go along?

KALAR: Generally, most of these items are covered in the appendix. When programs
are submitted, if they are deficient in a certain area, we will tell the senders what areas to
send us as documentation. These exact items are not written down yet, but they should be
within the next couple of months.

MEMBER OF THE AUDIENCE: To your knowledge, has COSMIC had an opportunity
to review the proposed NASA NHB standards on documentation?

138 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

KALAR: I do not know,

MEMBER OF THE AUDIENCE: How do you determine the costs for the distribution
of programs?

KALAR: By the number of cards in the deck for the programming, The documentation
is 10 cents a page. An average cost is about $275 per program,

MEMBER OF THE AUDIENCE: You said you like to disseminate programs that any
individual can employ. Well, I question this. We have taken the other tack in the nuclear
field, We have said we want to disseminate programs to installations that have people compe-
tent in both computer science and nuclear science because we feel that if you really dissemi-
nate programs to anyone, you can spend a fortune trying to train them.

KALAR: Ido not think we can be so choosy about our customers, Whoever wants to
buy a program can buy one, and if they can understand it, they can use it.

MEMBER OF THE AUDIENCE: It seems to me you have to do a lot more work. More
documentation is needed, and these people must be brought in and trained how to use these
programs,

KALAR: Most of our programs now being disseminated are accounting-type programs,
programs that the small businessman can use without any extensive knowledge,

MEMBER OF THE AUDIENCE: I have a question about your organization, How did
a university get into disseminating programs that industry has paid fortunes to get?

MEMBER OF THE AUDIENCE: Could I answer that question? I am the COSMIC spe-
cialist at Goddard Space Flight Center with the Technology Utilization Office. COSMIC is
mainly a nonprofit institution. NASA has a duty to distribute the technology that NASA
develops to people in the public sector, that is, commercial, profit, and nonprofit organiza-
tions that may have a need or a desire to use any part of the technology that we develop.
Computer programs are considered a part of that technology. COSMIC’s function is to dis-
tribute those programs to those in the general public who may find them useful, thereby in-
creasing the productivity and welfare of the general public. There is no profit involved to
COSMIC. The programs that industry develops under NASA contracts belong to the Govern-
ment. What the Government does in this instance is make that property available to the com-
monweal. I hope that answers your question.

MEMBER OF THE AUDIENCE: What is the general turnover in programs and pur-
chases at COSMIC?

KALAR: I think we sell around 60 or 80 packages per month and receive probably an
average of 50.

MEMBER OF THE AUDIENCE: One problem with documentation is that we may
meet the documentation requirements for a Government contract. Then the contract moni-
tor says to submit it to COSMIC, We submit it to COSMIC and receive a different set of doc-
umentation requirements, We go back to the contracting officer and ask for the money to
document the program or the system for COSMIC, but they refuse. In other words, who is
going to pay for documentation?

MEMBER OF THE AUDIENCE: This is one of the things that falls in my area, I be-
lieve that most NASA software documentation requirements now incorporate the COSMIC
requirements for program documentation, What often happens is that the contractor does

COSMIC PROGRAM DOCUMENTATION EXPERIENCE 139

not regard these as essential, because in the past the documentation specifications really
have not been enforced. We now demand that these requirements be met.

MEMBER OF THE AUDIENCE: Do you review the request for proposal (RFP) to
see that the requirements...

MEMBER OF THE AUDIENCE: I do see some of them, but I believe that most of
our RFP’s for documentation now include those requirements.

q %]

, 72

AUTOMATED DOCUMENTATION OF AN ASSEMBLY PROGRAM

Valerie L. Thomas
NASA Goddard Space Flight Center

The programmer’s burden is greatly reduced if he is willing to invest some time in setting
up his program so that it can be used as input to a program which will automatically docu-
ment it. This paper will present ideas of how this could be implemented for an assembly lan-
guage program; the examples will be from a META-SYMBOL program which is run on the
XDS 930 computer. For the purpose of this paper, the documentation program will be called
DOCMNT.

Before the characteristics of DOCMNT can be explained, some format rules must be
established for the assembly language program so that DOCMNT can scan the input program
(see fig. 1) and find all the information that is necessary for the documentation. The program
should be divided into four major parts: identification, main routine, subroutines, and data.

The identification should consist of comment cards having asterisks in the first column
and in the second column information pertaining to the program, such as, the name of the
program, the programmer, and the operating system. DOCMNT scans these card images look-
ing for the following format:

* PROGRAM-OFOINT

* PROGRAMMER-VALERIE L. THOMAS

* OPERATING SYSTEM—MULTISATELLITE OPERATING SYSTEM (MOS)
* MACHINE AND LANGUAGE—XDS 930, META-SYMBOL

* DATE-JULY 14, 1970

DOCMNT gets OFOINT, VALERIE L. THOMAS, etc., and stores this information in the
appropriate place in the documentation. (See fig. 2 for the format of the documentation.)
DOCMNT would have the capability of storing OFOINT MAIN beside ROUTINE and of
storing for each of the subroutines of the program, the subroutine name beside the word

" SUBROUTINE; for example:

Main routine Subroutine
ROUTINE: OFOINT MAIN SUBROUTINE: COMP
PROGRAM: OFOINT PROGRAM: OFOINT

The second major part of the program is the main routine. This should be preceded by
some comment cards, one of which contains the words FUNCTIONAL DESCRIPTION
and is followed by the description of the main routine; for example:

PERCEDING PAGE BLANK NOT FILMED

142 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

STRT

PROMTS

compP

eI

PROGRAM-OFOINT
PROGRAMMER—VALERIE L. THOMAS
OPERATING SYSTEM—MULTI-SATELLITE OPERATING SYSTEM (MOS)
MACHINE AND LANGUAGE—XDS 930, METASYMBOL
DATE—-JULY 14,1970
FUNCTIONAL DESCRIPTION—OFOINT PROMPTS
THE OPERATOR AND USES THE ANSWERS
TO UPDATE THE PROMPT TABLE.

PZE
LDX
LDA
STA
MIN
MIN
MIN
LDA
SKG
BRU
BRM
BRM

LDA
SKE

BRU
BRM

MOSINK

1.2

compPU

STRT+2

STRT+3

GTCTR

GTCTR

=30

STRT+2

COMP

CHNREQ COMPUTER
CHANNEL REQUEST

TABCTR
=506
LDCA-1
MOSXIT

FUNCTIONAL DESCRIPTION—COMP DETERMINES WHICH COMPUTER
IS BEING USED. DEFAULT IS COMPUTER 1.

PZE
LDA
STA
LDX
LDA
BRM
BRM
PZE
PZE
PZE

BRU

=0
PRMNO
=-20
PROTS,2
PRNTT
MOSREQ
TYPOT
RESERVE
=20

CcM

ERROR CONDITIONS—COMP IS NOT EQUAL
TO1 OR 2. “MESSAGE GARBLED”

1S TYPED OUT.
BRM GARB
LDX PRMNO
BRU PROMTS,2
BRR Comp

Figu;e 1.—Sample program.

AUTOMATED DOCUMENTATION OF AN ASSEMBLY PROGRAM 143

* DATA

DISA DATA 044160000
DisB DATA 012160000
TIME RES 2

* DATA FORMAT-THE PROMPT TABLE

COMPU DATA 01 1
CHANL DATA 022 2
WALL DATA 045 3
* DATA FORMAT-THE CALIBRATION TABLE
AdLIM DATA 1,051
DATA 051
AS5L1M DATA 2,0,0377
* DATA 0,128,255
END

Figure 1 (continued).—Sample program.

* FUNCTIONAL DESCRIPTION—OFOINT PROMPTS
* THE OPERATOR AND USES THE ANSWERS
* TO UPDATE THE PROMPT TABLE

DOCMNT continues to scan the program and picks up this information and stores it in the
documentation under the heading FUNCTIONAL DESCRIPTION.

DOCMNT will follow the same format for documenting the main routine and each of
the subroutines. The argument to the subroutine and the output from the subroutine are
assumed to be in the A register. If there is more than one argument, DOCMNT will check
for a comment card containing a key (OP1, OP2, OP3, or OP4) to locate the argument list;
for example:

* OP1
* 0OP2

When the key is found, the following information is known:

OP1 A calling sequence was used.

OP2 The argument list follows the instruction (branch to the subroutine).

OP3 There is a pointer to the argument list in the A register.

OP4 The programmer must insert additional comment cards to explain where the
input and output arguments are located.

144 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
IDENTIFICATION

ROUTINE—OFOINT MAIN

PROGRAM—OFOINT

OPERATING SYSTEM—MULTI-SATELLITE OPERATING SYSTEM (MOS)
PROGRAMMER—VALERIE L. THOMAS

MACHINE AND LANGUAGE—-XDS 930, META-SYMBOL

DATE—JULY 14, 1970

ARGUMENT LIST: NONE

FUNCTIONAL DESCRIPTION: OFOINT PROMPTS THE OPERATOR AND USES THE ANSWERS TO UPDATE THE
PROMPT TABLE.

METHOD

(1} THE PROMPT TABLE S PICKED UP FROM OFORUN.
{2) A SUBROUTINE IS EXECUTED FOR EACH PROMPT AND THE PROMPT TABLE IS UPDATED.

READ/WRITE
R/W DATA AREA CHARACTERS/WORD
OR DEVICE
NA NA NA
REQUIREMENTS

SUBROUTINES USED: COMP, CHNREQ
MEMORY: 20 OCTAL WORDS
RUNNING TIME: 30+ CYCLES
ERROR CONDITIONS: NONE

SUPPORTING INFORMATION
THE PROMPTS ARE PICKED UP FROM THE PROMPT TABLE IN OFORUN, UPDATED, AND STORED BACK
IN THE PROMPT TABLE IN OFORUN. THIS ALLOWS THE PROGRAMMER TO SAVE THE PROMPT ANSWERS
ONCE THEY HAVE BEEN CHANGED FROM THE DEFAULT VALUES.
IRREGULAR RETURNS FROM SUBROUTINES: NONE
DATA FORMATS
THE PROMPT TABLE
COMPU DATA 01 1
CHANL DATA 022 2
WALL DATA 045 3
THE CALIBRATION TABLE
A4LIM DATA 1,051
DATA 0,51
ASLIM DATA 2,0,0377
DATA 0,128,255
EXTERNAL REFERENCES

MOSLNK
MOSXIT

Figure 2.—Automatic documentation format.

AUTOMATED DOCUMENTATION OF AN ASSEMBLY PROGRAM 145

The information pertaining to the arguments goes under the heading ARGUMENT LIST.
DOCMNT scans the routine for branches outside of the routine and puts the information
under the heading IRREGULAR RETURNS FROM SUBROUTINES. DOCMNT stores the
identification information and the functional description. It then goes through the re-
mainder of the routine to gather more information for the documentation. It counts the
instructions as they are investigated to provide the octal count of the number of words of
memory used. It has a table which it consults to determine the minimum number of
cycles used for the running time. If the routine contains a loop, an unconditional branch,
or a branch to a subroutine, the octal word count will have a plus sign next to it, denoting
that the minimum time is calculated. DOCMNT searches the routine for the branches to
subroutines and lists the subroutine names beside the heading SUBROUTINES USED. If
any input/output is used in the routine, a word can be found which gives information per-
taining to the device used, whether it is a read or write, and the number of characters per
word. This is stored under the heading READ/WRITE. If the routine contains an error
routine, the branch to the error routine should be preceded by the following:

ERROR CONDITIONS—COMP IS NOT EQUAL
* TO 10R 2. "MESSAGE GARBLED"”
¥ IS TYPED OUT.

DOCMNT scans for error conditions and stores the information that follows in the docu-
mentation under ERROR CONDITIONS. DOCMNT also searches for external references,
which are listed under the appropriate heading.

The third major part of the program is the group of subroutines each of which is pre-
ceded by comment cards (containing the functional description card) and followed by at
least one card with an asterisk in the first column.

The last major part of the program is the section containing the data. This section is
preceded by the following card:

* DATA

To put some sections or tables from the data under the heading DATA FORMATS (in the
documentation), a data format card with comments is inserted ahead of the data and an
asterisk card after the data; for example:

* DATA FORMAT—THE PROMPT TABLE

COMPU DATA 01 1

CHANL DATA 022 2

WALL DATA 045 3

The information for the headings METHOD, SUPPORTING INFORMATION, and

EXTERNAL REFERENCES is obtained from card input. The cards in the deck containing
the external references can be read in and the information stored into a table of external
references until DOCMNT is ready to use it. The cards containing the supporting data can

'r*‘al
N

146 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

be read in and stored in a table. Because every routine will have cards in the method deck,
it is best to read in the cards for each routine as it is being used by DOCMNT.

Flowcharts for each routine are done by AUTOFLOW.

After the documentation is completed, a table of contents can be printed out.

DISCUSSION

MEMBER OF THE AUDIENCE: How do you get the running time for the subroutine?

THOMAS: Each instruction has a certain number of cycles, and we can get an estimate
of the minimum time by counting out the number of cycles per instruction. If there is a

ranch to a routine we take the minimum time, which would be just the instruction and the
branches to the routine. If there is a loop, we will just take each instruction within a loop.
So if we have a case like that we will put beside the running time a plus, which indicates
that it is the minimum time.

MEMBER OF THE AUDIENCE: Do you have anything in the system that forces the
programmer to provide the information that you need?

THOMAS: No. At present, this is a theoretical system. But if you do not put it in, you
will not get out what you want. If you want something that is detailed, you will put in what
is necessary. These keywords can be inserted after the program is written, but this should
be done before for a very well-documented program listing besides having the automated
documentation.

MEMBER OF THE AUDIENCE: Are there plans to get the system built and to get it
operational?

MEMBER OF THE AUDIENCE: For what it is worth, there is a system similar to this
in operation in a large industrial organization. It is used as a prelist and a requirement, and
it works very well. In other words, the programmers must comply. They have no great
turnover because of this, particularly these days. The system actually is not used on keyboard.
It is based on COBOL, and it does go through, picks out all comments, notes, and para-
graphs; sets it up; and does an absolutely excellent job. They also take this and automate it
to a quick-input index, which is distributed worldwide and is used as a catalog library
similar to that described by COSMIC.

19
i |
Lﬂ

AUTODOCUMENTATION

Jay Arnold
Computing & Software, Inc.

Currently available automated documentation systems, like the ones described at this
symposium, perform the functions for which they were intended quite admirably for the
most part. They have proven to be useful tools in the area of retrospective archival docu-
mentation and as aids in finding logic problems. However, several documentation needs re-
main that current systems do not fulfill.

As yet, systems that can recognize a program by type and categorize the process or that
can describe the application for which a program was intended have not yet been developed.
But both of these functions are necessary if automated documentation systems are to be used
to solve some of the serious problems facing this industry.

-1t is fairly obvious that the industry is plagued with “specialization” and “‘originality”
syndromes, that routine programs are written and rewritten for each new application. Lack
of adequate documentation for the vast store of existing programs only serves to further
aggravate these problems.

To decide whether an existing program can be used for a new application, it is helpful
to know both how the program was originally used and what functional processes are con-
tained in the program. The latter is particularly important in interdisciplinary transfers. But
few programs have adequate documentation of this type. Most programmers preparing in-
dividual documentation are unable to see how their program or segments of it may be used
in other areas. Therefore, the cost of determining the capabilities of programs or program
segments usually precludes their use and forces the development of additional programs.

Automated documentation systems, with expanded capabilities, would provide a
means of reusing existing programs by allowing a relatively inexpensive determination
of program capabilities. This paper will present some comments on an approach to such a
system. These comments do not describe any existing system and are presented solely with
the intent of stimulating thought in the area.

The approach stems from observing human analysis of programs. Of course, developing
a machine system on the basis of a human approach is not always the best or an efficient
technique. However, it appears to be one approach to the problem.

Most programmers conduct an analysis using a source listing of the program, a descrip-
tion of the program input, and a description of the program output or, when available, a
sample of the output itself. They tend to begin their analysis by studying the sample output
to determine what they can of the original intent of the program and to look at the output
data elements to provide them a ““link” into the program.

147

148 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Next, they take up the source listing to find an output statement that corresponds to
the data element of interest from the output. From this point, their analysis is aimed at
determining the content of the program rather than its original intent to determine whether
the methods employed in the program are of use to them.

The human approach, then, usually starts with the program output, does an analysis of
original intent, uses the output as the entrance to the program, and then proceeds to a con-
tent analysis. It should be possible to develop an automated system based on this approach.
Basically, such a system would be an output-to-input analysis as opposed to the more com-
mon input-to-output flow analyses.

There are two general types of program output with which an automated system would
have to contend, print and nonprint. Since the former presents less problems, it shall be con-
sidered first. A

One goal in designing any automated system should be the minimization of requirements
with which the programmer has to conform. The use of special control cards solely for the
documentation system is an undesirable constraint. Even ordinary comment cards, while
highly desirable in any documentation package, should not be a requirement for an auto-
mated system. One guideline, however, could be employed with minimal limitations on the
programmer. That is the use of self-descriptive labels on all printed output as well as on non-
printed output where feasible. Since labeling is a relatively common practlce it should not
prove to be a severe constraint to a programmer.

Most printed output contains two broad categories of information: report description
(or header information) and data description (or lable information). In a majority of cases,
some form of these two information types are present on printed output.

Header information usually includes project names, data-set descriptions, experiment
types, calculation methods, names, places, dates, times, and other information that describes
the purpose of that particular program output. It is this part of printed output that is of the
greatest use in determining the original application.

The label information, on the other hand, pertains more specifically to the data that
the program generates. Row and column labels indicate information about each sequence
of calculations within the program. From these data, parameters that are being calculated
and the elements to which they correspond can be deduced. In many cases, much applica-
tion information is available on the printed output.

Generally, the analyzer processes this information about the program by some type of
semantic and syntactic analysis. In the case where only limited information is present in a
nonsentence structure, it is probable that semantic analysis would be predominant. Most
programmers could probably deduce quite a bit about a program in a familiar application -
area by noting only a few keywords on a printout because the scope of the application area
also limits the meaning and context of the terms which we see. At GSFC, the acronym OGO
would immediately suggest a satellite rather than a Government organization. Given enough
of these terms on a printout, within a limited context, the program application should be
fairly accurately described.

The programs that do not produce printed output, such as sorting routines, utilities,
and math function subroutines, will now be considered. For some types of nonprinted

AUTODOCUMENTATION 149

output, the original application cannot be easily determined, but these are exactly the types
of programs whose original intention is irrelevant. Since most of these cases are the general-
purpose routines that can be used for almost any application, the decision as to whether
they can be used in a new application does not depend on the original intent. However,
some types of more specialized programs do not produce printed output where information
pertaining to the original application would be beneficial. Even in the case of nonprinted
output, three sources of information might be available: descriptions of output data sets,
labels on the data sets, and cross-reference information available from printed data sets.

Probably the best place to look for the original application is at the descriptions of the
output data sets. These descriptions, such as those contained in IBM 360 job control lan-
guage, provide information about the size, type, and organization of the intended output.
In many cases this provides clues to the application that could not be obtained from the
program itself. A second source of information might be the labels on the data sets them-
selves. However, this information is not always available to the analyzer. When available,
it can provide additional descriptive information about the original output intent. One last
method of obtaining information about nonprinted outputs is to cross-reference it to infor-
mation on a printed data set. In some cases, the application of the nonprinted output data
set can be deduced from information on the printed output.

These are some of the means the analyzer has to deduce the original intent of the
program. His approach to understanding the content or functioning of the program should
be the next topic. Most computer programs, especially scientific ones, are, for the most
part, a heterogeneous collection of calculations or data-manipulating processes applied to
a problem area. Unfortunately, a program is usually considered as a single entity, rather than
as the sum of its parts, which tends to distort the programmer’s view of the inherent capa-
bility and usefulness of the parts of the program.

A brief look at any program will show that each output data element is produced by a
unique sequence or ‘“‘pattern” of calculations or processes. While it is true that many of
these processes may overlap in multioutput programs and that some may be prerequisite to
others, each output element can be traced back through the program to yield a unique pat-
tern. Each of these processing sequences could, in most cases, be separated from the pro-
gram and become an independent module with an identity and function of its own. Thus,
the analyzer’s task of determining program content is reduced to several subtasks of deter-
mining each of the patterns that yields an output. He must enter the program at each output
data item to ascertain the pattern of processes that led to it.

As the analyzer traces the sequence of calculations and the pattern begins to clarify, he
attempts to compare the developing pattern with those with which he is familiar. Unfortu-
nately, the wide variation in programming techniques that can be employed to implement
a particular well-defined process precludes the possibility of a simple comparative process. -
Each programmer may have a unique way of translating an established technique into cod-
ing. But while the latitude is wide, it is still finite. He is limited by the language syntax as to
how he may code this process.

The analyzer must therefore be equipped to recognize the pattern from some finite
range of pattern variations. To accomplish this, he must either be familiar with the entire

150 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

LEGEND: Y=AX% - BX +C
(O 1/0 VARIASLES
/\ TEMPORARY STORACS

[JcrPZRATORS

READ A,B,C,X
Y=A%Xx%2 +B%X +C

_® WRITE Y

1O

[? '
% | X ' /
READ A,B,C,X
+ SX= X%X
U= A % SX
V=BxX
: Y=U+W
WRITE Y
* %
X X B X
Figure 1.—Tree-structure variations.
range, which is certainly possible in many cases, or he must be capable-of reducing the pai-

tern before him to a familiar one. Whereas the latter tends to be a more difficult task, it has
the advantage of requiring a familiarity with only one variation for each pattern, an advan-
tage that might prove significant for an automated system.

While it is difficult to say exactly how a person organizes a pattern in his mind for rec-
ognition, a fair analogy might be the tree-structure representation, as indicated in figure 1.
This technique has been chosen to represent patterns for two reasons: The structure can be
built one level at a time, much like a human analyzer, and it is readily amenable to automated

AUTODOCUMENTATION 151

B=R+Q

‘,A=R+T

Wz L+K
~

S~

WRITE 0GO TRAJECTORY
ALTITUDE =
WRITE
Figure 2.—Assignment statements. Figure 3.—Conditional assignment.

processing. As the example illustrates, the same mathematical function coded in different
ways initially produces different structures. However, by applying simple techniques, the
patterns can be shown to be identical.

The components of these patterns will now be considered. Although the nature of pro-
gram analysis makes it, in some respects, language dependent, some of the more common
general aspects can be discussed. .

Once again, analysis begins with program output. The analyzer has found a data item
in the output and has sought out the corresponding output statement in the program. He
has identified the variable that corresponds to the data item and is about to trace the pattern
of calculations.

Figure 2 shows a program consisting solely of assignment statements. The pattern is
traced from the output statement to the left side of an assignment. From there, each of the
preceding variables is traced to its origin, either an input or generation point. Each of the
variables and operators encountered can be stored in a tree format such as the one in
figure 1.

Assignment statements, though plentiful in programs, would probably be the simplest
to analyze in an automated system. Although no analysis details have been worked out for
the more complex processes, brief comment on some of the most common is possible.

et

152 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

B=R +Q
ATRTT READ M(I)y, S R
\ -
4 - —_— -
1 \B)= B THEN 6O TO XFR Loo®: DO I =|Q) 1o ®
~
—_—
//
— X = X .:_ y I\
yd y4 . M(I}
-
/
/o x =Q+cC END LOOP
/
: Yy : X+ 8 v R+ 8
WRITE WRITE
Figure 4.—Conditional branch. Figure 5.—Loop.

Conditional processes are probably the most common of those that might be difficult to
analyze. This class of processes includes such types as conditional assignments, conditional
branches, and loops.

First, the analysis of conditional assignments should be considered (fig. 3). Here one of
two assignment paths can be followed depending upon the validity of the condition. The
proper analysis of this statement would require tracing the pattern for both alternatives and
also the pattern leading to the condition. Analysis of these three patterns would yield a
complete picture of the structure of this segment. One thing this analysis might have indi-
cated was that these were two discrete patterns, one or the other of which was selected on
the basis of input data.

Next, the conditional branch shall be considered (fig. 4). In this case, the execution of
an entire sequence is dependent upon the condition. If there were a direct assignment path
from the output variable to the labeled statement, the presence or-absence of that output
would be determined by the condition. Here, analysis would require a trace of both the
variable and the condition structure.

Finally, loops should be considered. In figure 5, a straight trace path is interrupted by
one. To analyze this pattern, the number of iterations and nature of any discontinuities
must be known, especially those near either end of the iterations. If a manual analysis were
being performed, the flow of the loop at its first iteration, its second, the next to the last,
and the last would be determined. Of course, if there were a conditional branch out of the
loop, rather than a fixed number of iterations, that would have to be taken into consideration.

AUTODOCUMENTATION 153

PROCESS l
CUTPUT :
hal COMPARE
STATEMENTS OUTPUT TERMS
WITH REFERENCI
LiST

WRITE SAMPLE
QUTPUT OR
DATA SET . o WRITE
DESCRIPTION INTENT = TIT
T ANALYSIS
|

1
| |
1 |

]
OGO A ORBIT DETERMINATION

CALCULATIONS

THIS PROGRAM CALCULATES THE:
ALTITUDE AND AZIMUTH

. PARAMETERS FOR THE ORBITING
ALTITUDE = ALT F(6,3) GEOPHYSIEAL OBSERVATORY

SATELLITE.
AZIMUTH = AZM El0,2)

S

Figure 6.—Step 1 of an automated Figure 7.—Step 2 of an automated
analyzer: Sample output. analyzer: Semantic intent analysis.

One other interesting complexity exists in this example, the presence of the same variable on
both sides of an assignment. This should pose no problem in a straight assignment analysis;
however, in a loop, if there were no prior reference to the variable outside, it would have to
be treated as a generating point. '

An automated system similiar to the one described in this paper would combine the
following four previously defined functions: (1) a description of each output data set, (2) a
description of the original intent of the program by analysis of the output terminology,

(3) an analysis of each output-producing module, and (4) a description of all input data.

The system, after scanning the source deck of a program (fig. 6), would first process all
output-related statements. From these it would produce a sample of each printed output in
- the program, replacing the name of the variable and its format for each output data item.
For nonprinted output, the system would produce a description of the data set.

From the output statements, the system would also retrieve all significant label terms
(fig. 7). It would compare these against a dictionary of terms tailored to a specific area and
produce a complete description of the application of each program or segment. This part of
the system could readily be merged with existing information retrieval systems, such as
NASA’s RECON system, which would serve as the limited-context dictionary necessary to
analyze the output terminology.

This automated system would then begin an analysis of each segment of the program
(fig. 8). Starting at each output data element, it would trace the pattern of calculations

154 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

' !

TRACE EACH PROCESS -
SZGMENT AND INPUT
DETERMINE 8
PATTERN STATEMENTS
-
‘
_WRITE WRITE
CANNED — IV INPUT DATA
PATTERN
DESCRIPTION DESCRIPTIONS
T
i |
! |
L , L
ALTITUDE {ALT) PATTERN GC7 SAMI SYSIN DATA SET, 20 BYTES
THIS PARAMETER 1S CALCULATED F(20,3)

BY THE HOWE-HYE METHOD® FROM

THE FOLLOWING INPUT VARIABLES!
XTYP 7-TRACK TAPE DATE, FIRST

sami 8 BYTES OF 30 BYTE FIXED
YTYP ELOZX RECORD. A(8)

Figure 8.—Step 3 of an automated Figure 9.—Step 4 of an automated
analyzer: Content analysis. analyzer: Input data description.

using list processing techniques and reduce each to its simplest form. It would then compare
these to its memory of patterns and, upon finding a match, would print prewritten descrip-
tions of each pattern. It would also indicate what variables were input or generating points
for each pattern.

Finally, it would process the input statements (fig. 9), extracting such information as
it could from them in a manner similar to the processing of nonprinted output data, and
would print out descriptions of each of these input items.)

A system such as the one described appears to be technologically feasible now, but, to
the best of my knowledge, does not exist commercially at this time. Its development, if not
already under way, should soon be undertaken.

DISCUSSION

MEMBER OF THE AUDIENCE: This type of approach will only work on certain types
of programs, and 1 was wondering if you could characterize these a little better. For example,
in a simulation program, it is going to be practically impossible to trace the origin of the
statistical result back through the previous simulation process. A lot of programs come in
several steps in which the output is really dependent on many previous calculations that do
not show up in the output. Can you characterize the type of programs that you expect us to
work on?

AUTODOCUMENTATION 155

ARNOLD: | have to admit that our original thoughts were based on scientific and busi-
ness programs and not simulation programs. However, I think that it is certainly feasible to
apply this to almost any class with enough effort. Although it might be difficult, it is probably
within the realm of possibility to apply it even to your case.

MEMBER OF THE AUDIENCE: If you can do this, then you should also perhaps set
your sights a little higher. When you accomplish this, you will also be able to verify the cor-
rectness of the programs. If you can really trace the output back through the input, you
should be able to verify while you are at it, too, I should think.

ARNOLD: That would be a very excellent adjunct to such a system.

MEMBER OF THE AUDIENCE: That is a very difficult process.

ARNOLD: Yes.

e
e

Page Intentionally Left Blank

-

ol

1
/lb/lcﬁ\
N

COST ADVANTAGES OF AN INTEGRATED
DOCUMENTATION APPROACH

William O. Felsman
Litton Systems, Inc.

