AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND
MAINTENANCE OF SCIENTIFIC APPLICATIONS

Martin A. Goetz
Applied Data Research, Inc.

Most documentation of computer programs can be summed up in the phrase, “Even
when it’s good, it’s bad.” Management may occasionally give documentation token priority,
but programmers seem to give it no priority at all, perhaps because of their training. Pro-
grammer training is either formal or informal. In formal training courses, documentation is
usually not a standard part of the curriculum; in informal or on-the-job training, it is usually
not even mentioned. This lack of training is a basic reason for the problem of documentation,
a problem that is compounded whenever management deemphasizes program documentation
simply because past experience has shown that what had been produced was generally
ineffective.

The chief reason that documentation is so poor may be that it has been considered a
manual process when it should have been considered a computer problem. Certainly, no one
considers compiling a manual process today, although, years ago, compiler functions were
performed manually.

The need for documentation seems to be obvious. The primary concerns of both man-
agers and programmers are program productivity, debugging, flexibility, integration, and
reliability. Good documentation helps to fulfill these purposes; poor documentation, on the
other hand, does not. Any organization can obtain good documentation, either manual or
automatic, if it concentrates on program organization rules; programming standards, includ-
ing the naming of tagged lines, proper commentary, modular programming, and restrictions
in the use of certain programming techniques; program monitoring and security, including
systematic recording of changes in programs, systematic recording of reasons for changes,
and protection of programs; technical overviews of programs (using tape recordings, if pre-
ferred); and parallel development of programs and documentation.

Program organization rules are important because, although good programmers have an
organized approach to writing programs, they, unfortunately, usually develop styles of their
own. Rarely will two programmers use the same organization. Because a programmer does
not work on a program forever, it is obvious that organization should not be permitted to
suffer from the idiosyncrasies of the individual programmer. The same can be said for pro-
gramming standards, which, by definition, can be effective only if they are both universally
published and observed.

If programmers followed consistent program organization rules and programming stand-
ards, much of today’s documentation problem would not have arisen. The computer industry

PRECEDING PAGE BLANK NOT FLLMED

9

10 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

is almost 20 years old; it should stop philosophizing about what ought to be and resolve this
unsatisfactory situation.

Only automated documentation of programs offers any hope for realizing what may be
called ““accurate” program documentation. This paper will discuss how to improve automated
documentation and, specifically, how the AUTOFLOW system can be enhanced to provide
acceptable levels of documentation.

Given that programmers may cooperate only to a limited extent in documenting their
programs and that computer programs can be developed to generate information that could
not be produced manually, the following three elements are essential for an integrated docu-
mentation system within the framework of today’s data processing environment:

(1) Logical analysis or graphic dissection of a program

(2) History and control of programs

(3) An understanding of the program

A flowchart produced by AUTOFLOW is much more meaningful than one that has
been produced manually. These logical flowcharts are accurate, present complete references
between all transfer points, and graphically portray the logical flow by automatic rearrange-
ment of those segments of the program that interact. Figure 1 is an example of a two-
dimensional AUTOFLOW flowchart from a FORTRAN program.

The number and type of cross-referenced reports produced by AUTOFLOW depend on
the source language being used. For COBOL, AUTOFLOW can produce four special reports:
procedure division summary, data name cross-reference listing, data division index, and data
record map. For PL/I, four special reports are produced: on-unit action blocks, label-
assignment cross-reference, duplicate declaration map, and condition prefix map. For
FORTRAN, the one special report is the nonprocedural statements listing. Other special re-
ports for FORTRAN could be produced by AUTOFLOW and would be of great value. Fig-
ures 2 through 10 are hypothetical reports that could be produced from a FORTRAN pro-
gram by systems such as AUTOFLOW.

Figure 2 illustrates the header information that is common to all reports. The informa-
tion includes the general title, FORTRAN analysis report; theuser name, e.g., Goddard Space
Flight Center; and the system. The run time for the analysis and the data are also presented.
The report itself is essentially a listing of the local variables used by the program. The infor-
mation presented is the mnemonic label, the type of variable, the definition of the variable,
the line number where it is defined, the type and value of the definition, and then the ref-
erences made by other statements in the FORTRAN source program to the local variable.

References in all reports consist of the source line number and, in parentheses, the
AUTOFLOW page and box number. The variable labels in the first column are sorted alpha-
numerically. The label types are standard for IBM FORTRAN (integer 2, integer 4, real 4,
real 8, logical, etc.). The DECLARATIONS column specifies where and how the variable is
defined (i.e., through a data statement or an equivalence statement). If the variable is defined
by a data statement, the value of the definition will be shown. Doubly-defined variables
would be indicated by the notation DD in the definition area.

Figure 3, a cross-reference of statement numbers, lists only those statements that can
be referenced by other statements within a program, i.e., statements with statement num-
bers. The appropriate line number, flowchart location, and type of statement (e.g., format,

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

AUTOFLOW CHART SET OEMON 10/29/70
CarRn NO rews CTONTENTS save

1 € A SFT MF POYTINFS TLLUSTRATING THE USE ARD MISySF DF VARIOUS
2 [FNORTRAN STATFMEMTS, IT IS NNT INTENDED TN BE AN FXAuPLE‘OS
3 C GOOD, SENSIALE OR EVEN REASONABLE PROGPAMMING.
3 [«
H [«
[C
7 COMMON RCOMI (1000),9C0M2,ARCOM3I(1000) «RCOMA 110000
A COMMNN/LARCM] /LCOML A
e NAMFLIST/NML IST/NL N2

10 OTMENSTNN ACOM211000)

11 DATA N1/10017, N2/37/

12 INTEGFR BONMY, ROUTEY. ROUTF2
13 INTFRFR*2 RAUTEY, ROUTF &

14 LOGICAL LGLY

15 RFAL®Q RCNM2

16 (4

17 FItA,R,NI={A/2¢R/2)esN

18 F2IXa¥Y1={X=,011/2¢lY¥-2001)72

19 o

2n READUINMLIST)

21 0N 300L=1.N1

22 LCoMLa=L

23 CALL READER L5001}

24 LrLCOMIA

25 TEEACPYLILY) 100,120,140

26 to0 ASSIGM 320 TO ROUTEL

27 60 TN 160

28 120 ASSIGN 340 7O POUTEL

29 G0 TN 160,

10 140 ASSIAN 360 TN HOUTEL

31 160 GO TD ROUTEL,0320,3404360)

32 180 R=,01

33 200 K=R

36 42F1(8,5,N21

35 220 TFEALGT,.BOOMLIILYY GO TP 260

34 R=Pe,01

37 GO TO 200

L) 26¢C $2R

39 H = 33 -7

ait HEFZiReSt

L3 caLlL wRITE® (A,L)

“2 tFLL.FQ. 1) GO TN 200

43 DN 280 tL=2,Ll

s ACOMICLL)I=PCOMIILL P +ACDMI(LL-1)
&5 DY 2RAD LLL=2,LL

“b 2R0 ACNMGILLL)=RCOMGLLLL)*S 1 (BCAMLILLL=1)RCOMGLILLL=1},1)

&7 300 CONT INUF

“3 C

49 320 RNOUTE2=]

S0 LGLL =, FALSE.

