PROGRAM AUTOMATED DOCUMENTATION METHODS

Bernadine C. Lanzano
TRW Systems Group

Several methods for automatically generating and maintaining documentation for TRW’s
computer programs are being used, and other procedures are under examination. This paper
presents a short synopsis of the Mission Analysis and Trajectory Simulation (MATS) program
to provide an understanding of the size and complexity of one simulation for which docu-
mentation is mandatory, a description of a program that assists in automating the documen-
tation of subroutines, an exposition of two flowcharting programs, some notes on useful
program internal cross-reference information, an implementation of a text-editing program
available in a time-shared computer system environment, a preview of a proposed system
that would aid in program development and documentation that utilizes a graphics display
console, and a recommendation for software standardization.

In the complex world of sophisticated computer systems and advanced software tech-
nology, Thompson Ramo Wooldridge. Inc. (TRW), has long recognized the need for develop-
ing general-purpose programs, automating documentation, and standardizing programming
techniques. The satisfaction of these demands minimizes software expenses by eliminating
program duplication, developing new capabilities around and within existing programs,
responding in a quick reaction real-time sense, and by generating documentation with mini-
mum effort.

The MATS program is briefly mentioned because its generality, complexity, and size
necessitate considerable support documentation. Because this program is used by a variety
of projects, its documentation is referenced by many engineers, programmer/analysts, and
technical aids. Methods of automating the documentation were deemed mandatory.

MATS is a digital computer program that simulates ballistic and space mission trajec-
tories; it either has or is capable of simulating such missions as Apollo, Pioneer, Minuteman,
and Grand Tour, with such vehicle configurations as Saturn, Atlas, Titan, Agena, Centaur,
Minuteman, and Thor, among others. The program is written in FORTRAN IV and is
operable on the CDC 6000, GE 635, IBM 360, and IBM 7094 computer systems. MATS is
composed of more than 450 subroutines that occupy some 110000 decimal words in 15
overlaid segments. The program control logic is predicated on a modular design concept that
facilitates the addition or exchange of capabilities for the various missions. It can be mated
with control systems that include navigation and guidance algorithms and can provide the
dynamics for interpretive computer simulation systems.

For any program, several levels of documentation are required. The smallest unit is the
subroutine where the function, algorithms, and data communication must be explained. A

187

PEACEDING FPAGE BLaNK NOT FILMED

L]
-

1

188 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

lineal linkage trace of the program logic control hierarchy provides the next level of
documentation. Two-dimensional cross-reference information is desirable so that not only
which subroutine(s) and common storage(s) are used by a given routine are known but also
which routines reference this routine and which routines reference each element of global
storage.

The descriptive material that functionally relates the program modules can be generated
only by the program architect and must be updated as the program expands and evolves.
Last but probably most important are the user manuals, which again must be generated in an
easily maintainable format.

This paper describes several auxiliary programs that support the automatic documen-
tation of MATS and other programs.

(1) Automated Documentation of Subroutines (ADS) mechanizes the descriptive
explanation at the subroutine level.

(2) Flowcharters AUTOFLOW and FLOWGEN pictorialize the computational
algorithms and decision branches within a subroutine. AUTOFLOW can be
requested to provide a higher level flowchart.

(3) Automatic Flow Layout of Program (AFLOP) maps the subroutine usage at the
program level.

(4) Methods for retrieving and programs for generating the cross-reference information
are presented.

(5) Administrative Terminal System (ATS) assists in automating the maintenance of
handbooks and manuals. .

(6) Computer-Aided Program Development (CAPD) proposes a method wherein the
coding and final flowcharting no longer appear as steps in program development
and documentation.

One of the purposes of this paper is to demonstrate how an individual piece of infor-
mation can be made to function in more than one capacity, thus deleting duplication of
effort in creating and maintaining documentation files.

AUTOMATED DOCUMENTATION OF SUBROUTINES

This program, currently under development, accepts as inputs FORTRAN subroutine
source decks, a subroutine titles file, and a symbols definitions file. An option to retrieve
storage and external reference information from the compiler output or the list tape is under
review. _

The source deck contains the following information, where Cnn is the appropriate
coded comment card: the title, a one-line title that normally spells out the name of the sub-
routine (C10); the author, the programmer/analyst, and other personnel cognizant of the
function and/or implementation of the subroutine (C30); the abstract, a meaningful descrip-
tion of the purpose and function of the subroutine (C40); remarks, information that briefly
describes any change and gives the analyst’s name and date and any special features, restric-
tions, limitations, and error treatments (C50); and the local variables, the names and defini-
tions of those variables that are used only within the subroutine including those in the calling
sequence (C60).

]
-

P

PROGRAM AUTOMATED DOCUMENTATION METHODS 189

The subroutine title file is merely the title (C10) cards identified with their respective
subroutine names.

The symbols definition file contains the name, common block location, definition, and
units of every global variable used in the program.

These cards are formatted in the following manner:

C EQU (VARNAM, COMBLK(nnnn)) DIM(iii,jjj) 10 UNITS=kkkk VARNAM 00
DEFINITION {on as many cards as required) VARNAM mm

where EQU implies equivalence; VARNAM is the variable name; COMBLK(nnnn) is the
name of the common array and location of the variable within the block; DIM(iii,jjj) is the
dimension of the variable; I or O indicates whether it is a user input or a program computed
variable; UNITS = kkkk provides information pertinent to the variable, such as length and
time units, integer or real format, and special processing information; and DEFINITION con-
tinues from one card to the next and is identified by the variable name and card count mm
in the final columns.

