TREE-STRUCTURED INFORMATION FILE
AND ITS SUBPROGRAM SUBTREE

Charles K. Mesztenyi
University of Maryland

The goal of automatic documentation of computer programs is to establish procedures,
called documentation programs, that can be implemented by computer programs. These
documentation programs may be divided into two categories: postmortem and develop-
mental documentation programs. In the former case, a computer program is presented as
input for documentation without any preparation; in the latter case, the program to be
documented must be developed so that it contains information necessary for the
documentation.

This paper is concerned only with the development documentation programs. A docu-
ment tree is defined as the syntactic representation of a document when it is divided into
subdivisions such as chapters and sections. A developmental tree is defined as a tree of in-
formation obtained during the course of the development of a computer program. The task
of documenting a computer program is then made equivalent to a transformation of its
developmental tree into a document tree. When this transformation is performed by a com-
puter program, the documentation can be achieved automatically.

There is no attempt made in this paper to define the document tree more precisely.
Only its tree structure is assumed. Efforts are concentrated on the developmental tree,
specifically a subtree of it; the subprogram tree is illustrated in more detail.

GENERAL APPROACH

In the development of documentation programs, two objectives are paramount.
Pieces of information about the program to be documented should be kept in a computer
file during the development of the program, and this information should not be dupli-
cated in the file. The importance of the first objective is obvious; the information should be
in a computer-readable form for documentation. The importance of the second objective
can be seen whenever a change is made during or after the development of the program to
be documented. One can easily make the mistake of changing information in one place and
forgetting about it in the other place. On the other hand, a change of information at a
certain place may require changes in other information.

The goal of this project is to structure the developmental file of information in a tree
structure (fig. 1) so that the nodes represent pieces of information. Any change in the

FRECEDING PAGE BLANK NOT FILMED

223

w
.

r

224 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

contents of a node may require changes in the
subtree rooted in that node. In certain cases
when the semantic structure is more complex,
i.e., it may represent a directed graph, pointers
may be used semantically.

The final documentation of a program is
produced from its developmental tree of in-
formation. A special tree-traversing program,
possibly interactive, selects out the contents
of nodes or subtrees, invokes certain docu-
mentation programs to transform these data into special format, and stacks this information
sequentially. The sequentially stacked information is processed by a listing program to pro-
duce the final printed document.

Obviously the main problem is the establishment of the developmental tree structure.
At this time, a complete tree structure cannot be proposed. The definition of certain types
of subtrees, however, has been accomplished. One of these, a source program subtree, is
described in detail.

Figure 1.—Tree structure.

FLOWCHARTING AND PROGRAM LISTINGS

Any large computer program should be segmented into subprograms, subroutines, and
procedures. The size of a subprogram may depend on its complexity and on its source
language. Documentation of a subprogram is usually done in three different forms: textual
description, flowchart, and source language listing.

The information should be structured as a tree. A source program is compiled
(assembled), which generates a relocatable program. Figure 2 then defines the tree.

Certain information such as size, entry points, and external references can be obtained
from the compiler-generated relocatable program. The rest of the information should be put
into the source program. Textual information can easily be placed into the source program
by grouped comment lines. Thus the source program may be defined as a tree, as seen in
figure 3.

To combine the flowchart with the source program creates some problems. A special

SUAPRIGRAM

yd

SOURCE PROGRAM

Figure 2.—Tree structure for subprogram.

RELOCATABLE PROGNA

SAURCE 2RIOGRAM

HEADING GROUP 1 eee GROUP N PROGRAM BODY

Figure 3.—Tree structure for source program.

TREE-STRUCTURED INFORMATION FILE AND ITS SUBPROGRAM SUBTREE 225

form called a sequence chart is used. This is not a complete flowchart in the standard sense,
but it forces a tree on the otherwise graph-structured flowchart. Then there is no problem
in listing a tree structure sequentially. The missing links of the graph structure, which appear
as transfer statements in the source program, can be implemented by semantic comments.
A special computer program for a source language can automatically flag these places.
Appendixes A, B, and C show the final printed forms of three different subprograms.
The right side of the lists contains the actual program statements; the left side is stored
internally as coded comments. The listing program takes care of this separation, but the
actual sequential form is kept in the vertical direction. Those flow lines that represent the
spanning tree of the program are shown with special characters, colons, periods, and aster-
isks. The groups of textual descriptions are separated by horizontal lines of asterisks. Both
the names of the groups and the characters used for line drawing are made flexible by changing an
internal table in the printing program. Special print programs are available: A “level” print
gives only those lines that are not indented more than a certain input parameter. A ‘“selec-
tive” print gives only a subtree; i.e., a defined group or a subtree of the body. The output
of these print routines, formatted for a document processor, can be kept in the computer.
This form of documentation has been very helpful in the project from which these
three examples were taken. During the debugging stage, it was easy to follow the sequence
chart to locate a specific segment of a subprogram without turning pages back and forth.
Obviously, to get these forms, a good editing program capable of performing insertions
and changes is needed. Appendixes D and E show appendix A in a developmental stage.
In appendix D the initial sequence chart is defined. In appendix E an update procedure is
shown. First the séquence chart is shown in a coding sheet geometrically; then its code is
placed in front of it. The code for a line is composed by two fields. The first field defines
either thie depth of the text, 0 to 9, and blanks for program statements or contains special
instructions, like group heading, change, and insert commands. The second field contains
subcodes, such as line drawing codes for sequence charts and line numbers for updating
commands. The text appears in the third field. In the actual input, the text field gets left
adjusted. The lines will not be represented because they are already defined by codes.
This procedure for writing a program has the following advantages:

(1) It provides an up-to-date documentation of the program in the developmental
stage.

(2) It forces a programmer to lay out his program so that it provides an automatic
documentation at any level.

(3) It provides a form for a project leader to define subprograms without details that
can be inserted by other programmers.

(4) It may be used for the present-day coded flowcharting programs.

Its main disadvantage is that it needs more work and discipline in the beginning.

SUMMARY

Printed documents have syntactic tree structures, such as titles, chapters, and sections.
The semantic contents of the document may have more complex graph structures, but these

226 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

structures are implemented by semantic references. A computer program has a graph structure
also, but a spanning tree on this graph can be defined with semantic references to the miss-
ing links. This developmental tree of a program may have a different arrangement from a
document tree. If the necessary information is contained in the developmental tree for the
document tree, a transformation program can produce a document tree from the develop-
mental tree. If the structures of the two trees are standardized, then this transformation can
be achieved automatically. Otherwise, an interactive transformation routine can achieve a
semiautomatic documentation.