Interactive use of on-line computing terminals is a method of increasing importance in

developing or updating programs. Two major advantages are realizable: the turnaround time
is decreased by at least one order of magnitude, and the programmer learns to treat the com-
puter not only as a computational device but also as a combination blackboard and library.
All additions and updatings are consequently performed directly on disc storage, and the
completed program is thus available only in the raw form in which it was developed.

Program cleanup is required before formal documentation. TIDY and SWAP are two

programs that assist this function. Figure 1 shows a subroutine that is representative of the

kind of source code that can result when using on-line, interactive programming techniques,
particularly if full advantage is made of the on-line system by assigning several programmers
to related portions of the same task.

The TIDY program reassigns statement numbers in ascending order, with the base number

and number increment being defined by the operator. It also generates a standardized, closed-up
source language format. Figure 2 shows the RAW subprogram after being processed by TIDY.

77
10
.11
12
88
90.
16

800

SUBROVUTINE suB3(1)
DIMENSION 1ARRY(32)
1EMP1s]
1EMP2= 1073741824
1FC1)?77, 10, 10
I | +2147483647+ 1
tARRY(1)= 1
GO TO 11
IARRY(1)=0
DO 16 J=1,31

1F () - 1EMP2)12,88,88
1ARRY(J+ 1)=0
GO TO 90
lARRY(J+ 1)= 1
1=1-1EMP2
1EMP2=1EMP2/2
CONTINUE
I= 1EMP1
WRITE(6,800) (1ARRY(J1) ,J1=1,32)
FORMAT(1X, 4(&411, 1X, 411 ,2X))
RETURN
END

Figure 1.—RAW subprogram.

157

Two further transformations are
useful for improving the program legi-
bility. First, the equal, plus, and minus
operators can be set off by blanks and
the variable names can be replaced by
others of increased semantic content.
Figure 3 shows the TIDY ’ed program
after being thus processed by SWAP. The
format is more pleasing, and the vari-
ables now indicate the function they
serve. For example, the name of the sub-
routine BISHOW shows some relation
to its function of generating a bit-by-bit
printout of the contents of the named
variable, and so on.

PREDOCUMENTED SUBROUTINES

The use of predocumented sub-
routines in the development of a new

FYACEOING YAGE RLaNK NOT FLLMED

158

10

12
14

1%
18

22

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

SUBROUTINE SUB3(1)
DIMENSION 1ARRY(32)
[EMPle=|
IEMP2=1073741824
1F(1)10,12,12
1=1+2147483647+1
IARRY(1) =1

GO TO 14

IARRY(1)=0

DO 22 J=1,31
IFC1-1EMP2)16,18,18
LARRY(J+1)=0

GO TO 20
IARRY(J+1)=1
l=1-1EMP2
IEMP2= i EMPZ/2
CONTINUE

I=1EMP1

WRITE(6,24) (1ARRY(J1),Jl=1,32)

SUBROUTINE BISHOW(NUMBER)
DIMENSION MEMBIT(32)

NUMSAV = NUMBER

HEXT = 1073741824
IF(NUMBER)10,12,12

NUMBER = NUMBER + 2147483647 + 1
HEMBIT(1) = 1

GO TO 14

MEMBIT(1) = 0

DO 22 ICOUNT = 1,31

IF(NUMBER- - HEXT)16,18,16
MEMBIT(ICOUNT + 1) = 0

GO TO 20

MEMBIT(ICOUNT + 1) = 1

NUMBER = NUMBER - NEXT

HEXT = HEXT/2

CONTINUE

HUMBER = HNUMSAV

WRITE(G,24) (MEMBIT(J1),J1 = 1,32)

24 FORMAT(LX, 4(&11, 1X, 411 ,2X)) 24 FORMAT(1X,4(u11,1X,411,2X))
RETURN RETURN
END END
Figure 2.—TIDY’ed program. Figure 3.—TIDY’ed and SWAP’ed program.
Table 1.—List of Common Subroutines
Compiler | Assembler | LOG2 | SADL | SWAP | TIDY | Subroutine Definition
X X X X PAGE Page control
X X X X INBUF Source language read control
X X OUTBUF | Source language standard out-
put format
X X X X X X MOVER Right adjust name
X X X "MOVEL | Left adjust name
X X MVLEFT | Left adjust name, return spaces
shifted
X MVRITE | Right adjust name, return
spaces shifted
X X X X ILSHFT Shift name specified number of
places to the left
X X X X X IRSHFT | Shift name specified number of
places to the right
X X IFXPT Alpha to integer conversion
X X X X X DLIMIT Delimit a source statement
X X X X X PACK3P [Terse number equivalence to
variable name
X X X X X PACKP3 | Reassemble names after
delimiting
X X X UNPACQ | A4 format to Al format
X ORDER | Indirect reference ordering of
data

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 159

program is a well-known way to greatly reduce the attendant documentation effort at the
same time that it reduces the program development time. Table 1 shows the extent to which
predocumented subroutines were useful in the development of the operational programs dis-
cussed in this paper. The effect is similar to the use of a special higher order language, except
that the more powerful operations are defined by subprograms rather than operators.

METAPROGRAM CONCEPT

Considerable additional advantage can be obtained if programs are written in a generic
manner. For example, in an assembler program for an avionics computer, completion of the
truncated operand addresses is normally a function of the attendant instruction. The alter-
natives might be to use the most significant bits of the instruction counter, to use a maximal
length base address register, or to use a minimal base address register. If the usage for each
instruction is written into the source code, then modification of the program to perform the
assembly function for a second computer requires not only that the source code be redevel-
oped but also that the documentation be rewritten both at the program level and the user’s
manual level.

If, on the other hand, the basic program is written to provide for all of these potential
choices and the branch chosen for a particular command is determined by a data set includ-
ing the command mnemonic and a code defining the method of address completion, then
this portion of the program needs no rewriting or redocumentation when the target com-
puter is modified or a new target computer developed. Change of the data-set entry table is
all that is required, together with the attendant minimal documentation.

This method of identifying significant parameters in a class of programs and then writ-
ing a generic program to accommodate these parameters in a defining data set is known as
a ““metaprogram’ approach. That is, the data set is itself in effect a program, written in some
very simple interpretive language and consequently has become known as the metaprogram.

Figures 4 and 5 show the metaprograms used for TIDY and SWAP. '

The TIDY metaprogram is categorized by an identifying operator and several parameters.
These define the start and finish locations within a FORTRAN statement of the series of
places where statement numbers occur in that statement. The main program is thus

GO=GO DELIMIT

TO=TO DELIMIT

CALL=CALL DELIMIT

REAL=REAL DELIMIT
INTEGER=INTEGER DELIMIT
SUBROUTINE=SUBROUTINE DELIMIT

DO 2 2 DIMENSYON=DIMENSION DELIMIT
GO 3 3 1 DOUBLE=DOUBLE DELIMIT
GO b -4 PRECISION=PRECISION DELIMIT
GOTO 2 2 1 DO=DO DELIMIT2
GoTo 3 -4 COMPLEX=COMPLEX DELIMIT
IF -1 -1 1 COMMON=COMMON DELIMIT
IF -5 -1 CYCLE=CYCLE DELIMIT
CYCLE 2 2 GOTO=DELIMITL GO DELIMIT .TO DELIMIT DELIMITR
READ 5 5 EQUIVALENCE=EQUIVALENCE DELIMIT
WRITE 5 5 FUNCTION=FUNCTION DELIMIT
Figure 4.—TIDY meta- Figure 5.—SWAP metaprogram.

program.

‘rq-u
T/; 4

160 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

STA1 CLA2 18001212 18001010 specifically directed to the locations where replace-

U0l STA2 25001212 24001010 ment is to occu ._A al statement type‘:s can be

Lbn1 24001010 processed by adding to the metaprogram with no

A2 ADD1 25012121 28001010 . .

gt,{;’ SUB1 29012121 28001010 change in either the main program or the documen-

CLAL STA2 22001212 28001010 ; : th

CLAL 22001010 tation associated with it. . .

CLAZ MPY1l 10012121 22001010 The SWAP metaprogram is equally simple. The

INC1 TRZ2 1L001515 14001010 :

STA1 STA2 16001212 16001010 mnemonic to be replaced occurs to the left of the

sTN1 16001010 si d th laci . .

ADDI STA? 26001212 26001016 equal sign, and the replacing mnemonic sequence is

ADD1 26001010 ; i it

SUBL STA2 57001212 27001010 to the right of t_he equal sign. Afldltlonal control

susl 27001010 parameters are included at the right. Thus, DELIMIT

CLA2 ANAl 31012121 28001010 .. iy , :

ANAL 31001010 31001010 indicates a blank is to be inserted after each occur-

CLA2 ORAL 30012121 2£001010 .)

ORAL 30001010 30001010 rence of a new variable in the output, and DELIMIT?2

CLAZ DIVI 17012121 indi

SIvs 17005018 17001010 mdlcaj[es tha? blanks are to be placed after bth the

CLA2 TRAl 00012323 00003010 replacing variable and the next succeeding variable.

TRAL 00003010 .

TMZ1 CLA2 01003232 01003010 Additional control commands close up blocks, re-

TNZ1 0100301¢ :

TZAL CLA2 05003232 05003010 move parentheses, and perform other functions.

TZAl 05€03010 This metaprogram is also open-ended, and ad-

TPA1 CLA2 06003232 06003010 . .)

TPAL 06003010 ditional statements in any of several higher order
-languages can be accommodated by appropriate de-

Figure 6.—Typical assembler meta- scriptions in the metaprogram.

program (partial).

In fact, the data representing the desired mne-
monic exchange is also treated as a simple continua-
tion of the normal metaprogram.

Figure 6 shows a portion of a metaprogram for an assembler. It consists of a defining
mnemonic or mnemonic pair, plus a series of numerals that define the transfers within the
main program which control the development of the assembled code for that instruction
mnemonic. The assembler program is very nearly invariant for a wide class of computers,
consequently documentation of the main program can here, too, be unchanged with new
applications. However, the interpretation of the metaprogram by the programmer requires a
computer assist to documentation.

Figure 7 shows the metaprogram as processed for semantic clarity, and figure 8 shows a
portion of the documentation that relates the metaprogram controls to the operation of the
computer arithmetic unit. The matrix documentation shown in figure 8 has been developed
to reduce the difficulty in the handling, updating, and correction of bulk data. The matrix
documentation program accepts data as a sequential input stream and formats it in both ver-
tical and horizontal directions, with text hyphenation where applicable. Program control
cards direct the number and width of the columns. Thus, each entry in any column is sep-
arately modifiable, and the program adjusts the full updated data input to maintain the
format.

INTEGRATED DOCUMENTATION SAVINGS

Two examples of the cost of documentation are shown in table 2.
In each case, the compiler and assembler documentation for a given computer required
full page counts of 140 and 95, respectively. However, for all successive applications to

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 161

“eat

MPPLS ==DPC (Ase)
“.-->qQ

BARL -=> paAML
BARS ==)> DAKS

MlepCs ==>PC (A=e)
- ==->C

BARL ~=)> BAKL
BARS ~-> BARS

M1ePCS —DPL (Aas)
N =-—>q

BARL ==> BARL
BANS ==> BAKS

(ML eBARS) —DPL (A=e)
Q=-->¢

BARL —D> BARL

BARS ~—> BARS

—mmm———- 10t ZERQ SECOUDARY~=-===== =c-a m————— ZERQ SECOIDARY=--=-ovcce-o
NDIRECT {HDIRECT NIRECT INDIRECT
PR SEC NUMB TYPE 1 PRI SEC PrI) SEC SPR NUMB TYPE I1 PRI SEC PRI SEC SPR
STAl CLA2 18 0 0 1 2 1 2 0 18 ¢ G 1 ¢ 1 J 0
STAl 18 0 0 1 0 1 Q e [4 ¢ ¢ ¢ {] ¢ 9 0
LoqQl STAZ 24 0 0 1 2 1 Z n 24 0 &3 1 0 1 c c
Lbql 24 ¢ 0 1 0 1 0 4] G 3} 0 c 0 [4 O 0
CLAZ ADD1 25 [} 1 2 1 2 1 1] 28 0 0 1 iy 1 7 8
CLA2 suBl 29 0 1 2 1 2 1 0 28 4 i} 1 4 1] 0
CLAl STA2 28 0 c 1 2 1 2 G 2 1] 0 1 0 1 0 0
CLAl 2 0] 1 0 1 G G 0 ¢ 0] 0 4 s A
CLA2 HMPY1 19 0 1 2 1 2 1 0 28 & ¢ 1 il 1 0 B}
INC1 TRZ2 1 0 0 1 5 1 5 0 14 c [\] 1 [} 1 0 0
STQl STA2 16 0 a 1 2 1 2 0 16 ¢ 4] 1 4 1 6 G
sTQl 16 0 4] 1 9 1 U 0 0 4] 0 [4] G ¢ [
ADD1 STA2 26 0- c 1 2 1 2 4] 26 o ¢ 1 3} 1 0 G
ADD1 26 0 0 1 0 1 G 0 G 0 0 c 0 b} S 0
SUB1 STA2 27 0 0 1 2 1 2 5} 27 R} 0 1 C 1 Q 1]
SuUBl 27 0 ¢ 1 ¢ 1 ¢ 0 ¢ 0 0 & H ¢ 0 1]
CLA2 ANAL 31 0 1 2 1 2 1 It} 28 0 [1 ¢ 1 0 ¢
ANAL 31 1} 0 1 0 1 [0 31 0 g 1 0 1 ¢ g
CLA2 ORAl 30 0 1 2 1 2 1 g 28 3 Q 1 g 1 g Q
ORAl 30 0 0 1 0 1 0 0 30 [+ J 1 1} 1 0 0
CLA2 DIVl 17 0 1 2 1 2 1 0 [0 0 0 0 0 0 4
Dtvl 17 [} Q 1 0 1 0 0 17 0 0 1 4} 1 U 0
CLA2 TRAl C 1} 1 2 3 2 3 0 0 0 0 3 0 1 c ‘.
TRAL 0 [0 3 0 1 0 0 0 0 4]] 0 0 0 9
THZ1 CLA2 1 [4] 3 2 3 2 0 1 0 0 3 0 1 0 0
THZ1 1 0 (1] 3 0 1 0 0 0 0 0 0 0 0 0 0
TZAl CLA2 5 0] 3 2 3 2 0 5 0 0 3 0 1 0 0
TZAl 5 0 0 3 0 1 0 9 0 0 0 1] 0 4 0 0
TPAl CLA2 6 0 o 3 2 3 2 0 6 ¢} 0 3 0 1 C 0
TPAL 6 0 0 3 0 1 0 0 0 0 4 0 0 0 0 4
Figure 7.—Processed assembler metaprogram (partial).
i | INSTRUCTIGN COMDITICNS | INSTMUCTICh CUNDITIUNS | INSTRUCTIUN CCADITIONS | INSTRUCTION CONDITIONS i
CLOE | WAEACNIC | ML AND M2 FLELC USED | W1 FIELO CMLY | ML AND N2 FIELO USED | M1 FIELD ONLY]
1 ! MI IACIRECT AGLKESS | MU INUTRECT ADDRESS | INDIXECT ADDMESSING | INDIRECT ADDRESSING |
| i | | | |
CCoL | TRA ML | (M2408RL) ~=> A | I LUN24BARLY) ~=> A } t
§ocLa W2 | rAcx(vc.nAl(1)|-~>uED | vAcerL.&Aat!li«-)uEn } PACK(PC,BAR(T})-=>DED | PALK(FC.BAR(T’)-)DED |
i § miepcs — 1 wiepCs —> { ALepCs —=> PC { tMaBARSY -]
' t 6v==>¢ 19-->4q 19-->9 I @=-=>0q. |
] L samL ~=> BaRL | 8ARL =-> sami | BARL =~> BARL | 8ARL —> BARL]
: } sans --5 dans : BARS ~=> BARS | BARS --> B4RS | 8ARS —> BARS 1
1 i]
€CI2 1 NI ML | PLOPCS —=>PC (4 AON O) | MLePCS —>PC (A NCN O) | M1oPCS——DPC (A NON 0) | (M1eBARS)--DPC(A NO O} |
1 CLA W2 | 1P2eBARL) ~=> & i 1 tin2esanL)) --> & |]
i] 'ACI(PC.!ARII)D—->DED | PACKIPC,BARITII=~D0ED | PACKIPL,BAR{ 7} 1~-=>DED | PACKIPC ,BAR(7)1-—>0ED |
] T d 1Q-->0 19-—->9 1 Q=-=>0Q i
|) om --> BARL 1 BARL ~=> BARL } BARL --> BARL | BARL —> BARL ¥
: : BARS --> BARS : UARS ==> BAKS : BARS ~+> BARS } BARS —D> BARS :
CCGI | LB M2 | M2 ==> BAR (T d4IS)] | (M208ARL) ~=> BARLT)] t
§ TRA ML | ALePCSEIMEM) —=> PC | (MLePCSIULOBL ==> PC | MLePCSINEN) =-> ©C 1 L{R1I8ARSIOLOIY==DPC |
| 1¢-->0 I 0=-->0 fuo-—->0 tQ-->0¢ [
] 1 BARLUINEN) ~=> JAFL | BAKLIULD) -=> BARL | BARL(MEW} —--> BARL | BARLIGLD) -~> BARL 1
[| CANSINER) ~=> BAuS { BARS{CLU} ==> BAKS | BARSINEW) ~—> BARS | RARS{OLO) -=> BARS t
] I PCol ==> PL ‘I PCel --> ¢ : : :
] i
LICe | SPC M1 | (DE0I==> (ALleBars) | {DED)=-> (M1¢BARS) | (DED)--> (M} eBARS) | IDEDY—> ({MLeBARS)) |
1 CLA M2 | (M2eBANL) --> A i 1 ((M2eBARL)) --> A] |
| 1 4=-=>u 1 6-->9 g -—>q 1 @-->1¢]
| | eamL ~=> BARL) BARL --> BaARL 1 BARL =-=> BARL) BARL —> BARML)
|] BARS -~> BARS | BARS =-> BAKS | 8ARS --> BARS | BARS =~> BARS |
[} = PCel ==> PC : PCel ~=> PC : pPCel ~~> PC : PCel =—> PL :
]
C3C> | >Ts M2 | (AY ==)> {u2eeanid 1 L A} ~=> (Um2eBaaLI} \ \
| Tad ML | PACKIPC.BARITII==>DED | PALKIPC.BANLTII==D>DED | PACK(PC,BAR(7})-=>DED | PACK(PC,BAR{T)}—>DED
| | MLePCS —~> PC | mLepcs —> PC | MiepCs —-> PC | tM1eBARS) ~=> PC |
+ 1 ad=>¢ 19—>4q le-—>0 fQ-->0¢ 3
t | BARL -=> bARL | BARL ==> BARL | BARL -~> BARL | BARL ——> BARL [}
: : BARS ==> 84K } BARS -~> BARS : BARS --> B4RS : BARS -~> BARS :
CCse | T4 ML | tM2e3A6L) ~=> 1 | ((M2eBARLI) ~=> & | |
iocLa M2 | DALlec.aAn«rln--)utu | PACKIPC,BARITII==DDED | PACKIPC,BARI 7)}——D0ED | PACKIPC,BARIT)I)—>DED |
1] M1ePCS==>PL (A=d)) MLepCS==>PC 1A=0) | MIePCS ==~>PL (A=0)] (M1eBARS)—DPC 1A=0))
' 1 ¢—>¢ v ==> ¢ I o-->4¢ le=-->¢ i
1 | EARL ==> BARL | BARL --> BaRL | BARL ~~> BAKL | BARL =~> BARL |
t | 8ARS -=> oARS : BARS =-> BARS : BARS --> BARS : BARS -=> BARS :
]]
CCCT } TPA ML | (A20CAAL) ==> &] | (1M20BARLIY ==> A ! |
) CLA M2 { PACKIPC,BAR(TII=->DeC | PACKIPC,BAN(T}1-=>DED : PACK P C,BARL 7])-~DDED : PACKIPC (8AR (70)==DDED :
[} [} ¢
i [} | [} | I
| i t |] |
] i |] i [}
| | | | i i

Figure 8.—Matrix documentation of assembler metaprogram (partial).

162 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Table 2.—-Documentation Page Count

Documentation stage Compiler Assembler
Theory of operation 70 40
Flowcharts 30 30
Description of charts 30 20
Metaprogram description 10 5

Total 140 95

Table 3.—-Program Crganization Statistics, Source Code

Basic Total Development Separable
Name program | program tinlx)e Basic program- Data | Predocumented
length | length (man-months) program? peculiar set? subroutines?
(lines) | (lines) subroutines?
TIDY (statement 229 686 0.75 0.334 0.052 0.015 0.599
number reorder)
SADL (reliability 475 816 1.5 .590 .025 .007 378
model)
LOG?2 (logic 515 857 1.5 .602 .000 .003 395
simulator)
SWAP (mnemonic 210 637 .5 330 .000 .024 .646
exchange)
Memory allocator 587 887 3 662 .025 .016 .298
Assembler 829 2193 5.5 378 077 .063 .282
Compiler 1216 1690 24 .720 063 200§ - .017

3Proportions of total programs.

differing computers, the compiler required only a new description of the metaprogram, and
the assembler, which was less completely organized into a generic program, required a new
metaprogram description plus about 30 percent of the other page counts.

Some indication of the savings to be gained by the use of predocumented subroutine
and metaprogram data-set techniques can be seen in table 3, which gives the relative usage of
these methods for a variety of programs. Documentation savings run typically from 30 to
60 percent on the initial program development. However, the use of subprograms has a
major effect upon the program cost itself. Table 3 tabulates the number of lines of source
code for the programs investigated together with the development time for these programs.
These programs were developed by a group of five people, of consistent skill level, working
both individually and as members of small teams. A plot of these data is shown in figure 9.

The most significant aspect of the graph is that it shows an exponential growth of
development time with the length of the basic program. The basic program consists of the
main program plus such program-peculiar subroutines as are conceptually involved with the
main program in a highly complex manner. Thus, implementation of an integrated

4
-

L

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 163

40 -
30f
® COMPI
. LER
_ =
n <
ES PROTOTYPE COMPILER e
Z 0 10}
(o4 L
s a -
-4
2 6l
20 L
T af
o= MEMORY
-l ALLOCATOR ®
= w
2L
5
= RELIABILITY & @ LOGIC SIMULATOR
oy MODEL
- % 1.0
L5 0.8 C
50 YL STATEMENT NUMBER RE-ORDER
.- O 06 -
- .
B e MNEMONIC TRANSFORMATION
04}
0.3
0.2 1 1 1 1 1 | 1
0 200 400 600 800 1000 1200 1400

BASIC PROGRAM SOURCE CODE (L!NES)

Figure 9.—Program development time.

documentation approach, which suggests the use of small, preferably predocumented, sub-
program elements is not inconsistent with the program design cycle, which also shows greater
efficiency in the time of program development when appropriate organization permits the
size of the basic program to be reduced.

MODIFICATION

Figure 10 shows the advantages resulting from the use of the integrated documentation
approach when it was necessary to modify an existing assembler to accommodate a new
computer. Two basic programs were available for modification, one with both subroutines
and a metaprogram, the other being predominantly large program elements. Eighty-five
percent of the source code from the integrated approach was applicable, whereas only 40
percent of the unitized code could be reused.

Figure 10 also shows the costs associated with the two modifications. The unitized
code changeover was estimated at 15 man-months. The actual cost to update the program
using an integrated documentation approach was 2 man-months.

Further cost savings are shown in table 4. Here, the effect of the metaprogram is de-
tailed. The cost of modification from one target computer to another is compared to the

164 " AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

)
>
% 15 MAN-MONTHS
a g (ESTIMATED)
< 1 —
= 4
o 85 § TARGET COMPUTER A
S —% < TO TARGET COMPUTER B
[a]
g Q
=1 ™
&) —
- jo]
™ a
Om 2
I
08 =
z O g
9]
= | [
=0 40% {x,
5o r— %)
oD -
&2 5
s & 2 MAN-MONTHS
<< py ACTUAL
> o O ()
K] Q b
E:l 2 a TARGET COMPUTER B
o A % TO TARGET COMPUTER C
UNITIZED INTEGRATED UNITIZED INTEGRATED
CODE DOCUMENTATION CODE DOCUMENTATION

APPROACH APPROACH

Figure 10.—Program modification comparison (assembler program).

Table 4.—Integrated Documentation Effects on Program Modification

Rate of cost of
modification to new
program design

Data set proportion

Program type .
g Yp in source code

Compiler 0.20 0.1
Assembler .06

cost of a new program design for the new target computer. Examples are given for a com-
piler and an assembler.

The compiler, which makes extensive use of a metaprogram, can be modified to accom-
modate a new target computer at one-tenth the cost of writing a new compiler program.
Modifications are almost entirely to the metaprogram. The assembler, which uses a less well-
developed metaprogram but which does make extensive use of common subroutines, can be
modified to accommodate a new target computer at about one-third the cost of developing
a new assembler program.

RUNNING TIME

Run time of production programs developed using the integrated documentation
approach would appear at first consideration to be somewhat higher than the run times of
similar programs written in unitized code. This is because the use of prepackaged sub-
routines implies a close, but not exact, fit between the requirement and the package and

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 165

because of the extra time required to execute the branch statements implied by metapro-
gram techniques.

However, the integrated documentation approach tends to segment a program into
functionally consistent elements with minimal communication required between them and
consequently parallels good programming practice. The result is that the total program size
is somewhat reduced, values from 10 to 30 percent being typical. Smaller programs, using
less core, generally are charged a lesser main frame usage rate. This lesser rate compensates
for the longer execution time.

CONCLUSION

An integrated documentation approach using predocumented subroutines and meta-
program techniques is a very efficient means of not only generating the relevant documen-
tation but also of reducing program development costs.

DISCUSSION

- MEMBER OF THE AUDIENCE: Do you use this approach on all your programs? In
other words, do you think that all programs are divisible into small metaprograms?

FELSMAN: Yes, they are divisible, but we do not always do it because occasionally
you run into someone who wants something in a hurry. Then we simply write in a standard
fashion as rapidly as we can. It is a one-of-a-kind thing, and we do not worry about docu-
mentation. But for big problems like compilers, assemblers, and memory allocators, we go
through the process and do indeed break it out, use our regular subroutines, and always
write data-set-wise or metaprogram-wise. It is much more convenient.

MEMBER OF THE AUDIENCE: I think your presentation answered the question
raised by Gridley yesterday about whether we should put emphasis on subroutines or smaller
parts. At that time we did not really respond to his question on the panel, and I think we
should have because it is an asset not only in developing programs but in distributing pro-
grams to other people to use. If you are going to use an entire program without modifying
it, fine. But when you develop programs, I think your point is valid that it takes less time to
develop a new program from well-documented subroutines or metaprograms than it does to
modify an existing program to make it work on a computer other than the one for which
the program was written.

MEMBER OF THE AUDIENCE: You implied that this was for a given set of target
computers.

FELSMAN: Yes. In this case they happen to be all airborne computers.

MEMBER OF THE AUDIENCE: Have you considered it for a general-purpose type of
computer in a general-purpose environment?

FELSMAN: As far as I can tell, we have investigated other military computers like the
AN/UYK-7, which is a very powerful floating-point machine very similar to some of our
commercial machines, and we wrote a metaprogram for that using this compiler. I think the
answer to your question is yes, although not unequivocally.

166

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

MEMBER OF THE AUDIENCE: Presume a manufacturer has provided this to us, but
our problem is related to application programs. Can this be applied there?

FELSMAN: You have a more difficult task because you have to find the common
parameters from application to application. If you can find any, you can do it. If they are
not immediately evident, maybe you cannot do it.

a? \O\

A
7
M’)

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE)

Michael D. Neely
and
Judy W. Tyson
ARIES Corp.

Computer program documentation, the “maps’ of the computing industry, is a very
neglected area of this industry. Countless hours are spent trying to find out what has been
done in the past, and time and money are wasted duplicating past efforts.

However, the poor quality of these ‘“maps” is only a secondary effect of this neglect of
the field. The primary effect is the scarcity of tools that can be used in the documentation
process. A determination of what types of tools are needed still must be done. This paper
will attempt a preliminary identification of these tools.

Before those tools can be identified, though, the uses of the documentation to be pro-
duced must be determined. The most important uses are program maintenance, which in-
cludes enhancements and error detection and correction, and program development. Efforts
in these areas to develop tools that produce good documentation will be more than repaid.

This paper will try to identify some areas of program documentation that should be
automated and then will focus on a particular area and explore the possibilities of automa-
tion. In general, this discussion is directed at the assembly language program, but in some
areas the remarks-are germane to metalanguages. The emphasis will be on the tools that are
needed, not on the means of providing those tools.

BASIC REQUIREMENTS

Program documentation usually consists of the program specifications, flowcharts, pro-
gram listing, and operating instructions. Because the specifications are written before the
program is and because means of automatically flowcharting programs are already available,
the program listing and operating instructions will be the topics discussed here.

The program listing contains coding, the machine language instructions generated by
the coding, and comments relating to the coding. When properly interpreted, the coding sup-
plies the most accurate ‘“map” of the program. Interpreting the coding is one of the areas in
which automation can improve the use of the listing. The operating instructions provide the
information necessary to use the program. They specify the interface between the program,
the operator, and the peripheral devices. Some of the operating instructions can be produced
as a byproduct of interpreting the coding.

