
N A S A C O N T R A C T O R

R E P O R T

N A S A C R - 2 1 5 9

c op
ILLIAC IV
SYSTEMS CHARACTERISTICS
AND PROGRAMMING MANUAL

Prepared by

BURROUGHS CORPORATION

Paoli, Pa. 19201

for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1973

1. Report No.

NASA CR-2159
2. Government Accession No.

4. Title and Subtitle

ILLIAC IV Systems Characteristics and Programming Manual

7. Author(s)

9. Performing Organizatidn Name and Address

Burroughs Corporation
Defense, Space and Special Systems Group
Paoli, PA 19201

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. and
Advanced Research Projects Agency
Arlington r Va.

3. Recipient's Catalog No.

5. Report Date
February 1973

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

AF 30(602)4144

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This is the latest edition of the Systems Characteristics and Programming Manual to be supplied by
the manufacturer of the ILLIAC IV Array and parallel disc memory system. The ILLIAC TV Array, a
control unit and sixty-four arithmetic processing units, is part of a large digital computing
system that employes a variety of processors and rotating storage devices. This document covers
the major aspects of the Array. Section 1 is devoted primarily to the Array systems characteristics.
Section 2 concerns programming characteristics that include a description of the word formats. The
next three sections, 3, 4, and 5 provide a definition and flow chart of each of the 292 instructions.
Sections 6 and 7 concern timing. There are two appendices: (a) Glossary of terms, and (b) Instruc-
tion index. This manual remains one of the basic references when programming for ILLIAC TV but
readers who anticipate learning to use the system will require other documents.

17. Key Words (Suggested by Author(s))

ILLIAC IV
Array Processor
Parallel Processing
Large Scale Computer

19. Security dassif. (of this report)

UNCLASSIFIED

18. Distribution Statement

UNLIMITED-UNCLASSIFIED

20. Security Classif. (of this page)

UNCLASSIFIED

21 . No. of Pages 22. Price"

362 6.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151

66000D
IL4-PM1
June 1, 1972

EXPLANATORY NOTE

This is the latest edition of the ILLIAC IV Systems Characteristics
and Programming Manual to be supplied by the manufacturer of ILLIAC IV.
It differs from the previous edition (IL4-PM1), Revision A, 30 January 1970
and Change No. 1, 30 June 1970) in four sections. The sections and pages
significantly affected are:

Section II, page 2-28, 2-40 and 2-47
Section III, pages 3-7 and 3-44
Section IV, pages divider overleaf, 4-2, 4-4, 4-16,

4-18, 4-42, 4-67, 4-69, 4-82, 4-91, 4-92,
4-93, 4-95, and 4-105

Section V, page 5-10 up to the instruction set, now
page 5-14, also instruction EFA now page 5-16.

All known errors have been corrected in this manual, the changes
noted below not withstanding.

There is an important change which is not noted in this document.
The control computer for the ILLIAC IV will not be a B6700, Instead,
control will reside in a large central memory to which multiple processors
and secondary storage devices will be attached. This configuration will
obviate the functions of the Buffer I/O Memory and B6700 that are des-
cribed herein.

Although these changes will make obsolete some of the information
in this manual, most of it is accurate and stable. This manual remains one
of the basic references when programming for the ILLIAC IV. Readers who
anticipate learning to use the ILLIAC IV will require other documents.

Staff
Institute for Advanced Computation
Ames Research Center
National Aeronautics & Space Administration
Moffett Field, California 94035

Mel W. Pirtle, Director
Institute for Advanced Computation

11

CONTENTS
P a e

I . SYSTEM CHARACTERISTICS. ' 1 - 1

System . . . ->. . '> . .' . . '. '•". '.• . 1-1

System Elements • . =." 1-3
Control Unit Functions " . 1-7

Control Units 1-11

Control Unit Structure 1-14
Timing Considerations 1-16
Sequence of Operations ' . . . " 1-16

Processing Units . . 1-20

Processing Element 1-21
Processing Element Memory 1-26
Memory Logic Unit 1-26

I/O System 1-27

B6700 I/O Control Computer . 1-27
ILLIAC IV Disk File Subsystem 1-29
ILLIAC IV I/O Subsystem 1-30

II. PROGRAMMING CHARACTERISTICS V . 2-1

Word Formats 2-1

Instruction Word Formats 2-1
Data Word Formats 2-2
Notation Conventions . • 2 - 4 ~

111

CONTENTS (CONT'D)

• .. _ Page

Configuration Control Logic 2-5

Forking and Joining 2-11
Basic CU Registers 2-12

Operational Control 2-12

Interrupt Handling ." 2-13
Interrupt, Mask, and Control Register Functions . . 2-17
Illegal Instruction/Ad dress Handling 2-20

Input-Output Control 2-23

Descriptor Controller 2-23
Disk File Control 2-44
Buffer I/O Memory 2-46
I/O Switch V 2-51

III. ADVAST INSTRUCTIONS 3-1

Instruction Format and Field Usage 3-1

ILLIAC IV Addressing 3-4

ADVAST Instruction Repertoire 3-8

ADVAST Instruction Descriptions 3-11

IV. FINST/PE INSTRUCTIONS 4-1

Instruction Format and Field Usage 4-1

FINST/ PE Instruction Repertoire .. 4-5

FINST/PE Instruction Descriptions 4-12

IV

CONTENTS (CONT'D)

Page

V. TEST MAINTENANCE UNIT 5-,!

Word Formats . . • . ' ' . ' . ' . . 5-3

B6700-TMU Communication : t. 5-5

Register Address Codes and Accessibility 5-7

Operation of the TMU 5-7

Diagnostic Features .." 5-9

TMU Display 5-10

TMU Instruction Set 5-15

VI. INSTRUCTION TIMING 6-1

VII. PERIPHERAL TIMING • • - . 7-1

I/O Subsystem Timing 7-1

B6790 Peripheral Device Timing 7-7

Appendix A . GLOSSARY . ' J . V A - l

Appendix B. INSTRUCTION INDEX • • • • • • . . ' B-l

ILLUSTRATIONS

Figure Page

1-1 Development of Parallelism Toward Improving
Program Throughput 1-2

1-2 ILLIAC IV System Configuration 1-4

1-3 Array Connectivity 1-4

1-4 Control Unit 1-6

1-5 Processing Element 1-10

1-6 Control Unit Block Diagram 1-12

1-7 Processing Unit Data Inputs and Outputs 1-20

1-8 Processing Element Block Diagram 1-22

1-9 ILLIAC IV Interface Diagram 1-28

2-1 Instruction Word Formats 2-2

2-2 FINST/PE Data Word Formats 2-3

2-3 AD VAST Data Word Formats 2-4

2-4 Descriptor Controller 2-24

2-5 Disk File Control 2-45

2-6 Buffer I/O Memory 2-48

2-7 PEM 32-Bit Mode Format 2-48

2-8 PEM 48-Bit Mode Format 2-49

2-9 48-Bit Mode PEM Address Modification 2-49

2-10 I/O Switch Configuration for 1024-Bit Transfer
Capability 2-50

2-11 Possible Expansion Elements to Basic IOS
Configuration for 4096-Bit Transfer Capability 2-50

5-1 Test Maintenance Unit : 5-2

5-2 TMU Display Keyboard Character Set 5-13

6-1 FINST Overlay Structure 6-2

VI

TABLES

Table

2-1 Functions of Bits in Interrupt (AIN) and Mask (AMR)
Registers . 2 - 1 8

2-2 Functions of Bits in CU Control Register (ACR) 2-19

2-3 Legal/Illegal CU Addresses , " 2-22

2-4 Valid Registers for AD VAST Instructions 2-22

2-5 Operations Specified by Instruction Field of I/O
Descriptor 2-34

3-1 ADVAST Instruction Op Codes 3-2

3-2 CU Determination Chart . 3-4

4-1 FINST/PE Instruction Op Codes 4-4

5-1 Address Codes for CU Registers 5-6

5-2 Bit Configurations of TCC Register and SRT Instruction
Data for Diagnostic Usage 5-8

6-1 ADVAST Instruction Timing 6-8

6-2 FINST/PE Instruction Timing 6-11

7-1 Peripheral Device Timing 7-8

Vll

INTRODUCTION

The ILLIAC IV is a large digital computing system that employs an advanced

concept of parallel design to achieve a major increase in processing capacity.

The nucleus of the system is the ILLIAC IV array, a matrix of 256 identical

processing units and four identical control units, configured into four identical

quadrants, each having 64 processing units under the direction of a control unit.

These array elements perform the computational tasks for the system.

Although the user of this manual will be concerned mainly with operations

internal to the array elements, he should have a working knowledge of the

ILLIAC IV system as a whole. To provide this coverage, Section I is devoted

in its entirety to a general discussion of the system organization and of the

major units within this organization. Emphasis has been given especially to

interactions between the major subsystems — ILLIAC IV array and I/O sub-

system — and the disk file and B6700 control computer. Section II presents

detailed information pertaining to programming characteristics. This section

includes bit allocation in the internal word formats, the implementation of the

configuration control logic, and the basic registers of the CU. It also includes

descriptions of the Interrupt Control (including Interrupt Handling) and Input-

Output Control. Section III provides a discourse and flow chart for each of the

machine instructions executed by ADVAST of the Control Unit. Section IV

similarly treats FINST/PE instructions executed by the array processing elements.

A detailed description of the functional characteristics and instructions exe-

cuted by the Test and Maintenance Unit is presented in Section V. Section VI

is devoted to a discussion of instruction timing. Section VII presents a dis-

cussion on peripheral timing. A glossary of terms which includes abbreviations

IX

frequently used throughout this manual, and a quick reference table for ADVAST,

array processing element, and TMU instructions are presented in the Appendices.

.These quick reference tables have also been included on the inside tabs of

sections III, IV, and V respectively.

CONTENTS

Page

SYSTEM 1-1

System Elements 1-3
Control Unit Functions 1-7

CONTROL UNITS 1-11

Control Unit Structure 1-14
Timing Considerations 1-16
Sequence of Operations 1-16

PROCESSING UNITS 1-20

Processing Element 1-21
Processing Element Memory . . ' . 1-26
Memory Logic Unit 1-26

I / O SYSTEM " 1-27

B6700 I/O Control Computer 1-27
ILLIAC IV Disk File System . . . • 1-29
ILLIAC IV I/O Subsystem 1-30

SECTION I

SYSTEM CHARACTERISTICS

SYSTEM

ILLIAC IV is a milestone in computer development in that it provides a level

of parallel processing many times that of conventional designs. To achieve

this, a new and fundamentally different approach is used. For important

classes of problems many repetitive loops of the same instruction string are

executed with different and independent data blocks for each loop. Parallelism

may be applied here by using N computers, each executing the identical pro-

gram concurrently on separate data blocks. This improves execution time by

a factor of N for that program. Similarly, since each computer is executing

the identical program, much of the control logic of the computers could be

made common. This is the fundamental proposition of the ILLIAC IV computer.

Figure 1-1 shows a three-step evolution from conventional design to the

ILLIAC IV. The top schematic (Figure 1-la) shows three identical program

loops (PI, P2, P3) operating on three different data blocks (Dl, D2, D3) in

series. The block element shown is a computer, without input-output or mem-

ory, that is functionally separated into a control part (CU) and an execution

part (PE). Figure 1-lb shows a simple application of parallelism that produces

a threefold increase in throughput. The final schematic, Figure 1-lc, shows

the ILLIAC IV approach with its simplifications and economies over the above

method.

1-1

a. Conventional Computer

(PI) •• CU PE « (01 J

CU PE

CU PE

b. Improved Throughput by Paralleling
Identical Processors

cu

PE

PE

PE

c. ILLIAC IV Approach, Using Common Control Logic
and Parallel Identical Processors

Figure 1-2. Development of Parallelism Toward Improving
Program Throughput

1-2

The ILLIAC IV has a distributed memory system which allows each execu-

tion element uninhibited access to an assigned data block within its own

memory. If a conventional, centralized memory were used, much time

would be wasted in routing data to and from such a memory.

SYSTEM ELEMENTS

The five major elements of the ILLIAC IV are the Control Unit (CU), the

Processing Unit (PU), the Input-Output (I/O) Subsystem, the Disk File, and the

B6T>QO Control Computer. Each PU is a combination of a Processing Element (PE),

Memory Logic Unit (MLU), and Processing Element Memory (PEM). A CU directly

governs 64 PUs configured in an array as illustrated in Figure 1-2. In the

ILLIAC IV system there are four such identical arrays called quadrants,

making a total of four CUs and 256 PUs. Quadrants may function separately

or in combination with one another.

Each PU is labeled with a unique three-digit octal number, the first octal

position identifying the quadrant number and the second two positions the PU

number within a quadrant. The four "nearest.neighbor" connections within

the array are defined in terms of direct, parallel, word transfer paths between

one PU and others having assigned labels differing by plus and minus eight,

and plus and minus one, from the value of the connected PU's label (Figure

1-3). Thus for example, PU033 can transfer directly to PUs 023, 032, 034,

and 043. This connectivity is maintained for both separate and joined quadrants,

and enables a variety of physical images to be modeled - for instance, weather

maps - by means of a combination of these transfer paths. All CUs have full-

word data interconnections for programs that operate in a multiquadrant mode.

The Burroughs parallel disk file is the principal secondary storage element,

the main storage being furnished by the PEMs. The disk file provides a stor-
fi

age capacity of 79 X 10 bits per Storage Unit and has a transfer rate of
c

502 X 10 bits per second. Data is routed in and out of the disk files through

1-3

Figure 1-2. ILLIAC IV System Configuration

J I

I I
4 - 5 -K - •h

Figure 1-3. Array Connectivity

1-4

the Input-Output (I/O) Subsystem which includes the Descriptor Control-

ler (DC), the I/O Switch (IOS), the Buffer I/O Memory (BIOM), and the Disk File

Controller (DFC).

The final unit of ILLIAC IV is a B6700 control computer system which serves

as the principal managing element for ILLIAC IV. Resident in this system are

executive control, facility allocation, peripheral-equipment control, I/O proces-

sing and initialization, fault recovery, and program assembly. The linkage

between the B6700 system and the Control Units is via the I/O subsystem, as

shown in Figure 1-2. It is this link that the B6700 uses to initialize the state

word in each CU, that is, setting the initial value of the program counter, the

control state, and array configuration. The array configuration identifies the

quadrants that are working jointly on the same program and the quadrants, if

any, that are operating independently. The B6700 also generates controls to

initiate the transfer of program and operands from disk to array memory before

allowing the CUs to proceed with program execution.

To effect a data transfer, the B6700 supplies the DC with a start address and

the number of words to be transferred. The DC then sends an intermediate

memory address to the CU and the disk file to initiate the transfer. Data

transfers are made directly between disk and the PEMs. Once the required

number of instructions and operands have been transferred from disk, the CU

will begin program execution by sending an instruction fetch to the PEMs.

Operation then proceeds in the conventional manner, under control of the

program stored in the PEMs. Instructions as well as operands may be trans-

ferred across quadrant boundaries, so they need be stored only once, regardless

of the configuration.

1-5

DC

.

TEST
MAINT.
UNIT
(TMU)

DC »

[NSTRUCTION
LOOK-
AHEAD

(ILA)

1

i . . .
MEMORY
SERVICE

UNIT
(MSU)

1
ii _

•*- ~ ~

1 f

1 FROM ALL PEMS

INSTRUCTION
STACK.

1
ADVANCED

STATION
(AD VAST)

1
FINAL INSTR.

QUEUE
(FINQ)

1
FINAL

STATION
(FINST)

•i I

r

OPERAND
STACK

^ .

CONTROL BUS DATA AND CONTROL MODE STATUS
ADDRESS BUS BUS FOR 64 PEs

TO 64 PEs

Figure 1-4. Control Unit

— DATA FLOW

^•M INSTRUCTION
FLOW

ADDRESS
FLOW

1-6

CONTROL UNIT FUNCTIONS

The Control Unit is that portion of the computer system which performs the

initial processing of instructions up to and including the generation of instruc-

tion microsequences for a step-by-step control of the Processing Element.

Figure 1-4 is a general block diagram of this single cabinet unit. Contained

within the CU are five operating sections which perform specialized processing

tasks on a semi-independent basis: Instruction Look-Ahead (ILA), Advanced

Station (ADVAST), Final Station (FINST), Memory Service Unit (MSU), and

Test Maintenance Unit (TMU).

The Instruction Look-Ahead (ILA) fetches instruction words in 8-word blocks

from array memory, placing them in a 64-word content-addressable memory

which serves as an instruction word stack. Individual instruction blocks are

assigned locations by an associative memory which holds all but the four low-

order bits of the instruction addresses. To access a word in the stack, the

instruction counter in ILA sends the instruction address to the associative

memory to locate the proper 8-word group in the instruction stack, and then

the four low-order bits will select the appropriate instruction. Program

loops of up to 128 instructions can be contained within the instruction stack.

From the instruction stack, instructions are fed in turn to the Advanced Station

(ADVAST), which is the principal housekeeper of the system. Such functions

as address arithmetic, loop control, mode control, .interrupt processing, and

configuration control are performed here. The hardware complement of

ADVAST consists of a 64-word operand stack, four full-word accumulators,

and a combinatorial logic unit, the latter used to perform functions such as

adds, compares, shifts, bit testing, etc. ADVAST permits all those functions

generally associated with program control to be performed concurrently with,

but in advance of and separate from, the main processing activity.

1-7

The primary function of the Final Station (FINST) is to act as an intermediary

between the main control, in ADVAST, and the 64 array elements, called

Processing Elements (PEs). The repertoire for ILLIAC IV has two general

categories of instructions: those executed at ADVAST and those executed in

the array elements but controlled by FINST. Since all instructions are first

at ADVAST, those instructions intended for execution at FINST are transferred

to FINST through the Final Queue (FINQ). This latter element is composed of

eight instruction storage positions, which perform a time-smoothing function. .

between ADVAST and FINST. FINST decodes each instruction into control '

microsequences, which are then broadcast to 64 array elements over a common

control bus. FINST also broadcasts full-word operands, shift counts, test ,

values, and other common array parameters on a data bus. In actual oper-

ation, the timing sequences of FINST and the 64 array elements are lock-

stepped, except for the fixed transmission delay of the intervening control bus.

The Memory Service Unit (MSU) resolves the conflicts of the three users of •

array memory: I/O, FINST, and ILA. It also transmits the appropriate

address to memory and exercises control over the memory cycle. As a

hardware expedient, the addresses are transmitted over the same common

data bus mentioned above.

The Test Maintenance Unit (TMU) provides the control channel to the Control

Unit from the B6700 and the manual maintenance panel.

The array element, or PE, is the execution portion of the configuration

depicted in Figure 1-lc. This unit is devoid of all independent control with

the exception of mode and some data-dependent conditions. Mode control

permits a PE to accept or ignore a broadcast control sequence from the CU,

dependent on its current status. The PE is essentially a four-register

1-8

arithmetic unit, as shown in Figure 1-5, capable of executing a full reper-

toire of instructions having 64-bit, 32-bit, or 8-bit operands. Further,

operations involving 64-bit and 32-bit words can be done in either fixed-point

or floating-point representation.

An arithmetic unit in the PE combines a carry-save adder tree and parallel

adder with carry look-ahead logic to give a floating-point multiply time on the

order of 450 nanoseconds and a floating-point add time of 250 nanoseconds.

Both times include post-normalization. Other logic elements include a barrel

switch for rapid data-shifting, a leading-one's detector, and a logic unit for

Boolean operations. Instruction operands may originate in any of the PE reg-

isters, the common data bus, the nearest orthogonal neighboring PEs, or

the array memory.

The array memory consists of 64 independent memory modules, called the

Processing Element Memory (PEM). Each PEM is collocated with and

assigned to a specific PE, providing storage for 2048 words of 64 bits

each. The memory is designed for a 250-nanosecond read or write cycle.

Memory addresses are supplied to the PEM from the memory address regis-

ter located in the PE. An address adder and an index register within the PE

permit memory indexing and addressing independent of FINST control. Such

independence provides important flexibility for addressing data stored in a

variety of ordered forms.

1-9

MEMORY OTHER PEs
MEMORY

DATA BUS

OTHER PEs

MEMORY

t

.R

REGISTER

A

REGISTER

B

REGISTER REGISTER

Figure 1-5. Processing Element

1-10

CONTROL UNITS

Each Control Unit (CU) directly controls a subarray of 64 Processing Units

(PU) in a quadrant. Four identical quadrants, or a total of four CUs and 256

PUs, comprise the ILLIAC IV system. Associated with each subarray of 64

PUs are certain common registers and logical elements which can be manip-

ulated by instructions; decoding of instructions for the Processing Elements

(PE) of the PUs is also common. Both the decoding functions and the

common registers and logic are contained within the CU. In the performance

of its primary task the CU manipulates two types of instructions in the instruc-

tion stream: those which it decodes for specifying commands to the PEs -

called FINST/PE instructions - and those which control the internal operation

of the CU —called ADVAST instructions. A block diagram showing the principal

logic elements of the CU is given in Figure 1-6. A block diagram of the CU

showing the general relationships of its main functional areas appeared pre-

viously as Figure 1-4.

CUs may function individually to control single quadrants (64PUs) or in arrays

of two (128 PUs), three (192 PUs), or four (256 PUs) quadrants. When operating

in parallel, the CUs specified by the array size control register (MCO) will re-

ceive identical program instructions during fetches from array memory. The

program instructions will be fetched from that portion of array memory con-

trolled by the CUs specified by the instruction fetch register (MCI). Program

instructions which are independent of array size, such as COR, CADD, ADD,

CHSA, etc., will be executed by all of the CUs specified by MCO. However,

program instructions which are array size dependent, such as LOAD, TCW,

RTL, RTG, etc., will be executed by the array whose CUs are specified by the

instruction execution register (MC2). Thus, the individual CUs will execute

identical instructions in parallel, but in combination will appear indistinguishable

from a single control unit having 64, 128, 192, or 256 processing units assigned

to it. Note that three-quadrant operation is restricted by the MCI and MC2

control bits, which may not specify three quadrants.

1-11

s
rt
f-,
bo

o
o
I — I
CQ

c
p

_co
o

CO

1-12

A CU shares the same physical array memory (PEMs.) with the PEs in its qua-

drant. The Memory Service Unit (MSU) of the CU determines which PEMs

shall be addressed for various memory operations according to the type of mem-

ory request received. For example, FINST/PE instructions which involve mem-

ory access require that all 64 PEMs of the quadrant must be addressed, whereas

the AD VAST instruction BIN requires that only eight specific PEMs of the quad-

rant be addressed (see Section HI, ILLIAC IV Addressing). The various users

of array memory include in their memory request to the MSU the following

number of bits to identify which PEMs are to be addressed:

FINST/PE - none

I/O - 2

ILA - 3

ADVAST (via FINST) - 6

Program steps are fetched in blocks from memory., and executed one at a

time. Although there is rather extensive machinery in the CU to reduce the

actual number of memory fetches from one fetch per program step, as in

conventional machines, to 0. 0025 or 0. 015 fetch per instruction, this machin-

ery requires no attention on the part of the user programmer.

The registers in the CU which can be manipulated by the program are as

follows: • .

AGO, AC1, AC2, AC3 - A set of 4 registers, 64-bits each, general
purpose accumulators (ACARs) -

ACR - ADVAST control register, which contains CU status
information (read only) ' '

ACU - Own quadrant number register (read only)

ADB - A set of 64 registers of 64 bits each, used as a scratch-pad
memory

1-13

AIN - ADVAST interrupt register

AMR - ADVAST interrupt mask register

ALR - A register which holds the address of pending memory
fetches .

MCO. MCI, MC2 - Array configuration control registers

IIA - ILA interrupt storage for ICR

ICR - ILA instruction counter

TRI - TMU input register'(read only)

TRO - TMU output register.

CONTROL UNIT STRUCTURE

As noted previously, the order code has two general types of instructions,

those used primarily to control the internal operations of the CU, called

ADVAST instructions, and those that are used primarily to control PU opera-

tion, called FINST/PE instructions. Since there is almost no interaction between the

two instruction types, they can be viewed as two interlaced but distinct in-

struction streams. The hardware of the CU takes advantage of this partial in-

dependence to execute the two streams independently but concurrently with one

another. The CU has five main functional areas, as follows:

Instruction Look Ahead (ILA). The instructions are fetched, in

8-word blocks of contiguous code, to a section of the CU called the

instruction look-ahead (ILA). An associative memory (IAM) de-

tects which blocks of instruction are currently in ILA storage.

The instruction counter (ICR) is also contained in ILA.

Advanced Station (ADVAST). Each instruction is passed in sequence

to the instruction register (AIR) of ADVAST. In ADVAST, each in-

struction is first examined to determine whether it is an ADVAST

instruction (to be executed exclusively in ADVAST) or a.FINST/PE

instruction (to be executed by the PEs). FINST/PE instructions

1-14

will be indexed, if required, within ADVAST and then placed in the

final queue (FINQ) for execution by the PEs. Some instructions

(e.g. , BIN, LOAD):may require additional processing in ADVAST

after they have been executed by the PEs.

Final Station (FINST). Instructions from ADVAST enter a section

of the CU called the final station (FINST), the outputs of which

manipulate the Processing Units. Instructions enter FINST through

a final queue (FINQ) so that the .instruction execution time a't

FINST is decoupled from that at ADVAST. Some instructions (e.g. ,

LOAD), are executed partially at ADVAST and partially at FINST

because of the need for PU operations to complete instruction
, r. *

execution. In general, the programmer need not be aware of over-

lap operation between the two1 sections, if it dccur's. ' '

Memory Service Unit (MSU). The memory service unit (MSU)
^ * *

receives requests for access to memory from three sources:

from FINST, from I LA, and from the Descriptor Con-

troller (DC) of the I/O subsystem. The MSU resolves con-

flicts among the three sources as well as conflicts concerned

with other FINST uses of the common paths from CU to memory.

ADVAST memory requests are servic.ed through FINST.

Test Maintenance Unit (TMU). The Test Maintenance Unit

(TMU) of the CU contains registers TRI and TRO (which are
' • - • • ^ • • ' ' . . . • . ' • • ' • ' • • ' ' • - . :

addressable by instructions in ADVAST) and provides paths to

the maintenance panel, the display, and the B6700 (via the DC).

The display will, on.external command, indicate the state of

certain CU registers. A por.tion of TMU serves as a "test in-

, struction" register for diagnostics, testing, .and initialization.

1-15

TIMING CONSIDERATIONS
•5 • .j- j ~* . .

Potential program difficulties are introduced by the asynchrony between ADVAST

and FINST since ADVAST may be executing instructions which occur later in the

instruction stream than those which are in FINQ awaiting execution. The hard-

ware automatically detects this potential problem and introduces the necessary

synchronism to prevent any difficulty. The only exceptions are bits ACR(09) . .

and ACR(13). A change in either of these bits is effective immediately, even on

any previous instructions which may remain unexecuted in FINST. If this presents

a problem, an instruction "FINQ" may precede the CACRB which changes

ACR(09) or ACR(13). On the other hand, changes in ACR(10), word size, are

synchronized; only those FINST/PE instructions which follow a CACRB(IO) in-

struction will be executed with the new word size. Other cases of asynchronism

are also found. For instance, the effects of some interrupts, such as arithmetic

fault interrupts, are somewhat delayed in reaching the interrupt register, AIN;

they may halt the program several instructions after the one which cause the

interrupt. Also, STORE instruction, whose address is in the program area,

will not change the execution of the program if the instruction in ILA were fetched

before the STORE was effective in memory.

SEQUENCE OF OPERATIONS

The operation of the ILLIAC IV system is somewhat complex due to the close

coupling of intraquadrant operations and the largely decoupled operation of

interquadrant functions. Superimposed on this structure are communications

with the B6700 and the DC, which can be considered as being asynchronous

with the ILLIAC IV system itself. The program flow described here traces the

actions of the various system components during the execution of a program.

System Start-Up

Upon receipt of a job request, the B6700 transfers the program and data base

to the ILLIAC IV disk system. The quadrants of the system which will be used

by the program are than selected, and a command issued to the TMU section

of the selected CU(s) causing operation to halt and initialization for the new

program to proceed. Then, by issuing commands to the DC, the B6700

1-16

initiates the loading of the disk-held program and data to the appropriate array

memory locations. Following the loading operation, the B6500 sends commands

to the TMU(s) which will start program execution after setting the instruction

counter (ICR) in the ILA section to the address of the first program instruction.

Fetching the Program

During initialization, the instruction look-ahead unit (ILA) is set to indicate that

there are no instructions in its instruction word storage (IWS). Immediately

upon start-up, the ILA will recognize this condition and request a block of in-

structions - via the MBIT- from the PE memories that contain the instruction'

addressed by the ICR. '

The IWS acts as an instruction queue for ADVAST. It holds up to 128 instructions

which are fetched in blocks of eight words, two instructions per word (16 in- ,

structions per block). Eight of these blocks are stored in IWS.

The conditions for initiating the fetch of a new block of instructions are, either

ICR has changed or the instruction currently being executed is one of the last

eight instructions in the block and the next block of instructions to be executed

is not found in IWS. A ring-of-eight counter is used to implement a first-in-

first-out discipline on the eight blocks of instructions in IWS. Thus, the in-

struction block which will be overlayed by the newly fetched instruction block

is the oldest block in terms of the time at which the blocks were fetched-from

array memory. If, however, the block presently being executed is the oldest

block (an exceptional case), the ring-of-eight counter is incremented a second

time such that the next oldest instruction block will be overlayed.

ADVAST Processing

As noted previously the primary function of ADVAST is to handle the house-

keeping tasks for the quadrant. From a programming point of view, FINST

and the PEs perform the "inner-loops" of a program while ADVAST handles

most of the "outer-loop" and control functions. Included in its tasks are the

processing of exception conditions, decision-making for interquadrant trans-

fers, and the handling of interrupts.

1-17

When ILA holds the instruction addressed by the ICR, the instruction is sent

to the ADVAST instruction register (AIR) which determines whether it is a

FINST/PE instruction or one that ADVAST will process. FINST/PE instruc-

tions are passed on to the final queue (FINQ) to await execution by FINST and

the PEs, whereas ADVAST instructions remain in the AIR while they are being

executed.

The ADVAST registers ACAR are primarily index/limit/increment registers that

are used to supply addresses for PE instructions, but can also be used as accumu-

lators for performing logical functions such as decision; ma king and data format-

ting. The ADVAST data buffer (ADB) is used in conjunction with the ACARs in

data formatting and information broadcasting to the PEs. The other registers

controlled by ADVAST are manipulated to effect program sequencing and control.
• , (' . ; . . }

Final Station Processing

FINST accepts instructions from ADVAST. and places them in the final queue

(FINQ), which is composed of an instruction queue (FIQ) and a data queue (FDQ).

FDQ holds the address values or data associated with the instruction in FIQ.

The eight locations in FINQ are serviced on a first-in, first-out basis. It is

FINQ that permits the concurrent operation of ADVAST and FINST.

Instructions are taken from FINQ in largely undecoded form, for execution in

the PE. FINST decodes these instructions into sets of microsequence com-

mands for the array of 64 PUs. In some cases synchronism with other quad-

rants in an array is required and is also accomplished in this process. The

generated microsequences contain the individual enable signals that control, the

information flow - both in direction (register to register.) and in time - within .

the PUs. The generated microsequences are then broadcast to all of the PUs

selected to accomplish the execution of the instruction.

1-18

Communication a n d Input-Output • • . . - •

Following the completion of processing on a block of data, additional data

and/or program, or the output of the processed data, may be required for sub-

sequent operations. Since the system has no input-output commands of its own,

the CU can place a request code in its TMU output register (TRO) to interrupt

the B6700 for servicing. This may be accomplished in either of two ways-.

. 1. TRO loaded interrupt - TCI'04: occurs when a word is loaded into

the TRO. The word is generated and loaded into the TRO pro-

grammatic ally. • • • • • : . ; • . J

2. CU halted interrupt - TCI 05: occurs when the CU has processed a .

HALT instruction. The HALT instruction causes the CU to complete

current operations and then wait for further instructions.

In either case, the B6700 reads the interrupt, via the DC, and interprets its

meaning. Numerous methods are available to the B6700 control program to

assume control of the array (see Section V, B6700-TMU Communications).

Other C U Functions ^ . . ' = - . ,

Other CU functions are largely ADVAST controlled. Synchronism require-

ments are delineated in the individual instruction descriptions and are accomp-

lished at either ADVAST or FINST, depending on the instruction set. The

Configuration Control description in Section II details the grouping of quadrants

into arrays and the synchronism that this implies. The interrupt system is'

described under Operational Control in Section II, which explains in more

detail'the uses and effects of the associated registers. The content'of the

control registers is also described so'that the features for programming

utility and service routines are available to the systems programmer.

1-19

PROCESSING UNITS

The Processing Unit (PU) functions as a general purpose computer under

the direction of an ILLIAC IV Control Unit (CU). All of the 256 Processing

Units in the ILLIAC IV system are electrically, mechanically, arid function-

ally identical, each PU consisting of a Processing Element (PE), a Memory

Logic Unit (MLU), and a Processing Element Memory (PEM). Data inputs

to. and outputs from the PE ,and PEM are shown in Figure 1-7. .

From Other
PEs

From
CU

- O ~ 1 r A > U

64J 64 I 64 I 64 |

Input/Output
Buffer

PE Enables 257^

Controls 8

. , Data 64

Mode 1

PROCESSING
ELEMENT

(PE)

64 Data

2 E. El

11 Mem.Addr.

8 MLU Enables

MEMORY
LOGIC
UNIT

(MLU)

64 Data • ,

64 Data

11 ' MAR

3 Enables . ̂

PROCESSING
. ELEMENT

MEMORY
(PEM)

Mode
to CU

64

To Other
PEs

164 p fiiS

CU CU
Buffer '

I/O
Buffer

Figure 1-7. Processing Unit Data Inputs and Outputs • —

For control, the PE and PEM receive enable signals from the CU for the

sequential enabling of data paths and logic during instruction execution

and for controlling the reading and writing in the PEM. In addition, the CU

1-20

monitors the control status of the PE by using one input and one output of

the PE mode logic. Similarly, it monitors the memory protect error

status of the PEM by using one input and one output of the MLU. "

PROCESSING ELEMENT (PE)_

The portion of the PE in which data manipulation is carried out is shown in

Figure 1-8; The principal registers are the five 64-bit data registers,

called the A, B, C, Ry and S registers, the 16-bit indexing'register, called-

'the X register, and the 16-bit memory address register. For speed in

addition, multiplication, and shifting, the logic gating is structured for

register-length parallel operation. Although devoid of many of the controls

usually associated with the conventional processing unit, the PE, under

main control of the FINST portion of the CU, can execute a full complement

of instructions involving arithmetic and data manipulations. Various

instructions allow the use of 64-bit.or 32-bit word sizes, in fixed-point or

floating-point representation, or combinations of 8-bit bytes using unsigned

notation. All operations are fully synchronized in the PE using a clock

supplied to it from the CU. A receiver-retiming register accomplishes this

function, synchronizing the controls with this clock before they are buffered

for distribution within the PE. Although most of the controls originate
? L

externally to the PE, some data-dependent controls, such as used in normal-

ization and signed-arithmetic operations, are generated within the PE.

Registers and Logic

Data Registers

The five 64-bit data registers are A, B, C, R, and S: The A register

functions as an accumulator, holding one of the operands in arithmetic

operations and receiving the' output of the adder at the conclusion of the

operation. The B register holds the second operand in arithmetic

1-21

(PE NUMBERS)

- 8 - 1 -M '+• 8 -8-1 -H+8 MLU CDB CONTROL UNIT

Figure 1-8. Processing Element Block Diagram

1-22

operations (with the' exception of multiply) and communicates most directly

with external data via the operand select gates. The C register is used in

certain instructions to save carries from the adder. The R register is the

routing register, used principally for communications with other PEs, and

at times for temporary storage of operands. The S register is used for

programmatic storage of an operand within the PE.

Mode Register -

This register contains eight bits which control some of the operations in the .

PE and store the PE faults and test results. Two of these bits, E and
t

El, called enable bits, are used to protect the A register, the S register,

and the memory information register (MIR) by controlling the gating of

clocks to the outer (bits 0-7, 40-63), and inner (bits 8-39) half-words. The

E bit alone also protects the 16-bit X register, which is the PE index reg-

ister. In 32-bit mode, E and El are independent; however, in 64-bit mode,

E should equal El. The two F bits (F and Fl) are used to store faults (under-

flow, overflow, etc.). The other four bits (G, H, I, and J) are used primarily

for temporary storage of test results and can be manipulated in conjunction

with the E's and F's. By instruction, any one mode bit may be sent from the
i y

CU or any one mode bit may be sent to the CU.

Shifting

A 64-bit, right shifting, end-around shift network, called the barrel switch

(BSW), is used in the PE. With the logic unit to select the input and with

full distribution of the output, the BSW allows generalized, one-clock-period

shifting of registers in the PE. BSW control is extensive to allow 64-bit or

32-bit words to be shifted left, right, end-off or end-around. Inputs to the

BSW control include shift amounts calculated by the address adder (ADA),

fixed amounts required in certain instructions, and variable amounts derived

1-23

from operands to be normalized or aligned. The normalization amount is

generated in a fast, parallel logic network, called the leading one detector

(LOD). From the output of the A register, the LOD finds the position of the

most significant nonzero bit in the 48-bit or 24-bit mantissa and generates

both the shift controls for the BSW and a binary number to be used for

exponent correction.

/

Adding and Multiplying

The requirements for the utmost speed in the addition and multiplication

instructions demand a fast parallel adder. The one chosen can function as

either a carry propagating adder using three levels of look-ahead, four bits

in the first group, four groups in the second section, and four sections in the

final level (achieving a 64-bit sum in a single clock period), or as a carry

save adder. To distinguish this adder from the other adders, it is called

the carry propagating adder (CPA) in spite of its dual purpose.

Eight-bit byte, gating allows the interruption of carry propagation for 8-bit

mode, and a carry register allows the saving of carries for use in the mul-

tiplication sequence.

For speed in multiplication, the eight least significant bits of the multiplier

are decoded for each iteration and the proper multiples of the multiplicand

are generated by the multiplicand select gates (MSG) which are added in a

quadruple layer of parallel carry save adders (CSA) with the CPA acting as the

fourth CSA. This logic accomplishes a single multiplication iteration, but

without full carry propagation, in one clock time.

Addressing

The 16-bit address adder (ADA) has inputs selected from among the X

register, the S register, and the operand select gates (OSG). Sums maybe

sent to the X register, to the 16-bit memory address register (MAR), and

to the BSW controls. The sum output is also sent to the OSG, but is used

only for transfers from the X register. With these data paths, all shift

1-24

counts and memory addresses are indexable by either the X or S register,

and the X register may be modified with the ADA.

Figure 1-8 shows that the portion of the PE used for memory addressing is

largely separated from the remainder of the PE. The sending of a memory

address over the common data bus through the OSG and the ADA (where it

may be indexed) into the MAR may be overlapped with any instruction not

using this part of the PE. This feature is valuable in decreasing PE or CU

idle time caused by waiting for information from memory, which takes

approximately seven clock times to complete one memory cycle.

Instructions

The instruction set of the PE is that of a large scale, general purpose digital

computer. Floating point arithmetic in both 64-bit and 32-bit words is

provided with options for rounding and normalization. Full word operations,

8-bit byte operations, operations ignoring exponents, operations using

exponents only, and operations ignoring the signs are provided in the arith-

metic group. A full set of tests is generated by making all registers address-

able and providing all possible comparisons. Test results are set into a mode

bit which may then be used to programmatically direct the flow of the instruc-

tions. Swaps of parts of 32-bit words, bit manipulation, shifts and logical

operations complete the instruction set.

Control

The PE is driven by a control unit to execute the instruction string contained

in the CU. The PE does not receive the raw instructions but rather the

fully decoded controls for the enabling of data paths and internal control

of the PE as in a microprogrammed computer. While many of these exter-

nal control inputs are used directly, some must be modified according to the

data in the PE. Extensively used modifiers include the mode bits E and El,

the signs of the A and B registers, and the output of the LOD.

1-25

There are a few internal control signals of the PE which are generated in

conjunction with data dependent operations such as multiplier decoding and-

mantissa normalization. These will be formed in the PE and are timed to

coincide with external controls.

PROCESSING'ELEMENT MEMORY (PEM) '

The PEM provides a high speed random access storage function,for the

ILLIAC IV Processing Unit (PU), of which it is a subunit. The other subunits

of the PU are the Processing Element (PE) and the Memory Logic Unit (MLU).

The PEM provides storage.'for 2048 words, each word being 64.bits in length.

The memory operates with a read cycle time of 250 nanoseconds (maximum),

a write cycle time of 250 'nanoseconds (maximum), and a data access time of

188 nanoseconds (maximum). The PEM interfaces with, and is directly con-

trolled by, the MLU.

The first 128 words of the .PEM can be write-protected by setting .the control

bit ACR 13. If a write is attempted in any of the-word locations 0 through 127

when ACR 13 is set, the memory write cycle will not occur.

MEMORY LOGIC UNIT (MLU)

The MLU controls and effects the transfer of data between the PEM, the

Control Unit Buffer (CUB), the PE, and I/O Subsystem. The MLU also enables

non-memory data transfers between the CUB and the PE. In addition to the con-

trol and timing circuitry for' PEM operations, the MLU contains a memory in-

formation register (MIR) used for the temporary storage of data to be written

into or read from the PEM. .

•-" 1-26

I/O SYSTEM

The three elements which perform the I/O function,are:

1, A Burroughs B6700 data processing system which, together with
its peripherals, performs all the functions of the control -
computer;

2, A Model II disk file system providing approximately one
billion bits of storage; -

3, An ILLIAC IV I/O subsystem which interfaces between the above
. . elements cand the ILLIAC: IV array subsystem. . .

The relationship of these elements to one another and to the array is illus-

trated in Figure 1-9 and described in the following paragraphs.

B6700 I/O CONTROL COMPUTER

The primary functions of the I/O control computer are to execute the super-

visory program for the ILLIAC IV complex and prepare programs for

ILLIAC IV. The supervisory program controls the operation of ILLIAC IV;

schedules jobs for the array; maintains the Model II disks; transmits control

words (descriptors) to the I/O Descriptor Controller, which directs

the I/O transactions in and out of the array;.responds to interrupt conditions

from the array or elsewhere; and communicates with the operator. •

The initial B6700 data processing system* necessary to run.the supervisory

program and prepare user programs consists of: one processor, 32 K words

of memory, an I/O multiplexer with one peripheral control cabinet, and

suitable peripherals including a disk file with 10*7 bytes of storage. Associa-

ted with the multiplexer are controller units which interface with the various

peripherals. These are Burroughs units for the standard peripherals: mag-

netic tape, disk file, line printer, card reader, card punch, and console

printer/keyboard. The B6700can be expanded from this initial complement

* Refer to B6700/B7700 Characteristics Manual.
1-27

J
§ss
Is*

ee- '
ww ^

S gl~

tU)
rt

.-— Q
0)
o
d

Gi—*

>i—i

u

O3

0)
h

') .

1-28

of equipment to include an additional processor and multiplexer as well as

additional memory (up to 512 K words). On-line communication may be

added by including a Datacom processor, multiline controls, and line

adapters.

The interface between the I/O subsystem and the I/O control computer is de-

signed to take advantage of the existing properties of the B6700, while keeping

simple the interface to the ILLLAC IV array. Control words are received over

the scan bus interface provided from the j-B6 7,00 processor, and results are

described in words transmitted back over this same interface.

Two data paths exist between theB6700 subsystem and the I/O subsystem, one

being the Buffer I/O Memory (BIOM), and the other being directly into the

Descriptor Controller (DC). The BIOM functions as a module of B6700 memory,

as seen from the B6700 side, handling data transfers from the B6700 into the j

ILLIAC IV I/O subsystem. On the ILLIAC IV side,, the BIOM can transfer either,

into the disk file, or directly into' array memory. The data path to the DC uses

the 48-bit word interface of the multiplexer, being a connection into the multi-1

' ' ff

plexer's memory bus whenever the multiplexer is not using it. •• All interfaces \

between B6700 and I/O subsystem use bidirectional cables; 20 lines for address,

48 bits for data, 3 bits for tag bits accompanying the data, ;8 bits of control, and

1 bit of parity. . ' • ' . ' • ' . • ' ' ' . ' •

ILLIAC IV DISK FILE SYSTEM

The ILLIAC IV disk file system (not to be confused with disk file which is part

of the B6700 control computer equipment) will initially consist of two Model II

disk files with thirteen storage;units. Each Model II disk file includes an

electronics unit, a concentrator, 'and Burroughs Model II mechanisms, with

sufficient electronic circuitry for reading or writing simultaneously on 128

tracks of one disk. Each disk has a capacity of 79, 257, 600 bits and a maximum

1-29

of sixteen such disks may be connected to an electronics unit and its associated

concentrator. The electronics unit houses certain common electronics,

registers for providing conversion of information from disk-serial to control -

unit-parallel form, control logic, .power, motor control, and the air pressure

system. Read amplifiers are housed in the concentrator. Approximate transfer

rate to and from the Disk File Controller is 502 X 10^ bits per second and the

average access time is 19. 6 milliseconds. The interface between each electron-

ics unit and its controller in the DPC is 384 bidirectional data lines and

25 control-address lines. The track layout consists of 256 active infor-

mation tracks per disk face, arranged in one zone.

ILLIAC IV I/O SUBSYSTEM

The I/O subsystem is shown in Figure 1-9 as consisting of the I/O

Descriptor Controller (DC), I/O Switch (IOS), Buffer I/O Memory (BIOM),

and Disk File Controller (DFC). The functions performed by these elements

are briefly described below.

The DFC consists of two controllers which execute descriptors held in DC

for transfers between disk and array, disk and BIOM, BIOM and array, and

real-time link and array. All transfers involving the array are via the IOS.

As previously noted, the BIOM acts as a memory module for the B6700 system.

Within the I/O subsystem, the BIOM has a 128-bit bidirectional interface with

each of the two DFC units. All transfers through this interface are under the

control of DFC descriptors.

The IOS unit buffers and distributes data between the DFC and the ILLIAC IV

array. The DC is also located in the IOS cabinet. The IOS has a 256-bit

bidirectional interface with each of the two DFC units and initially a 1024-bit

bidirectional interface with the ILLIAC IV array. The IOS design provides

for possible future expansion of the real-time link with the array to 4096 bits.

1-30

The 'DC receives pairs of control words, called "scan descriptor, area de-

scriptor", over the scan bus interface. The DC fetches I/O descriptors over

the multiplexer word interface in response to the control words; sometimes an

entire sequence of I/O descriptors will be initiated by one pair of control words.

The DC sends result descriptors back over the scan bus upon the completion

of I/O transactions. Certain I/O descriptors cause the DC to send words of.

data, fetched over the multiplexer word interface, to the CU., where they are

treated as instructions by the TMU. There is a 48-bit bidirectional interface

between DC and TMU for'these transfers: . " " ' • •

1-31

CONTENTS

Page

WORD FORMATS 2-1

Instruction Word Formats 2-1
Data Word Formats 2-2
Notation Conventions 2-4

CONFIGURATION CONTROL LOGIC 2-5

Forking and Joining . 2-11
Basic CU Registers 2-12

OPERATIONAL CONTROL 2-12

Interrupt Handling 2-13
Interrupt, Mask, and Control Register Functions ... 2-17
Illegal Instruction/Address Handling 2-20

IN PUT-OUT PUT CONTROL 2-23

Descriptor Controller 2-23
Scan Bus 2—26
Scan Descriptor Usage • 2-26
I/O Descriptor Usage 2-32
Result Descriptor Usage 2-38

Disk File Control 2-44
Buffer I/O Memory 2-46
I/O Switch 2-51

SECTION II

PROGRAMMING CHARACTERISTICS

WORD FORMATS

There are two general categories of instructions in ILLIAC IV, called ADVAST

instructions and FINST/PE instructions. The main distinction between them is

that ADVAST instructions are used primarily for quadrant-related control func-

tions (that is, manipulating logical control elements common to all 64 PEs in

a quadrant), whereas FINST/PE instructions are associated more with the

control of individual PEs within a quadrant. In this respect, ADVAST

instructions are primarily CU related instructions, in that they are executed

in the advanced station (ADVAST) section of the CU, while FINST/PE instruc-

tions are primarily PE related instructions, although principal control resides

in the FINST section of the CU. Both types of instructions employ a 32-bit

word length. Data words, on the other hand, are 64 bits in length. Opera-

tions involving data words may employ 32-bit or 64-bit word sizes, in either

floating-point or fixed-point representation, or may use combinations of 8-bit

bytes in unsigned notation. These are more fully explained in this section.

INSTRUCTION WORD FORMATS

All instruction words are 32 bits in length, although some may not use all fields

available. Most instruction words must contain an operation field, that is,

nine bits which specify the particular operation code, arid a parity bit (excep-

tions are the ADVAST instructions ALIT, SLIT, and JUMP). Most instruction

2-1

ADVAST INSTRUCTIONS

NO. OF
BITS IN GROUP:

BIT NO.: 0

FIELD A
OP CODE

INDEX

INFORMATION

SKIP

.FIELD

FIRST

OPERAND

GLOBAL/

LOCAL
PARITY

FIELD B
OP CODE

SECOND

. OPERAND

0 4 5 78 15 16 17 18 19 20 23 24 i— — 31

F1NST/PE INSTRUCTIONS

NO. OF
BITS IN GROUP.

RIT wn-

5 3 4 1 3 16 .

FIELD A
OP CODE

INDEX
INFORMATION

FIELD B
OP CODE

PARITY
ADDRESS

USE
ADDRESS

n a n 7 A I I 1 ? 1 3 1 5 I E 3 1

Figure 2-1. Instruction Word Formats

words also contain a 3 -bit index field, the first bit of which indicates if an

accumulator register is to be used for address modification, and the next two

bits identify the specific accumulator to be used. Figure 2-1 shows the general

formats for the two types of instruction words. Field usage is explained in

detail on page 3-1 for ADVAST instructions and on page 4-1 forFINST/PE

instructions.

DATA WORD FORMATS

Various options in the FINST/PE instruction repertoire permit the use of six

basic bit configurations for data words,, as shown in Figure 2-2. For the most

part, bit usage is obvious in referring to the formats. For floating-point

quantities, however, the bit assignments for the various fields are relative to

the equation: .

where A represents the floating-point quantity being expressed, S is the

content of the sign field, M is the content of the mantissa field stated as a

binary fraction, and E is the content of the exponent field (D = 16384 or 64,

in decimal, respectively for 64-bit and 32-bit word sizes).