51 6N 70 3R0

52 340 AOTE2=2

s3 LGLL= FALSF,

sS4 60 1O 380

5% 140 ROUTEZ2=3

56 LGLI=, TRUE,

57 3RO GO TN (400,420,440) ,ROUTE2

S 400 WRITE({6,9000)BCOMIIL) L

%o 60 TO 440

60 £20 WRITE(6,9001)L

81 b4 TFILGLLY 60 YO 180

52 460 RCOM21ILY=0

62 60 YO 300

e <

65 500 NRITE{6,9002)

66 sTre _

67 9000 FNRMAT{1X+*<0', 2710}

60 |00l FORMAT(1X,*=0°', 110}

69 9002 FORMAT(1X,*EDF*)

10 END

doull

'

Figure 1.—AUTOFLOW flowchart for FORTRAN program.

11

L3}
.

'

-l

12

1c/s22/70

FNRTRAN MDDULE

CARD NO

cl

- e e e e e
D <2 NS w N -

1nr729710

EERTONNY wARYLT

R R

°

o

CARD NO

16729772

N

® - > a >

10
1
12
13

10/729/70

10/29/70

Pr.AX

2.0R
2.01
2.09
2,10

PG.AX

5.01

PG, RX

T.01

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

INPUT LISTING

e

500
9000

INPUT LISTIAR

AUTOFLOW CHART SET - DEMON

(NAMSOLLIST)

CONTENTS

SURRNUTINE READFR (*)

COMMNN RCN%Y(1900),8C04201000),RCOM3(1000),BENYS
DIMENSINN RCOM4L{10001+FO1(1000),502(1000},XQ1110)
COMYNN/LARCML/LEOMIA

CNMMON/LARCMZ/LCOM2A

INTEGFR £01,XQ2

EQUIVALENCF (EQI,BCOMII

REAL®BACNM2,XQ2

PEADIS,9D00,END=S00)EQL (LCONLA)Y
X=EQL(LI1COMA)

CAaLL WRITFR (x,LCOM1A)
LCOMIA=LCNN24A

RETURN

F=14

RETURNYL

FORMAT(SAX,1%5)

END

BUTOFLOW CHART SFT - NEMON

(NAMSO,LISTY

LT

2000

PROCFNAUR AL STATEMENT LAREL INDEX

NAVE

100
120
140
160

NAME

READER

PROCEDURAL STATEMENT LARFL

CONTENTS

SURPNUTINE WRITER (X.J)

CNWUNN ACNM] {10001, ACOM2{10001,RCOM311000),ACAM4 (1000}
COMMNN/LABCM2 /1. COM24A, LCOM2R
RFAL®B X

WRITE(6,90001X,J

G = 23 ¢ YY
TFILCCY24,6T,21LCOM2A=LCOM2A-SQRT (3,)
RETURN

Fz21

FORMAT(*0°',F20.4,110}

END

AUTNFLNW CHART SFT = NEMNN

PG.RX NAME PG.AX Nauf en,ax NAME
3.01 180 3.11 2RO 3.17 340
3.02 200 3.14 300 3.18 380
3.03 2720 3.1%5 320 3.19 400
3.05 260 3.16 340 3.21 420
PRNCENURAL STATEMENT LABEL INDEX AUTOFLNW (HART SFT - DEMNIN
PG.BX NaAMF PG.BX NavE 064 AX NAME
5.09 500
INDEX AUTOFLNOW CHART SFT - NEMON
PG.AX NAME PrR.AX NAME PG RX NAMF

Namf

WRITER

saen

seve

o6, RX

3.23
3,74
.29

ohLAX

PG, BX

Figure 1 (continued).—AUTOFLOW flowchart for FORTRAN program.

eARE]
NANFE
440
%60
500
paCe 2
NauE
paGe 3
NAwFE

R |
.

'F

s d

f

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

1nr2e/70 TABLF 0OF CONTENTS AND REFERFNCFS AUTNFLIW CHAPT SET - DPEMDN
fasn 10 pang/anx Naug PEFEPENCES {SOURCE SFQUCNrT ND. AND PARF/ANXY

ENRTRAN MNNULE

CHART TITLE - INTRODUCTORY COMMENTS

CHARY TITLE - PROCFNURES

(0aN0?8) 2.01 120 (0n0025) 2.07
13000822 2,04 100004T) 3.14

tononzay 2,08 100

(0000101 2.09 140 (000025) 2.07

tenanaty 2,10 166 (ononza) 2.01 (000027) 2,08
1anco12) 3.01 180 (000061) 3,23

(¢n0013) 3,02 200 10000371 3,06

[LLLEEES] ‘3,03 220

fanonla) 3,05 260 10000351 3.03

(0rO0k4) 1,00 (000066) 3,13

(rI0068) 3.11 280

(00n046) .11 (oonnas) 3,12

(c00067) 3.14 300 10000421 3,07 10000631 3,24
1000049} .15 320 (000031) 2.10

(0nn0s2Y .16 360 (0000311 2,10

1LR00%S5) 3,17 360 1000” *.10

(00N 7Y 1,18 380 (602.5 - 3.1% (0000541 3.16
€00005R) 1.19 £00 100c0577 3.18

(conne0) 1,21 420 1060057) 3.18

1000061) 3,23 440 (0000S7) 3.1A 1000059) 3.20
1enons2) 3.26 460

10007651 1.25 500 (0n00231 2,05

CHAPT TITLE - NON-PROCSCURAL STATEMENTS

FNRYRAN MADULE

CHART TITLE - SURRNUTINE READER(®)

t500011) S.01 PEADER 1000023 2.05-X
(0000171} 5.0% 500 1000011} 5.03
CHART TITLF -~ NON-PROCFMYPAL STATEMFENTS

FNOTOAN “NR(ILE

CHART TITLE -~ SUBROUTINE WRITERIX.J)

1000007 7.0l WRITFR (0000411 3.06-X 10000131 5.05-Xx
(0n0010) 7.06 1000009} T.04

CHART TITLE - NON-PROCEDURAL SYATEMENTS

Figure 1 (continued).~AUTOFLOW flowchart for FORTRAN program.