APPENDIX A—PRINTED SUBPROGRAM: EXAMPLE 1

SUBROUTINE EXPRES (*»

AEEEEREEE RGN B ARG E KRR R AC SR RE R R G RRE RN EE R E SRRk Sy

TITLE
EXPRESSION TRANSLATOR, INFIX TO PREFIX
PRI IEL P I PR E PR LR SRS L PE R R 24 T2 2 2 2L FA RS LR 22 ST 2
ABSTRACT
ss2 AUTHOR: C,K,MESZTENYI
ss» DATE: JuLY 21, 1970
#ss LAGUAGE: FORTRAN S
s+ PROJECT: FORMAL « SUBROUTINE
sss SEARCH KEYS: NONE
I T ISR SRR TP P 22 PR 2222 R 222 2 R 2 2 22 222t 2 22T P 2
DATA STRUCTURE .
FORMAL o CMMN
INCLUDE CMMN
FORMAL + PWORD
INCLURE PWORD
w42 ARGUMENT: * ERROR RETURN
ISW INPUT ARGUMENT
AEAERREEREARER SRR AR R AR AR TR RSB AR E R E p B oy
SPECIFICATION
THIS IS A GENERALIZED EXPRESSION TRANSLATION ROUTINE FROM
INFIX TO PREFIX FORM, IT ASSUMES THAT THE CALLING ROUTINE
INITIAL1ZED THE SCANNER, THUS GSCANR GIVE THE CONSECUTIVE
LOGICAL SYMBOLS, THE ROUTINE MAY BE CALLED FROM 4 DIFFERENT
PLACES DEPENDING ON ISW:
1Sw 0 PROCESS AN ASSIGN STATEMENT: VARIABLE = EXPRESSION 1§
1 TRANSLATE THE EXPRESSION PART FROM A READ=IN DATA
WHICH MAY BE IN THE FORM: EXPRESSION }
OR VARIABLE = EXPRESSION }
2 PROCESS SUBSCRIPT EXPRESSION IN THE FORM:
EXPRESSION)
3 PROCESS AN EXPRESSION IN THE FORM:
EXPRESSION
IN THE FIRST CASE, THE INFORMATIONS FOR THE VARIABLE ARE
STORED IN NI+N2.N3, IN THE SECOND CASE. ONLY THE EXPRESSION
PART 1S RETAINED UPON RETURN., IN ALL CASES, THE TRANS|LATED
ANO SIMPLIFIED EXPRESSION IS PLACED ABOVE THE PUSH-DOWN
STACK WITH THE PUSH=DOWN STACK CONTAINING ONLY ONE ENTRY:
A COMMA WITH A COUNT CORRESPONDING THE NUMBER OF
EXPRESSIONS TO ACCOMODATE LISTS,
SREREAPEEEPEE BN A RARE LR R B EF XA IR AR AR ER R AR TN
METHOD .
AFTER INITIALIZATION, THE LOGICAL BCD SYMBOLS ARE OBTAINED
BY GSCANR AND PROCESSED ONE-BY-ONE IN A LOOP, PROCESSING A
SYMBOL IS DONE AS FOLLOW
FIRST, IT 1S CHECKED !F THE SYMBOL 15 IN CORRECT TEXT)
THEN
CONSTANTS~ ARE LINKED IN ABOVE THE PUSH-DOWN STACK};
VARJABLES = THEIR VALUES ARE OBTAINED FROM THE SYMBOL
TABLE AND LINKED ABOVE THE PUSH-DOWN STACK,
IF THE VARIABLE IS SUBSCRIPTED» OR IT IS A~
FUNCTION IDENTIFIERs THEN .THE NAME IS LINKED
IN ABOVE THE PUSH-DOWN STACK, AND A LEFT
PARENTH, 1S PLACED IN THE PUSH=-DOWN STACK WITH
COUNT=L,

ISW)

ATYLANS WVYD0AJINS SLI ANV FTLI NOLLVWIOANI ATINIONYLS-ATYL

LTt

LEFT PARENTH, = IS PLACED IN THE PUSH=DOWN
STACK WITH COUNT=0.

OPERATORS ~ THE PUSH-DOWN STACK IS EMPTIED OUT BY STKOUT
UNTIL 1TS TOP ELEMENT HAS PRECEDENCE NUMBER
EQUAL TO OR LESS THAN THE PRECEDENCE NUMPRER
OF THE OPERATOR. THEN THE OPERATOR 1S PLACED
IN THE PUSH-DOWN STACK, SIMPLIFICATION IS
PERFORMED BY STKOUT.

RIGHT PARENTH.) RIGH BRACKET = THE PUSH-DOWN STACK IS
EMPTIED OUT BY STKOUT UNTIL THE MATCHING LEFT
PARENTH, IS FOUND, IF THAT HAS A COUNT=0,
1T 1S DISCARDED TOGETHER WITH THE RIGHT
PARENTH, IF IT HAS A NON=ZERO COUNT,» THEN IT
INDICATES AN END OF SUBSCRIPTS (PAR,) OR END OF
FUNCTION ARGUMENTS (BRACKET), IN CASE OF END OF
SUBSCRIPTS,» THE SUBSCRIPYS ARE COLLECTED AND
THE VALUE OF THE SUBSCRIPTED VARIABLE 1S
OBTAINED FROM THE SYMBOL TABLE, WHICH IS
LINKED IN. IN CASE OF END OF ARGUMENT LIST,
THE FUNCTION IDENTIFIER IS OBTAINED AND LINKED
IN

SEMICOLON -~ INDICATES THE END OF EXPRESSION, THE PUSH-DOWN
STACK IS EMPTIEOD OUT BY STKOUT.

PR R R Y Ty P L PR I P s P i s P T
LOCAL VARIABLES

LOGICAL VARIABLE *SB' IS TRUE WHENEVER THE SCANNED SymBOL 1S

IN SUBSCRIPT LEVEL, 'SBC' VARIABLE CONTAINS THE DEPTH OF THIS
LEVEL.