2-2

64-Bit, Floating Point

Bit No.: . ,-°
SIGN OF

MANTISSA EXPONENT MANTISSA

Bit No.: 8 9

32-Bit, Floating Point

15 16 . 39 40 •

MANTISSA EXPONENT MANTISSA
.EXPONENT MANTISSA MANTISSA

Working Bite: 0 1
° mitAwouter outer

•7 0. 1: 7 8.-inner inner inner 31 8
outer

63

31

Bit No.: 0

64-Bit, Fixed Point (no sign) or Logical

63

OPERAND (NO SIGN BIT)

Bit No. :

48-Bit. Fixed Point (no exponent)

15 16 -63

Bit No. :

Working Bits: 0outer

24-Bit , Fixed Point (no exponents)

-7 8 9 15 16 39 40

OPERAND
0.inner

8
inner

31 8
outer

63

-31

8-Bit, Fixed Point (no signs)

Bit No. : 0 7 8 15 16 -23 24 31 32 39 40 47 48 5556- 63

BYTE #1 BYTE #2 BYTE *3 BYTE #4 BYTE #5 BYTE #6 BYTE #7 BYTE #8

Figure 2-2. FINST/PE Data Word Formats

2-3

The ADVAST instruction repertoire permits the use of three different bit con-

figurations for data words, two of which are shown in Figure 2-3. Thetse data ,

words are used in conjunction.with the .ADVAST Instructions INCRXC, TXE,,

TXG, and TXL (Figure 2-3a) and DUPI and DUPO (Figure 2-3b). . The third .

format is that of a 64-bit logical operand, as shown in Figure 2-2 (64-Bit, Fixed

Point or Logical). • ' : ' '•" >•'

Bit No. :

HALF-WORD
IND.,

SIGN OF
. INCREMENT

MAG. OF '
INCREMENT LIMIT

/ ' . •
CURRENT '

INDEX VALUE

(a) For Instructions INCRXC, TXE, TXG, and TXL

Bit No. :' 0U 1 O JM 1U 00

OUTER HALF WORD INNER HALF WORD OUTER HALF WORD

1

(b) For Instructions DUPI and DUPO

Figure 2-3. ADVAST Data Word Formats

NOTATION CONVENTIONS

All words, registers, and fields in ILLIAC IV are numbered starting from

zero and ascending in a left to right direction or from most significant to least

significant bit position. The length of a data field is specified using the

following notation:

(REGISTER NAME) (High order bit position): (Length of field in bits)

For example, bit positions 40 through 63 of an accumulator register (ACAR)

are referenced as ACAR 40:24.

2-4

It is sometimes necessary to replace the position or length value by an expres-

sion which is also described using the same notation. These expressions are

contained in parentheses which have the meaning "the value represented by".

Ah 'example of this notation is 'the identification of a bit position in an ACAR

register that is defined in the low order bits of the ADVAST instruction

register (AIR). This would be written as ACAR (AIR 26:6):1.
i . . •

Exponents in ILLIAC are represented by an "excess code" notation

(also called the "offset code"), rather than by sign and magnitude. This

means that the zero value (offset base) of the exponent is represented by a

"one" in the most significant bit followed by all "zeros". Positive exponents

are formed by adding the exponent value to the offset base value; negative

exponents are formed by subtracting the exponent absolute value from the offset

base value. ' '

Examples of excess code notation are given below for the 32-bit and 64-bit

modes. For convenience, octal numbers are used.
t • ' . . . • . . •

Exponent 32-Bit Mode • 64-Bit Mode
Value (Exponent has 7 bits) (Exponent has 15 bits)

0 100 40000

+1 101 40001

-1 077 37777

Note that the peculiarity of having two representations for zero in sign-magni-

tude notation, namely +0 and -0, does not apply to excess code notation.

CONFIGURATION CONTROL LOGIC

The purpose of the configuration control logic is to specify the array config-

uration (one, two, three, or four CUs) during the execution of program

instructions. The array configuration is specified by the following:

1. The configuration control registers MCO, MCI, and MC2;

2-5

'••• 2. The local/global bit (bit 18) of the ADVAST instruction to be
executed, when either the instruction is executed entirely in

'. ' • ADVAST or passed to FINQ'for subsequent execution by"'FINST
!
 : and the MSU;

3. The .FINST/PE instructions RTL,and RTG;

4. For certain ADVAST instructions ^CCB, COPY, ORAC, etc.),
bits ADR 0:2;

5. For ADVAST memory instructions (LOAD, STORE, etc.)
bit(s) 56 and/or 57 of the specified accumulator which are
passed to FINQ for subsequent execution by FINST and.the MSU.

All of the functional units of the CU except the TMU '(ILA, FINST, ADVAST,

and MSU), make use of the configuration control logic for synchronization. In

addition, it is used by FINST to direct routing commands, by the MSU for

address interpretation and data or instruction steering, and finally, by ADVAST

for receiving data for checking results of test and skip instructions.

A "one" in bit 18 indicates a "local" action. In this case,'the CU that is exe-

cuting the instruction performs the operation independently; no synchroniza-

tion with other CUs occurs, and there is no exchange of information or control

signals. A "zero" in bit 18 denotes a "global" process. Here the CUs in the

array execute the instruction in combination with one another; synchronization

of the CUs is required, along with an exchange of information.

Each of the three configuration control registers (MCO, MCI, and MC2) is

four bits long. The registers are readable — they can be stored in an accumulator

register or in main memory — and they are writeable — they can be loaded from

an accumulator or from main memory. Each register is considered as one

local memory location. The.three registers are also accessible by the TMU

instructions SOC and SOD for either display or transmission to the DC. They

may,.also be loaded by the TMU set and transmit instructions SAT, SLT, and SET.

The use.sOf .these registers is described in the following paragraphs.

2-6

MCO, Array Size Control Register. Each bit in MCO corresponds to one

specific, permanently-numbered quadrant. A set bit represents a
r j, . .

particular quadrant assigned to work on the current program. Every

quadrant represented in MCO receives instructions during the instruction

fetch process of ILA, receives operands from main memory during the

operand fetch process .of ADVAST, participates.in all synchronizing

at the various stations of the CU, and receives the T/F indicator

during Test-Skip instructions and the CTSB instruction.

Example^ 1 : . . • • - • • • B i t Position
, ! ' " ' . ' • • • • • • . • • • ; . ; . •

Register £ I i 1

M C O 0 1 1 1
. > . _ \ . .

In Example 1 there are three quadrants in the array: CUi, CU2,

and CU3. CUO is not-part of the system defined by MCO. ,r.

MCI, Instruction Fetch Register. MCI provides information concernr

ing the location of the program in main memory. The contents of MCI

are relative to MCO, that is, the position of a set bit in MCI refers to

ONLY the bits SET in MCO, starting with the first set bit in MCO.
"~~~ . ; 4 •' •. , •" t . •

Example 2: Bit Position

Register ".' ' 0_ 1 2_ 3_ ' ' ' - '

MCO 1 1 0 1- '' " • • • '
MCI . ; 0 1 .1 0.. r. - , ; , , . . • • • - - . . -

In Example 2 there are three "quadrants in operation: CUO, GUI, and '

CU3. MCI has the second and third bits set to show that the program •

is stored in the second and third CUs in the array defined by MCO. j

Therefore of the three bits set in MCO, the second and third-define the

CUs that contain the program, so that in this example CUl'ahd CUS

are the program CUs.

2-7

MC2, Instruction Execution iRegister. MC2 furnishes Information

needed for concerted performance of information exchanges of the

CUs. The contents of MC2 are relative to MCO, just as the contents

of MCI are relative to MCO. . °

Example 3:

Bit Position

Register £ I 1 1

M C O , . 1 0 1 1 .
MC2 ' " 1 0 i '0

In example 3'there are three quadrants in operation: CUO, CU2,

and CU3. This configuration uidicates that CUO, CU2, and CU3

should participate in all sync operations at the various stations

of the CU and that CUO and CUS are to exchange information (such

as data for inter-CU instructions TCW, TCCW, :etc.). CUO and.

CUS will also attempt to fetch operands,from their memory, .how-

ever, the one determined by bit 57 of the accumulator will fetch it

and send it to CUO, CU2, and CU3. ' ' ' '
• ' , . ~ ' • • ' P , ' . - • . ' • ' • • f ' - - . ' -

The error settings of'the MC register are:

Any "all zero" setting of any register;

Any "three ones" setting of MCI or MC2;

Any setting of MCI or MC2 in which the number of "ones"

exceeds,the number o f "ones" . i n MCO. . . - , . . • • • > ,

The various valid settings are:

:-, MCO. holds four'"ones'.1: MCI .and MC2 can have settings consisting of

four, two, or one ".one(s)" resulting in eleven valid settings in either

, . register. • . ' • • • • * • - . - . . - • , . - - .

MCO holds three "ones": The first three bits of MCI and MC2 can

have settings of two or one "one(s)" resulting in six valid settings

for either register.

2-8

MCO holds two "ones": The first two bits of MCI and MC2 can have

settings of two or one "one(s)", resulting in three valid settings for

either register.

MCO holds one "one": The first bit of MCI and MC2 must have a

setting of one "one" resulting in one valid setting for either register.

Certain actions occur when the registers are changed:

Changing MCO or MCI causes the "IWS present" bits to be reset.

This results in fetching new blocks for IWS using the present contents

of the instruction counter (ICR) when the current block is exhausted.

Changing MCO or MC2 causes ADVAST to stop executing instructions

and empty FINQ. The new value to be loaded into MCO or MC2 does

not replace the old value until FINST is idle. At that time the trans-

fer to MCO or MC2 takes .place.

The ADVAST instruction repertoire can be divided into four sets, consider-

ing the configuration control logic:

1. The following instruction set is executed independently by each CU:

ALIT, CACRB, CADD, CAND, CEXOR, CLC, COMPC, COR,

CROTL, CROTR, CSHL, CSHR, CSUB, DUPI, DUPO, EXCHL,

EXEC, FINQ, HALT, INCRXC, INR, JUMP, LDC, LDL, LIT,

SETC, SKIP, SLIT, STL, and any other instruction in which bit

18 (Local/Global) is "one"..

2. This set causes the array specified by MCO< to be synchronized at

the beginning of the instruction and causes the CUs specified by

MC2 to execute the instruction: LEADO, LEADZ, ORAC, TCCW,

TCW, the TEST-SKIP instructions, and WAIT! (FINST executes

RT similarly.) Note that in the case of the TEST-SKIP instruc-

tions, the CUs of the array specified by MCO will test the result

and skip.

2-9

3. This set requires examination of instruction word bits 24 arid 25

to select the CU to execute the instruction: CCB, COPY, CRB, ,-•

CSB, CTSBF, and CTSBT. Note that COPY is a special instruc- <

tion in this group; an ACAR of the CU which is selected by

examination of bits 24 and 25 is copied by the other CUs in the

array. (In single-quadrant array, this instruction is a no-op.)

For the remainder of the instructions in this category, bits 24 -

and 25 are used as follows: 'The configuration control logic estab-

lishes how many and which CUs are in the array. When only one

CU is in the array, bits 24 and 25 are irrelevant. When two CUs

comprise the array, only bit 25 is pertinent; if it is "zero", the

lower-numbered CU executes the instruction. In a four-CU array,

bits 24 and 25 specify the CU to execute the instruction.

4. This set includes the six ADVAST main memory operations:

LOAD, LOADX, BIN, BINX, STORE, and STOREX. The main

memory address is contained in the specified ACAR. To determine

which CU performs the fetch, ACAR bits 56 and 57 are examined

identically to AIR bits 24 and 25 above.

The LOAD, LOADX, BIN, BINX instructions are processed at both the

ADVAST and FINST stations. Following ADVAST processing, the local mem-

ory location(s) referenced by these instructions are considered "empty'.' until

processed and filled by the FINST operation. Should an ADVAST instruction

reference one of these "empty" locations, the ADVAST unit will stall until

the referenced location has been filled. Although this protection feature in-

sures against timing dependent programming errors, it may slow down

system throughput. Where feasible, the programmer should access data

as far as possible in advance of its ADVAST use in order to minimize this

delay.

2-10

FORKING AND JOINING

Occasionally it becomes necessary, when running in multiquadrant array;

for the quadrant to separate (fork) and then rejoin. This capability allows

for the running of local subroutines.

Forking is accomplished by resetting the configuration control registers and

then branching to the area in main memory where the local subroutine resides.

It must be understood that the procedures leading up to forking and the actual

forking instructions are executed in multiquadrant configuration. Since

changing MCO and MCI causes the "IWS present" bits to be reset, care

must be taken that at least the resetting of MCO and MCI, and the JUMP

instruction are in the same 8-wjord block in IWS.

In order to fork, each CU must know what its quadrant number is so that it

may properly include itself in the new configuration control register settings.

This can be determined by reading the ACU, a local register which contains

"own CU number", via the LDL instruction. This register, which is readable

only, has four bits in the same bit arrangement as MCO. The bit which cor-

responds to this CU number is hard-wired ON, all others being hard-wired

OFF. Prior to forking, it is recommended that the configuration control

registers be stored to facilitate joining.

At the completion of the local subroutine, joining can be accomplished as

follows: the desired array configuration must be determined, this condition

must be set into a WAIT instruction (together with bit 27), and then the

"request join" option of the WAIT instruction (bit 27 ON; bits 28:4 set to the

desired configuration) must be executed (this can be facilitated by the use

of ACAR indexing). If all quadrants in the desired array have executed this

instruction, then all the quadrants in the new array will b'e in sync and their

MCO will reflect the desired configuration setting. ACR bit 5 can be tested

to determine whether this did indeed occur. If it did, then MCI can be

changed to the desired setting and the program may JUMP to the global

2-11

routine. If sync had not in fact been achieved, the program has the optipn

of either repeating the special WAIT instruction until the quadrants do sync,

or it may disregard the other quadrants and continue in single-quadrant array.

BASIC CU REGISTERS

Following is;a list of the common registers accessible via the/local address

contained in ADVAST instructions. -...

Octal
Address

Register
Mnemonic

000 - 077 Dnn (ADB)

Function » • • ' . • ' ; •> '•.',•

General registers, local data buffer,
broadcast buffer " • ' ' " '

100 - 103

104

105

140

142

144

145

151-153

154

155 '

156

•157 : • • ' ' •

' = A C O - 3 <

ICR

IIA •

ACR

AIN • - . . - • .

ALR

AMR

MCO-2

ARE

TRI--

"• TRO

•'• ACU

iACO-3 (ACARO-3) "Accumulators,; Index Registers ^ • ' • • • • '
: . ' - : • • • • - • • Instruction Counter : • • • . - ! • • •

""•• ' Interrupted instruction Address •• '

••r • .miADVAST Control"^Register-(see p.- 2-20).. •

' • - .Interrupt Register' •> • • ' • " • ' : ' • ' ' - ' " :

• . ADVAST'Local Address Register ' • ' - '

' M a s k Register • ' • ' •

• . : 'Configuration Control Regist'ers

•;; :' • Memory Write Error Indicators -': " ' ' •"

'- Input Cbnimuriication Register (from B 6700)

• ?•••' Output Communication Re'gister (to B 6700)

'•"•"' Gwri'Quadrant Number (read only)

OPERATIONAL CONTROL

This section presents the procedure that mechanizes interrupts within the

ILLIAC IV system and also describes the registers which control interrup-

tion and normal operation of the Control Unit (CU). The basic philosophy

behind this organization is emphasized at times to convey to the user the

precautions required in the programmatic manipulation of these controls.

2-12

In the ILLIAC IV repertoire there are no "privileged" instructions. In this

sense, all programs, whether performing interrupt or noninterrupt (normal)

processing, have complete access to the system elements. As a result, the

user must maintain rigid accountability for proper manipulation of these

facilities. Since few provisions for an executive or control program have

been incorporated to facilitate the selection and activation of user requests,

it is incumbent upon the user to conform to the programming conventions

established for-the system so that optimum exploitation of the facilities is :

assured.

INTERRUPT HANDLING . '. ..

Interrupts in ILLIAC IV are-recognized in the ADVAST section of a CU.

An interrupt is caused by the occurrence of a masked condition, that is, .

a bit is set (by program) in the interrupt mask register (AMR), and if

subsequently, the masked condition occurs, the interrupt wilL.be recognized.

Regardless of the setting.of the,mask bit (and, therefore, .of.the recognition

of the interrupt) the occurrence of the condition will cause a.bit to be set.In

the interrupt register (AIN), .which bit corresponds with the bit; in AMR.; :" .•

The purpose of the interrupt feature is to.provide automatic recognition of a

condition which either may require immediate response,, or .the occu'jrr.ence

of which is unexpected and asynchronous'with regard to the ..rest of the

program (for example, inter.commmunication, etc.). When such recogni-:

tion is not required, the interrupt feature may be bypassed for a particular

condition by reloading the AMR with the appropriate bit reset. If the interrupt

feature is bypassed, the information content of the AIN may be sampled at the

convenience of the program being executed, as a part of its normal execution

cycle.

Interrupt Recognition ' v . - - - , - - • • . - ; - : - . . . • • .

' . " • . ' * I i ' ' ' " - • . -

Interrupt recognition occurs on an array basis; that is, if one CU in an

array (as determined by MCO) is interrupted, then all CUs in the array will

- 2-13

be interrupted. However, those CUs which actually caused the interrupt

may be determined by ascertaining which CUs have a masked AIN bit (by

reading each AIN and comparing it against the respective AMR).

It should be noted that there is no automatic change to the configuration

control registers (MCO, MCI, MC2) when an interrupt occurs. Therefore if

an interrupt occurs while operating in multiquadrant configuration at least

the initial processing must be a multiquadrant routine, using the same array

size as just prior to the interrupt.

Types of Interrupts

There are two types of interrupts: recoverable and nonrecoverable. Type 1

(recoverable) interrupts will occur only when all quadrants in the array are

synchronized. That is, the condition will be recognized immediately, but

the CUs will not be interrupted until all the CUs are synchronized for the

execution of an ADVAST global instruction, or at the end of every instruction

when there is only one quadrant in the array.

Type 2 (nonrecoverable) interrupts will occur at the next clock pulse after

the condition is recognized. The CUs will be initialized by signaling the

TMU to execute a SIV instruction (with bits 39-44 of TCR set), which will

cause ADVAST, FINST, and ILA registers and control latches to be reset or set to

the idle state. The MSU will be similarly initialized at the completion of

I/O cycles. Interrupt processing would then proceed as for Type 1 interrupts.

Recoverability and nonrecoverability relate to the ability of the machine

to return, following an interrupt, to a known state relative to the point of

interruption without special provisions in the interrupted program.

Table 2-1 indicates interrupt type for all interrupts.

2-14

Interrupt Status Storage

In order to resume the execution of a program after interrupt processing,

it is required that the status of the CU be stored before entry into the inter-

rupt state and some known state restored upon exit. This storage function

is accomplished in register storage within the CU and in the PE memory array.

Instruction Counter (ICR) and Interrupt Address Register (IIA)

The instruction counter (ICR) is a 2 5-bit register which is used in both nor-

mal and interrupt programs to control the sequence in which instructions

are executed. Another register, the interrupt address register (IIA), which

is of the same length as the ICR, is loaded from the ICR when an interrupt

occurs. The IIA reloads the ICR when the "interrupt return" instruction

(INR) is given and is read and set as a local register.

Control Information Storage •

No additional storage is required to store the logical condition of the quadrant

when an interrupt occurs. However, if interrupt processing alters the

setting of the interrupt controls (specifically, in the interrupt, mask, and

control registers), the programmatic storage and restoration of their

settings must be accomplished within the interrupt routine. Note that all

control registers which are not part of the local memory cannot be stored

in the accumulators or array memory but must be stored outside the array.

Data Storage

The initiation of an interrupt causes the contents of ACARO to be stored in

memory location eight or nine, depending on the setting of the "alternate

interrupt base in use" bit in the ADVAST control register (ACR). ACARO

is then loaded with an index value containing an increment field of +1, a limit

field of 32, and an index field of 16. Words 16 to 31 can be used for storing

2-15

up to 16 words of the AD VAST data buffer (ADB) should this space be required

for interrupt processing. ACARO provides the address for the store operations.

Words 9 (or 10) through 15 are for the storage of other ADVAST. .registers OT

(for example, other ACARs and the AMR) that maybe altered during interrupt

processing. - . . . , . ^ •, , / ; ; . , • .. ; - ' • - - i . ^ : - '

Upon the execution of the INR instruction, AGARO will be reloaded with the >.

contents of memory location eight or nine, depending on the setting of the-

"alternate interrupt base in use" 'bit in.the control register (ACR). :';~ '.'-•. - , v-

Interrupt Routine Instruction Storage

The instruction counter (ICR) will be set to "zero" (or "one";: depend-;

ing upon the setting of the "alternate interrupt base in use" bit in ACR) to .., :

cause the first block of interrupt processing instructions to be fetched from

array memory words 0 through 7. As the local memory information is .;,

stored in words 8 through 31, a branch is required within this area of the

block; (The alternate interrupt base was provided to allow the programmer"

to bypass a suspected memory failure in PEM 0.)

Entering.the Interrupt .Mode . . . , - . . • • , , - . . • • • ; . = •

Because of the interrupt mechanism described above, there can be only one

level of recoverable interrupt (multiple interrupts would destroy interrupt

return information). However, the simultaneous'occurrence of interrupt

conditions is considered a single level of interrupt. To protect the return

information until the execution of an interrupt routine, use of the AMR as

the interrupt enabling device is suspended and a "hardware" mask is employed

instead. The hardware mask prohibits the recognition of any interrupt

conditions except those indicating hardware malfunctions, and remains in

use until ACR02 is reset via INR or CACRB-1 Also,

2-16

(while, the hardware mask is in use, -"storage protect" is -disabled,
i
: -regardless of the'setting of-ACR13, until the hardware mask is ...

replaced by AMR (via INK or-CACRB-2). • : ' . • . •

During interrupt processing (that is, when ACR bit 1 is "one"), a masked

interrupt condition will cause the CU to stop and interrupt the B 6700

system by setting TCI bit 5 (CU halted).:. .When a "b ranch'trace'-.interrupt

occurs,1 the'contents of .the present ICR are loaded into TRO 40:24,

ICR (24:1) goes into TRGK(0:l);*<the other TR'O'bits are set to zero, an*

TCI bit 7 is set (indicating the right half of TRO is loaded).
• \ f > . • ° . • • • • • • • , . : . : • . - . • • • . - : •

INTERRUPT, MASK, AND CONTRQL-REGISTER-FUNCTIGNS . , - . :

This section identifies the information content of the interrupt (AIN), inter-

rupt ;ma'sk (AMR), and control''(ACRv)"registersr. The length of these '"

registers i s 1 6 bits. • - - . : • • • • • • • • • • • . • . - .

The functions of the bits in the AIN. and AMR; registers-, are listed in'Table. 2.-,1,

and for the ACR register in Table 2-2. The setting of .any of .these bits . . - •,

indicates to the program that the condition, as stated, is true. In the case

of the AIN and AMR, the bit positions in each register, -relate, to. the:'same '.' ..,.:

function and thus have the same numb.er,. For, AGR,, a. correspondence in , . ;

bit positions 11 through 15 exists.with the AIN/AMR. i : In general, .bits that-,

might be used or interrogated.together are grouped together..,j- ... ,

The first four AIN/AMR positions are grouped together because they represent
- ' . . . •• •' . ' '.'..' •. • " . ' - • [' • . , '. •:• '" . '"' .til ' ' . - " . " • " . '.;.: "•

what are most probably hardware malfunctions. The "hardware mask"
•-; '•.. '.. .- . •-• • .-•- •. . " . - ' , -. '•• '! .<-. : • ' . ' ' . • :... '••••• .. ••:i •••:.!:"•/.,'•;' ,:.;•:.'•'.•/• '.-'.• : .••"• . . - . •• ;•• •.-• »£..

(used immediately after an interrupt occurs until the mask register is loaded)
-• . - . • '.J : :-',t>. .-.;. •' .•-.'•" " ; j ; - . ' • • ' . , v" /,•..:.,. •_• -.• • • - • - • ' . • . , '• •' ; -- •:;;:; •

is implemented to permit a second interrupt (i. e. , a stop) condition to become

true, and contains bits 0-3 of AMR.

2^17'

Table 2-1. Functions of Bits in Interrupt (AIN) and Mask
(AMR) Registers

AIN/AMR
Bit No.

0

1

Interrupt/Mask Name Type

Spare 2

Parity error in 2
• instruction . ' :

2 Undefined.instruction .2

3 CU stalled 2.'

Improper setting of 2 -,
MCO, MCI or MC2

5 Improper local address

6 ' ADB wrap-around '•''

7 Execute loop

8 '• • ' Skip distance equals
minus one " : -

9 User program request 1

10 Spare 2

11. ,.... PE overflow... , ,., .. 2.

12 Spare' ; ' ' ' " •• '• • i

13 Attempted write to
protected storage

14 • . -. i Branch trace .,• , .-. 1 .

15 .. TRI loaded

Condition(s) for Setting or Functions Masked

Available for indicating power failure to operator
or to the B6700.

Sum of bits loaded from IWS to AIR modulo 2 is
zero, except for instructions SLIT, ALIT,-'JUMP,
or instruction loaded in AIR due to EXEC.

Op code fields of AIR indicate instruction not one of
ILLIAC IV instruction set (see page 2-21.
Illegal CU Addresses).

_CU has waited 15 milliseconds for another instruction,
or HALT was executed, or breakpoint was reached,
or second interrupt has halted all operations.

Any configuration register with all zeros; MCI or
MC2 contains three ones; or,, bit position is set
that is greater than the number of ones in MCO.

Nonexistent or inaccessible ADVAST local address
requested as effective local address (after indexing,
if specified). Not set for BIN or BINX instructions.
(See page 2-21, Illegal CU Addresses).

Effective ADB address is greater than octal 77 in
BIN or BINX instruction.

AIR contents replaced by ACAR value which has
identical op code and ACAR address.

Skip field of instruction for modification of ICR has
value of minus one (endless loop on the same
instruction).

INR instruction executed and ACR bit 1 (processing
interrupt) is reset (zero).

F mode bit in any of the 64 PEs is set; or, ACR
bit 10 (32-bit mode) is set and Fl mode bit in any
of the 64 PEs is set (see page 4-15, F Bits).

Available for indicating that block of real-time
information has been stored in predesignated area
of ILLIAC IV storage.
ACR bit 13 (storage protect enable) is set and the hard-

. ware mask is not in effect, and an attempt was made
to write into PE memory at effective address less
than octal 1000. (Note that write operation is inhibited.)

ACR bit 14 (branch trace enable) is set and ICR
has been altered by EXCHL, STL, LOAD(X), SKIP,
or.JUMP instruction.

. Set by controls in Test Maintenance Unit when a
set-transmit to TRI is executed.

* Type 1 interrupt - recoverable.
Type 2 interrupt.- nohrecoverable.

2-18

Table 2-2. Functions of Bits in CU Control Register (ACR)

Can be
Set/Reset

via CACRB

No/Yes

ACR Function

Test result

Processing interrupt

Hardware mask in
use

Description

ADVAST comparison indicator - When set, previous test
was true, and when reset, previous test was false.

Processing interrupt indicator - When set, the CU is in
the interrupt processing mode. Set whenever correspond-
ing bits of the AIN and AMR are set. Reset during the
execution of INR.

Hardware mask in use indicator - When set, the CU does
not enter the interrupt processing mode for any interrupt
except bits 0-3. Set when CU'is iriitialize'd, and con-
current with the setting of ACR1, Reset automatically'

:by the INR instruction.

9

10

11

12

13

No /..No.

Yes/Yes

Yes/Yes

No / No

No / No

Yes/Yes.

Yes/Yes

Yes/Yes

Yes/Yes-

Yes/Yes

. Yes/Yes.-

14

15

•Yes/Yes

Yes/Yes

ALR busy

Alternate interrupt
base in use ' °

' Quadrants awaiting
synch'indicator £

FINST idle'

BIN/LOAD in' '
-progress . , .

Non-overlap mode

Exponent underflow
inhibit

32-bit mode

• ! • - > • • . ' I ' 1

• 'C ' ej •• • -

Spare ; •

Spare

Storage protect
enable - -

^Branch trace' enable
• 9 V ' • • . ' ' , - . - . • ' . -

TRO loaded

LOAD or BIN pending indicator - When set, indicates that
a "read data from array memory" is in progress at one of
the CU stations or in the FINST queue. The ipdicator is set
at the beginning of the operation and reset at the end of the
operation.

Base address indicator - Used to determine the starting
address for interrupt programs (ICR = 00. . . (ACR4)0) and
the location of array memory in which to store accumula-
tor zero (00. .. 100 (ACR4)).

This bit, when used in conjunction with the "join" option
of the WAIT instruction, will indicate whether all quad-
rants, which were specified in the ADR portion of the
WAIT instruction, are ready to synchronize. Care must
be taken to ensure that this bit is reset before entering

. the1 "join" routine.

FINST complete indicator - Reflects the status of the
EINST idle level during the previous clock period. .

BIN/LOAD indicator - When set, indicates that the last
memory operation processed at ADVAST was a BIN;

. when reset, the memory operation was a LOAD.

When set, the ADVAST, FINST., and. PUs must complete
the current operation, all CUs in the array.must be
synchronized, and enough time left for any interrupt to
reach AIN before the next instruction is executed.

W,hen set, FINST inhibits transfer of exponent underflow
condition(s) to F or Fl bits in all PEs.

, '. >;";
32/64 bits mode indicator - A copy of this indicator is
transmitted to FINST with every'PE'instruction. When

' set, the PE will receive the proper enables to operate
in 32-bit mode; when reset, the PE will receive the
proper enables to operate in 64-bit mode. ,-,i >

i • - v - . - • • ' - '

.-Write in protected area indicator..-.When.set and the hard-
ware mask is not in effect, the protected area of memory
is protected against writes. If such a write is attempted .
while bit 13 is on, by any memory user other than the I/O,
then error latches in memory are set which cause the setting

•of AIN13. Error latches are reset whenever ACR13 is reset
or whenever INR resets ACR1. '

•'Branch trace enable indicator - When set1 in the non- •" -
interrupt mode and a change of ICR is attempted, then
AIN 14 is set and the old contents of ICR are stored in
TRO 40:24. _. . ._

TRO loaded indicator - Set.'b'y LpAb(X) to TRO and.
reset when the data has'been read by the CDC. I t ' i s
not set by other actions which may load TRO such as ,
STL. EXCHL, and branch trace interrupt.

2-19

Interrupt (AIN) and Mask (AMR) Registers

The function of the AIN register is to preserve an indication to the program

jthat a condition has occurred, except as specifically indicated otherwise in

i Table 2-1. The function of the AMR register is to permit'or inhibit-recog-^ '

nition of an interrupt- condition by use of the interrupt .mechanism. , The ;read:-;:

ing of the AIN (by a STORE (X) or LDL instruetipn),,causes it to be. cleared... :>..

ADVAST Control Register (ACR) • • • • • ' > • : • • , . • ,.>, - , > . ; . . . : • :> . . • - .biv

The function of the ACR register is to provide indications to the program of

the state of an ILLIAC IV quadrant which are. required for the programming of,

executive or control programs. Unless specifically excluded (as noted in ,,.,.„

Table 2-2), all ACR bits can be set or reset by the CACRB instruction. The

bits at all times indicate the actual state of the system.

ILLEGAL, INSTRUCTION/ADDRESS HANDLING

This section identifies the procedures for handling the various types of illegal

instructions/addre'sseSi.' • . • . • " . , • • • - . - , • • < • ' • • • • • • . . • T<-•,-> ,;rr-.- ; • ' • • ' : " . ' • . ' . I • : ' . . • • • . • • • " • ' • . . -

Illegal CU Instructions ": • .. • , f

All undefined instructions are illegal; "The following cases are included as

undefined instructions: ? ;,

(a) All the blanks of Table 3-1;

(b) Most of the blanks of Table 4-1, the exceptions "being octal • •- -

'•••• •.•:"••••••••- — codes 2£>W, 2601, 2602; 2603; .2011, 2012,'2610, 2611 (which ^

are used for communication from ADVAST to FINST), and

3416, 3417, 3616 and 3617 (which are meaningless variants of the

FINST /PE instructions AD and SB); . ; . ; :, ;" ' ;̂ ;;;/

, .- (c) Any, EINST/PE-instruction-whose ADR .field,is 1-10 or 100 (register

. , . . .code), -apd whose _addres^s field specifiesL,an in valid . comb inatipn qf-

source and destination registers (see F-INST/PE transmit instruction

LD).

2-20

Illegal CU Addresses

Three categories of CU operations are of interest: ADVAST arithmetic in-

structions, all other AD VAST instructions, and TMU instructions. Each of

these categories makes unique use of CU registers which are identified or

addressed by an 8-bit address. These registers/addresses (spare included),

are divided into four groups with legal or illegal status according to Table 2-3.

Iii Table 2-3, the following ADVAST instructions are classed as "ADVAST
Arithmetic": ^ - • ' , - . .

CADD GRTR--
CAND ''*'' " '••''''• ' ' • ' • • • •
CEXOR TXE--
COR TXG--
CSUB TXL-- ' . . . -
LESS-- . :. .

and the following ADVAST instructions are classed as "All.Other ADVAST":

BIN LOAD
BINX LOADX
DUPI STL

.. DUPO STORE •
EXCEL " STOREX
L D L . • • - . - - .

, i -

ADVAST Valid Registers

ADVAST instructions that may address registers and yield results .are defined

in Table 2-4. ;.

Interrupt Selection

Interrupts resulting from illegal instructions/addresses are always returned

for processing to the' originating source. That is, if the illegal instruction

2-21

Table 2-3. Legal/Illegal CU Addresses

Octal Address

000-137

140-177

200-277

300-377

Advast Arithmetic

Legal*

Illegal

Illegal

Illegal

All Other Advast

Legal

Legal

Illegal

Illegal

TMU

Legal

Legal.

Legal

niegal

*ICR and IIA valid for CADD and CSUB only.

Table 2-4. Valid Registers for ADVAST Instructions

REGISTERS

ACO-3 ADB AMR AIN ALR ARE ACR ACU ICR IIA MCO-2 TRI TRO

BIN

BINX

CADD

CAND

CEXOR

COR

CSUB

DUPI

DUPO

EXCHL

LDL

LOAD

LOADX

STL

STORE

STOREX

LESS--

GRTR--

EQLX--

TXE--

TXG--

TXL--

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

•Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes -

Yes

Yes

Yes

UN

Yes

UN

- UN

UN

Yes

Yes

Yes

Yes

Yes

UN

Yes

UN

UN •

UN

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

UN

Yes

UN

UN

UN

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

U
p

UN « Undefined. The instruction can address these registers but the results are undefined.

Yes = The instruction can address these registers and the results are defined.

Blank = The instruction cannot address these registers."

2-22

was received from ILA via IWS, an AIN bit is set which allows ADVAST to

process the interrupt. However, if the instruction was received from the

DC-TMU (that is, a TMU or EFA ADVAST instruction, or EFF FINST in-

struction) a TCI bit is set which allows the B6700 control computer to process

the interrupt.

INPUT-OUTPUT CONTROL

This section describes the input-output control functions performed by the

various elements of the I/O subsystem. These elements are the Descriptor

Controller (DC) and Disk File Control (DFC), the Buffer I/O Memory

(BIOM), and the Input-Output Switch (IOS). Since the main input-output control

functions involve the use of descriptors for defining operations to be performed,

emphasis is placed on use of descriptors - scan, I/O subsystem, and result -

for controlling I/O operations within the ILLIAC IV system. This discussion is

included with the description of the DC. >

DESCRIPTOR CONTROLLER (DC)

The main control functions of the I/O subystem reside in the Descriptor Con-

troller (DC), The DC (Figure 2-4) is comprised of the following control logic

areas: . . .

Scan and Result Descriptor; Handle's the scan bus from the processor

and assembles a result descriptor when requested by the processor.

Word Bus Control: Buffers I/O descriptors and data between the B6700

memory and other areas DC. It also accepts B6700 memory

addresses from the scan bus, CU descriptor control, and.list control

areas of the DC. ' < , ;

CU Descriptor Control: Stores and executes all I/O descriptors for the

CUs. It controls the transmission of data between the B6700 and CUs,

sends instructions to the CUs, and handles interrupts from the CUs.

2-23

2 ''-'
g . °

u 2
H o

'Z J

§••«•H EH

•H §

fflO W
C- J
CD Q i O

W H§

P£

§ g
§ 58 §
t- a 7

E™.

0
CO

o
.. oo

• - . , . :
w
P

: '«
P

-g
[>

'"

-. • ' t

i

' '<-

>-> p.. , . O' •

H ^ . » §
1

CD

"• •

• 1

,w A -

. ., a s

i ' • • • • • ' • ' • ' •~ ' "> , , • • " i
. • ' -A -

«
O J
,H 0

' P-(-p^

-3gg _
CO

-..g '. ->,!'.

1

*J
o ••-
oi
f-
Z. ' .
0
o

• • i v ..•„-.

H' - '
T QT

P O' J:
W EH O

^M ^f f-(•*

11w

jl

I

. " . •

. ' - '. '

"-.... -".c

" . J

EC .-•-. - . . - •.
U

w

PC
' 0 j

t-1 O
^ & K
SBl

w u
w

1 ,

•

• • .-• -.: . •

*
i .' . . -

-.-^ I:...- ->

••
o

(•'

1 0

H «

'En • Qf '
H^

: • • . . . ' *. - ' •

,,

; ' - - g^ '
»*)'fril ,

0*3
t

• :. .. P •• .:
rj

- • to 'f)
. PM

o
t

. ^ P
w
I-t •• '

fc^ 1
*• P
• ' W

§ o
H

^ 2
^ O

"g°'
„

ro fn OT

4 * W
-. - g «

. . s g s

O
O

f-H

O

O
w.

UO.̂
fa

2-24

Disk File Control 1 and 2 Descriptor Control: This section

combines the control functions of the two identical DFC controls,

the BIOM address register, and the disk exchange select re-

gisters into one logical grouping. Real time external controls

enter here into the designated disk descriptor control. It re-

ceives information from the queuer, and controls the address

for the array memory or BIOM for transfer to the proper memory

location when needed. Control lines are provided to effect data flow

to the DFCs and to send the disk address to the selected EU.

Queuer; This is a functionally separate logic area of the DC

and represents that portion of--the hardware which allows the se-

quential execution .of disk transactions to. minimize latency time.

The queuer contains storage area for 24 disk transactions.

List Control: The function of the list control is to keep the

queuer full and to allow the processor to complete the execution of

a group of I/CX-descriptors without being interrupted for a des-

criptor fetch operation. The descriptors are fetched from

B6700 memory as a group as directed by the List I .D. in the

first word of the respective I/O descriptor. The list is a

sequential group of I/O descriptors in the B6700 memory .with '

List I.D.'s not equal to zero. A list is started by either a • '-..

List Head I/O descriptor or(by any other I/O descriptor with ' V

a List I.D. not equal to zero. The List I.D. field is two bits

and permits three different lists to be active at one time. A maxi-

mum of 15 descriptors is permitted in each list. A second list (or

third) can be started by "an I/O descriptor within the first list having

a different List I.D. A* list is ended when a List Tail I/O descriptor is

executed having a corresponding List I. D. value." A.result^descriptor,

is sent to the processor "when~ihe last I/O descriptor of a parti- ':

cular list is executed. If an error is detected in a list descriptor

being fetched from the B 6700 memory, under control of the list

controls, the remainder of the.descriptors in the-list are not

2-25

fetched. The active lists are tailed. A result descriptor is re-

turned for the descriptor in which the error was detected (see Queuer

Result Descriptors for the type of relevant error detection).

Scan Bus ' . •••

The scan bus of the DC is used for initiating operations between the B670'6

processing system and other elements of ILLIAC IV, or between various

elements of ILLIAC IV, under the control of the B6700. At present it is '

used only for operations that involve the B6700-DC interface but it has

the capability for future expansion to accommodate additional devices if re-

quired. This is evident in the bit utilization of the scan descriptors as

discussed below, wherein certain bits of these control words are defined

only for operations with the DC.

The scan bus consists of a standard memory interface comprising 80 signal

lines. Eight of these are used as control lines, 20 are address lines, and

52 are data lines. The,address lines are used only for fetching scan des-^

criptors from B670Qstack top in the processor and the data lines are used only

for sending/receiving descriptors to/from the B6700processor. Descriptors

involving exchanges with B6700 memory utilize ;he word bus.

Scan Descriptor Usage '} " •'•- • ' .

The B6700 supervisory program'uses scan descriptors to initiate operations

in the ,DC. , As presently ..defined, the: five types of operations that may be

performed using these descriptors are:

' ' - ' • ' . ' ' • ' ' ' ' . • • i : . -" . i ! : ; ' ' ' , , - • • '

Initiate I/O (scan out);

Interrogate peripheral status (scan in);

Read result descriptor (scan in);

Set exchange :(scan out);' v : .:"

Clear queuer (scan. out). - - - '

Each of these operations is initiated by the execution of an associated scan

command in the SS700 processor. Upon execution of the scan command.

2-26

the top word in the B6700 processor stack (scan descriptor) is placed on

the address lines of the scan bus to identify to the DC the function to be

performed. The second word of the stack (area descriptor) provides the

sink or source for additional data required for scan in/scan out. The

format for.a scan,descriptor is as follows:

Scan Descriptor Format

1 0

* IOO V A R F •2 M

*
Bit 19 = 1 for DC transfers, '

Note: For all descriptors, the left-most bit in a field is. , . - • •
the most significant bit and the right-most bit is the
least significant bit'.' ' ' '•' " :

Field . ; . ;. Function : . ' , . ; , , . - , :

M Designates unit(s) addressed by scan descriptor.
M = 0 indicates all units on scan bus are addressed;
M = 1 indicates only those units identified by the"

, Z field are addressed. ..,, ,-. , . ., ., •• ; ,;

Z Z = 00 identifies1'DC as'-unit addressed by scan "•
descriptor.• ;, • , - j .. . - . . , . - - .,

F Function code. Identifies scan command to DC.

VAR Used for variants of the "interrogate" descriptor
and "set exchange" descriptor. '

The function field (F) identifies the operation to be performed.,by the,DC. The

execution of these commands is described below; . - . . - . - > . ,. • , •

2-27 ; .

Initiate I/O'(F"= 0000): Initiate the specified operation oh the

unit designated. The DC uses the area base address specified

by the area descriptor to-fetch an I/O descriptor from B6700

memory. The command-is riot accepted by the DC tf the .DC is

already performing an "initiate I/O" operation. In this event, the pro-

cessor will de.tect.an invalid address interrupt. The format for the

area,descriptor is,as follows: ,. .. .

v. '-. '. Area .Descriptor. Format

20 19

. AREA BASE

Interrogate Peripheral Status (F = 0001): This scan-in.descriptor

will cause the DC to interrogate -the status of the List Controls,

the Queuer, the Disk and'bisk Controls, and the Control Units, as

determined by,the. variant bit set into, the VAR field. The bit assign-

ments are as follows:

V a r i a n t B i t s ,

16 15 14 IS. 12 U. 10. _9_ Description'.',

0. *;°-,» ; .°:, O"; Oi. 0.,'. 0. 1 Interrogate status of List

0 -:0"'••: 0- ' OT '.O.-..'0-v/ 1 S& Interrogate status of Queuer

0 0 0 0 - 0 ••!.:•: < 0 - 0 Interrogate status o f Disk

''0 0 0' ";6./ 1 0"*"Q 0 ., Interrogate status of CU
.) ." • .* • V'' ' r

The result descriptoFto be returned following the execution of

this scan-in descriptor wilKhave one;of the following formats, as

appropriate: " '

2-28

List S ta tus V a r i a n t

Bits Description

0, 1 . 1 1 = Software^'attention with
or without hardware exception

5-2 Number of descriptors in the'
Queuer from the three lists >

: 6 : 1 = List head FF for List 1 Set
0 = List head FF for List 1 Reset

7 1 = List tail FF fcr List i Set
: ' •' 0= List tail FF for List 1 -Reset

11-8 Number of descriptors iri QueUer
from List 1

12 ' 1 = List head FF for List 2 Set
0 = List head FF for List 2 Reset

13 1 =. List tail FF. for List 2 $et
0 = List tail'FF for "List 2 ftese't

17-14 Numberjof descriptors'in Queiieir
2. ,\ v ;. ' • ' " " ' < . - •

18 1 = List head FF for List 3
0 = List head FF for List 3 Reset

1 9 - • • - - , . - . • • ' »i = List tail FF,for List'3 Set
7 0 = List tail FF for List 3 Mes* et

23-20 Number of descriptors in
froni List 3

47-28 ''" ' " Contents'of the List' Address'

Q u e u e r S t a t u s V a r i a n t y -

Bits Description

0,1 '"' 1 1 = Software'attention with o'r
•; . . • • • . • , ' . . - . without hardware excepti'^h' '

2, 3 - - 1 1 = Queuer full ; (,
01 = Queuer not full, not etftpty
00 = Queuer empty

4 1 = Queuer location 00 cbntairi^l fe(
descriptor

. . . - . . . - . : !. ,• . 0 = Queuer; locatibn 00 dbes not
contain a descriptor*

27-5 Same as bit 4 for Queuer locations
01 through 23 respectively

2-29

D i s k S t a t u s V a r i a n t . , ;

Bits • Description

0,1< . 11 = Software attention with or :;;
without hardware exception

2 1 = DFC-1 busy
0 = DFC-1 not busy

18-3 0 = Storage units 00 through 15,
respectively, associated with

; . i "DFC-1 ready." • •

1 = Storage units 00 through 1&,
.respectively, associated,with
"DFC-1 not ready"

22-19 , Specifies the electronic unit
controlled by DFC-1

23 ' 1 = DFC-2 busy
0 = DFC-2 not busy

39-24 0 = Storage units'00 through 15,
'respectively/ associated,with

• • " . . ' : ' v . ' . • ' "DFC-2 ready" " V

1 = Storage units 00 through 15,
respectively, associated with

' . - ' • " • - "DFC-2 not ready" '"

43^40 . Specifies the electronic unit
, controlled by DFC-2

CU S t a t u s V a r i a ' n t "• ' -" '

Bits Description

0, 1 .1,1 = Software attention with or
without hardware exception

8 1 = CU #0not ready'
. .0 = CU #p ready . .. '

10 v \̂-.; ••.•'•'•/•'• .-••! = CU.;#1 not ready V,-'. .'.
. •' ' ' "''' 0 = CU #1 ready '

12 ' - '.-!.•= CU #2 not ready '••
. , ' . • • , • ' - . -• .. w .•• 0= CU #2 ready

... 14 ,_ . •• : ;: .- 1 = CU #3 not ready
0 = CU #3 ready

2-30

Read Result Descriptor (F = 0010): When access has been granted

to the DC, a result descriptor will be placed on the scan

bus. (See Result Descriptor discussion, page 2-36, for word

format and bit content of the responding descriptor.)

Set Exchange (F = OOll) ; The DC will respond to this command by

setting the disk exchange configuration registers to the value on the

scan bus. One of two area descriptor formats applies, as determined

by the setting of variant bit 9. (The queuer in DC must be empty of

I/O descriptors before this command can be accepted.)

If variant bit 9 = 1 , then the following area descriptor applies to the

real-time device;

Area Descriptor Format

47 46 45

Bits

46

47

Description

It = DFC-1 assigned to real-time
device

1 = DFC-2 assigned to real-time
device

If variant bit 9 = 0 , then the following applies:

Area Descriptor Format

47 44 45 40 39

DFC-2 DFC-1
(EU*>)

Bits

40-43

44-47

Description

Switch designated EU to DFC-1 control

Switch designated EU to DFC-2 control

2-31

Clear Queuer (F = 0100): This instruction, clears the 24 occupied

and 24 priority FF's. All list counters are cleared, as is the list

address register. ..'.'

I/O Descriptor Usage : :: : • > ? / ' • • ' . '

The I/O descriptors are comprised of one,or two.48-bit words, according to

the function to be performed. Before the I/O descriptor can be fetched from

B6700 memory, a scan descriptor must be executed by the B6700 specifying

an "I/O initiate" command. Execution of the scan descriptor results in an

area descriptor being sent from the B6700 to the DC via the B6700 scan-

bus. The area descriptor gives the B6700 memory address where the I/O

descriptor is stored. Upon receipt of this information, the (DC uses the

area descriptor to fetch the I/O descriptor from B6700 memory via the

B6700 multiplexer and the word bus. The operation specified by the I/O

descriptor is then performed as required. The I/O descriptor word formats
• . - ' " • ' ' . • t '' -i •

are as follows: . . .

First I/O Descriptor Word ,

474645 44 40 39 36 35 2827 24 23 22 21 20,19 ' , ,0

1PC INS VAR ' IDENT MAP LDI UNT :' ' ' ' ADD-A
^ — i — ' 1 — '

Second I/O Descriptor Word

36 35 16 15

ADD-B LIM

2-32

Field

;PC>
. : £' .:.• ' ;

INS

VAR

IDENT

MAP
; - "J •

LDI

UNT

ADD-A

ADD-B

I
L1M

Function

Parity 'Control." When zero, the I/O functions normally
(with odd parity). When one, the parity generator
of the DFC is disabled. This bit is used for diagnostic
purposes only.

Instruction field. Specifies instruction to be performed,
as listed in Table 2-5.

Variant field.

Identifier field. Identifies I/O descriptor and the
B6700 control program where it originated.' Program
uses;field to compare against respective result des-
criptor, which must bear same program identification.

Control field. Contains routing information for con-
trolling distribution of data' to and from array quad-
.rants, for both CUs and PEMs. ,

Descriptor/identifier (List I. D.). LDI - 00 indicates
result descriptor required upon execution of I/O
descriptbr; LDI = 01, 10, or 11 indicates result
descKiptdr.to.be delayed until.last I/O descriptor
bearing List I. D. 01, 10, or 11, respectively, is
executed. Note that if ah error is detected when any
descriptor is being stored in the.Queuer or when any
descriptor is being executed, a result descriptor is
returned for that descriptor.

Designates which of the two DFCs is to be used in the
operation.

Address field.' .Used to .specify one of the start addresses
for data transfer operations between storage devices.

Address field. Used to specify one of the start addresses
for data transfer operations between storage devices.

Specifies"limit for data transfer operations; a count of
data transfers (1024 bits each) for array memory, or \
word count for B6700 memory or BIOM.