PAGE

13

il

14

10729770

CHART TITLE -

10729770

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

INTRODVICTORY CNMMENTS

CHART TITLE - PROLFNURFS

AUTOFLNW CHART SFY = NEMAN

A SET OF ROUTINFS TLLUSTRATING THE USF AND MISUSE 0F VARINUS
1T IS NOV INTENDED TD BE AN EXAMPLE NF

FORTRAN STATEMENTS,

GOOD, SENSIBLE OR EVEN AEASONABLE PROGRAMMING.

AUTOFLOW CHAPT SFT - PEMON

/ ’
/ RFAD FRO% DEV 7/
NMLIST ’/

/
/ N
ZINTERNAL FNRMAT/

' NNTE 03
R I I IR] .
- BEGIN DO _LNOP .
b INO L = 1, N1 *
LRE I BEEERE B R RN A]

03,14~ -)I
04
DT TP |
| COM1A = { |
------------------- *
I 05
................ ———
H
5 READER H
. tes001} H
0 H
1 H
Sy R "
1 ALTERNATE RETURN 1

™ ROUTE

BITITI N

Figure 1 (continued).~AUTOFLOW flowchart for FORTRAN program.

ASSIGN ib(l) ! l

ASSIG
™

N 380
RAUTEY

PAGE

PaAGE

(3]

n2

|
N

f

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

10729710

CHART TITIE - PPOCFMIBES

03.73---)'

AUTOFLOW CHART SET - PEMNN

)

-
Ed
£l
2
n
n

H
H
1AL H
"
H
.

V=2

lm)xsjn
R
- AFGIN NN | NOP .
s 2R LLL = J. UL *
PSR RO RN T A

. . NO
© END OF ON @cecee
o LDOP? e
. .
.
.
YES

. s ND
* END OF ND +-¢
. 7 .

—eee03.070-->

300 14
. .
.

- . N
. END NF €O e-s
* Y LooP? .

LGLY = .TRUF,

1F NUTSIDE THE RANGE
03, 18~--=>
400 19

’ 6 ’
7 VIA FORMAT /
’ e
/ FROM THE LIST /

|N0|‘E 20
e e s

IR
LIST » ACOMLILY,

.
»

seee

7 WRITF TN NEY
’/ VIA FORMAT ’
/ FROM™ THE LIST /

L
® 6000 80
034188==>C¢mmmmammcmmn
440 e 23
. L

RUE
. LGLt "=
.
* »
. »
FALSE .
460 24

PARE 03

/ T

7 WRITE TN PEV 7

+ N1A FORNAT t
9002 o ’

RFTUAN TN SYSTE™

Figure 1 (continued).—AUTOFLOW flowchart for FORTRAN program.

15

16 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

1729470 AUTOFLOW CHAPT SET = REMNN PAGF . 04

CHAIT TITLE = NON-PRNCFNURAL STATEMFNTS

LNMMON RCNM1E1N00) NCDM2,BCOM3 (1000) BENMS{1000)
COMUON/LARCML/ZLCOMNL A

NAMEL IST/NMLIST /NI, N2

DIMENSINN RCNM2(1000)

DATA N1/10017s N2/37/

INTFGER PNCOM), ANUTEL, ROUTEZ

INTFGERS2 AOUTFI, ROUTES

LAGICAaL 6Ll

REAL®A RCOM2

STATCHMENT FUNCTIODN DEF INITION: F1{A,ByN)={A/2¢B/2)0eN
STATEMERT FUNCTION DEFINITION: F2UX,YIm(X=001)720{Y~.01)/2
2020 FORMAT(1X,%<0%, 2110}
Q001 FORMAT{1X, 1 =07, 1102
9002 FORMATU1X, "EOF®)
10729770 AUTOFLNW CMART SET - PEMON PAGE - (=

CHARY TITLE - SURRPIITINE @FANFR(S)

7 RFAD FROM DEV /7
7/ ViA ENRMAT /
’ al ’
7 INTO THE LIST /

'ums 02
[T I A N R R]
. LIST = .
be EQLLLCNMIA) .
8082800 80
1 03
. .
. .
. .
* END OF DATA?
. .
. .
. .

.
NO

PETURN 1

Figure 1 (continued).—AUTOFLOW flowchart for FORTRAN program.

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE

10729770 AUTNFLOW CHART SET - DEMNN PAGF O¢

CHABT TITLE - NON-PROCTNURAL STATFMENTS

CDMRON BCﬂ".lHDDDI.Btanl]OOn!-DCOM'JIIOOD’\-BCDN
NIMENSION BCNW&11000},EQI11000),EG2t1000),%01110)
COMMNN/LARCML /L COMLA
COMMON/LARCM2/LCOMZA
INTEGER EQL,.XQ2?
ECUIVALENCE {€01,BCOME}
REAL#ARCONZ . XQ2
q0no FORMAT (50X, 15}

10729770 AUTOFLOW CHART SFT - DEMNN PAGF 07

CHART TITLE - SIMPOUTINE WRITFRIX.S)

Lesnery

LI 7Y
. .
*
FALSE » .
¢omeves LCOM2A oGT. 2
* *
- L
- L

*
TRUE

[I SEP U PR
LCOM2A » LCOM2A -
QR

(34

| F e 21-]

[S R S — 1

16729770 AUTOFLNW CHART SFT - DEMON PAGE n#

CHARY TITLE - NON=PROCEMIRAL STATFMENTS

COMMON RCOM1 {10001, ACNM2 {10001 ,8C0M3 L1000) .ACORS (1000}
COMNON/LABCHM2/LCOM24,LCOM2B
REAL®S X

9000 FORMAT(0" +F20.4,110)

Figure 1(concluded).—AUTOFLOW flowchart for FORTRAN program.