A parenthetical explanation of the symbols definitions file is in order. The MATS pro-
gram requires the information provided by the EQU cards for the symbol table, input, com-
putations, and output processors to locate and identify each variable so that all input and
output may be recognized by symbol name. The symbol table processor accepts as input
the EQU . .. 00 file, alters the file by change directives, and outputs an updated file. The
symbol definitions file, using standard sorting equipment, is updated and published as a
portion of the MATS users manual. This file, being carefully designed and formatted, thus
may be used in three distinct areas: the MATS program, the ADS program, and the MATS
documentation. Furthermore, it is easily and automatically updated.

The ADS program searches the source deck from the subroutine card to the end card.
It retrieves the name from the subroutine card and the title, author, abstract, and update
information from the coded comment cards. It identifies the external references and acquires
their titles from the titles file. It identifies the variables and locates their definitions either
from the symbol definitions file or from the C60 cards. Figure 1 presents the output of the
ADS program.

The appearance of the coded comment cards in the MATS program listing proves very
useful to the programmer/analyst who, when working with the subroutine, finds the associ-
ated documentation immediately available.

TRW has other programs similar to ADS that operate on the IBM 7094 and IBM 360 to
document programs that execute on those computer systems. Each is clearly designed to
automate subroutine documentation with minimum manual effort.

FLOWCHARTING PROGRAMS

Two flowcharting programs are currently in use at TRW: AUTOFLOW and FLOWGEN.
Each is leased from the respective vendor. They are used primarily for the charting of indi-
vidual subroutines, but AUTOFLOW can produce charts for a complete (small) program.

The symbology of both is nearly self-explanatory and quite similar to that commonly used
by analysts. E

190

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

SUARCUTINE DOMUMENTAT [ON

SURLOUT IRE KAvE- TIGPIN

ROUTIKE T(1LE~ YIME YO SV TO PIY

TROCRAMNER= J. SMALY CROUP LEADLR=- W BAHRKE

CIMIR FECPLE SELATLY 1O FREGRAM~

[AN B.C.LANE ANY

ABS IRACT /P URPUSE-

ACCURACY FEQUIREHENTS ARE MET FOR STAGING.

REMARY S /{ [MITIATIONS-

Kuve NmMPIT S$67

M CTU,0TLY TLLY T8 PnSLAY. BCL D27-23-72
TS 1N at i 2aT IUN gL 07-14-70
L5T. 1 SHIPANCE AY S&ME 1 .50t 07-15-70

{RRVR T

COHSTGER BT, 6CL Go-15-70
VELD wiTH (1D FUGS TIPE AND TAJ PITS
i) L¥D 03-20-70

AF FEYS WITH (N
TIME-TG-GO LUST &
FER _SETTIH: ACPA

SaN 23-C5-70
BCL 05-30-69

COLATOT FRI0H Y T2 COYP -— RemdVE C IN €OL 1

PQUENCE YO TTSCMP

5 USASE, 1CBAINY TG LITEPALS— L.E. . 05-01-6§
1. E. ¥2JO5CN 12-02-¢8
AUN TIME_STATISTICS SURRQITINE EXECUTIOM COURT

CALLIRG SEQUENCE~ CALL TIGFIY

“SURPCYTINES CELLED~
wPT HOLLERTTr PRINT == SNTRY POINT TOU =PY~
SIADUT ' SINGLE VARIZBLE C(ONMSCTED Y 0J7PUT PROCESSIR

TGLNP TUHE-TO=GO CuvPuvATION
\1a! VARIA2LT FOR¥AT PRINT —— ENTRY POILT 10 -97-

L

DATA USAGE STATEMENTS

Covryy
SYRAIL OIMENSIGY BLLCK UNITS i70 DEF i%i7 10N
R Y13 3. KO DEFINIY LR SI2N
exuP syal { 40) NO 1 GUCKET LJAP FLAG. 'VARIOUS CEBUSGING DUMPS
e : ARE CONTASLLED oY TME FOLLOZING SEITINGS CF
BROP. =1, = THE PRINT Fwl caLLs TO Yralc
IS EKAELLD. C. = MO DIAUSGING PRINT
. (NO<IMEL). 1 = TR2CES ART EWASLED,
F rEiy, SURT-ME~GZ, AhD CUPFRESSEC GLTA ERC OC
- MPED.
T e [TRTA S R Y) 170 YHE INPOT BUZKEY WHERE ITEPATIGN AnD FHAGE
. DATA £9F STOIO. THE EUCKET IS ALSO LSED FCR
INTERMEDIATE STCRESE FOv ITERATICN,
ROLT{-VENICLE, [1%-398 iMAiG: LISTE, VAPE
FUPFAT, »:OCOURSE / TZRGETING maTHICES,
- SESS FECUEREMENTS. SEE ALSD 16<ie (UKL,
f
1 tiag : 1 NO CETINRITION IN TABLE.
L Sy ——. 3
CInF ccex (1¢) 17 PLOS INFINITY, PRESET 10 10%838 (8UCGIC)
(&) ! HC_DEFINITION EN TAZLE.
cren cFse (72) 1/0 2ERD — REAL FLCATING POINT O.
DIKC TINE (530 T S1E€F SIZE T0 GEAT RULTIPLE OF OYIC
(331 f 1_3IST ¢ 1y 1 sy SEE_IST .
£TCC s tom 0O CUIOANZE TimE-TO-CC FLRG. O = 1GAGAE
‘ GUICAKCE TINE-TO-CC. MIN4S NON-1E%0 =

PINIYIATE SELOMDARY PHASE, »#LUS AOM-ZERO

TERNINATE FRIzaRY PH2SE.

[1301
- v -
. 3
a A i

I7G &KV PVR FCa 717 WiTH ALK, TACR MET = FINZL

Figure 1.—Example of ADS output.