Most of the information needed by the maintenance programmer can be produced by
an analysis of the coding. This includes a set of consistent comments relating to the coding,

167

168 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

error identification, executive function identification, analysis of arithmetic operations, and
various cross-reference tables. Much of this same information is necessary in the development
of a program library but, in addition, it might be desirable to produce other types of infor-
mation, more general in content. These can be produced by the use of control cards to iden-
tify the information. We will consider each of these areas to determine what effect automa-
tion can have on the documentation process.

Comments

Program listings normally include comments provided by the programmer; in addition
to these comments, a means of automatically producing comments from the coding would
be helpful. These comments could be on two different levels: An analysis of the coding or
an analysis of the logic defined by the coding. This area will be explored in more detail in a
later section of this paper.

Error Detection

The objective of the error detection process would be to identify those errors that are
readily apparent from an analysis of the coding without going into a detailed analysis of the
logic of the program. It would be impossible, for example, to determine from the coding if
a program meets the program specifications. It would be possible, however, to spot other
errors that are related to the mechanics of coding.

Errors that could be readily detected include instructions using invalid operators, in-
valid operands, undefined program labels, or doubly defined program labels. For bank-ori-
ented computers it would be useful to identify areas where code spills over the end of a bank
or where an area of core is overlaid. Another possibility in this area would be the flagging of
instructions referencing items located in a different bank.

A different type of error would involve the use of computer registers. It would be pos-
sible to flag coding in which the contents of a register are destroyed. In this case, the register
is loaded with one value, then loaded with another value before the first value has been used.
In double-precision operations it would be possible to flag instructions that reference im-
properly aligned items.

Errors should be flagged whenever they are encountered in the coding; in addition there
should be an error summary at the end of the listing.

Operator Interface

Executive functions, mainly input- and output-related operations, are an important
segment of any program and therefore play an important role in the program documenta-
tion. It is necessary to specify which devices are used, the manner in which they are used,
and what operator interface is required for those devices. All these can be provided automati-
cally; in addition, AUTONOTE could associate calls to a particular device with the coding,
thus producing a cross-reference table of input/output (I/O) calls by device. It might also be
possible to associate buffer areas with the devices using those areas.

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE) 169

Another interesting possibility is the identification of all input and output operations
on a particular data set. However, this would be more easily implemented with metalan-
guages than with assembly languages. :

In the area of console communications it would be desirable to associate operator mes-
sages with the coding that produces the messages. When a response is required from the op-
erator, all valid responses should be listed and default responses should be specified.

Arithmetic Operations

For arithmetic operations, the documentation should specify the limits imposed on an
operation by the machine word size, mode of operation (single or double precision), or con-
stants that are used. Iterative operations should be identified, and the limits on the number
of iterations should be specified. These functions can be provided from an analysis of the
coding. In addition, it may be possible to analyze algorithms to produce the formulas de-
fined in the coding. In metalanguages it would be possible to specify the accuracy that would
be obtained in an arithmetic process.

Cross-References

Program listings normally have only one cross-reference table, an alphabetical list of
program labels with the instruction numbers in which the labels are referenced. Several other
types of cross-reference tables would be useful and could be produced easily during an anal-
ysis of the coding. In addition to the basic alphabetical cross-reference of all items, there
should be separate cross-reference tables for data constants, address constants, buffer areas,
subroutines, /O calls, and labeled instructions. The tables of constants should identify any
duplicated items, and all tables should identify unreferenced items. In addition, there should
be a separate cross-reference table of undefined items. These various tables would aid the
programmer in debugging his program originally as well as in maintaining the completed
program.

When origin instructions to the assembler program are provided, AUTONOTE would
produce a basic core map showing the area used, the location of all origin statements, and
the location of any overlaid -areas of core.

These are all basic items that should be provided in the documentation to aid the main-
tenance programmer. However, in addition to these items, many organizations require that
documentation be in a specified format. The information required for this documentation is
usually, or at least should be, included in the program listing in the form of comments. This
information includes program name, acronym, organization name, programmer, assembly date
equipment configuration, source language, core requirement, execution time, and program
abstract. With the use of control cards, this information can be extracted from the program
to produce the documentation in the specified format. However, this capability should be in-
cluded only as an option, and the use of control cards should not be necessary to use the
other features of AUTONOTE.

b

170

AUTOMATIC COMMENTS

The possibilities of automation in the area of program comments should be explored
further. This area is particularly susceptible to automation because the current method, re-
lying on programmer-supplied comments, has several inherent disadvantages: Not all pro-
grammers comment programs in the same detail; the comments may be meaningful only to
the original programmer; and often program coding is changed, but the comments remain
the same. In addition, in metalanguages the programmer may not be familiar with the as-
sembly language that is generated and may not be able to determine from the coding what

is taking place.

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

PR =

To automatically comment a program, first, a set of comments would be associate
with the instruction set, as shown in figure 1. Instructions that cause an alteration in the
sequential execution of code under certain circumstances would require more than one com-
ment. These comments would then be used to explain the mechanics of the operations. An
illustration of this technique is shown in figure 2. This process requires a limited ability to
look ahead in the coding to determine what is taking place, but it does not require a detailed
analysis of the logic defined by the coding. The automatic comments are provided in addi-
tion to the programmer’s comments, not in place of those comments.

It would also be possible to comment a program by analyzing the logic, roughly the
procedure used by flowcharting programs, but that would require a greater effort in looking
forward and backward in a program and would be a duplication of the flowcharting process.
Because the program listing is considered a complement to the flowchart, production of
comments keyed to the coding should be an area of concentration.

Subroutines are an important element in any program, and the comments relating to
the subroutines are important for an understanding of the program. Good documentation of

INSTR.

CRA

STA

SM1

SR1

ENB

AUTOMATIC COMMENT

CLEAR A
STORE A IN XXXX

LOAD A FROM YXXX

ADD A TO.XXXX
SUBTRACT A FROM XXXX
SHIFT A LEFT X BITS
SHIFT B TO A LEFT X BITS
COMPARE A TO XXXX
GREATEK

EQUAL

LESS THAN

BIT 1 OF A=1

NO

YES

SENSE SWITCH 1 SET
YES

NO

ENABLE INTERRUPTS

Figure 1.—Instruction set and associated

comments.

subroutines is not only helpful to the main-
tenance programmer but also important in
the development of a subroutine library.
Well-documented subroutines can prevent
needless duplication of effort in the devel-
opment of new programs. Figure 3 shows
an illustration of a relatively simple sub-
routine with the programmer’s comments.
Figure 4 shows the same subroutine with
the addition of automated comments. These
comments not only describe the processing
within the subroutine but also tell which
program registers are loaded prior to entry,
where the subroutine is called from, which
items are for internal use, which external
items are used, and which registers are mod-
ified at the exit. Much of this information
can also be provided in a cross-reference of
subroutines at the end of the program
listing.

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE) 171

STAK LDA *BUFA *LOAD A FROM INPUT BUFFER
SNZ *A=0
JMP $+2 *YES~-GO TO THIS LOCATION+2
STA *BUFB *NO-STORE A IN OUTPUT BUFFER
IRS BUFA FILL OUTPUT BUFFER *INCREMENT FWA INPUT BUFFER
IRS BUFB *INCREMENT FWA OUTPUT BUFFER
IRS NOWD *WORD COUNT=0
JMP STAK *NO-GO TO STAK
JMP EXIT *YES-GO TO EXIT

*

BUFA DAC INBF FWA INPUT BUFFER

INBF RES 10 INPUT BUFFER

BUFB DAC OTBF FWA OUTPUT BUFFER

OTBF RES 10 OUTPUT BUFFER

NOWD DATA -10 WORD COUNT

Figure 2.—Operation comments.

This type of documentation provides adequate information for maintenance program-
mers and the information needed to develop a program or subroutine library.

As for the format of the documentation, AUTONOTE would begin each listing with
the set of instructions and their associated comments (fig. 1). Then would come the program
with the automatic comments. These comments would not replace the programmer’s com-
ments but would be in a separate column. Thus, for each instruction, there could be two
sets of comments. As an option, the programmer could use control cards to suppress the
listing of automatic comments in sections of the program. Errors would be marked at the
point of origin, and there would also be an error summary at the end of the listing with a
separate list of error codes and their meaning. After that would come the cross-reference
table of all items and the individual cross-references. Figures 5 and 6 show examples of
cross-references for data constants and address constants. In addition to the standard list
of label, location, and reference points, this list contains the value of the item and a list of

172 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

i duplicate items. For bank-oriented

* CHECKSUM ROUTINE computers there would be a core
map. If control cards are used to

T request lists in a specified format,
* A=LENGTH these would follow the cross-ref-
* erence tables.
CCCK DAC 0
ADDITIONAL CAPABILITIES
TCA
There are many possibilities
STA cLek for expanding a system such as
CRA AUTONOTE. For example, with
STA CHEX the use of a cathode ray tube it
LDA %0 would be possible to “page”
: through a program. The sequential
ADD CHEX COMPUTE CHECKSUM flow of the program could be in-
STA CHEX terrupted to look at subroutines,
IRS o with the flow resuming at the end
of the subroutine. It would also be
IRS CLGH DONE possible to modify programmer
JMP $-5 NO comments at the on-line terminal
P %COCK YES or edit those comments to produce
a program or subroutine abstract.
* Subroutines could be selected for a
CLGH DATA 0 CHECKSUM COUNTER library in this manner, and the li-
CHEX DATA 0 CHECKSUM brary could then be queried from

the terminal.

Of course, a system like this
presents many challenges as well as
opportunities. There are several tech-
nical problems that would have to be
resolved. For example, in assembly languages it is often difficult to identify 1/O devices or to
define record layouts. Indexing and indirect addressing would also present problems for the
analysis.

The assembly language program has been the topic of this presentation; other types of
programs present different problems and possibilities. In metalanguages it is easier to define
record layouts and identify I/O devices, and it might be possible to identify and define blocks
of logic, but detailed comments might be redundant, as most metalanguages are at least
partially self-documenting. Another possibility would be to use the intermediate output of
compilers, the assembly language program, as the input to AUTONOTE.

Means of reducing the cost of software must be developed if the software industry is to
continue expanding as it has in the past. AUTONOTE may represent a step in the right di-
rection. It will provide reliable, consistent documentation of programs, something that has
been lacking in the past. It would be a useful tool for the maintenance programmer, it would

Figure 3.—Programmer’s subroutine comments.

* CHECKSUM ROUTINE

* X=FWA
* A=LENGTH

CCCK DAC
TCA
STA
CRA
STA
LDA
ADD
STA
IRS
IRS
JMP
JMP

CLGH DATA
CHEX DATA

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE)

CLGH

CHEX
*0

CHEX
CHEX

CLGH
$-5
*CCCK

0
0

COMPUTE CHECKSUM

DONE
NO
YES

CHECKSUM COUNTER
CHECKSUM

*LOADED PRIOR TO ENTRY:
*A,X

*ENTERED FROM CARD NOS.
*247,654

*RETURN ADDR CALLING PROG
*TWO'S COMPLEMENT A

*STORE A IN CHECKSUM COUNTER

*CLEAR A

*STORE A IN CHECKSUM

*LOAD A INDIRECT FROM X

*ADD A TO CHECKSUM

*STORE A IN CHECKSUM

*INCREMENT X

*CHECKSUM COUNTER=0

*NO-GO TO THIS LOCATION-5

*YES-GO TO REYURN ADDR CALLING PROG

*INTERNAL ITEMS:
*CLGH

*EXTERNAL ITEMS:
*CHEX

*MODIFIED AT EXIT:
*A,X

*A=CHEX

Figure 4.—Automated subroutine comments,

173

aid in the development of program libraries, and as a bonus it would be useful as a debug-
ging tool during the original development of a program. This is the type of tool that is

needed to begin the war on soaring software costs.

il

~

r.o\. 4

174

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

* DATA CONSTANTS

Al 511 000001 497 .618 627
A2 512 000002 480

A3 513 000003 502

A4 514 000004 312 510

A5 515 000005 452

A6 516 000006 379 5806 663
A7 517 000007 411

A8 518 000010 7C1 718

AHIH 103 177777 123 347

ALOW 102 000001 121 214 390
*DUPLICATES:

*AL ALOW VALUE: 000001

Figure 5.—Cross-references for data constants.

prt

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE) 175

* ADDRESS CONSTANTS:

AFIL 202 AFL1 218 . 327 339 409

BFIL 311 BFL1 114 256 423

CFiIL 119 CFL1 489 522 679

DFIL 450 DFL1 560

ZFIL 332 AFL1 510 736 759 840
*DUPLICATES:

* AFIL ZFIL VALUE: AFL1

Figure 6.—Cross-references for address constants.

176 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
DISCUSSION

MEMBER OF THE AUDIENCE: I believe I disagree with a lot of what you said. I
think that translating what the machine is doing into another statement does not help at
all. This is what our documentation assembly level has done for so long. What we really
need is information that attempts to describe what the machine is doing in relation to a
definition of specifications of that job and how it relates to that part of the specifications.

In other words, what you really need to know most of the time is: What was to be achieved?

NEELY: I agree. This is only going to tell you what he did achieve. 1 think debugging
the program originally would be the main use of it. No doubt this is not a panacea for the
industry or for the documentation process.

MEMBER OF THE AUDIENCE: The purpose of a comment is to describe the function,
and I think that if you can get a well-commented program you are at least halfway to good
documentation of that program. If you discourage the people or provide something that
gives you essentially a description of the microcode, the fact that you are loading and stor-
ing really gives you very little. It is important not to have programs that are uncommented
because one comment should describe maybe five or six instructions and give a functional
description. If you encourage people not to do that, you are really going in the wrong
direction, _

NEELY: I agree with you that we should not replace the programmer’s comments by
any means, but this would be used in conjunction with his comments.

PANEL DISCUSSION

MEMBER OF THE AUDIENCE: I might start off with a question that Felsman and
Kalar could discuss since they are actively supplying programs. What would you do in the
case of a program giving the wrong answer? What is the responsibility of the distribution
center in a case like this?

PANEL MEMBER: [think I can answer it because to a large extent inside Litton we do
act as a semidistribution center. When something is wrong, the first thing we do is find out
whether the program was run correctly. If it seems to have been, we find out what the prob-
lem is as soon as possible because we do not want to have the reputation that we do not know
what we are doing.

MEMBER OF THE AUDIENCE: Do you have any procedure for redistributing new
copies?

PANEL MEMBER: No official way, but we make sure that everybody who got the
original also gets the followup.

PANEL MEMBER: At COSMIC, if we get a trouble report about a program, the pro-
gramming manager, who is quite capable, tries to solve the problem. If he cannot do it, we
contact the originator if possible. If we cannot get in touch with the originator, we try to
find somebody at the center where the program came from who is familiar with the program
and can help us. ‘

MEMBER OF THE AUDIENCE: Earlier this morning Field said that this would be the
first time he had heard a contractor wanting to tighten up the request for proposal (RFP).
When it becomes profitable to document well, then I think you will not have to have a sym-
posium to find out how to document automatically. I have never seen one of your RFP’s,
but I have seen RFP’s that in fact required no delivery of documentation. | am sure that the
customer wanted the documentation and thought he had asked for it. In fact, I have seen
RFP’s that required no delivery of the program. I have no objection at all to bidding on a
project if it requires no delivery of the program.

If the users to whom the documentation is most profitable will pay a little more atten-
tion to making it profitable to the contractor and the program production people, I think
there would be less of a documentation problem. When something has been actually imple-
mented, it is because it is profitable and cheaper for a contractor to do the job right once.
For some specific programs, it is not cheaper to document them, it is cheaper to write them
and turn them over if you can. Does the panel have any comments on this?

PANEL MEMBER: I think we are trying to reach a point in the industry where one of
the requirements is documentation with every RFP. You should not consider underbidding
your opponents by leaving it out. This should be part of the requirement for everything, and
its cost should be accepted just as programming costs are.

177

178 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

MEMBER OF THE AUDIENCE: I would think a responsible contractor might propose
something that has been left out in the RFP as a separate item. Certainly you do not want to
include it in your price and not point it out because that would hurt your competitive posi-
tion, but I think it would be worthwhile either to check with the contracting officer about
the minimum required or to include this little extra in your proposal.

MEMBER OF THE AUDIENCE: It is difficult to define standards, but I think they
have to be defined in the RFP. When they are, there will be more automatic documentation.

PANEL MEMBER: I would agree. It is primarily the Government’s responsibility. There
is a considerable amount of programming going on at Goddard Space Flight Center, and
stricter RFP’s, as well as the usual policies and procedures and demand for documentation of
a higher quality, could help in emphasizing documentation.

MEMBER OF THE AUDIENCE: Both the scope of the documentation and the depth
of the documentation have to be balanced against cost, time, and effort. There is a wide
range of documentation, and it is up to the customer to decide what degree of documenta-
tion is needed for his purposes.

PANEL MEMBER: Part of the problem is the fact that management in general is not
aware of the cost of not documenting. Not documenting can be a very real problem, but
there is a distinction between documenting for someone who is unfamiliar with the techniques
that you have been using and documenting for someone who is very familiar with the tech-
niques you have been using. In-house documentation tends to be sparse compared with what
we provide the customer because our employees know our business. They do not need quite
as much information to be able to pick up where someone else left off. But with someone
else, it requires a good deal of additional information to get the point across so that the in-
formation is not lost. It is that extra part that the contractor has to keep paying for which
we do not normally do.

PANEL MEMBER: It seems that there are two kinds of documentation. One kind makes
the program usable to other people, and it seems that a number of excellent ways of auto-
mating methods for this kind of information have been proposed. The other kind is the kind
that a user is going to need to modify these programs. Are there any comments on this
second kind?

MEMBER OF THE AUDIENCE: Talking about RFP’s and requirements, I think it is
very difficult for the person who is writing an RFP to know exactly what he is going to get
in the end because he cannot predict how a particular area is going to develop. When you
make RFP’s very strict, you may rule out getting improvements, and if requirements are not
strict enough, you might not be able to tell what you are getting.

MEMBER OF THE AUDIENCE: I think this is a fundamental question, and we could
almost have a session on writing the specifications for documentation. How do you describe
what you are going to get and what you want?

PANEL MEMBER: A comment was made that in going through and testing these pro-
grams, operating instructions in effect sometimes are at fault. I was wondering whether the
program is being run to get the same answers out that are given in the test deck without
really understanding the routine itself. Maybe the other areas of documentation are just as
bad to the person who is trying to find out how he can use a program and not just duplicate
a set of answers.

PANEL DISCUSSION 179

PANEL MEMBER: At COSMIC, we do not run the program before we send it out. We
compile them when we get an order for a program. Our procedure is to subcheck the pro-
gram. We run a program on the program that is submitted, and this tells us all nonstandard
routines that are called if they are not within the program deck. We know that it is not
available and that we have to get that for the user if it is not a system program. Most of our
customer complaints have been about this.

MEMBER OF THE AUDIENCE: You do not have to run a FORTRAN program that
was given to you on a CDC machine and then run it against an IBM compiler. It must be
against the kind of machine that it says it runs on. You do not know whether it is written
in a standard language and is useful on some other machine?

PANEL MEMBER: No.

MEMBER OF THE AUDIENCE: It seems to me that the Bureau of Standards has been
relatively inactive in the area of documentation standards. Because of that, everyone devel-
ops its own standards. I would like to find out to what extent Government agencies have
worked with the Bureau of Standards either to help fund or cooperate in an effort to get a
set of standards. It seems to me that the problem is that there are too many standards.

The other point I would like to make is that I believe that if there are standards there
should be standards for different types of programs and for different complexities of pro-
grams. Different levels of documentation requirements, depending on the complexity of the
programming system being developed, might be needed. In any event, it would appear to me
that the Bureau of Standards should be more involved in this. They have certainly been in-
volved in standards of programming languages.

MEMBER OF THE AUDIENCE: The National Bureau of Standards does not receive
many funds in the area of documentation. One of the problems is that the Bureau must have
a means of measuring conformance to a standard when it develops one. In the documenta-
tion area, this is a very subjective thing. We have not seen a set of standards that has been
evaluated for effectiveness. There is no way of determining whether a particular set of
standards is being promulgated by management without the concurrence of the people who
have to use it. The Bureau has done a survey that shows that this might be the case in some
of the standards that have been sent to us.

MEMBER OF THE AUDIENCE: Goddard Space Flight Center has been working on a
set of standards for approximately 2 years. We presented a set about a year ago to NASA
Headquarters. This has been distributed throughout NASA, and we hope that as a result of
the comments coming back we will come up with a viable set of documentation standards.
Just as some of the panel members mentioned, we started out making this extremely de-
tailed. We felt at one time that it was quite worthwhile having it that way. At present, it
has various levels of documentation, depending on the program utility, life, and size and
the money spent on it. We hope to hear soon about the fate of these proposed standards.

MEMBER OF THE AUDIENCE: In 1967, the American Nuclear Society Math and
Computation Division put out the American Nuclear Society Standard for Documentation
of Computer Programs, the main intent of which was to help the exchange of computer
programs. This standard was very broad. The Atomic Energy Commission has taken this
document and some of the programs and has used it as a basis for their contractors in this

180 AUTOMATED METHODS OFF COMPUTER PROGRAM DOCUMENTATION

program. They are continuing this work in a more detailed manner. We have found that we
have at least started to solve some of our problems.

PANEL MEMBER: One of our problems may be that we do have standards but do not
enforce the ones we have. Many Government agencies state in their contracts that documen-
tation standards must be met. Yet these standards are not enforced by agencies. The best
standard will not be at all useful if it is not enforced.

MEMBER OF THE AUDIENCE: There is another problem in developing documenta-
tion standards. Many organizations in the business of documenting do not introduce their
own methods into their own organization for review. One of the real problems is that the
people who are using and teaching a system do not get into an organization like the Ameri-
can National Standards Institute (ANSI), the Federal Users Group, or a group that will de-
cide what a good system is for their purposes. There is some hope that an ANSI committee
will be established to investigate the possibility of establishing a standard abstract, but I
think those who are making a living in software have not been interested enough to cooperate.

PANEL MEMBER: In flowchart programs, do people follow more or less similar
standards?

MEMBER OF THE AUDIENCE: I wonder whether the panel would comment on some
of the problems that are associated with the fact that the documentation is usually received
when a program is delivered. Often you cannot evaluate documentation before a contract
ends. Someone also mentioned maintenance of programming. I wonder if there are any com-
ments about how to determine whether the standards are met. In the final analysis what is
important is how well the standards used are enforced.

PANEL MEMBER: I would like to say from the viewpoint of a contractor that we pro-
vide the documentation a customer asks for. Six or eight months later, we usually get the
maintenance contract. We look at our own documentation rather than what we have given
the customer because we provide the customer with what he wants for his purposes, which
are different from our purposes. Because much of the work we do is related, we have no
trouble finding someone who understands the program to re-solve the problem at the con-
ceptual level. We do not really have as much of a problem as you would have if we delivered
you a program because we are closer to it. We developed it, and we know all about it. Docu-
mentation delivered to a customer is ordinarily more a teaching aid than anything else. You
have to explain to the customer the thought processes you went through so that he can learn
what you have learned the hard way a little bit more easily. When we write programs, we
check our programs out immediately. The computer corrects us right away. Documentation
is a single-flow process, and it is much more difficult than the question-and-answer process
used to write a program. That is one of the main reasons we are having so much difficulty
with documentation.

PANEL MEMBER: You have seen the outline of documentation requested by COSMIC.
If that was followed by your organization, do you think you could run a program that fol-
lowed this guideline?

MEMBER OF THE AUDIENCE: I would think so. It is really what you would want if
you were given a program to run. Whenever Goddard Space Flight Center gets a program,
somebody always wants to change it, which means there will be documentation problems.
People have to annotate certain parts of their program to show what they are doing.

PANEL DISCUSSION 181

MEMBER OF THE AUDIENCE: Are we requesting documentation that will do us any
good from your viewpoint?

PANEL MEMBER: Speaking of the COSMIC standards, I think so. I have been familiar
with them for a while and they seem to state quite succinctly what the customer’s needs are.
I do not think anybody would have any problem conforming to them. I think that they give
the eventual user for whom the system is designed what he needs.

MEMBER OF THE AUDIENCE: What about someone else who is trying to use that
program?

PANEL MEMBER: I do not think so. I think they are documented for a single purpose
usually.

PANEL MEMBER: 1 would like to draw an analogy that supports this. When you build
hardware and documentation for it, you generally do not expect the customer to use the
system for a purpose other than the one for which it was designed. You provide the informa-
tion that is sufficient to let him use the tool you have provided. The temptation in the case
of software is to adapt it because everybody understands software wants to ‘“improve” the
program. A far greater depth of documentation is needed to change a program than is needed
to use it or even to understand it. In this case, different levels of documentation are needed.
That is another problem of documentation.

PANEL MEMBER: Perhaps you have read some of these specifications that have come
out. What do you suggest doing to change these to make them useful?

MEMBER OF THE AUDIENCE: Personally, I would like to see the maintenance stay
with the contractor. It solves a lot of problems, but not all of them.

MEMBER OF THE AUDIENCE: I want to know how you can insure that the documen-
tation delivered is actually a statement of the job.

PANEL MEMBER: We have the same problem in-house that you have mentioned. We
are starting now to determine what is happening using our compiler and memory allocators,
and we feel that they provide as tight a code as you can get by hand. We are beginning to
implement higher order language presentations or representation of the problem on disk
that are available to everyone. Every change goes on-the disk. Every particular simulation,
whether it is scientific simulation or the fixed or fractional point simulation, is on the disk,
and every step of the way we have a permanent written record that comes out. This way,
since we have a hands-off process from the validated simulation, we know that what is in the
machine is what we have written in the higher order language.

PANEL MEMBER: Obviously, one way to guarantee that the documentation answers
what you have in hand is to have an after-the-fact documentation system. Such a system is
costly for the user, but the only way that you are going to guarantee that no changes have
been made up to the time that you have your document and the program is developed is to
have a system that will document what you have in hand.

MEMBER OF THE AUDIENCE: I think that maintenance is very important, and |
think it does belong with the original developer, just as the maintenance of hardware gener-
ally stays with the hardware manufacturer.

I would like to make the point that the formal testing of programs is an ad hoc pro-
cedure. There is no formal procedure for testing, and the history of what tests were made,

when they were made, and how they were made is usually not included in the documentation.

182 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

All of this becomes very critical when you maintain and make changes to programs. For
instance, the COSMIC documentation requirements talk about sample input and output.
That shows what the program might do but it really does not list all the tests that were made,
when they were made, and in what order they were made. I think that this is really just as

-important as something that tells you what the program is supposed to do when a program

is being maintained. I think that there really has not been enough concentration on formal
testing procedures.

PANEL MEMBER: Testing is a subject that I have been involved with for about 10
years now. The United States Air Force Satellite Control Facility has tests dating back about
7 years. Programs are very well documented when we get a program turned over that is
based on a previous program. We can take a test out of our file and run the program and
know that the program has at least the integrity it did before in the areas it is supposed to.
We have found that we need to use very experienced people for test design. The kind of
library we have is invaluable when you are working in this area, but you can only build a
library like that if you are going to work in a stable system.

MEMBER OF THE AUDIENCE: We all have been assuming for a day and a half that
the written code has to be unintelligible and has to be heavily documented. There are lan-
guages that force or encourage the use of short function definitions that are then combined;
for example, APL. Does anyone have any comment on the advisability of reexamining the
programming languages, possibly supporting changes in programming languages so that the
resulting code is clearer and therefore easier to document?

MEMBER OF THE AUDIENCE: | would like to concur, I think. We have a compiler
that is language independent. We have written code in FORTRAN and JOVIAL style lan-
guages. My personal feeling is that if you write clean programming and you present it to a
programmer with a reasonable number of comments, he can follow through with little trou-
ble. If it is written in assembly language, it is a little bit harder to follow because of the bulk
of the data. In fact, the whole concept of understanding a program quickly is to write it in
a language that the reader can read and that does not require him to read too much at one
time. That is why APL is so good. On the other hand, we have had to solve that problem on
our on-line terminals. We solved it by using a standard subroutine. When a new programmer
begins work, he is given a copy of the subroutines and what they do and told to use them
when he writes a program. In essence, we have built our own small higher order language on
an on-line terminal system, and it works very well.

MEMBER OF THE AUDIENCE: The ANSI group is trying to update FORTRAN, and
one of the areas that I am looking into is being able to augment the language so that it can
become a better document. There has been a request to extend the character names from
six to something much larger. You have to weigh what a language like that costs against
what a language that is easy to learn and compile costs. The question is how much you are
willing to spend to enhance the understanding of the program. I think these are the things
that have to be weighed. 4

MEMBER OF THE AUDIENCE: It seems to me that we have standards on one hand
and guidelines on the other. Many of the papers this morning have presented not standards
but guidelines. The person preparing a contract can decide which of these guidelines should
actually be made standards for his contract..

PANEL DISCUSSION 183

PANEL MEMBER: Let me suggest that we might loosen the standards we have a little
bit and let the machine do some of the documentation. Maybe there has been a little too
much emphasis on standards. There are a lot of languages now that provide a lot more capa-
bilities. Why not start removing some of the requirements and let the machine do more of
the work?