LOGICAL VARIABLE *EQL' IS TRUE WHEN AN *=¢ HAD BEEN PROCESSED
ALREADY» THUS IT MAY NOT APPEAR AGAIN, '=t MAY ALSO NOT APPEAR
ON SUBSCRIPT LEVEL,

THE SYNMTAX OF EXPRESSIONS IS CHECKED AT EVERY SCANMED SYMBOL BY
MASKING 'TEST' WHICH WAS SET BY THE PREVIOUS SYMBOL. IF THE RESULT
IS NOT ZERO THEM THE EXPRESSION HAS SYNTACTIC ERROR, IN THE
FOLLOWING TABLE,'A' DENOTES AN ALPHANUMERIC NAME, *Nt* DENOTES A
NUMERIC CONSTANT,'1* DENOTES POSITIVE INTEGER:

SYMBOL MASKING BITS (DEC,) RESET TEST (DEC,)
INITIAL ASSIGN -—- 1000000 (64}
INITIAL OTHERS ——- 0100000 (32)

A 0001110 (1%) 0001000 (&)
Al 0001110 (14) 0100000 (32)
AL 1001110 (78) 0100000 (32)
N 1001110 (78) 0000100 (&)
1] 1001110 (78) 0000100 (4)
#l 1001110 (78) 0000100 (4)
(1001110 (78) 0100000 (32}
= 1110101 (117) 0000001 (1)
UNARY 4= 1011110 (94) 0010000 (16}
BINARY ¢ 1110001 (113} 0010000 (16}
* / s 1110001 (113) 0010000 (16)
’ 1110001 (113) 0100000 (32)
) AS SEPARATOR 1110001 (113) 0000100 (&)

bl 1110001 (113) 0000100 ()
) AS END OF SuUBS,1110001 (113) 0000010 (2)

8¢C

NOLLVINTZWND0d NVIDOUd YIINdNO0D 40 SUOHLINW AALVNOLNYV

1110001 (113) m——

'BRT! AND 'PAR* ARE USED TO COUNT THE BRACKETS AND
PARENTHESIS, RESPECTIVELY.

LOGICAL 'NEG' IS SET TO TRUE BY *=~' FOR THE NEXT
CHARACTER SCANNED ONLY,

FEBARBELEXE SR RS KR SRR AR AR R RE RN AR AR RS R AR E xR

SEQUENCE CHARY

INITIALIZE

L 3R R SR B IR 3R BRI BR N BRI N OB BL BE JE BE IR 2% 2K B AR B B IR N oy

oopP

PUSH=DOWN STACK WITH COMMA

SUBSCRIPT LEVEL

e oo 00 oo D e oo ve e

LOGICAL VARIABLES EQL AND ENDs INITIAL TESY

°s oa 4w oo

GO TO SUBSCRIPT START IF ISwz2

TO PROCESS CONSECUTIVE SYMBOL
GET SYMBOL

: 30
BRANCA BY TYPE OF SYMBOL

IND = 1,2+¢3+4 FOR
INTEGER, REALs IDENTIFIER, SPECJAL CHARACTER

oo INTEGéR
: 100

e REAL

: : 110
H LINK IN CONSTANT

: H 120
; CHANG& SIGN IF NEG IS TRUE

teee IDENTIFIER

: CHECK IS =1 FACTOR SHOULD BE LINKED IN

: . 40
: ERROR IF IT HAS MORE THAN 6 CHARACTERS

H I 50

BRANCH BY TERMINATING CHARACTER

LOGICAL SB,EQL/NEG

NP=IGETF1($990)
NPO=NP
C{NP)=20K10
D(NP)=1

S8z LFALSE.,

BRT = 0
=0

EQL= ISW .GE. 2

TEST=32

IF (ISW .EQ. 0) TEST=é4
NEG= JFALSE.

IF (ISW .EQ. 2) GO TO 180

CONTINUE
CALL GSCANR($990+IND/NLsITC,ICC)

GO TO (3100,110.40,60),IND

I1=0

GO 70 120

=3

IF (AND(TEST»78) . NE. 0) CALL FMLERR{$990,)N1,I,1)
TEST=4

JEILINKL(NP,I,N1)

IF (NEG) D(J)==D(J)

NEG= FALSE,
GO TO 30

INEG = 1
GO TO 500

IF (ICC JNE, 0) CALL FMLERR(S990,N1,1,2)

AAALINS WV IO0UdINS SLI ANV TTId NOLLVIWIOANI ATINIONYLSTTIL

6¢¢C

BRERRRDERBRRR AR RERBRRRRRRRAERRERR AR RRRERRRRR B RBTEBRRER RN

#9 00 00 90 €0 61 00 *9 00 @0 05 40 04 00 e P06 G0 ©0 06 24 9o ST T ST €0 S0 64 40 G5 TO 20 T 24 00 S5 06 S8 S5 as 00 G4 Be T4 BP 4¢ T4 00 €O 40 S0 20 S0 05 S 60 6 Se

90 26 60 00 4o se T4 G0 05 00 54 40 $4 GO 20 SO GE GG GO 00 0 44 4O 65 av 4 4T S0 SC L6 GO SO Pe 04 6 44 G G6 G4 SO C4 00 0T SO 04 40 Se 06

0

IDENTIFIER NOT TERMINATED BY (OR (

CHECK IF ITS VALUE MUST BE LINKED IN
.
ves NO# GET ITS NAME AS VALUE

®e 00 oo o0 oa 20 oo
. e oo wo o

ese YES» GET VALUE FROM SYMBOL TABLE
IF UNASSIGNED,» THEN GET
ITS NAME AS ITS VALUE

COPY EXPRESSION AND
LINK IT WITHOUT LEADING COMMA

oa oo o

IS IT A LIST

COMBINE COUNT FOR COMMA

INK IN EXPRESSION

o 00 20 [o0 90 %o 00 o o

IDENTIFIER TERMINATED BY LEFT
PARENTHESIS : Af

SUBSCRIPTED VARIABLE, LINK IN NAME
AND PLACE '(* WITH COUNT 1 INTO THE
STACK. INCREASE SUBSCRIPT LEVEL

XDENTiFIER TERMENATING WITH LEFT
BRACKET AC

GET FUNCTION IDENTIFIER,
BRANCH BY TYPE

eoe DIFFERENTIAL FUNCTION

eoe YES» EMPTY PUSH-DOWN STACK

130

140
150

160

170

180

190

60 TO (130s 180, 190), ITC + 1

IF (AND(TEST»14) ,NE, 0) CALL FMLERR($990,N1,1.1)

TEST=8
N2=0

IF (EQL +OR. SB) 60 TO 160

IF (N2 «NE. 0) CALL ILINK1(NPIN247¢N3)
J=6

IF (N2 .NE. 0) J=7

CALL ILINK1{N®)Jy)N1)

GO0 TO 30

CALL SYMBOL(3590,1)
IF (EPTR LEG. 0) GO TO 150

II=ICOPY0($990,EPTR)
I=NEXT(II)
J=LASTXX(3$990,11,1,0)

IF (H2(11) +EQ. 1) GO TO 170

CALL STKOUT($990,18)
IF (ITYP(NP) ,GT, 17} CALL FMLERR{$990,N1,1,3)
DINP)SDINP}+H2(11)=1

CALL RMOVFI(II)
CALL ILINKNI(NP,I,¥)
GO TO 30

IF (AND(TESTs14) (NE. 0) CALL FMLERR(3990,N1,1,1)

PAR = PAR+1
TEST=32

NP=ILINK1(NPs+17+1)
CALL ILINK1(NP,7,N1)
sB= ,TRUE,

SBC=SBC+1

GO TO 30

IF (AND(TEST»78) .NE., 0) .CALL FMLERR($9390,N1,1,1)

I=IFUNCT(N1)

IF (I .EG, 0) GO TO 210
BRY = BRT+1 .