PROGRAM AUTOMATED DOCUMENTATION METHODS 191

AUTOFLOW accepts COBOL, FORTRAN, IBM 360 Assembly, and PL/I source pro-
grams as inputs. The AUTOFLOW option generates a chart set composed of the title sheet,
input listing, statement label index, table of contents, table of diagnostics, flowcharts, and
other special listings; some of these items are optional. It charts an entire program up to
999 flowchart pages.

The CHART option operates from specially coded comment cards that may be
embedded in the program source deck and produces a higher level program chart from the
textual information. The author may adjust the level of detail to the type of chart he wishes
to exhibit.

AUTOFLOW executes on the IBM 360; each chart page covers two 11- X 17-in. printer
pages and may contain up to four columns of paths. Pages and symbols are numbered to
facilitate page-wide logic flows. Figure 2 exhibits an AUTOFLOW chart.

FLOWGEN accepts FORTRAN source decks as inputs and outputs a chart somewhat
less sophisticated than AUTOFLCW. No provision exists for a level of detail control. It
charts individual subroutines.

FLOWGEN executes on the CDC 6000 and generates input for the CALCOMP plotter
either directly or on tape. Each chart page is 8.5 X 11 in. with one column of flow path.
Pages are numbered, and symbols are supplied to chart page-broken logic flow paths. Figure
3 depicts a FLOWGEN chart.

Both flowcharters completely automate the charting of programs. However, most
analysts will concede that manually manipulated page topology is generally more acceptable
than automated columnized formats, particularly for large, complex subroutines.

AUTOMATED DOCUMENTATION OF PROGRAM INTERNAL COMMUNICATION

Given that a program is composed of a collection of subroutines where the word “‘sub-
routine” is a generic term including functions, entry points, block data, and other subelements,
certain program internal intersubroutine communication documentation is desirable. Useful
cross-reference information would include forward reference, backward reference, and flow
hierarchy. Forward references include—

(1) All subroutines referenced by this subroutine

(2) All commons referenced by this subroutine

(3) All global variables defined in common arrays referenced by this subroutine, and
(4) All local variables defined within and referenced only by this subroutine

Reverse references include—

(1) All subroutines that reference this subroutine
(2) All subroutines that reference this common, and
(3) All subroutines that reference this global variable

Flow hierarchy is the cascade of subroutine forward references that presents an overall view
of the program flow logic.

Table 1 summarizes those portions of the cross-reference information that are available
from the manufacturers’ standard software systems: the -CDC 6000 compilers and overlay

S _ALL_MET,
FAR EACH
13
-
.
.
-

1

[

1

00 _LOJP
- T = 1, N
s e s 0605008

BEGIN
19

60
CRUI N N N]

07.09---1%

03,21 ===)»

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

192

w .
F) T
& Sronses M <O
-4 LK)
. . .
..
.
Seoe % o ! .b
-1 - oo
- - 44 =« -
w G
s . # S———— e 4
- o sm
. W o«
. cse
- -
~ =]
L L
.
w .
2 . - w
o a ~eITIXIN w z O 8 sttt @ — .
o - -1 1) - ~ [> =]
ip= L) + —r we - 1 1] [} - - h
-)) = > 0¥ W ¥ 1 “v
el .] [} o —aZ L Sl . [} - . & Q
Or ° - w '] W DEOva W @ . " et “w - . w
< - @ 8 wn 'V oa ' ax Ero-d ©Q - . - 1 & sa - ~ 8 es wn 2
ot - 1% 1 T el eE [1 woed - - ~
ax * ¢0 ¢ a o~) a2 wadaQWDZE . g s & ZTu_ 3 ~ * wwr oo e [o] H
= w [T) w rar OFZ=-0O [} ¢ = o lotod “w 10 ﬂ . .
———-) e - - | o-- H e =T e—— - led o o _lll © ememap MO m B | ¢
- - [o4 1 adrdZIwr-an b o = > =ue - - B =0 m
1 . -z 1] - AN W W . - I @ wu a 1 P w— 1
1 oZx e i 1 Cwwow SwI X a 16 v wkal a W ~
1 OOw s @ [1 ¥ O T £ (=T . x b= X emwewa a M) srxe
4 =CT = | + oBaa T mada=Tro w | =a | > - (@]
°o a Ly ' i WOmnaw WIE - r= 1] ot O = b oo
. 8 X § W OO ea ¢ ot [us | _
@ RO . ' ' Wrmy =g AT WO we t - v 1 .
© uwwa) 0 O~} I ZIaIsaITI=Ou S 1] 1 wo» | (&9 i
—u L O N -2 T YD r s alt B m————— odm o
-
: i
' H E
= |
< B
'
S
o
[———— ~No—u a - [E 8 m——— %]
+ O = | - " 7 T 1 o~ |
. . e 1% 1 . H . wor i z> ' [=% ,
o+ Z Cr awn ' 1) P - -1
L wOa usd ua 1 . a 1 . -3 w Q0 CCLaIX '
. ' F w ZT &F 1\ - [[} -~ w - VA WA - TR "
[] (SR = 1 - o8 W T 1 - s = vy " o—u- o ==Y ']
< - iz - owa t 41 o - - o) z - a BV IITdad aiavm -t x
3 . =« p——ell) X AN i) + - d . = -1 - . = A BW ADe- e WA e an
o« . 0o & wviar «a i w > 1 . " D VA e ARG s AZOT = -~] .
—~ e ——— D€ - §—— . [t N m—— - e mrm—— T AMOTIGEN = A O N 1
o« Yhun™g Loy > o] - - a- ZIZXZ0eZaD G _vOI! [N |
- e dacww w3 e at « Z b af | % T . sw A== g exzTTa 1 .
a rLvua= am-ng w . - Py W ¢ arau- GErADOF W z
. Zawvwe CEVGI T a . a =Y s - 9 z BLZWEUWIOZ JZTUONE ViU~ 1 o
w a@=IgZx W a9 F [- a e~ C e Vecac a> « —-0Zw L]
- C aX—walCoe] .. [LI 3 U ZUm-=a Gl Lo aVieal e 21D ' [+
W a¥ouau . H u i ; Za ANV DZIGCY VA Laws = Vak = - .
we a>C aPCWIWWI- | we > + - e WAOr XZZOW = Zmddr =3 OB AZ=REr [
= USZ NWwEILII0w | =1 a 1 1 ©° =Xl IIOCOCO0e >nantaIlovawng Ota] =
« RN L O - M ———— ai wvi -3 o 0 SZTONLWVINO 00 A o | A =T U dd™ B «—a —————y g
- L} L] panld
' '
\ \ 9
- ¢
1 +
1) [}
'] !
' - =
wi s ' ‘e w .
=2 H H o ») . -
o) 1O 1ra-s Z Ay ——— & b g 0O o~
L3 o 1o i tor ot] - 3 -1 « O o1
. 4 (A}] [EIN] a . ' L] . . [
ou ¢ [- 1=) . t *e 1 []
s - [[& 1 1t LI] ca + L] [R
- w <O [+ (B a! + zu -1 ~ w 1} 1]
© * 0o w cI- @ i [BRI © g a at o L I Vel «
© - va 1 heed x b oaxi v ¢ uur - o -] o \
. -~ . «a z >) 1a w4 10 L4 - u - »Od -4 L] . = [N *r
- w e Lamy FHRIREZ] us > T vu—w w . IS (] e
LRl g & ——————— AW S [)) or——— o0 ® e b DAL V) D B) ey [+] R R Ll B R I I .
o + Tt = P HE O = 1el c —Cula 2 -) Y [. -
- u - 1 -) 1 L]] + . Cad & Iwe—rnT OUt - . - [R
. ‘ a < 0 fud ¢] [X} z Zar-CwZ L))) . .
] . [cx 1 ftuey woe 14 . w e Osdal < & 1 ¢ . 190 ' {
4 al 1 L ’.\..TF— P - T LR] WOk v ™ O -) [}
o e 4 i -0t x o 2 cRio « . WD = ® t « 0 [}
| [T F SN | a o o odcace>d . i [
-) - [} > [} - CFUIray o~ L} ») [}
{ rem o1 € c 4 E-wOZI~ O) [.
H 25F 3 & —— -«) 4=—a avnvulawn ———— . -8 . .
_ _ {
! [v
. . \