The specific I/O descriptor fields for the various operations are listed in

Table 2-5. Each entry indicates the operation to be performed, its corres-

ponding INS field, contents, and the other fields of the descriptor that .are

used. A'detailed description'of the" various operations follows:

2-33

O

T3
i — i

CD

C
O

O

3

L,

CQ
G

O L,
CD O
a, to

C/3 .CU

CO P

o
aiLl
0)
fto

i
CM

0)

•o
o

•o
c
o
o

C/2

L,
O

-M
CO
L,

-r-i

i — i

Wi
Q
P

<

P
Q
<;

a '

i— ip
i-i

PM

s

§

HH

O
p
e
ra

ti
o
n

^ ^ ^ ' ^ > > H ^ ^ ^ ^ -

-

O O O t^ t^5 krj ^ t^j ^~> t^
o o o o j c d f ^ ^ c d c c j . n j
t- C- t- L< Li Q Q Li Li Li
CO CO CO L i L l ^ H i - i L i L i L i
P Q p Q ' P Q ^ ^ P Q P Q * ^ ^ * ^

o o
0 0 . . •
c- t- tj «
C D C D ^ .^ £, ^ ^ S
P Q W C Q C O C Q C O O O

' 'F-4 TH .f-l -l-l f— t 1 — 1

• g • £ p p Q Q p q p q
J J

>H

rt

, . , . .>H ,

» > . * * * » , > . * . '

> . , - • • > . > . ^^^. '^^\

,,,,,,,,;
T— t CM oo ^ ^ m CD r— co 05 o »— t T^
O O O O i— 1 rH t— 1 r-(r-(rH N CM CM

>> 5! Q>
>> X fc-j v o! S ' r ^ o
r t C O S ' S L i O ™-r*LI •* n .2 LI "-< * >
L H p 2 Q < p q « o !

.. <; i pq i , « i P
^ T3 W ' 2* 1 S ^ •** •*> ni •

B R t > p ! ! a , « * S 3 § § S S SCJ r 1 ,, v-i. r ^ '̂ « "-" I— 1 1— 1 Ll Ll .̂

^ ^ ^ ^ K H < s Q < ; p p q p q < ; < H
'C ?i cfl & M M *.r <u o v •* .* LI

in
(M

R
e
a
l

T
im

e
D

e
v
ic

e
 -
A

rr
a

y TJ
Q)
CO
S

CO•M
T3
i—i
0)

.2-34

Write.CU; Transfer "n" words sequentially, singularly or jointly,

to the TMU input register (TRI) of the designated CUs from B6700

memory starting at address ADD-B. The number of words, n,

is specified by the word count in LIM. The transfer is jointly if

bit 1 ;of VAR is set; otherwise it proceeds singular in a sequential

manner. The CUs are designated by MAP, which has four bits, one

for each CU. If all four bits of MAP are set, all four CUs are de-

signated as destinations.

Read CU: Transfer "n" words (48 bits) from the TMU output

register(s)(TRO) of the designated CU(s) and store sequentially

inB6700 memory starting at the address specified in "ADD-B1'

(CMAR). If more than one CU is specified in the map field, the

transfers will be from the specified CUs in a sequential manner

(bit 1 of "VAR" (bit 36) is ignored). If bit 2 of "VAR" (bit 37)

is a zero, the number of words specified will be read one at a time,

in sequ'ence, from each CU specified in the map field, and stored in

sequential locations intheB6700 memory. If bit 2 of "VAR" (bit 37)

is a one, the number of words specified will be read two at a time, in

sequence, from each CU specified in the map field.

Scan CU: Used for read out of addressed CU registers during diag-

nostic operation. First, a word is "written" (as in the "write CU"

operation above) to send an instruction word to the CU (usually an

"SOC" or "SOD" to indicate to the TMU what CU register should be

placed in the TMU's output register (TRO)). Next, a word is "read"

(as in the "read CU" operation above) from one half of the TRO into

the same B6700 memory location from the word just written. Then,

if bit 2 of "VAR" (bit 37) equals a one, a second word will be read

from the same CU (the second half of TRO) into the next sequential

B6700 memory location. If bit 2 of "VAR" (bit 37) equals zero, a

second word is not read from the CU. The B6700 memory address isthenincre-

2-35

mented and the above procedure repeated until the word count in .the
I , :• • , - - " " ' (. . ' ' > .'•'" i '

"LIM" field is reached; The CU's are designated,by the map ;.. ..

field. If more than one CU is specified in the map field, the transfers.,

will be to/from the specified CUs in a sequential manner (bit 1 of "VAR"

(bit 3 6) i s ignored). , . - , . .

Stop CU; Stop instruction issued to CU(s) designated in MAP.

This is a one-word descriptor.

List Head; This is a one-word descriptor which identifies the ^

descriptor list in LDI and specifies the B6700 memory location,

(ADD-A) which contains the first I/O descriptor in the list. The

I/O descriptors comprising the list must be in sequential order

in 136700 memory. The first I/O descriptor of a list may act

as the head, in which case its location is the list address.

List Tail: This is a one-word descriptor which denotes the

end of the descriptor list identified in LDI. After locating the

list tail, the DC will write a "lock" of all zeros in the assoc-

iated memory location. If the program is to extend the list,

this must be done before the lock is effected, otherwise it

must create a new list ' ".
• . - • • • • : * . ' ' ' < - • • • ' • - ' • " ' • ' < . • : ' i * ' '

Disk-to-Array Transfer:, Transfer "n." words.(1024 bits) from the

designated electronics unit (EU) to the designated section of the array.

UNT identifies the DFC to be used in,the transfer and AD.D-A speci-

fies the start for the disk segment. The destination section of

the array is identified by MAP and bits 3 and 4 of VAR as described

below; the array memory start address is given by ADD-B... The number

of 1024-bit words transferred is defined by the word count, in LIM. . .

Each bit in the MAP corresponds to a particular PE quadrant (PEQ).

2-36

If one PEQ is desired, its respective MAP bit should be set. If two

PEQs are desired, their respective MAP bits should be set. The speci-

fication of three PEQs is not allowed. If all four quadrants are desired,

all four MAP bits should be set. Data is always transferred

sequentially to the designated sections of the array. Bit 3 of VAR is

set if only one-fourth of each mapped PEQ is desired; bits 3 and 4 are

set if only one-half of each PEQ designated is desired - and

must start at the first or third quarter. The least significant

bit of VAR is set to indicate priority, overriding all other I/O

descriptors in the queue for disk access. ADD-A provides the

disk address, as follows: bits 13 through 16 are the storage

unit (SU) designation; bits 11 and 12 are the track number,

and bits 0 through 10 are the.segment address. ADD-B is the

array memory address of a block of 16 PEM words.

Array-to-Disk Transfer: Transfer "n" words (1024 bits) from the

designated section of the array starting at array memory ad-

dress ADD-B to the DFC unit designated by UNT starting at the

disk segment address in ADD-A. Field usage is as indicated

above for disk-to-array transfers.

Disk-to-BIOM Transfer: Transfer "n" words (256 bits) from

disk starting at segment address in ADD-A, via the DFC desig-

nated by UNT, to BIOM starting at the address in ADD-B. If

it is a priority transfer, bit 1 ofVAR is set. The MAP field

must be all zeros. The format of ADD^A is as described for

disk-to-array transfers. LIM specifies a 256-bit word count.

BIOM'-'to-Disk Transfer: If VAR bits 2, 3, 4 equal "0, 0, 0", transfer

"n" words (256 bits) from BIOM starting at address in ADD-B, via

the DFC designated by UNT, to disk starting at segment address

2-37

in ADD-A. Other conditions are as above for disk-to-BIOM transfers.

If VAR bit 2 equals "l", 16 words of 256 bits are transferred, then •

48 words of 256 bits are skipped, alternately until the word count "n"

is reached, otherwise as above. If VAR bits 2, 3 equal "0, l", 32

words of 256 bits are transferred, then 32 words of 256 bits are skipped,

alternately until the word count "n" is reached. For either of the last •

two variants, the starting address should be zero, modulo 16 (or 32 for

the second variant), if the first group of words transferred is to be the

same size as all the others.

BIOM-to-Array Transfer: Transfer "n" words (1024 bits) from BIOM

starting at address ADD-A, via the DFC specified by UNT, to the

designated section of the array starting at array memory address

ADD-B. Other conditions are as indicated for disk-to-array transfers.

Array-to^BIOM Transfer; Transfer "n" words (1024 bits) from the

designated section of the array starting at array memory ad- -

dress ADD-B, via the DFC designated by UNT, to BIOM

starting at address ADD-A. Other conditions are as indicated

for disk-to-array transfers.

Arrav-tOr-Real Time Device; Transfer "n" words (1024 bits) from the

designated section of'the array starting at array memory address

ADD-B, under control of the DFC.designated by UNT via IOS, to the

real-time device. Other conditions are as indicated for disk-to-array

transfers.

Real Time'Device-to-Array Transfer; Transfer "n" words (1024 bits)

from the real-time device under control of the DFC designated

by the UNT via JOS, to the designated section of the array starting

at array memory address ADD-B. Other conditions are as indi-

cated for disk-to-array transfers.

2-38

Result Descriptor Usage

Result descriptors are comprised of one 48-bit word. Access for the exe-.'

cution of this descriptor is granted upon execution of a ''read result descriptor"

scan command by the B 6700,.. The request for the scan command is initiated,

by the DC which sends an interrupt, (to the B6.70.Q) which was caused by an

"I/O complete", ..an error, or an interrupt condition. The format for a result •

descriptor i s a s follows:

Result Descriptor Format

28 ZT

ADD-E . .. INS-ID 1 ERR
t • .

ATT

Field

ADD-E

INS-ID

ERR

ATT

Function

Address field. Indicates last address used: by ,;
array, B6700, or BIOM.

Identity field-. Bit 27 identifies type of descriptor.
Bits 23-26 contain the four least significant bits of
the instruction, which combined with the restrictions
on the use of the instructions, .unambiguously identifies
the instruction being executed. Bits 16-22 provide
an identification number for software use. Bits 13
and 14 serve as list ID in some types of descriptor.
Bit 7 identifies the type of descriptor. .

Error field. Denotes type'of error or interrupt. As .
noted in the above comment, bits. 13 and 14 carry an ID
function in some descriptor types. Bit 7 is used for
"CU3 not ready" in the DFDC result descriptors. ;

This field?.denotes the type of- attention-.required by the;
program for the result descriptor.

Specific bit usage is described, in ̂ the following subparagraphs for the various,
result descriptors.

2-39

QU Attention Result Descriptor;. This descriptor is formed whenever

a CU which is not being addressed by an active CU instruction, gener-

ates an interrupt (see note). It is read in the same manner as a result

descriptor. Bit usage is described below: •

Note: In the event that a CU interrupt is generated by a
CU which is being addressed by an active instruction,
the operation in progress is terminated and a CU
Result Descriptor (described next) is returned instead
of the CU Attention Result Descriptor.

. : Description

Q« . * •: * * ~ Software attention with or without hardware
exception

7 Zero
. _ . , ; , • f -

9 CU #0'requires attention

11 ^U-#l requires attention

' 13 CU #2 requires attention

15 CU #3 requires attention

27r23 Always bit pattern 00111 (octal 07) in INS field
• to indicate unique code for this descriptor;

' - . . - • - . • I"; »; y . ' - :-:\\ ' •• • • • • • - . : :> . • ' ; . - : . ' ' . . • . • • - ' • ' •••
CU Result Descriptor: As noted above, this descriptor is generated upon the
occur rence df an interrupt in a CU being-addressed by an active CU instruction.
It is also generated by certain error .conditions.,. Bit usage is as follows:

Bits Description

0, 1 11= Software attention with or without hardware exception

4 . . : ' • . : Descriptor error*.' Indicates that,an incorrect instruction code
was received by the CU Descriptor Control (CUDC), or that a
MAP field is.equal to 0

5 Time-out error. Indicates that during operation with CU, a transfer
, i s n o t completed.within. 1 0 ms.ecs. ' -

6 Word bus error, mdicates that CUDC was thwarted in an attempt
. ..;.to use'the word bus because of'error. The word bus controls will

also return a word bus result descriptor in response to the error.

2-40

Bits ' ' : ' " ' Description - ' -

,. _ • • 7 ,. - . : ; - : . . -. Zer.O ' '• I ' • '.' • - ' -' -\ ' , "<' , • • • ' '.

8 CU #0 not ready.-• ;- : - ' , , ;"»

9 CU #0 error

10 :. CU #1 not ready. - * : :
'•'

'' 11 ; CU'•#!''error /

.12 ,:•.-.- CU. .#2 :not ready-/ -• •-, ••- " ,- •'

13 CU'#2 error "' ' ' '' -' ' '' ;'

14 CU #3 not ready

15 CU #3 error .

22-16 Identifier bits (ID). All but the LSB of the IDENT
. • . field of the original CU I/O descriptor

27-23 Unique code of 01, 02, 03, or 04 (octal)
. '; . • .

47-28 Address field (ADD-E) ,

Word Bus Result Descriptor: The word bus control is used by various

control areas to initiate data transfers involving the word bus, as

follows: by the scan bus controls to fetch I/O descriptors; by the

list controls to fetch I/O descriptors:; by the CU descriptor controls

(CUDC) to execute read/write operations between the array (CUs) and

; the B 6700. The word bus,result descriptor. is: generated .by' the word .

bus control. 'Bit usage is as follows:' '-' :-; •' •' •' •' ••

_-i . ^

' ' Bits • • i : - , '. - : • . . • > • ; • Description , • '• '•

• • . 0 , 1 ; ' l . v l , . = S.oftware-:attention with or; without hard- ;

•• - • ware exception' '• ; , . - • ' . •• • ••: >-• -

Descriptor error. This bit is set under any of
the following conditions : '

• • . •.- ;" • • • • :.• -• - . • ,>; , • : -_> ' ; ' v; ' • <•••• 1

a. I/O descriptor fetched'ha's aii' invalid
instruction code;

' • - • : ' • . : ' ' : • • : . • ' i- O"- ' • • . • • ' -> - ' ' • ' .

b.. • List head .descriptor specifies a list
••• .already in' progress;. - M; ;.•. t. .•

2-41

4 (Cont'd) c. List tail descriptor specifies a list
that does not have its corresponding
list head flip-flop set;

. d. List tail descriptor specifies a list that
already has its list tail flip-flop set;

e. List head or list tail descriptor does •
not specify a list;

f. Linked-list tail descriptor does not
specify a list or the list specified does

. . not have its corresponding list head .
Hip-Hop set;

g. CUDC already has an active CU de-
scriptor when new CU descriptor is
received for processing by CUDC

5 Read address parity error. Indicates that the
B6700 memory detected a parity error for the

. read, address information transmitted

• 6 ' l Read data parity 'error. Indicates that the data
. .-. . , read from B6700 memory was received with a

parity error ' .

or >.,. . ; . - • •-T • . , . • . - . . • • .

6 5 Write address/data parity error. Set to 1, 1 to
indicate that the B6700 memory detected a parity

..... ..error for the address or data transmitted to it
for a write operation.

7 ' •' ' ' '-Zero • • ' ' • " • ' • iK' -*: ' "• ' : ' ; ' ' '"'-'" • ' • ;

8 No access 'to memory. ' Indicates that the word bus
.requester-memory access and the. memory ready :

signal was not returned for a period of 8 clocks.

22-16 Identifier bits. All but the LSB of the IDENT
field of the original I/O descriptor.

27-23 All^zeros in INS field; unique code for this descriptor.

47-28 .. , . .- . ; Address field (ADD-E). .

2-42

Queuer Result Descriptor: This is an I/O result descriptor that is

generated by the Queuer controls of the DC. Bit usage is as

follows:

Bits Description

0,1 11= Software attention with or without hardware
exception

2 Indicates a Queuer busy condition, as follows:

a. BIOM-Array operation specified but BIOM-Array
- descriptor already stored; -••

b. Priority for DFCn specified-but DFCn
already has priority descriptor stored;

c. Queuer is full (non-list descriptors)

3 Unit not ready

4 Descriptor error. Indicates the existence of one
of the following error conditions:

. a. Illegal unit specified in descriptor;

; b. Descriptor specifies UNT field equal to
0 when INS field specifies a disk .
operation;

c. Invalid INS code specified;

d. List specified but list tail is already set
for that list

5 LSB of DFC specified

6 MSB of DFC specified

7 One

8 , . Queuer full .

12-9 Identification of storage unit specified

14, 13 List ID .

15 Priority bit

22-16 Identifier field. All but the LSB of the original field.

26-23 Instruction field, last four bits of "transfer" type instruction

27 Zero

2-43

13 its Description

,47-28 -.-. Address field; array or BIOM memory address if list ID
is zero. If list ID is not zero, contents of list address
register. : "

DFDG Result Descriptor: This is an I/O result descriptor that is.

generated,by the DFC controls of the DC.... If bits 2-14 are all zero,

successful completion of a non-list descriptor is indicated. Bit usage

i s a s .follows: • - . - , '

Bits - • • • • • • • • - . - • Description

6,1 11 = Software attention with or without hardware
exception . • ^ . . . ,

2 CU #0 not ready

• ; , ' . , , . . ' 3 - :
: •• .CU #2 not ready - - . - • ' • t • , . , , , •

- . , . .. 4< . List complete. .When .bit 4.is set, the remainder of
the descriptor pertains to the last descriptor.executed
i n a given list. • < • • • - • * • • _ • • • •

' ! "'5' ''" ' ; Invalid MAP/VAR specified '' ' - '.:

6 Disk read parity error

7 : CU #3 not ready

. . -• 8 • - Disk missed acceTss

J} -.EU manual write lockout

- 10 CU #1 not ready ' ;

11 SU not ready ' ;

.12 Disk time-out

14,13 List ID

15 Track counter incrementing indicator

22-16 Identifier field. All but the LSB of the original field.

26-23 Instruction field; last four, bits of "transfer" type.. ,, ,
instruction ;

27 One

47-28 Last memory address used by array or BIOM.

2-44

DISK FILE CONTROL (DFC)

The I/O Disk File Control (DFC) contains two identical-controls (Figure 2-5)

which communicate with the two Model II Electronic Units (EU), the I/O

Switch (IOS), the Buffer I/O Memory (BIOM), and the Descriptor

Controller (DC).- The DFC.controls the flow of data to and from an EU under'

the direction of an I/O descriptor executed by the DC: Data flow- between the -

B6700 system and the ILLIAC disk is'via the BIOM, through the designated

DFC and EU, to a Storage Unit (SU). Data flow between array memory and

the ILLIAC disk is via the IOS, from its associated IOR, through the desig-

nated DFC, through ,an EU, to, an SU. .The designate lines (SU, track, .and

read/write) go directly from the DC to the EU.

The smallest addressable area of the disk i's~' a segment w'hich contains- 16, 384

bits of data and 128bitS'ofparityi The total segment size'of 16,512 bits is con-

tained in 43 disk words of 384 bits each. The data size of 16,384 bits is equal

to 256 ILLIAC words of 64 bits each. There^are 1200 segments per revolution

' '•" ' BIOM
' • ' ' • • • ' ' • ' ' - ' j i

EU-1
384

DFC-l

<M
o-

256

128

DC

EU-2««-
384

DFC-2
256

-1

IOS

IOR-2

Figure 2-5. Disk File Control

2-45

and 4800 segments per disk (SU). Data transfer may start at any designated

segment but cannot cross SU boundaries.

A DFC has a 384 -bit word register to interface with the EU, and a 1024-bit

register to interface with IOR in the IOS or BIOM. These registers plus the

1024-bit IOR are required to match the combined data rates of the two disks

(2 X 384 bits every 680 nsec) to the worst-case delay for array memory cycles

(1024 bits every 900 nsec). The 384-bit word register is also used for receiving

16 sets of addresses during the address mode. The address mode occurs

whenever the DFC is not busy executing an I/O descriptor for read or write.

Each SU provides a set of 11 address bits for every segment. These bits are

continually compared with the queuer'I/O descriptors in the DC. When a

match is found, that I/O descriptor is the next executed by the DFC.

BUFFER I/O MEMORY *

The BIOM is treated at the B6700 system as though it were a B6700 memory

module having four ports, one each for two B6700 processors and for the two

B6700 multiplexers, as shown in Figure 2-6. The advantage of considering the

BIOM a B6700 memory module is that the control program can transfer data

between B6700 memory (disk or tape) and the BIOM via the multiplexer without

requiring the B6700 processor to cycle its main memory. The B6700 side of

the BIOM is independent of the ILLIAC IV I/O subsystem, with the control

program handling memory protection and resolving conflicts in memory access.

The I/O descriptor for any multiplexer operation must be in BIOM at the head

of its assigned area.

The BIOM contains four PEM modules, each providing storage for 2048 words,

64 bits in length. It has two functional interfaces, one with the ILLLAC IV I/O

subsystem , the other with the B6700 system. These are shown in the simplified

block diagram of the BIOM, Figure 2-6.

The interface with the ILLIAC IV I/O subsystem is used for transferring data to

or from the ILLIAC IV disk system or the ILLIAC IV array. All data transfers

on this interface are for a 256-bit word per memory cycle. The four PEMs are

/

2-46 '

used in parallel to store 2048 words of 256 bits each; that is, each PEM stores

64 bits of the data word. Addressing of the BIOM is controlled by the designated

JDFC descriptor control in the DC. Eleven address bits specify one of 2048

locations in a PEM such that the same address refers to the same relative

location in each of the four PEMs.

The interface with the B6700 system is used for transferring data to or from the

B6700. On this interface, data may be transferred as^either a 32-bit or a 48-bit

word. The. BIOM module is designated by address bits A19 through A15 inclusive

equal to "l" which assigns the BIOM as the two top memory modules on the

B6700 system. Address bit A14, the least significant module address bit, is .

the mode bit; A14 = 0 for 32-bit mode transfers and A 14 = 1 for 48-bit mode

transfers. Address bits A13 through AO are the BIOM internal addresses.

In the 32-bit mode, two 32-bit words are stored for each 64-bit PEM word.

Address bits A2 and Al in combination designate one of the four PEMs.

Address bit AO designates the half of the PEM word to be used. The formats are

illustrated in Figure 2-7. . .
/

In the 48-bit mode, sixteen 48-bit words are stored for every three 256-bit
words (four PEMs), as shown in Figure 2-8. The four least significant address
bits, A3 through AO, designate and control the 16 different positions within
three 256-bit words (four PEMs). The octal addresses for a 16-word subset
are shown in Figure 2-8. Address bits A13 through A4 define 1024 subsets,
of which 682 are usable. In both Figures 2-7 and 2-8 the least significant
end of the word is on the right side of the figure; bit 0 for a B6700 and bit 63
for a PE word.

The memory address as received from either the processor or the multiplexer is
interpreted in the BIOM logic so that it may be used directly in addressing a PEM.
The BIOM-Internal addresses of the three words (of four PEMs) in a subset N are
(see Figure 2-9):

3N + WO; 3 N + W 1 ; 3N + W2

where

N = bits A13 through A4

WO, Wl, and W2 are derived from A3 through AO.

2-47

B6700
PROCESSORS

B6700
MULTIPLEXERS

A_ _ _•_ _ _ 4_MEMORY_4 ' _ _4_ _ _
| ~ " . . I BUSSES I I

DFC-1 AND -2

Figure 2-6. Buffer I/O Memory

64 BITS

32

BITS
i
1

A0=0 i A0 = l
i
i .

' PEM 0
A l . = 0
A2 = 0

• -
- - .: •«• . • i

_

! " ' i • • • " • '
A0=0 i A O = l A0=0 ' A0 = l

I I ... •••
i • , . • . ! . . • • •

- PEM 1 • -•- - PEM, 2
A 1 = 1 A 1 =' 0
A2 = 0 A2 = 1

1

AO=O ' A O
i -

- PEM 3
Al = 1
A2 = 1

Figure 2-7. PEM.32-Bit Mode Format

2-48

I PEM-'O | PEM 1 | PEM 2
I I ' ' I

PEM 3

0

r6-

00

5

- 6'
BIT

0
13

1 -
S

6 '

-H

0
'

"

L

1.4

0

07

1

2

. . IE

10

> : .

33

1

|

' , ' . 1
6 I .

. 1
'j

|

04

I 1

17

1

2 1.

- 1 -

1
' l

|

WO

Wl
. W2

Figure 2-8. PEM..48-Bit.Mode Format

A 1 9 A 1 8 . . . A15.A14.A13 A.4.
1 1 ... 1 1 -X X

XN = AN, N = 4, 5, . . . 13
YN = A(N+i) N = 4, 5, .' '. '. 12

A3 A2 Al AO
X X X X

Y INPUT

...BMAR-0
11 BITS

X INPUT.

11 BIT ADDER

SELECT ONE
OF 16 POSITIONS

BMAR-1 ;

11 BITS
BMAR-2

11 BITS

CONTROL

•BMAR-3- ..'
11 BITS

PEM 0 ADDRESS PEM 1 ADDRESS PEM 2 ADDRESS PEM 3 ADDRESS

Figure 2-9. ' 48-Bit Mode PEM Address Modification

2-49

PF--1 j , 2 ™

nv'r '» ^ 256

POSSIBLE 102,

LINK

D
R

/R
C

V
R

OS1

>
o

K
Q

1

cc
1 >

I ^i

IOR

IOR

5. r̂
§ ' --• -

• ' I OS -A ;;.
 EXPA

,

K
>
U

05
Q

NSION

1024 ARRAY
* MEMORIES

TOIOS-B

Figure 2-10. I/O Switch'Configuration for 1024-Bit
, . Transfer Capability. ,

FROM
IOS-A

REAL-TIME '
LINKS

1024

1024

1024

D
R

/R
C

V
R

U
R

/R
C

V
R

D
R

/R
C

V
R

t*vIW«

1

MK/DISTR

1 J 1

I

3-B

•- , ' ,

<£
>
U

K
Q

D
R

/R
C

V
R

D
R

/R
C

V
R

C

1024

1024

1024

ARRAY
MEMORY

QUADRANTS

Figure 2-11. Possible.Expansion Elements to Basic IOS Con-
figuration for 4096-Bit Transfer Capability

2-50

Addresses from the four ports and DC are mixed and priority resolved for

allowing access to BIOM. The order of priority, from highest to lowest is:

DC, Port 1, Port 2, Port 3, Port 4. Note that if a BIOM-to-disk operation

is in process, no other unit (the four ports) is allowed access until the operation

is cpmplete. The path between BIOM and disk is critical in timing to allow the

BIOM to keep pace with the disk.

I/O SWITCH

The I/O switch (Figure 2-10) isa unit which is used for data buffering and

distribution, and which provides expansion capability for the real-time link.

For buffering purposes a 1024-bit I/O register (IOR) is provided for each

disk file control. This buffering allows the transfer of 1024 bits to array

memory every microsecond, alternating between the DFCs.- The.transfer

channel between each DFC and the IOR is a 256-line bidirectional cable.

The transfer channel between either IOR and the array memory is a 1024-

line bidirectional cable. When the fourth or last group of 256 bits is being

transferred between an IOR and its DFC, a PEM memory cycle is requested

by the descriptor control of DC to effect the transfer. (The I/O registers

are not used with the real-time link.)

A secohd'function of the IOS is to distribute data between the three I/O ports

and the array memory. The three ports are the two DFCs and the real-

time link. The distribution method depends on whether the IOS is a 1024-bit

unit in the IOS-A configuration (Figure 2-10) or an expanded version (IOS-A,

IOS-B) capable of handling 4096 bits (Figure 2-11). For a 1024-bit IOS, the

two lORs are switched alternately to the single 1024-line cable to array

memory. The 1024 bits are sufficient to accommodate 16 PEMs of 64 bits

each per IOS transfer. Thus, each line need be routed to only 16 different

PEMs for the entire array of 256 PEMs. The real-time link requires one

of the disk file controllers for control purposes although it has its own 1024-

bit input to the IOS. For a 4096-bit IOS, the lORs are distributed to one of ' .

2-51

four 1024-bit cables to the array memory so that each 1024-bit cable group

connects to a separate quadrant of 64 PEMs. In this configuration, the real-

time link has an input/output of 4096 lines and uses all four cable groups to

the array.

The initial I/O switch will be in the IOS-A configuration, that is, with a band-

width of 1024 lines to the array memory. This is sufficient for the two disk

files and most real-time links. However, the IOS is organized so that it can

be.expanded to include the IOS-B.configuration to provide, an additional 3072

data lines for the real-time link and array memory. This, of course, would

require that the cabling between the IOS and the quadrants be slightly modi-

fied so that the first cable of 1024 lines goes only to quadrant 1; the other

three sets of cables would go to quadrants 2, 3, -and 4. , • . •.

2-52

CONTENTS

. ' . " ' • ' " • ' Page

INSTRUCTION FORMAT AND FIELD USAGE . '. / .' ^ 3-1
, ' ' • . ' • ' . . " • • '-l'i ' . • ' ' • : ' ' ' •

ILL'IAC IV ADDRESSING . ;"' '. ' .' '. '. ' 3-4
• • • - • • • " * ' ' - • . . ' • • :''. • • ; ' . > • ' : ' • - .

ADVAST INSTRUCTION REPERTOIRE . . ' ; 3-8 '

ADV AST INSTRUCTION DESCRIPTIONS 3-11

(See Index on Reverse Side)

ADVAST INSTRUCTION INDEX

Mnemonic
Code

A LIT
BIN
BINX
CACRB
CADD
CAND
CCB
CEXOR
CLC .
COMPC
COPY
COR
CRB
CROTL
CROTR
CSB
CSHL
CSHR
CSUB -.
CTSBF
CTSBT
DUPI
DUPO
EQLXF
EQLXFA
EQLXT
EQLXTA
EXCHL
EXEC
FINQ
GRTRF
GRTRFA
GRTRT
GRTRTA
HALT

Octal
Code

16XX
0610
0611
0001
0402
0410
1101
0407
0005
0006
0204
0411
0207
0015
0017
0013
0014
0016
0403
1102
1100
0401
0400
1417
1416
1415
1414
0406
0004
0010
1503
1502
1501
1500
0000

Ref.
Page

3-12
3-13
3-13
3-15
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26 ,,
3-27
3-28
3-29
3-30
3-31
3-32
3-32
3-34
3-35
3-64
3-64
3-64
3-64
3-36
3-38
3-39
3-65
3-65
3-65
3-65
3-40

Mnemonic
Code

INCRXC
INR
JUMP
LDC
LDL
LEADO
LEADZ
LESSF
LESSFA
LESST
LESSTA
LIT
LOAD
LOADX
ONESF
ONES FA
ONEST
ONESTA
ONEXF
ONEXFA
ONEXT
ONE XT A
ORAC
SETC
SKIP
SKIFF
SKIPFA
SKIPT
SKIPTA
SLIT
STL
STORE
STOREX
TCCW
TCW

Octal
Code

0002
0007
17XX
0011
0405
0201
0200
1507
1506
1505
1504
0003
0600
0601
1007
1006
10.05
1004
1017
1016
1015
1014
0205
0012
1103
1107
1106
1105
1104
16XX
0404
0602
0603
0203
0202

Ref.
Page

3-41
3-42
3-43
3-44 .
3-45
3-46
3-46
3-66
3-66
3-66
3-66
3-48
3-49
3-49
3-67
3-67 /
3-67'
3-67
3-68
3-68
3-68
3-68
3-52
3-53
3-54
3-69
3-69
3-69
3-69
3-55
3-56
3-58
3-58
3-60
3-61

Mnemonic
Code

TXEF
TXEFA
TXEFAM
TXEFM
TXET
TXETA
TXETAM
TXETM
TXGF
TXGFA
TXGFAM
TXGFM
TXGT
TXGTA
TXGTAM
.TXGTM
TXLF
TXLFA
TXLFAM
TXLFM
TXLT
TXLTA
TXLT AM
TXLTM
WAIT
ZERF
ZERFA
ZERT
ZERTA
ZERXF
ZERXFA
ZERXT "
ZERXTA

Octal
Code

1413
1412
1216
1217
1411
1410
1214
1215
1403
1402
1302

.1303
1401
1400
1300
1301
1407
1406
1306
1307
1405
1404
1304
1305
0206
1003
1002
1001
1000
1013
1012
1011
1010

Ref.
Page

3'70
3-70
3-71
3-71
3-70
3-70
3-71
3-71
3-72
3-72
3-73
3-73
3-72
3-72
3-73
3-73
3-74
3-74
3-75
3-75
3-74
3-74
3-75
3-75
3-78
3-76
3-76
3-76
3-76
3-77
3-77
3-77
3-77

TMU INSTRUCTION INDEX

Mnemonic
Code

EFA
EFF
LICR
LISR
RPT
RUN
SA

• Octal
Code

160
164
041
040
001
020
007

Ref.
Page

5-16
5-18
5-20
5-21
5-22
5-23
5-24

Mnemonic
Code

SAT
SIS
SIV
SL
SLT
SOC
SOD

Octal
Code

047
120 -
100
006
046
Oil
010

Ref.
Page

5-25
5-26
5-27
5-24
5-25
5-30
5-32

Mnemonic
Code

SR
SRT
TIC
TOC
WIS

Octal
Cpde

005
045
121
002
044

V
Ref. i
Page

5-24
5-25
5-33
5-34
5-35 -

SECTION III

ADVAST INSTRUCTIONS

INSTRUCTION FORMAT AND FIELD USAGE

The format for ADVAST instruction words is given below, followed by an

explanation of field usage. Note that all bit positions are stated relative

to their location in the ADVAST instruction register (AIR).
AIR BIT NO.
0 1 2 3 4 5 6 7 10 II 12 13 14' 15 16 17 IB 19 20 21 22 23 24 25 ' 26 27 28 29 30 31

FIELD A OP CODE ACARX SKIP ACAR

'1

FIELD BOP CODE ADR

1 PA PITY : f

Field

FIELD A OP CODE

ACARX

SKIP

Description , .

AIR BITS 0:5. -'Bit 0 is "zero" for AD-
VAST instructions. Refer to Table 3-1
for the ADVAST Op Codes.

AIR BITS 5:3. When bit 5 is "one", the
contents of the ACAR specified by bits
6 and 7 are used to index the quantity
found in the ADR field. When bit 5 is
"zero", the ADR field is used without
indexing, and the values in bits 6:2 are
irrelevant (except in the SLIT/ALIT
instruction, where 6:2 specify the re-
cipient ACAR). ..

AIR BITS 8:8. This field is used in the
test and skip instructions to show sign and
magnitude of the skip distance, if a skip
is to be executed. Bit 8 is the sign ("one"
means subtract; "zero" means add), while
bits 9;7 specify the magnitude.

3-1

(B
a>•o .
o
U

£3

.2

\
CO

•s
H

E

£
E-
U

m
x
p

C
R

O
T

L

s1

. o

CO

".-
r ,

W :

^
'~~]

y

*7—

I
p

~

•'- '••

x

H

X
E

-

< «•
U

.f-
J

'-•

,

,.

cr
u

,;|

u
c
•̂

C '

s
u
c-

'3j

.c
<
61

L
E

 A
D

Z

.

',

E

""̂

'!'
E

y.-
0

E
X

C
H

I.

•

^

fr

cr.
U

<

-•

3

U
U

P
O

...
_)

S ' M -

: '.::

x
c

E

1

1
'O

R
E

X

tr

, 1

i-
cr.

X
C

§

C

J
:j

'I'.!

:-'

u ^
o

x
is b.o •

X

S H
o

x. •'
•ST. H

^

X '

N

-X •
E <

X

n ̂ -

N .

X-
E <
a H

K

r3 u,1
£

\ f^-

•j-.
x ui

u:

?, •
" w>"

^ <

SO

^s "^

rv- -

*

&

-..'.it
m

,-r:

b.
• Q-,

X
v<

1

H

ft.

v-
V.

<

S
K

IP
T

.ft.

•5
IT:

i/:

^

i-

2

.1

X s

^u.;

^ <
^ b,

^H

s?

* '.

' -..

."•

' ..'

'

,:/>•

' X '**p fc.

ll

.
p- u-

.r f-

x •*t- -

o s• 2 <

;-

^

ii

j fc
M

.X
J <

H

X

U

X -
J <
w •

u .
X b.
H

h '^

X h
H /'.

H

X a.
K

El

t_ c—

B"^

r- """•

g <

..' i.

X E-
u

S<

cr"

rj '-*-
_;

'J~.

K <
M S

x
ki. C-

Ki <
"-. f-

E
L«

C

h <
e b.

c:

C

,
G

R
T

R

,->

T
A

i

£
H "
J

i

K,
S
•-S.'

'o •'-" -w fo ^". «v i» :"
o o "o o o o o

'<s-o.sj.ia-uiv) v anau-

3-2

GLOBAL/LOCAL

PARITY

FIELD B OPCODE

ADR

Description

AIR BITS 16:2. Each instruction describes
the particular usage of the ACAR specified
.in this-field. Usually, the designated ACAR
is the source of the first operand and/or
the destination of the result.

AIR BIT 18:1. A "zero" indicates "global";
"one" indicates "local. " Global means that
the execution of the instruction is dependent
upon the array configuration control logic;
in a multiquadrant array, it is assumed that
all CUs are executing the same program.
Local means that this C.U executes the in- ;
struction independently, without synchronizing'
or interchanging data-with other CUs.

AIR BIT 19:if •''This'is an odd parity bit. . ALIT,
-SLIT, JUMP, -and instructions executed by
means of the EXEC instruction do riot utilize
t h e parity bit. ' . .

•AIR BITS 20:4. Refer to Table 3-1 for the
ADVAST_ O p Codes. . . . _ " _ • _

AlR BITS 24:8. Each instruction describes
the particular usage of this field. Generally,
it is indexable (see ACARX), and specifies
the local memory address to be used as the
source of the second operand, or the source
or destination of a data transfer. It indicates
the shift amount in the shift instructions. For ,
some instructions (e. g., CCB, CRB, CSB,
etc.) bits 24:2 designate the number of the CU
to perform the .operation (as interpreted by the
array size and configuration control logic shown
in the CU Determination Chart, Table 3-2).
.For .the ALIT, SLIT,, and JUMP instructions,
AIR bits 8:24 comprise the ADR field.

For instructions of the type noted in the ADR, field description, Table 3-2

maybe used to determine which CU will be used in instruction execution.

The array defined by MCO and MC2 should be the same in all CUs executing

an instruction of this type. There is no provision in the hardware to enforce

3-3

Table 3-2. CU Determination Chart

CU
0

1
0

0

0

1
1
1
0

0

0

1

Number*
1

0

1

0

0

1
0

0

1
1.

p
1

2

b
0

i
0

0

1
0

1
0

1.
1

3

0

0

0

1

0

0

1
0

1 ,
1.
1

AIR 18:1

= 1 (LOCAL)

All Values
of . '

AIR 24:2

o
U

'•<-•/• ^ ;,'
m *

Q
W '
25
fe
w
Q
to

U

• ' J ' • ' •

- . . * ' • "

• • .

= 0

AIR

00

0

1

2

3

0

0

0

1

. 1

2

0

(GLOBAL)

24:2 (Relative CU

01

0

1

2

3

1

2

3

2

3 .

" 3

1 .

10

0

1

2

3

•°

0

0

1

1

2

2

Number)

11

0

1

2

3

. •.. 1 -:

2

3

2

. . . ' •3

. 3; .--

-: - .3 - -

''"Number of CU(s) executing instruction as determined by MCO, ,MC2, and
the configuration control logic.

this conformity, and it is conceivable that there may be a. reason for having

them not the same in the various CUs. Therefore, it is necessary to examine

the settings of these registers for each CU to determine if .any and which CUs

will perform the function.

ILLIAC IV ADDRESSING

Addressing is primarily a function of the Memory Service Unit (MSU). The

three users of MSU are I/O and the Final Station (FINST) and Instruction

Look-Ahead (ILA) portions of the CU. ADVAST requests its memory cycles

via FINST.

3-4

The I/O has two requests, IOA and IOB, the difference between them being

only in priority. FINST generates its request for three distinct purposes:

I- 1. FINST Own Request - PE read/write request.

' 2. FINST Request A -?ADVAST LOAD(X), BIN(X), or STORE(X).

3. FINST Request B - Transfer from PE register to an ACAR in
ADVAST.

The priorities for these requests in order of highest to lowest is the following:

1. IOA ,

2. FINST Request

3. ' ILA

4. IOB

The addresses sent, to the PEs may be indexed by either the X or S registers

in the PE before loading into the Memory Address Register (MAR). The

register selection is determined by FINST.

The addresses (instructions and data) in a four-quadrant array (as defined

by MCI for instruction addresses and MC2 for data addresses) are inter-

preted'as follows:

IIAJICR

ACAR

I 1 1 1
,^°r . 1 PEM Subaddress
future 1 | (Bits 5-1 5)expansion (| |

i l l 1

Selects
the

CU No.

Selects
the PEM

within
the PUC

Selects
the " :

PUC

Half-word
designator

in ICR

40 55 56- -57 58- •60 61 • -63

3-5

EXAMPLE

For the addresses specified (bits 5-23) the ILLIAC components
will be as follows:

Address
(Bits 5-23)

0000000
0000110
0000777
1777777

Selected Components

PUC

0
' 0
: 7 \,

! • • • •

PEM

0
1
7
7 '

CU

:0
1
3

. 3

Subaddress

0000
0000
0001
3777

i

In a two-quadrant array as defined by MCI for instruction addresses and MC2

for data addresses, the address is interpreted as follows:

IIA|ICR

ACAR

— 5

41

-16 1,7 . 18- — 20 21 23 24

1 1 '1 1 1
',F°r ••• PEM-Subaddress

• futUre 1 -J (Bits 6-1 6).'- ;expansion i - | |
-. ' S 1 1"-: 1

Selects
' higher or

lower
CU No.

Selects
' the PEM

within
the PUC

• • . - - . . t t •

. . .Selects ...
the

(PUC

Half-word
designator

in ICR

• 56 57' 58 60 61.- -'63

EXAMPLE . ;; ;

F,or the addresses specified (bits 6-23) the ILLIAC components
will be. as follows: • ; ' :

, . - , •• .Address ; ,
(Bits 6-23)

..., , opoooo , ••... .
000001

- • • • ' ooooio
, ;> ;.000077

000177
--• 000277

000377
777777

1 • : -

, Selected: Components >
PUC

:0 -
1

' 0
•• . 7

7
7 '

. . 7
.7

PEM

0
0

• ' • 1
7,. •
7

' 7 "• '
7; . . .
7

CU

:.-L. • •
L

•'' L
. L

H
L '
H
H

Subaddress

. . .0000. .
0000

' ; o o o o -
. ,0000 . . .

0000
- oooi ' • '

0001
3777

3-6

In a one-quadrant array as defined by MCI and MC2, the addresses are

interpreted as follows: •" • • • • - . • . •

IIA|ICR

ACAR

1 I 1 - '
' F°r ' ' PEMSub ddre s

future I . I ih i tv f i r f 3 3
, t DllS / — 1 1 I ..expansion | |) |

i i i i

Selects
the PEM

within
the PUC

Selects
the . ." " .. : •

PUC

Halfiword
'designator
. in ICR

4? _ C7 KR : fin fil - ^K3

EXAMPLE

For,the addresses specified (bits 7-23),the tLLIAC components
will be as follows::

Addresd
: (Bits 7-23)

000000
000001
000010
000077
000100
377777

. . Selected Components ' . .: ' .
. . : PUC.

0
i
0
7
0
7

.PEM

0
0

, 1 . • .
7
o .
7' "

: , . . Subaddress . . .jj

0000
0000
0000
0000
0001
3777 ,

Various memories will be'selected'in a quadrant by. the memory-select

from MSU..... The I/O request will select eight PUCs and two PEMs witffM e'acih

PUC (that is, IIA|lCRbits 20 - 23 are ignored). The BIN(X) and ILA reqiii'e's^

will select eight PUCs and one PEM within each PUC (that is, IlA'I.IClR b'rts

21 - 23 are ignored). LOAD(X) and iSTORE(X) will select one PUC'an'd one1

PEM within the PUC., ,PE requests 'will select eight PUCs arid'eight

within each PUC (that is, I lAJICRbits 18-23 are ignored). , " ' '
The half-word designation is the least significant address bit for.tne 32'^b*it iris

tions. It is ONE to designate the right or less significant half-word, arifr ZE&6

for the left or more significant.
o — 7

ADVAST INSTRUCTION REPERTOIRE

Following is a list of the instructions that comprise the ADVAST instruction

repertoire. They are arranged in alphabetical order according to mnemonic

or functional group, and in the same order of appearance as the instruction

descriptions which comprise the remainder of this subsection. Timing for

the instructions is given in Section ,VI..

Octal Op Code
Mnemonic

Code

ALIT . >

B I N . • • ' : . .

BINX

CACHE

CADD

CAND

CCB

CEXOR

CLC

COMPC

COPY

COR.

CRB

CROTL

CROTR

CSB

CSHL

CSHR

CSUB

CTSBF

CTSBT ...

DUPI

DUPO

EXCHL ,

EXEC

FINQ

HALT

Field A
0:5 .

:,16

;06

06
; oo ' ' ' •

04

04

11

04

00

00

02

,04 '

02

00

00

00

00

.00

04

11

11 •

04

04

• 04

00

00

00

Field B
20:4 .

XX . , - • •

10 ' •.

11
01'

02,
i ' ,? - t '"'

10

01

07 . ,

05

06

04

. 1 1

07

15 ' "

17

13

14

•16 :'

03

02

00 .

01

00

• 06 : .-.•

04

10

00 '

Operation

literal to address field of ACAR

.'. Block fetch from PE memory to ADB

Block fetch (RGX-indexed) from PE memory to ADB

Set/Reset nth bit.in ADVAST control register

Add Ip.cal memory to ACAR

Logical AND of local memory and ACAR

Complement: n**1 bit of ACAR

Logical, exclusive-OR of local memory and ACAR

Clear ACAR

, Complement ACAR

Copy ACAR

• Logical OR of local memory and ACAR

Reset nth bit in ACAR

Rotate ACAR left (end around)

Rotate ACAR right (end around) ^, ',

Set n t h bit in ACAR ;,j . ; . ' _ ' ." '

Shift ACAR left (end off)

Shift AC A R right (end off) .

Subtract local memory from ACAR ~

Skip if nth bit in ACAR is not "one" ;

. Skip if nth bit in ACAR is "one"

Duplicate inner-half of ADB memory word

Duplicate outer-half of ADB memory word

'•-.Exchange-local operand and ACAR

Execute

Stop ADVAST until FINST is'idle

CU conies to orderly idle state

3-8

Octal Op Code
Mnemonic Field

Code 0:5

INCRXC

INR

JUMP

LDC

LDL

LEADO

LEADZ

LIT

LOAD

LOADX

ORAC

SETC

SKIP

SLIT

STL

STORE

STOREX

TCCW

TCW

Test-Skip T/F A

(True /False

EQLXTA
T
FA
F

GRTRTA
T
FA
F '..

LESSTA .,
T
FA
F

ONESTA
T
FA
F

00

00

17

00

04

02

02

00

06

06

02

00

11

16

04'

06

06

02

02

All;

14
14
14
14

15
15
15
15.

15.
15
15
15

10
10
10
10

A Field B
20:4

02

07

XX

11

05 .

01

00

03 .

, 00

i 01 . -

05

12

03

XX

04

02

03

, 0 3

02

'Any)

14
15 ••
16
17
00, ..
01
02

. . . • , 0 3

04
05

: ' 06
07

04 •
05
06
07

Operation

Modify index field Of ACAR by increment field
of same ACAR, . . .

• - . . - • • • s •
Return to normal processing after interrupt .

Jump to address in ADR field

Transfer specified PE register to ACAR:

Load from local address

Find leading "one" in ACAR

Find leading "zero" in ACAR . ,

Store next 64 bits in ACAR - -•' •

Word fetch from PE memory to CU local memory ' •'

Word fetch (RGX-indexed) from PE memory to CU
local memory

Inclusive-OR of operand in ACAR of all CUs
executing the instruction •' •

Specified mode bit from PEs to ACAR

Skip forward/backward

Replace address field of ACAR

Store ACAR in local address

Store from local address into specified PE location

Store from local address into specified PE location
(RGX-indexed)

Transmit ACAR. counterclockwise (to next lower
numbered CU)

Transmit ACAR clockwise (to next higher numbered (CU)

Skip if ACAR 40:24 equal operand 40:24

Skip if ACAR 40:24 are greater than operand 40:24

Skip if ACAR 40:24' are less than operand 40:24

Skip if ACAR 0:64 are all "ones

3-9

Octal Op Code
Mnemonic

Code

ONEXTA
T
FA
F

SKIPTA
T
FA
F

TXETA
T
FA
F

TXETAM
TM"
FAM
•FM

TXGTA
T
FA
F

TXGTAM
TM
FAM
FM

TXLTA
T
FA
F

TXLTAM
TM
FAM
FM

ZJSRTA
T •
FA
F .

ZERXTA
T
FA
F

Field A
0;5

10
10
10
10

11
11
11
11

14
14
14
14

12 .
12
12
12

14
14
14
14

13
13
13
13

14
14
14

,14

13
. 13

13
• 13 '

10
10
10
10

10
10
10
10

, Fiel<
20:'

14
15
16

• 17

04
05
06
07

10
11
12
13

'14
15
16
17

00
01
02
03 .

. 00
01
02

- 03

04
0'5
06

.'. °7

04
05
06
07

00
01
02
03

10
11
12
13

Operation

Skip if ACAR 40:24 are all "ones

Skip dependent upon CU true/false flip-flop

Skip if ACAR 40:24 equal bits 16:24 in local memory

Skip if ACAR 40i24 equal bits 16:24 (also, 40:2^4'
are modified by 1:15) of same ACAR

Skip if ACAR 40:24 are greater than bits 16:24
in local memory

Skip if ACAR 40:24 are greater than bits 16:24
(also, 40:24 are modified by 1:15) of same ACAR

. . . .
Skip.if.ACAR 40:24 are less than bits ,16:24 in
the local memory

Skip.Hf A!CAR 40:24 are less than .bits 16:24:! f j . -? ' ..<? !
(also, 40:24 are modified by 1:15) of same ACAR

Skip if ACAR 0;64 are all "zeros"' '

" "

WAIT 02 06

Skip if ACAR|40:24 are all "zeros

SyncHronize all CUs in array or join all CUa
specified:'by'ADR 4:4 f -_'!•• J /: .f •• = !-,

3-10

ADVAST INSTRUCTION DESCRIPTIONS

The remainder of this section consists of descriptions of the various AD-

VAST instructions. These are arranged alphabetically according to instruction

mnemonic, in the same order as presented in the instruction repertoire pre-

viously listed. Each description.includes the mnemonic code, the operation

performed, the AIR contents (the ADVAST instruction register) -for the

specific instruction, and a brief functional description and flow chart of major
i - ,- ' i • • •

operations performed during instruction execution. The word format for

ADVAST instructions is as follows:

AIR BIT NO.

0 I 2 34 5 67 69 10 II 12 13 14 15 16 17 IB 19 20 21 22 23 24 25 26 27 28 29 30 31 .-

FIELD A OP CODE ACARX SKIP ACAR ,

' - i ' • i

r,i nRii / i r t rAi

— FIELD 8 OP CODE AOR

1 PARITV

The general format used in the instruction descriptions is as shown below.