81

REPCRT NC. 1 FORTRAN ANALYSIS PEPORT PAGE 1
NASA, GCDDARE SPACE FLIGHT CENTER
TIME 16,2021 SYSTEM ‘NAME DAYE CCT 15 1970

PROGRAM: MATLN

LCCAL VARIJABLE REPORT AY PROGRAM
0800000000000 000003808 0008808 ISEARRRRREINREOIRRRRRIRIORURARREINOREIRIONEIRRRRREEREETEitItat It et dtttettetaaitttttdetdteerteenitesdsisskns

LABEL TYPE APPEARANCES: LINE#(PG.BX)
hd CECLARATICAS b4 ASSIGNMENTS . REFEFRENCES
A AL A AL AR L AL A A A LA R a L Rt Ry R e Y R g L PP T I P I 2 ey L Y Y Ry Y Y Y Ry P Y Y P Y P P P Py Y R Y 2 7e)
a REAL*4 * * 24(C3.C2) * 35{03,03)
8 RFAL®& hd * 40(02.C5) * 41(03,06)
H REAL *4 . * 26{02.05) * NCONE
L INT o4 * * 21102.C3) 24(02.06) * 22(02.04) 25(02.,07) 35(03.03) 41103,06) 42(03.07)
. . * 43{03.08) SE(03,19) 60(C3.21) 62103,24)

LGt LCGICes # 14 * SC(C2.15) 53(03.16) 56(03.17) * 611(03.23)
tt INT 4 . * 43(02.08) * 44103.C9) 45103,10)
[N 48 AT 04 * * 45{C3,101} ® 46(03.11)
AMLIST ALIST * 09 * 20102.02) * NCNE
N INTes * 11 CATA 1001 + 11 * 21102.03)
N2 INT 84 * 11 CATA 3 11 38 * 34(03,02)
L] REAL*G . * 32103,01) 26103.C4) * 33103.02) 34103,02) 36(C3.04) 38(03,05) 40(03,05)
RCLUTEL INTo4 s 12 * 26(02.08) 28(02,01) 30(02.09) ¢ 31(02.10)
RCUTE?2 INT o4 * 11 * 45(C3,15) 52(03.1&) 55((3.17) ¢ 57(03.18)
RCLTE2 INT*2 * 13 . * NONE
RCLTE4 INT*2 * 13 . * NONE
S REAL®S . * 23(03.C2) 38(03.(5) * 34(03,02) 4C(03,.CS)

REAL*S * UNCEFINEO * UNOEFINED * 39(03.05}

BP0 00083006 0000000008088 RIRRNIRRAIRANNNINCERRINRAEIRAUEIRAAEECHEEREEEAETIEAEESEIVIONIBICIOSRIICIORSEEICAGIISRRER 0NN OS0E

Figure 2.—Header information.

NOILV.ININNDOOA WV ID0Ud YALNdNOD 40 SGOHLINW AILVNOLNY

BEFNQY MO, 2 FORTRAN ANALYSIS REPORT PAGE 1
N8SA, GOCDARC SPACE FLIGHT CENTER
TIME 14,2031 SYSTEM NAME DATE CCT 15 197¢C

PRCGRAM: MAIN
CRCSS REFERENCE OF STATEMENT NUMBERS
G000400008004000000008800USEREEtCIPEIERRERICRIREIRINNINNNRIORPRIIINRRRRNRVIEEREEOIRREEEIONENINEOINNEBOESEIIEIIOERE00000C004000000000004
LINE STUT TvpPE FEFENPENCES: LINE#(PG.BX)
LB ONEE0000000000R000RRRRRREICTIRTEIRNTIREIRNINIRINAIRIOINNOVNNBRSRNNIRRIIRL IR NENEEPtIEOISEERERENREOIEEEREettesetnertittdtrses

24 170 AS<IGN 25002.07)
2¢ 12¢ assicn 25102.07)
3c 140 ASSIGA 25102.,07)

21 16C ASSIGAEC GO TO 271 25

32 120 CCMFLTATION 61102.23)
23 2CC CCMFLIATION 37
35 220 LrGICAL IF NITNE

28 260 CCMFYTATION
“é 20 CCMFLTATION
47 300 CONTINUE
4¢ 320 Cr¥PUTBYION
52 L) CCevFyTATINN 28(02.C1) 31(C2.1C)
%S 240 CCONMPUTATION 30102,09) 31(C2.1C)
57 3°C CCMFLTED GO TN 51 54

€€ 4OC WRITE 57(C3.18)

&C 420 WPITE 57(03.18)

€1 44C LCGICAL IF 57(03.18) 59

e2 «6C CCvMPUTATION NONE

3€(02,01)

43(03.08) 45(C3.10)
21(02.03) 42(C3.0Q7) 63
26(02.08) 31(C2.10)

[}] S00 WRITE 23(02.05)
€7 9C00 FrAvaY 5¢(03.,19)
€8 SCOL FOFRMaAY 60002.21)
&S 6CJ2 FCRMaAT 65(02,25)

‘itt‘.‘.‘tn.hn-.ntttat...t...t-t.-t----.--n-‘tntaat.--ota.o.......aaoo...o.......-.a-.....‘.......aa..-...‘--.-.‘44.‘..-.-.---.-‘4..

Figure 3.—Cross-reference of statement numbers.

JONVNILNIVA ANV NOILVININNDOA JOd SINIWIINVHNT MOTA0LNV

61

20 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

computational, or assignment), are specified. Again, all references to each statement number
are listed by line number and AUTOFLOW page and box references.

Figure 4 is a cross-referenced listing of global variables used by the specific program
that is being analyzed. This report is very similar to the local variable report, except that it
lists only those variables that reside in blank or labeled common data areas. The information
presented in the report includes the label mnemonic, the type of label, its definition, data
used in the label, and all references to the label by other statements in the FORTRAN source
program. The label type is broken down not only by data type (integer, real, logical, etc.)
but also by the type of common area (whether it is blank common or label common and, if
label common, by the mnemonic name of the label common area).

Figure 5 is a summary of all of the variables used in all of the programs input to a
single AUTOFLOW run and is similar to the local variable report for a specific FORTRAN
program. It contains essentially the same kind of information presented in the local variable
report, mnemonic label for a variable, the type of variable, the definition of the data for the
variable, and all references to that variable. The unique aspect of this report is that it does
not reference only those local program variables that are accessible within a specific program
but rather those variables that can be passed between programs through a common data area.
In the references column, program identification, line number, and AUTOFLOW page and
box number are indicated.

Figure 6 is the program subroutine usage report. This presents the names of subroutines
within an individual program, the call parameters that are used by or passed to the subrou-
tine, and any references (by line number and AUTOFLOW page and box number) to that
subroutine in the specific FORTRAN program being analyzed. In the call parameter area,
the variable name that is being passed to the subroutine and some additional information
are found. If a global variable is being passed to a subroutine for its own use, an ampersand
is appended to the mnemonic label in the CALL statement. A second type of variable that
may be passed is 2 dummy variable, one that is not directly used by the program. This is a
variable that has been passed to the present subroutine by a calling subroutine. A dummy
variable is indicated by the pound sign appended to it. A third parameter is a return address,
indicated by an asterisk. The call parameter portion of the listing also specifies the levels of
all variables that are local to the program.