-

vd

PROGRAM AUTOMATED DOCUMENTATION METHODS 193

<ZIF { KBKT(L+B) .NE. ©)

—~—

T

[co 10 82 >oph

[€aLL 7T1GShHP (L) |

c THL. 7. TEST PEF: £ TO INITIARTZ AT |
c THE SGHE TINE BUT 7 HASE TERAINATION. |
o ALSO iF TWO FITS 0 SHEE PHS T THE SAME TINE,
o THE HIGHER MUMBEREC PIT WIL
C TG0. TINE-TC-G0 IS IN TENPI
//i\- F
<_IF U TERP(9Y .CT. T3) :
- — oo i
—— |
L |
o T _er et |
@
{76 = TEnFie)
1
\Y
C SAVE P17 CORRESPOMZING TU SHALLEST TINE-T0-G3 FGR PITFRT
c . IN CRSE IPIT = O BECAYSI M3 FIT KET RCR 3K TAHCR
V.
S
Y
[KTFFL = LPI ~ LPIP ¢ J « 1 |
¥
v
CONT. O PG S
PG 8. OF .. .16.._
Figure 3.—Example of FLOWGEN flowchart.

194 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Table 1.—Program Cross-Reference Information Available From Standard System Software

Forward reference function Revefrse re'ference
unction
Software system
1 2 3 4 1 2 3
Compilers:
CDC RUN No? Yes Yes Yes ® ® ®
CDC FUN No Yes Yes Yes ®) ®) ®
CDC FTN version 3 Yes Yes No¢ No¢ ®) ®) ®
GE GECOS Yes | Yes | No No () ® | ®)
IBM 360 Yes Yes Yes Yes ®) ®) ®)
IBM 7094 Yes Yes Yes Yes ®) ®) ®)
IBM 7094 assembler Yes Yes No Yes ®) ®) ®)
Loaders:
CDC loader map No Yes Nob Nob Yesd No No
GE loader map Yes Yes Nob Nob No No No
IBM 360 linkage editor No¢ No¢ Nob Nob No No No
IBM 7094 load map No Yes Nob Nob No No No
IBM 7094 logic map Yes Yes Nob Nob Yes Yes No
NASTRAN linkage editor Yes No Nob Nob Yes No No

3TRW has modified the CDC RUN compiler to output the referenced subroutines.

bNot applicable for the compilers and perhaps desirable from the loader maps only as an option.

CAn option causes the local variables to be printed and the locations of all references to a common array to be listed;
it does not print the names of the global variables.

dThe subroutine reverse references are available only within an individual program overlay.

€An option generates the name of the referenced subroutine and/or common along with the locations, not names, of
the referencing subroutine.

loader; the IBM 360/50/65/85 levels G and H compilers and linkage editor; the IBM 7094
IBSYS compiler, assembler, and IBLDR loader; and the NASTRAN loader, which operates
like the IBM 360 linkage editor on the CDC 6000 computer.