Shaded fields are used to indicate irrelevant fields for specific instructions.

XX ACARX SKIP ACAR G/L XX ADR

For all instructions that load the ICR, the stepping of the ICR upon completion of

the instruction is inhibited. Certain instructions (e. g., INCRXC, TXE, TXG, and

TXL) treat an ACAR as an index register, utilizing the ACR bit's, as follows: ,

Half-Word
Ind.

0:1

Sign of
Increment

1:1

Magnitude of
Increment

'• • ; - 2':14 '• - ' • • • •

Limit

'- 16:24.

i
Current

Index Value
1 ' '

40:24 .

Two abbreviations used in the flow charts- are. "ILA .Nl" for "fetch the next instru-

ction in sequence using the ILA" and "JUMP" , for "fetch the instruction correspond-

ing to the new contents of the instruction counter".

3-11

MNEMONIC CODE: ALIT

OPERATION: Add Literal to Address Field of ACAR

AIR:

16 1 XX ADR •
4 5 6 7 8 31

DESCRIPTION: This instruction.causes the address field of the specified
ACAR (bits 40:24) to be replaced by the sum of the address field of the in-
struction (ADR 8:24) and the address field of the specified ACAR. Bit 5 of
the instruction must be "one". Bits 6 and 7 (see XX in format) designate the
ACAR which is used to index the ADR field (bits 8:24) of the AIR. The results
of the indexing operation are returned tO'the specified ACAR (bits 40:24).
ACAR bits 0:40 are not changed; any overflow is disregarded.

FLOW CHART:

ALIT

ACAR 40:24 + ADR 8:24 ACAR'40:24

3-12

MNEMONIC CODE: BIN(X)

OPERATION: Block Fetch (RGX Indexed) from PE Memory to ADB

AIR:

BIN

BINX

06
0 4

06

ACARX ACAR G/L
5 7 1 6 1 7 1 6

ACARX ACAR 3/L

10 ADR
19 20 23 24 31

11 ADR
4 5 17 18 19 20 23 24

DESCRIPTION: This instruction causes a block of eight words to be read
from PE memory and stored in ADB. The PE memory address is taken
from the specified ACAR and, if BINX, is modified by RGX in the selected
PUs. The resultant PE memory address is treated as though the three
least significant bits were "zero" and then incremented until eight
words are transferred. The ADB addresses taken from the ADR field of
the instruction and is indexable. The resultant ADB address is limited to
the ADB address area and is treated as'though the three least significant
bits were "zero" and then incremented until eight words are transferred.

BIN/BINX causes the ADVAST station to stall if ACR3 is set, that is, if a
previously requested BIN/BINX or LOAD/LOADX instruction using ADB has
not been completed. The ALR register is used to hold the unfilled local
address until the operation is executed at FINST. Note that any instructions
that reference unfilled location(s) as specified in ALR will cause ADVAST to
stall until the location(s) are filled. ACR7 specifies whether one or eight
locations are locked out.

When this instruction is ready for execution at FINST.and MSU, all CUs in
the array are synchronized. The address in PE memory is interpreted
according to ACAR 56:2 and the setting of MCO and MC2 to determine which
CU accesses the data. If the instruction is global then only one CU in the
array will fetch the eight words from the PE. The eight words will then
be broadcast to other CUs in the array. If the instruction is local then only
this CU in the array will receive the eight words.

FLOW CHART: See next page.

3-13

f ALR BUSY'\ YES
I <ACR3)=1?

ADR 2:6-fcALR 0:6

IS THE ADR VALUE
AN ADB ADDRESS

. (ADR 0 : 2 = 0) ?

YES

NO

f IS - N
"WRAPAROUND"

INHIBITED
V ' (A M R 6 = 1) ? >

"NO

1-ALRBUSY (ACR3)
1-»BIN/LOAD (ACR7)

PLACE INSTRUCTION
IN FIQ. AND ADDRESS

FROM ACAR 40:21'
IN FDQ

YES

SET ADB WRAP-
A ROUND INTERRUPT

(• IS THIS "BIN/BINX"
THE NEXT OPERATION

i IN FINQ IN ALL CUs IN •'
\ THE A R R A Y ?

NO

YES

INSTRUCTION
\ GLOBAL? ,

NO
INTERPRET ADDRESS

AS BEING WITHIN
OWN QUADRANT

IS THE PE
MEMORY

ADDRESS IN THIS
QUADRANT?

NO

;

IS ADVAST BETWEEN \
INSTRUCTIONS AND THE I NO

BROADCAST DATA I
AVAILABLE? /

READ 8 WORDS FROM PE MEMORY
DETERMINED BY THE ADDRESS
STORED IN FDQ. BROADCAST
THIS DATA TO THIS CU AND TO
THE OTHER CUs IN THE ARRAY

IF THE BIN/BINX IS GLOBAL

YES

STORE THE 8 BROADCAST WORDS
IN ADB, STARTING AT THE ADDRESS
IN ALR 0:6(ALR 3:3 ARE CONSIDERED

ZERO)

••ALR BUSY FF IN ACR

3-14

MNEMONIC CODE: CACRB

OPERATION: Set/Reset nth Bit in ADVAST Control Register

AIR:

DESCRIPTION: This instruction changes a bit in the ADVAST control
register. The bit number is specified in ADR 4:4 and is indexable. The
most significant bit of the local address field (ADR 0:1) will contain a "one"
if the bit is to be set and a "zero" if it is to be reset. If ADR 4:4 equals 1,
3. 6. or 7, then the ADVAST control register will not be changed. If
ADR 4:4 equals 2, then the ADVAST control bit will not be set.

Three bits, ACR9, ACR10, and ACR13, control operations in the PEs but are
set and reset by CACRB which is an ADVAST instruction. A new value of the
bit should be effective only on the instructions which follow the CACRB
instruction. Since the PEs may still be executing, from FINQ, instructions
which preceded the CACRB, there is a potential problem in synchronization.
Hardware interlocks automatically resolve this potential problem in the
case of bits 10 and 13. A change in ACR9, however, will apply as soon as
the change is effective, and will apply even to those instructions still remain-
ing unexecuted in FINQ. In case of doubt, a CACRB9 can be preceded by a
FINQ instruction; CACRB10 or CACRB13 need not.

FLOW CHART: See next page.

3-15

CACRB'

I
ADR /V. = 13 OR 10?j

VA)
N •ADR = 2 ?

AYES/

f

YES

NO HAS FINQ EMPTIED
, A N J 3 FINST STOPPED ?

YES

= 10 ?

NO

ADR, y) 0:1 - r',?

NO

IS
MEMORY

INITIATING ?

NO

RESET
"ATTEMPTED

WRITE
.VIOLATION'1 .

INDICATORS.IN
PE MEMORIES

DELAY 7 CLOCKS

/ \
ADR (X)0:1 =

. A YES
*

NO

DR = 1,3, 6, OR 7? IYES

V YES

NO

NO

ADR (X) 0:1 »

ACR (ADR.V.4:4):1
• • (A)

ILA
NI

3-lb

MNEMONIC CODE: CADD.

OPERATION: Add Local Memory to ACAR

AIR:

04 lACARX 02 ADR
4 5 16 17 19 20 .23 24,

DESCRIPTION; This instruction adds the operand in. the local, address to
•the contents of the specified ACAR. The local address field is indexable.
Operatioh.is limited to the least significant 24 bits of the ACAR and the ,
local operand, except that the least significant bit of ICR and IIA are not used.
Overflow is disregarded. The result is stored iri the least significant
24 bits of the ACAR. The most significant portion of the ACAR is not
changed. The address is restricted to ADB, the ACARs, the ICR,. or the IIA.

FLOW CHART:

CADD

YES/
V

ADR, x)= ICR | IIA

J
(ADR(X)) 40:24 + ACAR 40:24—+* ACAR 40:24

IIA | ICR 0:24 + ACAR 40:24 —»-ACAR 40:24

3-17

MNEMONIC CODE: CAND

OPERATION; Logical AND of Local Memory and ACAR

04 :. ACARX 10 ADR
4 5 16 ' • • • 17 19 20 23 24

DESCRIPTION:' This' instruction performs the; logical AND between the
specified ACAR and the operand in the'local address. ,The local .address
is indexable arid limited to'the ADB and'the four ACARs. The result is
stored in the specified ACAR. . ' : . ' ,"

FLOW CHART:

CAND

(ACAR) "AND" (ADR .)* —*• (ACAR)
(X) . - .? .

Local address limited to ADB and the four ACARs.

3-l'8 "-

MNEMONIC CODE: CCB

OPERATION: Complement nth Bit of ACAR

AIR:

11 ACARX ACAR G/L
o 4 5 16 \7 18 \9 20 Z3 24

DESCRIPTION: The local, address .fijeld of this instruction specifies ,a CU
to complement a bit in the specified ACAR! ; The'CU number is,specified
in ADR 0:2 and.ls' relative to MC2,and"MC.6.;"' The'bit number to'be ' . _
compiemented'is specified in ADR. 2:6. The loc,al address field of
the instruction is indexable. This is a NO-OP for the CUs not selected
to perform the operation.

FLOW CHART:

CCB

SHOULD, THIS CU PERFORM'V. YES
THIS INSTRUCTION ?

(See Table 3-2,)

."NOT" [ACAR (ADR. 2:6) :i]
; ACAR :(ADR'2:6) :1

NO- '

3-19

MNEMONIC CODE; CEXOR

OPERATION: Logical EXCLUSIVE-OR of Local Memory and ACAR

AIR:

04 ACARX 07 ADR
16 . 17 . 19 20 23 24 31

DESCRIPTION; This instruction performs the logical EXCLUSIVE-OR
between the specified ACAR and the.operand in the local address. The
local address is indexable and limited to the ADB and the four ACARs.
The result is stored in the specified ACAR.

FLOW CHART:

CEXOR

(ACAR) "XOR" (ADR
(X)' •(ACAR)

Local address limited to ADB and the four ACARs.

3-20

MNEMONIC CODE: CLC

OPERATION: Clear ACAR

AIR:

00 . 05
16 17 19 20 25

DESCRIPTION: This instruction causes the CU to reset the specified ACAR
to all zeros.

FLOW CHART:

CLC ACAR

3-21

MNEMONIC CODE: COMPC

OPERATION; Complement ACAR

AIR:

00 ACAR 06
16 17 19 20 23

DESCRIPTION: This instruction causes each bit of the specified ACAR
to be inverted.

FLOW CHART:

COMPC 1 I TVT^Ni'r't tNOT" ACAR »-ACAR '

3-22

MNEMONIC CODE: COPY

OPERATION: Copy ACAR

AIR:

02 ACARX ACAR G/L 04. ADR
0 . 45 7 ,i(j - ,Svx- ..' i, 16 • '17 18 ,- 19' . 2 0 - 2S 24 . 31

DESCRIPTION: This instruction causes all CUs in the array to be syn-
chronized at the beginning of the instruction. The local address field of the
instruction selects a CU whose specified ACAR is to be copied into the same
ACAR of the non-selected CUs. The selected CU sends its ACAR to the
other CUs each of which stores it in its ACAR. The local address field is
indexable. The CU number is specified in ADR 0:2, and is relative to
MC2 and MCO. This'instruction is a NO-OP in single'quadrant array.

FLOW CHART:

COPY
IS INSTRUCTION7

LOCAL OR
1 CU IN ARRAY?

,YES

NO (2 or '4 CUsK

NO OWN CU SELECTED
TO SEND?

(See Table 3-2.)

YES

OWN CU RECEIVES ACAR
FROM CU SPECIFIED BY

ADR 0:2

OWN CU TRANSMITS
ITS ACAR TO OTHER

CU(s).

3^23

MNEMONIC CODE: COR

OPERATION: Logical OR of Local Memory and ACAR

AIR:

04 ACARX ACAR 11 ADR
4 5 19 20 23 24

DESCRIPTION: This instruction performs the logical OR between the speci-
fied ACAR and the operand in the local address. The local address is
indexable and limited to the ADB and the four ACARs. The result is stored
in the specified ACAR.

FLOW CHART:

COR

(A.CAR) "OR" (ADR (X)) (ACAR)

Local address-limited to ADB and the four ACARs.

3-24

MNEMONIC CODE: CRB

OPERATION: Reset nth Bit in ACAR

AIR:

02 ACARX ACAR G/L 1 07 AUR
4 5 16 17 18 19 20 23 24

DESCRIPTION: The local address field of this instruction specifies a CU
to reset a bit in the specified ACAR. The CU number is specified in ADR
0:2, as interpreted by the array size and configuration control logic. The
bit number to be reset is specified in ADR 2:6. The local address field of
the instruction is indexable. This is a NO-OP for the CUs not selected to
perform the operation.

FLOW CHART:

CRB
SHOULD THIS CU PERFORM\

THIS INSTRUCTION ? *
(SEE CU DETERMINATION

CHART)

YES

NO

ACAR (ADR 2:6):1

3-25

MNEMONIC CODE: CROTL

OPERATION: Rotate ACAR Left (End Around)

AIR:

00 ACARX iCAR 8—f .'5 ADR
4 5 16 17 19 20' ' J 23 24

DESCRIPTION: This instruction'shifts the specified ACAR to the left end-
around, by an amount specified in ADR 2:6. The ADR field is indexable.

FLOW CHART:

CROTL

ADR 2:6 = 0 ? YES

"I NO

SHIFT LEFT END-AROUND THE
SPECIFIED ACAR BY THE

AMOUNT SPECIFIED IN ADR 2:6

3-26

MNEMONIC CODE: CROTR

OPERATION: Rotate ACAR Right (End Around)

AIR:

00 ACARX .'ACA;R 17 ADR
4 5 16 17 19 20 23 24 31

DESCRIPTION: This instruction shifts the specified ACAR to-the, right end-
around by an amount specified in ADR :2:6.- .The ADR field is indexable.; ,

FLOW CHART:

CROTR

.YES
ADR 2:6 i' 0 ?'' F-

NO

SHIFT RIGHT -END-AROUND THE
SPECIFIED ACAR BY THE '

AMOUNT SPECIFIED IN ADR 2:6 •

3-27

MNEMONIC CODE: CSB

OPERATION: Set nth,Bit in ACAR

AIR:

00 - . ACARX ACAR G/L — .1.3 ADR,..
16 17 IB 19 20

DESCRIPTION; The. local address field of this instruction specifies a
CU to set a bit in the. specified ACAR. The CU number is specified in
ADR 0:2, as interpreted by the array size and configuration control logic.
The bit number to be set is specified in ADR 2:6. The local address field
of the instruction is indexable. This is a NO-OP for the CUs not selected,
to perform .the operation.

FLOW CHART:

CSB

SHOULD THIS CU PERFORM
THIS INSTRUCTION ?

(See Table 3-2.)

YES
, 1 r ACAR (ADR2:6):1

NO

3-28

MNEMONIC CODE: CSHL

OPERATION: Shift ACAR Left (End Off)

AIR:

00 ACARX ACAR 14 ADR
16 17 19 20 23 24

DESCRIPTION: This instruction shifts the specified ACAR to the left end-
off, by an amount specified in ADR 2:6. The ADR field is indexable. Zeros
replace vacated bit positions at the right end of the ACAR.

FLOW CHART:

CSHL
1

ADR 2:6 = 0 ? YES

NO

SHIFT LEFT END-OFF THE
SPECIFIED ACAR BY THE

AMOUNT SPECIFIED IN ADR 2:6

3-29

MNEMONIC CODE: CSHR

OPERATION; Shift ACAR Right (End Off)

AIR:

00 ACARX 4ACAR 16 ADR
4 S 16 17 19 20 23 24 31

DESCRIPTION: This instruction shifts the specified ACAR to the Tight end-
off, by an amount specified in ADR 2:6.- The ADR field is indexable. Zeros
replace vacated bit positions at the left end.of the ACAR. .

FLOW CHART:

CSHR

ADR-2:6 = 0?
YES

NO

SHIFT RIGHT END-OFF THE
SPECIFIED ACAR BY THE AMOUNT

SPECIFIED IN ADR 2:6

3-30

MNEMONIC CODE: CSUB

OPERATION: Subtract Local Memory from ACAR

AIR:

04 ACARX :AR 03 ADR
4 5 19 20 Z324

DESCRIPTION: This instruction subtracts the operand in the local address
from the contents of the specified ACAR. The local address field is index-
able; addresses are limited to the ADB, the ICR, the IIA, and the four ACARs.
Operation is limited to the least significant 24 bits of the ACAR and the local
operand, except that the least significant bit of ICR and IIA are not used.
Overflow is disregarded. Underflow (a negative result) is shown in. 2's ;
complement form. The result is stored in the least significant 24 bits
of the ACAR. ACAR 0:40 is not changed. . • • • . - • • • •

FLOW CHART:

CSUB
1

YES/
f ADR,V, = ICR

(X)
IIA

N. ••
\ NO

J

ACAR 40:24 - (ADR (X))40:24 —»» ACAR 40:24

ACAR 40:24 - ICR I IIA 0:24 ACAR 40:24

"ADR (x)is limited to ICR, IIA, ADB, and the four ACARs.

3-31

MNEMONIC CODE: CTSB (F | T)

OPERATION: Skip if nth Bit in ACAR is (Not One | One)

AIR:

CTSBF

CTSBT

11 ACARX SKIP ACAR 3/L 02 ADR
45 78 1516 17 18 19 20 2324

11 ACARX SKIP ACAR G / L 00 ADR
4 5 7 B 15 16 17 18 19 20 23 24

DESCRIPTION: This instruction causes all CUs specified by MCO to be synchro-
nized at the beginning of the instruction. ADR 0:2 contains the number of the
CU to test the bit of its ACAR. ADR 2:6 designates the number of the bit in
the specified ACAR to be tested for logical one. The local address is indexable.
The TF flip-flop is set if the bit is true and reset if the bit is false. If the in-
struction is global, then each CU (relative to MCO and MC2) executing the test
sends its TF nip-flop to the other CUs. The CU will sample the TF flip-flop
line indicated by ADR 0:2 of the CUs specified by MC2 relative to MCO and if
the TF FF is as specified in the Op Code then the jump is executed. If the in-
struction is local then the CU uses its own TF flip-flop for the test.

The jump address is derived by modifying the ICR by the SKIP field of the
instruction (after stepping the ICR). SKIP 0:1 is the sign bit, where "l"
means subtract and "0" means add: SKIP 1:7 are the magnitude bits of the
modifier, where each count corresponds to a 32-bit word.

FLOW CHART: See next page.

3-32

NO

1
SHOULD THIS CU

DERFORM THE TEST ?
(See Table 3-2;)

YES

ACAR (ADR 2:6): 1
—f TF FF

SEND TF FF
STATUS TO
OTHER CU's

IN ARRAY

PF FF OF CU =1 7

YES

RECEIVE TF FF
STATUS FROM .
CU SPECIFIED

BY ADR 0:2 •

YESr
CTSBT ?

NO

TF FF OF CU \ ^ ..„ / TF FF OF CU
SPECIFIED BY]N O»,« SPECIFIED BY

ADR 0:2 = 1? / \ ADR 0:2 = 0?

YES
YES

TF FF.OFCU=,Ol

•YES.

3-33

MNEMONIC CODE: DUPI

OPERATION: Duplicate Inner Half of ADB Memory Word

AIR:

04 ACARX ACAR 01 ADR
4 5 19 20 23 Z4

DESCRIPTION: This instruction causes the CU to duplicate the inner half of
the word found in ADB memory into both halves of the specified ACAR.

Bit Alignment:

ADB Memory
(Inner Word)

ACAR
(Duplicate Word)

8-15-- '- 0-7
16-39 40-63

• • • ; . - • • . • - . : - • . • .8-.3-9-S--.--.. - - • • , . • . - . . : . • 8-39 • ' - . . - - . . • • . • ' ' . • • : ' •

The local memory address of the instruction is indexable, and is restricted
to the addresses of ADB; that is, bits 24 and 25 (in ADR) must contain 00.

FLOW CHART:

DUPI

(ADB) 8:8^ ACAR 0:8>-
(ADB) 16:24 -*ACAR 16:24 ACAR'40:'24

3-34'

MNEMONIC CODE: DUPO

OPERATION: Duplicate Outer Half of ADB Memory Word

AIR:

04 ACARX ACAR 00 ADR
4 5 - 16 19 20 ' 23 24

DESCRIPTION: This instruction causes the CU to duplicate the' outer half of
the word found in ADB memory into both halves of the specified ACAR.

Bit Alignment: .

ADB Memory
(Outer Word)

0-7
40-63

0-7
40-63

ACAR
(Duplicate Word)

8-15
16-39
0-7

40-63

The local memory address of the instruction is indexable, and is restricted
to the addresses of ADB; that is, bits 24 and 25 (in ADR) must contain 00.

FLOW CHART:

DUPO

(ADB) 0:8-
(ADB) 40:24 ->

• ACAR 0:8 —
•ACAR 16:24

•ACAR 8:8
"•ACAR 40:24

3-35

MNEMONIC CODE: EXCHL

OPERATION: Exchange Local Operand and ACAR

AIR:

04 ACARX ACAR 06 ADR
19 ZO

DESCRIPTION: This instruction interchanges the contents of the specified
ACAR and the operand in the local address. The local address field is
indexable and only the following addresses are permitted: ADB, AIN, ALR,
AMR, AC 0-3, ICR, MCO-2, IIA, and TRO. Each local address, except the IIA
and ICR, has its least significant bit aligned with the least significant bit of the
ACAR. The ICR and IIA have their second least significant bit aligned with bit
63 of the ACAR. The most significant bit of the ACAR is interchanged with the least
significant bit of the ICR and IIA. When this instruction loads the ICR, the in-
crementing of the ICR upon completion of the instruction is inhibited and a jump
occurs. If this instruction is executed and the ICR is updated and other branch
trace conditions are met, then an interrupt will occur and program control will
proceed to interrupt processing. Loading MCO or MCI causes the IWS
presence indicators to be cleared. Resetting of the presence bits does not inhibit
execution of the block currently being executed from IWS, but requires that the .
next block entered must be fetched from memory. Loading MCO or MC2 causes
the FINST queue to empty before the interchange is performed.

All bits not replaced by local memory bits will be reset to zero in the accumulator.

FLOW CHART: See next page.

3-36

IS BRANCH TRACE ENABLED
(ACR14 = 1) AND IN NON-

INTERRUPT MODE (ACR1 = 0)?j

r
NO

IS TRO
•fi AVAILABLE

V (ACR15 - 0) ?

NO YES

SET BRANCH TRACE
INTERRUPT (l-WUNH)
ICR 0:25-»THO 39:25

7

INTERCHANGE:
ACAR 40:24 AND ICR 0:24

ACAR 0:1 AND ICR 24:1

INTERCHANGE:
ACAR 40:24 AND IIA 0:24

ACAR 0:1 AND IIA 24:1

3-37

MNEMONIC CODE: EXEC

OPERATION: Execute

AIR:

00 ACAR 04

16 17 19 20 23

DESCRIPTION: This instruction causes the least significant 32 bits of the
specified ACAR to be transferred to the AIR. The transfer from IWS to
AIR and incrementing of the ICR are inhibited. Normal operation resumes
with the execution of the instruction just loaded into the AIR. No parity check
is performed on'the* instruction accessed from the ACAR'.' . ' ' .

FLOW CHART:-'" '

EXEC

ARE THE OP CODE AND
ACAR FIELDS IN AIR
IDENTICAL TO THE - .
ADDRESSED ACAR ?

NO

ACAR 32-32-^' AIR' 0:32

EXECUTE INSTRUCTION IN AIR,
ACCORDING TO FLOW CHART FOR

APPROPRIATE INSTRUCTION. '

3-38

MNEMONIC CODE: FINQ

OPERATION: Stop ADVAST Until FINST is Idle

AIR:.

19 30 23

DESCRIPTION: This-instruction causes ADVAST .to stop operating uh>
til FINST is idle. ADVAST resumes normal operation at the compie'tion
of the last instruction in FINQ. This instruction is a NO-OP when the
CU is operating in Single Instruction Mode or in Interrupt Mode. , < . .

FLOW CHART:

IIS LAST INSTRUCTION
JN FINQ COMPLETED ?.

YES

NO

3-39

MNEMONIC CODE: HALT

OPERATION: Cu Comes to Orderly Idle State-'

AIR:

19 20 23

DESCRIPTION: This instruction causes the control unit to stop operating.
This is accomplished by causing ADVAST to cease fetching instructions from
IWS. In turn, FINST will complete the present queued operations and will .
stop operating. All pending memory fetches will be completed. . However, .
all communications with the I/O and between the I/O and main memory
continue normally.. , , . . . •

FLOW CHART:

HALT
SIGNAL I/O

COMPUTER (B6500)
. '(!-»• TCI5) ,.

3-40

MNEMONIC CODE: INCRXC

OPERATION:

AIR:

Modify Index Field of ACAR by Increment Field
of Same ACAR ' ' '

16 . IT 19 20 23

DESCRIPTION: The'increment field (bits 1:15) of the specified ACAR is
added to the index field (bits 40-24) of the same ACAR. Bit 1 5 is'justified
with bit 6'3; bit 1 is the sign bit of the increment. The resultant sum is
stored back in the index field of the. ACAR. The other bits of the ACAR are
not disturbed. Any overflow/underflow is disregarded. The most significant
ten bits of the increment operand will be treated as logical zeros.

FLOW CHART:

INCRXC

I
ACAR 1;:1 = 1 ? YES ACAR 40:24 - ACAR 2:14 —*• ACAR 40:24

NO

ACAR 40:24 + ACAR 2:14 ACAR 40:24

3-41

MNEMONIC CODE: INK

OPERATION: Return to Normal Processing after Interrupt

AIR:

DESCRIPTION: This instruction causes the ,CU to -set'pertinent, registers .
and controls to their respective states, as stored in memory relative to the
interrupt base ;address. These states are not necessarily identical to those
present prior to the interrupt, -since the nature of the'interrupt may-require
the associated interrupt program to modify certain of these data.

FLOW CHART:

IS THE.CU .
IN INTERRUPT

MODE ?
(ACR1 = 1)

YES

IS THE ALTER-
NATE INTERRUPT

BASE IN USE ?
(ACR4=1)

YES '

NO

NO

MEMORY WORD 9 ACARO

GENERATE REQUEST (INTER-
RUPT (1—»• AlN9>!/> '' :

:MEM;,PRY WORD is —»• ACARO

LEAVE INTERRUPT MODE ''
(0 — f c - A C R l)

REMOVE "HARDWARE"'MASK
' AND RETURN TO AMR MASK

(0 —*• ACR2)

3-42

MNEMONIC CODE: JUMP

OPERATION: Jump to Address in ADR Field

AIR:

17 ACARX ADR

DESCRIPTION: This instruction causes the CU to execute a. jump to another
part of the instruction stream. The last eight bits of the address field of the
instruction (24:8) may be modified modulo 256 by ACAR indexing. The result,
24 bits long, is transferred to the most significant bits of the ICR. The least
significant bit of the ,ICR is set to "zero". If this instruction is executed and
the ICR'is updated and other branch trace conditions are met, then an interrupt
will occur and program control willgo to the interrupt program.

FLOW CHART:

JUMP

I
IS BRANCH TRACE ENABLED

(ACR14 = 1) AND IN NON-
INTERRUPT MODE (ACR1 = 0)

9 ; , :.. .

YES

NO

IS TRO
AVAILABLE
(ACR15 = 0)?

NO

SET BRANCH TRACE
INTERRUPT. (1-»AIN14)
ICR 0:24—»TRO 40:24
ICR 24:1-»TRO 0:1

7

YES

AIR 8:24'—*• ICR 0:24
0 —»• ICR 24:1 ' '

ILA DETERMINES WHETHER
OR NOT THE NEXT BLOCK
OF INSTRUCTIONS IS IN IWS,
AND :IF NOT, FETCHES IT.
THEN,NORMAL INSTRUCTION
EXECUTION RESUMES.

3-43

MNEMONIC CODE: LDC

OPERATION: Transfer Specified PE Register to ACAR

AIR:

00 ACARX 11 ADR
19 20 23 24

DESCRIPTION: This instruction causes FINQ to empty before it or another
ADVAST instruction is executed. When FINST becomes idle, the correspond-
ing registers addressed in all enabled PEs in the quadrant are ORed together
and replace the contents of 'the specified ACAR. The bit positions in ADR 2:5
correspond to RGA, RGB, RGX; RGS, and RGR respectively. The
register code can be modified by ACAR indexing. •

FLOW CHART: •

LDC
PLACE THIS
INSTRUCTION
IN FINQ

• IS THIS .
INSTRUCTION

THE NEXT OPERATION
IN FINQ ?

\NO

YES'

"OR" REG. <ADR(x)fpE. —^

(i = 0, 1, 2 63)
(L. S. B. ALIGNED)

ACAR

SpecificatiorijDf PE register is limited to RGA, RGB, RGX, RGS, or RGR.

3-44

MNEMONIC CODE: LDL

OPERATION: Load from Local Address

AIR:

04 ACARX ACAR 05 ADR
16 17 19 20 2324

DESCRIPTION: This instruction transfers, the operand in the local address
to the specified ACAR. The local address field is indexable and only the
following addresses are permitted: ADB 00-77, ACR, AIN, ALR, AMR, ACO-3,
ICR, MCO-2, IIA, TRO, TRI, ACU, and PEM (ARE). With the exception of ICR
and IIA, all of these registers have their least significant bit aligned with the
least significant bit of the ACAR. The ICR and the IIA have their second least
significant bit aligned with bit 63 of the ACAR. The least significant bit of the
ICR and IIA is transferred to the most significant bit of the ACAR.

FLOW CHART:

LDL

I
\YES

(ICR | IIA)?

J
1

(ICR | IIA) 0:24 •»• ACAR 40:24
(ICR | I IA) 24:lT».ACAR 0:1

NO

(ADR (.x))-r*.ACAR, WHERE THE L. S. B. OF (ADR MS

ALIGNED WITH THE L. S. B. OF ACAR; ANY REMAINING
BITS OF ACAR ARE UNDISTURBED.

ADR = AIN? YES 0 —» AIN

0-»>ILA INTERRUPT

NO

3-45

MNEMONIC CODE: LEAD (O|Z)

OPERATION: Find Leading (One)Zero) in ACAR

AIR:

LEADO

LEADZ

02 ACAR 3/L 01
17 IB 19 20-

02 ACAR 1/L 00 .
16 17 18 19 20

DESCRIPTION: This instruction causes all CUs specified by MCO to be syn-
chronized at the beginning of the instruction. All CLTs specified by MC2.
relative to MCO detect the leading "one I zero" in the specified ACAR and notify
each other of their findings. All CUs store the information presented by the ;

lowest numbered CU which detects a leading "one (zero". The information
is stored in the specified ACAR, after it has been reset. If ac "one | zero"
is found, the CU number (relative to MCO and MC2) is in bits 56;2 while
the encoded bit position is in bits 58:6. Should no "one [zero" be detected
by any CU, all CUs store a "zero" in bit 55. Should a 'one zero',' be de-
tected by any CU, all CUs store a "one" in bit 55. (Bit 0 is the leading
bit of the A C A R .)

In a single quadrant array, the CU records its own information.

FLOW CHART: See next page.

3-46 '

LEAD (O JZ)

JS THIS CU
JN THE ARRAY?
(See Table 3-2.)

,NO

1

YES

IS; THERE
A ONE IN

THE SELECTED
: AGAR ? :.

YES

ENCODE THE BIT NUMBER
OF THE HIGH ORDER BIT
POSITION CONTAINING A

' ONE INTO A SIX-BIT
VALUE IN ACAR 58:6^

ACAR 0:55
ACAR 55:1 >

ENCODE THE OUTNUMBER
RELATIVE TO MCO AND

MC2 INTO'A TWO-BIT
VALUE IN ACAR 56:2

UROAHCAST THE ACAR
0:64 TO OTHER C:Us

IS THERE A CU WJTH A
.OW-ER NUMBER AND AN
ACAR 55:1 OF ONE ?

NO

I NO ACAR 0:64

IS THERE A CU WITH
ACAR 55:1 OF ONE ?

NO

YES

REPLACE ACAR 0:64
WITH THE ACAR 0:64
OF THE LOWEST NUMBER
CU WITH ACAR 55:1 OF ONE

3-47

MNEMONIC CODE: LIT

OPERATION: Store Next 64 Bits in ACAR

AIR:

00 ACAR 03 ,
o T 16 17 19 20 23

PESCRIPTION: ' The 64-bit literal value following the LIT instruction is
stored in the specified ACAR. The next instruction to be executed is lo-
cated in the 32 bits following the. literal value'.

FLOW CHART:

LIT

IWS OCR 0:,25):32 -»• ACAR 0:32,
ICR 0:25 + 1 ' ». ICR 0:25
IWS (ICR 0:25):32 -fc. ACAk 32:32
ICR 0:25 if 1 -r-̂ . ICR 0:25

3-48

MNEMONIC CODE: LOAD(X)

OPERATION: Word Fetch (RGX Indexed) from 'PE 'Memory to CU Local-
Memory

06 ACARX
0 45 7

06 ACARX

ACAR :,/L 00 ADR
16 17 16 19 20 23 24 . 3,

ACAR 3 /L 01 ADR
0 45 7 16 17 18 19 20 23 24 31

AIR:

LOAD

LOADX

DESCRIPTION: This instruction reads a word from PE memory and stores it
in the CU local memory. The PE memory address is indicated in the specified
ACAR 40:24.- The local memory address is given in the-ADR field. It is index-
able and only the following local addresses are-permitted: ADB 00-77, A IN,
ALR, AMR, ACO-3, ICR, MCO-2, IIA, and TRO (see Table 5-1, page 5-6).
When the local address is TRO, ACR(15) and TCK04) are set. The instruction
is placed in FINQ to await execution at FINST. The ALR register-is used,
to hold the unfilled local address until the operation is executed at FINST.

LOAD causes the AD VAST station to stall if a previous BIN/BINX or. LOAD/,
LOADX has not been completed. If ADR references ADB then ADR(X) 2:6
will be stored in.ALR-0:6 and a "one" will be set in ACR3 (ALR Busy). The. ;

word read from the. PE memory will be determined by the address stored in
FINQ (indexed by RGX, if LOADX) and will be broadcast to the proper' CUs.
If the instruction is local then only this CU will store the broadcast -data into
the ADB as specified by ALR 0:6. If the instruction is global then all CUs
specified by MCO will store the broadcast data into the ADB as specified by
ALR 0:6.

If ADR does not reference ADB then the following will occur. The word
read from the PE memory will be determined by the address stored in FINQ
(indexed by RGX) and will be broadcast to the proper CUs. If the ADR
specifies the configuration control registers MCO or MCI then the IWS
presence indicators will be cleared to indicate there is no valid information
in the ILA. If the instruction is local then only this CU will store the

3-49"

broadcast data into the register-specified by ADR 0:8. If the instruction is
global then all CUs specified by MCO will store the broadcast data into their
registers specified by ADR 0:8.

If this instruction is executed and the ICR is updated and other branch trace
conditions are met, then an interrupt will occur and program control will
proceed to interrupt processing.

When this instruction is executed and any address other than the ADB is
specified, then the FINST queue will be emptied.

FLOW CHART: See next page.

. 3-50

: BUSY\YES
(A C R 3 = 1 ?) J -

1
NO

PLACE INSTRUCTION
AND ADDRESS FROM

ACAR 40:24 INTO F'lNQ

'

r
lS THIS LOAD(X)

[•HE NEXT OPERATION
IN FINQ IN ALL CUs

IN THE ARRAY?

ADR(x) 2:6 -»ALRO:6
I—»ALR BUSY (ACR3)
0—• LOAD/BIN (ACR7I

'IS BRANCH TRACE ENABLED
(ACR14 ? 1) AND IN NON-

INTERRUPT MODE (ACIU * 0)

NO

• IS THIS LOAD(X) \
THE NEXT OPERATION L

IN FINQ IN ALL CUs I
IN THE ARRAY? /

YF:S

IS THE \
LOAD(X))

GLOBAL? /

SET BRANCH TRACE
INTEHHUPT I!-»AIN14)
ICR 0:25-»TRO 30:25

1 —»TCI7

YES

IS THE PE
MEMORY A DDR

IN THIS
QUADRANT?

IS THE
LOAD(X)
GLOBAL

YES

READ THE WORD FROM PE
MEMORY DETERMINED BY
THE ADDRESS STORED IN FINQ
(INDEXED HY RGX IK LOADX).
BROADCAST THE WORD TO
THIS CU. AND TO THE OTHER
CUs IN THE ARRAY IF THE
LOAD IS GLOBAL.

YES

IS THE PE \
EMORY ADDRESS] NO

IN THIS)
QUA DRA NT ? /

READ THE WORD FROM PE
MEMORY DETERMINED BY
THE ADDRESS STORED I.V KLVQ
(INDEXED BY RGX IF LOADX).
BROADCAST THE WORD TO
THIS CU. AND TO THE OTHER
CUs IN THE A R R A Y IF THE
LOAD IS GLOBAL.

IS ADVAST BETWEEN
INSTRUCTIONS AND IS

THE BROADCAST
DATA AVAILABLE?

_J BROADCAST 1 NO
^^ DATA j^

VAVAILABLE?/

YES

1
YES

STORE THE BROADCAST
WORD INTO THE

REGISTER ADDRESSED
BY ADR 0:8

STORE THE BROADCAST
WORD INTO ADB AT THE
ADDRESS CONTAINED IN

Al.R 0:fi

0-»ALR BUSY (ACR3)

3-51

MNEMONIC CODE: OR AC

OPERATION: Inclusive OR of Operand in ACAR of.All CUs Executing the
Instruction

AIR:

02 ACAR G/L 05
16 17 IB .19 20 23

DESCRIPTION: This instruction causes all CUs specified by MCO to be
synchronized at the beginning of the instruction. Each CU transmits its
specified ACAR to the other CUs in the array. In turn each CU in the
array receives the operands from the other CUs, performs an INCLUSIVE-
OR of all the operands of the CUs specified by MC2 relative to MCO, and
stores the result in its ACAR, This instruction is a NO-OP in a
single-quadrant array.

FLOW CHART:

OHAC

i
4 / ARRAY

SIZE?

I

YES

''OWN CU X N0

IN ARRAY,

(OWN ACAR) "OR" (ARRAY ACAR(S)) EACH ACAR

3-52

MNEMONIC CODE: SETC

OPERATION: Specified Mode Bit from PEs to ACAR

AIR:

00 ACARX IACAR 12 ADR
4 5 16 17 19 20 21 24

DESCRIPTION: This instruction causes transmission of a particular mode
bit from each of the 64 processing elements to the ACAR specified in AIR
16:2. The local address field of the instruction selects the mode bit; this
field is indexable. The mode bits correspond tovADR bit positions 0 through
7, for H, G, J, I, El, E, Fl, F respectively. If no ADR bits are set,
the result is the logical OR of F and Fl. If more than one ADR bit is set,
then the results are undefined. SETC causes ADVAST to stop processing
instructions from IWS until FINQ is empty and the mode bits are returned
by the PE and stored in the ACAR.

FLOW CHART:

SETC
/ IS THIS THE NEXT

"1 OPERATION IN FINQ ? ,

NO I

YES

[RGD (ADR. .0:8).-flL (x) J

(i = 0, 1,2, 63)

ACARi: l

3-53

MNEMONIC CODE: SKIP

OPERATION: Skip Forward/Backward

AIR:

11 SKIP 03
19 ZO 23

DESCRIPTION: This instruction causes the CU to execute an unconditional
skip to another part of the instruction stream. The jump address is derived
by modifying the ICR with the SKIP field of the instruction (after stepping
the ICR). Bit 0 of the SKIP 'field is the sign bit ("1" means 'subtract, "0"
means add) and bits 1:7 are the magnitude bits of the modifier. Examples
of the skip field values show the following effects:

Skip Value

-1
0

+ 1

Effect

Infinite loop
No operation
Skip next instruction

If this instruction is executed and the branch trace conditions are met,
then an interrupt will occur and program control will proceed to interrupt
processing. . - - • - • - - .

FLOW CHART:

p. 3-63

3-54

MNEMONIC CODE: SLIT

OPERATION; Replace Address Field of ACAR

AIR:

.^V. : j6' : . 0 ACAR ;""- ; - • • • ' . - ^ . / • • • ' " / • 1 AM'" < . - . - { • ' • ' . .
4 5

DESCRIPTION: This instruction ca'usVs the address field of the specified ,•
ACAR (bit's 40:24) to'be'replaced by the address field of the-i-hstruction (bits
8:24). Bit 5 of the instruction, must be "zero", and bi'ts -3':2 specify the ACAR.
ACAR bits 0:40 are not disturbed. " ' '

FLOW CHART:

AIR 8:24 ACAR 40:24

3-55 ,

MNEMONIC CODE: STL

OPERATION: Store ACAR in Local Address

AIR:

04 ACARX ACAR 04 ADR
4 5 16 19 20 Z3 24

DESCRIPTION: This instruction transfers the contents of the specified ACAR
to the Iqcation specified by the local address field. The local address field is
indexable. Only the following addresses are permitted: ADB 00-77, AIN, ALR,
AMR, ACO-3, ICR, MCO-2, IIA, and TRO. With the exception of ICR and IIA,
all of these addresses have their least significant bit aligned with the least
significant bit of the ACAR. ICR or IIA has its second least significant bit
aligned with bit 63 of the ACAR. The most significant bit of the ACAR is
transferred to the least significant bit of ICR or IIA. When this instruction
loads the ICR, normal ICR updating is inhibited. Normal instruction execu-
tion resumes at the new ICR location. Loading MCO or MCI causes the IWS to
be cleared. Loading MCO or MC2 causes FINQ to empty. All bits not replaced
by local memory will be reset to zero.

If this instruction is executed and the ICR is updated and other branch trace
conditions are met, then an interrupt will occur and program control will
proceed to interrupt processing.

FLOW CHART: See next page.

3-56

IS BRANCH TRACE ENABLED
(ACRH = 1) AND IN NON-

INTERRUPT MODE (ACR1 = 0) ?

YES i

NO

IS TRO
AVAILABLE
(ACR15 = 0) ?

NO YES

SET BRANCH TRACE
INTERRUPT (1-»AINH)
ICRO:25-»TRO 39:25

1 -»TCI 7

STORE:
ACAR40:24TOICRO:24
ACARO:! TOICR24:!

STORE:
ACAR 40:24 TO HA 0:24
ACARO:1.TOIIA24:1

3-57

MNEMONIC CODE: 'STORE(X)

OPERATION: Store from Local Address into Specified PE Memory Location
(RGX Indexed) ' ' :''' ' '.'.:'!:'''\ ' . . . • ' •

AIR:

STORE

STOREX

06 - Vl'ACARX ACAR G/L 02 ADR
IE 17 18 19 20 23 24

. 0 6 ACARX ACAR S/L 03 ADR
16 17 18 19 20 23 24

DESCRIPTION: This instruction stores the operand specified by the local
address into the PE memory location specified by the least significant 24 bits
of the specified ACAR (indexed by PE register RGX if STOREX). The local
address (ADR field) is -indexable.- Only.the following addresses are permitted:
ADB 00-77, ACR, AIN, ALR, AMR, ACO-3, ICR, MCO-2, HA, TRO, TRI, ACU, and
PEM (ARE). (See Table 5-1, page 5-6.) The recipient address is
interpreted by ACAR 56:2 and the settings of MCO and MC2.

The least significant bit of all operands, except ICR or IIA, is aligned with the
least significant bit of the PE memory word. The second least significant bit
of ICR or IIA is aligned with.the least significant bit of the word to be stored;
and the least significant bit of ICR or IIA is stored into the most significant
bit of the word. All bits in-the PE memory word that are not replaced by the
CU local memory word are set to'"zero". .

The word is stored by the CU whose PE memory contains the specified
address. This instruction is placed in FINQ to be executed in turn
at FINST. The data from the specified local register is found in the FINQ
slot next after the instruction.

FLOW CHART: See next page.

3-58

STORE(X)

PLACE INSTRUCTION, THE
CONTENTS OF LOCAL MEMORY

(ADR(x) 0:8), AND THE PE MEM-
ORY ADDRESS FROM ACAR40:24

INTO FINQ

ADR,v ,v- AIN,?
(A/ . -- .

YES

NO

0-fc-AIN
ILA INTER-

RUPT

IS THIS "STORE" \ NO
THE NEXT OPERATION

IN FINQ? '. ,

YES'

NO IS
INSTRUCTION

GLOBAL?

INTERPRET
ADDRESS

AS BEING WITHIN
OWN QUADRANT

iYES

TS THE
PE MEMORY ADDRESS

IN THIS QUADRANT?

NO

•YES

STORE THE LOCAL MEMORY-
DATA WORD FROM FINQ INTO

THE PE MEMORY ADDRESS
STORED IN FINQ

3-59

MNEMONIC CODE: TCCW

OPERATION;

AIR:

Transmit ACAR Counterclockwise (To Next Lower. Numbered:; J

CU)

02 ACAR G/L 03
17 18 19 20 23

DESCRIPTION: This instruction causes all CUs specified by MCO to be syn-
chronized at the beginning:of,the instruction. All CUs executing the instruc-
tions, as determined by MC.2 relative to MCO, transmit the specified ACAR
to the corresponding ACAR in the next lower numbered CU. Also, the ACAR
of the lowest numbered CU is transmitted to the ACAR of the highest num-
bered CU. This instruction is a NO-OP in a single quadrant array.

FLOW CHART:

ARRAY SIZE ?

OWN CU
IN ARRAY

YES

>
D

SEND ACAR TO OTHER CU;
RECEIVE ACAR FROM OTHER CU.

ACAR 0:64
(CU n + 1. MOD4)

(n = 0, 1. 2. 3)

ACAR 0:64(cu

3-60

MNEMONIC CODE: TCW

OPERATION: Transmit ACAR Clockwise (To Next Higher Numbered CU)

AIR:

02 -A.CAR G/L 02
o 16 ' '17 'IB'-' 19 20 .23'

DESCRIPTION: This instruction causes all CUs specified by .MCO to be syn-
chronized at the beginning of the instruction. All CUs executing the instruc-
tions, as determined by MC2 relative to MCO, transmit the specified ACAR
to the corresponding ACAR in'the next higher'numbered CU. Also, the ACAR
of the highest number CU is-transmitted to the ACAR of the lowest numbered
C U . ' . • • - , . . . - .

In single quadrant array, this instruction is a NO-OP.

FLOW CHART:

ARRAY SIZE ?

c OWN CU
IN ARRAY

YES

NO

SEND ACAR TO OTHER CU;
RECEIVE ACAR FROM OTHER CU.

ACAR 0:64
(CU n)

(n = 0, 1, 2, 3)

ACAR 0:64
(CU n + 1, MOD 4)

3-61

TEST - SKIP INSTRUCTIONS

MNEMONIC CODES; . T | F | A

OPERATION; Test and Skip Conditionally ; ; ,

i . ' ••"
DESCRIPTION; Each of the TEST-SKIP'instructions that follow consists of
four operation codes. The operation mnemonics are suffixed by the four
combinations of T or F and A (.that is, TA, T, FA, or F); The true-false
flip-flops in the array are sampled resulting in four conditions: all true (TA),
any true (T), all false (FA), and any false (F). At the completion of the TEST,
the SKIP will be taken if the condition specified in the mnemonic is satisfied.

Each of the instructions causes all the CUs specified by MCO to be synchro-
nized at the beginning of the instruction. At the completion of the test each
executing CU; as determined by .MC2_relative to MCO, sets its TF flip-flop
if the result is true, or resets it if the result is false. The CU sends the status
of its TF flip-flop, to the other CUs in the array and receives their TF flip-flops.
The CU samples all the TF flip-flop lines, and if the condition specified in the
op-code is satisfied then the ^jump is taken. Otherwise, the next instruction in
sequence is executed. In single quadrant array, the CU uses its own TF flip-flop
for the test. MCO defines the array to be synchronized at the beginning of the
instruction and the array executing the SKIP; MC2 relative to MCO defines the
TF flip-flops which are examined.

The jump address is derived by modifying the ICR with the contents of the SKIP
field in the instruction (after stepping the ICR). Bit 0 of the SKIP field is the
sign bit of the modifier ("1" means subtract, "0" means add) and bits 1:7 are
the magnitude bits of the modifier.

If this instruction is executed and the ICR is updated and other branch trace
conditions are met, then an interrupt will occur and program control will
proceed to interrupt processing.

A general TEST-SKIP flow chart is shown on the next page. Subsequent pages
describe the TEST-SKIP instructions, arranged in alphabetical sequence.

FLOW CHART: See next page.

3-62

TEST-SKIP INSTRUCTION

IS INSTRUCTION',
LOCAL OR IS \ NO (2. 3. 4)
ONE CD IN

A R R A Y ?

SYNCHRONIZE CUs.

YES

EACH CU PERFORMS FUNCTION
INDICATED BY OPERATION CODK

0-»TRUE-FALSE FLIP-FLOP

1_»TRUE-.FALSE FLIP-FLOP..

• U S ? " . '

FOR DETAILS. SI E I N D I -
VIDUAL INSTRUCTION

/IS INSTRUCTION\
V ' .! YF.S |~ LOCAL' OR IS \ NO ,

\ ONE CU IN . /
' . ' V A R R A Y ? •- / 2 0 R 4)

a • r . : ' - • •

p .• . "• .: i '-
•>. x \ x ^

EACH CU SENDS. ITS
TF FF STATUS TO
THK.OTHKH CU(s) IN-
THEARIIAY. ANU Rf -
CEI.VES THE TK KK
STATUS KROM THE

.OTHER CU(S) . -

NO (FO)

IS BRANCH TRACE ENABI.ED
(ACR14 * 1) AND IN NON-

INTERRUPT MODE (AC HI =

SET BRANCH TRACE
INTERRUPT (1-WA1N141
ICR 0:25 — »TRO 39:25

1 — • TCI 7

1, 2, or 4 CUs, depending on the array.