Figure 7, the system subroutine usage report, is very similar to the program subroutine
usage report. The name of the program containing the call, the subroutine name, and the
local, global, and dummy parameters passed to the called subroutines are specified. The re-
port summarizes all subroutine usage within all program modules processed in a single
AUTOFLOW run. Briefly, this listing establishes the hierarchy of subroutine calls among
the modules for a given execution.

Figure 8 is the DO loop analysis report for a specific program. This listing indicates the
complexity of the DO loop control within the program. The body of the report presents the
source and flowchart locations of the start of the loop, the variables used for starting and
ending values, and the increment used for the variable counter.

The complexity map, a bar diagram constructed of X’s, depicts the logical structure of
DO loops in a histogram format. This histogram graphically portrays the nesting effect.

REFCFT NO. 3 FCRYRAN ANALYSIS REPORT PAGE 1
NASA, CODDARE SPACE FLIGHY CENTER
TIME 16.,20.31 SYSTEM NAME DATE 0OCT 15 1970

CRCSS REFERENCE NF GLCRAL VARTIABLE USE RY PRNGRAM
..0"0O.‘..t.00.0‘0000000‘0.“‘.0‘..‘0‘.O.'.00“00“‘."““0...0..““‘..‘..‘.‘t“‘..O.....t.‘.‘....".‘.‘..t.‘t“..“....‘.‘O‘....
PROGRAM: MAIN
LAREL TYPE APPEARANCEST LINE#(PG.BX)
. DECLARATIONS . = ASS IGNMENTS . REFERENCES
G0000000000006000088080000000RRRRtR IR IItItttttntotestttttatrttsttsstsetsststtottorttiotstnttsssssdostotottseeoteetteeneestotessss

BLAMK CCMMEN * * .
BCCM1 INT#& * 07 12 . * 25(02.07) 35(03,03) 58(03.19)
RCCY2 REAL®3 ¢ 07 10 15 * 62102,24) * NONE
PCC¥3 REAL®4 # 07 * 44(02.09) * 44(03.09)
BCCMG REALS4 * 07 * 46703.11) * 46(03.11)
[] L] []
CCPPCN/LAPCML/ » e . .
LCCM1A INTes s c8 * 22102.04) * 24(02.06)

BOOA0000000000040808030R00EEIIRREEIEREOROBIRINRNRIRNIRROOEIRINROREORRINOESORIEINRIEIINIINNIBEIOIRONIROE0EEOEEIOEIOOEENEOPIOIRINESSES

.Q.O'00"‘0.'00'."..O.‘“0.0‘..00“0.0..0““..“0"‘.‘““t‘t‘ttttttt‘t“tt“t.‘ttt“0.‘.‘0“0.‘O.‘.‘t't...t‘.“.t.‘.‘00.0."...“
PRCCRAM: REACER

LAREL TYPE APPEARANCES: LINE#N(PG.BX)

. DECLARATIONS ¢ ASSTGNMENTS . REFERENCES
l."..'...0“‘.“.“‘.“0.““0.‘.‘.‘.‘.....Q“‘...'.‘.‘“."..“...‘.Q...Q‘...Q"‘."O.".‘"..‘.‘..‘.‘.“."".Q..".‘O.t""....‘
BLAMK COMMON . . *

1424} s €3 G4 07 08 * 11(C5.C1) * 11€05.01) 12105.04)
PCCM2 * 03 09 . * NONE
gccH? * 03 * * NONE
RCCVG * 03 04 . * NONE
L] L] L]
CCV¥CA/LARCPLZ » . .
Lccr1a * 05 * 14{05.06) * 11005.01) 12{05.04) 13(05.05)

- . L 3

CCMMOA/LARCMLY » » .
Leevaa * 06 . * 154(05.06)

‘O‘.l'..‘..‘.."‘Q‘...l.‘.0‘"“““‘O“.‘O“O‘.....“‘.‘..‘.‘“‘t‘.“‘.‘i.“‘.‘t“".‘0‘O'.‘."‘O.‘.O.‘...O..“..“.“".0‘.{00““

..Q.'....‘..“.““...‘.“‘i.t‘.t‘.t‘.t“‘...‘..“....O‘0‘.‘0.'0‘"OO‘0‘00Q‘Q.“‘.0.‘0.0.0.000Q’..O..‘O.‘.‘t‘..“‘."‘....t.‘.tt...‘
PROGRAM: WRITER ’

L2BEL TYPE APPEARANCES: LINEN(PG.BX)
b DECLARATIONS - ASS IGNMENTS . REFERENCES
BOIS 2400000000089 00059000008000RRENRISERRRNINUERRIRRBINNERRIORRNRRRRRINEERt sttt attReIINIOIRIRVIPOESESOREEPOOPIEEIEIECOIOOISSSS
BLAMNC CCMMCN . » *
ECCML * C3 - -% NCNE
aCCv2 s 03 * * NONE
BLCY) s 03 . * NCNE
BCCM4 * 03 * * NONE
. . -«
CCrVEN/ILARCML/ . . *
Leev2a . 04 * 05(07.05) * 09¢(07.,04) 05(07,05)
Leev12 * 04 . -

00..00'......"“t‘.‘.“‘.“.“.“...“"O‘.““.“.O“".“....‘..“‘...0‘..‘..“0.".‘.‘.....‘..00‘..“0‘.'.*‘0...‘.‘00‘..“...‘.‘

Figure 4.—Cross-reference of global variables used.

ADONVNLLNIVI ANV NOILVINIWNDOA d0d SINFWAONVHNIT MOTJOLNV

1T

EEFCPT NCo 4 FORTRAN ANAYLSIS WEPCRY PAGE 1
NASA, GNCNAPC SPACFE FLIGHT CENTER
TIME 16,2031 SYSTEM NAME DATE O0OCT 15 1970

SYSTEM USE OF GLCRAL VARIABLES
G0 000020000000000000 Rttt ts vttt tttttsttttntRtt sttt ittt svstttteddtttatttstetnitittt ittt ttsitstetesttetttaartesttessssstaets

LASEL TYPE APPEARANCES: PGM-L INE#{PG.BX)

. DECLARATIONS = ASSIGNMENTS : REFERENCES
“".O.“..ﬁ.“.“‘.....".“.‘O““““‘..“"“.."".“...‘..?F“ﬁ-«"’...“!“,".‘t“‘.‘.“.‘.“..'."t‘.‘“..'.4'...“..“.'...‘.
8LANX COMMCN . . *

accvl INT#4 * MAIN- 07 12 ¢ REACER- 11(05.01) * MAIN- 25(C24C7) 25(03.,C3) 58(03,19)

* REARER- 03 04 07 = * READER=- 111(05.01) 12(05.04)

. c8 . -

* WRITER- 03 * .
ecer2 REAL*R s vAIN- O7 10 15 * FPAIN- 62102, 24) *

* RFATER- 03 09 * .