PANEL MEMBER: I would like to say that the person or the group that is most likely
to have its standards accepted by a community is going to be the one that has contributed
the most to that community. I suspect that we are waiting for one or two more software
inventions that will solve the documentation problem by supplying a convenient way of
doing it.

PANEL MEMBER: I think any automatic system could be tailored to a format that
people will want, and I think Goetz’ system is flexible enough to supply the type of docu-
mentation that you need for a particular purpose. If more effort is put into this field, auto-
mated systems that provide the various levels of documentation needed can be developed.

MEMBER OF THE AUDIENCE: One project is trying to automate abstracts across
communications lines. The people working on this are essentially library people who are not
the ones who will use the data.

MEMBER OF THE AUDIENCE: I would like to change the subject slightly. There
seems to be a marked tendency lately for the Government to want to acquire unlimited
data rights. The tendency of many Government contracting officers to feel that the Govern-
ment has free right to any aspect of anything used on a Government contract seems to be
connected with this. I was wondering whether this will foster or hinder the development of
automated data documentation systems.

PANEL MEMBER: I think it can work both ways. I think very frankly that any com-
pany considers certain things proprietary. If we used our compiler, which is machine inde-
pendent, target computer independent, and language independent on a Government con-
tract, before we even started we would say that it is something we cannot give away. We
have invested a lot of money in it, it is a very powerful tool, and we think it will keep us
ahead of our competitors for a few years.

Automated documentation has one major advantage—it is predictable. If something is
predictable, you know how to write your programs to satisfy the requirements without
necessarily giving away proprietary rights. Automatic documentation satisfies all require-
ments. It satisfies the customer’s demands and the recognition of certain property rights in
programs that are recognized as belonging to the originator.

PANEL MEMBER: Precedents have been set for the Government either to lease with
a limited right or to buy with a limited right. If you do have a package that you were going
to use in a project, you would probably be willing to either lease or sell it for a specific use.

MEMBER OF THE AUDIENCE: | have heard a lot of discussion about documenting
systems and programs within a system and functional documentation of programs. I would
like to ask whether we need to document programs for modification or just for maintenance,
and when should they be so documented? For example, COSMIC suggests that the program
would go to a user and be modified by the user. The kind of documentation needed for this
is considerably different from that needed for maintenance of a system.

184 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

PANEL MEMBER: I think that the only solution to documentation is to get the 90
percent of the documentation that can be done by computer and the other 10 percent
done by the people that have it in their head and then to figure out a way to integrate the
two. I agree with the point that documentation is always looked at at the very end. For one
thing, most of the money is already paid to the contractor at that time. Secondly, you really
do not have time to do anything about it, and the documentation really should have been in
phase with the development work, which is generally not a requirement. '

PANEL MEMBER: My own observation about Goddard Space Flight Center is that
what you are describing does happen on the big projects. Documentation is reviewed on
them from step to step. I think that when the project is very important and the money is
available, documentation is taken care of more conscientiously. It is on the intermediate
projects when the budget is tight and we are trying to get something done as quickly as pos-
sible that we run into more trouble. In this case documentation is done after the project is
completed.

MEMBER OF THE AUDIENCE: One of the advantages of Bellflow is that in the mixed
mode the comments have to agree with the source. If you are developing a program and pro-
duce a flowchart and the comments agree with the source, then you get a flowchart. If, 5
months later, someone changes the source but does not change the comments and you try
to get the flowchart again, you get a diagnostic. This is one way we can automate and test
with documentation.

Session IV

N

PROGRAM AUTOMATED DOCUMENTATION METHODS

Bernadine C. Lanzano
TRW Systems Group

Several methods for automatically generating and maintaining documentation for TRW’s
computer programs are being used, and other procedures are under examination. This paper
presents a short synopsis of the Mission Analysis and Trajectory Simulation (MATS) program
to provide an understanding of the size and complexity of one simulation for which docu-
mentation is mandatory, a description of a program that assists in automating the documen-
tation of subroutines, an exposition of two flowcharting programs, some notes on useful
program internal cross-reference information, an implementation of a text-editing program
available in a time-shared computer system environment, a preview of a proposed system
that would aid in program development and documentation that utilizes a graphics display
console, and a recommendation for software standardization.

In the complex world of sophisticated computer systems and advanced software tech-
nology, Thompson Ramo Wooldridge. Inc. (TRW), has long recognized the need for develop-
ing general-purpose programs, automating documentation, and standardizing programming
techniques. The satisfaction of these demands minimizes software expenses by eliminating
program duplication, developing new capabilities around and within existing programs,
responding in a quick reaction real-time sense, and by generating documentation with mini-
mum effort.

The MATS program is briefly mentioned because its generality, complexity, and size
necessitate considerable support documentation. Because this program is used by a variety
of projects, its documentation is referenced by many engineers, programmer/analysts, and
technical aids. Methods of automating the documentation were deemed mandatory.

MATS is a digital computer program that simulates ballistic and space mission trajec-
tories; it either has or is capable of simulating such missions as Apollo, Pioneer, Minuteman,
and Grand Tour, with such vehicle configurations as Saturn, Atlas, Titan, Agena, Centaur,
Minuteman, and Thor, among others. The program is written in FORTRAN IV and is
operable on the CDC 6000, GE 635, IBM 360, and IBM 7094 computer systems. MATS is
composed of more than 450 subroutines that occupy some 110000 decimal words in 15
overlaid segments. The program control logic is predicated on a modular design concept that
facilitates the addition or exchange of capabilities for the various missions. It can be mated
with control systems that include navigation and guidance algorithms and can provide the
dynamics for interpretive computer simulation systems.

For any program, several levels of documentation are required. The smallest unit is the
subroutine where the function, algorithms, and data communication must be explained. A

187

PEACEDING FPAGE BLaNK NOT FILMED

L]
-

1

188 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

lineal linkage trace of the program logic control hierarchy provides the next level of
documentation. Two-dimensional cross-reference information is desirable so that not only
which subroutine(s) and common storage(s) are used by a given routine are known but also
which routines reference this routine and which routines reference each element of global
storage.

The descriptive material that functionally relates the program modules can be generated
only by the program architect and must be updated as the program expands and evolves.
Last but probably most important are the user manuals, which again must be generated in an
easily maintainable format.

This paper describes several auxiliary programs that support the automatic documen-
tation of MATS and other programs.

(1) Automated Documentation of Subroutines (ADS) mechanizes the descriptive
explanation at the subroutine level.

(2) Flowcharters AUTOFLOW and FLOWGEN pictorialize the computational
algorithms and decision branches within a subroutine. AUTOFLOW can be
requested to provide a higher level flowchart.

(3) Automatic Flow Layout of Program (AFLOP) maps the subroutine usage at the
program level.

(4) Methods for retrieving and programs for generating the cross-reference information
are presented.

(5) Administrative Terminal System (ATS) assists in automating the maintenance of
handbooks and manuals. .

(6) Computer-Aided Program Development (CAPD) proposes a method wherein the
coding and final flowcharting no longer appear as steps in program development
and documentation.

One of the purposes of this paper is to demonstrate how an individual piece of infor-
mation can be made to function in more than one capacity, thus deleting duplication of
effort in creating and maintaining documentation files.

AUTOMATED DOCUMENTATION OF SUBROUTINES

This program, currently under development, accepts as inputs FORTRAN subroutine
source decks, a subroutine titles file, and a symbols definitions file. An option to retrieve
storage and external reference information from the compiler output or the list tape is under
review. _

The source deck contains the following information, where Cnn is the appropriate
coded comment card: the title, a one-line title that normally spells out the name of the sub-
routine (C10); the author, the programmer/analyst, and other personnel cognizant of the
function and/or implementation of the subroutine (C30); the abstract, a meaningful descrip-
tion of the purpose and function of the subroutine (C40); remarks, information that briefly
describes any change and gives the analyst’s name and date and any special features, restric-
tions, limitations, and error treatments (C50); and the local variables, the names and defini-
tions of those variables that are used only within the subroutine including those in the calling
sequence (C60).

]
-

P

PROGRAM AUTOMATED DOCUMENTATION METHODS 189

The subroutine title file is merely the title (C10) cards identified with their respective
subroutine names.

The symbols definition file contains the name, common block location, definition, and
units of every global variable used in the program.

These cards are formatted in the following manner:

C EQU (VARNAM, COMBLK(nnnn)) DIM(iii,jjj) 10 UNITS=kkkk VARNAM 00
DEFINITION {on as many cards as required) VARNAM mm

where EQU implies equivalence; VARNAM is the variable name; COMBLK(nnnn) is the
name of the common array and location of the variable within the block; DIM(iii,jjj) is the
dimension of the variable; I or O indicates whether it is a user input or a program computed
variable; UNITS = kkkk provides information pertinent to the variable, such as length and
time units, integer or real format, and special processing information; and DEFINITION con-
tinues from one card to the next and is identified by the variable name and card count mm
in the final columns.

A parenthetical explanation of the symbols definitions file is in order. The MATS pro-
gram requires the information provided by the EQU cards for the symbol table, input, com-
putations, and output processors to locate and identify each variable so that all input and
output may be recognized by symbol name. The symbol table processor accepts as input
the EQU . .. 00 file, alters the file by change directives, and outputs an updated file. The
symbol definitions file, using standard sorting equipment, is updated and published as a
portion of the MATS users manual. This file, being carefully designed and formatted, thus
may be used in three distinct areas: the MATS program, the ADS program, and the MATS
documentation. Furthermore, it is easily and automatically updated.

The ADS program searches the source deck from the subroutine card to the end card.
It retrieves the name from the subroutine card and the title, author, abstract, and update
information from the coded comment cards. It identifies the external references and acquires
their titles from the titles file. It identifies the variables and locates their definitions either
from the symbol definitions file or from the C60 cards. Figure 1 presents the output of the
ADS program.

The appearance of the coded comment cards in the MATS program listing proves very
useful to the programmer/analyst who, when working with the subroutine, finds the associ-
ated documentation immediately available.

TRW has other programs similar to ADS that operate on the IBM 7094 and IBM 360 to
document programs that execute on those computer systems. Each is clearly designed to
automate subroutine documentation with minimum manual effort.

FLOWCHARTING PROGRAMS

Two flowcharting programs are currently in use at TRW: AUTOFLOW and FLOWGEN.
Each is leased from the respective vendor. They are used primarily for the charting of indi-
vidual subroutines, but AUTOFLOW can produce charts for a complete (small) program.

The symbology of both is nearly self-explanatory and quite similar to that commonly used
by analysts. E

190

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

SUARCUTINE DOMUMENTAT [ON

SURLOUT IRE KAvE- TIGPIN

ROUTIKE T(1LE~ YIME YO SV TO PIY

TROCRAMNER= J. SMALY CROUP LEADLR=- W BAHRKE

CIMIR FECPLE SELATLY 1O FREGRAM~

[AN B.C.LANE ANY

ABS IRACT /P URPUSE-

ACCURACY FEQUIREHENTS ARE MET FOR STAGING.

REMARY S /{ [MITIATIONS-

Kuve NmMPIT S$67

M CTU,0TLY TLLY T8 PnSLAY. BCL D27-23-72
TS 1N at i 2aT IUN gL 07-14-70
L5T. 1 SHIPANCE AY S&ME 1 .50t 07-15-70

{RRVR T

COHSTGER BT, 6CL Go-15-70
VELD wiTH (1D FUGS TIPE AND TAJ PITS
i) L¥D 03-20-70

AF FEYS WITH (N
TIME-TG-GO LUST &
FER _SETTIH: ACPA

SaN 23-C5-70
BCL 05-30-69

COLATOT FRI0H Y T2 COYP -— RemdVE C IN €OL 1

PQUENCE YO TTSCMP

5 USASE, 1CBAINY TG LITEPALS— L.E. . 05-01-6§
1. E. ¥2JO5CN 12-02-¢8
AUN TIME_STATISTICS SURRQITINE EXECUTIOM COURT

CALLIRG SEQUENCE~ CALL TIGFIY

“SURPCYTINES CELLED~
wPT HOLLERTTr PRINT == SNTRY POINT TOU =PY~
SIADUT ' SINGLE VARIZBLE C(ONMSCTED Y 0J7PUT PROCESSIR

TGLNP TUHE-TO=GO CuvPuvATION
\1a! VARIA2LT FOR¥AT PRINT —— ENTRY POILT 10 -97-

L

DATA USAGE STATEMENTS

Covryy
SYRAIL OIMENSIGY BLLCK UNITS i70 DEF i%i7 10N
R Y13 3. KO DEFINIY LR SI2N
exuP syal { 40) NO 1 GUCKET LJAP FLAG. 'VARIOUS CEBUSGING DUMPS
e : ARE CONTASLLED oY TME FOLLOZING SEITINGS CF
BROP. =1, = THE PRINT Fwl caLLs TO Yralc
IS EKAELLD. C. = MO DIAUSGING PRINT
. (NO<IMEL). 1 = TR2CES ART EWASLED,
F rEiy, SURT-ME~GZ, AhD CUPFRESSEC GLTA ERC OC
- MPED.
T e [TRTA S R Y) 170 YHE INPOT BUZKEY WHERE ITEPATIGN AnD FHAGE
. DATA £9F STOIO. THE EUCKET IS ALSO LSED FCR
INTERMEDIATE STCRESE FOv ITERATICN,
ROLT{-VENICLE, [1%-398 iMAiG: LISTE, VAPE
FUPFAT, »:OCOURSE / TZRGETING maTHICES,
- SESS FECUEREMENTS. SEE ALSD 16<ie (UKL,
f
1 tiag : 1 NO CETINRITION IN TABLE.
L Sy ——. 3
CInF ccex (1¢) 17 PLOS INFINITY, PRESET 10 10%838 (8UCGIC)
(&) ! HC_DEFINITION EN TAZLE.
cren cFse (72) 1/0 2ERD — REAL FLCATING POINT O.
DIKC TINE (530 T S1E€F SIZE T0 GEAT RULTIPLE OF OYIC
(331 f 1_3IST ¢ 1y 1 sy SEE_IST .
£TCC s tom 0O CUIOANZE TimE-TO-CC FLRG. O = 1GAGAE
‘ GUICAKCE TINE-TO-CC. MIN4S NON-1E%0 =

PINIYIATE SELOMDARY PHASE, »#LUS AOM-ZERO

TERNINATE FRIzaRY PH2SE.

[1301
- v -
. 3
a A i

I7G &KV PVR FCa 717 WiTH ALK, TACR MET = FINZL

Figure 1.—Example of ADS output.

PROGRAM AUTOMATED DOCUMENTATION METHODS 191

AUTOFLOW accepts COBOL, FORTRAN, IBM 360 Assembly, and PL/I source pro-
grams as inputs. The AUTOFLOW option generates a chart set composed of the title sheet,
input listing, statement label index, table of contents, table of diagnostics, flowcharts, and
other special listings; some of these items are optional. It charts an entire program up to
999 flowchart pages.

The CHART option operates from specially coded comment cards that may be
embedded in the program source deck and produces a higher level program chart from the
textual information. The author may adjust the level of detail to the type of chart he wishes
to exhibit.

AUTOFLOW executes on the IBM 360; each chart page covers two 11- X 17-in. printer
pages and may contain up to four columns of paths. Pages and symbols are numbered to
facilitate page-wide logic flows. Figure 2 exhibits an AUTOFLOW chart.

FLOWGEN accepts FORTRAN source decks as inputs and outputs a chart somewhat
less sophisticated than AUTOFLCW. No provision exists for a level of detail control. It
charts individual subroutines.

FLOWGEN executes on the CDC 6000 and generates input for the CALCOMP plotter
either directly or on tape. Each chart page is 8.5 X 11 in. with one column of flow path.
Pages are numbered, and symbols are supplied to chart page-broken logic flow paths. Figure
3 depicts a FLOWGEN chart.

Both flowcharters completely automate the charting of programs. However, most
analysts will concede that manually manipulated page topology is generally more acceptable
than automated columnized formats, particularly for large, complex subroutines.

AUTOMATED DOCUMENTATION OF PROGRAM INTERNAL COMMUNICATION

Given that a program is composed of a collection of subroutines where the word “‘sub-
routine” is a generic term including functions, entry points, block data, and other subelements,
certain program internal intersubroutine communication documentation is desirable. Useful
cross-reference information would include forward reference, backward reference, and flow
hierarchy. Forward references include—

(1) All subroutines referenced by this subroutine

(2) All commons referenced by this subroutine

(3) All global variables defined in common arrays referenced by this subroutine, and
(4) All local variables defined within and referenced only by this subroutine

Reverse references include—

(1) All subroutines that reference this subroutine
(2) All subroutines that reference this common, and
(3) All subroutines that reference this global variable

Flow hierarchy is the cascade of subroutine forward references that presents an overall view
of the program flow logic.

Table 1 summarizes those portions of the cross-reference information that are available
from the manufacturers’ standard software systems: the -CDC 6000 compilers and overlay

S _ALL_MET,
FAR EACH
13
-
.
.
-

1

[

1

00 _LOJP
- T = 1, N
s e s 0605008

BEGIN
19

60
CRUI N N N]

07.09---1%

03,21 ===)»

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

192

w .
F) T
& Sronses M <O
-4 LK)
. . .
..
.
Seoe % o ! .b
-1 - oo
- - 44 =« -
w G
s . # S———— e 4
- o sm
. W o«
. cse
- -
~ =]
L L
.
w .
2 . - w
o a ~eITIXIN w z O 8 sttt @ — .
o - -1 1) - ~ [> =]
ip= L) + —r we - 1 1] [} - - h
-)) = > 0¥ W ¥ 1 “v
el .] [} o —aZ L Sl . [} - . & Q
Or ° - w '] W DEOva W @ . " et “w - . w
< - @ 8 wn 'V oa ' ax Ero-d ©Q - . - 1 & sa - ~ 8 es wn 2
ot - 1% 1 T el eE [1 woed - - ~
ax * ¢0 ¢ a o~) a2 wadaQWDZE . g s & ZTu_ 3 ~ * wwr oo e [o] H
= w [T) w rar OFZ=-0O [} ¢ = o lotod “w 10 ﬂ . .
———-) e - - | o-- H e =T e—— - led o o _lll © ememap MO m B | ¢
- - [o4 1 adrdZIwr-an b o = > =ue - - B =0 m
1 . -z 1] - AN W W . - I @ wu a 1 P w— 1
1 oZx e i 1 Cwwow SwI X a 16 v wkal a W ~
1 OOw s @ [1 ¥ O T £ (=T . x b= X emwewa a M) srxe
4 =CT = | + oBaa T mada=Tro w | =a | > - (@]
°o a Ly ' i WOmnaw WIE - r= 1] ot O = b oo
. 8 X § W OO ea ¢ ot [us | _
@ RO . ' ' Wrmy =g AT WO we t - v 1 .
© uwwa) 0 O~} I ZIaIsaITI=Ou S 1] 1 wo» | (&9 i
—u L O N -2 T YD r s alt B m————— odm o
-
: i
' H E
= |
< B
'
S
o
[———— ~No—u a - [E 8 m——— %]
+ O = | - " 7 T 1 o~ |
. . e 1% 1 . H . wor i z> ' [=% ,
o+ Z Cr awn ' 1) P - -1
L wOa usd ua 1 . a 1 . -3 w Q0 CCLaIX '
. ' F w ZT &F 1\ - [[} -~ w - VA WA - TR "
[] (SR = 1 - o8 W T 1 - s = vy " o—u- o ==Y ']
< - iz - owa t 41 o - - o) z - a BV IITdad aiavm -t x
3 . =« p——ell) X AN i) + - d . = -1 - . = A BW ADe- e WA e an
o« . 0o & wviar «a i w > 1 . " D VA e ARG s AZOT = -~] .
—~ e ——— D€ - §—— . [t N m—— - e mrm—— T AMOTIGEN = A O N 1
o« Yhun™g Loy > o] - - a- ZIZXZ0eZaD G _vOI! [N |
- e dacww w3 e at « Z b af | % T . sw A== g exzTTa 1 .
a rLvua= am-ng w . - Py W ¢ arau- GErADOF W z
. Zawvwe CEVGI T a . a =Y s - 9 z BLZWEUWIOZ JZTUONE ViU~ 1 o
w a@=IgZx W a9 F [- a e~ C e Vecac a> « —-0Zw L]
- C aX—walCoe] .. [LI 3 U ZUm-=a Gl Lo aVieal e 21D ' [+
W a¥ouau . H u i ; Za ANV DZIGCY VA Laws = Vak = - .
we a>C aPCWIWWI- | we > + - e WAOr XZZOW = Zmddr =3 OB AZ=REr [
= USZ NWwEILII0w | =1 a 1 1 ©° =Xl IIOCOCO0e >nantaIlovawng Ota] =
« RN L O - M ———— ai wvi -3 o 0 SZTONLWVINO 00 A o | A =T U dd™ B «—a —————y g
- L} L] panld
' '
\ \ 9
- ¢
1 +
1) [}
'] !
' - =
wi s ' ‘e w .
=2 H H o ») . -
o) 1O 1ra-s Z Ay ——— & b g 0O o~
L3 o 1o i tor ot] - 3 -1 « O o1
. 4 (A}] [EIN] a . ' L] . . [
ou ¢ [- 1=) . t *e 1 []
s - [[& 1 1t LI] ca + L] [R
- w <O [+ (B a! + zu -1 ~ w 1} 1]
© * 0o w cI- @ i [BRI © g a at o L I Vel «
© - va 1 heed x b oaxi v ¢ uur - o -] o \
. -~ . «a z >) 1a w4 10 L4 - u - »Od -4 L] . = [N *r
- w e Lamy FHRIREZ] us > T vu—w w . IS (] e
LRl g & ——————— AW S [)) or——— o0 ® e b DAL V) D B) ey [+] R R Ll B R I I .
o + Tt = P HE O = 1el c —Cula 2 -) Y [. -
- u - 1 -) 1 L]] + . Cad & Iwe—rnT OUt - . - [R
. ‘ a < 0 fud ¢] [X} z Zar-CwZ L))) . .
] . [cx 1 ftuey woe 14 . w e Osdal < & 1 ¢ . 190 ' {
4 al 1 L ’.\..TF— P - T LR] WOk v ™ O -) [}
o e 4 i -0t x o 2 cRio « . WD = ® t « 0 [}
| [T F SN | a o o odcace>d . i [
-) - [} > [} - CFUIray o~ L} ») [}
{ rem o1 € c 4 E-wOZI~ O) [.
H 25F 3 & —— -«) 4=—a avnvulawn ———— . -8 . .
_ _ {
! [v
. . \

-

vd

PROGRAM AUTOMATED DOCUMENTATION METHODS 193

<ZIF { KBKT(L+B) .NE. ©)

—~—

T

[co 10 82 >oph

[€aLL 7T1GShHP (L) |

c THL. 7. TEST PEF: £ TO INITIARTZ AT |
c THE SGHE TINE BUT 7 HASE TERAINATION. |
o ALSO iF TWO FITS 0 SHEE PHS T THE SAME TINE,
o THE HIGHER MUMBEREC PIT WIL
C TG0. TINE-TC-G0 IS IN TENPI
//i\- F
<_IF U TERP(9Y .CT. T3) :
- — oo i
—— |
L |
o T _er et |
@
{76 = TEnFie)
1
\Y
C SAVE P17 CORRESPOMZING TU SHALLEST TINE-T0-G3 FGR PITFRT
c . IN CRSE IPIT = O BECAYSI M3 FIT KET RCR 3K TAHCR
V.
S
Y
[KTFFL = LPI ~ LPIP ¢ J « 1 |
¥
v
CONT. O PG S
PG 8. OF .. .16.._
Figure 3.—Example of FLOWGEN flowchart.

194 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Table 1.—Program Cross-Reference Information Available From Standard System Software

Forward reference function Revefrse re'ference
unction
Software system
1 2 3 4 1 2 3
Compilers:
CDC RUN No? Yes Yes Yes ® ® ®
CDC FUN No Yes Yes Yes ®) ®) ®
CDC FTN version 3 Yes Yes No¢ No¢ ®) ®) ®
GE GECOS Yes | Yes | No No () ® | ®)
IBM 360 Yes Yes Yes Yes ®) ®) ®)
IBM 7094 Yes Yes Yes Yes ®) ®) ®)
IBM 7094 assembler Yes Yes No Yes ®) ®) ®)
Loaders:
CDC loader map No Yes Nob Nob Yesd No No
GE loader map Yes Yes Nob Nob No No No
IBM 360 linkage editor No¢ No¢ Nob Nob No No No
IBM 7094 load map No Yes Nob Nob No No No
IBM 7094 logic map Yes Yes Nob Nob Yes Yes No
NASTRAN linkage editor Yes No Nob Nob Yes No No

3TRW has modified the CDC RUN compiler to output the referenced subroutines.

bNot applicable for the compilers and perhaps desirable from the loader maps only as an option.

CAn option causes the local variables to be printed and the locations of all references to a common array to be listed;
it does not print the names of the global variables.

dThe subroutine reverse references are available only within an individual program overlay.

€An option generates the name of the referenced subroutine and/or common along with the locations, not names, of
the referencing subroutine.

loader; the IBM 360/50/65/85 levels G and H compilers and linkage editor; the IBM 7094
IBSYS compiler, assembler, and IBLDR loader; and the NASTRAN loader, which operates
like the IBM 360 linkage editor on the CDC 6000 computer.

As can be seen, five of the seven compilers mentioned generate the subroutines refer-
enced by a given subroutine. All the compilers give the referenced commons. Four com-
pilers list the global variables, and five list the local variables referenced by the subroutine.
Three of the six loaders give forward subroutine references, and four give the commons
referenced by a subroutine. No loader names a variable. This would be desirable from the
loader map as an option, but the variable names are probably not immediately available.

The reverse references for subroutines are for all practical purposes missing from four
of the loaders, and only one generates all references to a given common. Nowhere is informa-
tion available to yield all references to a global variable, which is highly desirable in validating
and maintaining a program. '

No standard loader generates a complete expansion of the forward subroutine references,
which also is desirable in using a program.

To surmount these deficiencies and to provide what is deemed useful documentation,
TRW has developed several programs. Figures 4 and S represent their outputs.

Syrmbol De. Name

Lene

LKZ DLK PTA CLT yTL OFT

™m
73
=
e

MT 1PT CRD PRT PRM FEN PRO PAP PRQ FAX BSF COM FST RSO NRS CHK TRT TIi

N0ERR]
IHERRAL
34 TRRA
DAERR U
JRERR L

N5tRAC

R Wi W W T WYoa o

|
!

OBTYP [}
oLt
L2
NE]
IMP
MR
UMY
LPTTON
GYDIR
TCHRK . ’ g T o)
1265KT B

TQAZZA 33

O oW w0 QO
[
C
<
<

104728]
1072 2C)

YAl L
Ly d, Y

TTAIIN A F
iDERR U D
11 ZRR .)

S —— e g e —_—
16ERR
JTERR

cCcQ
oo T

TCEIRR
1AA728 B

120602 B

Figure 4. —Example of global variable cross-reference, IBM 7094 program.

SAOHLIW NOILVININWNDOd A4LVINOLNY WVID0Ud

S6l

196 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

SYMBOL SUBROUTINE

4 NVRS3D TVGNL TVGSC

AA NVRS 3D

AAP AANGT APRIT BCNFT

AAPM AANGTY

AAT AANGT APRIT BCNFT

AAY AANGT APRIT BCNFY

AAYN AANGY

ACSOR CREAD INPROC

ACTNMR CREAD INPROC

AERC AATMP AFFDR AIRVEL APRIT DCNFT BLKDTA CFEAD ARBIT
MORE MURAG SGFFL
RYAMP ,

AHY TMIPS TLAFF TMINS TNAFF T2AFF T3AFF TVGCD TVGNC
TVvGSC

ATRSHP CREAD INPROC

ALATL ASTART CREAD INPROC INPRUC

ALMCOF TVGMC TVGNL

ALTGT INPROC

AMUL ASTARY

AmMyT BIMAZ TMIPS TMINS T3AFF TCCTD TVGMC

AMXLOO HCOER

APAF AATME AATMP AOVIC AFFDR AIRVEL -APFOR APRIT ASPAC
ATGOE BCNFY BLKDTA MDRAG MTHWF SGFFL

APDPT TVGNL

APDR TVGNL

APSI AIRVEL APFDR ATMOS MTHWF

ASTRHL 8STRS3 SGBST

ASTRH2 8STRS3 SGBST

ATEMP AIRVEL ATMOS NVRS3D

AZCORR ASTARY INPROC

AL APRIT ARBOR ASTART AZEST CREAD ARBIT T3Aff

Az T3AFF

AZMUT ANTP BIMAZ TCCTO

AZPTS CREAD INPROC

AZSECT CREAD INPROC

8 NVRS3D TVGNL TVGSC

88 NVRS3D :

8BARCO TVGCD TVGMC TVGNL TVGSC

BETA AAUKF APRIT ATCRS AYGOE MDRAG THMIPS TMINS TMLIN

BET1 AAUXF APRIT

BIGEST ATGOE

BLANK INPROC

BURST CREAD INPROC

BURSTA CREAD INPROC

BURSTS CREAD INPROC

c TVGNL TVGSC

CALM ACDER ANAVH ANIP BLKUTA EGRAV

CASE " INPROC TRGFNC

co AATMP AFFDR AIRVEL APRIT MDRAG SGFFL

CODELY MDRAG

COMULY AATMP AFFDR MDRAG SGFFL

COPRY MDRAG

COPR2 MDRAG

CoPR) MORAG

COREF MDRAG

CGLATL AZEST INPROC

CGM AD2CG SGAST

CGOFFS AD2CG APFDR

CGOFFT AD2CG APFOR

Figure 5.—Example of global variable cross-reference, IBM 360 program.