3-63

TEST - SKIP INSTRUCTIONS (Conf d)

MNEMONIC CODE: EQLX__ . . ; _,

OPERATION^ Skip if ACAR 40:24 are Equal to Bits 40:24 in the Operand ,, ,y

AIR:

EQLXTA • 14 ACARX SKIP ACAF G/L 14 ADR - ;
0 4 5 7 8 . 15 16 17 IS 19 20-23 24-

EQLXT 14 ACARX SKIP A C A R G/L Ib ADR
0 45 7 8 15 16 17 18 19 20-2324

EQLXFA 14 ACARX SKIP .- . . <^CAR G/L 16 ADR
0 4 5 7 8 IS 16 17 18 19 2O-23 24

1
EOLXF . i H ACARX SKIP ^CAR G/L 17 ADR

0 4 5 7 8 15 16 17 18 19 -20-23 24

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are equal to bits 40:24 of the operand in the local address. The local
address field is indexable and addresses are limited to the ADB and the
four ACARs. (Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

EQLX

NO i ACAR 40:24 = (ADR) 40 :24 ?
(A;

YES

0 -»-TF FF TF FF

3-64 p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: GRTR

OPERATION: Skip if ACAR 40:24 are Greater Than Bits 40:24 of the Operand

AIR:

GRTRTA

GRTRT

GRTRFA

GHTRF

15 ACARX SKIP . [ACAR G/L 00 ADR
0 1 5 78 15 16 17 18 19 20—33 24 31

15 ACARX SKIP ACAR G / L ui ADR
0 4 5 7 8 15 16 17 18 19 20-23 24 31

15 ACARX SKIP . ACAR G/L 02 ADR
045 78 ' ' 15 16 17 IB 19 20-23 24 31

• \ - • • •

15 ACARX SKIP ACAR G/L 03 ADR
0 4 5 7 8 15 16 17 IB 19 20-23 24

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are greater than bits 40:24 of the operand in the locaLaddress. The
local address field is indexable and addresses are limited to the ADB and
the four ACARs. (Refer to TEST-SKIP for fur ther details.) .

FLOWCHART: See TEST-SKIP ins t ruct ion.

GRTR

NO r \
ACAR 40.:24 > (ADR , .) 40:24 ?

YES

V
FF

3-65

p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)
: • ' ., - : r • j - . . . ' • ' r . , ' -~ • "•' ;'. • ' ' . • " . . " • ,, ' '• "';. i-

MNEMONIC CODE: LESS
. - . • ' . " : ';-"•'": : ~ - ' ; : • - ' .<.'/iM

OPERATION: Skip if ACAR 40 :24 are Less Than Bits 40:24 of the Operand

AIR: ' - '." " ' "" " "~

LESSTA

*" ,' T '

LESST

LESSFA

" ' •'.'"' - -

LESSF

15 ACARX

0 45 7

15 f^CARX

°... - v~ >. 7
\ ' ,*t

,,V» - .-'- '' . - • •-

15
0 . ..,4

15

ACARX
5, . 7

V

ACARX

SKIP (ACAF G/L
8 15.16 17 _I8 -19-

• • , - . • :>.*^-4 •• '* : - • . . L
SKIP ^CAR G/L

8, . ,_ , ,. _ IS 16 17— -18 I9r
' . - • ' . , , ' • • , • . K

SKIP ACAR
8 '.., ,,_.„._-15-16 . . - 1 7

V i " - :I- ~.

SKIP ACAR

G/IH

04 ADR ::̂ i!l
20-23-24 (31

^'V'.''O - • . ; _ ; ^Tr; ;;KG

05 ADR
20-23 24 • -. 31

-. • • ' ' • • • ' •;' •. : T:''''1.'^:.'

06 ADR
IB 19, .20-23-24 - -; 31

G/L 07 ADR
0, 45 7,. 8 — - -. 1516 - -17 -18 —19 20-2324 -: 31

DESCRIPTION; This instruction determines if bits 40:24 of the specified
ACAR are less than bits 40:24 of the operand in the local address. The local
address 'field'is indexable and addresses are limited to the ADB and the four
ACARs. (Refer to TEST-SKIP for further details.) '

FLOWCHART: See TEST-SKIP instruction.

LESS

NO \
I ACAR-40:24 ;< <ADR^ V .) 40;.2 4' •• ? YES

0-p-TF FF 1-*"TF FF"

i

3-66
p.3-63

TEST - SKIP INSTRUCTIONS (Cont 'd)

MNEMONIC CODE: ONES

OPERATION: Skip if ACAR 0:64 are All Ones

;AIR:

ONESTA

ONEST

ONES FA

ONESF

10 ^/X/d SKIP
0 4

10 Y//^,
0 4

10 y////
0 4

10 s////.

ACAR G/L 1 04 '/7/////y///s
8 15. 16 17 18 19 20—23

SKIP ACAR G/L Ob ^/y////////.
8 15 16 17, 18 19 20-23

SKIP ACAR G/L 06 y/y////////',
8 .15 16 17,. 18 19. 20—23

SKIP ACAR G/L 07 %%//%/%
0 4 IS 16 17 18 19 20-23

DESCRIPTION: This instruction determines if bits .0:64 of the specified
ACAR are all "ones". (Refer to. TEST-SKIP for further details.).. . ,

FLOW CHART: See TEST-SKIP instruction. . . ,,-..

ONES

N O / . . . \ Y E S
ACAR 0:64 = 1. . . 1 ?

7
FF 1 -»-TF FF

1

3-67 p. 3-63

TEST - SKIP INSTRUCTIONS (Cont 'd)

MNEMONIC CODE: ONEX

OPERATION: Skip if ACAR 40:24 are All Ones

AIR:

ONEXTA

ONEXT

ONEXFA

ONEXF

10 \7//A SKIP IACARJG/L) — 14 ///^/l///////
0 4 8 I S 1 6 1 7 1 8 1 9 20—23

K//// ' 110 v//// SKIP ACAR|G/L' l^^///////////;
0 4 8 I S 1 6 1 7 1 8 1 9 20-23

10 V///! oKIP ACARG/L 16 '/^////y/////,
04 8 15 16 17 18 19 20-23

////^>
10 /VVxV SKIP ACARG/L 17 ^yyy^yyyy/^

0 4 19 16 17 18 19 20-23

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are all ;"ones". . (Refer to TEST-SKIP for further details.)

FLOWCHART: See TEST-SKIP instruction.

ONEX

NO
ACAR 40:24 =! . . . ! ?

FF

3-68
p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: SKIP

OPERATION: Skip Dependent Upon CU TF Flip-Flop

AIR:

SKIPT

SK1PTA 11
•.- o -

11

0 : 4

SKIP
" •' ' 15 18 19 20 — 23

SKIP 05
is ' 18 19 20—23

SKIPFA 11 SKIP G/L 06 y//////////.
-8' 18 19 20-23

SKIPF 11 Y///S SKIP L 07
18" 19 20-.23

DESCRIPTION: This instruction is classified as a TEST and SKIP instruct ion.
It differs from the preceding TEST and SKIP instructions in that no test is per-
formed during the TEST portion of the instruction and, therefore, the TF-
flip-flop in each CU is sampled but not changed. The,test of the flip-flops' is -
made to determine if the SKIP is to be executed. ' (Refer to TEST-SKIP for
further details.)

FLOWCHART: See TEST-SKIP instruct ion.

SKIP

p. 3-63

3-69

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXE

OPERATION: Sk'ip if ACAR 40:24 are Equal to Bits 16 :24in Local Memory

AIR:

TXETA .

TXET . •

TXEFA

TXEF , ,

> ACARX SKIP-, ' ACAR G/L-R ' •-, ' •: ,A,DR. •- , - ; . , ,]
045 78 15 16 17 18 19 20-2324 "~ . 31

14 ACARX ;• • . SKIP ; ACAP G / L 1.1 ADR v ': '•:
0 4 5 7 8 ' . • ' • • . " 1 5 1 6 1 7 1 8 1 9 20—2324 ' 3 1

14 ACARX • - • - . ; -SKIP :
ACAR G/L

. -:
12 '" ADR

0 45 7 8 :. •• 15 16 17 18 19 20-2324 ' 31

14 <VCARX : . SKIP ACAI G/L 13 ADR
0 45 7 8. . 15 16" 17 18 19 20-23"24 31

DESCRIPTION: This instruction determines .if bits 40:24 of the specified '
ACAR are equal-to bits 16:24 of the operand in the local address. The local
address field is indexable and addresses are limited to the ADB and the • .
four ACARs. (Refer to TEST-SKIP for further details.) •

FLOW CHART: See TEST-SKIP instruction.

TXE

1
** • i

0*'

. \
FF FF

A C A R 40-?4 - (ADR) l f i -94 .
\1\)

V

, \ Y E S

/

1 •*•!T FF

L

3-70
p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXE M

OPERATION:,: Skip if ACAR 40:24. are Equal to.Bits 16:24 (also, 40:24 are ,.
v modified by 1:15) of Same ACAR

AIR:

TXE T AM; :

0 4

; SKIP- & C A - R G / L
• ' IS 16 17 18 19 20- 23

TXETM Y/yyx .1 -SKIP ftCA-RjG/L,
15 16 17 18 19 20-23

TXEFAM,

0 4

-SKIP, ; < : 4CARG7L 16
IS 16 17 18 19 20-23

TXEF.M 12 . SKIP ^CAR ^-^r//////////Z
' 8 15 16 17 18 19 20-Z3

DESCRIPTION: This instruction determines if bits 40:24 of the 'specified : '
ACAR are'equal to bits 16:24 of the; same ACAR. After ' the comparison,
ACAR 40:24 are modified by ACAR 1:15. -.Bit 1 is the sign bit ("!•" means
subtract, "0" means add) and.bits 2 :14 are the magnitude-of the modifier.
(Refer to TEST-SKIP for fur ther details.)

FLOW CHART: See TEST-SKIP instruction.

TXE •ACAR 40:24 = ACAR 16:24 ?\

NO

YES

FF

l-»-TF FF

NO
M ACAR 1:1 - 1?

A C A R 40:24 + ACAR 2:14-»-ACAR 40:24

. 3-63

IYES

ACAR 40:24 - ACAR 2:14-»-ACAR 40:24

3-71

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXG

OPERATION; Skip if ACAR 40:24 are G'f eater Than "Bits 16:24 in Local .< ;" • ̂
Memory

AIR:

TXGTA

TXGT

14 ACARX! : SKIP,. : ACARG/L| — | oo
0 , ,4 3- '.. ; 7 8 ' '" ' . 15 16 17 . ;.18. ..„!'

14 .< ACARX , . S K I P - ACAR Cr/'L;

; < : , ADR ...

0.1 ADR
' • • ' - • • . 0 4 >5 . * : 7 8 ; '• ' ' li ' • ' ! 15 16 -17 ' 18 . 19 20- 2324 • . : ' ' 31

TXGFA ••-

TXGF :

14

. f •• • ''- •

ACARX - • • • - : • SKIP i ACAR G/L 02 - " • A D R
0. ' 45 ' • • . ' • • • 78;̂ ;,;.U i^ "" - . . . : • !?I6 .17 18 19 20-2324: ^ ! . . 31

-1-4 ACARX ^ , SKIP ACAR G/L 03 " ADR
0 .45 ,78 :- 1516 17 18 19 20-232* . '31

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are greater than bits 16:24 of the operand in the local address. The
address field is indexable and addresses are limited to the ADB and the
four AC A Rs. (Refer to TEST-SKIP for further details.) ; '

FLOW CHART: See TEST-SKIP instruction.

TXG

<,. NO
f

1
ACAR;40:24 > (ADR .„.) ie :24 ? YES

FF

3-72
p.3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXG M

OPERATION: Skip if Bits ,40:24 are Greater Than Bits 1 6:24 (also, 40:24, /.. ;
are modified by 1:15) of Sahie ACAR . , . - ' , . •/ "T

AIR:
f '

TXG.TA-M 13 SKIP ' A C A F *^™Y/y//y//7//%
15 16 17 !• 19 20-23

TXGTM ' "
0 4

SKIP ACAFJC/Lf—
1516 17 18 19 20-23

TXGFAM 13 SKIP^ A C A F G/L-^- .02
IS 16 17 18 19 20—23

13

^^

'SKIP ACAF-G/L 03-
IS 16 17 18 19 20-23

DESCRIPTION; This instruction determines if b.its 40:24 of the specified- . - • ;
ACAR are greater than bits 16:24 of the same ACAR. Aft.er the comparison/ .';
ACAR 40:24 are modified by ACAR 1:15.. Bit 1 is the sign bit ("l" means .. •
subtract, "0" means add) and bits 2:14 are the magnitude of the modifier. •
(Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

TXG r
ACAR 40:24 >ACAR 16:24 ? YES

V J ,f

*
0-*- TF FF

NO 'i^-^-TF FF
— 1 ' •;

. - ' "t . .. ^

_£
ACAR 40:24 + ACAR 2:14-»*ACAR 40:24

ACAR 1:1 = 1 A
J p. 3-63

I YES

ACAR 40:24 - ACAR 2:14-»-ACAR 40:24

3-73

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXL

OPERATION^ Skip if. ACAR 40:24 are Less Than:Bits 16:24 in Local
Memory . • • • • - . . „ ; - : - - ' • . . i

AIR:

TXLTA

TXLT

14 SiCARX SKIP ACAR G/L 04 jADR .
0 45 78 . ' , f , .'• 1 5 1 6 17 . (8 19 20-23 24, '.""• ; , ' • '•• , 31

14 \CARX SKIP ACAR G/L|— 05 ADR
0 45 7 8 15 16 17, 18: 19 20-2324

TXL FA 14. \CARX SKIP ACAR G/L 06 ADR
0 45 7 8 IS 16 17 . .18 19 20—23 24' 31

TXLF 14 \CARX SKIP A.CAR G/L 07 ADR
0 45 78 15 16 17 : .18 19 20-2324 '•31

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are less than bits 16:24 of the operand in the local address. The local,
address' field is indexable and addresses are limited to t'he 1A.DB and the . '
four ACARs. (Refer t o TEST-SKIP fo r further details.) ; • • ' - ' ' >

FLOW CHART: See TEST-SKIP instruction.

TXL

I
NO ACAR 40:24 < (ADR ") 16:24 .?.'.

' (X)

0 —+- TF FF

Y-ES

FF

3-74 • p. 3-63

TEST - SKIP INSTRUCTIONS (Cont 'd)

MNEMONIC CODE; TXL M

OPERATION: Skip if ACAR 40:24 are'Less Than Bits 16:24 (then 40:24 is
modified by 1:1 5) of Same ACAR

AIR:

TXLTAM

TXLTM

TXLF'A M

TXLFM "

10 / ' JS//S ftlfTD \ /-> A D /-1 / T n/i '///////////s/s/s ols.lr \ C A R G / L 04 ///////////
0 4 8 I S I 6 I 7 I S I 9 20-23

1 ̂ \//S-/s ' ' CIVTT3 b f A T? C' 1 T J r> c \s ////// S///\\ s s s s op^llr ri ̂ rt i\ vj / Ljl i UO \ / / / / / / / / / / s\

0 4 8 1516 1 7 1 8 1 9 20-23

. , • . _ , - • :

- s ~S~ ̂ ' / S ' " ' /" f f f f~/ / S / / /
16 '//// SKIP \ C A R G / L 06 ///////////

0 4 a I S 1 6 1 7 1 8 1 9 20-23

lo ////A SKIP \CAR|G/L 07 ///////////,
0 4 15 16 17 18 19 20-2}

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are less than bits 16:24 of the same ACAR. After the comparison,
ACAR 40:24 are modified by ACAR 1:1 5. Bit 1 is the'sign bit ("1" means
subtract, "0" means add) and bits 2:14 are the magnitude of the modifier.
(Refer to TEST-SKIP for fur ther details..) . . . :

FLOW CHART: See TEST-SKIP instruction.

TXL A C A R 40:-24 < A C A R 16:24?
YES

v_
NO

0-»-TF FF

FF

N(

ACAR 40:24 + ACAR 2:14 -*-ACAR 40:24

ACAR 1:1 = 1 ?

YES
p. 3-63

ACAR 40:24 - ACAR 2:14-^AC.AR 40:24

3-75

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: ZER

OPERATION: Skip if ACAR 0:64 are All Zeros

AIR:

ZERTA

ZERT

ZER FA

ZERF

10 '////s/ . SKIP ; IACAR
0 4 8 . . . "' -IS

10 '//Ws

G/LHr ,0.0, Y/////////A
16 '17 • 18 ... 19 20-23-- ' - • - :

:SKiP • " IACAR
0 4 • ... 8 . - • ' ; . . • • - _ - ' . IS

10 Y///, "SKip":.
0 4 8 . ; \ IS

10 '/s/y/ .!","" 'SKIP :

•J.IL .01 'sW/y///////
16 17. 18 19 20-23 ' ' '

ACAR 3/L 02 y/^Y///^Y//^
16 17 18 19 20-23'

ACAR 7./L 03- ^^%^i/%
0 4 IS 16 17 18 19 20-23

DESCRIPTION; This instruction determines if bits 0:64 of the specified
ACAR are all "zeros". (Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

ZER

NO \
ACAR 0:64 = 0 ?

YES

0 -*• TF FF 1 -»-TF FF

p. 3-63

3-76

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: ZERX

OPERATION: Skip if ACAR 40:24 are All Zeros

AIR:

ZERXTA 10s- SKIP.. • ACARG/L 10
IS 16 17 IB 19 20-23

ZERXT 10
0 4

SKIP A GAR G/L 11
IS 16 '17 .18 19 20-23

ZERXFA- 10
0 4

SKIP
1516 17 18 19 20-23

ZERXF •10

0 4

: SKIP ACAR
1516 17 18 19 20-23

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are all "zeros". (Refer to TEST-SKIP for fur ther details.)

FLOW CHART: See TEST-SKIP instruction.

ZERX

NOf
V

ACAR 40:24 = 0 ?
"\

J

YES

0-»-TF FF FF

I

3-77
p. 3-63

MNEMONIC CODE: WAIT

OPERATION: Synchronize All CUs in Array or Join all CUs specified by ADR 4:4

AIR:

02 ACARX 06 ADR
4 S 18 ' 19 . 20 23 24

DESCRIPTION: This instruction causes air CUs in the array to be synchronized
at the beginning of the instruction. ' When ADR 3:1 is OFF, no other action is
taken, and normal operation resumes when all CUs have synchronized. ADR 3:1
ON specifies that this CU is requesting other quadrants (CUs) to join it in
multiquadrant array. After the CUs have joined, they will synchronize and load
MCQ with the contents of ADR 4:4 and set ACR5. ACR5 is the indicator to the
program that the CUs have joined. The desired array is 'specified by ADR 4:4.

NOTE: The use of the ACARX field can cause this instruction
; to be modified from the normal to the special option and the

reverse, by causing the setting and resetting of ADR 27.
, i

FLOW CHART: See next page.

3-78

WAIT

(IS
INSTRUCTION

V GLOBAL .?;•/.

YES

ADR 3:1 pi?
\NO

YES

SEND JOIN BIT
TO ALL OTHER

CUs

ALL CUs
SPECIFIED BY

ADR 4:8 HAVE
JOIN BITS ON ?

NO

YES

SEND SYNCH
SIGNAL

TO ALL CUs

NO

1

\

ALL CUs
IN ADR 4:4
IN SYNCH ?

I YES

J

DOES MCO
CONTAIN \ YES

•A SINGLE
"1" BIT ?

NO

SYNCHRONIZE
CUs IN ARRAY

M C O — A D R 4:4
A C R 5 — 1

"JOIN" BIT — 0

3-79

CONTENTS

Page

INSTRUCTION FORMAT AND FIELD USAGE 4-1

FINST/PE INSTRUCTION REPERTOIRE . -. . . . 4-5

FINST/PE INSTRUCTION DESCRIPTIONS 4-12
(See Index on Reverse Side)

FINST/PE INSTRUCTION INDEX

Mnemonic
Code

AD
ADA
ADB
ADD
ADEX
ADM
ADMA
ADN

• ADNA
ADR
ADRA
ADRN

. ADRNA
AND

' ANDN
ASB

, CAB
CHSA
CLRA
COMPA
DV
DVA
DVM
DVMA
DVN
DVNA
DVR
DVRA
DVRM
DVRMA
DVRN
DVRNA
EAD
EOR
EQV
ESB
GB
IAG
IAL
IB
ILE
ILG
ILL
ILO
ILZ
1MB
IMG
IML
IMO
IMZ
ISE
ISG
ISL
ISN
IXE
IXG
IXGI

Octal
Code

3504
3505
2606
2604
2500
3414
3415
3404
3405
3506
3507
3406
3407
2704
2706
2507

3700
" 3700

2411
2211
3304
3305
3214
3215
3204
3205
3306
3307
3216

,3217
*3206

3207
2010
2505
2504
2410
2106
3714
3716
.3502
3516
3314
3316
3310
3312
3514
3114
3116
3110
3112
2512
2112
2312
3502
2510
2110
2710

Ref.
Page

4-17
4-17
4-22
4-23
4-24
4-17
4-17
4-17
4-17
4-17

. 4-17
4-17 .
4-17
4-27

. 4-27
4-26

•4-33
4-35
4-39
4-40
4-41
4-41
4.-41
4-41
4-41

"4-41
4-41
4-41
4-41
4-41
4-41
4-41
4-45
4-29 .
4-30
4-48
4-50
4-52
4-52
4-54
4-55
4-55
4-55

-4-57
4-57
4-55
4-55
4-55
4-57
4-47
4-59
4-59
4-59
4-54
4-59
4-5S
4-61

Mnemonic
Code

IXL
IXLD

; JAG
JAL
JB
JLE
JLG
J L L ; .
JLO :- '-
JLZ
J.ME
JMG'
JML

' JMO ' ;

JMZ
JSE
JSG
JSL
JSN

* JXE '
JXG
JXGI
JXL
JXLD

' LB
LDA
LDB
LDD
LDE
LDE1
LDEE1
LOG
LDH
LDI

' 'LDJ
•• LDR .

LDS
LDX
LEX
ML
"MLA
MLM
MLMA

• MLN
MLNA
MLR
MLRA
MLRM
MLRMA
MLRN •
MLRNA
MULT
NAND
NANDN

. NEB
NOR
NORM

Octal
Code

231-0 •
2712
•371:5"'
3717
3503 .
3517
3315
3317. •
331? '• '
3313
3515 ,

'3115 '
3117

''3111
3113
2513
2113
2313
3503
2511
2111'
2711
2311
2713
2107
2617
2700
2212
2114
2115
2116
2314
2315
2316
2317

,2701

2702
2703
2117
3104
3105 '
3014
3015
3004
3005 .
3106
3107
3016
3017
3006
3007
2213 '
2705
2707
2210
2305
2013

Ref.
Page

• 4-59':
4-62

. : 4-52 '
4-52
4-54 .
4-55
4-55
4-55,-
4-57
4-57
4-55
4-55
4-55
4-57 -
4-57
4-59
4-59
4-59
4-54
4-59

: 4-59
4-61
4-59
4-62
4-63
4-104
4-104
4-104
4-69
4-69

'•4-69
4-69
4-69
4-69
4-69
4-104

4-104
4-104
4-64
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-72
4-27
4-27
4-73
4-31
4-74

Mnemonic
Code

NORN
OFB, .
OR-; V
ORN
RAB
RTAL
RTAR

., RTG; . (1
•'-RTL'-"' = '• •'"

SAB
. SAN

SAP
SB

'SBA
SBB
SBEX
SBM
SBMA
SBN
SBNA

' SBR ' ' '
SBRA"
SBRN
SBRNA
SCM
SETE
SETE1

' -SETF
SETF1
SETG
SETH
SETL
SETJ
SHABL
SHABML
SHABMR
SHABR
SHAL
SHAML
SHAMR .
SHAR
STA
STB

. STR
STS
STX
SUB
SWAP
SWA PA
SWAPX
T3A
TCY
TCYS
TCYX
XD
XI

Octal
Code

2307
2506
2304
2306
3701
3513
3512

.-2413
2412 '
3702
3702
3701 '
3704
3705
2607
2501
3614
3615

•3604
3605 '
3706

"3707
3606
3607
2104
2514
2515
2516 '
2517
2714
2715
2716
2717
3711
3713
3712
3710
3501
3511
3510
3500
2612
2613
2614
2615
2616
2605
3103
3303 .
3703
2105
3100
3101
3102
2503
2502

Ref.
Page

4-31
4-76
4-31
4-31
4-36
4-87
4-88
4-77

'.•'4-77
4-36

• 4-38
4-38 -•

. 4-79 i

• 4-79 ''
4-82
4'-83
4-79
4-79
4-79

' "4^79
4-79 '

- 4-79
4-79
4-79
4-85
4-69
4-69
4-69 -
4-70
4-70
4-70
4-70
4-70
4-89
4-91
4-92
4-90
4-93
4-95
4-96
4-94
4-97
4-97
4-97
4-97
4-97
4-99
4-100
4-101
4-102
4-103

4-107
4-108

SECTION IV
FINST/PE INSTRUCTIONS

INSTRUCTION FORMAT AND FIELD USAGE
' ; • ! . •• • . ^ . ..: -if

The format of FINST/PE instruction words is given below, followed by an

explanation of field usage. Table. 4-1 provides a complete listing of the ,FINST/

P E operation codes. " " . • • ' . : j

B I T N O . ' • ' • • ' • • : ;
O I 2 34 5 6 7 . 8 9 10 II 12 13 14 15 16 17 IS 19 -'20 21 22 23 .24 2 5 - 2 6 27 28 29~'3O 31 '.

FIELD A OP CODE ACARX FIELD BOP CODE ADR USE , A D R

Field ;

FIELD A OP CODE

«

ACARX

Description : '

BITS 0:2, 2:3. First part of operation code -
(see Table 4-1). Bit 0 is always "one" for
FINST/PE type instructions. .

BITS 5:1, 6:2. When bit 5 is "one", the contents
of the A CAR: specified by bits 6 and 7. are
added to the ADR field. When bit 5 is "zero",
the values in bits 6 and 7 are irrelevant.

Where a literal is being transmitted, „ the value re-
ceived by the PE is as follows: . |

•ACARX

None

Any

Bits 0:48 =0;
Bits 48:16 = ADR 0:16

Bits 0:48.=-ACAR 0:48;
Bits 48:16 = ACAR 48:16
+ ADR 0:16 (high-order
carry is lost).

4-1

FIELD B OP CODE BITS 8:1, 9:3. Second part of operation code.

PARITY BIT 12:1. Odd parity bit.

ADR USE BITS 13:3. These bits govern ihe use- of the ADR
field according to the following:

If BIT 15 is set, .the. ADR field. is a PEM.;address, and
the other bits have the following meaning:

Bits 13-14 reset: No PE indexing
BIT 13 set: Index by RGS - ' ' -
BIT 14 set: Index by RGX
Bits 13-14 set: .Index by RGS• • • • • . • ? > • ' * . • ' • " . ' ' ' " }

\ • • j .. • • ' /. p . . '
If BIT. 15 is reset, 'then either^ the 'operand,
the (shift or bit) value or the register code is'
being transmitted from the CU. (A bit value
is considered a shift count.) The balance of
the ADR USE field bits are defined as follows:

.; ' ' , ' - / " . BIT 13 set: .CU is- transmitting a ;
. register code..

BIT 13 reset: CU is transmitting a
• - j • literal.

.. . " . . . BIT 14: Disregarded.

. ' Where a register code i s being transmitted,
the following codes are used:

Corresponding
ADR Bit Register AIR Bit ACn Bit

1 A 17 49
2 B 18 50
3 X 19 51
4 S 20 .52
5 R 21 53
6 • D 22 54

All register codes are allowed with every
instruction except for the instructions LD

ADR • BITS 16:16. Address field, designating,
according to instruction type, one of the fol-
lowing: location of the operand, shift count
or bit value, index amount, or routing distance.

4-2

ADR (Cont.)
Normally, the use of this field is defined ac-
cording to the instruction type. For example,
for the RT(G/L) instruction this field contains
a routing distance and the source register
address; for shift instructions, this

. field contains only a shift count. (The bit
value is also considered a shift count.) How-
ever, for other instructions, the ADR field
normally contains the source of the operand.

4-3

to
QJ
•o
O
U
PL,
O
ao

• 1-4

U
3
f-i
In
h- 4

W
PH
"̂

H
172

^<

CO

CO

m

Q
EH
U

EH
CO

Z

N

^

O

0

0)
t—I

•8
EH

N
O

R
M

*

*

Q

W

Xa
L

D
E

E
l

W

.3

w
Q
J

O
s?

oa

o
X

o
X

n

mp .

CO •
EH

g
(J
CO

M
U

L
T

Q
Q
J

O
M

PA

U

mwz

>-3a

8. j

3

o
Q
J

J
CO

J '
2

K

X

N
O

R
N

as

as

as
O

A
S

T
R

O
A

S
T

R
L

U

03
D
j

O
R

A
L

J

O

•S

t

u

w
CO
W

~

S
E

T
F

l

(H
H

CO

S
E

T
E

l
W
[H

W
CO

W
CO

Wa

w
X

w
X

!
toio

§u

i
Q
X

X

X
Hm

Xw
Q

g

X
EH
CO

CO

CO

as

EH
w

EH '
CO

*

*

03
PQ
CO

m
Q

n-
D
CO

Q
Q •

*

*

'* '•

1-3

W
CO

W
CO .

H
CO

D

CO

JX
L

D

O

X

O
x«

3
X

N
A

N
D

N
A

N
D

N

Q
Z

• <
Z

Q
Z

X
Q
J

CO
Q
J

«
Q
J.

3

M
LR

'M
A

M
L

R
M

j, g ;

g
S

M
L

R
N

A
M

L
R

N

<'

S

Z
J

'" S

, f

4

;s'-

s

,.!

P,

•-3 "-

a

s

0

M
L

R
A

' OS

S.

.g

g

S
W

A
P

X
>H

O
H

CO

.- U
' EH

>H
O
H

D
V

R
M

A
D

V
R

M

a

D
V

M
D

V
R

N
A

D
V

R
N

"<;
Z
>
Q

Z

Q

J

J
J

"I

O
J

N
J_

d

S

s

as
Q

ttf
Q

o

Q

3
W

A
P

A

•"•
•
Q

g
Q

.-

'A
D

R
N

A
A

D
R

N

<
Z
Q
<

Z
Q

-. -Ha

• w
• d

g

a

•j
H
as

R
T

A
R

s | .
CO

H
A

 M
R

A
D

R
A

as
c

J

Q

Z

m
^

n

<
W

S
H

A
R

.*•'

*

n
CO

g
m

S
B

R
N

A

Z'
cn
CO

CO

Z

CO

^
J
s •

p

O
fl

S
H

A
B

M
L

M

H
A

B
L

CO

as
n
X
CO

03pa
CO

ctt
Dj
CO

m
CO

w
CO

W
A

P
X

CO

PQ

CO

a.

S
CO

S"u
U

II
o D

EH B
co 2
> a
C >

< g Z

S:0 SJ.IH

4-4

FINST/PE INSTRUCTION REPERTOIRE

The next several pages provide a listing of the instructions that comprise

the PE/FINST repertoire. They are arranged in alphabetical order

according to mnemonic and functional group, and in the same order as the

instruction descriptions which comprise the remainder of this subsection.

Octal Op Code
Mnemonic Field A .

Code 0:5

AD

ADA

ADM

ADMA

ADN • .

ADNA

ADR

ADRA

ADRN

ADRNA

ADB

ADD

ADEX

ASB

Boolean Operations

AND

ANDN

EOR

EQV

NAND

NANDN

NOR

NORN

OR

ORN

34

34

34

34

35

35

34

34

35

35

26

26

25

25

:

27

27

25

25

27

27
I

23

23

23

23

Field B
8. -4

04

05

14

15

04

05

06

07

06

07

06

04

00

07

04

. 06

05

04

05

• 07

05

07

04

06

Operation

Add (ADR) to RGA: Variants are:

Suffix i Meaning

A Unsigned

M. Fixed point

N Normalized floating

R , Rounded

Add (ADR) to RGA in 8-bit bytes

Add 64-bit unsigned fixed-point numbers (ADR) to RGA ' .

Add (ADR) exponent field(s) to RGA exponents

Place the sign(s) of RGA into the sign(s) of RGB

. Place the result of the specified logical function of RGA
with (ADR) into RGA:

Logical AND of RGA with (ADR) '

Logical AND of RGA with complement of (ADR)

Logical EXCLUSIVE-OR of RGA with (ADR)

Logical EQUIVALENCE of RGA with (ADR)

Logical AND of complement of RGA with (ADR)

Logical AND of complement of RGA with complement
of (ADR)

.Logical OR of complement of RGA with (ADR)

Logical OR of complement of RGA with complement
of (ADR)

Logical OR of RGA with (ADR)

Logical OR of RGA with complement of (ADR)

4-5

Octal Op Code
Mnemonic Field A Field B

Code 0:5 8:4

Change RGA Bit:

CAB

CHSA

RAB

SAB

SAP

SAN

CLRA

COM PA

DV

DVA ;

DVM

DVMA ' '

DVN.

DVNA

DVR

DVRA

DVRM

DVRMA

DVRN

DVRNA

BAD

ESB

GB

(I(J) A { G| L)

IAG

IAL

JAG

JAL

37

37

37

37

37

37

24

22

32

32

32

32

33

33

32

32

32

32

33

33

20

24

21

37

37

37

37

00

00

01

02

01

02

11

11

04

. 05

14

15

04

05

06

07

16

17

06

07

10

10

06

14

16

15

17

Operation

Perform the indicated operation on the specified RGA
bit:

Complement bit(s) in RGA

Change sign bit(s) in RGA

Reset bit(s) in RGA

Set bit(s) in RGA

Reset sign bit(s) in RGA

Set sign bit(s) in RGA

Clear RGA

Complement RGA

.Divide RGA and RGB, double-length mantissa, by
(ADR). Variants are:

Suffix Meaning

A

M

N

R

Unsigned

Fixed point

Normalized

Rounded

Recover extended precision after floating-point add

Recover extended precision after floating-point sub-
tract

Test for RGA greater than (ADR) in 8-bit bytes.

RGA arithmetic test to mode bit (for 32-bit mode,
result also goes to G or to H):

Place result of test for RGA arithmetically
greater than (ADR) into I (and G)

Place result of test for RGA arithmetically less
than (ADR) into I (and G)

Place result of test for RGA arithmetically great-
er than (ADR) into J (and H)

Place result of test for RGA arithmetically less
than (ADR) into J (and H)

4-6

Octal Op Code
Mnemonic

Code

(I|J)(B|SN)

IB

ISN

JB

JSN

(I| J) (L| M)

ILE

ILG

ILL

IME

IMG

IML

JLE

JLG

JLL

JME

JMG

JML

! I| J) (L|M)

ILO

ILZ1

IMO

IMZ

Field A
0:5

35

35

35

35

(E | G | L)

35

33

33

35

31

31

35

33

33

35

SI

31

(O|Z)

33

33

31

31

Field B
8:4

02

02

03

03

16

14

16

14

14

16

17

15

17

15

15

17

10

-12

10

12 '

Operation

Move RGA bit to mode bit:

Transfer RGA bit(s) to I (and G)

Transfer RGA sign(s) to I (and G)

Transfer RGA bit(s) to J (and H)

Transfer RGA sign(s) to J (and H)

RGA logical test to mode bit (for 32-bit mode, results
go to I and G or to J and H):

Place result of test for RGA logically equal to
(ADR) into I

Place result of test for RGA logically greater
than (ADR) into I

Place result of test for RGA logically less than
(ADR) into I

Place result of test for RGA mantissa logically
equal to (ADR) mantissa into I

Place result of test for RGA mantissa logically
greater than (ADR) mantissa into I

Place result of test for RGA mantissa logically
less than (ADR) mantissa into I

Place result of test for RGA logically equal to '
(ADR) into J

Place result of test for RGA logically greater
than (ADR) into J

Place result of test for RGA logically less than
(ADR) into J

Place result of test for RGA mantissa logically
equal to (ADR) mantissa into J

Place result of test for RGA mantissa logi-cally
greater than (ADR) mantissa into J

Place result of test for RGA mantissa logically
less than (ADR) mantissa into J.

RGA zeros or ones test to mode bit (for 32-bit mode,
results also go into G or H) :

Place result of test for RGA logically equal to
all "ones" into I

Place result of test for RGA logically equal to
zero into I

Place result of test for RGA mantissa logically
equal to all "ones" into I

Place result of test for RGA mantissa logically
equal to zero into I

4-7

Mnemonic
Code

JLO

JLZ

JMO

JMZ

(I|J) (S|X !

ISE

ISG

ISL

IXE

IXG

IXL

JSE

JSG

JSL

JXE

JXG

. JXLi

(1 1 J) XGI

IXGI

JXGI

(I| J) XLD

IXLD

Octal
Field A

0:5

33

33

31

31

1 (E |G |L

25

21

23

25

21

23

25

21

23

25

21

23

27

27

27

Op Code
Field B

8:4

11

13

11

13

)

12

12

12

10

10

10

13

13

13

11

11

11

10

11

12

JXLD 27 13

Operation

Place result of test for RGA logically equal to
all "ones" into J

Place result of test for RGA logically equal to
zero into J

Place result of test for RGA mantissa logically
equal to all "ones" into J

Place result of test for RGA mantissa logically
equal to zero into J

Index test to mode bit: ,.

Place result of test for (RGS) arithmetically .
equal to (ADR) into I

Place result of test for (RGS) arithmetically
greater than (ADR) into I

Place result of test for (RGS) arithmetically
less than (ADR) into I

Place result of test for (RGX) arithmetically
equal to (ADR) into I

Place result of test for (RGX) arithmetically
greater than (ADR) into' I

Place result of test for (RGX) arithmetically
less than (ADR) into I

Place result of test for (RGS) arithmetically
equal to (ADR) into J

Place result of test for (RGS) arithmetically
greater than (ADR) into J

Place result of test for (RGS) arithmetically
less than (ADR) into J •

Place result of test for (RGX) arithmetically
equal to (AD.R) into J

Place result .of test for (RGX) arithmetically
greater than (ADR) into J

Place result of test for (RGX) arithmetically
less than (ADR) into J

Index add overflow to mode .bit:

Add (ADR) 48:16 to RGX; store overflow in
mode register bit I

Add (ADR) 48:16 to RGX; store overflow in
mode register bit J

Index subtract underflow to mode bit:

Subtract (ADR) 48:16 from RGX; store comple-
ment of overflow in I .

Subtract (ADR) 48:16 from RGX; store comple-
ment of overflow in J

4-8

Octal Op Code
Mnemonic

Code

LB

LDRA (G/L) .

LEX

ML

MLA

MLM ' /

MLMA

MLN

MLNA

MLR

MLRA

MLRM

MLRMA

MLRN

MLRNA

Field A
0:5

21

24

21

30

30

30

30

31

- ,^ 31

30' '

30

30

3.0

31

31

Field B •
8:4 Operation

07 • Test for RGA less than (ADR) in 8-bit bytes
14 . Fetch to RGR from memory, starting at given PEM

number, and align (route), first word to PE 0

17 . . Load RGA exponent(s) from (ADR) exponent(s)

04 Multiply RGA by (ADR). Variants are:
0 5 ' • • " - : - - • • • ' . ' . ' - .

Suffix Meaning
.14

"' • • ' '• A Unsigned

' r M Fixed point
• 04

N Normalized
05 .. • 5i •• • • ,

R Rounded
06 - •

07

' 1 6 . " • . . . ' . . •
'17 . '' ..
06 • ;••

07 • '

Mode Register Instructions: •

LDE

LDE1

LDEE1

LOG

LDH

LDI

LDJ

SETE

SETE1

SETF

SETF1

SETG

SETH '

SETI

SETJ

MULT

21

21

,• 21

23 '

23

23

23 :

25. .

25

25

25

27

• f 27 '"

27

27

22 '

14 Load mode register bit from ACAR

. 1 5

16 ..

' 1 4

15 • -

16

17

14 . Set mode register bit with result of logical
function specified in instruction address field

I D '

' 1 6 - • • • - • • •

17 .. • . •

1 4 - • • • • -
• : . : • • 1 . h . '

15 _ . . ,

, ,16 . , .

17

13 • •• ,• -For 32-bit mode, both halves enabled, multiply

NEB 22 10

RGA by ADR contents; leave inner double-
length product mantissa in RGA, outer in RGB

Test for RGA not equal to (ADR) in 8-bit bytes

4-9

Octal Op Code
Mnemonic

Code

NORM

OFB

RT (G|U

RTG .

RTL

SB

SBA

SBM

SBMA • • ' • • • •
SEN

SBNA

SBR '

SBRA
SBRN

SBRNA

SBB

SBEX
SCM

Shift Instructions:

RTAL

RTAR

SHABL
SHABR

SHABML

SHABMR

SHAL

SHAR

SHAML
; SHAMR

Field A
0:5

20

25

24

24

36

36

36

36

37

37

36

36

37

37

26

25

21

35

35,

37

' 37

37

37

35

35

35

, 35

Fiel
8:4

13

06

13

12

04

05

14

...15

04

05

06

07

06

07

07

01

04

13

12

11

10

13

12

01

00

11

10

- .Operation

Normalize

Overflow bits of previous 8<-bit byte instruction are
transmitted from RGC to RGB
Route:

Transmit register (Y) of every PE to RGR of PE
number (N+D) modulo a, where Y = a specified
PE register, N = initial PE No., D= routing dis-
tance, and a = number of PEs in array (64/128/256)

i'O :.i'
Same as above, except single quadrant (a =; 64)

Subtract (ADR) from RGA. Variants are;

Suffix Meaning-,.- ••

A Unsigned

£<-• M Fixed ppiht ' . • '

N Normalized

R Rounded

Subtract (ADR) from RGA-in 6-bit bytes

Subtract exponent (s) of (ADR) from RGA exppnent(s)
Execute one cycle of a multiplication

Shift Variants are:

Variant * Meaning

SH|RT : Shift | rotate
A |:AB . RGA | RGA * RGB

(single | double)
_ | M Full register] mantissa

L| R Left | right

4-10

" Octal Op Code
Mnemonic

..Code .

STA

STB

STR

S.TS ' ,

STX ;

SUB

SWAP'"

SWAPA^

SWAPX, ,.,-

T3A

TCY*

TCYS*

TCYX*

Field A
.. .0:5 .

26 :

26

26

: 26

26 '

26

• '31 '

33

,- 37

21

31

31

31

Field
8:4

12

13

14

15.

16 '

05

' 03

03

03

05

00

01

02

Store from RGA to memory

Store from ROB to memory

Store from RGR to memory

Store from RGS to memory

Store from RGX to memory '

Subtract 64-bit unsigned fixed point
numoer (ADR) from RGA

Interchange (RGA) and (RGB)

Interchange the inner and outer operands
in RGA

Interchange the outer operand of RGA and
the inner operand of RGB

Transfer contents of C register (RGG) to
RGA '

Transfer data from CDB to MAR

Add RGS to CDB and store in MAR

Add RGX to CDB and store in MAR

.Transmit Instructions:

LDA

LDB

LDD

LDR

LDS

<LDX

X.D

•XI

26

27

22

"27

27:

27

25

..25.

. . Transmit source data to register indicated
in op code. (Source is specified in bits
13:3 and 16:16.)

17 Transmit to RGA

00 Transmit to RGB ' '

12 Transmit to RGD . •'• ;

01 Transmit to RGR

02 Transmit to RGS

03 Transmit to RGX

03 Subtract (ADR) 48:16 from RGX

02 Add (ADR) 48:16 to RGX

These instructions, while they have separate operation codes, are actually por-
tions of those instructions which reference main memory. As free-standing
instructions, they set a value into the MAR, but the MAR-contents are riot ac-
cessible to the program i

4-11

n •

FINST/PE INSTRUCTION DESCRIPTIONS

The remainder of this section consists of descriptions of the various

FINST/PE instructions. These are arranged alphabetically according to
. . - . " ' ' • (• • ' " • . ' - . - " - • • . ' i ' . . " ' ' , • ' : •

instruction mnemonic, in the same order as presented in the instruction rep-
' - ' * . • - • • - . '

ertoire previously listed. Each description includes the mnemonic code,

the operation performed, the bit contents for the specific instruction, a brief

functional description and a flow chart .of major operations performed during

instruction execution. The word format for these instructions follows:

B I T N O , . . . - . . . - • . , . ,
0 "l 2 34 5 67 8 9 10 II 12* 13 . 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3O 31

FIEL'D A OP<CODE . . A C A R X FIELDS OPCODE ADR USE ,;.-'• •.- ,r. • • A DRr ' ;• .

The general format used in the instruction descriptions is as shown below.

Shaded fields are used to indicate'irrelevant fields'for specific instructions.

XX A G A R X -XX, • ; • ,ADR USE : ADR

The following notes generally apply to most FINST/PE instructions. The

reader should familiarize himself with these notations before proceeding to

t h e instruction, descriptions.. - - . . • . , ;

1. Addressing and Indexing: Addressing and indexing, where

. applicable, are effe'cted by the CU and PE in accordance with

the settings o'f the 'ACARX, 'ADR USE;-and ADR fields. Follow-

ing is a simplified description of the addressing and indexing

logic. . . ' • • • • • . • •

4-12

If bit 5 of the instruction,(i. e,., the first bit of the ACARX.field) ' ' - . : ' • . .

is set, the CU adds the contents of the ADR field to the ACAR

which is specified in bits 6:2 of the PE instruction. If bit 5 is
) • . ; • • / . . ' , : ' " ' "
reset, no such add takes place. In either case, the resultant 16

bits (i. e. (ACAR (48:16)) + ADR (0:16) or ADR (0:16)) are loaded

into the data queue (FDQ) and the proper times are transmitted to the

PE via the CDB into the Address Adder (ADA). At the'same time

inputs are enabled into the ADA from RGS or RGX, as specified by

the ADR USE field. The result is enabled into the Shift Count Register

(SCR), Memory Address Register (MAR), or the RGX, depending on

which instruction is being operated. .-Finally, 'the CU enables an LDB

(LDR for the DV instruction) to fetch the operand, if the result was

enabled into the MAR.

Relative to the use pf these three fields; (ACARX, ADR USE, and

ADR), there are five classes of instructions, as follows:

• -• - -Class--!-: -This- class uses.no addressing or indexing at-
. '^ • • • .all , since the source/destination/bit address

is implied within the instruction. Instructions
within this class are as follows: ASB, CLRA,

' ' • • ' • - ' COMPA,' .(I | J) (L | M) (O | Z), NORM, OFB, •
. . and SWAP-(_| A | X). .

Class 2: In this class of instruction, the source is a
specified ACAR, and the destination and bit

.are implied by the FIELD A OP CODE and
FIELD B OP CODE, Therefore the ACARX

•'field is used, but ADR USE is disregarded
(all bits are assumed.to be off), and ADR is
a:DATA field. ' The instructions belonging to

• . this class are LD (E | El | EE1| G| H|I |J) and
the special case of SET (E | El | F| Fl JG | H| I| J),
where no bits are set in the B2 field. (See page
4-70 for an explanation of the LD_ and SET_
instructions.)

4-13

Class 3: The only instruction in this class is the RT(G | L).
The ADR field contains the routing distance, and
can be indexed by an ACAR. However, indexing
by RGS or RGX is not permitted, and the ADR
USE field is disregarded.

Class 4: This class includes the bit-oriented instructions
(C | R | S) AB, (I |J) B, the rotate (RT) and shift
(SH) instructions, and the PE store instructions.
In these instructions the ADR field contains a
bit number or shift count. ACAR, RGS, and
RGX indexing is permitted (that is, bit 15 of the
instruction word, which is the third bit of the
ADR USE field, is ignored and assumed to be on).

Class 5: In the balance'of the instruction set, normal
addressing and indexing logic is used. The
result is enabled into the MAR, RGB, or RGR.

2. E Bits: Mode register bits E and El in each PE are used to

protect the contents of PE'registers RGA and RGS and the PE

fault bits F and Fl respectively, and also to prevent the PE

from writing data into the PEM. PE register RGX contents

are also protected by the E bit. In 32-bit mode, the E bit pro-

tects the outer word, and the El bit protects the inner word;

either bit or both may be disabled. In 64-bit mode, since both

the E and El bits act on only their respective half-words, it is

advisable to set both bits to the same state, by programming,

When E ^ El, all the logic for instruction execution operates as

if E El = 11, but for the results, only certain bytes are loaded

into RGA. (This could cause undefined results due to incorrect

partial stores of intermediate results.) The E bit controls

bytes 1, 6, 7, and 8 (the outer word) and El controls bytes

2, 3, 4, and 5 (the inner word). The following table shows

applicable settings for the various data word formats.

4-14

64-Bit Mode; 32-Bit Mode:

E El Full Word E El Outer Word Inner Word

0 0 : Disabled 0 0 Disabled Disabled

0 1^| Partial word results; 0 1 Disabled Enabled
\ should generally be

1 O j avoided 1 0 Enabled Disabled

1 1 Enabled 11 . Enabled Enabled

The E and/or El bits are set/reset by the LD_ or SET_

instructions.

Note: The E and El bits do not protect PEM from
transfers via the DC.

3. Zero; When arithmetic operations produce a zero result

(i.e., as a result of exponent underflow, or, in normalized

Operation, if the resultant mantissa equals zero) it is always

effected by setting all 64 (or 32) bits to zero. This is inter-

preted mathematically as a +0 mantissa and an exponent of

-(2^). In 32-bit mode the exponent is interpreted as -(26).

4. F Bits; Mode register bits F and Fl (fault bits) in each PE

are used to indicate the following conditions:

a. Exponent overflow.

b. Overflow of the mantissa magnitude, in mantissa-
sized fixed-point arithmetic operations.

c. Zero or unnormalized divisor.

d. Exponent underflow, if ACR bit 9 (Exponent Under-
flow Inhibit bit) is reset, and if, in normalized
operations, the resultant mantissa is non-zero.

4-15

The F bit indicates a fault in 64-bit mode, or a fault for the

outer half-word in 32-bit mode, while the Fl bit indicates a

fault for the inner half-word in 32-bit mode.

Setting of the F and Fl bits as a result ofohe of the above-mentioned

conditions is dependent on the setting of the E and El bits as stated

in (2) above, and these conditions can cause only the setting of the

appropriate bit(s), but not the resetting of the bit(s). However,

the F and Fl bits can be set and reset programmatically by the

SETF and SETF1 instructions, which are not E.-bit sensitive.
; ; • - . ' ! - • <

5. Exponent Overflow: When exponent overflow occurs as a result

of an arithmetic operation, the resultant exponent is the true ex-
14 - - —• • - ' 5 -- - ••

ponent modulo 2 (64-bit mode) or 2 (32-bit mode). The resultant

mantissa will be correct unless the exponent overflow occurred in

response to normalizing a mantissa overflow.

6. Exponent Underflow: When'exponent underflow occurs as the

result of an arithmetic operation, all bits of the underflowed

resultant word (half-word) ar.e set to",zero. (See,.(3)\above for

the mathematical interpretation of zero.)

7. Mantissa Overflow: If neither the M nor'N variants are used on

arithmetic instructions (unnormalized- floating point); a mantissa -

overflow is adjusted byshifting the mantissa right one place and

adding one to the exponent. Rounding,- if specified; is-not affected

b y this operation. ,

8. Fixed-point Operands: When using the M (fixed-point) variant on

arithmetic instructions, the exponent field in both operands is

ignored. Therefore the exponent field of the result-will be unchanged.