IF {1 .6T. 1} GO TO 200

0€c

NOLLVINANNDO0d NVYID0Yd YHLNdWNOD 40 SIOHLIN dALVNOLNV

BB BB RPN PR RERBORRBERRR D RR PR RRRBRRER BB RERRRERENRERTERREREN .

46 90 26 €0 20 44 00 0 04 40 20 G4 06 20 FO 26 e OF G0 4 00 04 04 00 00 S5 O ga

®0 00 00 s 4o o0 40

(AN

MATH, OR FORMAL FUNCTION

NONE OF ABOVE, CHEGK SYMBOL TARLE

eos DEFINED FUNCTION
LINK IN EXPRESSION

.

.
.
*
.
.
.
.
.
.
.
.
.
.
.
]
.
.
.
»
H
.
.
.
.
.
.
Iy
.

vee UNDEFINED FUNCTION
LINK IN COMMA FOR

THE ARGUMENTS FOLLOWING

SPECIAL CHARACTERS
BRANCH BY THE SPECIAL CHARACTERS

©6 06 50 o ¢ BY G4 0F S0 B¢ Gu 0¥ 46 O T 00 S5 04 S8 0O 6 40 08 06 €4 4 s @

ese ILLEGAL SPECIAL CHARACTERS
ses LEFT BRACKET OR 10, ENCLOSED IN BRACKETS
o

1

UNDEFiNED FUNCTION ARGUMENT OR SUBSCRIPTED
FUNCTION CHECK IF IT 1S5 SUBSCRIPTED
FUNGTION

Sees YESe GO TO FUNCTION PART

LR N]

OF DEFINITION

NO»y Ii IS A DUMMY ARGUMENT.
THEN 1T MUST BE FOLLOWED BY

AN INTEGER AND RIGHT BRACKET
CHECK IF =1 FACTOR 1S NEEDED

®e 00 oo 2e 3u 2o ou 00

eoe RIGHT BRACKET]
END OF FUNCTION ARGUMENTS

200

210
220

230

240

60

270

280

285

NP=ILINK1(NP¢»23,0)
GO 7O 240

NP=ILINK1(NPe21:0)
H1(NP)=]
GO TO 240

N2=0

CALL SYMBOL ($990.1)

BRT = BRT+1

IF (EPTR .EG. 0) GO TO 230

11=1COPY0 (3990 EPTR)
I=NEXT(II)
JZLASTXX(39390,11+4+0)
NPZILINK2(NP+22¢0(11))
CALL ILINKNINP,I,J)
CALL IFREEL(ID)

GO 7O 240

NPZILINKL{NP228NY)

NPZILINKL{(NP,»1611)
TEST=32
60 TO 30

GO TO (270+2B800290+270+300+340¢35002700440,270¢27002700390+400¢
1 4200270,2700270+270943091270+1460,460+410,2700270¢270) N2

CALL FMLERR($990,N1/1+1)

IF (AND(TEST»78) NE. 0) CALL FMLERR($990/N1s1¢1)

IF (TEST .EG. 2) GO TO 220

INEG = 2

60 TO 500

CALL GSCANR($990, IND» IDT» ITC, ICC)

IF (IND +NE. 1 +OR. IOT «LE. 0) CALL FMLERR($990,ITCs1,1}
I=ILINKL(NP,S,10T)

CALL GSCANR($990INDsIOT2ITCy1ICC)

IF (IND «NE, 4 +OR, IDT +NE, 3) CALL FMLERR($990,ITCels1)
TEST=4

GO TO 30

dILANS WV IO0UdINS SLI ANV TTId NOLLVINHOANI ATINLONYLS-FIIL

|§14

LR R R SR 2L B K IR IR R IR BN K N IRRE BN NE NN IR AR O IR K SR X B RN I SRR RE IR NE N A N SR N SR AR WK N N N B AR N SR O AR AN

9 00 00 T4 €0 04 ¢0 40 00 40 40 To S0 ©¢ 0a Be SF GO 2 G0 00 44 05 48 P B4 S8 60 45 au 4 0u 48 VS S8 26 48 26 ¢4 44 5O S¢ 40 €0 S 4w OF 6 G4 S¢ 6 S8 4V TS S¢ 46 40

26 94 46 06 00 Go 40 S0 G0 48 40 54 w8 S0 00 20 o o

RIGHT PARENTHESIS)

CHECK IF THIS IS AN END OF SUBSCRIPT
OR THE END OF A SUBEXPRESSION

as 4o 95 40 sa oo e 0e ¢4 00 so se o

eese END OF SUBEXPRESSION»
REMOVE MATCHING * ('

END O

F

A SUBSCRIPT LIST

CHECK AND PACK SUBSCRIPTS

e 00 00 ©c 2e oo 50 S¢ %o o0 4o oo

CHECK IF THIS IS THE END OF
TRANSLATION (]1Sw=2)

H

ses NOy GO BACK TO VARIABLE PARTY
TO GET THE VALUE OF THE
SUBSCRIPTED VARIABLE

290

300

310

320

IF (AND(TEST»113) .NE, 0) CALL FMLERR($990,ITCs1,1)
BRT = BRT-1

IF (BRT «LT¢ 0) CALL FMLERR(S990+,ITCo1s4)
TEST=4

CALL STKOUT(%990,17)

IF (ITYP(NP) . NE, 16) CALL FMLERR($990/,1TCs3s1)
I1=D(NP)

J=NP

NP=LAST(NP)

CALL RMOVF1(J)

J=ITYP(NP)

IF (J LT, 21) CALL FMLERR($990,ITCei,4)