As can be seen, five of the seven compilers mentioned generate the subroutines refer-
enced by a given subroutine. All the compilers give the referenced commons. Four com-
pilers list the global variables, and five list the local variables referenced by the subroutine.
Three of the six loaders give forward subroutine references, and four give the commons
referenced by a subroutine. No loader names a variable. This would be desirable from the
loader map as an option, but the variable names are probably not immediately available.

The reverse references for subroutines are for all practical purposes missing from four
of the loaders, and only one generates all references to a given common. Nowhere is informa-
tion available to yield all references to a global variable, which is highly desirable in validating
and maintaining a program. '

No standard loader generates a complete expansion of the forward subroutine references,
which also is desirable in using a program.

To surmount these deficiencies and to provide what is deemed useful documentation,
TRW has developed several programs. Figures 4 and S represent their outputs.

Syrmbol De. Name

Lene

LKZ DLK PTA CLT yTL OFT

™m
73
=
e

MT 1PT CRD PRT PRM FEN PRO PAP PRQ FAX BSF COM FST RSO NRS CHK TRT TIi

N0ERR]
IHERRAL
34 TRRA
DAERR U
JRERR L

N5tRAC

R Wi W W T WYoa o

|
!

OBTYP [}
oLt
L2
NE]
IMP
MR
UMY
LPTTON
GYDIR
TCHRK . ’ g T o)
1265KT B

TQAZZA 33

O oW w0 QO
[
C
<
<

104728]
1072 2C)

YAl L
Ly d, Y

TTAIIN A F
iDERR U D
11 ZRR .)

S —— e g e —_—
16ERR
JTERR

cCcQ
oo T

TCEIRR
1AA728 B

120602 B

Figure 4. —Example of global variable cross-reference, IBM 7094 program.

SAOHLIW NOILVININWNDOd A4LVINOLNY WVID0Ud

S6l

196 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

SYMBOL SUBROUTINE

4 NVRS3D TVGNL TVGSC

AA NVRS 3D

AAP AANGT APRIT BCNFT

AAPM AANGTY

AAT AANGT APRIT BCNFT

AAY AANGT APRIT BCNFY

AAYN AANGY

ACSOR CREAD INPROC

ACTNMR CREAD INPROC

AERC AATMP AFFDR AIRVEL APRIT DCNFT BLKDTA CFEAD ARBIT
MORE MURAG SGFFL
RYAMP ,

AHY TMIPS TLAFF TMINS TNAFF T2AFF T3AFF TVGCD TVGNC
TVvGSC

ATRSHP CREAD INPROC

ALATL ASTART CREAD INPROC INPRUC

ALMCOF TVGMC TVGNL

ALTGT INPROC

AMUL ASTARY

AmMyT BIMAZ TMIPS TMINS T3AFF TCCTD TVGMC

AMXLOO HCOER

APAF AATME AATMP AOVIC AFFDR AIRVEL -APFOR APRIT ASPAC
ATGOE BCNFY BLKDTA MDRAG MTHWF SGFFL

APDPT TVGNL

APDR TVGNL

APSI AIRVEL APFDR ATMOS MTHWF

ASTRHL 8STRS3 SGBST

ASTRH2 8STRS3 SGBST

ATEMP AIRVEL ATMOS NVRS3D

AZCORR ASTARY INPROC

AL APRIT ARBOR ASTART AZEST CREAD ARBIT T3Aff

Az T3AFF

AZMUT ANTP BIMAZ TCCTO

AZPTS CREAD INPROC

AZSECT CREAD INPROC

8 NVRS3D TVGNL TVGSC

88 NVRS3D :

8BARCO TVGCD TVGMC TVGNL TVGSC

BETA AAUKF APRIT ATCRS AYGOE MDRAG THMIPS TMINS TMLIN

BET1 AAUXF APRIT

BIGEST ATGOE

BLANK INPROC

BURST CREAD INPROC

BURSTA CREAD INPROC

BURSTS CREAD INPROC

c TVGNL TVGSC

CALM ACDER ANAVH ANIP BLKUTA EGRAV

CASE " INPROC TRGFNC

co AATMP AFFDR AIRVEL APRIT MDRAG SGFFL

CODELY MDRAG

COMULY AATMP AFFDR MDRAG SGFFL

COPRY MDRAG

COPR2 MDRAG

CoPR) MORAG

COREF MDRAG

CGLATL AZEST INPROC

CGM AD2CG SGAST

CGOFFS AD2CG APFDR

CGOFFT AD2CG APFOR

Figure 5.—Example of global variable cross-reference, IBM 360 program.

Figure 4 presents the output of the symbol reference program, which lists every global
and local variable along with the name of the deck that defines (D), uses (U), or both defines
and uses it (B). Deck here may be a collection of subroutines. Written in IBM 7094 assem-
bly language and operating under the IBSYS system, this program documents an IBM 7094
assembly language program from its output list tape.

Figure S presents the output of a similar symbol reference program, which lists the
global variables with every subroutine reference. This program is written in IBM 360

PROGRAM AUTOMATED DOCUMENTATION METHODS 197

FORTRAN and uses as inputs the common and equivalence statements from FORTRAN
subroutine source cards.

This variable reference information may also be generated for other IBM 7094 machine
language programs that operate in the TRW SCAT system. This additional capability for the
ADS program is currently under review for the CDC 6000; it is designed to document
FORTRAN IV programs and to accept CDC list tapes and/or source cards as inputs.

Figure 6 presents the flow hierarchy of a program that is the output of AFLOP; it ex-
pands the subroutine references until it exhausts the calls or reaches an undefined external.
It currently operates on the IBM 360 and the CDC 6000 computers. AFLOP accepts input
cards that spell out the names of the referencing and referenced subroutines. An option
permits subroutine expansion at each encounter or line number reference to the first expan-
sion. TRW intends to incorporate AFLOP as an option of the CDC 6000 NASTRAN linkage
editor and to make it available for the CDC 6000 overlay loader; in these systems it acquires
its inputs from the loader tables.