Figure 4 presents the output of the symbol reference program, which lists every global
and local variable along with the name of the deck that defines (D), uses (U), or both defines
and uses it (B). Deck here may be a collection of subroutines. Written in IBM 7094 assem-
bly language and operating under the IBSYS system, this program documents an IBM 7094
assembly language program from its output list tape.

Figure S presents the output of a similar symbol reference program, which lists the
global variables with every subroutine reference. This program is written in IBM 360

PROGRAM AUTOMATED DOCUMENTATION METHODS 197

FORTRAN and uses as inputs the common and equivalence statements from FORTRAN
subroutine source cards.

This variable reference information may also be generated for other IBM 7094 machine
language programs that operate in the TRW SCAT system. This additional capability for the
ADS program is currently under review for the CDC 6000; it is designed to document
FORTRAN IV programs and to accept CDC list tapes and/or source cards as inputs.

Figure 6 presents the flow hierarchy of a program that is the output of AFLOP; it ex-
pands the subroutine references until it exhausts the calls or reaches an undefined external.
It currently operates on the IBM 360 and the CDC 6000 computers. AFLOP accepts input
cards that spell out the names of the referencing and referenced subroutines. An option
permits subroutine expansion at each encounter or line number reference to the first expan-
sion. TRW intends to incorporate AFLOP as an option of the CDC 6000 NASTRAN linkage
editor and to make it available for the CDC 6000 overlay loader; in these systems it acquires
its inputs from the loader tables.

ADMINISTRATIVE TERMINAL SYSTEM

Formerly, certain documents, such as programmer’s handbooks and users guides, have
been prepared manually. A revision usually meant considerable retyping and proofreading,
both of which consumed time and could introduce errors. Several text editors have appeared
on the market; a good one is the ATS developed by IBM under the acronym DATATEXT.
TRW currently purchases time to use this system and is contemplating installing the program
in-house.

The system uses an IBM 360 computer with appropriate storage devices and high-speed
printers at the central site. Telephone lines connect the computer with the remote stations.
The terminal may be an IBM 2741 or a DATEL 30, and either may be hard wired or con-
nected to a.standard telephone set with a data coupler. The keyboard resembles an IBM
Selectric typewriter and may be used as such when disconnected from the computer. The
operator-secretary enters a document by instructing ATS with margin placements, tab set-
tings, and formats; the text is typed and the system is requested to file it in permanent
storage. ATS assigns line numbers for subsequent editing.

Features of the system include indented and blocked paragraphs, page width and depth
control, page headings and footings with automatic centering and numbering, line and page
skip, margin justification, and table and chart special formats. Lines may be kept together;
for example, in a table that should not be split across pages. Form letters may be prepared,
and, with the stop code, one may request the printing to halt temporarily for the insertion
of particular data.

The print options include printing some portion or the whole document with or with-
out line numbers, with or without justification, at the terminal or on the high-speed printer.
ATS displays its agility in the editing capabilities. Corrections reference the line number and
any word within the line. One may remove or replace a word, a phrase, or a line, add to or
remove lines, and physically move lines or paragraphs. The edited document as well as the
original version may be retained in storage.

Re
_be

produced
st avacilea b'{!rom

copy.

f

e d

198

IMLGLNT

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

ADOONY

AQCORES
HRELSE

g
oyIc
GLIRY

LN 28 SR g E Y]

SYSTER
AUNG ML
QN

-
-

i
N

AUVING
Sti.
OGat,

CrpINe

PUSH L.

PHSCNY

e v
Ll

-~
8o

PSALAC
REdINK
SySteit

LREWERTY
Grioa
1oL,

LADVIN.
[WNAR N4]
(_[L'—l_l’i‘

SuTric
LIkn

[

INPUTS
GEToA
SYSIEM

A3NurNML
Ciol.
Sto.

LPEN, 13
MY AUS. ¢
PY

LOCK T
[:N) TS
AL i

_UP1Trp

VARSET
SINOQuUT

riLoen

SYSTEX
ABHARY
A3 ?!;‘A

c1ol.
axse i, @
Frze

AIWLN,
v,
POuRY, e

REWIHS

Figure 6.—Example of AFLOP.

154

PROGRAM AUTOMATED DOCUMENTATION METHODS 199

Some inherent disadvantages are the lack of superscript and subscript notation and the
omission of special characters such as the Greek alphabet. The preparation of equations
manuals can be only partially automated; the text could be maintained using this editor
with space allowed for the manual entering of the mathematical equations or diagrams.

The ATS system provides various administrative facilities such as a log of the documents
stored; the date, name, and size of each;and the total number of documents in storage. Com-
plete or partial storage reports may be requested. Each document may contain a password
that prevents anyone who does not know the password from accessing the document. The
password may be changed as often as desired to achieve some level of security.

The MATS manuals are partially maintained via ATS, and it is intended that all future
documentation be implemented with this system.

Brief mention should be made of other text-editing programs. One is the TRW General
Trajectory Documentor (GTDOC) program. It accepts a file of prebuilt text from tape or
cards, a card deck of text modifications, and a data set of trajectory parameters either from
tape or cards. The output is a standard-form document with the trajectory data positioned
properly in the text. GTDOC automates the preparation of trajectory-oriented publications.
It operates on the IBM 7094.

Although the TRW Timeshare System Editor is designed primarily to aid in preparing
executable programs, it incorporates commands useful in constructing other types of data
files.

COMPUTER-AIDED PROGRAM DEVELOPMENT PROPOSAL

Occasionally, it is advantageous to analyze the procedures normally pursued in the
development of a program. In addition to the normal preliminary functions of defining and
specifying the usual program performance criteria, the steps involved are—

(1) Creating a flowchart

(2) Defining the flowchart

(3) Generating the program code

(4) Analyzing the coding errors

(5) Analyzing the design inadequacies

(6) Iterating (2) through (5) until complete

(7) Documenting the subroutine(s) by redrawing the flowchart(s)
(8) Developing the program further by iterating (2) through (7)

Considerable time is expended in generating a flowchart from which the programmer/
analyst prepares the program, as any engineer or analyst can readily attest. Refining this
flowchart to introduce even one new equation requires providing the right space at the right
place (foresight), erasing and shifting the symbols with contents (copy errors), and redrawing
and shifting (copy errors).

The code is then revised to match the flowchart, which often results in inefficiency in
the code and a generally disorganized arrangement in both the sequence of operations and
format of the subroutine. Eventually, a new flowchart is necessary. Program evolution con-
sists of flowchart, code, analysis, flowchart.

200 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

CAPD proposes a system wherein the code and the final flowchart no longer appear as
steps in program development. This technology uses a graphics display console with charac-
ter, line, and vector capabilities. The IBM 2250 and the CDC Digigraphics consoles are
potential candidates. Time sharing is desirable for economic purposes only.

The initial flowchart is created with aid from the computer, which provides the flow-
chart symbols and automated spacing. Modifications are achieved with maximum ease and
reliability with the CAPD graphics program. The analysis proceeds at an accelerated pace
because CAPD permits the analyst to concentrate on the problem, aids in diagnosing the
flow diagram, and supplies definitive information on request or on repeated error occurrences.

CAPD Transiator

The translator takes input from the graphics flow diagram in terms of arithmetic and
logical expressions enclosed within the flowchart symbols. It transcribes this flowchart into
source language appropriate for compiler input by translating, for example, rectangles into
arithmetic statements, hexagons into CALLs, and triangles and diamonds into IF statements.

CAPD Conventions

The conventions follow FORTRAN closely and adopt common flowchart symbol
graphics representations:

Arithmetic statements: rectangle. The operators +,
-, * [, ** or 1 and the field delimiters =, ,, () carry
FORTRAN definitions.

Control statements
Unconditional transfer: directed arrow to a
— or .
statement number (sn) enclosed in an octagon
Conditional transfer

The colon is introduced for comparison of
expressions followed by directed arrows.

Equality: triangle

Inequality: diamond

PROGRAM AUTOMATED DOCUMENTATION METHODS 201

l=n »1 I=1+i 1:m
*
ABNAM {argl, arg2, . . argn) —>-
-_—_————— 1 —————

TRANSFER SYMBOL

—@

CAPD Graphics

A and B in the diagrams may each be arith-
metic expressions. These representations
encompass the GO TO and the IF statements.

— The DO statement is easily represented by a combina-

tion of arithmetic and conditional transfer expressions
indicating a loop on I from n to m by i.

Input/output (I/O) statements: rectangles. Format
statements are written and spaced exactly as they are
to appear on the printed page, ###.# or ####H##H#,
e.g.,

TIME ###.### WEIGHT ######## E##

Declarative statements: no flowchart symbol. These
follow the FORTRAN specifications except that the
words are prebuilt and the analyst may point to
EQUIVALENCE rather than spell it. END indicates
completion of the subroutine flowchart.

Subroutine execution: hexagon. The CALL or Return
Jump is internally generated.

Comments: perforated rectangles. These statements
may be placed anywhere on the flowchart such that

they do not interfere with any real statement except
the transfer symbol.

Exit: octagon. This is placed on the flowchart where
a RETURN statement is to be simulated.

The graphics program automates the flowcharting process by providing space for inser-
tion of new statements and by collapsing the flowchart or extending the arrows as erasures

are made.

Today’s technology provides at least three methods for sketching and writing on a dis-

play device.

(1) Typewriter—alphanumeric characters are immediately available; flowchart symbols

could be defined as—
[1 =rectangle

<> = diamond

[= beginning] =end
< = beginning > =end

202 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

(2) Menu—characters and symbols are presented on the display and they are initial-
ized by pointing to them with a light pen and indicating a location; e.g., pointing
at a rectangle causes a nominal sized rectangle to appear on the display face where
indicated, and statements are written inside it.

(3) Character recognition—the analyst draws a rectangle that is “recognized” by two
nearly horizontal and two nearly vertical lines; the display presents an internally
blocked and sized flowchart symbol or alphanumeric character at the current
cursor location.

In either of the latter two methods the flowchart symbol size is modified by “‘pulling on
its handle.” A similar method may be devised for moving the symbol with its expressions
intact to a different location on the display.

The method of character recognition is probably best suited to the normal analyst.
Flowchart symbol recognition combined with typewriter alphanumeric input may be most
efficient for keypunch operator use. A menu of flowchart symbols combined with type-
writer alphanumerics may seem simplest to implement.

CAPD /O

In program design it must be possible to initiate a flowchart and at a later date reintro-
duce it to the computer for additional development.

Inputs to CAPD consist of a graphics flowchart created by the analyst at the console
and a previously executed flowchart as output by CAPD. Conceivably, an optical scanner
device could be programmed to re-create the graphic flowchart identical to the original;
otherwise, an alternate form of input would be made available.

Outputs from CAPD consist of hard copy of the graphic flowchart (optional computer
output microfilm); source language for the appropriate compiler (possibly an option of
punching the source language on cards); and, in the event that an optical scanner is unfeasi-
ble for inputting a previously generated flowchart, a representation of the flowchart on
cards, tape, or other media.

The only restriction applicable to 1/O is that CAPD generates certain output such that
it may become input to itself. ’

CAPD Diagnostics

A flowchart convention may exist to prohibit the analyst from leaving an unfilled flow-
chart symbol; thus, if he does not know precisely what the symbol is to contain, he writes a
question mark (?) and is allowed to proceed. This permits CAPD to examine each flowchart
symbol and report omissions or errors as they occur. Validation of the calling sequence
arguments with library subroutines is a potential diagnostic. When CAPD receives the END
signal, it questions the analyst concerning the unfilled flowchart symbols, the undefined
transfer points, and formats. The diagnostic output provides the analyst with the correct
format of any symbol or expression and automatically displays itself if he commits an error
repeatedly.

PROGRAM AUTOMATED DOCUMENTATION METHODS 203

Successful compilation is almost assured; successful execution depends on the response
to the diagnostics. The analyst may elect to ignore or leave incomplete portions of the sub-
routines; CAPD will not inhibit use of the compiler if the user specifically requests to proceed.

Programming Reliability

The diagnostic remarks assist in immediate error recovery. Pictorial representations are
considerably less error prone than word images. Modifying a flowchart, where such is possi-
ble without copying it, is nearly always performed accurately, whereas generating the code
requires particular attention to the format, punctuation, and logical assumptions of the
language.

Quick Response and Rapid Reaction

The calendar time required to design or modify a program is drastically reduced by
automated regeneration of flowcharts as refinements or alterations are introduced and auto-
mated translation of flow diagrams into source language. The implementation of a new or
revised set of guidance equations, for example, would take relatively little time compared to
today’s normal turnaround time. This technology provides real-time systéms with fast and
accurate response.

Documentation

CAPD reverses the entire documentation procedure. Contracts normally oblige the
analyst to document the program. With CAPD the modus operandi is to “program the
document.” Flowcharting the subroutine is no longer necessary, and the remaining documen-
tation would be formatted as described in ADS to permit complete automation. Thus, the
portions of documentation that are always tedious and laborious to produce are bypassed.

A very important result is that the readability and reliability of the program are greatly
enhanced.

CAPD Recommendations

The implementation of CAPD should be seriously considered by developers of com-
puter software. Not only would the state of the art take a major stride forward, but con-
siderable cost effectiveness would ensue from the diminished time required to create, update,
maintain, and document a program.

RECOMMENDATIONS AND CONCLUSIONS

The computing industry has already accrued considerable benefit from the ANSI stand-
ards for the FORTRAN language; programs that adhere to these specifications transfer
readily to another computer system. There should be similar standardization for loaders.

As yet ANSI either has not addressed this problem or has not felt sufficiently fortified to
assert itself to this technically feasible but politically delicate problem.

204 : AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

NASA, an important customer of the computing industry, now asks whether program
documentation in a broad general sense can be automated. The response is assuredly positive
if standardized specifications can be outlined and accepted. Of course, each software devel-
oper has and can continue to automate his program documentation individually, but from
the buyer’s viewpoint cost effectiveness is not necessarily achieved. Certain standardizations
are considered in the following recommendations.

Program Specifications

The specifications for programs contained in requests for proposals occasionally present
problems to the responder by putting him in doubt as to the relative complexity, generality,
and capability of the product desired. This author recommends the topic as the subject of a
future symposium.

Manufacturer Software

Much internal program information that is immediately available from the compilers
and loaders is lost simply because it is not printed. As discussed in the section entitled
“Automated Documentation of Program Internal Communication,” forward and reverse sub-
routine and common reference information is invaluable documentation. It is recommended
that the manufacturer of software systems provide options to retrieve the information so
that all applicable items in table 1 may be marked affirmatively.

Program Development

The CAPD system discussed in the CAPD proposal should be seriously considered for
the best use of engineer and analyst time and to reduce a major portion of the effort ex-
pended in documenting a program.

Program Documentation

Many items of subroutine level documentation are considered standard; such as the
name, title, author, abstract, calling sequence, restrictions, and variables usage. The format
of these information files remains to be defined; this author recommends coded comments.

It may be presumptuous to anticipate that the industry could agree on those items to
be retained in the program listing, in the flowchart, and in the documentation. Therefore,
the code should contain options that permit the commentary to appear on the respective
documents as requested, thus avoiding duplication without sacrificing completeness. The
coded comment cards defined for the ADS program discussed represent a step in the correct
direction, but additional refinements along with modifications to the current compilers,
flowcharters, and documentation programs must be specified, standardized, and implemented.

Manuals Preparation

Input; output, and deck setups are fairly common subject titles'in most users manuals.
Having directed the development of a large, complex, general-purpose program, the author is

PROGRAM AUTOMATED DOCUMENTATION METHODS 205

aware of some inadequacies of this type of manual. The customer requires problem-oriented
information. ‘

It does seem clear that manuals should be generated with automated text editors as
mentioned earlier in the paper. An economy of operation is realized, particularly for high-
usage dynamically evolving programs, when the documentation can easily and accurately be
created and updated.

DISCUSSION

MEMBER OF THE AUDIENCE: 1 would like to know to what extent the information
you have here is available to the general public. In other words, is it proprietary?

LANZANO: Yes, the programs themselves are proprietary. They are for sale.

MEMBER OF THE AUDIENCE: You indicated that this was tied directly to your
trajectory determination program. Is there anything within that program that restricts its
use?

LANZANO: 1 did not mean to imply that it is tied directly to this program. It was
developed to support this program. It would support any program that follows the set of
standards that [defined. We also have other programs that will handle all machine-language
programs in a somewhat similar manner; therefore, they are strictly supportive programs.

MEMBER OF THE AUDIENCE: This is quite an involved system. How many years
has this been in process?

LANZANQO: 1 think it has actually been in process for 3 or 4 years. They are not dif-
ficult programs to write. Most of them have been written as kind of off-the-cuff things. The
ADS program is probably the more difficult because it mimics the compiler. In direct
answer to your question, it has evolved over a period of years, but the level of effort in pro-
ducing this is not particularly high.

MEMBER OF THE AUDIENCE: In this area of standardized loads, do you think an
extension in the FORTRAN standard that identifies the requirements for overlays and seg-
mentation would be useful?

LANZANO: I would like to see some standards defined for overlays and segmentation.
Whether such standards would be useful would depend. I have found the IBM 360 linkage
editor to be quite versatile. I think it is probably one of the best in the field right now. The
Univac 1108 looks very good to me, although I have not actually used it.

MEMBER OF THE AUDIENCE: The only other question I have is in the area of the
technical editor. Have you had any occasion to wish that the technical editor would do a
quick index for you on the document, so you could actually go through and take your docu-
ment and see how well you have used the same phraseology so that it becomes easier for the
reader? ’

LANZANO: This one does not, but there is one called QED developed by Time-Share
that will look for phrases.

MEMBER OF THE AUDIENCE: I mean a quick index of the whole document from
the form that you put it in.

LANZANO: I believe the one that Dr. Rich discussed actually put out a table of con-
tents at the end.

AUTOMATED ENGINEERING DESIGN (AED):
AN APPROACH TO AUTOMATED DOCUMENTATION

Charles W. McClure
SofTech.

The automated engineering design (AED) system is essentially a system of computer
programs designed for use in building complex software systems, especially those requiring
the development of new problem and user-oriented languages. The AED system itself may
be considered to be composed of a high-level systems programming language, a series of
modular, precoded subroutines, and a set of powerful software machine tools that effec-
tively automate the production and design of new languages. The AED language itself is a
modification of ALGOL 60 to make it suitable for use as a systems programming vehicle.

The AED system was developed by Douglas T. Ross and associates over a 10-year
period while they formed the nucleus of the Computer Applications Group at the Massachu-
setts Institute of Technology’s Electronic Systems Laboratory. Before their work on AED,
this group had developed the automatically programmed tools system for numerical control
of machine tools. So, it is natural that people with such extensive experience in the data
processing field would be concerned with the documentation of their own activities and
with providing facilities for the users of their work to effectively document their own new
developments in the software field.

It is necessary to define what is meant by documentation before it is possible to discuss
automated documentation. In a general sense, the term documentation refers to everything
that can be used by a human being to help understand a computer program or system. This
specifically includes flowcharts, listings, cross-references, and, of course, user manuals. This
discussion will be limited to the more mechanical aspects of the total documentation spec-
trum. User manuals, which are more appropriately considered in terms of the psychology
of human learning and communication, will be excluded from consideration.

In examining the process of software production, it may conveniently be divided into
the design, programming, testing, and production phases. This is illustrated in figure 1.
Current manual documentation methods ignore the process of documentation during many
of these phases. For an automated documentation facility to work properly, data that are
generated during all these phases must be captured and reasonably ordered. This is espe-
cially relevant in the programming and test phases, in which numerous individuals are in-
volved and in which errors, oversights, and shortcomings in the original software design are
discovered. In addition, the need for new and revised features unfolds as the understanding
of the problem matures through usage. These new and potentially valuable insights are fre-
quently lost during the current process, which tends to ignore documentation at these
points in the process.

PRECEDING PAGE BLANK NOT FILMED

207

208 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

PROGRAM
DESIGN

1

PROGRAMMING

i

TESTING AND | COMMUNICATIONS
DEBUGGING CHANNEL
—

— —= USERS

ToOLS / _ -
COMPILERS \ e
ASSEMBLERS \, MASTER PRODUCTION
LOADERS , FILES RUNS
DEBUGQGING AIDS\ '
RELEASE
ERROR

INVESTIGATION

MASTER
CHANGES UPDATES

!

DEBUGGING
AND
TESTING

Figure 1.—Software production phases.

SofTech strongly believes that it is erroneous to view the problem of system documen-
tation as an annoying, mundane, and unfortunate concomitant of the software development
process. On the contrary, documentation is an important, challenging, and integral part of
the total software production picture. Major system software efforts are among the most
complex and difficult projects undertaken by man, especially when real-time physical phe-
nomena as well as the vagaries of human behavior play an important part in the overall suc-
cessful operation of the system. In software, the design-to-production cycle can never be
considered completely finished.

Even if present efforts toward the development of highly reliable programming tech-
niques are fully successful in the future, for major systems, the continuing evolution of new
user experiences that must be reflected in modified system behavior still will cause the docu-
mentation function to be of primary and lasting importance. In SofTech’s view, documen-
tation is a natural part of the life cycle of a software system that comes to the fore not at a
certain stage of maturity of that system but must be essentially functional as a useful
problem-solving tool at each stage.

SofTech’s many years of experience in major system development, maintenance, and
distribution have given rise to a clear definition of the ultimate goal toward which we strive.
This goal is the automated production of high-quality reliable and functional software in a
“software factory” environment with the automated production of documentation as an
integral process. It is not surprising that the production tools of the documenter and the
application of those tools in an orderly technology are closely related to the similar func-
tions required at the generative stages of software design and prototype construction. In

AUTOMATED ENGINEERING DESIGN (AED) 209

fact, it is the purposeful extraction of pertinent information from those production tools as
an easily acquired byproduct of the production process that best provides an orderly
approach to the solution of documentation problems. This is apparent because the docu-
menters must mentally disassemble a working major software system into its component
parts and examine the behavior of those parts in concert as well as separately. At the
present time this analysis is supported only by an informal collection of listings, flow dia-
grams, and sundry debugging aids, most of which have been humanly generated in a some-
times well-directed, but all too frequently ineffective, effort to provide the needed
information.

Quite a different state of affairs would prevail if the vast amounts of relevant informa-
tion which appeared briefly and then evaporated in the process of initial construction and
assembly had been saved as a part of the development process. For example, the documen-
tation job would be greatly facilitated if the compiler used to compile a program left in a
data bank not only the basic symbol table information but also the cross-reference infor-
mation concerning external functions defined in or needed by that compilation, the linking
loader had left behind its records of program module placement, and the system generation
program had retained all relevant information including commentary by the programmer
who made some last-minute adjustments, for example, to overlay linkage characteristics.
Furthermore, if all of this information were ordered and collected in an automatically
generated data bank as a byproduct of the software machinery, it would be essentially free
of human error. This information could be combined with other features of the software
production methodology, such as the requirement that appropriate commentary be incor-
porated in each module of a hierarchically assembled system. Before such an assembly
operation would be considered complete and acceptable to the system, the body of infor-
mation available to the system would attain some real substance and would provide a firm
basis for a well-structured approach to the documentation task.

The value of this approach can be appreciated by noting that the construction of over-
lays (to permit a program to execute within a core memory constraint) has been a problem
for a great many programmers using various computer systems. Yet an acceptable overlay
structure can be produced quite mechanically if the program and data interrelations are
clearly stated. This acceptable structure may be improved if frequency of usage informa-
tion is available. '

Programmers attempting to document their activities can benefit by having a high-level
language uniquely tailored to order their thoughts and supply direction to the computer.
The nouns of such a problem-oriented language are such things as program modules and
system assemblies. The adjectives of the language are the various states of those modules,
such as unedited source deck texts with commentary. The verbs correspond to the control
of the various assembly operations cited above as well as the disassembly operations needed
to unfold a structured program to gain access to internal points, With this accomplished,
software probes or statistical measuring submodules nested within this language and inter-
locked with its features can be employed. Once a change has been made, the same set of
tools controlled by the high-level language will record the updated information about what
was changed, why, and how, as the single change must be reflected throughout the entire

210 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

system. This language could easily be used through a graphics-oriented terminal, thus pro-
viding the combined capabilities of high-level metalanguage with the most effective com-
puter hardware man-machine communications capability available.

This description of the documentation function as an integral and natural part of the
software factory of the future may seem utopian at first, but such a view does not do it
justice. Instead, it provides the overall vision whereby order can be brought out of our
present chaos. It provides a yardstick whereby current and proposed methods can be eval-
uated and also provides a concrete series of subgoals, many of which are immediately
achievable as natural adjuncts to present documentation methods.

Another major aspect of the documentation retrieval problem that also merits particu-
lar attention is the language in which the system itself communicates its wealth of informa-
tion back to the programmer. It is in this area that the various forms of computer graphics
can play a particularly important role. The thought processes that accompany the detective
work associated with debugging and design can be rapidly overloaded by unending detail.
The information must be presented in a way that is most readily assimilated by the human
mind. In debugging, even more so than in many other activities, it is very important that
the programmer be able to maintain intellectual momentum in pursuit of an idea. This can
be greatly aided by use of on-line graphic displays. Here again, the key to successful efforts
must lie in the conscious treatment of the graphical displays as a proper language, not
merely as a picture-making capability, coupled with appropriate information and data
structuring for the data base.

It should thus be obvious that the data base must be content addressable, or be pro-
vided with “backward” threaded lists. Perhaps a simple example will demonstrate this need.
Consider that the description of a tape file has been stored in the data base so that all pro-
grams that are to manipulate that tape obtain the details of its format from the data base.
It is clear that reassembling the program will not only incorporate the latest changes to the
program but also all modifications to the file description. But how are we to know which
programs should be reassembled unless the data base retains the information about which
programs do in fact rely on a generic file description?

THE IDEAL ENVIRONMENT

The ideal environment and long-term future goal is a comprehensive, totally computer-
automated system that provides a rich, system-independent metalanguage for assembling
software systems, tearing them apart, examining them under specific test conditions, modi-
fying master source program files, and other tasks. The nouns in this control metalanguage
are master file names, loading and overlay patterns, and test procedures, while the verbs in-
- clude compiling, loading, updating, debugging, and data base query actions.

The system design provides that any changes made to a master file will be rejected by
the system unless all required updates are completed, including documentation updates and
updates to related programs affected by the original change. Management control reports
are also automatically provided, such as reports of schedule slippage and accuracy of main-
tenance estimates versus actual performance.

ey |

AUTOMATED ENGINEERING DESIGN (AED) 211

The primary user control device for this system is a graphics terminal, which is particu-
larly adapted to rapid rifling through source files, program editing, display of program flow,
and documentation updating. The research in machine-aided cognition by Dr. Engelbart at
Stanford University has demonstrated the power and utility of such devices.

The behavioral scientist will play a central role in the development of the language by
providing the needed human engineering. He will insure that the language is properly
matched to the skill level, human limitations, and working conditions of the maintenance
programmers. He will also criticize the management control reports and the user/mainte-
nance project communication facilities to tune these important interfaces for maximum
compatibility.

The data base required for effective operation of the maintenance facility is initially
constructed by the computer by stripping off program information at each stage of software
production, somewhat along the lines of the COMPOOL facility of JOVIAL and the AED
insert file control mechanism. Compilers, assemblers, loaders, and other software produc-
tion tools already produce listings, load maps, subroutine cross-reference printouts, and
other aids as natural byproducts of their function. These valuable aids form a major por-
tion of the needed data base, although at present these data are not retained and cross-indexed
automatically by the computer for later use. Original program documentation and facts
discovered at each stage of the maturing of the software form another important compo-
nent of the data base.

FACTORS WHICH INHIBIT EFFECTIVE DOCUMENTATION

The engineered documentation environment described above is at present not a reality.
Without engineering tools and disciplines, documentation efforts suffer from several in-
hibiting factors including—

(1) Lack of program understanding by programmers, compounded by poorly engi-
neered and programmed software

(2) Lack of automated software tools for maintaining, updating, and distributing
documentation of systems to users

(3) Communications gap among the programmers about status of known errors and
correction schedule

(4) Lack of automated testing techniques to insure that modifications do not in
themselves create additional errors

(5) Interference and cross-coupling between several programmers simultaneously
changing and correcting related programs

(6) Inability of programmers to reproduce error conditions, at least in a sufficiently
simple environment to isolate a single problem effectively

THE PATHWAY TO THE GOAL

Given the gap between the ideal environment and the present-day facilities, an
evolutionary path to the goal is needed. A graceful degradation of the ideal to fit the
present-day hardware and operating system limitations provides a usable facility whose

212 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

expansion and elaboration insure the needed incremental progress toward the ideal. Many
of the programming aids needed to carry out the actions of the metalanguage already exist
in present computer software libraries:

(1) Automated flowchart aids such as AUTOFLOW to produce quick, accurate flow
diagrams directly from source program statements

(2) Machine-language listings showing the primitive steps compiled to carry out
statements in a high-level language

(3) Symbol prints to show memory locations and other values associated with user
variables

(4) Load maps showing program layout when executing the program

(5) Cross-reference maps showing interactions among program modules

(6) Library statistics showing the names and sizes of programs called in from software
libraries

(7) Traces of program flow showing argument values and machine conditions at
selected points during program execution

(8) Linkage tables showing names, locations, and lengths of selected programs

(9) Timers and program counters which illustrate dynamic characteristics of program
operation

It is clear that many of the needed software tools are now available. What is missing is
the overall system which will permit each of the components of the system to retrieve the
data that it needs to perform its function without asking for additional information from
the programmers. It is clear that if processors are going to obtain information from the
data base, then it is desirable that each processor store information in the data base for the
use of other processors. This is the essence of the software factory of the coming decade.