IF (J JEQ. 24) ITYP{(NP)=I+24

IF ((J +EQ. 24) AND. ((I+24) ,GT. 31))
1 CALL FMLERR($990¢D(NP) 1,3}

IF (J LT, 24) H2(NP)=I

CALL STKOUT($990,21)

G0 TO 30

IF (AND(TEST»113) .NE, 0) CALL FMLERR({$990,ITCr1,1)

PAR = PAR-1

IF (PAR +LT. 0) CALL FMLERR($990,ITCr1,4)

CALL STKOUT($990.18)

IF (ITYP(NP) NE. 17) CALL FMLERR($990/,ITCr1,&)
IF (D(NP) ,NE, 0) GO TO 310

I1=NP
NP=LAST(NP)
CALL RMOVFL(I)
TEST=4

GO TO 30

TEST=2

N2=D (NP)

IF (N2 «+GT. %) CALL FMLERR($990/N2¢0+5)

N3=0

SBC=S8C-1

IF (SBC .EQ. 0) SB= FALSE,

DO 320 KKz=N2=1+0¢~1

K=NEXT (NP)

IF (ITYP(K) oJNEs 0) CALL FMLERR($990,0(K)+2,13)

IF (D(K) +LTs 0 +ORs D(K) 6T, 5%1) CALL FMLERR($990+D(K),0+15)

FLD(9%KK+9,N3) = D(K)
CALL RMOVF1(K)

IF ((ISW .EG. 2) LAND, (.NOT, SB)) GO TO 330

JSNEXT(NP)
N1z=D(J)
K=NP

(44

NOILLV.INIWNNDO0A WV ID0Ud J4LNdNOD 40 SGOHLIN dALVHNOINY

LA K 3K JR BR B K B S JE N JE SE IR 2R B BN IR B 2 B BE R B 2R R N N BN BE R N BRI IR X BX IR BN SR B AN IR AR NE AR 3K 3R 2K 2K I BE N

SO 4% 00 40 4% 20 ¢ 20 4 20 40 00 A0 00 20 SE S5 U a4 4 4G SO S5 G4 Cu G0 40 °4 TS % S0 0 T sy G0 o4 UE G0 Gu G4 Be T 24 o #T TG AP G4 46 as SO ¢ 0 06 S0 ee oo

sees YES» RETURN FOR ISw=2

ee 00 D sosn on

MINUS -

SET 'NEG= AND LINK IN +
PLUS +

IS 1T UNARY OR BINARY

eos UNARY PLUS OR MINUS

tess BINARY 4 =

COMMON PARY FOR BINARY OPERATORS

MULTI%LICATION *

60 To:BINARY OPERATOR
EXPON%NTIAL -

60 TO BINARY OPERATOR
oxvxsiow /

e o

GO TO BINARY QPERATOR
SECOND ENTRY

LEFT PARENTHESIS ¢

e 2o on 2o

GO TO CHECK FOR -1 FACTOR

COMMA

se 00 20 ve oe

EGUAL SIGN]

. ee

330

340

350

360

370
380

390

400

420

a25

430

440

KP=LAST(NP)
CALL RMOVFN(K,J}
GO TO 140

CALL IFREEQ(NPQ)
RETURN

NEG= ,TRUE,

IF (AND(TEST:94) .NE. 0) GO TO 360

CALL STKOUT($990,18)
TEST=16
GO YO 30

J=18

1=2

IF (AND(TEST,113) NE, 0) CALL FMLERR($990:1TCels1}
TEST=16

CALL STKOUT($990+4)

NPZILINKL (NP J» 1)

60 YO 30

J=19
GO TO d70
Js20
G0 TO 370

Iz=2
J=19

GO TO 380

IF (AND(TEST¢78) «NEs 0) CALL FMLERR($990:,1TCr101)
PAR = PAR+Y

TEST=32

INEG = 3

GO TO 500
NP=ILINK1{NP¢17,0)
GO YO 30

IF {AND(TEST» 113} (NE, 0) CALL FMLERR(S990,17Cr»121)
TEST=32

CALL STKOUT($990/,18)

DINPIZDINP)+1

GO TO 30

IF (AND(TEST»117) ,NE. 0) CALL FMLERR($990,ITCr10,1}
TEST=1

ATYLINS WV ID0UIINS SLI ANV dT1d NOILVIWYOANI dZdNLONJLS-TdAL

€T

GET AND CHECK VARIABLE FOR ASSIGN
STATEMENT SAVE INFO, IN NN1,NN2sNN3

®0 0e @2 5 0e %o ve a0 44 04 44 Ba G0 ¥U 20 SO 40 60 S8 s 8 00
*s 20 s o 20 00 4o o5 ve e o0 oo o

2R SR 2K 2R 20N B BY N BE AN B OWE N B BE R B 2R 3K 3R B Y

4s0
GO BACK TO TRANSLATE EXPRESSION
ves SEMICOLON 3
ves APOSTROPHE ¢
60 TO END OF TRANSLATION
. H 460
END OF LOOP
END OF TRANSLATION
RETURN FOR 'ISW' = 1 AND 3
1
TRANSFER ASSIGNED VARIABLE INFORMATION
RETURN FOR 'ISW' =0
CHECK IF =1 FACTOR MUST BE INSERYED
INDICATED BY 'NEG'
ees NO» GO TO RETURN TO CALLING PLACE
: : 500
tees YES, LINK IT IN
RETURN TO CALLING PLACE
: 510
ERROR RETURN
990

1

1

1

IF (EGL +OR. SB) CALL FMLERR($990,ITCi1¢1)
EGL= JTRUE,.
CALL STKOUT($990,18)

IF (LITYP(NP) ,NE. 16) +OR, (D(NP) NE., 1) .OR., (LAST(NP) .NE,

CALL FMLERR($990,ITCr1,1)
KKZNEXT (NP)
IF (ISW +EG. 1) GO TO 450

IF {(KK +EGs 0) +ORs (ITYP(KK) «LTs 6) «ORs (ITYP(KK) «GT, 7))

CALL FMLERR{$990,1ITCr1,1)
NN1=D(KK)
NN2:=0
IF (ITYP(KK) ,EQ, 6) GO TO 450
NN3=ZNEXT (KK)
HN2ZITYP(NN3) =7
NN3=D(NN3}
CALL IFREEQ(KK)
NEXT(NP}=0

GO TO 30

IF (AND(TEST+113) .NE, 0) CALL FMLERR($990,ITCrirst)

IF (PAR NE.O ,OR. BRT o NE.O) CALL FMLERR($990,'()

CALL STKOUT (%990, 18)

IF ((ITYP(NP) (NE. 16) +OR. (LAST(NP} NE. 0)}
CALL FMLERR{$990,I1TC,»1,1)

IF (ISW «NE« 0) RETURN
IF («NOT. EGL) CALL FMLERR{$990,ITC,1.1)

NI=NN1
N2=NN2
N3=NN3

RETURN

IF {4,NOT. NEG) GO TO S10
NP = ILINK1(NP,19,2)
CALL ILINKL1(NP,0,=1)

NEG = L FALSE.

