
,N\

AUTOMATIC EDITING OF MANUALS

Dr. Robert P. Rich
Applied Physics Laboratory, Johns Hopkins University

Documentation for a computer program is usually understood to include some or all
of the following items:

(1) Program listing
(2) Flowcharts
(3) Problem description
(4) Programmer's reference manual
(5) Analyst's reference manual
(6) User's manual
(7) Management information

The documentation problem that one encounters arises from the difficulty of getting all of
these items prepared in a timely fashion and the near impossibility of keeping them all cor-
rect and mutually consistent during the life of the program.

A useful approach to the problem is to collect all of the necessary information into a
single document, which is maintained with computer assistance during the life of the pro-
gram and from which the required subdocuments can be extracted as desired.

Implementation of this approach requires a package of programs for computer editorial
assistance and is facilitated by certain programming practices that are discussed in this paper.
Experience shows that this approach not only provides documentation at a reasonable cost
but also facilitates program implementation and management, especially for large programs
requiring a team effort.

THE INFORMATION PACKAGE

The present approach to program documentation was made possible by the existence
of a general-purpose information package for the management of files of textual material.
This package was originally developed for document retrieval with the IBM 1401in 1962.
It has been rewritten with successive improvements for the IBM 7094, CDC 3300, and IBM
360; this last version, INFO 360, is discussed in this paper. The package contains three ma-
jor programs: the EDIT program for maintaining standard files, the PRINT program for
printing a standard file, and the SEARCH program for selecting records from a standard
file.

Preceding page blank
81



82 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

The Standard File

For a specific application, INFO 360 works on standard files. Each file consists of a
number of standard records. Each record consists of a format code followed by a comma
and then by the body of the record, which is a string of characters whose number cannot
exceed 4000. The master file contains the text of the current draft of the document. Most
of the records are text records, with a hyphen as format code:

-,This is a text record.

Another type of record that is important is the title record, with format code Id, where d
is a single decimal digit specifying the level of the title:

T3, 37. Title at level 3.

These records are used as section headings within a document; the body of the record begins
with a section number (37 in the previous example).

The EDIT Program

The EDIT program permits a master file to be established or modified in a way that is
specified by a file of changes. One or more records may be inserted, deleted, or modified.
The details of how the changes are specified are not of concern here, but it should be noted
that a good secretary can learn to type the changes without much difficulty. The cross-
reference feature of the EDIT program is important in the present application. As an exam-
ple, consider the section numbers of title records. The EDIT program can be instructed to
renumber all the sections in the sequence 1,2,3, . . ., throughout the file. It also corrects
cross-references, replacing the old section number with the new one, so that cross-references
by section numbers remain correct if the.file is modified.

The PRINT Program

The PRINT program outputs a standard file in a variety of formats that are determined
jointly by the format codes of the individual records and the values assigned to various print
parameters. Text records are broken into lines (with hyphenation and justification) to fit the
specified margins. The listing is broken into pages to fit the assigned page length; page head-
ings and numbers are printed as requested; and footnotes and white space for figures are appro-
priately positioned, no matter how the page breaks fall. In addition, multicolumn printing
may be specified.

The treatment of the title records is especially interesting. When the PRINT program
encounters a title record, it uses this record in three ways:

(1) The body of the record is printed in the text at its point of occurrence and set
off by lines of asterisks.

(2) The body of the record is saved as a page heading, to be repeated at the top of
following pages until it has been replaced.

(3) The body of the record, with the current page number added, is saved for inclu-
sion in the table of contents.

When printed, each title record is indented by an amount proportional to its level.



AUTOMATIC EDITING OF MANUALS 83

This treatment of title records by the PRINT program, together with the automatic
correction of cross-references by the EDIT program, provides an extremely powerful cross-
referencing mechanism for the complex type of document involved in the present application.

THEMONODOCUMENT

What is being proposed is that the complete documentation for a particular program be
included in a single document, the monodocument for that program, and that this docu-
ment be maintained with the assistance of a computer employing INFO 360 or any local
equivalent. When such a program is begun, the monodocument consists of only an outline
that may be in the form of title records at appropriate levels so that the indentions will pre-
serve the correct outline form in the table of contents.

If several people are to work on the program, then the first coordination meeting might
result in the assignment of responsibilities for the various sections. Each such assignment is
recorded temporarily as the text of the section, to be replaced by the actual text when it be-
comes available. As each section is completed, it is put into the monodocument by the
EDIT program; the section then becomes immediately available for proofreading and fur-
their correction by author or editor and for reference and negotiation by all members of
the team. Once a section has been approved and proofread, it remains correct until changed.
Hence, all people involved can concentrate on the currently active sections of the document.

As agreement is reached on such matters as file formats, subroutine specifications, and
programming conventions, they are incorporated into the document. Since at any given
time, each person is using a copy of the same draft, it is much easier to maintain consistency.
Each programmer has the responsibility of ensuring that his part of the program remains
consistent with the other relevant parts of the monodocument. The cross-reference capa-
bility makes this part of his job such simpler. If the monodocument grows in this way as the
program is written, it will be completed when the program is completed, and the documen-
tation problem will have been solved.