ADMINISTRATIVE TERMINAL SYSTEM

Formerly, certain documents, such as programmer’s handbooks and users guides, have
been prepared manually. A revision usually meant considerable retyping and proofreading,
both of which consumed time and could introduce errors. Several text editors have appeared
on the market; a good one is the ATS developed by IBM under the acronym DATATEXT.
TRW currently purchases time to use this system and is contemplating installing the program
in-house.

The system uses an IBM 360 computer with appropriate storage devices and high-speed
printers at the central site. Telephone lines connect the computer with the remote stations.
The terminal may be an IBM 2741 or a DATEL 30, and either may be hard wired or con-
nected to a.standard telephone set with a data coupler. The keyboard resembles an IBM
Selectric typewriter and may be used as such when disconnected from the computer. The
operator-secretary enters a document by instructing ATS with margin placements, tab set-
tings, and formats; the text is typed and the system is requested to file it in permanent
storage. ATS assigns line numbers for subsequent editing.

Features of the system include indented and blocked paragraphs, page width and depth
control, page headings and footings with automatic centering and numbering, line and page
skip, margin justification, and table and chart special formats. Lines may be kept together;
for example, in a table that should not be split across pages. Form letters may be prepared,
and, with the stop code, one may request the printing to halt temporarily for the insertion
of particular data.

The print options include printing some portion or the whole document with or with-
out line numbers, with or without justification, at the terminal or on the high-speed printer.
ATS displays its agility in the editing capabilities. Corrections reference the line number and
any word within the line. One may remove or replace a word, a phrase, or a line, add to or
remove lines, and physically move lines or paragraphs. The edited document as well as the
original version may be retained in storage.

Re
_be

produced
st avacilea b'{!rom

copy.

f

e d

198

IMLGLNT

AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

ADOONY

AQCORES
HRELSE

g
oyIc
GLIRY

LN 28 SR g E Y]

SYSTER
AUNG ML
QN

-
-

i
N

AUVING
Sti.
OGat,

CrpINe

PUSH L.

PHSCNY

e v
Ll

-~
8o

PSALAC
REdINK
SySteit

LREWERTY
Grioa
1oL,

LADVIN.
[WNAR N4]
(_[L'—l_l’i‘

SuTric
LIkn

[

INPUTS
GEToA
SYSIEM

A3NurNML
Ciol.
Sto.

LPEN, 13
MY AUS. ¢
PY

LOCK T
[:N) TS
AL i

_UP1Trp

VARSET
SINOQuUT

riLoen

SYSTEX
ABHARY
A3 ?!;‘A

c1ol.
axse i, @
Frze

AIWLN,
v,
POuRY, e

REWIHS

Figure 6.—Example of AFLOP.

154

PROGRAM AUTOMATED DOCUMENTATION METHODS 199

Some inherent disadvantages are the lack of superscript and subscript notation and the
omission of special characters such as the Greek alphabet. The preparation of equations
manuals can be only partially automated; the text could be maintained using this editor
with space allowed for the manual entering of the mathematical equations or diagrams.

The ATS system provides various administrative facilities such as a log of the documents
stored; the date, name, and size of each;and the total number of documents in storage. Com-
plete or partial storage reports may be requested. Each document may contain a password
that prevents anyone who does not know the password from accessing the document. The
password may be changed as often as desired to achieve some level of security.

The MATS manuals are partially maintained via ATS, and it is intended that all future
documentation be implemented with this system.

Brief mention should be made of other text-editing programs. One is the TRW General
Trajectory Documentor (GTDOC) program. It accepts a file of prebuilt text from tape or
cards, a card deck of text modifications, and a data set of trajectory parameters either from
tape or cards. The output is a standard-form document with the trajectory data positioned
properly in the text. GTDOC automates the preparation of trajectory-oriented publications.
It operates on the IBM 7094.

Although the TRW Timeshare System Editor is designed primarily to aid in preparing
executable programs, it incorporates commands useful in constructing other types of data
files.

COMPUTER-AIDED PROGRAM DEVELOPMENT PROPOSAL

Occasionally, it is advantageous to analyze the procedures normally pursued in the
development of a program. In addition to the normal preliminary functions of defining and
specifying the usual program performance criteria, the steps involved are—

(1) Creating a flowchart

(2) Defining the flowchart

(3) Generating the program code

(4) Analyzing the coding errors

(5) Analyzing the design inadequacies

(6) Iterating (2) through (5) until complete

(7) Documenting the subroutine(s) by redrawing the flowchart(s)
(8) Developing the program further by iterating (2) through (7)

Considerable time is expended in generating a flowchart from which the programmer/
analyst prepares the program, as any engineer or analyst can readily attest. Refining this
flowchart to introduce even one new equation requires providing the right space at the right
place (foresight), erasing and shifting the symbols with contents (copy errors), and redrawing
and shifting (copy errors).

The code is then revised to match the flowchart, which often results in inefficiency in
the code and a generally disorganized arrangement in both the sequence of operations and
format of the subroutine. Eventually, a new flowchart is necessary. Program evolution con-
sists of flowchart, code, analysis, flowchart.

200 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

CAPD proposes a system wherein the code and the final flowchart no longer appear as
steps in program development. This technology uses a graphics display console with charac-
ter, line, and vector capabilities. The IBM 2250 and the CDC Digigraphics consoles are
potential candidates. Time sharing is desirable for economic purposes only.