GO TO (50,285,425)» INEG

CALL IFREEO(NPQ)
RETURN 1

END

CI%1,8)

))

14 %4

NOILVINIWNO0G NV ID0Ud d4d1NdNOD 40 SAOHLINW AdLVHNOLINY

APPENDIX B—PRINTED SUBPROGRAM: EXAMPLE 2

2 I 2 R R R T T P e i PR TSR IR 222 L 2 Y

TITLE
MAIN PROGRAM FOR INTERACTIVE FORMAL SYSTEM

L e e P P P i L e T et P Y
SEQUENCE CHART
INITIALIZE BY CALLING FMLOPT

LOOP TO GET NEXY INPUT LINE
» READ LINE ’

IF 1T STARTS WITH *C * (COMMENT), GO TO GET NEXT
LINE

IF 1T STARTS WITH 'P ¢ (PRINT)» GO TO 'P ' ENTRY

LOoP %O GET STATEMENT TYPE IN J
»

-

END OF LOOP
J30» IT IS AN ASSIGN STATEMENT

REPRI&T ERASE+OPTION,ROLOUT)SAVE AND RESET
STATEMENTS

BRANCH BY TYPE
1e.s READ STATEMENT

see PRINT STATEMENT

P ¢ = PRINT

ess DUMP STATEMENT

w6 0 ¢ ma as s (/1 90 48 o0 |} oo o

BEEREREEEREERRERRE RSN RS REE R R RSN

e e @0 94 50 4o o 08 s 04 o0 Be 22 su A% 28 S0 as

seoe ERASE STATEMENT

99

110
100

111

22

PARAMETER 10IM = 10~

DIMENSION IN(14), INN(14), ITAB(IDIM)

EQUIVALENCE (IN(2)s INNCI))

DATA INN(14) / %3 /

DATA ITAB /*READ PRINT DUMP ERASE OPTIONCOMMEN!
4+ +"ROLOUTNCOUNTSAVE RESET '/

CALL FMLOPT (*INTI',0)

READ 100+, ENDz200, IN
FORMAT (13A6/,A2)
IF (FLD(0,12,IN{1)) 4EG. 1005K) GO TO 110

IF (FLD(0,12,IN(1)) +EG. 2505K) GO TO 22
J=0

DO 111 I = 1,IDIM
IF (IN(1) .EQ, ITAB(I})) J =1

IF (J) 160y

GO TO (121, 121, 121, 120, 120, 110, 120, 121+ 120,

CONTINUE
PRINT 101, IN
FORMAT (XA6,':',13A6)

GO TO (1lr 2¢ 3e°4s S¢ 110y 7¢ 84 9 10)s J

CALL FMLIOL (INN,O)
GO TO 110

CALL FMLI02 (INN,O)
G0 TO 110

FLD(0,6/IN(1)) = 0505K
CALL FML102 (IN, 0)
GO TO 110

CALL ONOMP

K 'z ‘P

IF (INN(1) JNE, ' ') K =0
CALL GUMP({K)

CALL OFFDMP

GO TO 110

CALL FMLERS (INN,0O)

FAYLANS WV ID0U4dNS SLI ANV 114 NOILVIWIOANI AN LONYLS-FTUL

S X4

[
r.

-

ses OPTION STATEMENT
ess ROLOUT STATEMENT
oo NCOUNT STATEMENT

vos SAVE éTATEMENT

60 %0 44 0% 00 45 40 04 @s e oy S0 @O o0
s o

ses RESET STATEMENT

ASSIGN STATEMENT

vo ve o

B RRRRERRRERERERRER R RRR

END OF FILE READ = STOP
- :
CEEEE P RS R AR MR g R g RN R AR IO e oo e ok ol W ool e o Ko o W

10

60
102

200

GO 70 110

CALL FMLOPT (INN, 0)

GO TO 110

CALL FMLOUT (INN,0)
GO TO 110

CALL COUNT
GO 70 110

CALL FMLSAV (INN)
G0 TO 110

CALL FMLRES (INN)
GO TO 99

PRINT 102, IN
FORMAT (X14A6)
CALL FMLASG (IN,0)
GO TO 110

STOP

ENO

9¢€¢

NOLLVINTNNDO0d WV YD0Ud YALNdWOD 40 SAOHLIW dALVIROLNV

APPENDIX C—PRINTED SUBPROGRAM: EXAMPLE 3

o.c"booo.aoo’.lOQQQOO00'0.0!0000.0‘0!:00..00'0..
TiTLe

COMMON DATA STRUCTURE FOR FORMAL SYSTEM

0000005000000 %0%0000000000000000080000008000008000
DaTa STUReRUE

ARRANGED IN) LABELED COMMONS

USED AS PROCEDURE, INCLUDED IN OTHER SUBPROGRAMS

CHMY

o LINKED STORAGE AREA
THE CORRESPONDING C(l)eDil) WORDS ARE ALWAYS
USED §K PAIRS FOR STORING AN ITEM,
THE OIMENSION QF ceD) CDIMy MAY BE CWANGED
DURING I~STALLATIONS
FIELDS I™ THE C=p WORDS DEPEND ON THE USAGE,
THEY ARE 0EFINED BY PROCEDURE *PWORD's GENERALLY
THE LAST 15 BIYS YN C 1S USED FOR LINKAGE OF
LINEAR ARRAYS,

o COMMON BLOCK FOR INDIVIODUAL POINTERS AND SWITCHMES

see FREE (AVAILABLE) STORAGE IN C*D
CINXNKNX) = FIRSY
CLILILILY ® LASTY LOCATION
THE LINEAR ARRAY IS LINKED IN TWE
LAST is BITS OF THE C=WwOQRDS»

1

*

»

.

L]

.

*

.

L]

*

[]

]

2

L]

L)

*

L]

[]

.