The software factory provides the framework within which the programmer func-
tions and, in particular, should provide both the present processors and the data base
discussed above.

SofTech feels that the AED approach permits us to work toward this final goal in the
most direct manner now possible.

o
>
/\Cl
3

PROGRAM ANALYSIS FOR DOCUMENTATION

G. H. Lolmaugh
Programming Methods, Inc.

Program analysis for documentation (PAD) is a technique that produces computer
program documentation in three steps. It is FORTRAN oriented but could just as well be
directed toward any other programming language. It currently gets little help from the
computer, but this is hopefully only a temporary hiatus in its development cycle. The
three steps to the program analysis include describing the variables, describing the structure,
and writing the program specifications. This is clearly the opposite order of the normally
accepted way of doing things, but is consistent with the way much programming is done.

The questions of why or how programs get written with or without beforehand under-
standing of the problem statement or why one should bother documenting the intricacies
of something that works will not be discussed here. Only the premises that a program exists
in compilable form and a decision has been made to document it will be of importance.

Before proceeding, it should be made clear that a program that contains few or no
lucid internal comments, for which no programmer’s notes are available, and whose author
is unavailable, is going to be difficult, if not impossible, to document properly. But this
cannot be used as an excuse for refusing to document such a program. Facts will become
known as the calling and called routines are analyzed, and after two or three analysis passes
through the entire system are made, much information will emerge. Articulate documents
can appear when an organized system is consistently used for posting facts as they are found.

Large systems containing many routines usually have a more or less elaborate scheme
of blocked common variables. It is convenient for the documenter to develop a completely
separate common document where all the known facts about each common variable are
posted. This makes it unnecessary to describe a common variable thoroughly and redun-
dantly in each routine that uses it.

Programmers will undoubtedly balk at the notion of describing every variable. For the
moment, it will be assumed that every variable is important, or it would not be in the pro-
gram. Unimportant and abandoned variables have been known to cause trouble. Being able
to decide what to leave out of a document without compromise is what makes a documenter
a skilled professional. As this analysis proceeds, a method will be developed for specifying
in advance the criterion of impunity.

213

214 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

LISTING THE VARIABLES

The variables in a FORTRAN program have several attributes that are of interest to
the documenter. These attributes are well known to the compiler, and, in fact, the compiler
produces, or can be directed to produce, listings in various orders of sort and with various
degrees of completeness of facts. A proposal for an additional listing will be specified
shortly that will save much of the labor and tedium about to be described.

Describing the terms to be used at the beginning of a technical report has been an
accepted standard procedure for many years. This enables the author to use his terms as
symbols in the body of his report and keep his report concise, orderly, and fast moving.
With PAD, a program writeup can be organized in the same way. Describe the terms
(variables) first, then write the body of the report (program specifications). This may seem
backward to those who view specifications as having been written before the program is
written, but it does not seem at all backward to the programmers, users, and other techni-
cians for whom the writeup is, after all, being written.

Each of the variables in a FORTRAN program may be described as either arguments,
common, or internal. The first two may be classed together with the read and write state-
ments, as input/output (I/O). I/O, it turns out, is the single class of information of most
concern to the greatest number of readers.

DESCRIBING THE STRUCTURE

The structure of a program is simple or complex in proportion to the amount and
complexity of the branching being done. This includes looping, which is a special form of
branching. If few branches are involved, or the program is short, the description of the
program structure need not be separately documented. However, if more than 5 IF’s or
DO’s are present in the program, an author is well advised to construct a flowchart. The
automated flowchart programs available, particularly AUTOFLOW, may be used to
advantage.

Hand-produced flowcharts, neatly and precisely drawn, lend considerably to the
credibility of the finished document, particularly if the flowchart is accurate. The choice
of symbols and shapes used is of less importance than consistency and style. Above all, a
flowchart should flow.

For very complex programs, particularly those more complex than they should have
been, an automatically produced flowchart is probably more economical and more accurate.
However, unless some nesting or editing technique was employed in generating the flow-
chart, it may be difficult to follow. Flowcharts should never be typed, except by an
illustrator or technical typist especially trained to do this work.

WRITING THE PROGRAM SPECIFICATIONS

Program specifications should be easy to write after a program is written, but they
seldom are. The fact that they were not written beforehand usually means that a program
is something less than well designed and orderly. The foregoing descriptions of variables
and flowcharts, together with compiled knowledge of called and calling routines, data

PROGRAM ANALYSIS FOR DOCUMENTATION 215

formats, tabulated output, error messages, and other researched material, make it now
possible to outline the problem statement the programmer wishes he had available when he
commenced work. How much flesh appears in this outline will depend on how much
research he has had time to do, how thorough was his work, and how many times he has
reedited the writeup for each interrelated subroutine in the system.

Because this paper deals with program analysis, it will not endeavor to show how to
do technical writing. At this point, the program analyst must decide who his readers are.
Appendix A describes several possible readers and some of their needs. A good checklist
of topics and objectives should include the following:

(1) A statement of the mathematical model, equations, and formulas. If copied from,
or based on, a textbook case, copy the material here, with credit given in the
references.

(2) A statement of the technique, such as sorting or merging, and-a description of
the sort key or collating sequence.

(3) The decision criteria and tables.

(4) A description of the broad aspects of the I/O consistent with the details already
specified.

(5) A stressing of what the program does, rather than how it is done, except where
the means of accomplishment is tricky and will not be immediately obvious by
examining the code listing.

MANUAL AND AUTOMATED METHODS

The current manual PAD method and the preliminary specifications for a proposed
compiler option are described in appendixes B and C, respectively.

APPENDIX A—TECHNICAL EDITOR’S NOTES ON EDITING CRITERIA FOR
REVIEWING PROGRAM DOCUMENTATION

Review the writeup on the basis of the needs of the intended reader(s). The possible
readers and their needs include:

(1) The maintenance programmer—adds, deletes, and changes the program on the
basis of new specifications, He needs to know, in addition to what the program
does and how it works, the impact of any change he may make on other programs.
Any 1/O variable (argument, common, read/write) may affect any calling or
called routine. Changes in logical tests may change the meaning of messages.

(2) The user programmer—needs calling sequence details, as well as other interfaces
required to transplant a routine to another system.

(3) The reprogrammer—will be involved in transplanting this system to a next genera-
tion computer, probably rewriting portions of the code for optimization or new
specifications. Needs considerable information about the current program
specifications.

ol

216

4

(5)

(6)

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

The system user—may require additional information not found in the user’s
manual to pinpoint unusual data trouble, machine trouble, compiler trouble, etc.
The mathematician-analyst—needs to know whether this program does exactly
what he wishes to do, avoids what he wishes to avoid, is otherwise suitable to his
needs, or holds promise of being suitably modifiable.

The project director, technical writer, and others—responsible for writing and
maintaining user’s manuals, maintenance manuals, and other technical reports.
The programmer’s workbook should be the major repository of information and
should be sufficiently up to date to enable the compiling of reports on short
notice.

APPENDIX B—TECHNICAL WRITER'S NOTES FOR PAD

To methodically analyze (document) a FORTRAN subroutine:

(1) Compile the code. A source listing and a cross-reference are needed.
(2) Make a Xerox copy of the source listing. The ISN’s and the statements will fit

the 8%-in. width of standard paper. Omit card numbers.

(3) Get red, green, and black thin line marking pens.
(4) Underscore the Xerox copy of the listing in green for common block names, calls,

returns, entry points, and other program interface elements; in red for read, write,
and format statements, name lists, and other hardware interface elements; and in
black for IF’s. Bracket the DO loops in black.

(5) Build an argument-list skeleton:

(a) List each variable in order of its appearance in the calling sequence.

(b) Note any word size or mode other than implicit.

(c) Show dimension. If equivalenced, consider so noting.

(d) Determine I/O status. Use the rules at the end of these notes.

(e) For indicators or flags, assign a three- or four-word plain text descriptive
name, then tabulate all values and their meanings. For logicals, only the
“usual” condition needs describing, unless the opposite status has other
than the opposite meaning.

(6) Build a common-table skeleton. For each vaﬁable,

(a) Check the name to see that it is actually used by this program. Use the
symbol table to see that an ISN greater than the first executable statement
is present. Skip unused names.

(b) Note any word size or mode other than implicit.

(c) Show dimension. If equivalenced, consider so noting.

(d) Determine 1/O status.

(e) Refer to the common writeup for this block; determine that the description
here is consistent with that in the common writeup. If the usage here adds
to the knowledge in the common writeup, update the common writeup.

(f) Note any pertinent comments in this program listing.

PROGRAM ANALYSIS FOR DOCUMENTATION 217

(g8) Check the usage of this variable in several places in the code (use the symbol
table) to see that information in (6(d)) and (6(e)) makes sense and is current.

(h) Describe the purpose or usage, as pertinent to this program. Use a brief,
concise, terse form. The common writeup should contain the total informa-
tion about a variable, and lengthy details should be documented as program
specifications.

(7) Build a read/write table:

(a) Make one entry for each possible read or write statement.

(b) For a card, mention what the card is for, how many, any preconditions (IFs),
and make reference to the card layout figure.

(c) For printed messages, state the conditions for the message, state the message
precisely, and mention or show any tabulations that follow. Obtain sample
printouts whenever possible.

(d) For a tape read or write, use the same general rule as for a card read, specify-
ing the record and file structure and referencing a tape layout figure.

(e) For disk, data cell, and similar data sets, explain the define file parameters.

(8) Start building an internal variable table. Add to it as analysis proceeds. Unimpor-
tant variables may be omitted. An unimportant variable is one whose purpose or usage
isimmediately obvious. The use of (9) as the index in an unnested DO loop is obvious.

(9) Construct a flowchart, if necessary. This may not be needed if the program con-
tains less than four decision statements.

(10) Write the program specifications.

(11) Write the error procedures, if any. Clues to error procedures are error messages,
flags in the argument list or in common, and STOP and PAUSE statements.

(12) Name the routines calling this one (if known).

(13) Name the routines called by this one. Look for FUNCTION names, note program
names for alternate entry points.

(14) Add the following sections, as required:

(a) References

(b) Flowcharts

(c) Attachments including tables, card and tape layouts, and sample output,
input, job control language.

I/0 rules. When describing a variable in a FORTRAN routine as input and/or output,
the following rules apply:

(1) Input and/or output pertains to input or output usage of a variable as seen from
this routine’s viewpoint.

(2) A variable is input if this routine needs it for computation, testing, or other
internal purposes.

(3) If a variable first appears in this routine on the right side of an equal sign, the
variable is input.

(4) If a variable first appears in an IF argument, the variable is input.

(5) A variable is output from a routine if the routine changes its value in any way.

218 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

(6) If a variable appears anywhere in this routine on the left of an equal sign, this
variable is output.

(7) A variable may be both input and output.

(8) An argument is input and/or output in this routine consistent with its usage as an
argument in a called subroutine.

(9) Arguments or common variables that appear in read statements are output from
the routine because values are (or may be) changed. Arguments or common
variables that appear in write statements are input to a routine because a value
is expected of them.

(10) 1/0O is applicable to arguments, common, and, conceivably, registers.
(11) Every routine must have at least one input or output item, or the writeup must
explain the discrepancy.

APPENDIX C—FORTRAN PROGRAM ANALYZER FOR DOCUMENTATION
(PRELIMINARY SPECIFICATIONS)

The purpose of this program is to produce a checklist of items that must be contained
in the program documentation and to include as many facts about these items as may be
available. Provision is made for communication between internal and externaldocumentation.
Using information available from the FORTRAN compiler, produce tabulated lists
of variables and lists of other items to be covered in the documentation. Lists of variables
include calling sequence arguments, common variables, variables in read/write statements,
and important internal variables. Other items include text of write statements and comments
concerning error procedures.

Calling Sequence Arguments

Generate a list of the argument names showing I/O context, dimension, mode (other
than implicit), equivalence, etc., in the following form:

I ARG1 (E) 1*4
0] ARG2(n) L*1
1/0 IARG(n) (E)

where (n) is the dimension (if any), (E) denotes some equivalence, and I*4 and L*1 are
modes that are not implicit.

Elements of this table are to be printed one per line (double-spaced option), suitable
for later manual entry (by the programmer) of descriptive text. When operating in the
internal documentation mode, the program will scan the first word of each existing comment
card containing a delimiter (—) and include the text of that comment. Variables are listed
in order of their appearance in the argument list.

PROGRAM ANALYSIS FOR DOCUMENTATION 219

I/O context for each variable is to be labeled I, O, or I/O according to the rules in
appendix B. These rules are designed to show a user programmer which values he is
expected to furnish and which values will (or may) be-changed by this routine.

Common Variables

Generate a list of common variable names showing I/O context, block, dimension,
mode (other than implicit), equivalence, etc., in the following form:

| BLOKA VAR1(n)

) ARRY(i/) R*4
1/O BLOKB VAR (E)

I A

) c

where the meaning of the symbology is now obvious.

The same characteristics and rules as for calling sequence arguments apply here. How-
ever, only those variables appearing in an executable statement or equivalenced to a variable
in an executable statement are normally listed. On option, list all the variables, showing NR
as applicable, to facilitate the building or checking of the complete common directory.
Note that the NR test used by the FORTRAN compiler differs because of the executability
specification. A variable must appear somewhere in the program following the beginning of
the first executable statement to be considered executable here. A format statement is
considered nonexecutable, but the variables appearing within it are executable, nonetheless.

Block and variable names are listed in the same order as their appearance in their
definition statements at the beginning of the program.

Read/Write Statements

Generate a list of read and write statements naming the data set, format or define file
number, etc., in the following form:

(27) w 6 END DATA HANDLER —ELAPSED TIME .. (T) ... SEC
(12) R 5 REFDAY(3)
IPRT L*1
T=
F=

These entries will mostly provide blank space for the author to write his descriptions.
However, the FORTRAN compiler can recognize many elements and post them accordingly.

Messages will be printed verbatim, followed by two blank lines to be used to describe
the conditions under which the message is printed. A message is any H-type statement.

220 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Name lists, either in or out, are displayed in the following form:

&NAME.

ARG1
ARG2(n)

with dimension, mode, equivalence, etc., as specified for calling sequence arguments.

Read or write statements that can be recognized as cards will have the variables
tabulated in a manner conducive to generating card layouts.

BCD write statements to other than card or printer data sets will have the variables
tabulated in a manner conducive to generating tape record layouts.

Direct access data-set references will have the define file statement tabulated in an
appropriate manner.

Sample output is usually difficult to find for documentation purposes and often lacks
the generality the author wishes because of the conditions of the run. Making a test run
in which all cases and all error messages are displayed is challenging. Therefore, in the
DOCEXEC mode, all output statements will be executed once, consistent with the included
GO and DD statements. Variable quantities in this dlsplay will be dots, indicating the field
size specified by the format statement.

Switches

All 'logicals and all I*1 and 1*2 variables will have extra line spaces for entering logical
conditions in addition to the name of the variable. Logicals will provide T/F indication
lines; integers will provide an arbitrary three extra lines.

Arrays

An arbitrary three extra lines will be provided following each subscripted variable name
for the purpose of describing the individual variables in an R-type or I*4 (or larger) array.

Care should be exercised here not to generate too much blank paper. For instance,
each of the elements of a transformation matrix need not be described. However, in the
case of an array, SPEC(20, 7), where the I's are characteristics and the J’s are stations, 21
lines should be generated; 1 on which to describe SPEC, and 20 on which to describe each
of the characteristics. Conversely, if the I's were stations and the J’s the characteristics,
eight lines should be generated.

Internal Variables

Generate a list of all internal variables showing dimension, mode, and equivalence. All
variables whose names contain two to five characters and that cannot be defined as argu-
ments, common, or read/write variables are considered internal variables. The size restriction

PROGRAM ANALYSIS FOR DOCUMENTATION 221

permits a programmer to assign variables whose usage will be intuitively obvious without
their being forced into the documentation. A PAD calling argument (OLD) will defeat this
test for documenting preexisting programs.

Summary

These preliminary specifications are being revised as time, inclination, and additional
interest are shown. Readers wishing to participate in developing these specifications are
invited to send in their contributions.

DISCUSSION

MEMBER OF THE AUDIENCE: Where do you stand at the moment on the develop-
ment of this system?

LOLMAUGH: Itis an idea.

MEMBER OF THE AUDIENCE: Have you done any development on it?

LOLMAUGH: The manual portion of it (apps. A through C) does exist, and I already
use it. I also use it as a tutorial for the tech writers, programmers, or anyone else who helps
me with documentation. I had planned to discuss that at greater length because I know the
programming people in this group would have liked to hear more about it, but I was dis-
couraged from that because it does not involve automation and this was after all a symposium
on automated documentation. I do use a symbol table from compiled routines. I hope my
paper was able to illustrate the volume of hand work that I do that I know the computer can
help me do. I join several of the previous speakers in requesting that the compiler be put to
more work. I think it can be put to more useful work, at least where people want
documentation.

TREE-STRUCTURED INFORMATION FILE
AND ITS SUBPROGRAM SUBTREE

Charles K. Mesztenyi
University of Maryland

The goal of automatic documentation of computer programs is to establish procedures,
called documentation programs, that can be implemented by computer programs. These
documentation programs may be divided into two categories: postmortem and develop-
mental documentation programs. In the former case, a computer program is presented as
input for documentation without any preparation; in the latter case, the program to be
documented must be developed so that it contains information necessary for the
documentation.

This paper is concerned only with the development documentation programs. A docu-
ment tree is defined as the syntactic representation of a document when it is divided into
subdivisions such as chapters and sections. A developmental tree is defined as a tree of in-
formation obtained during the course of the development of a computer program. The task
of documenting a computer program is then made equivalent to a transformation of its
developmental tree into a document tree. When this transformation is performed by a com-
puter program, the documentation can be achieved automatically.

There is no attempt made in this paper to define the document tree more precisely.
Only its tree structure is assumed. Efforts are concentrated on the developmental tree,
specifically a subtree of it; the subprogram tree is illustrated in more detail.

GENERAL APPROACH

In the development of documentation programs, two objectives are paramount.
Pieces of information about the program to be documented should be kept in a computer
file during the development of the program, and this information should not be dupli-
cated in the file. The importance of the first objective is obvious; the information should be
in a computer-readable form for documentation. The importance of the second objective
can be seen whenever a change is made during or after the development of the program to
be documented. One can easily make the mistake of changing information in one place and
forgetting about it in the other place. On the other hand, a change of information at a
certain place may require changes in other information.

The goal of this project is to structure the developmental file of information in a tree
structure (fig. 1) so that the nodes represent pieces of information. Any change in the

FRECEDING PAGE BLANK NOT FILMED

223

w
.

r

224 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

contents of a node may require changes in the
subtree rooted in that node. In certain cases
when the semantic structure is more complex,
i.e., it may represent a directed graph, pointers
may be used semantically.

The final documentation of a program is
produced from its developmental tree of in-
formation. A special tree-traversing program,
possibly interactive, selects out the contents
of nodes or subtrees, invokes certain docu-
mentation programs to transform these data into special format, and stacks this information
sequentially. The sequentially stacked information is processed by a listing program to pro-
duce the final printed document.

Obviously the main problem is the establishment of the developmental tree structure.
At this time, a complete tree structure cannot be proposed. The definition of certain types
of subtrees, however, has been accomplished. One of these, a source program subtree, is
described in detail.

Figure 1.—Tree structure.

FLOWCHARTING AND PROGRAM LISTINGS

Any large computer program should be segmented into subprograms, subroutines, and
procedures. The size of a subprogram may depend on its complexity and on its source
language. Documentation of a subprogram is usually done in three different forms: textual
description, flowchart, and source language listing.

The information should be structured as a tree. A source program is compiled
(assembled), which generates a relocatable program. Figure 2 then defines the tree.

Certain information such as size, entry points, and external references can be obtained
from the compiler-generated relocatable program. The rest of the information should be put
into the source program. Textual information can easily be placed into the source program
by grouped comment lines. Thus the source program may be defined as a tree, as seen in
figure 3.

To combine the flowchart with the source program creates some problems. A special

SUAPRIGRAM

yd

SOURCE PROGRAM

Figure 2.—Tree structure for subprogram.

RELOCATABLE PROGNA

SAURCE 2RIOGRAM

HEADING GROUP 1 eee GROUP N PROGRAM BODY

Figure 3.—Tree structure for source program.

TREE-STRUCTURED INFORMATION FILE AND ITS SUBPROGRAM SUBTREE 225

form called a sequence chart is used. This is not a complete flowchart in the standard sense,
but it forces a tree on the otherwise graph-structured flowchart. Then there is no problem
in listing a tree structure sequentially. The missing links of the graph structure, which appear
as transfer statements in the source program, can be implemented by semantic comments.
A special computer program for a source language can automatically flag these places.
Appendixes A, B, and C show the final printed forms of three different subprograms.
The right side of the lists contains the actual program statements; the left side is stored
internally as coded comments. The listing program takes care of this separation, but the
actual sequential form is kept in the vertical direction. Those flow lines that represent the
spanning tree of the program are shown with special characters, colons, periods, and aster-
isks. The groups of textual descriptions are separated by horizontal lines of asterisks. Both
the names of the groups and the characters used for line drawing are made flexible by changing an
internal table in the printing program. Special print programs are available: A “level” print
gives only those lines that are not indented more than a certain input parameter. A ‘“selec-
tive” print gives only a subtree; i.e., a defined group or a subtree of the body. The output
of these print routines, formatted for a document processor, can be kept in the computer.
This form of documentation has been very helpful in the project from which these
three examples were taken. During the debugging stage, it was easy to follow the sequence
chart to locate a specific segment of a subprogram without turning pages back and forth.
Obviously, to get these forms, a good editing program capable of performing insertions
and changes is needed. Appendixes D and E show appendix A in a developmental stage.
In appendix D the initial sequence chart is defined. In appendix E an update procedure is
shown. First the séquence chart is shown in a coding sheet geometrically; then its code is
placed in front of it. The code for a line is composed by two fields. The first field defines
either thie depth of the text, 0 to 9, and blanks for program statements or contains special
instructions, like group heading, change, and insert commands. The second field contains
subcodes, such as line drawing codes for sequence charts and line numbers for updating
commands. The text appears in the third field. In the actual input, the text field gets left
adjusted. The lines will not be represented because they are already defined by codes.
This procedure for writing a program has the following advantages:

(1) It provides an up-to-date documentation of the program in the developmental
stage.

(2) It forces a programmer to lay out his program so that it provides an automatic
documentation at any level.

(3) It provides a form for a project leader to define subprograms without details that
can be inserted by other programmers.

(4) It may be used for the present-day coded flowcharting programs.

Its main disadvantage is that it needs more work and discipline in the beginning.

SUMMARY

Printed documents have syntactic tree structures, such as titles, chapters, and sections.
The semantic contents of the document may have more complex graph structures, but these

226 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

structures are implemented by semantic references. A computer program has a graph structure
also, but a spanning tree on this graph can be defined with semantic references to the miss-
ing links. This developmental tree of a program may have a different arrangement from a
document tree. If the necessary information is contained in the developmental tree for the
document tree, a transformation program can produce a document tree from the develop-
mental tree. If the structures of the two trees are standardized, then this transformation can
be achieved automatically. Otherwise, an interactive transformation routine can achieve a
semiautomatic documentation.

APPENDIX A—PRINTED SUBPROGRAM: EXAMPLE 1

SUBROUTINE EXPRES (*»

AEEEEREEE RGN B ARG E KRR R AC SR RE R R G RRE RN EE R E SRRk Sy

TITLE
EXPRESSION TRANSLATOR, INFIX TO PREFIX
PRI IEL P I PR E PR LR SRS L PE R R 24 T2 2 2 2L FA RS LR 22 ST 2
ABSTRACT
ss2 AUTHOR: C,K,MESZTENYI
ss» DATE: JuLY 21, 1970
#ss LAGUAGE: FORTRAN S
s+ PROJECT: FORMAL « SUBROUTINE
sss SEARCH KEYS: NONE
I T ISR SRR TP P 22 PR 2222 R 222 2 R 2 2 22 222t 2 22T P 2
DATA STRUCTURE .
FORMAL o CMMN
INCLUDE CMMN
FORMAL + PWORD
INCLURE PWORD
w42 ARGUMENT: * ERROR RETURN
ISW INPUT ARGUMENT
AEAERREEREARER SRR AR R AR AR TR RSB AR E R E p B oy
SPECIFICATION
THIS IS A GENERALIZED EXPRESSION TRANSLATION ROUTINE FROM
INFIX TO PREFIX FORM, IT ASSUMES THAT THE CALLING ROUTINE
INITIAL1ZED THE SCANNER, THUS GSCANR GIVE THE CONSECUTIVE
LOGICAL SYMBOLS, THE ROUTINE MAY BE CALLED FROM 4 DIFFERENT
PLACES DEPENDING ON ISW:
1Sw 0 PROCESS AN ASSIGN STATEMENT: VARIABLE = EXPRESSION 1§
1 TRANSLATE THE EXPRESSION PART FROM A READ=IN DATA
WHICH MAY BE IN THE FORM: EXPRESSION }
OR VARIABLE = EXPRESSION }
2 PROCESS SUBSCRIPT EXPRESSION IN THE FORM:
EXPRESSION)
3 PROCESS AN EXPRESSION IN THE FORM:
EXPRESSION
IN THE FIRST CASE, THE INFORMATIONS FOR THE VARIABLE ARE
STORED IN NI+N2.N3, IN THE SECOND CASE. ONLY THE EXPRESSION
PART 1S RETAINED UPON RETURN., IN ALL CASES, THE TRANS|LATED
ANO SIMPLIFIED EXPRESSION IS PLACED ABOVE THE PUSH-DOWN
STACK WITH THE PUSH=DOWN STACK CONTAINING ONLY ONE ENTRY:
A COMMA WITH A COUNT CORRESPONDING THE NUMBER OF
EXPRESSIONS TO ACCOMODATE LISTS,
SREREAPEEEPEE BN A RARE LR R B EF XA IR AR AR ER R AR TN
METHOD .
AFTER INITIALIZATION, THE LOGICAL BCD SYMBOLS ARE OBTAINED
BY GSCANR AND PROCESSED ONE-BY-ONE IN A LOOP, PROCESSING A
SYMBOL IS DONE AS FOLLOW
FIRST, IT 1S CHECKED !F THE SYMBOL 15 IN CORRECT TEXT)
THEN
CONSTANTS~ ARE LINKED IN ABOVE THE PUSH-DOWN STACK};
VARJABLES = THEIR VALUES ARE OBTAINED FROM THE SYMBOL
TABLE AND LINKED ABOVE THE PUSH-DOWN STACK,
IF THE VARIABLE IS SUBSCRIPTED» OR IT IS A~
FUNCTION IDENTIFIERs THEN .THE NAME IS LINKED
IN ABOVE THE PUSH-DOWN STACK, AND A LEFT
PARENTH, 1S PLACED IN THE PUSH=-DOWN STACK WITH
COUNT=L,

ISW)

ATYLANS WVYD0AJINS SLI ANV FTLI NOLLVWIOANI ATINIONYLS-ATYL

LTt

LEFT PARENTH, = IS PLACED IN THE PUSH=DOWN
STACK WITH COUNT=0.

OPERATORS ~ THE PUSH-DOWN STACK IS EMPTIED OUT BY STKOUT
UNTIL 1TS TOP ELEMENT HAS PRECEDENCE NUMBER
EQUAL TO OR LESS THAN THE PRECEDENCE NUMPRER
OF THE OPERATOR. THEN THE OPERATOR 1S PLACED
IN THE PUSH-DOWN STACK, SIMPLIFICATION IS
PERFORMED BY STKOUT.

RIGHT PARENTH.) RIGH BRACKET = THE PUSH-DOWN STACK IS
EMPTIED OUT BY STKOUT UNTIL THE MATCHING LEFT
PARENTH, IS FOUND, IF THAT HAS A COUNT=0,
1T 1S DISCARDED TOGETHER WITH THE RIGHT
PARENTH, IF IT HAS A NON=ZERO COUNT,» THEN IT
INDICATES AN END OF SUBSCRIPTS (PAR,) OR END OF
FUNCTION ARGUMENTS (BRACKET), IN CASE OF END OF
SUBSCRIPTS,» THE SUBSCRIPYS ARE COLLECTED AND
THE VALUE OF THE SUBSCRIPTED VARIABLE 1S
OBTAINED FROM THE SYMBOL TABLE, WHICH IS
LINKED IN. IN CASE OF END OF ARGUMENT LIST,
THE FUNCTION IDENTIFIER IS OBTAINED AND LINKED
IN

SEMICOLON -~ INDICATES THE END OF EXPRESSION, THE PUSH-DOWN
STACK IS EMPTIEOD OUT BY STKOUT.