9. Normalizing: When using the N (normalized) variant on arith-

metic instructions, the input operands are assumed to be nor-

malized for ML and DV, although they need not be for AD or SB.
•

Inputs to MULT are also assumed normalized.

4-16

MNEMONIC CODE: AD

OPERATION: . Add (ADR) to RGA (Additional op codes allow certain variants:
A for unsigned, where the sign of RGA is unchanged by the operation,
M for fixed point, N for normalized floating, R for rounded)

INSTRUCTION WORDS: '

AD

ADA

ADM

ADMA

ADN

ADNA

ADR

ADRA

ADRN

ADRNA

. ". ' . ;., ' ' : : ' . ,.
34 ACARX 04 ADR USE ADR

0 . 4 5 . 7 9 . . I I 1 3 1 3 , , . I S . 1 6 3 1

34 -' ACARX 05 ADR USE ADR j

34 ACARX ,4 1— ADR -USE ADR

34 ACARX ' 1.5. . ADR USE ADR

35 • ACARX -04 ADR USE ADR. .

35 A C A R X 05 ADR USE ADR

34 ACARX Ob ADR USE ADR
• - - •

34 A C A R X 07 ADR USE ADR

35 ACARX '06 ADR USE ADR ' ;

35 ACARX ' 07 ADR USE ADR

4-17

DESCRIPTION; This instruction adds (ADR) to RGA.. The result of the
addition remains in RGA. RGB will contain (ADR) either unmodified, or
modified by the mantissa portion(s) that were shifted to align with RGA.
RGC and RGR are not used.

This instruction may cause the F bit(s) to be set. (Refer to pages 4-15,
4-16, items 4, 5, and 6.)

The following variants are .permitted:

No suffix - Both operands are treated as floating point, the result is not normalized.
A - Both operands are treated as unsigned values;

M - Both operands are treated as fixed-point and the result is
in fixed-point;

N - Result is normalized (after rounding, if specified);.

R - Result is rounded in RGA.

If neither M nor N is specified, the operation is an unnormalized floating
point operation. In this case, exponent and mantissa will be adjusted for any
mantissa overflow, but leading zeros in the result mantissa will not be disturbed.

If both E bits are disabled, RGA will remain unchanged. If E / El for 64-
bit mode, the results, for purposes of this manual, are undefined.

In 32-bit mode, there is no loss of accuracy because each half-word is
aligned independently of the other.

Note: The addition is effected as follows (assuming that the E
bits are enabled):

1. The exponent of the result is determined as the larg-
er of the two operand exponents.

2. The mantissa of the operand with the smaller ex-
ponent is shifted right end-off until it is aligned
with the mantissa of the operand with the greater
exponent. Thus, if the difference between the two
exponents is greater than 47, the smaller mantissa
will be set to zero, and the result of the add will
exactly equal the larger value.

3. The aligned mantissa is returned to its source reg-
ister (RGA or RGB).

4-18 {-

4. The mantissas are added, and the result
stored in RGA.

5. The exponent portion of RGB will be set
to the exponent correction whether the
normalized variant (N) is requested or
not.

6. The mantissa portion of RGB will be un-
changed unless the RGB exponent is
smaller than the RGA exponent. (Refer
to paragraphs 2 and 3 above.)

FLOW CHARTS: 'See the next two. pages for 64- and 32-bit modes respectively.

4-19.

64-BIT MODE
(AD|SB)

(ADR) -»RGB "M" OPTION?

YES

EXPONENT
OF RESULT
-»RGA (1:15)

ALIGN MANTISSAS BY
SHIFTING (END OFF)

SMALLER OF RGA AND
RGB BACK INTO

RESPECTIVE SOURCE

RGA (16:48)
•| -.) RGB (16:48)

(16:48)
"R". OPTION ,.? VYES » .ROUND RGA

NO

'N" OPTION ?\.YES

NO

DID OVERFLOW
OCCUR ?

V
| NO

^ ,
DID UNDERFLOW

OCCUR ?

YES

+ 0 -*• RGA (0:64)

f

YES

NO

RGB (0:64) AND
ENABLED BYTES OF

RGA ARE
MODIFIED

NORMALIZE RGA

SET F
BIT

x-
— rW"A"

NO
OPTION

YES

RGA(0:1)
RGB(0:1),
RGA(0:1)

SIGN OF RESULT =
RGA(0:1)

ACR BIT 9
= 0 ?"• ,

NO

/ El = 1?)
YES

JNO

4-20

IN ALL SUCCEEDING BOXES
- ALL RGA OPERATIONS

/-TAKE PLACE EQUALLY ON
INNER AND OUTER WORDS'UNLESS

THE RESPECTIVE E BIT IS
DISABLED, IN WHICH CASE ..

THE RESPECTIVE HALF-WORD
WILL REMAIN UNALTERED.

1

SET EXPONENTS
OF RESULT INTO

RGA

-. 1 M" UtTlUN / J~

ALIGN MANTISSAS
BY SHIFTING (END OFF)
SMALLER OF RGA AND

RGB BACK INTO
RESPECTIVE SOURCE

-

i I

(ADD! SUBTRACT) RGB
(TO | FROM) RGA

• MANTISSAS
— »• RGA MANTISSA

"R" OPTION ?

YES

NORMALIZE BOTH
RGA WORDS

'.
ID OVERFLOW \YE_g

OCCUR ?)~*
SET APPROPRIATE

F OR Fl BIT

NO

DID UNDERFLOW
OCCUR ?

SET UNDER FLOWED
HALF-WORD TO -0 IN

RGA
ACR BIT 9 = 0 ? SET APPROPRIATE

F OR Fl BIT

NO
" .1 .

RGA (0:1) (+) -)
RGB (0:1) »•

RGA (0:1)

NO

NO / ' \ YES
V -"A" OPTION ?

SIGN OF RESULT
RGA (0:1) ..

4-2.1

MNEMONIC CODE: ADB

OPERATION: Add (ADR) to RGA in 8-bit bytes

INSTRUCTION WORD:

26 ACARX 06 ADR USE ADR
7 8 I I 1 2 15 16

DESCRIPTION; This instruction adds (ADR) to RGA in 8-bit bytes. Each
group of eight bits is an unsigned fixed-point number. The result of the
addition is placed in RGA. The carries out of the 8-bit bytes-are stored in
RGC. (ADR) remains in RGB. When the E bits are disabled, RGA is un-
changed but RGC contains the carries. Execution of this instruction is the
same for 64- and 32-bit modes.

FLOW CHART:

ADB
<ADR)— *-RGB
0 — »>RGC

RGB BYTE j + RGA BYTE j
+• CPA BYTE j

(j = 1, 2 8)

/ A N Y CARRIES
(FROM ADDING
V THE BYTES ?

BYTE j CARRY
». RGC BYTE j M . S . B .

NO

YES
E = 1 ?

NO

(E

CPA OUTER WORD
—*. RGA OUTER WORD

EI - I

NO

CPA INNER WORD
—+> RGA INNER WORD

I

4-22-

MNEMONIC CODE: ADD

OPERATION: Add 64-bit unsigned fixed-point numbers (ADR) to RGA.

INSTRUCTION WORD:

| 26 IACARX 04 ADR USE ADR
7 e II 12 13 IS 16

DESCRIPTION: This instruction adds 64-bit unsigned fixed-point numbers
The result of the addition is placed in RGA if the E bits(ADR) and RGA.

permit. Overflow generates an end-around carry, but does not set the F
bit. (ADR) remains in RGB at the completion of instruction execution.
When the E bits are disabled, RGA is unchanged. When operating in
32-bit mo'de, this instruction operates as if in 64-bit mode.

FLOW CHART:

t\DD (ADR) — +• RGB nCjo T RG.A — ̂ CPA

i
E =

NO

i

AYESi ? j »

i

CPA OUTER WORD — »• RGA OUTER WORD

El = 1 ?

NO

CPA INNER WORD —*• RGA INNER WORD

4-23

MNEMONIC CODE: ADEX

OPERATION: Add (ADR) exponent field(s) to RGA exponent(s)

INSTRUCTION WORD:

25 ACARX 00 ADR USE . ADR
4 5 ii i a 13 IS 16

DESCRIPTION: In 64-bit mode this instruction adds the exponent field of
(ADR) to the exponent of RGA. This addition treats these quantities as
exponents, not as binary numbers. The sign bit and mantissa field are
unchanged unless underflow occurs, in which case RGA is cleared to all
zeros. When the E and El bits are disabled, RGA is unchanged.

In 32-bit mode the instruction is performed on the inner and outer .expon-
ents independently.

Exponent overflow or underflow may cause the setting of the F bits (see
pages 4-15, 4-16, items 4, 5, and 6.). ,

FLOW CHART: See next page.

4-24.

WORD SIZE \64
RGA 1:15 + RGB 1:15 —OCPA 1:15

(DID THE
ADDITION
OVERFLOW ?

RGA 1:7 + RGB 1:7 —»CPA 1:7
RGA 9:7 + RGB 9:7 —l»CPA 9:7

DID THE
ADDITION

UNDERFLOW i

CPA 1:15—fc-RGA M5

DID THE OUTER . -
ADDITION

- 'OVERFLOW' - ? / ;

DID THE OUTER YES/ DID THE
ADDITION

V UNDERFLOW 1.
El = 1 ?)—•>(ADDITION

. UNDERFLOW ?
NO

CPA 1 : 7 — f c R G A l : 7

0 —»• RGA INNER
WORD0 —»• RGA OUTER

C
ID THE INNER i YES

ADDITION-
OVERFLOW ?

ADDITION
UNDERFLOW.

CPA 9:7 »-RGA 9:7

4-25;

MNEMONIC CODE: ASB

OPERATION: Place the sign(s) of RGA into the sigri(s) of RGB;

INSTRUCTION WORD:

DESCRIPTION:., This instruction places the mantissa 'sign bit(s)l6f RGA into
the sign bit(s) of RGB.

FLOW CHART:

S
WORD \ 64

IZE MODE ?,

32

El = 1 .? NO

YES

RGA 8:1—«»• RGB 8:1

YES

RGA 0:1 —*• RGB 0:1

4-26

BCXHJBAW OPERATIONS

MNEMONIC CODE; AND

OPERA TiONS; logical AND_of (ADR) with RGA | .(ADR) with RGA | ADR with RGAJ
•"""-: ;-"•"" '-;'" (ADR) with RGA. '

INSTRUCTION WORDS:

AND ,.

AN,DN

NANDN

,.,,„, .,
ACAH^ 04 ADR USE ADR ,

O1"'" ' ' ' • '" ' '" 4' '5 T B" I I ' - 12 15' ' 15 16 ' ' 31

:'""" 27 IA^AR* 06 ADR USE ADR

. ' • • . • •

[
--. i..: !_!•..-/• «,. t-.-'.i«1../T -. .-|i J^^^?S !̂*P

'"'05.'. '"" ADR USE | ADR

27 ACARX \j ' l ' ^^w^^*"i ADR USE ADR

PESCfilPTION; These instructions perform the logical AND of (ADR) with
Jl^rA| either operand may be true, or complemented (shown by "N" as pre-
fix girtd/pr suffix in mnemonic code), giving four combinations for this
function. The result !of tlie indieatecj operation is placed in RGA. The (ADR)
is first fetched! to RGB. The bit-by-bit determination of the result is in
accordanqe wjth the following table: .

R?s.ult of ("A" I NOT ;'A") '"AND" ("B" | NOT "B")

A ' Operand Bit "B" Operand Bit AND ANDN NAND NANDN

0

Q

1

1

0
t '•

r -..-.
o'

j

. 0
,*

0.

0
..jr.. .

0

0

1
0

0

1
0

0

1
0

0

0

. 4 r27

This operation is the same for both the 64-bit and 32-bit modes. (ADR)
remains in RGB. When the E bits are disabled, RGA is unchanged.

FLOW CHART:

(ADR) —f RGB

E = 1 ?
YES

NO

(RGA OUTER WORD | "NOT" RGA OUTER WORD)
"AND"

(RGB OUTER WORD | "NOT" RGB OUTER WORD)
»-RGA OUTER .WORD .

El = 1 ? YES

NO

(RGA INNER WORD | "NOT" RGA INNER WORD)
"AND"

<RGB INNER WORD |"NOT" RGB INNER WORD
»> RGA INNER WORD

4-28

BOOLEAN OPERATIONS (Continued)

MNEMONIC CODE: EOR

OPERATION: Logical exclusive-OR of RGA with (ADR) into RGA

INSTRUCTION WORD:

25 ACARX 05 ADR USE ADR
4 5 II 12 13 15 16

DESCRIPTION: This instruction performs the logical exclusive-OR of
(ADR) with RGA. The (ADR) is first fetched to RGB. The 64-bit adder is
used. The result is loaded into RGA, as determined by the rule shown in
the truth table below. (ADR) remains in RGB. This instruction is the same
for 64- and 32-bit modes. When the E bits are disabled, RGA is unchanged.

TRUTH TABLE.

"B" Operand Bit

"A" Operand Bit

0 1

0 1

1 . 0

FLOWCHART: . . .

EOR (ADR) — »• RGB

E = 1 ?
\YES

NO

NO

RGB OUTER WORD "EOR" RGA OUTER WORD
OUTER WORD

NO

El = 1 ?
RGB INNER WORD "EOR" RGA INNER WORD

—»• RGA INNER WORD

4-29

BOOLEAN OPERATIONS (Continued)

MNEMONIC CODE: EQV

OPERATION: Logical equivalence of (ADR) with RGA into RGA

INSTRUCTION WORD:

25 ACARX 04 ADR USE ADR
7 8 II 12 13 IS 16

DESCRIPTION: This instruction performs the logical equivalence of
(ADR) with RGA. The (ADR) is fetched to RGB. The result of the" operation
is placed in RGA, as determined by the rule shown in the truth table below.
(ADR) remains in RGB. EQV is the same for 64- and 32-bit modes. .
When the E bits are disabled, RGA is unchanged.

"A" Operand Bit

TRUTH TABLE

"B" Operand Bit

0 1

1 0

0 1

FLOW CHART:

EQV (A D R) — ̂ RGB

I r

E = 1 ?

NO

RGA OUTER-WORD "EQV" RGB OUTER WORD
fc. RGA OUTER WORD

NO,
vYES

El = 1 ?
RGA INNER WORD "EQV" RGB INNER WORD

»• RGA INNER WORD

4-30

BOOLEAN OPERATIONS (Continued)

MNEMONIC CODE: OR

OPERATION: Logical OR of (ADR) with RGA | RGA with (ADR) |
(ADR) with RGA | (ADR) with RGA

t

INSTRUCTION WORDS:

NOR

NORN

OR

ORN

1 I

23 ACARX 05 ADR USE ADR
0 4 S 78 II 12 13 IS IE 31

23 ACARX 07 ADR USE ADR

23 ACARX 04 ADR USE ADR

23 ACARX 06 ADR USE ADR

DESCRIPTION: This instruction is the same for 32- and 64-bit modes and
performs the logical OR of (ADR) with RGA. Either operand may be true,
or complemented ("N"), as indicated by the op code, giving four combinations
for this Boolean function. The bit-by-bit determination of the result is in
accordance with the following table.

Result of ("A" | NOT "A") OR ("B" I NOT "B")

"A" Operand Bit "B" Operand Bit NOR

0 0 1

0 1 1

1 0 " 0

1 1 1

NORN

1

1

1

0

OR

0

1

1

1

ORN

1

0

1

1

FLOW CHART: See next page.

4-31

•NO

(RGA OUTER WORD | "NOT" RGA OUTER WORD)
"OR"

(RGB OUTER WORD | "NOT"' RGB OUTER WORD)
•RGA OUTER WORD

El = 1 ?

NO

(RGA INNER'WORD | "NOT" RGA INNER WORD
"OR"

(RGB INNER WORD | "NOT'"RGB INNER WORD
RGA INNER WORD

4-32 .'

CHANGE RGA BIT(S)

MNEMONIC CODE: CAB

OPERATION: Complement RGA bit(s) in position(s) specified by address
field ;

INSTRUCTION WORD:

•37 ACARX 'oo' ADR USE ADR
7 8 15 16

DESCRIPTION: In 64-bit mode, one bit in RGA is complemented; in 32-bit
mode, two bits are complemented. The bit position is specified in the ad-
dress field (indexed if desired), and the resultant six least significant bits
are treated as a 6-bit coded number, N. In 32-bit mode, the corresponding
bits in both the inner, and outer ,words-are changed. -'

When "N plus index" is greater- than. 63, the bit position is modulo 64 for
64-bit mode; in 32-bit mode,, the bit position is modulo 32. A mask, with
a "one" in the affected ,bit(s) and ."zeros", in the remaining bits is re7
tained in RGB at the end of instruction execution. When E bits are disabled,
RGA is unchanged. ;

FLOW CHART: See next page.

4-33

64
WORD
SIZE
MODE ?

32

NO/ \YES
rH 8 2 N 2 40 ? X E = 1 ? NO

YES

"NOT" RGA OUTER WORD (N MOD 32): 1
—*• RGA OUTER WORD (N MOD 32):1

.YES YES^ A NO
El = 1 ?} *T* 1 E = 1 ?

NOT" RGA (N):l *-RGA (N) : l
El = 1 ?

VNO

YES

"NOT" RGA INNER WORD (N MOD 32);1
»-RGA INNER WORD (N MOD 32):1

4-34

CHANGE RGA BIT(S): (Continued)

MNEMONIC CODE: CHSA

OPERATION: Change sign(s) in RGA

INSTRUCTION WORD:

37 O n 00 -.. i —J n • n| \J U

7 8 II 12 13

DESCRIPTION: In 64-bit mode, RGA 0:1 is complemented. In 32-bit mode,
the signs of both inner and o.uter words are complemented. When the E bits
are disabled, the appropriate section of RGA remains unchanged. This is the
CAB instruction, with the value of N equal to zero.

FLOW CHART:

CHSA

WORD
SIZE

MODE ?

32
El = 1 ?

YES

64 I NO
* — *- " "NOT" RGA 8:1 .RGA 8:1

E = 1 ? NOT" RGA 0:1 »-RGA 0:1

NO

4-35

CHANGE RGA BIT (S) (Continued)

MNEMONIC CODE: (R | S) AB

OPERATIONS: Reset | Set RGA bit(s) in position(s) specified by address
field

INSTRUCTION WORDS:

RAB

SAB

37 ACARX 01 ADR USE ADR
7 8 II 12 13 IS 16 31

37 ACARX| 02 ADR USE ADR ' -• ' |

DESCRIPTION: One bit in RGA is either reset (R) or set (S) in 64-bit mode;
.two bits are affected in 32-bit mode. The bit position is specified in the ad-
dress field (indexed if desired) and is treated as a 6-bit coded number, N.
In 32-bit mode, the corresponding bits in both the inner and outer words are
affected. •

When "N plus index" is greater than 63, the affected bit position is modulo
64; in 32-bit mode, it is modulo 32. A mask is then formed in RGB by in-
serting a "one" into the specified bit position(s). For SAB, the mask is

>ORed with RGA. For RAB, the complement of the mask is. ANDed with
RGA. In 32-bit mode, the mask has a "one" in both inner and outer words.
The mask remains in RGB. When the E bits are disabled, RGA is unchanged.

FLOW CHART: See next page.

4-36

= 1 ?

».RGA OUTER WORD
(N MOD32):1 J-

f RBA, x = 0
FOR (SBA, x = l

El = 1 ?
,NO

YES

FOR

RGA INNER WORD
(N MOD32):1 .

(RBA, x = o
|SBA, = i

(R | S) AB

i

32 /. - WORD \ 64 ,SIZE
MODE ?

8 2 N £ 40 ?
NO

NO,

YES

FOR] RBA, x = 0
1 SBA.x = 1

' f :h' .

cEl = 1 ?

YES

NO

4-37 ;

CHANGE RGA BIT(S) (Continued)

MNEMONIC CODE: SA (N | P)

OPERATION: Reset | Set RGA sign bit(s)

INSTRUCTION WORDS:

SAP

SAN

37 O nU 01 O nAJ
II 12 13

37 O nU 02 n nU u

DESCRIPTION: In order to set (SAN) or reset (SAP) the sign bit, the SAB
or RABinstruction is used, with the value of N equal to zero. This sets) resets
RGA 0:1 in 64-bit mode; both RGA 0;1 and RGA 8:1-are affected in 32-bit mode.

FLOW CHART:
SA (N P)

32 WORD
SIZE

64

1 1

\. MODE ? J

fci - 1 -^ N0I •}
| YES

x — *-I

™« { l\

^GA 8:1

A ~n> v n\\r , X U
\N, x = 1

rv,V
1

9

, YE

x — »RGA

FQRJ^ "I SAN, >

NO

0:1

c = 0

4-38

MNEMONIC CODE: CLRA

OPERATION: Clear RGA

INSTRUCTION WORD:

24 11
7 8 II 12 13 31

DESCRIPTION: This instruction clears RGA. It is the same for 64- and
32-bit modes. Disabled E bits prevent the clearing of RGA.

FLOW CHART:

CLRA E = 1 ?

NO

El = 1 ?

NO

YES
0 »-RGA OUTER WORD

YES
0 —»-RGA INNER WORD

4-39

MNEMONIC CODE: COMPA

OPERATION: Complement RGA

INSTRUCTION WORD:

22 11
7 8 I I 1 2 1 3

DESCRIPTION; This instruction complements each bit in RGA. When the
E bits are disabled, RGA is unchanged.

FLOW CHART:

"NOT" RGA OUTER WORD
RGA OUTER WORD

NO

"NOT" RGA INNER WORD
INNER WORD

4-40

MNEMONIC CODE: DV

OPERATION: Divide RGA and RGB, double-length mantissa, by (ADR!

INSTRUCTION WORDS:

DV

DVA

DVM

DVMA

DVN

DVNA

DVR

DVRA

DVRM

DVR MA

DVRN

DVRNA

32 ACARX 04 '. ADR USE ADR
0 ' 4 5 - '„• 7 .8- II 12 13 . 15 16 . . 31

32 A C A R X 05 ADR USE ADR

32 A C A R X 14 j ADR USE ADR

32 A C A R X 15 ADR USE ADR

33 A C A R X 04 ADR USE ADR

33 A C A R X 05 — |ADR USE ADR

32 A C A R X 06 ADR USE ADR

32 A C A R X . 07 ADR USE ADR

32 A C A R X 16 ADR USE ADR

32 ACARX 17' - ADR USE ADR

33 A C A R X 06 ADR USE ADR
;- . .

33 ACARX 07 ADR USE ADR

4-41-,..

DESCRIPTION: In 64-bit mode, this instruction divides RGA and RGB by
(ADR). RGB is considered the low-order extension of RGA, and must have
been loaded prior to the execution of the DV instruction. The 48-bit quotient
will be placed into RGA, while the 48-bit remainder will be placed into RGB.
RGC will contain minus zero (-0). RGR will contain the divisor.

This instruction may cause the F bit(s) to be set. (See pages 4-15, 4-16,
items 4, 5, and 6.)

The divisor is always assumed to be normalized. The remainder in RGB
will be meaningless if the "R" variant was specified, or if RGA was larger
than the divisor.

The following variants are permitted: ~r;
No suffix - both operands are treated as floatingpoint, and the result is not normalized.

A - Both RGA and (ADR) are treated as unsigned values;

M - Both values are treated as fixed-point and the result is
in fixed-point; -

N - Result is normalized;

R - Quotient is rounded in RGA (contents of RGB are meaningless).

If both E bits are disabled, RGA will remain unchanged, and RGB will be
undefined. For purposes of this manual, the results of this instruction
are undefined when E j El.

In 32-bit mode, the execution of the DV instruction is the same as for 64-
bit mode, with the following modifications:

1. If both E bits are enabled, RGA will contain two 24-bit quotients
and RGB will contain two 24-bit remainders.

2. RGR will be modified by a swap of outer mantissa for inner
mantissa.

3. If either E bit is disabled, the results in the normally
protected half of RGA are undefined; :

FLOW CHARTS: See next two pages for 64- and 32-bit modes respectively.

4-42

DV
(64-BIT MODE)

(ADR)-»RGR
' 0-VRGC

REMAINDER RGA +• RGB)
RGR /

RGB

RGA

c

SWAP RGA AND RGB
MANTISSAS

"N"
OPTION?

ID EXPONENT^yES
UNDERFLOW

OCCUR?

VES

: (ENABLED)
3RD

EXP ' '

'ONE NTS
FLOW I NO
UR? 1

YES

ABLED)
3IT

1

NO 1 NO

/ \1 "M" YYE
• V OPTION 1

. NO
1

0-» (ENABLED) RGJ

j r ' A C R S : l \ N

V "°? /
1 YES

SET (ENABLED)
F BIT

i

S

\

T

4-43

DV
(32 -BIT MODE)

(ADR) — » RGR
0 — fcRGC

RGR EXP — » RGB EXP
RGR SIGN »RGB SIGN

"R" OPTION ?\ S

(ENABLED)
RGA EXP - RGB EXP

»RGA EXP

(ENABLED)
RGA SIGN - RGB SIGN

»• RGA SIGN

SET
(ENABLED) F BIT

/DID EXPONENT
I OVERFLOW OR \YES
V UNDERFLOW
V OCCUR

RGA MANT —» RGB MANT,
RGB MANT —» (ENABLED) RGA MANT

NORMALIZE (ENABLED)
WORD. CORRECT

(ENABLED) RGA EXP

DID EXPONENT \ yES
UNDERFLOW

OCCUR ?
OVERFLOW

UCCUR

4-44

MNEMONIC CODE: EAD

OPERATION: Extended precision add (ADR) to RGA

INSTRUCTION WORD:

20 ACARX 10 ADR USE ADR
45 78 II 12 13 IS 16

DESCRIPTION: The same floating point single-length result that would be
produced by floating-point add is left in R.GB. That portion.of the augend,1

or the addend, which was shif ted off to the right to allow alignment, plus
any bit of significance shif ted off of the single-length floating point 'result
due to normalization of mantissa overflow, are added together. 'The re-
sult is placed in RGA as a floating point number, with proper sign and
exponent. • '

The F bit may be set in case of exponent overflow. In case of exponent
underflow in RGA, all 64 bits of RGA will be reset to zero and the F bit
will be set, conditional on ACR(09) (exponent underflow inhibit) being zero.

The unnormalized variant of the add (AD) instruction is assumed (that
is, the result, both in RGA and RGB, will not necessarily be normalized).
At the conclusion of this instruction, RGR will contain a copy of RGA. If
not in 64-bit mode or if both E bits are not enabled, the results, for
purposes of this manual, are undefined.

Note: The addition is effected as follows (assuming
that the E bits are enabled):

1. The exponent of the result is determined
as the larger of the two operand exponents.

2. The operand with the smaller exponent is
stored in RGR.

4-45

3. If the difference between the two exponents
•• is greater than 47, then the smaller oper-

and is placed into RGA, the larger operand •
is placed into RGB, and the instruction is
completed. (Note that the signs may be
different.)

4. Otherwise, the mantissa of the operand with
the smaller exponent is shifted right end-off
until it is aligned with the mantissa of the
operand with the greater exponent. The
shifted-off bits are stored into the RGR,
while the aligned mantissa is returned to
its source register (RGA or RGB).

5. The mantissas are added, and the result
stored in RGB.

6. The shifted-off bits in RGR are stored into
RGA with an exponent equal to the exponent
of RGB, minus 48 (i . e . , RGB (1:15) - 48).
The sign of RGA will be the sign of the
original operand with the smaller exponent.
(Note that the signs of RGA and RGB may be
di f ferent .) .

FLOW CHART: See next page. (Note that the flow chart is also used for
instruction ESB.)

4-46

IS EXPONENT
DIFFERENCE

> 47 •.

YES

POSITION THE SHIFTED-
OFF BITS INTO RGR

(16:n) WHERE n = 1 TO 47;
RGR (0:1) = SIGN OF

SMALLER OPERAND

ALIGN,
(ADD SUBTRACT)

RGA AND RGB
MANTISSAS

INTO RGA (16:48)

1DID MANTISSA
OVERFLOW

OCCUR?

NO

CORRECT EXPONENT &
MANTISSA OF RGB,
MANTISSA OF RGA,

FOR OVERFLOW

SET RGA (0:1)
TO SIGN

OF RESULT

SWITCH:
RGA (16:48)*-»RGB (16:48)

RGB (0:1)«-»RGA (0:1)
RGA (1:15)—» RGB (1:15)

RGA (1:15) - 48_»RGA (1:15)

/DID EXPONENTtYES
OVERFLOW *

OCCUR? I
SET F BIT.

NO

DID \YES
UNDERFLOW •>

XCUR IN RGAJ
-0-.RGA (0:64)

WAS \
YES \ EXPONENT

DIFFERENCE
>47? ,

NO

64-BIT WORJ
1 YES i YES , YES

MODE 1 j • \

NO

i

NO

1

NO

1

RGB (0:64)
RGR (0:64) AND
ENABLE BITS
OF RGA ARE

MODIFIED

n

4-47

MNEMONIC CODE: ESB

OPERATION: Extended, precision subtract (ADR) from RGA

INSTRUCTION, WORD:

24 A G A R X • io : h i ' AD'R-USE ADR
0 12 •' 13 IS 16

DESCRIPTION: (Same-as EAD,q except; the.mantissas are subtracted.)
: • ' - . - ' -. ' '.\i • . - ' • '

The same floating point single-length result that would be produced by
floating-point subtract is left in .RGB. ..That portion of the minuend, or the
subtrahend, .which,was shifted-off. to: the .right to allow alignment, plus any
bit of: significance shifted off the-', single-length floating point result due to
normalization of mantissa overflow, are added together. The result is
placed in RGA-as a floating .point number, with proper sign and exponent.

The F bit may be set in case of'exponent overflow. In case of exponent
underflow in RGA,* all 64 bits of RGA will be reset to zero and the F bit
will be set, conditional on ACR(09) (exp'bnent underflow inhibit) being zero.

The unnormalized variant of the add (AD) instruction is assumed (that
is, the result, both in RGA and RGB, will not necessarily be normalized).
At the conclusion of .this instruction,-. :RGR'.will'contain a copy of RGA. If
not in 64-bit mode or if both E bits are not enabled, the results, for
purposes of this manual, are undefined.

Note: The subtraction is effected as follows (assuming
that the E bits are enabled):

1. The exponent of the result is determined
as the larger of the two operand exponents.

2. The operand with the smaller exponent is
stored in RGR.

4-48

3. If the difference between the two exponents
is greater than 47, then the smaller oper-
and is placed into RGA, the larger operand
is placed into RGB, and the instruction is
completed. (Note that the signs may be
different.)

4. Otherwise, the mantissa of the operand with
the smaller exponent is shifted right end-
off until it is aligned with the mantissa of
the.qperand with the greater exponent. The

, shifted-off bits are stored into the'RGR,
while the aligned mantissa is returned to
its source register (RGA or RGB).

5. The mantissas are subtracted, and the
result stored in RGB.

6. The shifted-off bits in RGR are stored into
' RGA with an exponent equal to the exponent

of RGB, minus 48-(i.e., RGB (1:15) -.48).

7. The sign of RGA will be the sign of the
original operand with the smaller exponent,
if that operand was the minuend. Otherwise,
the sign will be the complement of the sign

. of the original operand (subtrahend). (Note
that the signs of RGA and RGB may be
different.)

FLO.W CHART: See EAD instruction for combined flow chart.

4-49

MNEMONIC CODE: GB

OPERATION: Test for RGA greater than (ADR) in 8-bit bytes.

INSTRUCTION WORD:

21 ACARX 06, ADR USE ADR
4 5 7 8 II 12 13 IS. 16

DESCRIPTION: This instruction tests for RGA greater than (ADR), in 8-bit
bytes. The result is stored in the least significant bit of each byte in RGA,
"1" for true and "0" for false; the other bits of RGA are set to zero. (ADR)
is first fetched to RGB. This instruction uses the 64-bit adder, CPA., The
true of RGA and the complement of RGB are enabled into CPA. The bit
carries between 8-bit bytes are disabled. The carries out of the CPA are
then stored in RGC; these overflow carries are the test results. (ADR) re-
mains in RGB. When the E bits are disabled, RGA is unchanged. This
instruction is the same for 64- and 32-bit modes. . .

FLOW CHART: See next page.

4-50

^\ YES /RGA BYTE j > RGB BYTE j 7\ NO
= 1 ?J ^ (j - 1. 6, 1,8) J

NO YES

0 ; . . 01 —*- RGA BYTE]

0 —*• RGA BYTE j

El = 1 ? |
YES / RGA BYTE j > RGB BYTE j ?

*̂ (j = 2, 3, 4, 5)

NO

NO YES

0 . . . 01—»• RGA BYTEj

0 *-RGA BYTE j

4-51

MNEMONIC CODE: U | J) A (G | U

OPERATION: If (RGA) is "greater than" | "less than"
(ADR), set mode register bit l|j

INSTRUCTION WORDS:

IAG

IAL

JAG

JAL

37 ACARX 14 ADR USE ADR
O 45 73 II 12 13 IS 16 31

37 ACARX 16

• 37 : ACARX 15

ADR USE •: ADR

ADR USE ADR

37 ACARX 17 | ADR USE ADR

DESCRIPTION: This is a set of four instructions, each of which is .a test
to determine if (RGA) is arithmetically "greater than" or "less than" (ADR).
In 64-bit mode the-test .result is stored in the I | J bit of the mode register.
In 32-bit mode the test result for the outer word is stored in I | J and in
G I H for the test result of "the inner word.

FLOW CHART: .See next page. '

4-52

(I | J) A (G | L)

(ADR 0:64) —»-RGB 0:64

WORD SIZE ?
V32

64

f RGA 0:64
((GREATER) LESS)
V RGB 0:64

NO

YES

]

RGA .INNER WORD
(GREATER | LESS)

RGB INNER WORD' ?

'YES

1—».(G| H)

1

RGA OUTER WO'RD •
("GREATER | LESS)
RGB OUTER WORD ?

YES

NO

4-53,

MNEMONIC CODE: (l | j) B

OPERATION: Transfer bi't(s) from RGA to mode1 register bits 1| J
and G | H

INSTRUCTION WORDS:

IB

ISN

35 ACARX 02 ADR USE ADR
4 5 7 8 II 12 13 15 16

35 n r.U — (J

35
1
1 Uo ADR USE ADR

JSN 35 U 03 O f\0

DESCRIPTION: A selected bit of RGA is transmitted to the I | J bit of the
mode register. In 32-bit mode, two bits are transmitted: one bit to I | J
for the outer word and the other to G | H for the inner word. The bit is
specified in the address field and is received.over the CDB by the PE as a
6-bit coded number (N) which may be indexed. The ISN | JSN instructions
are the same except that the ADR, ADR USE, and ACARX fields are zero.

FLOW CHART:

(I J) B ADR (0 :64) ».RGB (0: 64) •
/ _ . •. - * • •" "

I
WORD
SIZE

• 64

•RGA-OUTER WORD (N MOD 32);1 »• (l|j)
RGA INNER WORD (N MOD 32): 1 »- (GJH)

RGA

.4-54

MNEMONIC CODE: (I | J) (L | M) (E | G | L)

OPERATION: If RGA (either logical word or mantissa portion alone) is
"equal to" "greater than") "less than" the corresponding
portion of (ADR), set mode register bit I | J

INSTRUCTION WORDS:

ILE

ILG

ILL

IME

IMG

IML

JLE

JLG

JLL

JME

JMG

JML

35 ACARX 16 ADR USE ADR
0 45 78 II 12 13 15 IS 31

33 A C A R X 14 • ADR USE ADR

;•

33 ACARX 16 ADR USE ADR

35 ACARX 14 ADR USE ADR

31 ACARX 14 ADR USE ADR

• 31 A C A R X 16 — |ADR USE ADR

35 ACARX 17 ADR USE ADR

33 A C A R X 15 ADR USE ADR

33 A C A R X 17 ADR USE ADR

35 A C A R X 15 ADR USE ADR

31 ACARX • 15 ADR USE ADR

31 ACARX 17 ADR USE ADR

4-55

DESCRIPTION: These instructions test to determine if (EGA) is logically
"greater than", "less than", or "equal to" (ADR). The tests are either on
the full 64 bits or on the mantissa fields only. In 64-bit mode, the test re-
sult is stored in either the I or J bit of the mode register.' In 32-bit mode,
the test result for the outer word is stored in the I- or J mode bit and in G
or H for the inner word.

FLOW CHART:

L|M) (E | G | L)

64

/IS TEST A NO
I LOGICAL ?

YES

IS RGA 16:48
(E | G | L
RGB 16:48

IS RGA 0:64
E | G | L

RGB 0:64

YES

ADR (0,64)—»>RGB

,32 .
) . . * 6 — »• (G|H)

<

/ IS TEST \NO
I LOGICAL ij

I YES

IS RGA INNER WORD
(E | G | L)

- R G B INNER WORD ?

IS RGA INNER MANTISSA
(E | G | L j

RGB INNER MANTISSA

NO

IS RGA OUTER MANTISSA
- -(E | G | L) '•

RGB OUTER MANTISSA

IS RGA OUTER WORD i
{ E |G |L)

RGB OUTER WORD ?

YES

4-56

MNEMONIC,CODE: (I- | J) (L | M) (O | Z)

OPERATION: If RGA (either logical word or mantissa portion alone) is
."all,ones" |r."all zeros",, set mode register bit I | J

INSTRUCTION WORDS:

ILO

ILZ

33 10
4 5 7 8" I I 12

33 12 -

IMO 31 i 1°

I.MZ ' 31 Hini 12

JLO , 33 11

JLZ 33 .13

JMO 31 11

JMZ '
I 31 13

DESCRIPTION: These instructions test to determine if RGA is logically
equal to zero (Z) or all ones (O). In 64-b|ft mode, the tests are either on
the full 64 bits or on the mantissa field only. (48 bits). The results are stored
in the l| J bit of the mode register... In 32-bit mode, the results are stored
in the 11 J mode bit for the outer word arid in G | H for the inner word.

FLOW CHART: See next page.

4-57

L|M) (0|Z

WORD SIZE

64

I32 » 0 — »•(G|H)

! r

I
IS TEST \NO

LOGICAL ?

YES

IS RGA 0 :64
(0|Z)

YES

(IS TEST
I LOGICAL ?

IS RGA INNER > NO

MANTISSAS O|Z) ?>

YES

IS RGA INNER
\WORD (O|Z)

IYES

(G | H.)..

YES

G | H

IS' RGA OUTER \ NO

'.MANTISSA (O|Z) ?

/^IS. RGA
(WORD (o.lz) ?

IS RGA 16:48
(O | Z) ?

4-58

MNEMONIC CODE: (I | J) (S I X) (E | G | L)

OPERATION; If RGS | RGX is "equal to" | "greater than" I "less than"
(ADR), set mode register bit I | J

INSTRUCTION WORDS:

ISE

ISG

ISL

IXE

IXG

IX L

JSE

JSG

JSL

JXE

JXG

JXL

25 ACARX . 12 ADR USE ADR
0 4 5 . 7 B 11 13 13 15 16 31

21 ACARX 12 ADR USE ADR

23 ACARX 12 ADR USE ADR

'• 25 ACARX 10 — — |ADR USE ADR

• 21 ACARX 10 ADR USE ADR

-

23 A C A R X io , ADR USE ADR

25 A C A R X 13 , ADR USE ADR

21 ACARX 13 ADR USE ADR

23 ACARX 13 , ADR .USE ADR
. . - . - - • • - .

25 ACARX •11 * ' i - ADR USE ADR

21 ACARX 11 V

• - -

ADR USE ADR

23 ACARX 1 1- ... ' ADR USE ADR

4-59

DESCRIPTION: These instructions test to determine if (RGX) or the 16
low-order bits of (RGS) is logically "greater than", "less than", or "equal
to" the 16 low-order bits of (ADR). The test result is stored in either the
I or J bit of the mode register. '

FLOW CHART:

S |X) (E | G | L)

(ADR 0:64) —+- RGB 0:64

(RGS 48:16 | RGX 0 :16)
(E | G | L)

RGB 48:16 ?

YES

NO

4-60

MNEMONIC CODE: (I | J) XGI

OPERATION: Add (ADR) 48:16.to RGX; store carry-out in mode register
b i t l j j . .

INSTRUCTION WORDS:

IX GI

JXGI

27 |ACARX 10 ADR USE ADR
4 5 7 8 II 12 13

27 |ACARX 11 ADR USE ADR

DESCRIPTION: These are the same as the XI instruction, but addition-
ally, the carry-out is stored in the I | J bit of the mode register. This
instruction is the same for 64- and 32-bit modes. When the E bit is
disabled RGX is unchanged, but the carry-out (CO = 1 for sum s = 2 l 6) is
registered in the I | J bit of the mode register.

FLOW CHART:

(I| J) XGI (ADR) — »>RGB RGX 0:16 + RGB 48:16
». ADA

x -v
(E = 1 ? J -»•

NO
i

ADA — »

/" WAS THERE "\
^CARRY-OUT FROM^YES^
1 THE rUGH-GRDJbJjtt J *"
\^ . BIT? y

NO

'RGX 0:16

1 — »• I | J

0 — *>! | J

/ , ^

4-61

MNEMONIC CODE: (I I J) XLD

OPERATION: Subtract (ADR) 48:16 from RGX; store complement of
carry-out in mode register bit l|j

INSTRUCTION WORDS:

IXLD

JXLD

27 ACARX 12 ADR USE ADR
4 5 7 8 II 12 13 IS 16

27 ACARX 13 ADR USE ADR

DESCRIPTION: These two instructions are the same as the XD in-
struction, but additionally, the complement of the carry-out is stored in
the 11 J bit of the mode register. This operation is the same for both 64-
bit and 32-bit modes. When the E bit is disabled RGX is unchanged, but
the complement of the carry-out is registered in the l| J bit of the mode
•register.

FLOW CHART:

(I | J) XLD (ADR) »-RGB
RGX 0:16 - RGB 48: 16

+• ADA

E = 1 ?
YES ^

.NO

/'""WAS THERE.
/CARRY-OUT
I THE .HIGH-ORDER
\^ BIT ?

ADA—*-RGX.O:16

0-

4-62

MNEMONIC CODE: LB

OPERATION: Test for RGA less than (ADR) in 8-bit bytes

INSTRUCTION WORD:

21 ACARX 07 (ADR USE ADR
4 S 7 8 II 12 13 IS 16

DESCRIPTION; This instruction tests for (RGA) less than (ADR), in 8-bit
bytes. The result is stored in the least significant bit of the corresponding
byte in RGA; the remaining bits of RGA are zero. (ADR) remains in RGB.
When the E bits are disabled, RGA is unchanged.

FLOW CHART:

LB (ADR) — »-RGB

i

YES _J RGA BYTE j <RGB BYTE j ? \NO
(] = 1, 6, 7, 8)

NO
YES

= 0 . . . 01 »• RGA BYTE j 0 —»> RGA BYTE j

RGA BYTE j < RGB BYTE "j ?
(j = 2. 3, 4. 5)

YES

0 ... 01-̂ *. RGA BYTE j. 0 —»• RGA BYTE j :

4-6.3

MNEMONIC CODE: LEX

OPERATION: Load the exponent field(s) of RGA with the exponent(s) from
(ADR)

INSTRUCTION WORD:

21 ACARX 17 ADR USE ADR
7 8 II 12 13 15 16

DESCRIPTION: . This instruction loads the exponent field(s) of RGA with
the exponerit(s) from (ADR). The sigii(s) and'mantissa field(s) are left un-
changed. The RGA exponent is cleared and loaded with the new exponent.
(ADR) remains in RGB. -When the E bits are disabled, RGA remains un-
changed. . • ' ' = ' . * . . ' . ' •

FLOW CHART:

LEX (ADR) — *.RGB
- y f* • '-^

*A. SIZE ?

32

*
NO '/

E = 1 ' ?

•YES

RGB 1:7 —»-RGA 1:7

YES
El' = 1 '?,

64

RGB 9:7—*• RGA 9:7

NO.

NO
E = 1 ?

YES

RGB 1:7 —»• RGA 1:7

YES

• -^—
NO

U 'r-

i r.

i

) \
RGB 8:8 —

i

•*»RGA 8:8

4-64

MNEMONIC CODE: ML .

OPERATION; Multiply RGA by (ADR)

INSTRUCTION WORDS: -

1\/TTIvlLj

TV /IT AIvlljA

MLM

MLiMA

ML,JN

MLNA

1\/TT T?

T\/TT "D Aivlj_/rv/i

TV/TT TD T\/IiViJ_ir\lvl

T\/I T T3 Ik/I Aivlj_/rilvlri

A/tT T?TVT

>

A/TT R TSI A

on
G U .'

0 4

ori

•?n

Qfl

31

31 •

30

30 :

30

30

•? 1

•? i

AC, AHA
S . . 7

A f" A TJYrtv^ri JttA

A /-I A "DVAC AKA

A /"" A T3Y/it, n r\A

A /-" A r>Y

ACARX

A r~i A OYriL-/i r(A

AC ArvA

A f~* A T3 V"/i L- ArvA

;

A /^ A D Yn\^ AriA

AP A RV

A p ARY

04
8 II

ORuo

1 c;I u

• "' "

04

05

06

07

,16

17

Ufa

n nU (

12

—

*"

.. /
— <

i

A rM3 TTCTAJJn Uoii.
13 . 15

A T^TJ T151?/iLJr\ Uon/

A "P\"D TTC T7ADH Uohi.

A T\T3 TTCT71

ADl\ Ubtj

A PIT? TTCtPA JJrv Uoiii

ADR USE

A T^TD TTCTTAJJrv UoJii

,*,

ADn uohj

A n"Q TTdT1

ALJn UorLi

A T\TJ TTCT71

nL)t\ UoHi

A T~>P TTQPT1

K

A nT3 TTQTT1

A Tin• rt IJtt-

16 31

A T"lBnLJfl

A T^DAUK

A r\n - -riJJK

A r»Rrt UK

ADR

A T\"D£\ Ur\

ADn

i • '

A T^D- .rt Urt

A 7^13/^Uri

i

A HP *

A r\R

.-4-65

DESCRIPTION: In 64-bit mode, this instruction multiplies RGA by (ADR).
RGA will contain the sign, exponent, and 48 high-order bits of the result,
while the 48 low-order bits of the result will be placed in the mantissa field
of the RGB. Bytes 1 and 2 of RGB will contain 00 111 111 00 111 111, which
represents an exponent of minus one (-1) for 32-bit mode. RGC will contain
the last subtotal carry. ' . ' . '

This instruction may cause the F bit(s) to be set. (See pages 4-15, 4-16,
items 4, 5, and 6.)

The following variants are permitted:
No suffix - both operands are treated as floatingpoint, and the result is not normalized.

A - Both RGA and (ADR) are treated as unsigned values;
/~

M - Both values are treated as fixed-point and the result
is in fixed-point; •

N - Result is normalized (after rounding, if specified);

R - Result is rounded in RGA; RGB (bytes 3-8) will be cleared.

If both E bits are disabled, RGA will remain unchanged, and RGB and RGC
will be undefined. For purposes of this manual, the results of this
instruction are undefined when E ^ El. '

In 32-bit mode, the execution of the ML instruction is the same as for
64-bit mode, with the following modifications:

1. If both E bits are enabled, RGA will contain both 24-bit
products, while RGB will contain the 48-bit product of
the outer word. Bytes 1 and..2 x>f. RGB still contain the
minus one (-1) exponent.

2. If either or both E bits are disabled, the RGA half-word
will be properly restored; however, RGB will always
contain the 48-bit outer=-w,ord;product. ...

FLOW CHARTS: See next two pages for 64- and 32-bit modes respectively.

4-66

7FFF,-1 b
RGA (16;48)-

(ADR) •

»RGR (

<16;48)
'RGB

DID
EXPONENT
OVERFLOW

OCCUR ?

NO

RGR MANTISSA X RGB MANTISSA
—»RGA lb:48 AND RGB 16:48;

RGB(0:1B) = 00111111
00111111

ADD ONE TO RGA 16:43 IF
RGB 16:1 EQUALS ONE,

0 »RGB 16:48

4-67

7FFF,6-*-RGR(0;l6)
RGA(I6;48)+RGR(I6;48)

(ADR)-*RGB
"A" OPTION SIGN OF PRODUCT

•(ENABLED) RGA (0:1), RCA (8:1)

YES

EXPONENT OF
PRODUCT

' —MENABLED)
RGA EXPONENT

»• (ENABLED) RGA (16:48)
,R OUTER MANT X RGB OUTER MANT

»• RGB (16:48)
00111 111 00111 111 — »• RGB (0:16) - -

I

• •. ADD ONE
. RGB '(40

RGA (40:1) IF

NO -. ,- . _.,

> i

TO ' • - •

ENABLED

1

YES
"N" OPTION ?)~~*'

NORMALIZE RGB,
(ENABLED) RGA

NO

rj UNDERFLOW-
OCCUR ?

fDID UNDERFLOW
OCCUR ?

YES

(EITHER)
PRODUCT = 0 ?

NO ACR BIT 9
= 0 ?

YES

SET APPROPRIATE
(ENABLED) F BIT

CLEAR APPRO-
• PRIATE

(ENABLED) RGA
HALF-WORD

E OR El = 0 ?

NO

RESTORE
DISABLED

HALF-WORD^ INTO
RGA FROM RGR

RGB (16:24)
-»• RGA (40:24)
-IF ENABLED

4-68

MODE REGISTER INSTRUCTIONS .

MNEMONIC CODE: LD ... ; SET

OPERATION: LD E | El | EE1 I G |' H \.l |..J causes the bit(s) in the mode reg-
ister specified in the mnemonic to be loaded-by a bit.in the ACAR;
SET E| ET | F I 'Fl | G - | H |1 I J sets-the bit in the mode reg-
ister specified in the mnemonic by the result of a logical function.

INSTRUCTION WORDS: ^ ..

LDE

LDE1

; 21 ACARX 14
i. HH DATA

4 & 7 6 II 1 2 13 15 16

, . , 2 1 . ' ACARX :i5 ," (' . Wftfr, DATA

LDEE1 ' ' 21 ACARX '•; 16 'WM, DATA

LOG 23 ACARX 14 ' 'W%, DATA . . .