L]

®ses SYMBOL TABLE W{TH TREE STRUCTURE IN 4 LEVELS
. STORED IN Cwp AREAs FIELDS IN THE CeWOROD!
® ITYPB » LAST e NEXT

3 NS ® FIRST ENTRY [N CINS)=D(NS)
. ' .
L
[]
.
[]
L]
L]
-
L]
L]
*
.
L[]
»
[]
.
L]
L]
[]
L]
*
L]

’

NSB ®» SUBROUTINE LEVEL POINTER

! SUBPROGRAMS ARE IN ALPHABETIC ORDER

}

tsoe ITYPBINSB) » O

ieee DINSB) » ALPHMANUMERIC NAME oF THE
SUBROGRAM

se9 NSY & (AST{NSB) POINTER TO SYMBOL ENTRY
! SYMBOLS ARE IN ALPHABETIC ORDER

NSY] ® POINTER TO PRECEEDING SYMBOL

ENTRY

ese DINSY) » AUPHANUMERIC NAME OF THE
SYHBOL
¢os [TYPBUINSY)® TYPE OF SyYMBOL,
! SEE TABLE 1.
Teee 2311 INDIRECT REFERENCE
! LAST{NSY} POINTS YO AN OTHER
SYMBOL

o0 SECOND AND THIRD BIT ®)}
SUBSCRIPTED VARIABLE

. e mn s e er se Ss e S es e ws ee a0 we

- e 2o Be S 4w we s we 4w o= =

i
}
H
!

PROC

IMPLICIT INTEGER(A=Z)
PARAMETER ERROR = ERRERR

PARAMETER COIM = 2048
COMMON /FHLCM2/ CclCOIM)
COMMON /FMLCMI/ D(CDIN}

COMMON /FMLCMY/

NXNXNX» JLILIL

NS,

NSB

NSY NSY 1

A LANS WVAD0AdANS SLE ANV TTid NOLLYIWIOANI dA¥NIONYLS-IFAL

Lee

A8

{.-»\. 4

© 0 6 2 20 0 0 60306 60 0° B0 NS B SA TP OL S SEOS G0 0L OGP EL SO E SSS e O

e ma me sa w0 es me Ge S5 0% or ae we me G4 We Be me 40 se ae Sv T =6 WP We Be TE wm Pa Ve Bu St Db W we Tt ws wa TP S wa SE o, vo e B ws a6 v

ese TEMPQIRARY

N1
N2
N3
184

SU ® LASTI{NSY), POINTER TO
SUBSCRIPT ENTRY
SUBSCRIPTYS aARE ORDERED By
NUMBER OF SyBSCRIPTS: AND
BY BCTUAL SUBSCRIPTS, NSUI
® POINTER To PRECEEDING
SUBSCRIPFT ENTRY

N
3
i
!
H
'
1
H
tese BINSU) ® NUMERIC SUBSCRIPT,
i SEE TABLE 1.
Teee FIRST 3 BITS OF CINSU)=
H 2evs w110, UNASSIGNED,
H ' INDIRECILY REFERENCED
H LASTINSU) PQINTS
H Tn OTHER SYMBOL
H ENTRY
H see ®111, LAST SUBSCRIPY
! ENTRY,
' LAST(NSU) POINTS
i BACK TO 17S
¢ SymBOL = NSY
H ses ®Q10, NOQRMAL ENTRY
H LASTINSY) POINTS
) To EXPRESSION
{ H VALUE ® EPTR
$ees NEXTINSU) @ FORWARD LINK TO
NEXT SUBSCRIRY2ZERO FOR
THE LAST Ong
des OTHERS) LASTINSY) ® EPTR
EPTR & EXPRESSION POINTER

@t on 9e ah T PP 0L 4e Sewr 6t A6 S et we Sv oo e O 44 Se S8 S 4o e B4 wm 4w b
> @ 40w @b po Wb o W wr W W

eoe ITYPBLEPYR) = |6

eee LASTIEPTR) s O

eevr H2{EPTH) = NUMBER OF
EAPACSSunG (FUOR LISTS)

eve 1 LE2TR) =

tese 2Yy CXPRESSION 1S IN
Cosg

eoe NIT 7Z8ERDy EAPRESSiUN

1S O 24
tuDEX » HI(EPTRY

eee HIXT{RP) FORNAYD LINK
T THE LINMEARLY STORED
BAPRIS LN gHEN 1T IS
A% C3Terd ConSEZYTIVE
£UIIES AR 1 CCI]INING
TY TARLE [t

see NEAT(NSY) ® FOR4ady {,gNK TO NEXT
SfMdoL, ZERD FOR LAST ONC

NEXT(N33) = FOA4ARD LINK g NEXT

S5JaP0sAAM, 2Bt FIR LAST gueE

PO

e Be 5s ee eb Be Ss sa 4 ws 42 e e Ge B2 46 =e me 45 42 Te e 44 Ge CE G2 4o v we B s v 2% 0s G5 4o ov SO 4a e CE Ty 4u oo 4o S+ an v

VARIAJLES FOR

NAME OF A vaRlAZ{E

NUMBER OF SuRSCRIATS
SUBSCRIPT aQRD

3 0% | FOR SU33CRe OR NOT

NSU, NSV,

EPTR,

8¢¢

NOLLVINIWNDOd WY HDO0Ud dTLNdNOD 10 SAOHLIW TIALVNOLNY

ot -

ssv DRTION SW)TCHES

.

*

. xQTop?
. PRODEX
(] INTOS»
. VEThS#
. LaprOsh
. POWER
. BASE

L]

*

ser MISCELLANECUS

SinPse

BITSH

fouNgT
FYIRARG
CEFARC

DEFFUN

OPTION wOARD FR0M WX1T §YATEMENT
EXPAND POMERS OVER PRODUCT

EVALUATE INTEGER VALJED FUNCTIONS
EVALUATE *ATHESATICAL FUNCTIANS

USE DISTRIBUTI/E LAx

EXPAND SUMS RAISED TO POSe INTEGERS
0rle2:3 FCR BASE(D) ,t2), 010D, (E)

USEC BY STOUY ROUTINE FOR RECURSIVE
SIMPLIFICATION

USEN BY STCUT RCUTINES

1/0 UNIT AUHER [F 173 STATEMENTS
NUMBER OF FORTRAN TYPE ARGUMENTS
AUMBER ¢F ARGUMENTS IN a LEFINED
FUNCTION

i 1F CEFIMED FUNCTION, § FOR VARJABLE

NK ® START CF ARGUFMEKT ChAIN IN ¢=0 FOR Li1ST
OF VvARQ4HLES

1/0 BUFFER

NP ® PUSH=DUWN STACK POINTER [N (=0 ARER

CBUF =

Q0P 00000200090 C0000000030008500000 0000000000000

END

*

NIoN2¢N3, 1Yy

XQTOPT+PRODEX [NTGSH KATHSW EXPOSWH,POWER (BASE,

SIMPSAsBITSH, 10UNIT FTRARG,DEFARG ,DEFFUN NKCBUF NP

LOGICAL INTGS&sMATHSWIPOWERsSIMNPSWBITSWIPRODEX
REFERENCES ON

J2YLENS WVEDOAULENS S1T ANV TT1Id NOLLVWAOANI AFUNLONULS-ITHL

240 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

APPENDIX D—DEFINITION OF INITIAL SEQUENCE CHART

Coding Form

The coding form is divided into three fields: Field 1 consists of one character, the
general directive for input; field 2 contains special directives for flowchart elements and a
label for program statements; field 3 contains the text.