The initial flowchart is created with aid from the computer, which provides the flow-
chart symbols and automated spacing. Modifications are achieved with maximum ease and
reliability with the CAPD graphics program. The analysis proceeds at an accelerated pace
because CAPD permits the analyst to concentrate on the problem, aids in diagnosing the
flow diagram, and supplies definitive information on request or on repeated error occurrences.

CAPD Transiator

The translator takes input from the graphics flow diagram in terms of arithmetic and
logical expressions enclosed within the flowchart symbols. It transcribes this flowchart into
source language appropriate for compiler input by translating, for example, rectangles into
arithmetic statements, hexagons into CALLs, and triangles and diamonds into IF statements.

CAPD Conventions

The conventions follow FORTRAN closely and adopt common flowchart symbol
graphics representations:

Arithmetic statements: rectangle. The operators +,
-, * [, ** or 1 and the field delimiters =, ,, () carry
FORTRAN definitions.

Control statements
Unconditional transfer: directed arrow to a
— or .
statement number (sn) enclosed in an octagon
Conditional transfer

The colon is introduced for comparison of
expressions followed by directed arrows.

Equality: triangle

Inequality: diamond

PROGRAM AUTOMATED DOCUMENTATION METHODS 201

l=n »1 I=1+i 1:m
*
ABNAM {argl, arg2, . . argn) —>-
-_—_————— 1 —————

TRANSFER SYMBOL

—@

CAPD Graphics

A and B in the diagrams may each be arith-
metic expressions. These representations
encompass the GO TO and the IF statements.

— The DO statement is easily represented by a combina-

tion of arithmetic and conditional transfer expressions
indicating a loop on I from n to m by i.

Input/output (I/O) statements: rectangles. Format
statements are written and spaced exactly as they are
to appear on the printed page, ###.# or ####H##H#,
e.g.,

TIME ###.### WEIGHT ######## E##

Declarative statements: no flowchart symbol. These
follow the FORTRAN specifications except that the
words are prebuilt and the analyst may point to
EQUIVALENCE rather than spell it. END indicates
completion of the subroutine flowchart.

Subroutine execution: hexagon. The CALL or Return
Jump is internally generated.

Comments: perforated rectangles. These statements
may be placed anywhere on the flowchart such that

they do not interfere with any real statement except
the transfer symbol.

Exit: octagon. This is placed on the flowchart where
a RETURN statement is to be simulated.

The graphics program automates the flowcharting process by providing space for inser-
tion of new statements and by collapsing the flowchart or extending the arrows as erasures

are made.

Today’s technology provides at least three methods for sketching and writing on a dis-

play device.

(1) Typewriter—alphanumeric characters are immediately available; flowchart symbols

could be defined as—
[1 =rectangle

<> = diamond

[= beginning] =end
< = beginning > =end

202 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

(2) Menu—characters and symbols are presented on the display and they are initial-
ized by pointing to them with a light pen and indicating a location; e.g., pointing
at a rectangle causes a nominal sized rectangle to appear on the display face where
indicated, and statements are written inside it.

(3) Character recognition—the analyst draws a rectangle that is “recognized” by two
nearly horizontal and two nearly vertical lines; the display presents an internally
blocked and sized flowchart symbol or alphanumeric character at the current
cursor location.

In either of the latter two methods the flowchart symbol size is modified by “‘pulling on
its handle.” A similar method may be devised for moving the symbol with its expressions
intact to a different location on the display.

The method of character recognition is probably best suited to the normal analyst.
Flowchart symbol recognition combined with typewriter alphanumeric input may be most
efficient for keypunch operator use. A menu of flowchart symbols combined with type-
writer alphanumerics may seem simplest to implement.

CAPD /O

In program design it must be possible to initiate a flowchart and at a later date reintro-
duce it to the computer for additional development.

Inputs to CAPD consist of a graphics flowchart created by the analyst at the console
and a previously executed flowchart as output by CAPD. Conceivably, an optical scanner
device could be programmed to re-create the graphic flowchart identical to the original;
otherwise, an alternate form of input would be made available.

Outputs from CAPD consist of hard copy of the graphic flowchart (optional computer
output microfilm); source language for the appropriate compiler (possibly an option of
punching the source language on cards); and, in the event that an optical scanner is unfeasi-
ble for inputting a previously generated flowchart, a representation of the flowchart on
cards, tape, or other media.

The only restriction applicable to 1/O is that CAPD generates certain output such that
it may become input to itself. ’

CAPD Diagnostics

A flowchart convention may exist to prohibit the analyst from leaving an unfilled flow-
chart symbol; thus, if he does not know precisely what the symbol is to contain, he writes a
question mark (?) and is allowed to proceed. This permits CAPD to examine each flowchart
symbol and report omissions or errors as they occur. Validation of the calling sequence
arguments with library subroutines is a potential diagnostic. When CAPD receives the END
signal, it questions the analyst concerning the unfilled flowchart symbols, the undefined
transfer points, and formats. The diagnostic output provides the analyst with the correct
format of any symbol or expression and automatically displays itself if he commits an error
repeatedly.

PROGRAM AUTOMATED DOCUMENTATION METHODS 203

Successful compilation is almost assured; successful execution depends on the response
to the diagnostics. The analyst may elect to ignore or leave incomplete portions of the sub-
routines; CAPD will not inhibit use of the compiler if the user specifically requests to proceed.

Programming Reliability

The diagnostic remarks assist in immediate error recovery. Pictorial representations are
considerably less error prone than word images. Modifying a flowchart, where such is possi-
ble without copying it, is nearly always performed accurately, whereas generating the code
requires particular attention to the format, punctuation, and logical assumptions of the
language.