* WRITER- 03 . .

ACCM3 REAL®*4 * Maln- 07 * VAIN- 44(03,C9) * MAIN- 44(03.09)

¢ REACFR=- 03 * *

* WRITER- 03 hd *

BCCMG REAL 4 s MATN-Q? * MAIN- 46(03,11Y * MALN- 4B5103,.11)

* REACER- 03 04 . .

* WRITER- 03 . *

» * L 3
CCMMCN/LABCMLY/ . . .

LCCMLA KT 4 * MAIN- 08 * PAIN- 22(02.04) * MAIN- 22(02.04)
* REACER- 05 * REACER- 14(05.06) ¢ READER- 11{C5.01) 12(05.04) 13(05.05)
[] » *
CCyvOA/LERCV2/ . 4 .
LCCM2a INTe4 * REANER- Q& . * READER- 141C5,06)
* WRITER= 04 * WRITER~ €9(07,05) ¢ WRITER~ 09(07.04) CS(07,05)
LCCM2R INT*4 * WRITER- 04 .

AL AR AL AL A AR A2 R4 AR Al A A d Al 2 a2 22 A A e Ry R iy Py P Yy e T L Y I L P Y Y I R YT Y T

Figure 5.—System use of global variables.

(44

NOILVINIZWNDO0d NVIOD0Ud JALNdWOD 40 SGOHLIN dILVAOLNY

:r.»,.

REFCAY NC S FORTRAN ANALYSIS REPORY PAGE 1
NASA, GODDARC SPACE FLIGHT CENTER
TIVE 16.20.31 SYSTEM NAME CATE OCT 15 1970

: SURROUTINE USE QY PGN
$00000 000000008000 00200000R0ER0RRRRERRORRNIRRRINRINIRRIOIRINERIRPRRIRSIRIRRIIOEREREIRRIEIIROEEOIEICEIOEIRIEItEeItstiteeinonseednes
PROGRAM: MAIN
SLRRCUTINE ¢ (ALL PARAVETERS PASSEC (a=CCMMCN VAR, A=CUMMY VAR ,#=NCA,STD RTURN)® CALLING REFERENCES: LINE(PG.EX)
POBBI0RCCEIEIRLOICISSIEREISUNNEIENNERERRNRINRBOREREINGAGEERSIONIERRRNERIECEREREEERNIEIEILOESETURNEESOESEEIEIRNEEERIICREEEORIRSS

. .

REACER () * 23{02.05)
L] *

WRITER (2,01 * 41(03.44)

BEUSEB0000300000880¢24080408000400083080880800003000000800880808000002088880800004080S00SREPIESORREREES02080E000EE020020000000008

Figure 6.—Program subroutine usage report.

JONVNILNIVN ANV NOILVINJIWNDO0A Y04 SINTFWADNVHNI MOTI0LNYV

€T

REFORT NC. [FORTQAN ANALYS[S REPORTY PAGE 1
NASA, GODDARE SPACE FLIGHFT CENTER
TIME 16,20.,21 SYSTENM NAME DATE OCY 15 1970

SYSTEM SLBRAUTINE ANALYSIS

BI85 00 400000000800 K0S ERIPRNIREPERINPREORPIRTHOINIISERI0VREREERCORNRIRRINERRICEROPOITINIIRORECUOEEOUIRIPESIEENSESEREStIOENIES

SYSTEM SUB CALL ANALYSIS
PGP N2ME SLB CALLED PARAMETERS PASSEC (2=CGLORAL VAR, #sCUMMY VAR, #=NCN=-STD RETURN}

AL ALASAA R Il bl i A i dd i d il add Il AR d A AT T e Y T T T L T Y P T Y Y Y P Y I L P Y
MAIN REACER i

WRITER 8,y L

RELCER WRITER Xy TLCOM1A
SO0 00004200 00EERNNNARIRRENREEERREPORINBPORIOTINRININRIEON O AOROIP NN ORRERI PN IESRNRIREINRIROEORIREIEONNEIIOSSININORETSS

BEBESUROE 2200000045000 NISRRIRERENI000RIDNRIIAN400R2000000200 0090 RRELAREREI$0ANRRQIURNBUSCRNNOODNUOREERE050040¢00080090988
SYSTEM SUBROUTINE USAGE
Name s CALL FBRAMETERS (@=CCMMCN VAR, #=CUMMY VAR, #=NCN-STC RTRN)* CALLING REFERENCES: PCM-LINEN(PG.BX)
Oll'l"‘..‘.““‘.“““..‘.““....“..‘..““.‘..“‘..‘.‘.“‘.““.‘.““‘.‘.““‘“.““.“."‘..‘..“.'..‘......‘....‘......'..
CUATER e (e * MAIN= 23(02.,05)
. .
WRITER * (X,J) * READER=- 13(05.05) MAIN- 41(03.06)

CR0000080004000 00884000 LBEEIRBETERERRRIIRNRNCERERSNSINRSINOIEICO0EEPIRIONERIREEIIRNIPORRNOIIRSNOLCOEOROEOEetOREOI0SESS0R00008S.

Figure 7.—System subroutine usage report.

144

NOILVLNINND0d NV ID0Yd ¥I1NdNOD 40 SAOHLINW AILVHNOLNY

REPORT NQ 7

‘]ur

14.20.31

FCRTPAN ANALYS[S REPORT PAGE 1
NASA, GOCDARC SPACE FLIGHT CENTER

SYSTEM NAME DATE OCT 1S 1970

CETAIL CC LCOP ANALYSIS AY PRCGRAM

=‘.tO.l."““....“.'.‘.O““..‘t“‘..‘.O...‘#‘“"0‘..t"t...‘.".“"“0.‘.“.“....‘00..‘0.“‘0.‘0.......“..‘..0...‘..‘...‘....

PRCGRAN: VMAIN

STARY LCCP CONTROL CCMPLEXITY MAP
JINE STuT LINE STMT VARTABLE INIT TEST INCR LINE
A AA A A AR ddd AdAdd A A AL Ll A L L L T Y PP P PSP PP PP PP PPN
21 47 36¢ ¢ 1 Ni 1 X
31 16¢ X EXIT TO 320434C,360
43 L1 28C¢ LL 2 t 1 X X
&S 46 280 L 2 |48 1 X XX
46 280 X X x
©? 300 X
SUMMARY
LEVEL NO OF LOGPs
1 1
2 1
3 1l

$0090500000800 08000 vINISE ‘..‘t‘.“..“.‘.00‘.““"““O.".““0.“.‘0.0‘O‘.““'..0.0..."'.Q‘.O“‘tt“.‘t‘t‘..‘.Ot“0‘0“...‘0"

Figure 8.—DO loop analysis report.