I.DH - 23 ACARX ' '15

^^

DATA

LDI 23 ACARX - .16 ' — mm DATA

LD.I . 23 ACARX -17 'W%. DATA

SETE

SETE1

. 25. ACARX 14 'W%t>. LOG F U N C B2 Bl
4 5 7 6 II 12 13 IS 16 19 20 23 24,

25 ACARX 15 LOG FUNC B2 Bl

SETF 25 ACARX 16 '/MWM
Y/ss/y/fr. LOG F U N C B2 Bi

4-69

SETF1

SETG

25 ACARX 17 W///A, LOG F U N C B2 Bl
4 5 7 8 II 12 13 IS 16 19 20 23 24

27 ACARX 14

^^

L O G F U N C B2 Bl

SETH 27 ACARX 15 ww/ym LOG FUNC B2 Bl

SETI 27 ACARX 16 w/////, L O G F U N C B2 Bl

SETJ 27 ACARX | 17 W/A L O G F U N C B2 Bl

DESCRIPTION:

LD This instruction causes the mode register (RGD) bit(s) as indi-
cated in the mnemonic to be loaded by a bit of the DATA field.
The first 48 bits of the DATA field are implied ZEROes; the
last 16 are bits 16:16 of the instruction. ACAR indexing may
be used normally,: so that when the DATA field of the instruction
is all ZEROes; each bit of the ACAR can be sent to the indicated
mode bit of the corresponding PE; The ADR USE field is ignored.

SET This instruction sets the mode register bit as indicated in the
mnemonic with the result of a logic function of two bits speci-
fied in the ADR field of the instruction word. The first bit
(Bl) is designated by one of eight bits in the instruction
word, as follows:

Mode Bit Bl
Instruction Word

Bit Number

H
G
J
I
El
E
Fl
F

24
25
26
27
28
29
30
31

4-70

The second bit (B2) is used as indicated by one of
four bits in the instruction word, as follows:

Mode Bit B2 .
Instruction. Word

Bit Number

El
.El
E
E

20
21
22
23

The logical function of mode bits Bl and B2 is speci-
fied in one of four bits in the instruction word, as
follows:

Logical
Function

Instruction Word
Bit Number

Bl OR B2
Bl OR B2
Bl AND B2
Bl AND B2

16
17
18
19

FLOW CHARTS:

Note: If multiple ONEs are found in the Bl field, B2
field, or "Logical Function" field, the results are
undefined for purposes of this manual. If no ONEs
are found in the "Logical Function" field, the function
is Bl OR B2. If no ONEs are found in the B2 field,
B2 is ZERO.

LD ^
ACAR i:

(i = 0, 1. 2, .. , 63)1

V^VT ^
RESULT OF]

LOGICAL >
FUNCTION I

-*. RGD :1

4-71

MNEMONIC CODE: MULT

OPERATION: If in 32-bit mode, multiply RGA by (ADR); leave inner double-
length product mantissa in RGA, outer in RGB.

In 64-bit mode, this instruction operates as if in 32-bit mode.

INSTRUCTION WORD:

22 ACARX ,13 ADR USE ADR
4 5 7 8 IS 16

'DESCRIPTION: Multiply RGA by ('ADR). If both E bits are enabled, leave
the inner double-length product mantissa in RGA and the outer mantissa
in RGB. The exponent of the product of the inner operands is left in RGA
and the exponent of the product of the outer operands is left in RGB, both
in the position occupied by the exponent of the inner word. The sign bit is
in the sign bit position of the outer word. The unused sign and exponent bits
are ZERO. If both E bits are disabled;-RGA will remain unchanged and RGB will
contain the correct outer product. If E ^ El, RGA results are undefined for
purposes of this manual.

No variants are permitted. Both operands will be treated as floating-point signed
values, and the results will be unrounded and normalized.

FLOW CHART: .

ADR (0, 64) —•• RGB

(RGA INNER WORD) X (ADR INNER WORD)
-••. RGA (ENABLED PORTION)

(RGA OUTER WORD) X (ADR OUTER WORD)
»>• RGB

YES
E = El ?

NO

UNDEFINED

4-72

MNEMONIC CODE: NEB

OPERATION:- -Test for RGA not equal to (ADR) in 8-bit bytes

INSTRUCTION WORD:

22 ACARX 10 ADR USE ADR
II 12 13 15 16

DESCRIPTION: - This instruction tests for RGA not equal to (ADR), in 8-bit
bytes..Results, are stored in the least significant bi-t-of each byte in RGA;
the other bits of RGA are set t6 zero. (ADR) remains in RGB. The OR of
the carries from the "greater than" and "less than" tests remain in RGC.
When .the E bits are disabled,. RGA is unchanged.- ,The instruction is the same
for 64.T,and 32-bit modes. . •. , "

FLOW CHART:

,. ;. NJ

^

PT? ^ 1 / \ r \ n \Lj-LJ ^ ^rtlJlU

1
r -f /-

*• RGB "

^\
/" ^\ YES / RGA BYTE j \
/ 17 1 T \ . ,_ ,̂ *J i \

v y \ i; - 1
NO

ie
NO

I
X '

>^j ~ *

i

0 ... 01 — +•

„

3 YES / "^-"
»/ / RGB I
"\'(i = 2.

X.

,
0 ... 01 — »>

3YTE j f
6, 7, 8)/

YES —
i

NO

•

RGA BYTE 3

r

X"TE-.j'^\
3YTE j ?]
3, 4, 5)/

YES

NO

RGA BYTE j

. .<•

i I

0 — *>RGA BYTE j-

1

i

•

l

0 — ̂ RGA BYTE j

4-73

MNEMONIC-CODE: NORM

OPERATION: Normalize

INSTRUCTION WORD:

DESCRIPTION: This instruction will shift the RGA mantissa left, end-
arourid, until a "one" bit is detected. In 64-bit mode, the mantissa of
RGA is shifted, and the exponent is adjusted. In 32-bit mode, the inner
mantissa is acted upon first.

If both E and El are zero, the contents of RGA will remain unchanged.

Note: This instruction may cause the F bit(s) to be set.
See pages 4-15, 4-16, items 4, 5, and 6.

FLOW CHART: See next page.

4-74

DETECT
LEADING ONE

IN RGA
' MANTISSA

DETECT
LEADING ONE
IN RGA INNE R

MANTISSA

SHIFT RGA •
INNER

MANTISSA LEFT,
END AROUND

SET RGB INNER
EXPONENT TO

INNER. EXPONENT
CORRECTION

MODIFY
RGA INNER

EXPONENT BY
SHIFT COUNT

SHIFT RGA
MANTISSA

LEFT, END
-AROUND

DETECT
LEADING ONE
IN RGA OUTER

MANTISSA

SET RGB
EXPONENT TO
THE EXPONENT

CORRECTION

SHIFT RGA
OUTER

MANTISSA LEFT,
END AROUND

MODIFY
RGA EXPONENT

BY SHIFT
COUNT

SET RGB
OUTER EXPONENT

TO OUTER
EXPONENT.
CORRECTION

MODIFY RGA
OUTER

EXPONENT BY
SHIFT COUNT

4-75

MNEMONIC CODE: OFB

OPERATION: : Overflow bits of previous,8-bit byte-instruction are; trans.-
mitted from RGC to RGB - . . " " "

INSTRUCTION WORD:

25 06
4 5 7 8 II 12 13

DESCRIPTION: Transmit overflow bits of previous 8-bit byte instruction
from RGC to RGB. RGC is unchanged. This instruction is the same for
6'4- and 32-bit modes. ' .. • •

FLOW CHART:

RGC (8i:l) —*> RGB (8i+7;l)
(i = 0.1.2, . . . , 7)

4-76

MNEMONIC CODE: RTG; RTL

OPERATION: RTG -

RTL -

Transmit register (Y) of every PE to RGR of
PE number (N + D) modulo a, where

Y = a specified PE register
N = initial PE No.
D = routing distance ;
a = number of PEs in array (64/128/256)

Same as RTG, except for single quadrant
(a = 64) :~. .v. .. ; "",;

INSTRUCTION WORDS:

RTG

RTL

24 ACARX 13 i m° H Y • D
7 8 II 12 13 14 15 16 17 21 22

24 ACARX 12
1 M °w< Y . - . . - D V , ,]

DESCRIPTION:

RTG Transmit the data found in the PE register (specified in bits
17-21 of the instruction) of every PE to the RGR of every
PE. Data initially found in PE number N is left in PE
number (N + D) modulo a (where "D" is the routing distance
specified in the ADR field of the instruction and "a" is the
number of PEs in the array, whether 64, 128, or 256). "D"
and "Y" are indexable by a selected ACAR but not by any
RGX or RGS. The array is defined by the contents of MC2
relative to MCO. The register address bits are as follows:

Register
RGA
RGB
RGX
RGS
RGR

Address Bit
17
18
19
20
21

4-77

RTL Same as RTG, except that this instruction is for single quadrant
only. Data originally stored in the specified register of PE
number N is left in the RGR of PE number (N+D) modulo"64. '

Note: RGB cannot be transmitted. Also, care should be taken
that indexing should not inadvertently change the specified
register address (Y) or the routing distance (D).

FLOW CHART:

MOVE THE SPECIFIED
REGISTER'S CONTENTS

TO RGR

MOVE THE SPECIFIED
REGISTER'S CONTENTS

TO RGR

ARRAY \4_
SIZE ?j

12.8- 256

RGR
PE(N)

FOR EVERY N IN a,

-*-RGR PE(N + D) MOD a

4-78

MNEMONIC CODE: SB

OPERATION: Subtract (ADR) from RGA (Additional op codes allow certain
variants: A for unsigned, M for fixed point, N for normalized
floating, R for rounded)

INSTRUCTION WORDS:

SB

SBA

SBM , . ..

SBMA

SEN

SBNA

SBR

SBRA

SBRN

SBRNA

36 ACARX 04 ADR USE ADR
0 45 78 II 12 13 IS 16 31

36 ACARX 05 ADR USE ADR

. 36 ACARX 14 ADR USE ADR

36 ACARX 15 ADR USE ADR

37 ACARX 04 ADR USE ADR

37 ACARX 05 — {ADR USE ADR

. 36 ACARX 06 ADR USE ADR

36 ACARX 07 ADR USE ADR

37 ACARX 06 ADR USE ADR

37 ACARX 07 ADR USE ADR

4-79

DESCRIPTION: This instruction subtracts (ADR) from RGA. The re-
sult of the subtraction remains in RGA. 'RGB will contain (ADR) either
unmodified, or modified by the mantissa" pdrtion(s) that were shifted to align
with RGA. RGC and RGR are not used.

This instruction may cause the F"bit(s)i;t6 be set. (See page 4-15, 4-16,
items'-4;--5, -and 6.") - " ' • ' • ' * ' • > ' ' ' . t .,:-•-••

• • . '- , • • , - . :.-.. • "'• • > . : ' ! '
The following variants are permitted: ••- : • -

A - -Both operands are treated-as unsigned values;
, ' . . • . • ' 'v- iJ - . ^hu: ' ••'".• . . • : •••

M - Both-operands are'treated'as fixed-point and the result
is in 'fixed- point r "!" " '

N - Result is normalized (after rounding, if specified);

R - Result is rounded in RGA.

If both E bits are disabled, RGA will remain unchanged. If E ^ El for 64-bit
"mode, the results, for purposes of this manual, are undefined.

In 32-bit mode, there is no loss of accuracy because each half-word is
aligned independently of the other.

Note: The subtraction is effected as follows (assuming that
the E bits are enabled):

1. The exponent of the result is determined as the
larger of the two operand exponents.

2. The mantissa of the operand with the smaller
exponent is shifted right end-off until it is
aligned with the mantissa of the operand with the
greater exponent. Thus, if the difference be-
tween the two exponents is greater than 47, the
smaller mantissa will be set to zero, and the
result of the subtract will exactly equal the
larger value.

3. The aligned mantissa is returned to its source
register (RGA or RGB).

4-80

4.. The mantissas are subtracted, and,the. ,.
result stored in RGA.

5. The exponent portion of RGB will not be
. , changed except when the normalized .

variant (N) of the instruction is requested.
The RGB exponent will then be set to the
exponent correction.

6. The mantissa portion of RGB will be
unchanged unless the RGB exponent is

, smaller than.the RGA exponent. (Refer
to paragraphs 2 and 3 above.)

FLOW CHART: See AD instruction for combined flow chart.

4-81

MNEMONIC CODE: SBB

OPERATION: Subtract (ADR) from RGA in 8-bit bytes

INSTRUCTION WORD:,

26 ACARX 07 ADR USE ADR
7 e II 12 13

DESCRIPTION: This instruction subtracts (ADR) from RGA in 8-bit bytes.
The result in RGA will be in qhe.'s complement form when no overflow occurs.
When overflow occurs, the carries are stored in RGC. (ADR) remains in
RGB: When the E bits are disabledi RGA is'unchanged but RGC contains
the carries. Execution of this.instruction .is; the same for 64- arid 32-b'i:t
modes.

PLOW CHART:

SBB
(ADR) — »-RGB
0 — *-RGC

RGA BYTE j - RGB BYTE j
** CPA BYTE j

(j = 1, 2. .. ./8) ,

i.
N0 ANY CARRIES FROM YE

SUBTRACTING THE
BYTES ?

BYTE j CARRY +>
RGC BYTE j M. S. B.

E = 1 ?
YES

NO

CPA BYTE j —»• RGA BYTE j
(] = 1, 6, 7, 8)

c1 1 -b i

NO

. AYESi ?j — •-* CPA BYTE
(i =

j
2 , 3,

RC
4,

JA BYTE j
5)

1
•ni

4-82

MNEMONIC CODE: SBEX

OPERATION: Subtract the exponent field(s) of (ADR) from the exponent(s)
of RGA

INSTRUCTION WORD:

"-25^ IACARX 01 ADR USE ADR
"» 5 7 8 II 12 13 15 16

DESCRIPTION: This instruction subtracts the exponent of (ADR) from the .
exponent of RGA. In 32-bit mode the inner and outer exponents are sub-
tracted independently. When the E bits are disabled, RGA is unchanged and
F bits, cannot be set.

' • . ' • • • • •
This instruction may cause the F bit(s) to be set. See pages 4-15, 4-16,
items 4, '5, and 6. "

FLOW CHART: See next page.

4-83

(ADR) —»-RGB WORD SIZE
MODE ?

64

32

; i
RGA 1:15 - RGB 1 :15— ».CPA 1:15

RGA 1:7 - RGB 1:7 —*• CPA 1:7
RGA 9:7 - RGB 9:7 —*• CPA 9:7

DID..THE .
'SUBTRACTION
OVERFLOW?

DID .THE AYES
SUBTRACTION
UNDERFLOW?

DID THE OUTER- \YES'
SUBTRACTION

VERFLOW ?
0 POUTER

. '• WORD

DID THE OUTER \ NO
SUBTRACTION
UNDERFLOW?

CPA 1:7—*-RGA 1:7

0 —»-RGA OUTER
WORD

SUBTRACTION I—,
UNDERFLOW? JDID THE INNER \ YES

SUBTRACTION
OVERFLOW?

ACR 9:1 = 1 ?

CPA 8:8 •
RGA 8:8DID THE INNER

YES ' SUBTRACTION 'NO

UNDERFLOW:

0 —»• RGA
INNER WORD

0 ^RGA INNER
WORD

CPA 9:7 —»-RGA 9:7

ACR 9:1 = 1 ?

4-84

MNEMONIC CODE: SCM

OPERATION: Execute one iterative cycle of a multiplication

INSTRUCTION WORD:

DESCRIPTION: This instruction multiplies RGA mantissa by the nine least
.significant bits of RGB mantissa, leaving the product in two parts with unas-
similated carries. The 48 most significant bits of the "partial sum" will be
placed into RGA mantissa, and the eight least significant bits of the ""partial
sum""will, be placed in the eight most significant bits of RGB mantis.sa, while
the next 16 bits of RGB mantissa are settoONEs. RGC will .contain-the 56 bit's of
the "partial carry". - . .'• • • .-» > "<:

If both E bits are disabled, RGA mantissa will be unchanged. .However, RGB
and RGC contents will be set as defined above. If Ej^E-1, -the disabled portion
of RGA will remain unchanged. The enabled portion, will be set to the same
contents as if both E bits were enabled. RGB and RGC contents will be as de-
fined above. • ' = ' "

This instruction .is independent of word size, and therefore results are the
same in 32-bit and 64-bit modes. :

FLOW CHART:

RGA 16:48 -»RGR 16:48

PARTIAL SUM OF RGR 16:48 X RGB 55:9
—* (ENABLED) RGA 16:48 AND RGB 16:8;'

PARTIAL CARRY—»RGC 16:56 ,

4-85

SHIFT INSTRUCTIONS : : '

The next ten instructions are variations of a basic shift instruction. For
brevity, the most frequently used options are described below;

Shift Count with Indexing - The shift count N is a sum of the
contents of ADR plus the contents of A'CAR (if specified) plus.'the. .
contents of RGX or RGS (if either is specified). These sums are
taken modulo 64 or 32 depending on the word size. Numerically,
these sums take on the following values: V V: ...:' ."'

•': for all shifts: N = ADR-FvAGAR-H-RGX (or RGS)'),'*

E Bits Disabled - When the E'bits are disabled,! the disabled'-part ;.
of RGA is unchanged by the shift instructions! In double-length '-•
shifts, RGB is modified as though the E bits we're enabled; :t ' ' ;

End-A round Shifts - When an end-around shift occurs, bits shifted
out of the end of a register reappear at the opposite end of the re-
gister. • - ' / i . ' • ; '- ''.-

End-Off Shifts - When an end-off shift occurs, the bits at the end -
of the register opposite from the shift .direction are filled with, . '<
"zeros" as the register is shifted. .

Mantissa Shifts - In a mantissa shift, only the bits which constitute
the mantissa are acted upon. In 64-bit mode, bits '(16:48) will be
affected. In 32-bit mode; PE mode bit E controls the outer man-
tissa (bits 40:24), and PE mode bit El controls the inner mantissa
(bits 16:24). . •• . ; ;

Logical Shifts - In a logical shift in 64-bit mode, ' all of the bits of
a word are acted upon. In 3 2-bit mode, each half-word is acted
upon separately.

Double-Length Shifts - For a double-length shift, the two 64-bit
registers (RGA and RGB) are effectively acted upon as one 128-bit
register. In 32-bit mode, double-length shifts give results which
are undefined for purposes of this manual;

Note: For purposes of this manual, the results of any of the shift
- . : . - • ' instructions are undefined when, in 64-bit mode, E / El.

vlf not specified, these terms are zero.

4-86

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: RTAL'

OPERATION: Shift left, end-around, logical, single-length "

INSTRUCTION WORD:

1 , . , 3 5 ACARX 13 — |ADR USE ADR
4 5 7 8 II 12 13

DESCRIPTION: The contents of RGA are shifted and returned to (enabled
portions of).RGA, If .the shift is being done in 32-bitvmpde, the inner and outer
words are acted upon separately. In,32-bit mode, the effective shift amount
is the shift count modulo 32.

FLOW CHART:

RTAL/
RTAR - . w

NO

SHIFT RGA OUTER WORD
LEFT/RIGHT, END-AROUND

LOGICAL, (N) BIT
POSITIONS

1

YES

SHIFT RGA INNER WORD
LEFT/RIGHT, END-AROUND,

LOGICAL, (N) BIT
POSITIONS • ..

SHIFT RGA 0:64
WORD LEFT/RIGHT,

END-AROUND, LOGICAL,
(N).BIT POSITIONS'

4-87

SHIFT INSTRUCTION'S (Continued)

MNEMONIC CODE: RTA R

OPERATION: Shif t right,;-end-around, logical; single-length

INSTRUCTION WORD:

35 ACARX 12 ADR USE ADR, " .
4 5 7 8 II 12 13 15 16

DESCRIPTION: This instruct ion is the same as.RTAL, except, that the "shift
is to the right. • • . . • •:•, ..: •.. '.- ..i ; . ..- : > _\: . • . . ,

FLOW CHART: See RTAL COT- combined flow chart.

4-88

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHABL

OPERATION: Shift left, encNoff, logical, double-length

INSTRUCTION WORD:

'.. . 37 A.CARX 11 ADR USE ADR
4 5 II 12 13 15 16

DESCRIPTION: The contents of• RGA are shifted left end-off, and returned
to (enabled portions of) RGA. Next, RGB is shifted right end-off, "ORed"
with RGA, and restored into (enabled portions of) RGA. RGB is then
shifted left end-off and returned to RGB.

The effective result of the shift is as follows:

The (N) high-order bits of RGA were deleted;

The.(128 - N) remaining bits of RGA and RGB were shifted left to
bit 0 of RGA;

The (N) low-order bits of RGB became zeros.

For purposes of this manual the results of this instruction are defined only
for 64-bit mode, and when E = El.

FLOW CHART:

RGB AND ENABLED
PORTIONS OF RGA

ARE MODIFIED

SHIFT RGA AND
RGB LEFT, END-

OFF, LOGICAL,
(N) BIT POSITIONS

4-89

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHABR

OPERATION: Shift right, end-off, logical, double-length

INSTRUCTION WORD:

37 ACARX 10 ADR USE "ADR
4 5 7 8 II 12 13 19 16

DESCRIPTION: The- contents of-RGB are shifted- right -end-1- off, -and^returned
to RGB. Next, the contents of RGA are shifted left end-off, "ORed" with
RGB, and restored into RGB. The contents of RGA are then-shifted,right
end-off and returned to (the enabled portions of) RGA. . • ' ">:..•;:

The effective result of.the shift is.-as follows: • : . • ' - •

The (N) low-order bits of RGB were deleted;

The remaining (128 - N) bits of RGA and RGB were shifted right
t o b i t 6 3 o f RGB; : , • . . , • • . • ' • . , • • . / , « , , , . , . .

The (N) high-order bits of RGA became zeros.

For purposes of this manual, the'results of this instruction are defined
only for 64-bit mode, and when E = El.

FLOW CHART

SHABR
NO

' 64 -BIT >
MODE.

AND E = 1

NO

YES'

RGB AND ENABLED
PORTIONS OF RGA

ARE MODIFIED

SHIFT RGA AND
RGB RIGHT, END-
OFF, LOGICAL,

(N) BIT POSITIONS

4-90.

SHIFT. INSTRUCTIONS (Continued)

MNEMONIC CODE: SHABML

OPERATION: Shift left., end-off, mantissa only, double-length

INSTRUCTION. WORD.:

37 ACARX 13 ADR USE ADR
o • •' 7 6 II 12 13 IS 16

:DESCRIPTION: This is the same as-the SHABL instruction, with the
following exceptions:' ••< "- • :

1. Instead of the entire'RGA/RGB being shifted, only the
mantissa portions are used;

2. There is an added constraint, that if the shift count > 48,
, modulo 64 the .mantissa^portion of RGB and (the enabled

mantissa portions of) RGA will be set by zero.

FLOW CHART:

SHIFT
COUNT
> 48?

NO

YES

0-*RGB 16:48; -
0-*<ENABLED)

PORTIONS OF) RGA
MANTISSA .

64-BIT MODE>
AND E = 1

AND El = 1?.

YES

NO

RGB 16:48, ENABLED
PORTIONS OF RGA 16:48

• ARE MODIFIED

SHIFT RGA MANTISSA
AND RGB MANTISSA

LEFT/RIGHT, END-OFF,
(N) BIT POSITIONS

4-91

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHABMR

OPERATION: Shift right, end-off, mantissa only, double-length

INSTRUCTION WORD:

* 1 • f

37 ACARX 12 ADR USE ADR
0 45 78 II 12 13 15 16 31

- . - , , . , • , • . . . ' • : • ' • " ' " • I : ' . ' . ' • . '

DESCRIPTION: This is the same as the.SHABR instruction, with;the : "; ,
following exceptions: ' , , , . , .

1. Instead of the entire RGA/RGB being shifted, only the
mantissa portions are used;

, : ' - i • ' - • ' . ' •
2. There is an added constraint, that if the shift count > 48

modulo 64 the mantissa portion of the RGB and (the enabled
mantissa portions of) RGA will be set to zero.

FLOW CHART: See the SHABML instruction for the combined flow chart.

4-92

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHAL

OPERATION: Shift left, end-off, logical, single-length

INSTRUCTION WORD:

35 ACARX 01 h- ADR USE 1 ADR |
4 5 7 8 r .12 13 ' 15 16

DESCRIPTION: The contents of RGA are shifted and returned to RGA. If the
shift is being done in 32-bit, mode, the inner and outer words are acted upon
separately.

FLOW CHART:

NO /V)
(i YES

SHIFT OUTER PORTION
OF RGA LEFT /RIGHT,
END-OFF, LOGICAL.

(X) BIT POSITIONS

1

NO

YES

SHIFT INNER PORTION
OF RGA LEFT/RIGHT,
END-OFF, LOGICAL,

(N) BIT'POSITIONS

SHIFT RGA LEFT/RIGHT,
END-OFF, LOGICAL,
(N) BIT POSITIONS

ENABLED PORTION
OF RGA IS
MODIFIED

4-93

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHAR

OPERATION: Shift right, end-off, logical, single-length

INSTRUCTION WORD:

35 "" ACARX oo }—— ADR USE ADR
45 78 II 12 13 'IS 16

DESCRiPTION: This instruction is the same as SHAL, except that the
shift is to the right. . . ,

FLOW CHART: See SHAL instruction for combined.flow chart.

4-94

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHAML

OPERATION: Shift left, end-off, mantissa only, single-length

INSTRUCTION WORD:
.<•

35 ACARX 11 ADR USE ADR
7'8 II 12 ' 13 -IS '16

DESCRIPTION: The contents of RGA mantissa are shifted left and returned
to (enabled mantissa-portion of) RGA. If ttie shift is being done in 32-bit'
mode, the inner and outer words are acted upon separately.

Note: If, in 64-bit mode, the shift count > 48, modulo 64 (24, modulo'32
for 32-bit mode), the enabled portions of the) RGA mantissa will
be set to 0.

FLOW CHART:

v'v
1

YES

SHIFT OUTER MANTISSA
PORTION OF RGA

LEFT/ RIGHT, END-OFF,
(N) BIT POSITIONS

1 I
9

ENABLED PORTION
OF RGA MANTISSA

IS MODIFIED

El = 1?
\YES

NO

SHIFT RGA MANTISSA
LEFT/RIGHT, END-OFF,

(N) BIT POSITIONS '

SHIFT INNER MANTISSA
PORTION OF RGA

LEFT/RIGHT, END-OFF,
(N) BIT POSITIONS

4-95 '

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHAMR

OPERATION: Shift right, end-off, mantissa only, single-length

INSTRUCTION WORD:

.,3 5..,.. ACA.RX ,, ,10, , ; ADR USE| ADR
\ 4.5 78 :':'•": \':. i i / , ,12 . 13 - f' " is is .' •'- .<

DESCRIPTION: This instruction is the same as SHAML, .except that the
5shift'is"to the. :r.ight.' ' . • ; / " • -v: " ' , : • • -- ' ' • ' ' ' • . ; .'.' ' : !

FLOW CHART: See SHAIVIL, instruction;for combined, flow chart.

4-96 '

MNEMONIC CODE; ST (A | B | R | S | X)

OPERATION; Store from RG (A | B | R | S | X) to memory

INSTRUCTION WORDS:

STA

STB "

STR

STS

STX

DESCRIPTI

26 ACARX 12 — IADR USE
0 4 5 78 II 12

.... ; .' . - ' ,) > - • - ' •

26 ACARX

ADR
13. . IS 16_ 31

-is |— — JADR USE
' • . ; • ; i . . . , . . '

26 ACARX ,4 —

26 ACARX - 1 5 " 1—

26 ACARX 16

ADR

ADR USE ADR

ADR rUSE ADR

ADR USE ADR

ON: These are five store instructions. The ADR field specifies
where the indicated data is stored in memory. These instructions are the
same for 64- and 32-bit modes. RGX data goes to memory bit locations
(48:16). Disabled E bits prevent changing of the data in memory.

FLOW CHART: See next page.

4-97

ST (A|B|R|S

STX

E = 1 ?

NO

El = 1 ?

NO •

E = 1 ?
NO

RG (A | B | R | S) OUTER WORD
»-MEM WORD OUTER WORD

El = 1 •?
NO

YES

RG (A | B | R | S) INNER WORD
»» MEM WORD INNER WORD

YES RGX —»> MEMORY WORD 4.8:16
0 -»• MEMORY WORD 32;16

YES
0 -»• MEMORY WORD 0 :32

4-98

MNEMONIC CODE: SUB

OPERATION; Subtract 64-bit unsigned fixed point number (ADR) from EGA

INSTRUCTION WORD:

26 ACARX 05 ADR USE ADR
4 5 7 8 II 12 13 IS 16

DESCRIPTION: This instruction subtracts a 64-bit unsigned fixed-point
number (ADR) from RGA; the result is placed in RGA if the E bits permit.
(ADR) is first fetched to RGB. Overflow generates an end-around-carry,-
but does not set the F bit. (ADR) remains in RGB. When the E bits are
disabled, RGA is unchanged. When in 32-bit mode, this instruction will
operate as if in 64-bit mode.

FLOW CHART:

SUB (ADR) — ̂ RGB RGA - RGB — ̂ - CPA

= 1 ? vYES

NO

CPA OUTER WORD
—*• RGA OUTER WORD

YES
El = 1 ?

NO

CPA INNER WORD
—^ RGA INNER WORD

I

4-99

MNEMONIC CODE: SWAP

OPERATION: Interchange the'contents of RGA and RGB

INSTRUCTION WORD:

DESCRIPTION; This instruction interchanges the contents of RGA-with the
contents of RGB. When the E bits "are disabled, RGA is not changed. SWAP
can be used in either 64-bit or 32-bit mode.

FLOW CHART:

NO

INTERCHANGE
RGA OUTER WORD

AND RGB OUTER WORD

RGA OUTER WORD
-*-RGB OUTER WORD

El = 1 ? .YES.

NO

RGA INNER WORD
-•-RGB INNER WORD

INTERCHANGE
.. RGA INNER WORD
AND RGB INNER WORD

4-100

MNEMONIC CODE: SWA PA

OPERATION: Interchange the inner and the outer operands in RGA

INSTRUCTION WORD:

DESCRIPTION: This instruction interchanges the inner and outer words
of RGA. When the E bits are disabled, RGA remains unchanged. •

FLOW CHART:

NO

10 E, El = ? 00

REPLACE RGA.
OUTER WORD WITH

RGA INNER WORD-

01

REPLACE RGA ->
INNER WORD WITH
RGA OUTER WORD

INTERCHANGE RGA
INNER WORD AND
RGA OUTER WORD

4-101

MNEMONIC CODE: SWAPX

OPERATION: Interchange the outer operand of RGA and the inner
operand of RGB

INSTRUCTION WORD:

4 5

DESCRIPTION: This instruction interchanges the outer word of RGA and
the inner word of RGB. When the E bit is disabled, RGA is not changed;
however, the outer word of RGA is copied into the inner word of RGB.

FLOW CHART:

NO

INTERCHANGE:
RGA OUTER WORD AND

RGB INNER WORD

RGA OUTER WORD
—»-RGB INNER WORD

4-102

MNEMONIC CODE: T3A

OPERATION: Transfer contents of RGC to RGA

INSTRUCTION WORD:

21 05
4 5 II 13 13

DESCRIPTION: This instruction transfers the contents of RGC to RGA, as
follows:

• RGC 0:1 is transferred to RGA 0:1
RGC 1:8 are transferred to RGA 8:8
RGC 16:48 are transferred to RGA 16:48
RGC 9:7 are not transferred; RGA 1:7 are set to zeroes

When either or both E bits are disabled, the corresponding portion of RGA is
unchanged.

FLOW CHART:

RGC 0:1 » (ENABLED) RGA 0:1;
RGC 1:8 » (ENABLED) RGA 8:8;
RGC 16:48 —» (ENABLED) RGA 16:48;

0 »• (ENABLED) RGA 1:7

4-103

TRANSMIT INSTRUCTIONS:

MNEMONIC CODE: LD (A | B | D | R | S | X)

OPERATION: Transmit source data to register indicated in op code
(Source is specified in instruction word bits 5:3, 13:3,
and 16:16.)

INSTRUC TION WOR DS:

LDA

LDB

'• LDD

LDR

LDS

' "'"'

26 ACARX

1 . ' '•". f; - -

17 : 1 ADR USE V, ADR
O 45 78 II 12 13 15 16 3l

27 ACARX 00 ADR USE - ADR
. ' -

22 ACARX • 12 ADR USE ADR

! 2 7 : ACARX 01 ADR USE ADR

27 ACARX 02 ADR USE ADR

LDX 27 ACARX 03 ADR USE ADR

DESCRIPTION: The permissible applications of the transmit instructions
are. shown.in the accompanying table. These instructions are performed
by enabling the source data through a path in the PE to the input of the
destination register, and then clearing and loading the destination register.
All destination registers are 64 bits in length except for the mode register
(RGD) and the index register JRGX). The instruction LDD is,not E-bit
sensitive. .,.r. .

RGD is an 8-bit register. Transfers to RGD are from bits 0:8 in the source
register. Transfers from RGD are to bits 0:8 in the destination register;
the remaining bits in the destination register are undefined. • <

4-104

The mode bit locations within the RGD are defined as follows:

Bit Location
0
1
2
3
4

' ;' " 5

' 6
7

Mode Bit
E
El
F '
Fl
I
G
J"
H

RGX is a 1 6-bit register. Transfers to RGX are from bits 48:1 6 of the
source register. Transfers from RGX are to bits 48:16 of the destination
register; the most significant 48 bits of the destination register are cleared.

The. transmit instructions.are.the-same for-both-64-. and 32-bit modes. When
the E bits are disabled, RGA:; RGS, and RGX'cannot b'e changed. ; '

Variations of..Transmit.Instruction

Source . , .
of Data

RGA

RGB

RGD

RGR

RGS

RGX

MEM

Literal

, .Address „
; Bit

17

. .18

22

,21

20

19

i 'i*

Destination Register

RGA

LDA

LDA ;

LDA

LDA -

LDA

LDA

. RGB- .

LDB

:;= :|< t'p'f -. .

LDB

LDB

LDB

' LDB-.

LDB

LDB

RGD

*

LDD

•-.--

--- :T I

*

: RGR

LDR

• >.LDR

. ##;;o;: .

LDR

LDR

LDR

LDR

RGS

LDS

LD'S

, LDS

V 'i' 'i' 'i;

-LDS

LDS

LDS -

RGX
*i>
')••

LDX

*

LDX

LDX

;,c *,< »,c ;(c

LDX

LDX

*
**

Note:

No direct path available.
ADR USE' field' BIT 15 set; ADR contains memory address; RGS '
and RGX indexing is permitted. .' !

ADR USE field BITS 13-15 reset; ADR plus ACAR equal the literal;
RGS and RGX indexing is not permitted.
Illegal instruction, ,
Not used.- •. • ': . . •
In all cases, except where the source of .data is memory or a
literal, bit 13 of the ADR USE field is set, bit 15 is reset, and
RGS and RGX indexing is not permitted. ACAR indexing is per-
mitted, however.

FLOW CHART: See next page.
4-105

LD(A|B |D |R |S |X)

±

RGD-*. RGB?

NO

RGB-^RGD?

NO

E = 1?

YES

]:S DESTINATION
RGX?

YES

SOURCE 48:16
-*• RGX 0:16

YES RGD Q;8 —»• RGB 0:8

RGB 8:56 —»• RGB 8:56

YES
——»

RGB 0:8—»>RGD (0:8)
0—*RGB 0:8

RGB .8:56'—*RGB 8:56 :

NO

NO

YES

EITHER E
OR El = 1?

f YES

SOURCE
INNER/OUTER
WORD —••
DESTINATION. .
REG. ENABLED
INNER/OUTER
WORD

IS DESTINATION \ NO
RGS OR RGA ?

0 -*
DESTINATION
REGISTER

SOURCE 0:64
-» DESTINA-
TION 0:64

4-106

NI

MNEMONIC CODE: XD

OPERATION: Subtract (ADR) (48:16) from RGX

INSTRUCTION WORD:

25 ACARX 03 ADR USE ': ADR
4 5 7 e 12 "13" IS 16

DESCRIPTION: This instruction modifies the index value by subtracting
(ADR) from the contents of RGX. The result is returned to RGX. If over-
flow occurred, the result is modulo 16 bits. The instruction is defined for
both 64- and 32-bit modes. When the E bit is disabled, RGX is unchanged.

The subtract is effected by taking the 2's complement (two's complement = •
one's complement plus 1) of (ADR 48:16) and adding to the contents of
RGX. No end-around-carry is generated.

FLOW CHART:

XD (ADR) — »• RGB
.NO

-̂1
\

RGX 0:16 -

. »*

r-S' 'YES

i

RGB 48:16
RGX 0:16

1 ' mi

4-107

MNEMONIC CODE: XI

OPERATION: Add (ADR) (48:16) to RGX

INSTRUCTION WORD:

25 ACARX 02 A DR. USE . . A P R ,. .,,
4 5 7 8 12 13 IS 16

DESCRIPTION: This instruction modifies the index '-value-'by- adding (ADR)
to the contents of RGX. The result, in RGX, is modulo 16 bits. Instruction
XI is defined for both 64-.and 32-bit modes. Whe'n the'E bit is disabled,
RGX is unchanged. No end-around-carry is generated.

FLOW CHART:

XI (ADR) »»RGB E = 1 ?
, NO

YES

RGX 0:16 + RGB 48:16
^ RGX

4-108

CONTENTS — - . . - - • ' :

' • • • - ' . Page
*

WORD FORMATS 5-3

B6700-TMU^GOMMUNICATION ! - . - . - . " . . , -. . . - 5-5

REGISTER ADDRESS CODES AND ACCESSIBILITY . . 5-7

OPERATION OF THE .TMU •:. . . . 5-7.

DIAGNOSTIC FEATURES - « . . . 5-9

TMU DISPLAY. . 5-10

TMU INSTRUCTION SET ' 5-15

(See Index on Reverse Side)

TMU INSTRUCTION INDEX

Mnemonic
Code

EFA

EFF

LICK

" LISR

RPT

RUN

SA

SAT
l

SIS

SIV

SL

SLT

SOC

SOD

SR

SRT

TIC

TOC

WIS,

Octal
Code

160

164

041

040

001

020

" 007

047

120

100

006

046

Oil

010

005

045

121

002

044

Reference
Page

5-16

5-18

' 5-20

5-21

5-22

5-23

5-24

5-25

5-26

5-27

5-24

5-25

5-30

5-32

5-24

5-25

5-33

5-34

5-35

SECTION V

TEST MAINTENANCE UNIT

The Test Maintenance Unit (TMU) is a functional component of the Control

Unit (CU). It serves three principal purposes: as the control information

input-output interface between an ILLIAC IV quadrant and the B6700 system;

as the controller for the other subunits within the CU; and as the medium by

which manual, semiautomatic, and automatic testing of the system may be

accomplished. Figure 5-1 is a block diagram of the TMU.

Functionally, the TMU acts much like the control panel of a conventional

system. The pushbuttons on such a system actually constitute instructions

with address either implied or set into panel switches that cause a specific

command to be performed as, for example, loading the instruction counter.

In the TMU this implied structure is mechanized so that control pushbuttons

on the TMU Panel are actually encoded into a command register and then

executed. The B6700 has access to this command register - via the

Descriptor Controller (DC) —and thus can simulate manual manipulation of

system controls. The TMU also functions as the window through which

operation of the CU may be monitored.

There are two input and two output ports to the TMU (excluding CU interfaces).

Input may be from the TMU Maintenance Panel, the B6700, or both. Output

from the system may be observed on a CRT display of register names and for-

matted octal values, or the same information may be accessed by the B6700

for display.

5-1

; DESCRIPTOR CONTROLLER (DC)

" CONTROL PANEL '
FUNCTION BUTTONS

& ADDRESS KEYS

TMU COMMAND
REGISTER (TCR)

• - 4 7

CONTROL , (32J

1

' ' :(j

1

e)

TMU CONDITION
* INDICATOR (TCI)

.- 0- --4 .7' .8 t 15

CONTROL ATC s:

.CONTROLiPANEL,,,
'"" " "''"""' 'DATAKEYS

..o.

TMU INPUT
-.REGISTER (TRI)

63 .

63

• TMU DATA ' ..
COMPARATOR (TDC)'

63

f32V ' ' : - . Y321

' TMU OUTPUT
REGISTER (TRO)

TMU CONDITION
CONTROL (TCC)

63

SETTABLE CU
REGISTERS ' •

READABLE CU
REGISTERS'

Figure 5-1. Test Maintenance Unit

5-2

Data written into the TMU is in the form of instructions to be executed; that

is, address, variants, and data are all included within the contents of the

instruction word. In some cases, the instruction may simply be routed

through the TMU for subsequent execution in ADVAST or FINST.

The DC initiates the data write operation by addressing the desired GU. The

TMU will not accept the data until it has completed any operations that are

currently in progress. When the TMU is, or becomes "not busy", access

is granted to the DC; whichthen reads the instruction into the command

register (TCR). At this time, the TMU "busy" flag is set and remains set

• until that portion of the instruction execution, sequence involving the TMU is

completed. Next, the TMU requests access to the instruction look-ahead (ILA)

section of the CU for further instruction processing. Before proceeding, how-

ever, the/contents of the ADVAST instruction timer are copied into a holding

register to permit the CU to return to its current status following execution of

the TMU command. The instruction timer is then reset and execution of the

instruction held in the TCR proceeds. Following completion of the instruction,

the ADVAST instruction timer is restored to its original status and the CU re-

sumes operation at the place where it was interrupted. Should the repeat

latch be set, the instruction in TCR will be repeated before the timer is re-

stored.

WORD FORMATS

All data transmitted from the B6700 system to the TMU is via the TMU command

register (TCR) in the form of a TMU command. The information content of a

command'word, which is 48 bits long, is shown in the upper format on the next

page. Words that are accessed from the TMU by the B6700 are also 48 bits in

length. These words comprise the content of the TMU condition indicator

register (TCI) and either the left or right 32 bits of the TMU output register

(TRO). The format of an output word is shown on the lower portion of the next

page. - - •''' •'" - / •

5-3

TMU INSTRUCTION WORD FORMAT

TMU
COMMAND ADDRESS .1

' DATA

' D A T A ' ' •

0 ' 7.8:,.. ,. • <5 16 17 • • ' . 22 23 . . ^ '." •

, ,. . .Bits ,. . . Field , Function . : . ; - . „ •

' • : : 47

0-7

8-15

16

16-47
or

23-47

TMU Command

Address 1

Comparison 'Selector

Data.

TMU instruction.

Register designation.

Comparison selector (SOC).

Contains a literal value or .
control information.

/ . , . . i V«. . •*•' : i"v . . , . >

INDICATORS
DATA

SOURCE
ADDRESS

, • D A T A . .

0 7 8 1 5 1 6 4 7

Bit Field Function ' ' '

0 Null None (contains zero).

' 1 •' Illegal ' • Illegal TMU instruction or address (this includes

2 TCL Equal' '

3 SOC Interrupt

4 TRO Loaded

5 CU Halted

6,7 Left/Right Half Loaded

8-15 Data Source Address

16-47 Data

illegal instructions or addresses for ADVAST or
FINST via EFA or EFF instructions). See page 2-21.
Illegal CU Addresses.

Set by an SOC command if the comparison result is
true. ' .

SOC interrupt if comparison result matches the
setting of TCC. Comparison may be specified for
either equal or unequal.

Indicates that CU has interrupted the B6700 under
program control. . '

Indicates that CU has come to a halted condition.

Indicates the section of the TRO from which the data
field came. The bit 6,7 configuration has following
significance:

00 - No valid data . •
01 - Right half (TRO 32:32)
10 - Left half (TRO 0:32)
11 7- Left half sent, right waiting . -

Indicates the CU register address from which the
TRO was loaded.

Contains 32 bits of the TRO~as indicated in bit 6 of
this word.

5-4

B6700-TMU COMMUNICATION

The B6700 treats a TMU much like a typewriter inquiry station in that it can

expect inputs from it at undefined intervals and that transmissions to or from

it are issued by descriptors which cause! the exchange of blocks of data. The :

TMU descriptors are processed by the DC. All connected TMUs are acces-

sible either singly or in a group. When the TMUs are accessed as a group, a

block of data may be sent to all TMUs simultaneously — each TMU receiving

every word sent — or a block of data may be exchanged with the TMUs accept-

ing or transmitting a word of the data block in round-rob in fashion.

From the DC there is only one 48-bit data path to all connected TMUs and

thus only-one information transfer at a time is possible. Each TMU has its

own set of control lines connecting it with the DC. By using these lines a

TMU can cause an interrupt signal to be sent to the -B6700. The DC maybe

interrupted for any of the following reasons:

1. If the.CU detects an illegal instruction or address as received
from the DC (TCI 01) .

2. If a data comparison made in the TMU produces the desired
result (TCI 03) . - '

3. If the TRO has been loaded with data that must be sent to the
B6700 controlling program, such data having been loaded
under program control, presumably the executive. TCI 04 is
not set in response to branch trace.

4. If the CU has halted owing to an ADVAST halt instruction, CU
stalled, breakpoint reached, an interrupt while ACR(Ol) is set,
or a result of certain TMU instructions.(TCI 05).

5. If a CU interrupt is attempted while ACR 01 is set (error interrupt).

5-5

Upon the occurrence of an interrupt, the TMU'will expect the issuance of a

read command by the B6700 controlling program* requesting additional in-

formation regarding the reason for the. interrupt. For example, the control-

ling program might .have to examine the contents, of certain CU registers as,

for instance, the A IN, , in order to ascertain the full significance of the inter-

rupt. However, although the read is expected, the TMU is not dependent

upon.it and will function in the normal manner, without.its issuance.

Table 5-1. Address Codes for CU Registers. 1 ,

Octal
Code

oool
to '

077)
100
101
102
103
104
105
140
141
142
143
144
145
146

• ' - 1 4 7
151
152
153
154
155

Register
Mnemonic

ADB2

: Aco2

AC12

AC2'2 ' • • ' - :
ACS2

ICR
IIA2

'ACR
ADC
AIN2

AIR2

ALR
AMR2

AWR
AFR
MCO 2.
M C I 2

- 'MC2 2

PEM5

TRI2

. , Octal
Code

156
157
200
201
202

- , ' 203 ':-
204
205:
206
207
210
211
212
213
214
215
216
217
220

' 221
222

' 2 2 3

Register
Mnemonic

•" TRO2 i -
, ACU

ADV2'-3

FIN2 '3 •
ILA2- 3

'•- •• Msu2"3' , ' ; '
TMU3

FRO
FR1
FR2
FR3
FR4
FCC. - : . ,•
FDQ2

. . FIQ2

FIR
. '-FOR

FLP
'FEZ "• ' "
FRP
FTC
FOQ

Octal
Code

'.224:. .
, 225
226
230
231

• - 232 '
233

< 234 .
235

' 236
240. .
241

< • - > 2 4 2 > • ,
243
244
245

. 2"M) -
251^-
252

. - • :253 , -
.254 .

'" 255

Register
Mnemonic

FRR
FRT
FPS4

IAR
IBL

. ICT'
IRT
ISR
IWR
IWL

. MTA
MTB

- MTC
MA"
MSR
IBR
TCC2

TCI
TCR
TIT (AIT)2

FDR
FQR

registers are accessible via SOC and SOD instructions, except FPS.
2Register has write capability via set-transmit instructions (SAT, SLT, SRT).
3Not.a physical register, that is, storage, elements included in this .category

are distributed throughout the major functional area noted.
4Register FPS has write capability (via set-transmit instructions) but is

not accessible for read operations.
5PEM represents the AD VAST receivers ARE.

5-6

• The .DC uses the control lines to select a TMU and to request the TMU to

perform one of three functions as follows: ,

• '1. Accept 48 bits of data into its TCR;

2. Transmit 48 bits of data from its TCI and TRO; or : :

3." Stop all CU functions fand initialize the TMU. • • • ";

The B6700 can send the following descriptors to;the DC for communication

with the TMU(s)..

• • •!.— Read N words from the selected TMU(s); • - - . - . - , , . .

2. Write N words to the selected TMU(s); .' ; :

3. Write each word of a block to the selected TMU(s), ,, .
immediately replacing each word written from B6700
storage with a word (or two words) read from .the TMU(s);

4. Stop the selected TMU(s) and the respective quadrant(s). - '

REGISTER ADDRESS CODES AND ACCESSIBILITY

The CU registers and their address codes which may be -read from the TMU

'are listed in Table 5-1. Registers which may be written into are denoted by.

the superscript "2". . ' '_

OPERATION OF THE TMU

The'TMU-command register (TCR) is always available to accept information
- J - ' . - ' ' ' ;

from the DC unless it has not completed processing the previously received

instruction which may have been received "from the DC the Test

.Maintenance Panel, or th.3 Test Maintenance Display. Execution of a

command will take place from the TCR whenever the ADVAST instruction

register (AIR) is between instructions or when ADVAST clocks are stopped, •

or when the instruction is TIC. which assumes stopped clocks,.

Output from the TMU is not initiated by TCR commands, but is controlled

directly by the .DC It is possible for the DC to execute read commands

5-7

Table 5-2. Bit Configurations of TCC Register and SRT Instruction
Data Field for Diagnostic Usage

Control

Spare

Initiate

Lock ICR

Repeat

TCC Reg.
Bit No.

,' : 0 ,

i

' 2 '

3

SRT Instr.
Data Field Bit

48 .

49

' 5 0

51

•i

Interrupt

Interrupt = -5

52

53

ILA Hold

ILA Lock

MSU Hold

MSU Lock ; .

ADVAST Hold

ADVAST Lock

FINST Hold

FINST Lock

ARRAY Hold

ARRAY Lock .

6
• ' 'T ' ' ' •

8

.9 ' '.: .'

10

11

12

13

14

15

54

' 55

. . 56,

• -. . 57

58

. 59

60

61

62

63.

Function

Used when initializing 'display
memory (Refer, to Automatic
Initialization)

Holds ICR value until bit is reset

Causes next instruction received
to be repeated;'". . • -.7 . , • ,

Causes DC to be interrupted should
an unequal comparison be made by
an SOC instruction • . - • . •

Causes DC .to'toe interrupted should
an equal comparison be made by an
SOC instruction

Temporarily inhibits clock to ILA

Inhibits clock to ILA until restarted
by B6700. . .

Temporarily inhibits clock to MSU

Inhibits clock to MSU until restarted
by B6700

Temporarily inhibits clock tto. ADVAST

Inhibits clock to ADVAST until re-
started by B6700

• ' •• i • •.
Temporarily inhibits clock to FINST

Inhibits clock to FINST until re-
started by B6700 ' • •

: Temporarily inhibits clock to all PEs
in quadrant.••.••. , • -> t '• '• • •
Inhibits clock to all PEs in array.
until bit is reset

5-8

even though the TRO register has not been loaded; this condition will be

flagged in the TCI information that is accessed with each word transferred.

It is not necessary for information to be passed directly from DC into

registers in the other CU subunits, although this is possible; The TMU input.- :

register (TRI).can be loaded with 64 bits of information which is accessible ' •

using the normal ADVAST instruction set. It is also possible to set a maskable

interrupt bit to notify ADVAST that the TRI contains information.