An initial program is illustrated below:

T EXPRESSION TRANSLATION
S INITIALIZE
0D LOOP TO PROCESS CONSECUTIVE SYMBOLS

1D BRANCH BY TYPE OF SYMBOL
2B INTEGER

2B REAL

2B IDENTIFIER

2BE SPECIAL CHARACTER

0 END OF LOOP
0 END OF TRANSLATION
END

Input Form
The actual input does not contain the lines; the text is left adjusted in field 3:

T EXPRESSION TRANSLATION
S INITIALIZE
OD LOOP TO PROCESS CONSECUTIVE SYMBOLS
1D BRANCH BY TYPE OF SYMBOL
2B INTEGER
2B REAL
2B IDENTIFIER
2BE SPECIAL CHARACTERS
0 END OF LOOP
0 END OF TRANSLATION
END

Output Form

The initial program can be listed with line numbers as follows:

LA E SRR R RS EE SRS R XX R X2 RR R X X R R X X

1= EXPRESSION TRANSLATION
I Z R XSRS SRRl Rl X2 2 R X 2 2 R A 2 X2 X X
SEQUENCE CHART
2=INITIALIZE

TREE-STRUCTURED INFORMATION FILE AND ITS SUBPROGRAM SUBTREE 241

3 =LOOP TO PROCESS CONSECUTIVE SYMBOLS

4=:
b=:
6=:
7=:
8=:

BRANCH BY TYPE OF SYMBOL
:...INTEGER

:...REAL

:...|DENTIFIER
:...SPECIAL CHARACTERS

9=END OF LOOP
10=END OF TRANSLATION

1=

END

APPENDIX E—EXAMPLE OF AN UPDATING PROCEDURE

+1
+R7D
1B

18
1BE

+R8D
18

18

1B

1B

1BE

SUBROUTINE EXPRES (*, ISW)

—IDENTIFIER NOT TERMINATED BY (OR |
—IDENTIFIER TERMINATED BY (
—IDENTIFIER TERMINATED BY |

NEG = .TRUE.
-+
J=18

J=19

* %

J=20

—

~/
J=19
l=-2

Note that the ‘+’ is an insertion directive. The number following + indicates the line
where the insertion is to be done. ‘R’ indicates that the levels of lines following to be in-
serted are defined relative to the line where the insertion occurs.

DISCUSSION

MEMBER OF THE AUDIENCE: I notice that you have many comments noted through
there. It seems to be about a two-to-one comment per statement. Is that about correct?

MESZTENYI: It depends on the program. It depends on the language, too. The com-
ments should be semantic, not repeated as an equation.

MEMBER OF THE AUDIENCE: Do you think that some of the discussions about what
we can get out of the compiler would fall into this?

MESZTENYI: 1 would like to have the compiler in the subroutine. I would like to do

242 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

that, but I would start here from the development point first, because this is where one
defines the program first.

MEMBER OF THE AUDIENCE: It seems that the compiler could give you certain in-
formation, and you could add some personal comments and have better descriptive material.
Is that true?

MESZTENYTI: It depends on what standpoint you look at. As I look at it, I want an
overall view from the beginning. Before I finish the program, I might want to give the speci-
fication a bigger flowchart type of definition that could be used right away.

MEMBER OF THE AUDIENCE: You are trying to get the flavor of the program that
you are working on for a certain purpose. The compiler will only come out with standard
words for any program. The compiler does not know what your program is, but you do.
With personal comments added to the program, what you have would provide additional
information.

MESZTENYI: I find it is hard for programmers to add something after they have
written the program. When they write, they do not mind writing down their comments.

MEMBER OF THE AUDIENCE: I am working from the viewpoint that we now have
difficulty at times getting any comments in, and if we provided a lead into the comments and
they went down the list and it did not make too much sense to them from a general view-
point, that they could add these rather well.

MESZTENYI: I agree that they could, and this is actually what is now done. I added
this myself.

The other part I would like to focus on a little bit is the programming part. If you start
from the sketch with those lines coming down and write, you make the programmer apply a
little discipline to the subject of program placement. For example, I try to avoid any
GO TO unless it is some kind of loop structure. I try to avoid going back. I find a loop for
each logic curve that I process, but it is not a DO statement, and I jump directly back to
the beginning. It probably would have been much nicer documenting it to go to the end of
this loop and comment it, which goes back and gets the next one. In this way it forces the
programmer to do a documented description because it is very hard to document a graph
that points out the actual information. The text or the description of the program is
sequential, but semantically it is a graph. A tree, which is sort of in-between, is much easier
to represent. You have cross-references, but the form is still a tree, and this is what I tried
to simulate.

MEMBER OF THE AUDIENCE: 1 think the speaker is trying to get the programmer
to write down what is being accomplished and when. Once in the right-hand side, the lan-
guage does not really matter. He is trying to read narrative text so that you get some con-
cept of when things happen and what really is happening because the specification of the
problem is written in a narrative form. He does that rather than deduce what was done from
how something is being done. I do not think a programmer is going to do that very well
because he is so involved in the mechanics that he cannot get out of them.

MEMBER OF THE AUDIENCE: It seems to me that here is a case where we can go
from the rationale of a subroutine and in an automated way feed in the programming lan-
guage statements. Is this what you had in mind? I could see how you actually tried to
develop your subroutine. I can see how you can start with the rationale of the subroutine

TREE-STRUCTURED INFORMATION FILE AND ITS SUBPROGRAM SUBTREE 243

first and then by using the type of coding that you did, you could automatically call for the
appropriate programming language statements.

MESZTENYI: Not automatically. I certainly think of more than just the semantic
type of description that I want to accomplish., What I want to accomplish eventually is the
statements.