JONVNIINIVIN ANV NOLLVININNOOA Y04 SINIWIDNVHNI MOTJ01NV

Y4

26 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Additional information, such as an exit from within a loop to a statement external to the
loop, is also shown by the histogram. A nest of three loops is represented by three vertical
bars. The longest bar represents the initial DO loop, the next longest represents the second-
level loop, and the shortest represents the third-level loop. The second part of this listing

is the DO loop analysis summary, which specifies the loop level and the number of loops of
different levels used in the program.

Figure 9 is the assigned GO TO analysis by program. This listing presents the sequence,
page and box numbers, and statement number of all the assigned GO TO statements in a
FORTRAN program. Additionally, variable names used in the branch list for each assigned
GO TO are presented. The right side of the report lists all references to particular assigned
GO TO statemenis. If one of the variables in the branch list is not defined within the pro-
gram, this variable name will be listed with a dollar sign indicator. This is particularly help-
ful since undefined variables used in assigned GO TO statements will result in unpredictable
destinations for the branch. The logic analysis section of this report presents program condi-
tions that are probable program errors (e.g., undefined labels, unreferenced statements, un-
defined variables, or transfers into a DO loop).

Figure 10 is the statement usage and complexity factor report, which presents a weighted
summary of statement types within a program. On the left side of the report is the state-
ment type (such as assigned GO TO, computed GO TO, dimension, value, and computational)
and the number of each type within a program. The listing also contains the information
needed for the complexity factor analysis. The assigned weight factors and the weighted
values automatically assigned to the different types of statements. The user may override the
default values and assign his own weighted factors at execution time. The product of the
number of statements of a particular type and the weight factor for that type is the usage
factor. At the bottom of this report is a summary which shows the total number of state-
ments in the FORTRAN program, the total weight (the sum of all the usage factors), and
the program complexity (the computed value of the total weight divided by the total num-
ber of statements). Program complexities range from 0.1 to 0.9. A factor of 0.5 would indi-
cate that the program is of average complexity. The complexity factor is a useful guide for
effective programmer assignment.

HISTORY AND CONTROL OF PROGRAMS

A program represents a considerable asset to an organization because it is usually
costly to develop and is used to control functions within an organization ranging from the
performance of simple accounting operations to the control of space flight programs.

Many programs have a life span far in excess of 5 years. A case in point is the IBM 650
program, which was simulated on the IBM 1401 after the IBM 650 was removed. The IBM
1401 is now being simulated on the IBM 360 and will shortly be simulated on the IBM 370.
Rumor has it that the IBM 650 program was actually simulating an IBM 604 tabulating
function.

Programs survive intact over long periods of time because they are infrequently run
and, therefore, not economical to reprogram, or nobody really knows their contents (the
fear factor). In general, today’s software technology is in such a deplorable condition for

o)

e

REPORT NO A FORTRAN ANALYSIS REPNRT PAGE 1
NASA, GCODARC SPACE FLIGHT CENTER
TIME 16.20.31 SYSTEN NAME DATE OCT 15 1970

ASSIGNED GO YO ANALYSIS RY PRCGRAM
WO 0090020 00004008 AEIGIRIEIPIRIIRNERARINRARINROIRANIENIERIRBERIEICEILRNAEENCICEEVUNNBIPIBEIRCEEEEITRICIGATEIDOOINIOIEVIOSIOOIOOIIITTES

PROGRANM: MAIN

LINE STMT VERIZELE NAME BRANCH LIST ASSIGAMENTS
BO00IS00PEAB0L00CEIEREIESPIIANIPEIPOEEEIAPIPREIRE NI ISIESINEEPETSEORESISCEEERIEENEI00ORRRA0CRORNOPOEINOEOEPREOIEIPRtOROIITISSIS
21 140 PAUTEL 320 34C 3560 26102.08), 28{(02.01) 30(02.09)

BI040 00C0s00000RRNRNISRRNCURIININRORRRNERNRRONERNRIENRISIERRGIPIORINRIENOREENINERPEPNONPBRABNICRENINIIRINNOIENEB 000000 E08000000900

LCGICAL ERROR ANALYSIS BY PROGRAM
G008 000000000000 200004080000 4000RR0RORRttRRtRtREt I tIIetttstt sttt ttttdstessettsdtetttttistetttitsttotiosttsesttnsststsscirctsoe

PRCGRAM: MALIN

LINE/VAR EXPLAMNATICA * LINE/VAR EXPLAMATICA * LINE/VAR EXPLANATICN

LA R T T R Ty e Yy Y T YR P P L P PR LY
L] UNREFERENCED VARIABLE * BCCN2 UNREFERENCED VARIABLE * 35 UNREFERENCEC STMT NO.

RCLTE3 UNREFERENCEC VARIAALE . 24 REDEFINEC DC INDEX * 62 UNREFERENCED STMI NQ,

ROUTE4 UNREFERENCED VARIABLE s 31 TRANS. OUT OF DO LOOP * 63 TRANS. INTO A CO LOOP

GIVED00000000030006408520008004000000800000000000000808980080848088080800208800¢2R00P00RCORNSNERESGCOS0ER08000Id000400800000000009

Figure 9.—Assigned GO TO analysis.

FONVNALNIVIN ANV NOILV.INIWNOOA Y04 SINTFWIINVHNI MOTA0LNY

Le

pred

pooard

EFORT NO 9 FORTRAN ANALYSIS REPORT PAGE 1
) NASA, GOCCARC SPACE FLIGKFY CENMTER
e TIME 16.20.31 SYSTEM NAME DATE OCTY 15 1970

PROGRAM: MAIN
STATEMENT USAGE AND COMPLEXITY FACTORS

TYPE NUVMBER ASSIGNED USAGE

IN PGNM WY FACTOR FACTOR
! 4SSIGN CO TC 1 1.0 1.0
CCMFLEX 0 0.2 «0
CCMPLUTED GO TO 1 1.0 1.0
' : CONTINUE 1 0.2 o2
DATA 1 0.5 .S
DIMENSION 1 0.3 .3
: nc 3 0.5 1.5
. ECULVELENCES 0 0.6 -0
. FORMAT 3 0.3 .9
FUNCTION CEF, 2 C.7 1.4
.- 6C 10 7 0.9 6.3
|- 1F 4 0.5 2.0
INTEGER 2 0.2 o
LCCICAL 1 0.2 o2
[. REAC 1 0.l o1
REAL 1 0.2 2
SUBR CAaLL 2 0.8 1.6
STMT FUNCT CALL 3 0.7 2.1
! ' WRITE 3 0.1 3
ASSICAMENTS 18 Ol 1.8

NAMEL IST 1 0sé oh

eeeeas s REPORT SUMMARYceesacoce
A. TOTAL STATEMENTS 56
Re TCTAL WEICKT 4000 22,2

Co CCMPLEXITY.otB/A) «h0

Figure 10.—Statement usage and complexity factor report.