The Symbolic Program

The symbolic program itself is one of the major sections of the monodocument. It is
easy to incorporate the symbolic cards for a checked procedure into the master file or to
punch such cards from the master file. Hence, the monodocument can easily contain the
program as it was checked out; in fact, it becomes the official record of the final version of
the program. This is particularly helpful if the program has a long production life.

Although the general approach being discussed is fruitful for assembly language pro-
grams, the symbolic program is especially elegant when high-level languages are used because
a moderate amount of commentary and proper style conventions make the program self-
documenting in a very useful manner. It is assumed, of course, that the program is written
in a modular fashion. Such helpful techniques as assignment of labels in lexicographic order,
systematic indention to show logical levels, and explicit declaration of variables deserve more
attention than is given to them in this paper. The fact that program commentary can con-
tain cross-references to other sections of the monodocument is potentially very helpful but
has not yet been exploited.



84 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Flowcharts

A set of flowcharts is a traditional part of the program documentation package. Re-
cent experience indicates that a program properly written in a high-level language, especially
when cross-referenced to an appropriate functional description, is easier to understand than
the flowcharts that purport to describe it. Those who hold this view would ignore flowcharts
in the monodocument. (This opinion does not apply, of course, to the informal, working
flowcharts that the programmer uses while he is writing the program.) However, if they are
required, they can be prepared by AUTOFLOW after everything else has been done. Those
who still feel that final, hand-drawn flowcharts are worth what they cost will, of course, con-
tinue to produce them; that job will not be made more difficult if the monodocument ap-
proach is used for the rest of the package.

Problem Description

Problem description means a description of the problem the program is to solve, the
function it is to carry out. This section of the monodocument will obviously be one of the
first ones actually written, although it may be modified from a brief qualitative description
to a detailed technical specification in some instances as the work progresses.

Programmer's Reference Material

The programmer's reference material portion of the monodocument contains informa-
tion of interest to a programmer who has to correct, modify, or explain the program. It is
complementary to (and can be cross-referenced to) the symbolic program.

Analyst's Reference Material

The analyst's reference material includes details of interest to the user that are not in-
cluded in the user's manual. For example, the convergence characteristics of the numerical
algorithms and the nature of the approximations used are among the items included. Some
material could equally well be placed here or in the programmer's reference material.

User's Manual

The user's manual includes the material needed to use the program: input formats, con-
trol cards, file designations, alarm messages, restrictions on ranges of input variables, etc.

Management Information

Management information, such as time logs of personnel assignments, computer time
for checkout, and comparisons between original estimates and actual performance, can
easily be kept current as the monodocument is periodically updated.

DISCUSSION

MEMBER OF THE AUDIENCE: What can be said of the system's ability to produce
machine-readable charts, tables, and illustrations? Many document programs have a need
for them.



AUTOMATIC EDITING OF MANUALS 85

RICH: Those displays that consist essentially of computer printout, such as AUTO-
FLOW charts, could very easily be imbedded in the document and updated in the same
manner as text. Those displays that are produced by a plotting device or by a draftsman
would be incorporated into the document when it is bound.

MEMBER OF THE AUDIENCE: Some of the IBM systems that are available have
languages for producing machine-printable charts, illustrations, and diagrams that are not
flowcharts.

RICH: The system that I discussed, as well as a number of other systems, have features
that were not covered in my presentation. For instance, our system will not only accept

_s~~-

tables but will even perform the arithmetic of tabular work.
Currently, we have over 200 pages of documentation for our system. For instance, the

PRINT program has approximately 30 different format codes that indicate the different
types of records: text and heading records, indexing records, records that leave space for
figures and captions, etc.

MEMBER OF THE AUDIENCE: How does your approach handle the engineering as-
pects, such as representation of algorithms in text? A very important part of scientific pro-
gramming is the ability to display the equations being used.

RICH: There are essentially two solutions to this. Space can be left in the text so that
typed equations can be stripped into the document. This is quite troublesome. I take the
view, however, that if we are going to achieve the documentation of a program, the problem
is best described in a programmable notation. If the engineer wants an alpha, then I spell
ALFA; if exponents are required, then two asterisks should be used, or some other represen-
tation that would depend upon the programming language. If an algorithm is clearly defined
for the computer and an appropriate language is being used, the engineer can easily verify
his statements. It is best to help the engineer write his formulas in a programmable language.

MEMBER OF THE AUDIENCE: Is it your feeling that another individual, a documen-
tation specialist, should be working with the programmer and handling all of the evolutionary
documentation?

RICH: When I work on a program, I take personal responsibility for the documenta-
tion. For the usual systems team (project engineer, physicist, analyst, programmers, etc.), a
secretary and an individual willing to take responsibility are needed in order to achieve good
documentation.

. MEMBER OF THE AUDIENCE: What are the advantages of using the computer for
documentation instead of an MTST or similar device?

RICH: The computer generates text that is truly machine-readable; this is not always
the case with MTST's. For updating text efficiently, the computer approach is far superior.