PR R R Y Ty P L PR I P s P i s P T
LOCAL VARIABLES

LOGICAL VARIABLE *SB' IS TRUE WHENEVER THE SCANNED SymBOL 1S

IN SUBSCRIPT LEVEL, 'SBC' VARIABLE CONTAINS THE DEPTH OF THIS
LEVEL.

LOGICAL VARIABLE *EQL' IS TRUE WHEN AN *=¢ HAD BEEN PROCESSED
ALREADY» THUS IT MAY NOT APPEAR AGAIN, '=t MAY ALSO NOT APPEAR
ON SUBSCRIPT LEVEL,

THE SYNMTAX OF EXPRESSIONS IS CHECKED AT EVERY SCANMED SYMBOL BY
MASKING 'TEST' WHICH WAS SET BY THE PREVIOUS SYMBOL. IF THE RESULT
IS NOT ZERO THEM THE EXPRESSION HAS SYNTACTIC ERROR, IN THE
FOLLOWING TABLE,'A' DENOTES AN ALPHANUMERIC NAME, *Nt* DENOTES A
NUMERIC CONSTANT,'1* DENOTES POSITIVE INTEGER:

SYMBOL MASKING BITS (DEC,) RESET TEST (DEC,)
INITIAL ASSIGN -—- 1000000 (64}
INITIAL OTHERS ——- 0100000 (32)

A 0001110 (1%) 0001000 (&)
Al 0001110 (14) 0100000 (32)
AL 1001110 (78) 0100000 (32)
N 1001110 (78) 0000100 (&)
1] 1001110 (78) 0000100 (4)
#l 1001110 (78) 0000100 (4)
(1001110 (78) 0100000 (32}
= 1110101 (117) 0000001 (1)
UNARY 4= 1011110 (94) 0010000 (16}
BINARY ¢ 1110001 (113} 0010000 (16}
* / s 1110001 (113) 0010000 (16)
’ 1110001 (113) 0100000 (32)
) AS SEPARATOR 1110001 (113) 0000100 (&)

bl 1110001 (113) 0000100 ()
) AS END OF SuUBS,1110001 (113) 0000010 (2)

8¢C

NOLLVINTZWND0d NVIDOUd YIINdNO0D 40 SUOHLINW AALVNOLNYV

1110001 (113) m——

'BRT! AND 'PAR* ARE USED TO COUNT THE BRACKETS AND
PARENTHESIS, RESPECTIVELY.

LOGICAL 'NEG' IS SET TO TRUE BY *=~' FOR THE NEXT
CHARACTER SCANNED ONLY,

FEBARBELEXE SR RS KR SRR AR AR R RE RN AR AR RS R AR E xR

SEQUENCE CHARY

INITIALIZE

L 3R R SR B IR 3R BRI BR N BRI N OB BL BE JE BE IR 2% 2K B AR B B IR N oy

oopP

PUSH=DOWN STACK WITH COMMA

SUBSCRIPT LEVEL

e oo 00 oo D e oo ve e

LOGICAL VARIABLES EQL AND ENDs INITIAL TESY

°s oa 4w oo

GO TO SUBSCRIPT START IF ISwz2

TO PROCESS CONSECUTIVE SYMBOL
GET SYMBOL

: 30
BRANCA BY TYPE OF SYMBOL

IND = 1,2+¢3+4 FOR
INTEGER, REALs IDENTIFIER, SPECJAL CHARACTER

oo INTEGéR
: 100

e REAL

: : 110
H LINK IN CONSTANT

: H 120
; CHANG& SIGN IF NEG IS TRUE

teee IDENTIFIER

: CHECK IS =1 FACTOR SHOULD BE LINKED IN

: . 40
: ERROR IF IT HAS MORE THAN 6 CHARACTERS

H I 50

BRANCH BY TERMINATING CHARACTER

LOGICAL SB,EQL/NEG

NP=IGETF1($990)
NPO=NP
C{NP)=20K10
D(NP)=1

S8z LFALSE.,

BRT = 0
=0

EQL= ISW .GE. 2

TEST=32

IF (ISW .EQ. 0) TEST=é4
NEG= JFALSE.

IF (ISW .EQ. 2) GO TO 180

CONTINUE
CALL GSCANR($990+IND/NLsITC,ICC)

GO TO (3100,110.40,60),IND

I1=0

GO 70 120

=3

IF (AND(TEST»78) . NE. 0) CALL FMLERR{$990,)N1,I,1)
TEST=4

JEILINKL(NP,I,N1)

IF (NEG) D(J)==D(J)

NEG= FALSE,
GO TO 30

INEG = 1
GO TO 500

IF (ICC JNE, 0) CALL FMLERR(S990,N1,1,2)

AAALINS WV IO0UdINS SLI ANV TTId NOLLVIWIOANI ATINIONYLSTTIL

6¢¢C

BRERRRDERBRRR AR RERBRRRRRRRAERRERR AR RRRERRRRR B RBTEBRRER RN

#9 00 00 90 €0 61 00 *9 00 @0 05 40 04 00 e P06 G0 ©0 06 24 9o ST T ST €0 S0 64 40 G5 TO 20 T 24 00 S5 06 S8 S5 as 00 G4 Be T4 BP 4¢ T4 00 €O 40 S0 20 S0 05 S 60 6 Se

90 26 60 00 4o se T4 G0 05 00 54 40 $4 GO 20 SO GE GG GO 00 0 44 4O 65 av 4 4T S0 SC L6 GO SO Pe 04 6 44 G G6 G4 SO C4 00 0T SO 04 40 Se 06

0

IDENTIFIER NOT TERMINATED BY (OR (

CHECK IF ITS VALUE MUST BE LINKED IN
.
ves NO# GET ITS NAME AS VALUE

®e 00 oo o0 oa 20 oo
. e oo wo o

ese YES» GET VALUE FROM SYMBOL TABLE
IF UNASSIGNED,» THEN GET
ITS NAME AS ITS VALUE

COPY EXPRESSION AND
LINK IT WITHOUT LEADING COMMA

oa oo o

IS IT A LIST

COMBINE COUNT FOR COMMA

INK IN EXPRESSION

o 00 20 [o0 90 %o 00 o o

IDENTIFIER TERMINATED BY LEFT
PARENTHESIS : Af

SUBSCRIPTED VARIABLE, LINK IN NAME
AND PLACE '(* WITH COUNT 1 INTO THE
STACK. INCREASE SUBSCRIPT LEVEL

XDENTiFIER TERMENATING WITH LEFT
BRACKET AC

GET FUNCTION IDENTIFIER,
BRANCH BY TYPE

eoe DIFFERENTIAL FUNCTION

eoe YES» EMPTY PUSH-DOWN STACK

130

140
150

160

170

180

190

60 TO (130s 180, 190), ITC + 1

IF (AND(TEST»14) ,NE, 0) CALL FMLERR($990,N1,1.1)

TEST=8
N2=0

IF (EQL +OR. SB) 60 TO 160

IF (N2 «NE. 0) CALL ILINK1(NPIN247¢N3)
J=6

IF (N2 .NE. 0) J=7

CALL ILINK1{N®)Jy)N1)

GO0 TO 30

CALL SYMBOL(3590,1)
IF (EPTR LEG. 0) GO TO 150

II=ICOPY0($990,EPTR)
I=NEXT(II)
J=LASTXX(3$990,11,1,0)

IF (H2(11) +EQ. 1) GO TO 170

CALL STKOUT($990,18)
IF (ITYP(NP) ,GT, 17} CALL FMLERR{$990,N1,1,3)
DINP)SDINP}+H2(11)=1

CALL RMOVFI(II)
CALL ILINKNI(NP,I,¥)
GO TO 30

IF (AND(TESTs14) (NE. 0) CALL FMLERR(3990,N1,1,1)

PAR = PAR+1
TEST=32

NP=ILINK1(NPs+17+1)
CALL ILINK1(NP,7,N1)
sB= ,TRUE,

SBC=SBC+1

GO TO 30

IF (AND(TEST»78) .NE., 0) .CALL FMLERR($9390,N1,1,1)

I=IFUNCT(N1)

IF (I .EG, 0) GO TO 210
BRY = BRT+1 .

IF {1 .6T. 1} GO TO 200

0€c

NOLLVINANNDO0d NVYID0Yd YHLNdWNOD 40 SIOHLIN dALVNOLNV

BB BB RPN PR RERBORRBERRR D RR PR RRRBRRER BB RERRRERENRERTERREREN .

46 90 26 €0 20 44 00 0 04 40 20 G4 06 20 FO 26 e OF G0 4 00 04 04 00 00 S5 O ga

®0 00 00 s 4o o0 40

(AN

MATH, OR FORMAL FUNCTION

NONE OF ABOVE, CHEGK SYMBOL TARLE

eos DEFINED FUNCTION
LINK IN EXPRESSION

.

.
.
*
.
.
.
.
.
.
.
.
.
.
.
]
.
.
.
»
H
.
.
.
.
.
.
Iy
.

vee UNDEFINED FUNCTION
LINK IN COMMA FOR

THE ARGUMENTS FOLLOWING

SPECIAL CHARACTERS
BRANCH BY THE SPECIAL CHARACTERS

©6 06 50 o ¢ BY G4 0F S0 B¢ Gu 0¥ 46 O T 00 S5 04 S8 0O 6 40 08 06 €4 4 s @

ese ILLEGAL SPECIAL CHARACTERS
ses LEFT BRACKET OR 10, ENCLOSED IN BRACKETS
o

1

UNDEFiNED FUNCTION ARGUMENT OR SUBSCRIPTED
FUNCTION CHECK IF IT 1S5 SUBSCRIPTED
FUNGTION

Sees YESe GO TO FUNCTION PART

LR N]

OF DEFINITION

NO»y Ii IS A DUMMY ARGUMENT.
THEN 1T MUST BE FOLLOWED BY

AN INTEGER AND RIGHT BRACKET
CHECK IF =1 FACTOR 1S NEEDED

®e 00 oo 2e 3u 2o ou 00

eoe RIGHT BRACKET]
END OF FUNCTION ARGUMENTS

200

210
220

230

240

60

270

280

285

NP=ILINK1(NP¢»23,0)
GO 7O 240

NP=ILINK1(NPe21:0)
H1(NP)=]
GO TO 240

N2=0

CALL SYMBOL ($990.1)

BRT = BRT+1

IF (EPTR .EG. 0) GO TO 230

11=1COPY0 (3990 EPTR)
I=NEXT(II)
JZLASTXX(39390,11+4+0)
NPZILINK2(NP+22¢0(11))
CALL ILINKNINP,I,J)
CALL IFREEL(ID)

GO 7O 240

NPZILINKL{NP228NY)

NPZILINKL{(NP,»1611)
TEST=32
60 TO 30

GO TO (270+2B800290+270+300+340¢35002700440,270¢27002700390+400¢
1 4200270,2700270+270943091270+1460,460+410,2700270¢270) N2

CALL FMLERR($990,N1/1+1)

IF (AND(TEST»78) NE. 0) CALL FMLERR($990/N1s1¢1)

IF (TEST .EG. 2) GO TO 220

INEG = 2

60 TO 500

CALL GSCANR($990, IND» IDT» ITC, ICC)

IF (IND +NE. 1 +OR. IOT «LE. 0) CALL FMLERR($990,ITCs1,1}
I=ILINKL(NP,S,10T)

CALL GSCANR($990INDsIOT2ITCy1ICC)

IF (IND «NE, 4 +OR, IDT +NE, 3) CALL FMLERR($990,ITCels1)
TEST=4

GO TO 30

dILANS WV IO0UdINS SLI ANV TTId NOLLVINHOANI ATINLONYLS-FIIL

|§14

LR R R SR 2L B K IR IR R IR BN K N IRRE BN NE NN IR AR O IR K SR X B RN I SRR RE IR NE N A N SR N SR AR WK N N N B AR N SR O AR AN

9 00 00 T4 €0 04 ¢0 40 00 40 40 To S0 ©¢ 0a Be SF GO 2 G0 00 44 05 48 P B4 S8 60 45 au 4 0u 48 VS S8 26 48 26 ¢4 44 5O S¢ 40 €0 S 4w OF 6 G4 S¢ 6 S8 4V TS S¢ 46 40

26 94 46 06 00 Go 40 S0 G0 48 40 54 w8 S0 00 20 o o

RIGHT PARENTHESIS)

CHECK IF THIS IS AN END OF SUBSCRIPT
OR THE END OF A SUBEXPRESSION

as 4o 95 40 sa oo e 0e ¢4 00 so se o

eese END OF SUBEXPRESSION»
REMOVE MATCHING * ('

END O

F

A SUBSCRIPT LIST

CHECK AND PACK SUBSCRIPTS

e 00 00 ©c 2e oo 50 S¢ %o o0 4o oo

CHECK IF THIS IS THE END OF
TRANSLATION (]1Sw=2)

H

ses NOy GO BACK TO VARIABLE PARTY
TO GET THE VALUE OF THE
SUBSCRIPTED VARIABLE

290

300

310

320

IF (AND(TEST»113) .NE, 0) CALL FMLERR($990,ITCs1,1)
BRT = BRT-1

IF (BRT «LT¢ 0) CALL FMLERR(S990+,ITCo1s4)
TEST=4

CALL STKOUT(%990,17)

IF (ITYP(NP) . NE, 16) CALL FMLERR($990/,1TCs3s1)
I1=D(NP)

J=NP

NP=LAST(NP)

CALL RMOVF1(J)

J=ITYP(NP)

IF (J LT, 21) CALL FMLERR($990,ITCei,4)

IF (J JEQ. 24) ITYP{(NP)=I+24

IF ((J +EQ. 24) AND. ((I+24) ,GT. 31))
1 CALL FMLERR($990¢D(NP) 1,3}

IF (J LT, 24) H2(NP)=I

CALL STKOUT($990,21)

G0 TO 30

IF (AND(TEST»113) .NE, 0) CALL FMLERR({$990,ITCr1,1)

PAR = PAR-1

IF (PAR +LT. 0) CALL FMLERR($990,ITCr1,4)

CALL STKOUT($990.18)

IF (ITYP(NP) NE. 17) CALL FMLERR($990/,ITCr1,&)
IF (D(NP) ,NE, 0) GO TO 310

I1=NP
NP=LAST(NP)
CALL RMOVFL(I)
TEST=4

GO TO 30

TEST=2

N2=D (NP)

IF (N2 «+GT. %) CALL FMLERR($990/N2¢0+5)

N3=0

SBC=S8C-1

IF (SBC .EQ. 0) SB= FALSE,

DO 320 KKz=N2=1+0¢~1

K=NEXT (NP)

IF (ITYP(K) oJNEs 0) CALL FMLERR($990,0(K)+2,13)

IF (D(K) +LTs 0 +ORs D(K) 6T, 5%1) CALL FMLERR($990+D(K),0+15)

FLD(9%KK+9,N3) = D(K)
CALL RMOVF1(K)

IF ((ISW .EG. 2) LAND, (.NOT, SB)) GO TO 330

JSNEXT(NP)
N1z=D(J)
K=NP

(44

NOILLV.INIWNNDO0A WV ID0Ud J4LNdNOD 40 SGOHLIN dALVHNOINY

LA K 3K JR BR B K B S JE N JE SE IR 2R B BN IR B 2 B BE R B 2R R N N BN BE R N BRI IR X BX IR BN SR B AN IR AR NE AR 3K 3R 2K 2K I BE N

SO 4% 00 40 4% 20 ¢ 20 4 20 40 00 A0 00 20 SE S5 U a4 4 4G SO S5 G4 Cu G0 40 °4 TS % S0 0 T sy G0 o4 UE G0 Gu G4 Be T 24 o #T TG AP G4 46 as SO ¢ 0 06 S0 ee oo

sees YES» RETURN FOR ISw=2

ee 00 D sosn on

MINUS -

SET 'NEG= AND LINK IN +
PLUS +

IS 1T UNARY OR BINARY

eos UNARY PLUS OR MINUS

tess BINARY 4 =

COMMON PARY FOR BINARY OPERATORS

MULTI%LICATION *

60 To:BINARY OPERATOR
EXPON%NTIAL -

60 TO BINARY OPERATOR
oxvxsiow /

e o

GO TO BINARY QPERATOR
SECOND ENTRY

LEFT PARENTHESIS ¢

e 2o on 2o

GO TO CHECK FOR -1 FACTOR

COMMA

se 00 20 ve oe

EGUAL SIGN]

. ee

330

340

350

360

370
380

390

400

420

a25

430

440

KP=LAST(NP)
CALL RMOVFN(K,J}
GO TO 140

CALL IFREEQ(NPQ)
RETURN

NEG= ,TRUE,

IF (AND(TEST:94) .NE. 0) GO TO 360

CALL STKOUT($990,18)
TEST=16
GO YO 30

J=18

1=2

IF (AND(TEST,113) NE, 0) CALL FMLERR($990:1TCels1}
TEST=16

CALL STKOUT($990+4)

NPZILINKL (NP J» 1)

60 YO 30

J=19
GO TO d70
Js20
G0 TO 370

Iz=2
J=19

GO TO 380

IF (AND(TEST¢78) «NEs 0) CALL FMLERR($990:,1TCr101)
PAR = PAR+Y

TEST=32

INEG = 3

GO TO 500
NP=ILINK1{NP¢17,0)
GO YO 30

IF {AND(TEST» 113} (NE, 0) CALL FMLERR(S990,17Cr»121)
TEST=32

CALL STKOUT($990/,18)

DINPIZDINP)+1

GO TO 30

IF (AND(TEST»117) ,NE. 0) CALL FMLERR($990,ITCr10,1}
TEST=1

ATYLINS WV ID0UIINS SLI ANV dT1d NOILVIWYOANI dZdNLONJLS-TdAL

€T

GET AND CHECK VARIABLE FOR ASSIGN
STATEMENT SAVE INFO, IN NN1,NN2sNN3

®0 0e @2 5 0e %o ve a0 44 04 44 Ba G0 ¥U 20 SO 40 60 S8 s 8 00
*s 20 s o 20 00 4o o5 ve e o0 oo o

2R SR 2K 2R 20N B BY N BE AN B OWE N B BE R B 2R 3K 3R B Y

4s0
GO BACK TO TRANSLATE EXPRESSION
ves SEMICOLON 3
ves APOSTROPHE ¢
60 TO END OF TRANSLATION
. H 460
END OF LOOP
END OF TRANSLATION
RETURN FOR 'ISW' = 1 AND 3
1
TRANSFER ASSIGNED VARIABLE INFORMATION
RETURN FOR 'ISW' =0
CHECK IF =1 FACTOR MUST BE INSERYED
INDICATED BY 'NEG'
ees NO» GO TO RETURN TO CALLING PLACE
: : 500
tees YES, LINK IT IN
RETURN TO CALLING PLACE
: 510
ERROR RETURN
990

1

1

1

IF (EGL +OR. SB) CALL FMLERR($990,ITCi1¢1)
EGL= JTRUE,.
CALL STKOUT($990,18)

IF (LITYP(NP) ,NE. 16) +OR, (D(NP) NE., 1) .OR., (LAST(NP) .NE,

CALL FMLERR($990,ITCr1,1)
KKZNEXT (NP)
IF (ISW +EG. 1) GO TO 450

IF {(KK +EGs 0) +ORs (ITYP(KK) «LTs 6) «ORs (ITYP(KK) «GT, 7))

CALL FMLERR{$990,1ITCr1,1)
NN1=D(KK)
NN2:=0
IF (ITYP(KK) ,EQ, 6) GO TO 450
NN3=ZNEXT (KK)
HN2ZITYP(NN3) =7
NN3=D(NN3}
CALL IFREEQ(KK)
NEXT(NP}=0

GO TO 30

IF (AND(TEST+113) .NE, 0) CALL FMLERR($990,ITCrirst)

IF (PAR NE.O ,OR. BRT o NE.O) CALL FMLERR($990,'()

CALL STKOUT (%990, 18)

IF ((ITYP(NP) (NE. 16) +OR. (LAST(NP} NE. 0)}
CALL FMLERR{$990,I1TC,»1,1)

IF (ISW «NE« 0) RETURN
IF («NOT. EGL) CALL FMLERR{$990,ITC,1.1)

NI=NN1
N2=NN2
N3=NN3

RETURN

IF {4,NOT. NEG) GO TO S10
NP = ILINK1(NP,19,2)
CALL ILINKL1(NP,0,=1)

NEG = L FALSE.

GO TO (50,285,425)» INEG

CALL IFREEO(NPQ)
RETURN 1

END

CI%1,8)

))

14 %4

NOILVINIWNO0G NV ID0Ud d4d1NdNOD 40 SAOHLINW AdLVHNOLINY

APPENDIX B—PRINTED SUBPROGRAM: EXAMPLE 2

2 I 2 R R R T T P e i PR TSR IR 222 L 2 Y

TITLE
MAIN PROGRAM FOR INTERACTIVE FORMAL SYSTEM

L e e P P P i L e T et P Y
SEQUENCE CHART
INITIALIZE BY CALLING FMLOPT

LOOP TO GET NEXY INPUT LINE
» READ LINE ’

IF 1T STARTS WITH *C * (COMMENT), GO TO GET NEXT
LINE

IF 1T STARTS WITH 'P ¢ (PRINT)» GO TO 'P ' ENTRY

LOoP %O GET STATEMENT TYPE IN J
»

-

END OF LOOP
J30» IT IS AN ASSIGN STATEMENT

REPRI&T ERASE+OPTION,ROLOUT)SAVE AND RESET
STATEMENTS

BRANCH BY TYPE
1e.s READ STATEMENT

see PRINT STATEMENT

P ¢ = PRINT

ess DUMP STATEMENT

w6 0 ¢ ma as s (/1 90 48 o0 |} oo o

BEEREREEEREERRERRE RSN RS REE R R RSN

e e @0 94 50 4o o 08 s 04 o0 Be 22 su A% 28 S0 as

seoe ERASE STATEMENT

99

110
100

111

22

PARAMETER 10IM = 10~

DIMENSION IN(14), INN(14), ITAB(IDIM)

EQUIVALENCE (IN(2)s INNCI))

DATA INN(14) / %3 /

DATA ITAB /*READ PRINT DUMP ERASE OPTIONCOMMEN!
4+ +"ROLOUTNCOUNTSAVE RESET '/

CALL FMLOPT (*INTI',0)

READ 100+, ENDz200, IN
FORMAT (13A6/,A2)
IF (FLD(0,12,IN{1)) 4EG. 1005K) GO TO 110

IF (FLD(0,12,IN(1)) +EG. 2505K) GO TO 22
J=0

DO 111 I = 1,IDIM
IF (IN(1) .EQ, ITAB(I})) J =1

IF (J) 160y

GO TO (121, 121, 121, 120, 120, 110, 120, 121+ 120,

CONTINUE
PRINT 101, IN
FORMAT (XA6,':',13A6)

GO TO (1lr 2¢ 3e°4s S¢ 110y 7¢ 84 9 10)s J

CALL FMLIOL (INN,O)
GO TO 110

CALL FMLI02 (INN,O)
G0 TO 110

FLD(0,6/IN(1)) = 0505K
CALL FML102 (IN, 0)
GO TO 110

CALL ONOMP

K 'z ‘P

IF (INN(1) JNE, ' ') K =0
CALL GUMP({K)

CALL OFFDMP

GO TO 110

CALL FMLERS (INN,0O)

FAYLANS WV ID0U4dNS SLI ANV 114 NOILVIWIOANI AN LONYLS-FTUL

S X4

[
r.

-

ses OPTION STATEMENT
ess ROLOUT STATEMENT
oo NCOUNT STATEMENT

vos SAVE éTATEMENT

60 %0 44 0% 00 45 40 04 @s e oy S0 @O o0
s o

ses RESET STATEMENT

ASSIGN STATEMENT

vo ve o

B RRRRERRRERERERRER R RRR

END OF FILE READ = STOP
- :
CEEEE P RS R AR MR g R g RN R AR IO e oo e ok ol W ool e o Ko o W

10

60
102

200

GO 70 110

CALL FMLOPT (INN, 0)

GO TO 110

CALL FMLOUT (INN,0)
GO TO 110

CALL COUNT
GO 70 110

CALL FMLSAV (INN)
G0 TO 110

CALL FMLRES (INN)
GO TO 99

PRINT 102, IN
FORMAT (X14A6)
CALL FMLASG (IN,0)
GO TO 110

STOP

ENO

9¢€¢

NOLLVINTNNDO0d WV YD0Ud YALNdWOD 40 SAOHLIW dALVIROLNV

APPENDIX C—PRINTED SUBPROGRAM: EXAMPLE 3

o.c"booo.aoo’.lOQQQOO00'0.0!0000.0‘0!:00..00'0..
TiTLe

COMMON DATA STRUCTURE FOR FORMAL SYSTEM

0000005000000 %0%0000000000000000080000008000008000
DaTa STUReRUE

ARRANGED IN) LABELED COMMONS

USED AS PROCEDURE, INCLUDED IN OTHER SUBPROGRAMS

CHMY

o LINKED STORAGE AREA
THE CORRESPONDING C(l)eDil) WORDS ARE ALWAYS
USED §K PAIRS FOR STORING AN ITEM,
THE OIMENSION QF ceD) CDIMy MAY BE CWANGED
DURING I~STALLATIONS
FIELDS I™ THE C=p WORDS DEPEND ON THE USAGE,
THEY ARE 0EFINED BY PROCEDURE *PWORD's GENERALLY
THE LAST 15 BIYS YN C 1S USED FOR LINKAGE OF
LINEAR ARRAYS,

o COMMON BLOCK FOR INDIVIODUAL POINTERS AND SWITCHMES

see FREE (AVAILABLE) STORAGE IN C*D
CINXNKNX) = FIRSY
CLILILILY ® LASTY LOCATION
THE LINEAR ARRAY IS LINKED IN TWE
LAST is BITS OF THE C=WwOQRDS»

1

*

»

.

L]

.

*

.

L]

*

[]

]

2

L]

L)

*

L]

[]

.

L]

®ses SYMBOL TABLE W{TH TREE STRUCTURE IN 4 LEVELS
. STORED IN Cwp AREAs FIELDS IN THE CeWOROD!
® ITYPB » LAST e NEXT

3 NS ® FIRST ENTRY [N CINS)=D(NS)
. ' .
L
[]
.
[]
L]
L]
-
L]
L]
*
.
L[]
»
[]
.
L]
L]
[]
L]
*
L]

’

NSB ®» SUBROUTINE LEVEL POINTER

! SUBPROGRAMS ARE IN ALPHABETIC ORDER

}

tsoe ITYPBINSB) » O

ieee DINSB) » ALPHMANUMERIC NAME oF THE
SUBROGRAM

se9 NSY & (AST{NSB) POINTER TO SYMBOL ENTRY
! SYMBOLS ARE IN ALPHABETIC ORDER

NSY] ® POINTER TO PRECEEDING SYMBOL

ENTRY

ese DINSY) » AUPHANUMERIC NAME OF THE
SYHBOL
¢os [TYPBUINSY)® TYPE OF SyYMBOL,
! SEE TABLE 1.
Teee 2311 INDIRECT REFERENCE
! LAST{NSY} POINTS YO AN OTHER
SYMBOL

o0 SECOND AND THIRD BIT ®)}
SUBSCRIPTED VARIABLE

. e mn s e er se Ss e S es e ws ee a0 we

- e 2o Be S 4w we s we 4w o= =

i
}
H
!