Quick Response and Rapid Reaction

The calendar time required to design or modify a program is drastically reduced by
automated regeneration of flowcharts as refinements or alterations are introduced and auto-
mated translation of flow diagrams into source language. The implementation of a new or
revised set of guidance equations, for example, would take relatively little time compared to
today’s normal turnaround time. This technology provides real-time systéms with fast and
accurate response.

Documentation

CAPD reverses the entire documentation procedure. Contracts normally oblige the
analyst to document the program. With CAPD the modus operandi is to “program the
document.” Flowcharting the subroutine is no longer necessary, and the remaining documen-
tation would be formatted as described in ADS to permit complete automation. Thus, the
portions of documentation that are always tedious and laborious to produce are bypassed.

A very important result is that the readability and reliability of the program are greatly
enhanced.

CAPD Recommendations

The implementation of CAPD should be seriously considered by developers of com-
puter software. Not only would the state of the art take a major stride forward, but con-
siderable cost effectiveness would ensue from the diminished time required to create, update,
maintain, and document a program.

RECOMMENDATIONS AND CONCLUSIONS

The computing industry has already accrued considerable benefit from the ANSI stand-
ards for the FORTRAN language; programs that adhere to these specifications transfer
readily to another computer system. There should be similar standardization for loaders.

As yet ANSI either has not addressed this problem or has not felt sufficiently fortified to
assert itself to this technically feasible but politically delicate problem.

204 : AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

NASA, an important customer of the computing industry, now asks whether program
documentation in a broad general sense can be automated. The response is assuredly positive
if standardized specifications can be outlined and accepted. Of course, each software devel-
oper has and can continue to automate his program documentation individually, but from
the buyer’s viewpoint cost effectiveness is not necessarily achieved. Certain standardizations
are considered in the following recommendations.

Program Specifications

The specifications for programs contained in requests for proposals occasionally present
problems to the responder by putting him in doubt as to the relative complexity, generality,
and capability of the product desired. This author recommends the topic as the subject of a
future symposium.

Manufacturer Software

Much internal program information that is immediately available from the compilers
and loaders is lost simply because it is not printed. As discussed in the section entitled
“Automated Documentation of Program Internal Communication,” forward and reverse sub-
routine and common reference information is invaluable documentation. It is recommended
that the manufacturer of software systems provide options to retrieve the information so
that all applicable items in table 1 may be marked affirmatively.

Program Development

The CAPD system discussed in the CAPD proposal should be seriously considered for
the best use of engineer and analyst time and to reduce a major portion of the effort ex-
pended in documenting a program.

Program Documentation

Many items of subroutine level documentation are considered standard; such as the
name, title, author, abstract, calling sequence, restrictions, and variables usage. The format
of these information files remains to be defined; this author recommends coded comments.

It may be presumptuous to anticipate that the industry could agree on those items to
be retained in the program listing, in the flowchart, and in the documentation. Therefore,
the code should contain options that permit the commentary to appear on the respective
documents as requested, thus avoiding duplication without sacrificing completeness. The
coded comment cards defined for the ADS program discussed represent a step in the correct
direction, but additional refinements along with modifications to the current compilers,
flowcharters, and documentation programs must be specified, standardized, and implemented.

Manuals Preparation

Input; output, and deck setups are fairly common subject titles'in most users manuals.
Having directed the development of a large, complex, general-purpose program, the author is

PROGRAM AUTOMATED DOCUMENTATION METHODS 205

aware of some inadequacies of this type of manual. The customer requires problem-oriented
information. ‘

It does seem clear that manuals should be generated with automated text editors as
mentioned earlier in the paper. An economy of operation is realized, particularly for high-
usage dynamically evolving programs, when the documentation can easily and accurately be
created and updated.

DISCUSSION

MEMBER OF THE AUDIENCE: 1 would like to know to what extent the information
you have here is available to the general public. In other words, is it proprietary?

LANZANO: Yes, the programs themselves are proprietary. They are for sale.

MEMBER OF THE AUDIENCE: You indicated that this was tied directly to your
trajectory determination program. Is there anything within that program that restricts its
use?

LANZANO: 1 did not mean to imply that it is tied directly to this program. It was
developed to support this program. It would support any program that follows the set of
standards that [defined. We also have other programs that will handle all machine-language
programs in a somewhat similar manner; therefore, they are strictly supportive programs.

MEMBER OF THE AUDIENCE: This is quite an involved system. How many years
has this been in process?

LANZANQO: 1 think it has actually been in process for 3 or 4 years. They are not dif-
ficult programs to write. Most of them have been written as kind of off-the-cuff things. The
ADS program is probably the more difficult because it mimics the compiler. In direct
answer to your question, it has evolved over a period of years, but the level of effort in pro-
ducing this is not particularly high.

MEMBER OF THE AUDIENCE: In this area of standardized loads, do you think an
extension in the FORTRAN standard that identifies the requirements for overlays and seg-
mentation would be useful?

LANZANO: I would like to see some standards defined for overlays and segmentation.
Whether such standards would be useful would depend. I have found the IBM 360 linkage
editor to be quite versatile. I think it is probably one of the best in the field right now. The
Univac 1108 looks very good to me, although I have not actually used it.

MEMBER OF THE AUDIENCE: The only other question I have is in the area of the
technical editor. Have you had any occasion to wish that the technical editor would do a
quick index for you on the document, so you could actually go through and take your docu-
ment and see how well you have used the same phraseology so that it becomes easier for the
reader? ’

LANZANO: This one does not, but there is one called QED developed by Time-Share
that will look for phrases.

MEMBER OF THE AUDIENCE: I mean a quick index of the whole document from
the form that you put it in.

LANZANO: I believe the one that Dr. Rich discussed actually put out a table of con-
tents at the end.