8¢

NOILVINIWNOO0d WV YDOUd ¥TLNJWOD 40 SCGOHLIN dILVNOLNY

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 29

the latter reason. Programs such as The LIBRARIAN, an adjunct to the AUTOFLOW system,
are available to monitor program activity; produce histories of changes; retain copies of old
versions of programs; protect programs against unauthorized use; and provide complete
indexes that give dates of modifications, reasons for changes, and other information neces-
sary for the orderly maintenance of programs and data.

UNDERSTANDING THE PROGRAM

The next questions to be asked concern the function, organization, and reason for
organization of a program. All these questions can be answered by “picking the brains” of
the programmer and the designer.

Given the aversion of most programmers to documentation, the tape recorder can be
a very effective means of obtaining vital information. It is probably much easier for many
programmers to sit down and record on a cassette all the details of program development
than for them to take the time to write everything down. The taped information can be
easily transcribed and converted to a machine-readable form for input to a system such as
TEXT EDITOR. This system can be used to produce a finished document for permanent
retention as the program history and enables a user to specify format, alter content, and
expedite production of hard-copy documentation with a minimum of manual effort. In
short, the programmer need only talk about his projects, and a final record of such dis-
cussions can be automatically produced.

The final issue that is critical for the overall effectiveness of documentation is whether
it actually reflects the current status of program development. Outdated documentation can
be only partially useful at best, and totally misleading at worst. The systems discussed,
AUTOFLOW, The LIBRARIAN, and TEXT EDITOR, assure all users that the documentation
will be not only accurate, standardized, and complete but also timely and readily available
whenever needed.

CONCLUSION

In summary, the critical needs in the area of effective program documentation involve
the integration of normal programming activities with the requirement for more comprehen-
sive documentation. The ultimate solution to these needs lies in automated documentation
systems that can reduce clerical effort on the part of the programmer, provide timely and
accurate documentation whenever needed, analyze program design and structure, expedite
maintenance and debugging operations, protect source programs from loss or damage, and
provide an understanding of the program. Computer programs can do this and can do it
better, faster, and more economically.

DISCUSSION

MEMBER OF THE AUDIENCE: I understand that AUTOFLOW is applicable to
FORTRAN; is it also applicable to other programming languages?

GOETZ: AUTOFLOW can be applied to all of the major languages in use today, includ-
ing second-generation programming languages and various types of FORTRAN.

30 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

MEMBER OF THE AUDIENCE: To your knowledge, does anyone else employ the
tape recorder in the way that you have discussed, and what benefits does it offer to program-
ming personnel? »

GOETZ: Although I am certain that it must be used elsewhere, I cannot provide any
specific organization names. The technique makes it easier for the programmer to record
information. The information generated is actually of better quality than that which would
be produced if the programmer were required to write his documentation, since the pro-
grammer becomes too self-conscious when he is writing.

MEMBER OF THE AUDIENCE: Do you have any intention of writing a manual de-
scribing the entire procedure that could be marketed?

GOETZ: We have no current plans for doing that.

MEMBER OF THE AUDIENCE: You have mentioned that AUTOFLOW is available
for several different language systems. Does this diversity also extend to different computers?

GOETZ: AUTOFLOW is not available for many machines; it is available for the Spectra
70 series, the Honeywell series, and the IBM 7090 and 360 series.

MEMBER OF THE AUDIENCE: Is there an extended AUTOFLOW available for the
CDC 66007

GOETZ: No. The AUTOFLOW system is written in assembly language and cannot be
transferred between machines. No AUTOFLOW was written for the CDC 6600. We do ac-
cept 6600 programs—assembly language and the various FORTRANS, I believe—but the
AUTOFLOW system does not operate with them. Also, the extended versions of the FOR-
TRAN analysis are hypothetical systems that have not yet been constructed. The flowcharts
and reports used in my paper were manually produced.

MEMBER OF THE AUDIENCE: What use is made of the tape recorder in the develop-
ment of the user documentation?

GOETZ: The program documentation, providing the internal logic of the program, can
best be obtained with the use of the tape recorder, but the user documentation is some-
thing quite different. It should be well organized and produced in a more formal way than
the program documentation.

MEMBER OF THE AUDIENCE: Do the American National Standards Institute (ANSI)
flowchart standards constrain the actual communication of information because of restric-
tions placed on the size and proportion of symbols and the lack of symbols needed to ter-
minate and then continue a line that is not related to the flow of the data or the logic of
the program? Since symbols in modern languages can have as many as 30 characters, the
standards, to a certain extent, inhibit communication because the programmer must limit
what he says.

GOETZ: Our current standards do not quite conform to ANSI standards. The width
of a process box, for instance, must be related to its length, according to ANSI standards,
but AUTOFLOW will produce a process box of virtually any size, so it could be 50 or 100
lines long. We are upgrading our system so that it will conform completely to ANSI stand-
ards, which will restrict or inhibit somewhat the flowchart produced. The user will then
have the option of having ANSI or AUTOFLOW standards.

MEMBER OF THE AUDIENCE: Do you consider the ANSI standards to be adequate
or archaic?

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 31

GOETZ: We think that they are somewhat archaic, but they are standards, and we are
willing to conform. Therefore, we are producing the option.

MEMBER OF THE AUDIENCE: Consider a program that was written without AUTO-
FLOW in mind. If the program were then analyzed by AUTOFLOW, which would be the
most useful: analysis portion or the flowchart portion?

GOETZ: It would depend upon who would be using the report. For the original pro-
grammer, the analysis portion will suffice in many cases. For debugging and making program
alterations, the flowchart is especially useful and would probably be a necessary aid if those
functions were being performed by someone who was not the original programmer. The level
of the programmer’s training would also be a consideration.

MEMBER OF THE AUDIENCE: To what extent is AUTOFLOW used to document
and maintain itself?

GOETZ: The entire system is written in Assembly language and contains chart codes in
the comments portion of the program. By putting these chart codes in the program and con-
sidering what the assembly language coding represents, we obtain very good narrative state-
ments and comments. The very low personnel turnover that we have reduces considerably
the need for producing flowcharts for maintenance purposes.