PROC

IMPLICIT INTEGER(A=Z)
PARAMETER ERROR = ERRERR

PARAMETER COIM = 2048
COMMON /FHLCM2/ CclCOIM)
COMMON /FMLCMI/ D(CDIN}

COMMON /FMLCMY/

NXNXNX» JLILIL

NS,

NSB

NSY NSY 1

A LANS WVAD0AdANS SLE ANV TTid NOLLYIWIOANI dA¥NIONYLS-IFAL

Lee

A8

{.-»\. 4

© 0 6 2 20 0 0 60306 60 0° B0 NS B SA TP OL S SEOS G0 0L OGP EL SO E SSS e O

e ma me sa w0 es me Ge S5 0% or ae we me G4 We Be me 40 se ae Sv T =6 WP We Be TE wm Pa Ve Bu St Db W we Tt ws wa TP S wa SE o, vo e B ws a6 v

ese TEMPQIRARY

N1
N2
N3
184

SU ® LASTI{NSY), POINTER TO
SUBSCRIPT ENTRY
SUBSCRIPTYS aARE ORDERED By
NUMBER OF SyBSCRIPTS: AND
BY BCTUAL SUBSCRIPTS, NSUI
® POINTER To PRECEEDING
SUBSCRIPFT ENTRY

N
3
i
!
H
'
1
H
tese BINSU) ® NUMERIC SUBSCRIPT,
i SEE TABLE 1.
Teee FIRST 3 BITS OF CINSU)=
H 2evs w110, UNASSIGNED,
H ' INDIRECILY REFERENCED
H LASTINSU) PQINTS
H Tn OTHER SYMBOL
H ENTRY
H see ®111, LAST SUBSCRIPY
! ENTRY,
' LAST(NSU) POINTS
i BACK TO 17S
¢ SymBOL = NSY
H ses ®Q10, NOQRMAL ENTRY
H LASTINSY) POINTS
) To EXPRESSION
{ H VALUE ® EPTR
$ees NEXTINSU) @ FORWARD LINK TO
NEXT SUBSCRIRY2ZERO FOR
THE LAST Ong
des OTHERS) LASTINSY) ® EPTR
EPTR & EXPRESSION POINTER

@t on 9e ah T PP 0L 4e Sewr 6t A6 S et we Sv oo e O 44 Se S8 S 4o e B4 wm 4w b
> @ 40w @b po Wb o W wr W W

eoe ITYPBLEPYR) = |6

eee LASTIEPTR) s O

eevr H2{EPTH) = NUMBER OF
EAPACSSunG (FUOR LISTS)

eve 1 LE2TR) =

tese 2Yy CXPRESSION 1S IN
Cosg

eoe NIT 7Z8ERDy EAPRESSiUN

1S O 24
tuDEX » HI(EPTRY

eee HIXT{RP) FORNAYD LINK
T THE LINMEARLY STORED
BAPRIS LN gHEN 1T IS
A% C3Terd ConSEZYTIVE
£UIIES AR 1 CCI]INING
TY TARLE [t

see NEAT(NSY) ® FOR4ady {,gNK TO NEXT
SfMdoL, ZERD FOR LAST ONC

NEXT(N33) = FOA4ARD LINK g NEXT

S5JaP0sAAM, 2Bt FIR LAST gueE

PO

e Be 5s ee eb Be Ss sa 4 ws 42 e e Ge B2 46 =e me 45 42 Te e 44 Ge CE G2 4o v we B s v 2% 0s G5 4o ov SO 4a e CE Ty 4u oo 4o S+ an v

VARIAJLES FOR

NAME OF A vaRlAZ{E

NUMBER OF SuRSCRIATS
SUBSCRIPT aQRD

3 0% | FOR SU33CRe OR NOT

NSU, NSV,

EPTR,

8¢¢

NOLLVINIWNDOd WY HDO0Ud dTLNdNOD 10 SAOHLIW TIALVNOLNY

ot -

ssv DRTION SW)TCHES

.

*

. xQTop?
. PRODEX
(] INTOS»
. VEThS#
. LaprOsh
. POWER
. BASE

L]

*

ser MISCELLANECUS

SinPse

BITSH

fouNgT
FYIRARG
CEFARC

DEFFUN

OPTION wOARD FR0M WX1T §YATEMENT
EXPAND POMERS OVER PRODUCT

EVALUATE INTEGER VALJED FUNCTIONS
EVALUATE *ATHESATICAL FUNCTIANS

USE DISTRIBUTI/E LAx

EXPAND SUMS RAISED TO POSe INTEGERS
0rle2:3 FCR BASE(D) ,t2), 010D, (E)

USEC BY STOUY ROUTINE FOR RECURSIVE
SIMPLIFICATION

USEN BY STCUT RCUTINES

1/0 UNIT AUHER [F 173 STATEMENTS
NUMBER OF FORTRAN TYPE ARGUMENTS
AUMBER ¢F ARGUMENTS IN a LEFINED
FUNCTION

i 1F CEFIMED FUNCTION, § FOR VARJABLE

NK ® START CF ARGUFMEKT ChAIN IN ¢=0 FOR Li1ST
OF VvARQ4HLES

1/0 BUFFER

NP ® PUSH=DUWN STACK POINTER [N (=0 ARER

CBUF =

Q0P 00000200090 C0000000030008500000 0000000000000

END

*

NIoN2¢N3, 1Yy

XQTOPT+PRODEX [NTGSH KATHSW EXPOSWH,POWER (BASE,

SIMPSAsBITSH, 10UNIT FTRARG,DEFARG ,DEFFUN NKCBUF NP

LOGICAL INTGS&sMATHSWIPOWERsSIMNPSWBITSWIPRODEX
REFERENCES ON

J2YLENS WVEDOAULENS S1T ANV TT1Id NOLLVWAOANI AFUNLONULS-ITHL

240 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

APPENDIX D—DEFINITION OF INITIAL SEQUENCE CHART

Coding Form

The coding form is divided into three fields: Field 1 consists of one character, the
general directive for input; field 2 contains special directives for flowchart elements and a
label for program statements; field 3 contains the text.

An initial program is illustrated below:

T EXPRESSION TRANSLATION
S INITIALIZE
0D LOOP TO PROCESS CONSECUTIVE SYMBOLS

1D BRANCH BY TYPE OF SYMBOL
2B INTEGER

2B REAL

2B IDENTIFIER

2BE SPECIAL CHARACTER

0 END OF LOOP
0 END OF TRANSLATION
END

Input Form
The actual input does not contain the lines; the text is left adjusted in field 3:

T EXPRESSION TRANSLATION
S INITIALIZE
OD LOOP TO PROCESS CONSECUTIVE SYMBOLS
1D BRANCH BY TYPE OF SYMBOL
2B INTEGER
2B REAL
2B IDENTIFIER
2BE SPECIAL CHARACTERS
0 END OF LOOP
0 END OF TRANSLATION
END

Output Form

The initial program can be listed with line numbers as follows:

LA E SRR R RS EE SRS R XX R X2 RR R X X R R X X

1= EXPRESSION TRANSLATION
I Z R XSRS SRRl Rl X2 2 R X 2 2 R A 2 X2 X X
SEQUENCE CHART
2=INITIALIZE

TREE-STRUCTURED INFORMATION FILE AND ITS SUBPROGRAM SUBTREE 241

3 =LOOP TO PROCESS CONSECUTIVE SYMBOLS

4=:
b=:
6=:
7=:
8=:

BRANCH BY TYPE OF SYMBOL
:...INTEGER

:...REAL

:...|DENTIFIER
:...SPECIAL CHARACTERS

9=END OF LOOP
10=END OF TRANSLATION

1=

END

APPENDIX E—EXAMPLE OF AN UPDATING PROCEDURE

+1
+R7D
1B

18
1BE

+R8D
18

18

1B

1B

1BE

SUBROUTINE EXPRES (*, ISW)

—IDENTIFIER NOT TERMINATED BY (OR |
—IDENTIFIER TERMINATED BY (
—IDENTIFIER TERMINATED BY |

NEG = .TRUE.
-+
J=18

J=19

* %

J=20

—

~/
J=19
l=-2

Note that the ‘+’ is an insertion directive. The number following + indicates the line
where the insertion is to be done. ‘R’ indicates that the levels of lines following to be in-
serted are defined relative to the line where the insertion occurs.

DISCUSSION

MEMBER OF THE AUDIENCE: I notice that you have many comments noted through
there. It seems to be about a two-to-one comment per statement. Is that about correct?

MESZTENYI: It depends on the program. It depends on the language, too. The com-
ments should be semantic, not repeated as an equation.

MEMBER OF THE AUDIENCE: Do you think that some of the discussions about what
we can get out of the compiler would fall into this?

MESZTENYI: 1 would like to have the compiler in the subroutine. I would like to do

242 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

that, but I would start here from the development point first, because this is where one
defines the program first.

MEMBER OF THE AUDIENCE: It seems that the compiler could give you certain in-
formation, and you could add some personal comments and have better descriptive material.
Is that true?

MESZTENYTI: It depends on what standpoint you look at. As I look at it, I want an
overall view from the beginning. Before I finish the program, I might want to give the speci-
fication a bigger flowchart type of definition that could be used right away.

MEMBER OF THE AUDIENCE: You are trying to get the flavor of the program that
you are working on for a certain purpose. The compiler will only come out with standard
words for any program. The compiler does not know what your program is, but you do.
With personal comments added to the program, what you have would provide additional
information.

MESZTENYI: I find it is hard for programmers to add something after they have
written the program. When they write, they do not mind writing down their comments.

MEMBER OF THE AUDIENCE: I am working from the viewpoint that we now have
difficulty at times getting any comments in, and if we provided a lead into the comments and
they went down the list and it did not make too much sense to them from a general view-
point, that they could add these rather well.

MESZTENYI: I agree that they could, and this is actually what is now done. I added
this myself.

The other part I would like to focus on a little bit is the programming part. If you start
from the sketch with those lines coming down and write, you make the programmer apply a
little discipline to the subject of program placement. For example, I try to avoid any
GO TO unless it is some kind of loop structure. I try to avoid going back. I find a loop for
each logic curve that I process, but it is not a DO statement, and I jump directly back to
the beginning. It probably would have been much nicer documenting it to go to the end of
this loop and comment it, which goes back and gets the next one. In this way it forces the
programmer to do a documented description because it is very hard to document a graph
that points out the actual information. The text or the description of the program is
sequential, but semantically it is a graph. A tree, which is sort of in-between, is much easier
to represent. You have cross-references, but the form is still a tree, and this is what I tried
to simulate.

MEMBER OF THE AUDIENCE: 1 think the speaker is trying to get the programmer
to write down what is being accomplished and when. Once in the right-hand side, the lan-
guage does not really matter. He is trying to read narrative text so that you get some con-
cept of when things happen and what really is happening because the specification of the
problem is written in a narrative form. He does that rather than deduce what was done from
how something is being done. I do not think a programmer is going to do that very well
because he is so involved in the mechanics that he cannot get out of them.

MEMBER OF THE AUDIENCE: It seems to me that here is a case where we can go
from the rationale of a subroutine and in an automated way feed in the programming lan-
guage statements. Is this what you had in mind? I could see how you actually tried to
develop your subroutine. I can see how you can start with the rationale of the subroutine

TREE-STRUCTURED INFORMATION FILE AND ITS SUBPROGRAM SUBTREE 243

first and then by using the type of coding that you did, you could automatically call for the
appropriate programming language statements.

MESZTENYI: Not automatically. I certainly think of more than just the semantic
type of description that I want to accomplish., What I want to accomplish eventually is the
statements.

5”/673‘94
_,\)7

A SCAN PROCESSOR AS AN AID
TO PROGRAM DOCUMENTATION

Dr. Paul Oliver
UNIVAC

Documentation is an integral part of program development, It serves as a link be-
tween the programmer and the program user or analyst. Good documentation provides
the information necessary to use or analyze the program. The investment of program de-
velopment costs is protected by a document that meets the needs of the potential program
user. The following reasons (ref. 1) are generally given to justify documentation:

(1) Documentation is a permanent record that is used in debugging, as a source of
future reference, to reduce cost of personnel turnover, and as a project history.

(2) Documentation encourages standardization of coding conventions and the de-
scription of computer operations,

(3) Documentation provides the means with which to estimate the extensiveness
of program changes and to schedule computer operations.

(4) Finally, and perhaps most importantly, documentation represents a communi-
cation link with other programmers and with the nonprogramming community.

The case for documentation is a valid and substantial one but cannot be universally
applied. The cost of documentation is certain, but its use is not. It can be safely said that
heavily used programs implemented on large configurations should always be documented,
as should interactive systems because the nonlinear nature of such systems makes them
unusually difficult to analyze and debug without adequate documentation and because
of the cyclical nature of production work usually found in business or administrative data
processing installations,

Program documentation can be separated into two categories: documentation for
program use and documentation for program analysis, modification, or extension. The
former contains detailed instructions to evaluate the program’s capability and to use the
program readily, whereas the latter should provide a detailed development of the problem
and program logic. This paper concerns itself only with documentation aids for program
analysis.

Documentation can be broken down into chronological phases. The documentation
to be performed during the program design and planning stage is probably the most impor-
tant but is not readily amenable to automation. Postmortem documentation is also impor-
tant, but aids in this area involve mostly text-processing systems, which are outside the
scope of this conference. The programmer can best be helped in the documentation proc-
ess during the programming,.

FRECEDING PAGE BLANK NOT FILMEL

245

246 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Despite its importance, it is a well-known fact that documentation is woefully ne-
glected. Even the well-intentioned programmer can always find more urgent demands for
his time. It is, therefore, important that a system be provided whereby his program deck,
e.g., FORTRAN source code, can be operated on by a processor whose output would pro-
vide meaningful documentation, much as the deck is operated on by the compiler. This
would remove much of the documentation burden from the programmer, Use of the proc-
essor would, of course, require that certain conventions and practices be followed in the
coding, but these can be kept at a minimum. An example of such a processor would be one
that produces a flowchart of the given program, Several such processors are available, al-
though most are of dubious quality, The production of a tlow diagram is certainly one of
the functions that the processor should perform. A more fruitful function would perhaps
- be the scanning of a collection of source language statements to produce listings of the
variety of symbols found, arranged in any of several ways that might suit a user’s purpose
and related to the lines of coding in which the symbols occur. Thus far features to produce
indication of general program flow (the flowchart production subsystem) and a tabular
analysis aid (the symbol scanner) have been included. A concise representation of the
“decision stations’ in a given program should also be included in the documentation. De-
cision tables provide an attractive way of accomplishing this and can be produced in an
automatic fashion relatively easily (ref. 2). A decision table subsystem is also included as
part of the scan processor. Each of these functions and subsystems shall now be examined
in turn,

THE FLOWCHART PRODUCTION SUBSYSTEM

A flowchart is one of the means available by which visual representations (the block
diagram) of relatively abstract concepts (the programs or systems) can be provided to pro-
grammers, analysts, and managers, Flowcharting has been documented ad nauseam, and

_such documentation will not be repeated here. The reader unfamiliar with the American
National Standards Institute (ANSI) standard flowchart symbols and their usage will find ref-
erence 3 useful. It suffices for the purpose of this discussion to say that flowcharts show the
path of data as they are processed by a system or program, the operations performed on the
data, and the sequence in which these operations are performed. One generally distinguishes
between a system flowchart which describes the flow of data through an entire system, and
program flowcharts, which describe what takes place in a program. Program flowcharts are
the only concern of this paper.

There are several flowcharting programs available from computer manufacturers or
independent software firms, The quality of the flowcharts produced varies considerably
among these various sources, and there appears to be little in the way of standardization.
This is not overly disturbing because some do not believe that flowcharting needs to be
standardized. This attitude is generally taken by those who regard flowcharting as a very
“personal” thing. Once the automatic production of flowcharts is discussed, however, this
is no longer a personal matter, Thus, one of the features of the flowcharting subsystem is
that the ANSI convention should be followed, although the system need not be capable of
producing all the standard ANSI symbols. The majority of flowcharting needs could be

A SCAN PROCESSOR AS AN AID TO PROGRAM DOCUMENTATION 247

satisfied by the basic outlines for input/output, flow, and processing. To these would be
added the outlines for connectors, decisions, subroutines, and terminal points, It would
also be desirable to include some (currently) nonstandard symbols to reflect characteris-
tics of higher level languages, such as vertical parentheses (block structure such as that
present in ALGOL or PL/I) and DO loops. Historical circumstances-have resulted in flow-
chart symbols that are often more suited to describing assembler language programs than
FORTRAN programs, for example,

Other desirable products of the flowchart subsystem would be the option of produc-
ing a source listing of the program being processed. It would also be desirable to obtain
listings of all jumps, for example, as results of GO TO and IF statements, sorted by source
and destination of the jump, and of all statement labels or numbers encountered. Box num-
bers should be included in the printed flowchart, and these numbers would be included in
the above listings. Thus, in the listing of all labels and statement numbers, there would
also be an indication of the flowchart box number pertaining to a given label or statement
number.

These features are by no means exhaustive of those possible in a flowchart program
or, in fact, of those available in existing programs, but they are sufficient to produce a
flowchart that provides meaningful information about the program. Furthermore, applica-
tion of these features would require no more than the invocation of the flowchart subsys-
tem on the part of the programmer, Such features as options to indicate the type of box
to generate for a given statement (overriding the standard option) or options to control
the analysis of instructions could also be included. These may indeed be useful, but they
would require the programmer to specify these options in his program, which would alter
the program itself and thereby defeat the very aim of an automated documentation proc-
ess. If the programmer were willing to take the time to specify options and provide detaiis
to the processor, the processor would not be needed in the first place because it would be
as easy for the programmer to take that very same time and produce the flowcharts with
pencil and template.

THE SYMBOL SCANNER

Broadly speaking, the purpose of the symbol scanner is to scan a collection of source
language statements and produce asorted listing of the symbols found, the programs or
subroutines in which they were found, the lines in which the symbols are defined, if appli-
cable, and the lines in which the symbols are referenced. The scanner must be a general-
purpose one in the sense that it should be usable on a variety of higher level language pro-
grams as well as on a given assembler language program.

It is important that the user be given the option of specifying which symbols or
classes of symbols are to be included or ignored during the scan. This is particularly impor-
tant for debugging purposes. The user could, for example, identify all program loops by
making one pass on the program during which only the symbol DO is looked for. Likewise,
he could identify all possible sources of a floating-point comparison error by performing a
scan for symbols beginning with numerics only. The default option would be to include all
symbols in the scan. A first-level selection capability could be provided through options

248 AUTOMATED METHODS OFF COMPUTER PROGRAM DOCUMENTATION

that specify “ignore strings beginning with an alphabetic character” or “ignore strings
beginning with numeric or special characters.” Finally, a more detailed selection capability
could be provided enabling the programmer to specify, through data cards, that specific
symbols are to be ignored or that only certain symbols are to be included in the scan.

The listing produced by the symbol scanner would be useful in program optimization
as well as debugging. The placing of statements such as “P1 =3.14159...” in a FORTRAN
DO loop is a well-known faux pas, but one which nevertheless often occurs. Many compil-
ers will catch such misdeeds, but some will not. A listing of all occurrences of loops in a
FORTRAN program may encourage the programmer to perform a little nonautomated
optimization of his own,

DECISION TABLE SUBSYSTEM

Decision tables have been known and used for some time by programmers and sys-
tems analysts involved in business or administrative data processing. However, their use is
not widespread among programmers in general, This is regrettable because decision tables
constitute an excellent way of assembling and presenting related items of information to
express complex decision logic in a way that is easy to visualize and understand. Complex
programs, such as those associated with interactive display systems, are rendered complex
by the torturous decision logic present. Decision tables are a powerful tool with which the
programmer or analyst can follow the labyrinths of complex programs,

In addition to illuminating decision logic, decision tables have the distinct advantage
of being understandable to a nontechnician like a manager or administrator,

Essentially, decision tables can indicate “if . . . then” relationships occurring in a pro-
gram, The structure and use of decision tables are adequately described in the literature
(ref. 4). The following example should suffice to give the unfamiliar reader a feel for the
decision table format. Consider these lines of FORTRAN coding:

IF (A.EQ.B) GO TO 15

X=5
Y=10
GO TO 20
15 IF (C.LT.D}) GOTO 25
X=10
Y= 5
20 RETURN
25 X=Y
RETURN

The decision logic of this short piece of programming expressed in decision table format is
shown in table 1.

A SCAN PROCESSOR AS AN AID TO PROGRAM DOCUMENTATION 249

Table 1.—Decision Logic

B Rule number

Condition 1 2 3 4

A.E.Q.B. Y Y N . N

C.LT.D Y N Y N

X= 5 X X

X=10 X

X=Y X

Y=10 X X
= 5 X

GO TO 15 X X

GO 70O 20 X X

GO TO 25 X

RETURN X X X X

The horizontal and vertical double rules serve as demarcation: Conditions are shown above
the horizontal double rule; actions, below; the portion to the left of the vertical double rule
is called the stub, and the portion to the right consists of entries. Each vertical combination
of conditions and actions is called a decision rule.

Table 1 is of the limited entry type. The entire condition or action is written in the
stub, and the entry shows only, for each case, whether the condition is true, false, or not
pertinent (Y, N, or blank) and whether a particular action should be performed (X or
blank). An extended entry table would show part of a condition or action in the entry side
of the table. Also, numbers indicating the order of a set of actions could be used in place of
the X’s. A mixed entry table is a combination of these two types.

It should be clear from this brief example that a limited entry decision table would be
quite easy to construct and present as printer output. The information necessary to construct
the table is easily obtainable, and the format lends itself to printing on a standard printer. It
would be desirable to produce such tables in a modular fashion. A single table might be pro-
duced for a given program showing only decisions causing transfer of control. Then, a deci-
sion table for each of the transfers would be produced giving the detailed decision logic for
the corresponding segments of coding,.

It might be argued that decision tables would be redundant in light of the inclusion of
the flowchart subsystem. Such is not the case. The flowchart’s primary purpose is to provide
a visual representation of program flow, of which decision points are only a portion. In con-
trast, decision tables isolate the decision points, giving only the decision logic of a program,
unencumbered by other particulars, Rather than being redundant, these two forms of pro-
gram representation are complementary,

INVOKING THE SCAN PROCESSOR

This special, documentation-producing system could be used in much the same way as
one calls a compiler, This could possibly, perhaps probably, result in its seldom being used
because a distinct effort would be required on the part of the user. Perhaps a more fruitful

]
o~

ror

’.-v..l

250 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

approach would make the calling of the scan processor an option on the compiler or assem-
bler request card. The scan processor could then be implemented as a subsystem of the com-
piler or assembler for a given language. In addition to making the processor easy to use, this
approach would take advantage of the fact that the information required by the three sub-
systems discussed above is generally obtained as part of the compiling or assembling proce-
dure. The additional overhead incurred when the documentation option is exercised as part
of a FORTRAN compilation, for example, could be decreased by such means as allowing
the user to specify the number of columns per card to be scanned; for example, 72 for
FORTRAN,

SUMMARY

The proposed processor would provide simple yet meaningful documentation for pro-
gram analysis in the form of flowcharts, a “dictionary” of symbols, and decision tables. This
documentation would be obtained with a minimum amount of effort on the part of the pro-
grammer and would be called from the program source deck itself. This is an important point.
Each of the proposed subsystems could be far more sophisticated and comprehensive than is
suggested here. This would in tumn require a considerable increase in effort on the part of the
user, and experience has shown that the amount of documentation attempted by a program-
mer varies inversely with the amount of effort required. It is also important to note one
glaring shortcoming of the system proposed. The scan processor would give little or no in-
formation on data representation. This is a serious omission because data representation is
the very essence of programming, Unfortunately, the documentation of data allocation and
encoding does not readily lend itself to automation and will have to depend on the doubtful
diligence of the programmer.

The processor suggested here would provide minimal documentation for use by program-
mers, analysts, and management, It would also, hopefully, provide an aid to the manual pro-
duction of comprehensive, professional, and standardized program documentation.

REFERENCES

1. Chapin, Ned: Paper presented at ACM Professional Development Seminar on Documentation Tech-
niques (Washington, D.C.), 1969.

2. McDaniel, Herman: Decision Table Software, Brandon Systems Press, 1970,

3. Chapin, Ned: Flowcharting With the ANSI Standard: A Tutorial. ACM Computing Surveys, June 1970.

4. McDaniel, Herman: An Introduction to Decision Logic Tables. John Wiley & Sons, Inc., 1968,

DISCUSSION

MEMBER OF THE AUDIENCE: I would like to comment upon the presentation. I
appreciate very much your introduction of decision tables in this. I think that decision tables
are really probably the best way to document a program, show the analysis, and essentially
wrap up a lot of this stuff very simply. It solves a lot of the problems that occur with flow-
charts. The length of data names is no problem, and they can be as long and as descriptive
as desired. You have programs that process these decision tables directly in the code. They
are very easily checked again for errors and logical omissions, etc. I would really like to see

A SCAN PROCESSOR AS AN AID TO PROGRAM DOCUMENTATION 251

someone take these decision tables, which are essentially self-documenting, and possibly go
back from the source code to decision tables, ,

DR. OLIVER: [think, quite frankly, that the business community knows a great deal
more about data processing than the R&D community. Documentation to them is a money
matter, a practical matter, a managerial matter. So business does not object to simple and
economical solutions to documentation.

PANEL DISCUSSION

MEMBER OF THE AUDIENCE: What recommendations or conclusions can we come
to?

PANEL MEMBER: I would like to put in another pitch for a little more standardization.
It seems to me that we will never be able to automate unless we standardize a few things. I
think the FORTRAN standards have helped immensely, and 1 would like to see standards
developed in other areas, including documentation.

PANEL MEMBER: I plan to submit formally my proposal for work adding to the
FORTRAN compiler. I notice several people have made comments from the audience about
changing the compiler and making it more efficient. 1 think this would be a good opportu-
nity to perhaps form a committee for making recommendations for the next compiler. |
think that now that we are all enthusiastic, we should try to do something effective.

PANEL MEMBER: Let me make a pitch for not having standards, especially in docu-
mentation. I do not think the problem is one of standards in the sense that it seems to be
used here. There are already flowcharting standards and anyone can put together standards
for decision tables and all the other tools that we have talked about.

The standards we should talk about, it seems to me, are professional standards. A
mathematician writing a paper in a journal follows very rigid standards. There are no ques-
tions about documentation. If the man cites a theorem, he has to give a reference or prove
it. This is not because there is a written standard that says you have to prove all theorems.
It is part of his professional standards. If programmers are going to call themselves profes-
sionals, they must accept certain professional standards. Standards for language are fine, but
standards for documentation should simply be accepted as part of a man’s work. The fact
that we are talking about documentation separately shows that programmers are not yet
completely professional. I also do not understand why there should be such a problem about
motivation. One does not talk about the motivation of a mathematician or physician to do
a good job. This too should be part of the professional standard of a programmer.

One of the things I hope we will emphasize is the place of management in all this; the
other thing is working at different approaches. We should look at programming languages
and see how to make them more self-documenting. I think we should also look at the way
we organize programming teams. Dr. Mills has suggested organizing programming teams
along surgical team lines. One or two programmers do the programming, one man does the
documentation, and one does all the job control. There may be human problems involved
in this, but this solution should be studied.

MEMBER OF THE AUDIENCE: Is it technically possible to develop a system to com-
pletely automate documentation?

PRECEDING PAGE BLANK NOT FILMAD
253

254 AUTOMATED METHODS OFF COMPUTER PROGRAM DOCUMLNTATION

MEMBER OF THE AUDIENCE: I would like to add to that question: Is it possible to
develop standards for documenting and cover all special programs, or is more than one set
of standards needed, each set satisfying a specific class of programs.and a specific class of
applications? Maybe scientific applications of programming need a different set of standards
than the data processing applications do? Would one set of standards satisfy all the different
applications that we have today?

MEMBER OF THE AUDIENCE: I would like to object to the idea of standards in doc-
umentation. I feel that it is another indication that programming is not yet professionalized.
It is the responsibility of the people who are buying programs to realize that documentation
ought to be part of the job and not an extra cost option.

MEMBER OF THE AUDIENCE: Couid I get an answer to my question? Is it techni-
cally possible to completely automate program documentation?

PANEL MEMBER: I would vote no.

MEMBER OF THE AUDIENCE: May I modify that question? To what degree can it
be automated?

PANEL MEMBER: The question really has no answer because you have not told me
what kind of documentation you want,.

MEMBER OF THE AUDIENCE: Adequate documentation.

PANEL MEMBER: But to what, or related to what, for whom? A lot of documentation
can be automated, but not all of it. As I said, it cannot be automated unless you specify the
kind of documentation you need.

MEMBER OF THE AUDIENCE: Adequate documentation, so somebody else can use
the program.

PANEL MEMBER: 1 think you could produce documentation in an automated fashion
right now that would let someone do most of the things that should be done with a pro-
gram. It would take some work, but it could be done.

PANEL MEMBER: In my opinion, I think documentation is indicative of what has
happened with the computer. It has gone from completely automatic programming to a
programming that is an interaction between man and machine. As I see it, documentation
is similar in that there are certain guidelines, contents, or content descriptions of documents
that you want, and there is a lot of automatic help to do it, whenever the proper input and
the proper output are defined. But even that might leave something out. You do not want
to standardize to the point that human decisions are left out. So documentation would be
automated only to the extent that it would be an aid in a human process.

MEMBER OF THE AUDIENCE: Do you think that the cost of documentation can be
cut by automation? What help can we give the programmer in this area?

PANEL MEMBER: I think that it is definitely possible to do something. I think that
we have seen examples of what has been done. A most interesting point is that some of the
work on this problem has been around for a while. Some of the loader programs in the
7094 had abilities that are not in third-generation software. The insert file facility, for ex-
ample, is quite a powerful tool, but is not considered a standard part of a language compiler.

MEMBER OF THE AUDIENCE: I think that until the kind of information needed to
support a certain kind of activity is identified, there can be no real talk about cutting the
costs of documentation.

PANEL DISCUSSION 255

We ought to have an idea about the kind of information that the man at the console
needs. We ought to talk to him and find out exactly what kind of information he needs and
thinks he needs. :

MEMBER OF THE AUDIENCE: It is true that this has not been done for the industry
as a whole, but there are certain companies that have done this for themselves and do have
well-documented programs. The parts that can be automatically documented, are, and every-
body is satisfied.

I think the problem is not that we do not have the tools, but that we do not know what
to do with the ones we have now. I also believe that what is needed are professional standards
that tell us what constitutes a good program and what information should be avsilable to
somebody using that program. However, no one seems to want to work on that, so there
seems to be little hope that we will solve this problem.-

* U. 3. GOVERNMENT PRINTING OFFICE: 1972-735-068/835