DIAGNOSTIC FEATURES

To facilitate bo'th automatic and manual diagnostic and maintenance activities,

several features have been incorporated in the TMU. The TMU condition

control register (TCC) permits the major sections of the Control Unit, including

ILA, MSU, ADVAST, and FINST, to be decoupled from the rest of the system

to minimize side effects when debugging is in progress. This is accomplished

by setting the Hold or Lock bit for a particular unit using the set-transmit

instructions and specifying the unit. The Lock bit can only be changed by use

of another set-transmit instruction. The Hold bit can be changed by either

another set-transmit instruction or by the logic of the TMU which will tern- '

porarily turn on the clock for the execution of an instruction sent by the DC,

and then turn off the clock. A repeat control is also included. The TCC can

also enable the issuance'of interrupts to the B6700 dependent upon the comparison

between a test value and the value obtained from a CU register. The comparison

is mechanized in the TMU data comparator (TDC), which can be used to set a .

value in the TMU condition indicator register (TCI). It is also possible to

freeze the instruction counter for diagnostic purposes. The TCC is loaded by:

means of a Set Right Transmit (SRT) instruction. Setting the address 1 portion

of the instruction word to the address of the TCC causes the least significant

IB bits of the data field to be loaded into the TCC. The bit configuration is

described in Table 5-2.

5-9

TMU DISPLAY

The TMU display provides the means by which the contents of certain CU

registers, controls,' and data buffer locations may'be monitored. Opera-

tion of the TMU may be accomplished automatically under program control,

or may be done manually using the TMU control panel and keyboard.

Normally, requests for the display of multiple CU registers are handled" :

programmatically, with manual initiations being limited to those required

during detailed debugging or diagnostic operations.
' - . ' • . ' (. - " * . ' ; '

The display will present the contents of all registers established by the

operator or by program control. The updating of display data occurs at
; • ' • . • • i . •-. • • '.

operator request or upon the completion of any instruction causing the CU to
• - . ' - ' • •) • ' , • • . • • " > • • • • • • • :

be left in a new static state. The display capability includes approximately

50 registers, 64 locations.of the ADVAST data buffer (ADB), .any} various

controls dispersed throughout the five major functional are'as of the CU, as

listed in Table 5-1 (page 5-6). Hereinafter no distinction is made

between the types of logical elements displayed, all of them being referred

to as CU registers.

The display logic requests register data from the CU by inserting an instruc-

tion in the TMU's command register (TCR). The instruction is a Scan Out
r . _ _ ' . ' . i v . ; . , , , . . ",- II. ;; I

Data (SOD) with the proper address inserted in TCR 8:8. The display inter-

face card (T-DISP) in the TMU formats the data as required and transfers

it, bit serial, to the display where it is stored in core memory. This data

is then used to refresh the operator's CRT display. Any data available to

the B6700 is also available to the display in this manner.
I • • ' • . ' . - . : • • . . ! , , , i -:

5-10

The CRT screen accommodates a 40-line display of 53 characters per line.

This provides for the display of two full 64-bit registers in octal format on

t h e same line a s follows:

MMMXXXXXXXXXXXXXXXXXXXXXX NNNXXXXXXXXXXXXXXXXXXXXXX

where. "MMM" and "NNN" represent the.mnemonics of the registers being

displayed and "X.. .X" represent the-22. octal characters for each of the

registers. , .
. i- • : • . . : . <"K : ' r-. • '. .., . • > • • . ; . • . • • • • ' . - .- • ' ' . | • '

Provisions are made for a read-back of register address information so that

the operator can at any time check the source of the displayed data. To do

this, he presses the VIEW pushbutton on the control panel. The address

information.is then displayed in,place of the data display. The. presentation

for thetabove 64-bit registers would appear as follows:

MMMOOOOPOPPQOPOPOPODDDCCB NNNOOOOOOOOOOOOOOOODDDCCB

where' MMM and iNNN are the.register' mnemonics as -before, '
DDD, is the octal encoded contents of the address field,
CC is trie octal encoded contents'of the format field,

; B is the .binary/octal control'bit. .

Note that this format contains the same number of characters as the display

it replaces. Zeros appear in the appropriate number of positions to the left

of the leading character of the octal address.

The display will accommodate any mix of allowable register lengths and
• " • • • ; ' . • ; ' • • " . • ' ' ' ' . • • : - . - •

will be in exact multiples of 3-bit groups for octal displays or in the exact
. • : r • . - • • • • ' • • • ' ' ' '

register bit length for binary displays. Further, any mix of binary and
v • ;• • -" . • • ' _ • " . • ' - -e

octal displays is allowed at the same time, at the discretion of the initiator

(programmer or operator). 'The maximum' register length that can be

displayed is 64 bits binary (22 octal'characters) and the minimum length

is 6 bits if the display is binary or 18 bits (6 octal characters) if the display

is octal. Displays for registers having a length shorter than the minimum

will have zeros inserted in the appropriate number of left-hand bit positions.

The leading bit position of the register contents is displayed left-justified

(to the last filler zero if used), the only variations being produced by the

optional formatting characters that may precede register mnemonics.

5-11

The display is free form in that registers are displayed in the same order

in which they are initiated, without regard to size or address. No protection

is afforded against a register being split, such that part of its contents may

be displayed at the end of one line and the remainder at the beginning of the

next. However, the initialization procedure is operable at anytime^ so that

additions or corrections, may be made to the list of displayed registers.

Thus, the operator can, whenever he chooses, insert a Carriage return

before the mnemonic of a split register to eliminate the carry-over.

INITILIZATION

In order to initialize or set up a register for future display, the register

mnemonic must be entered in display memory. To cause the display to be

in binary form instead of the standard octal, the mnemonic is preceded by

a comma. . . •. «

The TMU keyboard utilizes a system of coding such that a three-character

keyboard entry fully defines the CU register to be accessed for a;display

of its contents. For purposes of this display system;, the keyboard tabs

are assigned octal positions in an 8 X 8 matrix such that any two octal num-

bers define a unique position on the keyboard. (See Figure 5-?2.) The first

digit of a two-digit number refers to one of rows 0 through 7 proceeding

from top to bottom of the matrix; the second digit, which defines the position

within a row, refers to one of columns 0 through 7 proceeding from left to

right through the matrix. For example, the octal number "32" would refer

to the tab at the unique position established at the fourth row down, third

column in from the left side.

5-12

0 1

0 -0

8

H

—

Q

SPACE

Y

1

9

-A

I

J

R

/

Z

<2

:*

B

+

K

S

*

.3

•
i

C

•

L

T

]

•

4

' *

D

)

M

U

•

5

(

E

]

N

[

V

6

=

F

0

w

it

7

1

G

%

P

X

Figure 5-2. TMU Display Keyboard Character Set

To init ial ize the TMU display manually, the operator uses the following
procedure:

1. Depress FIELD key;

2. Enter 3-character mnemonic on keyboard (preceding comma optional);

3. Enter any desired formatting (e. g. , space, new line, etc.);

4. Repeat (2) and (3) for each register display desired.

5- 13

The mnemonic will always be displayed ahead of the registe.r contents.; After

the register mnemonic is entered, the display automatically generates the
1 " - ' ' • i ' . • " - " ' '

necessary load signals to signify the end of that register. All data entered
: '. . • ' f -

from the keyboard is stored in memory, as it is typed, after the field identifier.

5-14

TMU INSTRUCTION SET '

This section presents descriptions of the instruction set for the TMU. Each

flow chart.ends with the notation "O.C. ", which signifies "operation com-

plete". This means that the TMU is free to accept a new command from the

DC as soon as the TMU has accomplished its function. Thus, instructions

such as RUN, which requires that processing in the rest of the CU be initiated

in the TMU, are ready for "complete" as soon as the TMU portion of the oper-

ation has been completed. The instruction repertoire for the TMU is pre-

sented below, followed by the instruction descriptions, which appear in the

same order as listed.

Mnemonic
Op Code

EFA

EFF

LICR

LISR

RPT

RUN

SA

SL

SR

SAT

SLT

SRT

SIS

SIV

SOC

SOD

TIC

TOC

WIS

Octal Op Code
TCR 0:8

160

164

041

040

001

020

007

006

005

047

046

045

120

100

Oi l

010

121

002

044

Operation

Execute from ADVAST instruction register

Execute from FINST

Load instruction counter

Load breakpoint register

Repeat latch set (TCC3)

Run

Set all (TRI)

Set left (TRI)

Set right (TRI)

Set all transmit (TRI)

Set left transmit (TRI)

Set right transmit (TRI)

Single step

Set to initialize value

Scan out compare

Scan out data

Trigger I clocks

Timing oscillator connect

Write instruction storage

5-15

MNEMONIC CODE: EFA

OPERATION,:.... Execute from ADVAST Instruction Register

TCR:

160 PE OR ADVAST INSTRUCTION

16

DESCRIPTION: The instruction contained in the data field is sent to the
ADVAST instruction register (AIR) in the CU from where it is executed. The
CU stops when processing of the instruction has been completed at all
applicable CU subunits. Parity is not checked on the instruction. The instruc-
tion assumes that 'ADVAST and FINST are not locked, and fur ther , that the MSU
is neither held nor locked if a mernor\ operat ion or PE index ing i:s
required by the executed ins t ruc t ion (TCC'8, 9, 11, and 13 are /eros).
If bit 8 is t rue , a single clock opt ion is invoked. All clocks are shut
off a f te r ADVAST receives the X2 control to start the i n s t r u c u o t i and
the T M U . w a l l e x i t , leaving .those clocks off . I f the ADVAST ' i n s t r u c t i o n
is LIT, it will not complete. If. the ADVAST in s t ruc t i on is BIN or LOAD
with an ADB. address, -it wi l l complete only upon The execut ion of the
next AD,YAST. instruct ion, whether called for by EFA or otherwise.

FLOW CHART: See next page'.

5-16

ENABLE CLOCKS TO
ADVAST AND FINST

(0—

TCR 16:32—»• AIR 0:32

NO/TCR = 8
V ?

YES

EXECUTE THE INSTRUCTION
IN AIR COMPLETELY

HOLD CLOCKS FROM
ADVAST AND FINST

(1—»• TCC10.12)

(IS \ YES
REPEAT SET ?)—-

(TCC3 =

NO

5-17

MNEMONIC CODE: EF.F •,

OPERATION: Execute from FINST

TCR:

164

-ADDRESS:

FIQ .
7 8

DESCRIPTION: As soon as :the queue is not full, the FINST instruction is
transferred from the TCR to'the FJNST instruction queue. : The FINST data
queue is loaded with a '64-bit value which-is taken from the Test/Maintenance
Panel data keys or the input register (TRI). Address 1 being "one" specifies
the TRI and being "zero" specifies the data keys. This instruction assumes
that FINST is not' locked and' that the MSU is neither held nor locked if a
memory operation is required by. the FINST instruction (TCC8, 9, and 13
are zeros).

If TCR 8 is set, the contents of TRI will be sent to the data queue (FDQ)
and TCR 16 to 47 will be sent to the instruction queue (FIQ). If TCR 8 is not set.
the Data Switches will be sent to the data queue (FDQ) and the TCR switches 16
to 47 will be sent to the instruction queue (FIQ). "

If the instruction is a STORE the first (relative) queue position will be Tilled as
above. The next instruction'queue will be filled with zeros. The accompanying
data queue will be filled with the contents of TRO.

Data destined for the instruction queue should be formatted the same as if it
were to be preprocessed by advast. The instruction will be packed into twelve
bits at AGF. Note that any advast preprocessing, such as indexing, will not
be done.

FT.vOW CHART: -See next page."

5-18

ENABLE CLOCKS
TO FINST (0—^TCC 12);

FINST INSTRUCTION
—*• FIQ

I
TRI 0:64

YES

TRO-
o-

•FDQ
.FIQ

T C R 8 = 1 ?

NO

DATA KEYS 0:64 > FDQ

FINST EXECUTES.
INSTRUCTIONS

FROM THE '
QUEUE .

I
YES FIRST PASS A

STORE
^INSTRUCTION?

NO

NO
HAS FINST
EXECUTED

ALL QUEUED.

\.INSTRUCT.IONSV;

YES

REPEAT\
SET? \-

V(TCC 3 = 1 ?) i /

NO

YES

HOLD CLOCKS FROM FINST
(1—^TCC 12)

5-19

MNEMONIC CODE: LICR

OPERATION: Load Instruction Counter (ICR)

ICR:

041 INSTRUCTION ADDRESS

DESCRIPTION: The low order 25 hits of the TCR are transferred into the
instruction counter (ICR) . Subsequent instructions will he fe tched and
executed beginning with this address value. ;

FLOW CHART:

LICR

TCR 23:25—+>ICR 0:25

IS \YES

]REPEAT SET
(TCC3--1) ? /

NO

5-20

MNEMONIC CODE: LISR

OPERATION: Load Breakpoint Register (ISR)

TCR:

040 BREAKPOINT ADDRESS

DESCRIPTION: The low order 25 bits of the TCR are transferred into the
breakpoint register (ISR). Should the contents of the instruction counter
register (ICR) become equal to the contents of the ISR while the CU is run-
ning, the CU will come to an orderly halt as though an ADVAST halt instruc-
tion had been executed. The instruction at the breakpoint address will not be
executed and TCI 5 will be set which will cause an interrupt to be sent to the
B6700.

FLOW CHART:

TCR 23:25— ̂ ISR

•j

0:25

1

IS
REPEAT SET

(TCC3-1) ?

YES

NO

5-21

MNEMONIC CODE: RPT

OPERATION: Repeat

TCR:

001
7 8

DESCRIPTION: The TMU will repeat the next instruction indefinitely.
The iteration will end whenever a quadrant disable is received or TCC3 .
is reset, or when the desired comparison is made on an SOC instruction.

After each iteration of a repeated instruction, a check is made to deter- .
mine if the I/O has generated a request to the TMU. If so, the TMU will
answer the request.

FLOW CHART:

SET REPEAT LATCH
(1—TCC3)

5-22

MNEMONIC CODE: RUN

OPERATION: Run

TCR:

DESCRIPTION: ' Thfe CU begins processing instructions starting at the"
location specified by the instruction counter (ICR). The CU will continue

execute instructions until it recognizes any of the conditions that will
use it to stop or 'halt, (including breakpoint). ' '

to
cause

FLOW CHART:

BEGIN EXECUTING INSTRUCTIONS.
AT THE ICR ADDRESS"

5-23

MNEMONIC CODE: SA, SL, SR

OPERATION: Set All, Set Left, Set Right (Set TRI)

TCR:

SA

SL

SR,

007

006

005

DATA

DATA

DATA

DESCRIPTION: The contents of the data fieldfare duplicated into both
halves of the TMU input register (TRI), or replace the high-order or low-
order 32 bits of this register, depending upon the operation code of SA, •
SL, or SR respectively.

NOTE: If the TRI is loaded and not read, this instruction will be treated as
an illegal instruction. •

FLOW CHART:

SET TRI

OP CODE = SL ?
.NO

YES

TCR 16:32 —** TRI 0:32

-W OP CODE = SA ?
NO

'(SR)
YES

TCR 16:32—*> TRI 0:32

TCR 16:32 TRI 32:32

5-24

MNEMONIC CODE: SAT, SLT, SRT

OPERATION: Set All Transmit, Set Left Transmit, Set Right Transmit
(Set TRI Transmit)

TCR:

SAT

SLT

SRT

047
0 7

046
0 7

045

ADDRESS 1
a i:

ADDRESS 1
8 19

ADDRESS 1

DATA
16 47

DATA
16 47

DATA

DESCRIPTION: The contents of the data field are duplicated into both .
halves of the TMU input register (TRI), or replace the high-order or low-
order 32 bits of this register, depending upon the operation code of SAT,
SLT, or SRT respectively. The contents of TRI are then transferred to
the register addressed by the address 1 field. If this field specified TRI,
then no data is moved and the "TRI loaded" bit in the ADVAST interrupt
register (AIN 15:1) is set.

FLOW CHART:

SET TRI TRANSMIT

I
OP CODE = SLT ?

NO

-W OP CODE = SAT ?
NO

(SRT)
YES

TCR 16:32 TRI 0:32

YES

TCR 16:32 TRI 32:32 TCR 16:32 —>-TRI 32:32

(ADDRESS 1 = TRI ?

ES

NO
TRI 0:64 -^REG(ADDRESS1) 0:64

I YE

SET TRI LOADED
BIT IN ADVAST INTERRUPT

REGISTER (AIN 15:1)

5-25

MNEMONIC CODE: SIS

OPERATION: Single Step

TCR:

120

DESCRIPTION: The non-overlap mode is set. The CU executes the
instruction"addressed by the instruction counter (ICR) and stops when the
instruction has been,processed at all applicable CU subunits.

FLOW CHART:

EXECUTE ONE INSTRUCTION
COMPLETELY AND STOP

5-26

MNEMONIC CODE: SIV

OPERATION: Set to Initialized Value

TCR:

100 DATA

DESCRIPTION: The registers or controls indicated in the data field are
caused to be set to their machine idle state. In general, counting and in-
dicator registers are reset (to zero) by this operation. Any combination
of accessible registers and controls may be initialized by this instruction.
A "one" in the corresponding bit positions of the data field will cause the
following registers to be initialized:

TCR Bit

47

46

* 45

44

43

42

41

Register

TCI

TCC

MCO

MCI, MC2

MSU Controls -

IAM Presence Bits

ILA Controls

FLP

FRP

FIR

FINST Controls

Initialized Value

Zero (except indicators TC.l 0:8)

Zero

Own quadrant bit set, all others
reset ,

High order bit set, all others
reset

Idle state

Vacant

Idle state

Bit 0 set, all others reset

Bit 0 set, all others reset

Zero

Idle state

5-27

TCR Bit Register Initialized Value

40 FCC Zero

FTC ' Zero

FOG Zero

39 AIT Zero

ADVAST CONTROLS Initial State
ADC Zero

ALR Zero

• : ACR (arid other (See table below)
controls) .

38 AIN, AMR , Zero

37 ACO, 1,2,3 Interrupt Index value — ACO
0 - AC1, 2, 3

36 TKO, TRI Zero - TRI ' !.:

One - TRO

#
Performed only if quadrant is disabled or if in "Local" operation.

The SIV instruction is executed under program control via the TMU. The

symbols in the table below have the following meaning: '

NC - bit remains unchanged

S - set bit . .

R - reset bit •

A C R B i t , . ' . = '
Number SIV * ' .

; : ' - . ' . ' . . 0 NC ' • " _ ' •

1 R =

3 R

4 NC

5 R

6 NC

7 NC

5-28

ACR Bit
Number

8

9

10

11

12

. 1S

14

15

SIV

R

NC

.NC

NC

R

S (NC for the interrupt SIV instruction)

R

R

FLOW CHART:

i

YES

INITIALIZE
TCR(36:12)

I
QUAD \ j,

DISABLED OR
LOCAL?

NO

INITIALIZE
TCR(36:8)
TCR<46:2)

5-29

MNEMONIC CODE: SOC

OPERATION: Scan Out Compare

TCR:

Oil ADDRESS 1 CS

7 8 15 16

DESCRIPTION: Nothing happens until, the ILA has relinquished control to the
TMU. Then, if the TRO is already loaded for transmission, the instruction
is bypassed. If the TRO is not already loaded, the contents of the register
specified by the ADDRESS1 field are sent to the comparator (VALUE!). At
the same time if the CS bit equals "one", the contents of TRI are sent to the
comparator (VALUE2); if the CS bit equals "zero", the Test Maintenance Panel
data switch configuration is sent to the comparator (VALUE2). If VALUE 1
equals VALUE2, the TCL EQUAL BIT is set in the test condition indicator
register (TCI2). Further, if VALUE 1 equals VALUE2, and the "interrupt
DC on equal bit"(TCC5) is set, or, if VALUE! does not equal VALUE2, and
the "interrupt DC on unequal bit"(TCC4) is set, then the following steps are
taken:

(a) The TRO is loaded with the contents of the register specified
byADDRESSl;

(b) Bits 8 through 15 of the TCI register are loaded with the
address of the register specified byADDRESSl;

(c) The "left half loaded"(TCI6) and "right half loaded"(TCI7)
bits are set in TCI; and

(d) TCI3 is set, causing the DC to recognize an interrupt from
the TMU.

FLOW CHART: See next page.

5-30

soc

YES
TRO

LOADED

NO

REG(ADDRESS 1)
— COMPARATOR

. (VALUE 1)

YES i CS^BIT , , INC..

TRI 0:64
COMPARATOR
. (VALUE 2) •• .

1 —TCI 2:1
(TCL EQUAL

BIT)

TCC5 =1?
(INTERRUPT

DC ON
EQUAL ?)

NO

-*T*-

/
VALUE liO:6H4

V NO
VALUE2.0.:64 /7

9

YES'

p.cW-

DATA SWITCHES
— COMPARATOR

(VALUE 2,)-- . ..

TCC4 = 1 ?
((INTERRUPT

DC ON
UNEQUAL)?

NO

YES

REG(ADDRESS1)° :64

'— TRO 0:64
ADDR

— TCI 8:8

1—TCI 6:1.
(LEFT HALF LOADED) '

1—TCI 7:1
(RIGHT HALF LOADED)

1—TCI 3:1
(INTERRUPT CDC)

5-31

MNEMONIC CODE: SOD

OPERATION: Scan Out Data

TCR:

010 ADDRESS 1

7 8

DESCRIPTION: Nothing happens "until the ILA has relinquished control to
the TMU. Then if the test output register (TRO) is already loaded for trans-
mission the instruction is bypassed. If the TRO is not loaded, its contents
are replaced by the contents of the register specified by the address 1 field.
Bits 8 through 15 of the test condition indicator (TCI) are loaded with the
address of the register' specified in address 1 and the "left half loaded" a.nd
"right half loaded" bits are set. All other TCI bits are left unaltered.

FLOW CHART:

ADDRESS 1
1 - •*•
1 — »•

— +- TCI 8:8
TCI 7:1
TCI 6:1

5-32

MNEMONIC CODE: TIC

OPERATION: Trigger I Clocks

TCR:

121 ADDRESS 1

7 8

DESCRIPTION: All enabled stations are advanced through the number of
clock pulses given in the address 1 field. . .

FLOW CHART:

EXECUTE THE NUMBER OF
CLOCK PULSES GIVEN IN ADDRESS 1

5-33

MNEMONIC CODE: TOC

OPERATION: Timing Oscillator Connect

TCR:

ADDRESS 1

002

DESCRIPTION: • This instruction,selects..one- of two-frequencies., that-,con;- ̂ .-- • . / • •
trol the ,speed at which the ILLIAC IV;.,quadrant wilLoperate.-- The -frequency -•-
is specified in the high order bit of address 1. If this bit is "one", th.e;-quadrant
will operate at one-sixteenth the normal frequency. All instructions'or oper-
ations within the CU subsequent to the issuance of this, instruction wil;l;be per-
formed at the selected frequency.

FLOW CHART:

SELECT THE CLOCK FREQUENCY
SPECIFIED IN ADDRESS 1 ;

5-34

MNEMONIC CODE: WIS

OPERATION: Write Instruction Storage

TCR:

044 ADDRESS 1 DATA

27

DESCRIPTION: The contents of the TRI are transferred to the instruction
storage word specified in the address 1 field. The 21-bit data field is trans-
ferred to the associative memory in the instruction lookahead unit (ILA) into
the word specified by the address 1 field (three high-order bits) arid the
"present" bit set in the word. The address 1 field (bits 10-15) are defined
as follows:

Bits 10-12 = Block

Bits 13-15 = Word in block .

Bits 10-12 define one of eight blocks in IWS, and bits 13-15 define one of eight
words within the block. The 21-bit data field corresponds to the array ad-
dress (less the three PUC bits) from which the ILA unit will assume that
the instruction was fetched.

FLOW CHART:

TRI 0:64 —ifr INSTRUCTION STORAGE(ADDRESS1j 0:64

TCR 27:21 —»» ASSOCIATIVE MEMORY WORD(TCR 1Q.6) 1:21

1 —»• ASSOCIATIVE MEMORY WORD 0:1

5-3.5

SECTION VI

INSTRUCTION TIMING

In addition to the obvious parallelism of the array computer, there is

parallelism (overlap) in ILLIAC IV between consecutive instructions in the

instruction stream. Four significant mechanisms for achieving overlap are:

a. Parallelism between ADVAST and FINST, which are operating on
different instructions in nearby portions of the instruction stream;

b. Parallelism between automatic hardware actions which are called
upon to complete certain instructions, and the execution of sub-
sequent instructions; and

c. Parallelism between noninterfering portions of successive FINST/PE
instructions.

d. Parallelism between MSU operations and non-interfering
FINST/PE instructions which use common data paths.

The first and primary source of overlap is the execution of instructions at

two relatively independent stations, ADVAST and FINST. An instruction

queue, FINQ; exists between these two stations to smooth the flow of instruc-

tions through both stations.

The second source of overlap is the completion, in ADVAST, of certain in-

structions after the start of subsequent instructions. An example is the ADVAST

instruction, BIN. After ADVAST has initiated the memory access of BIN, the

instruction is sent on to FINST (and the MSU) to be completed while ADVAST

processes subsequent instructions. Only if ADVAST needs to use the data

which have not yet been fetched by BIN, will ADVAST become idle while

waiting for the data. Thus, the access time from ADVAST to memory, which

6-1

FIR

FIAR

BUSY-BIT
DECODE

I

I

BUSY-BIT
REGISTERS

FOR

i
FOAR

Figure 6-1. FINST Overlap Structure

6-2

is long compared to the ADVAST clock cycle time, is overlapped with other

ADVAST operations. Another example, is arithmetic overflow in the PE.

When an arithmetic overflow occurs, it takes time for?' the fault bit to reach

the CU and cause an interrupt. .'However, the PE does not wait" for the

interrupt to occur before starting to execute the next instruction. Therefore,

the FINST/PE ADD instruction is not quite finished while the next instruction

in the PE is being executed. . ,

The third source of overlap is provided by two .execution stations within FINST.

These stations are called the early, or overlap ("O")' station, and the late, or

instruction execution ("I") station. Each station contains a register, FOR or

FIR respectively for the two stations, which receives the next instruction

from the instruction queue, FINQ, and examines the instruction to determine

when it is time to start the instruction execution. The actual execution of the

instruction is carried out from a second register, FOAR or FIAR respectively.

The "A" in their designation indicates that these registers serve as the address

register for the microprogram storage at FINST. The two stations receive

their inputs from neighboring slots of the instruction queue, FINQ. The

stations also share a-:group of "busy bit registers'" which record the parts of

the PE that are needed by unexecuted instructions in the instruction station.

This mechanism is shown in Figure 6-1.

The fourth source of overlap is the interlacing of operations over common

data paths by the MSU and FINST. The common data .paths consist of the

signal buses between.the CU and the MLU, and between registers of the MLU.

For instance, ;the MSU could be executing a number of memory operations

while FINST Was exe'cuting instructions which do not require memory,accesses.

In any calculations of execution time of an instruction stream, the individual

mechanisms for achieving overlap, which appear reasonable and straight-

forward by themselves, cause great difficulty when taken collectively. There-

fore, a listing of instruction execution times must of necessity be qualified

6-3

with statements of conditions to the extent that the time savings accruing from

the compound overlap of ILLIAC IV will be incorporated. An algorithm for

the approximate timing of ILLIAC programs is to divide the program into

sections, each section having consistency in the ratio of ADVAST to FINST/PE

instructions. Then, determine for each section whether the ADVAST or

FINST/PE time is longer, and sum the longer times of each section. .

Some exceptions to this simplified algorithm should be; noted. SomeHnstructions

require a variable amount of time depending upon some variant such as the

address field. For example, STL(MCO) will require more time for execution

than STL(ADB) because the effect of MCO on FINST/PE instructions must be; '

waited for before the actual change is' made.. Similarly, shifts of zero length

require less time than shifts of any other length. Also, additional time is taken

by the fetching of instructions. Each block of instructions fetched (see Section I,

Fetching the Program) requires a time equal to the time of a BIN instruction, assuming

these fetches are not delayed by higher priority memory requests (see Section

III, ILLIAC IV Addressing). With regard to FINST/PE instructions, the total

run time at FINST is somewhat'shorter than the sum of the FINST/PE in-

struction times. Operations which occur at the beginning of instructions, and

which are overlapped with the preceding FINST/PE instruction/ are generally

memory fetches, other uses of the common data bus, and register-to-register

transfers. In routing the transfer from source register to RGR is executed

from the overlap station, and the transfer between PE's is executed from the
r

normal execution station. '

Instructions with'their corresponding execution times expressed in clock times

are given in the following tables: ADVAST Instruction Timing, Table 6-1,

and FINST/PE Instruction Timing, Table 6-2". '

' TMU instruction timing has been omitted since the use of TMU instructions
in manual mode precludes the need.

6-4

In Table 6-1, instruction times are given in terms of the number of clock

cycles required to execute the instruction at ADVAST in the CU, and where

applicable, at FINST in the CU, and at the PE. The execution time of a

sequence of ADVAST instructions, at ADVAST, is the sum of the times listed

.in the CU-ADVAST column. The times given in the CU-ADVAST column

:assume single quadrant operation and therefore do not include the time required

for synchronization at the various CU stations in a multiquadrant configuration.

In addition, -the times given in the CU-ADVAST column do not include waits

caused by FINQ being full or memory access time, i.e., LOAD or BIN operations,

if required. Eight ADVAST instructions (BIN, BINX, LOAD, LOADX, LDC,

SETC, STORE, STOREX) require execution time at FINST in the CU and at the

PE in addition to the execution time given in the CU-ADVAST column. These

times are given in the CU-FINST and PE columns and are the same for both

32-bit and 64-bit modes of operation. The BIN or BINX operation requires 36 :

clock times to complete, however, the instruction requires only 2 clock times

at ADVAST before the next instruction, if allowed, can start executing. After

FINST, PE, and memory access times have been expended on BIN or BINX,

an additional 16 clock times at ADVAST are required while the information is

; loaded into ADB. The execution time added by a BIN or BINX in the program

can therefore be either 2 clock times (the delay until the start of the next

instruction), or 18 clock times (the total ADVAST time), or 36 clock times

(the elapsed time from beginning to end), or some intermediate number de-

pending upon the details of the instruction stream at ADVAST, as noted pre- :

viously. In the case of LOAD and LOADX, a similar situation applies, except

that the ADVAST time required by the returning data is only 2 clock times.

In the-case of STORE and STOREX, ADVAST is finished with the instruction

as soon as it passes it on to FINST via FINQ. In the case of LDC and SETC,

'the FINST and PE operations are required to be simultaneous with the ADVAST

operations, so that the instruction cannot start until FINST is finished with

the previous instruction(s). Therefore the minimum (assuming that execution

6-5

time is ADVAST limited) and maximum (depending on the amount of overlap

that can be achieved with other ADVAST instructions) execution times for these

eight instructions are: " " ' '

Minimum Maximum

BIN 19 36

BINX 19 36

LDC 17 17

LOAD 4 20

LOADX 4 ' ' 2 0

SETC 17 17

STORE 4 4

STOREX 4 4

The execution time of the instructions at the PE is not longer than the sum

of the times listed in the CU-FINST and PE columns, and can be less because

of the capability of the PE sequencer to sometimes overlap noninterfering

portions of successive instructions, resulting in the FINST time being masked.

In Table 6-2, instruction times are given in terms of the number of clock

times required to execute the instruction at the PE. All FINST/PE instruc-

tions require one clock time for execution in ADVAST or two clock times if

ACAR indexing is required. Also, any time FINST becomes idle, two clock

times must be added to the next FINST/PE instruction. Except for waits caused

by an idle FINST, or memory access if required, the execution time of a sequence

of FINST/PE instructions is no longer than the times listed in the appropriate

PE mode columns. The times given are those appropriate for the operand

being found in the RGA and/in the RGB or RGR as is appropriate to the

instruction. When a second operand is required and is not found in the RGB

or RGR, a memory access time of seven clock times or a literal or register

transfer of one clock time must be added. Examples of minimum (overlap)

6-6

and maximum (no overlap) execution times, assuming no memory access

or register transfer is required, 64-bit mode of operation, and subject to

other conditions given in Table 6-2, for several FINST/PE instructions are:

Minimum Maximum

ADD , - 1 2

SUB 1 2

M L 8 9

DVM 52 53

6-7

Table 6-1. ADVAST Instruction Timing

Mnemonic
Code

A LIT

BIN

BINX

CACRB

CADD

CAND

CCB

CEXOR

CLC

COM PC

COPY

COR

CRB

CROTL

CROTR

CSB

CSHL

CSHR

CSUB

CTSBF

CTSBT

DUPI

DUPO

EXCHL

. EXEC

FINQ

HALT

INCRXC

INK

JUMP

LDC

LDL

LEADO

LEADZ

LIT

LOAD

LOADX

Operation

Add literal to address field of ACAR

Block fetch from PE memory to ADB

Block fetch (RGX-indexed) from PE memory to ADB

Set/ Reset nth bit in ADVAST control register.

Add local memory to ACAR

Logical AND of local memory and ACAR

Complement nth bit of ACAR

Logical exclusive OR of local memory and ACAR

Clear ACAR

Complement ACAR

Copy ACAR

Logical OR of local memory and ACAR

Reset n*h bit in ACAR

Rotate ACAR left (end around)

Rotate ACAR right (end around)

Set nth bit in ACAR

Shift ACAR left (end off)

Shift ACAR right (end off)

Subtract local memory from ACAR

Skip if nth bit in ACAR is not "one"

Skip if n'h bit in ACAR is "one"

Duplicate inner-half of ADB memory word

Duplicate outer-half of ADB memory word

Exchange local operand and ACAR

Execute

Stop ADVAST until FINST is idle

CU comes to orderly idle state
Modify index field of ACAR by increment field of
same ACAR
Return to normal processing after interrupt

Jump to address in ADR field

Transfer specified PE register to ACAR

Load from local address

Find leading "one" in ACAR

Find leading "zero" in ACAR

Store next 64 bits in ACAR -

Word fetch from PE memory to CU local memory

Word fetch (RGX-indexed) from PE memory to
CU local memory

Clock Times
CU

ADVAST

2

18

18

2

3

3.'

6

3

2

2

4

3

6

3

3

6

3

3

3

4

4

3

3

3

4

2

2

3

20

2

17

3

5

5

4

4

4

FINST

2

2

2

2

2

PE*

1

1

1

1

1

Sync
Req'd

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Notes

a, b, c

a, b, c

d

e

e

e

e

e

e

e

g,h'

g,h

i.O

j

k

k, 1

b, k, 1, m, n

g

k, m, f

1

a, b, c, i, o,t

a, b, c, i, o, t

' PE clock times are the same for 32-bit or 64-bit mode of operation.

6-8

Table 6-1. ADVAST Instruction Timing (Cont.)

Mnemonic
Code

ORAC

SETC

SKIP

SLIT

STL

STORE

STOREX

TCCW

TCW

Test-Skip

EQLX-
-TA,-T,-FA,-F

GRTR-
-TA,-T,-FA,-F

LESS-
-TA,-T,-FA,-F

ONES-
-TA,-T,-FA,-F

ONEX-
-TA,-T,-PA,-F

SKIP-
-TA,-T,-FA,-F

TXE-
-TA,-T,-FA,-F

TXE-
-TAM,-TM,-FAM,-FM

TXG-
-TA,-T,-FA,-F

TXG-
- TA M,- TM,- F AM,- FM

TXL-
-TA,-T,-FA,-F

TXL-
-TAM,- TM,- FAM,- FM

ZER-
-TA,-T,-FA,-F

ZERX-
-TA,-T, -FA.-F

WAIT

TIO

Operation

Inclusive-OR of operand in ACAR of all
CUs executing the instruction ' •
Specified mode bit from PEs to ACAR

Skip forward/backward

Replace address field of ACAR

Store ACAR in local address ,

Store from local address into specified PE location

Store from local address into specified PE
location (RGX-indexed)

Transmit ACAR counterclockwise (to next lower
numbered CU)

Transmit ACAR clockwise (to next higher
numbered CU)

Test and skip conditionally:"""

Skip if ACAR 40:24 equal operand 40:24

Skip if ACAR 40:24 are greater than operand 40:24

Skip if ACAR 40:24 are .less than operand 40:24

Skip if ACAR 0:64 are all "ones"

Skip if ACAR 40:24 are all "ones"

Skip dependent upon CU true/false flip-flop

Skip if ACAR 40:24 equal bits 16:24 in local memory

Skip if ACAR 40:24 equal bits 16:24 (also, 40:24
are modified by 1:15) of same ACAR

Skip if ACAR 40:24 are greater than bits 16:24
in local memory

Skip if ACAR 40:24 are greater than bits 16:24
(also, 40:24 are modified by 1:15) of same A C A R

Skip if ACAR 40:24 are less than bits 16:24 in the
local memory

Skip if ACAR 40:24 are less than, bits 16:24
(also, 40:24 are modified by 1:15) of same ACAR

11 M

n ,1

Synchronize all CUs in array or join all
CUs specified by ..ADR 4:4

Send descriptor to I/O

Clock Times

CU

ADVAST

2

17

4

2

3

4

4

2

2

'wmm
6
9

6
9

6
9

4
7

4
7

2
5

5
8

6
8

5
8

6
8

5
8

6
8

4
7

4
7

2
5

4

FINST

14 .

3

3

mm

*
PE

14

3

3

9

Sync
Req'd

Yes

Yes

Yes

'mm,
Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

. Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes

Notes

k, f

g.h

o

c, p

c, p

'mm,
q
g. r

q
g. r

q
g. r

q
g. r

q
g. r

q.
g. <•

q
g. f
q
g, r

a
g. r

q
g. r

q
g. r

q
g. r

q
g. r

q
g. r

s

u

PE clock times are the same for 32-bit or 64-bit mode of operation.

Variants of the Test-Skip instruction sample the condition of the true-false

Variant ' Meaning Variant

F
FA
FM

FAM

Any false
All false
Any false, magnitude of modifier

only
All false, magnitude of modifier

only

T
TA
TM

TAM
6-9

(TF) flip-flops, as follows:

Meaning

Any true
All true
Any true, magnitude of modifier

only
All true, magnitude of modifier

only

Table 6-1. ADVAST Instruction Timing (Cont.)

NOTES

a. The words of ADB which are to be loaded by this instruction cannot be
referenced for the next 36 clock times (22 for the case of LOAD). Any
ADVAST instruction which references them before this time will cause
ADVAST to hang up until the fetched copy of the word has arrived in ADB.

b. CU-FINST time includes four clock times for sync.

c. CU-FINST clock times given for this instruction may be masked by over-
lap operation.

d. If CACRB13 is resetting ACR13, nine clock times are required.

e. Clock times given are for the normal case. For the^NOOP case, two clock
times are required.

f. The clock times required for FINST and PE execution are concurrent with
ADVAST time.

g. Clock times given are for the case of no jump. Four additional clock
times are required if there is a jump and the block is present. If the
block is not present, an instruction fetch time of approximately 36 clock
times is required.

h. Plus one clock time if ILA adder is busy. -

i. For MC's, one additional clock time is required.

j. Plus time for execution of instruction after it is loaded into AIR.

k. Plus time required for FINST to become idle.

1. Six clock times (minimum) required for ILA to complete Look-Ahead,
if necessary.

m. ADVAST time given assumes no wait for memory access.

n. Clock times given are for the case of ACR01 set. If ACR01 is not set,
two clock times are required.

o. If MCO, MC2, note"k" applies. If ICR, note "g" applies. If MCO, MCI,
note "1" applies.

p. Clock times given include time for a memory access. .

q. Test failed.

r. Test successful.

s. The special option WAIT requires additional time for JOIN in multi-
quadrant mode of operation.

6-10

Table 6-2. FINST/PE Instruction Timing

Program
Mnemonic

Code

AD

ADA

ADM

ADMA

ADN

ADNA

ADR

ADRA

ADRN

ADRNA

ADB

ADD

ADEX

ASB

Boolean Operations:

AND

ANDN

EOR

EQV

NAND

NANDN

NOR

NORN

OR

ORN

Change RGA Bit.

CAB

CHSA

R A B

SAB

SAN

SAP

CLRA

COM PA

Operation

Add (ADR) to RGA. Variants are:

Suffix Meaning

A Unsigned

M Fixed point

N Normalized floating

R Rounded

Add (ADR) to RGA in 8-bit bytes

Add 64-bit unsigned fixed-point numbers (ADR) to RGA

Add (ADR) exponent field(s) to RGA exponents

Place the sign(s) of RGA into the sign(s) of RGB

Place the result of the specified logical function of RGA
with (ADR) into RGA:

Logical AND of RGA with (ADR)

Logical AND of RGA with complement of (ADR)

Logical EXCLUSIVE-OR of RGA with (ADR)

Logical EQUIVALENCE of RGA with (ADR)

Logical AND of complement of RGA with (ADR)

Logical AND of complement of RGA with complement
of (ADR)

Logical OR of complement of RGA with (ADR)

Logical OR of complement of RGA with complement
of (ADR)

Logical OR of RGA with (ADR)

Logical OR of RGA with complement of (ADR)

Perform the indicated operation on the specified RGA
bit:

Complement bit(s) in RGA

Change sign bit(s) in RGA

Reset bit(s) in RGA

Set bit(s) in RGA

Set sign bit(s) in RGA

Reset sign bif(s) in RGA

Clear RGA

Complement RGA

PE
Clock Times

32-
Bit

Mode

6

6

5

5

6

6

10

10

10

10

1

1

1

. 1

1

1

1

1

1

1

2

2

2

2

•
3

3

3

3

3

3

1

1

64-
Bit

Mode

4

4

3

3

5

5

6

6

7

7

1

1

1

1

«
1

1

1

1

1

1

2

2

2

2

•
2

2

2

2

2

2

1

1

Notes

a

a

a

a

a

a

6-11

Table 6-2. FINST/PE Instruction Timing (Cont.)

Program •
Mnemonic

Code

DV

DVA

DVM

DVMA

DVN

DVNA

DVR

DVRA

DVRM

DVRMA

DVRN

DVRNA

EAD

ESB

GB

(I |J) A (GIL)

IAG

• IAL

JAG

JAL

UU) B

IB

ISN

• JB

JSN

. (I l J X L l M X E l G l L)

ILE

ILG

ILL

IME

Operation

Divide RGA and RGB, double-length mantissa, by
(ADR). Variants are:

Suffix . Meaning

A • Unsigned

M Fixed point

N Normalized

R Rounded

Recover extended precision after floating-point add

Recover extended precision after floating-point sub-
tract

Test for RGA greater than (ADR) in 8-bit bytes.

RGA arithmetic test to mode bit (for 32-bit mode,
result also goes to G or to H):

Place result of test for RGA arithmetically
greater than (ADR) into I (and G)

Place result of test for RGA arithmetically less
than (ADR) into I (and G)

Place result of test for RGA arithmetically great-
er than (ADR) into ,1 (and H)

Place result of test for RGA arithmetically less
than (ADR) into J (and H)

Move RGA bit to mode bit:

Transfer RGA bit(s) to I (and G)

Transfer RGA sign(s) to I (and G)

Transfer RGA bit(s) to J (and H)

. Transfer. RGA sign(s) to J (and H)

RGA logical test to mode bit (for 32-bit mode, results
go to I and G or to J and H):

Place result of test for RGA logically equal to
(ADR) into I

Place result of test for RGA logically greater
than (ADR) into I

Place result of test for RGA logically le'ss than
(ADR) into I . . .

Place result of test for ? • ••• mantissa1 logically
equal to (ADR) mantissa into I •

PE
Clock Times

32-Bil
Mode

65

65

63

63

68

68

66

66

64

64

69

69

13

13

2nn
6

6

6

6

mm
5

5

5

5

ffff
2

2

2

2

64-Bit
Mode

53

53

52

52

55

55

54

54

53

53

56

56

13

13

2m
3

3

3

3

^^3̂

3

3

3m.i
i
i
i

Notes

%%^M%%M.
a

a

a

a

6-12

Table 6-2. FINST/PE Instruction Timing (Cont.)

Program
Mnemonic

Code

IMG

. IML

JLE

JLG

JLL .

JME

JMG

JML

(I |J)(LlM)(0|Z)

ILO

ILZ

IMO

IMZ

JLO

JLZ

JMO

JMZ

(I l J K S l X X E I G l L)

ISE

ISG

ISL

rxE

IXG

tXL

- - - . . - •

Place result of test for RGA mantissa logically
greater than (ADR) mantissa into I-

Place result of test for RGA mantissa logically
less than (ADR) mantissa into I

Place result of test for RGA logically equal to
(ADR) into J

Place result of test for RGA logically greater
than (ADR) into J

Place result of test for RGA logically less than
(ADR) into J

Place result of test for RGA mantissa logically
equal to (ADR) mantissa into J

Place result of test for RGA mantissa logically
greater than (ADR) mantissa into J

Place result of test for RGA mantissa logically
less than (ADR) mantissa into J

RGA zeros or ones test to mode bit (for 32-bit mode,
results also go into G or H):

Place result of test for RGA logically equal to
all "ones" into I

Place result of test for RGA logically equal to
zero into I

Place result of test for RGA mantissa logically
equal to all "ones" into I

Place result of test for RGA mantissa logically
equal to zero into I

Place result of test for RGA logically equal to
all "ones" into J

Place result of test for RGA logically equal to
zero into J

' " Place result of test for" RGA mantissa logically
equal to all "ones" into J

Place result of test for RGA mantissa logically
equal to zero into J

Index test to mode bit:

Place result of test for (RGS) arithmetically
equal to (ADR) into I

Place result of test for (RGS) arithmetically
greater than (ADR) into I

Place result of test for (RGS) arithmetically
, " less than (ADR) into I

Place result of test for (RGX) arithmetically
equal to (ADR) into I

Place result of test for (RGX) arithmetically
'greater than (ADR) into I

Place result of test for (RGX) arithmetically
less than (ADR) into I

PE
Clock Times

32-Bit
Mode

2

2

2

2

2

2

2

2

m
2 ;

2

2

2

2

2

2

2

HH
1

•1

1

1

1

1

64-Bit
Mode

- 1

1

1

1

1

1

1

1

•
1

i

_i

i

i

i

i

i

'mm,i
i
i
i

• i
i

Notes

•

....

W^MXfa

6-13

Table 6-2. FINST/PE Instruction Timing (Cont.)

Program
Mnemonic

Code

.TSE

.TSG ' , .

JSL

,TXE

JXG

JXL

(I | J) XGI
;ixc.r

JXGI ,

(I | J) XLD ;

- IXLD ;

. •-' - . . T. .--

JXLD .

LB ,

LEX :

ML)

.MLA

,M.LM., ,.... > .

. MLMA , .

MLN ...

MLNA . . ' .

MLR '_

.MLRA

MLRM

MLRMA

M L R N

MLRNA

Operation . • .

- -,.„ • . -Place'result of tesVfor (RGS) 'arithmetically
equal to (ADR) into J

Place result of test for (RGS) arithmetically
greater than (ADR) into .T '

" Place result of test for (RGS) arithmetically
"' '' less than '(ADR) into' J "'' ''' ''

Place result of test for (RGX) arithmetically . -.
equal to (ADR) into J

. .Place result of test for (RGX) arithmetically
greater than (ADR) into J

Place result of test for (RGX) arithmetically
less than (ADR) into J

- Index add overflow to mode bit:

Add (ADR) 48:16 to RGX; store overflow in
< mode register bit I

' • .- • *„• -° . - • ' . . ' - - . . • !•• • •• • •'_ . -"

•'• ' Add (ADR) 48':16'to RGX; store oveVflow in
mode register b i t J . - - - . - •

' Index subtract' underflow" to mode bit: • . "

- • f 1 ? - ••• Subtract ('ADR) 48:16 from RGX; -store comple-
... 4 ... ment, of overflow in, I . . „ ._,

Subtract (ADR) 48:16'from RGXi store comple-
. ment of overflow. in J ,, . . ,. ' •" . ,...'

: Test for RGA less than (ADR) in 8 -bit bytes

'. Load RGA exponerit(s) from (ADR) exponent(s)

, Multiply RGA by (ADR). Variants are:

Suffix ' ' . Meaning

") ' , . . • . A.,''. ., .. , Unsigned^ ' - f

. . ^ M Fixed point '

' . . . t NT Normalized

i ' - R Rounded • '-

. . - ' , . .

'

Mode, Register' Instructions: . Load mode register, bit from ACAR • • , • > •

• . , LDE -.- .

-• . . * LDE1 . -.

LDEE1 '

LDG.

LDH

LDI

LD.J

Set mode register bit with 'result of • . '•
logical function specified in instruction

: address field.

PE
Clock Times

32-Bit
Mode

1

1

1

, 1

1

1

HHH
1

1

" " 1 •

" ' ' i . . . '

2 :. .
", -1

•10

I'D

! io
10

10

10

10

10

10

10

10

10

. 1 -.
-.1' '•
' 1 ' '
1
1
1
1

04-Bit
Mode

• r '

i

i

i

i

i

mm.i
i

mm,• \-
i

-2 . . .

1

R

. 8

.... 8 . .

8

9

9

8

8

8

8

9

9

iHH
- , . ! . - -

• 1

1

1

1

1

1

Notes

• : . . • • • • •

. f

'

1 ' '

-

•6-14

Table 6-2. FINST/PE Instruction Timing (Cont.)

Program

Code

SETE

SETE1

SETF

SETF1

SETG

SETH

SETI

SETJ

MULT

NEB

NORM

OFB

RT (G|L)

RTG

RTL

SB

SBA

SBM

SBMA

SEN

SBNA

SBR

SBRA
SBRN

SBRNA

SBB

SBEX

SCM

Set mode register bit with result of logical
function specified in instruction address field

For 32 -bit mode, both halves enabled, multiply
RGA by ADR contents; leave inner double-
length product mantissa in RGA, outer in RGB

Test for RGA not equal to (ADR) in 8-bit bytes

Normalize

Overflow bits of previous 8 -bit byte instruction are
transmitted from RGC to RGB

Route:

Transmit register (Y) of every PE to RGR of PE
number (N+D) modulo a, where Y .= a specified
PE register, N = initial PE no. , D = routing dis-
tance, and a= number of PEs in array (64/128/256)

Same as above, except single quadrant (a = 64)

Subtract (ADR) from RGA. Variants are:

Suffix Meaning

A Unsigned

M Fixed point

N Normalized

R Rounded

Subtract (ADR) from RGA in 8 -bit bytes

. Subtract exponent(s) of (ADR) from RGA exponent(s)

Execute one cycle of a multiplication

F
Clock

32 -Bit
Mode

1

I

\

\

1

1

1

1

12

3

3

1

a*
5

3

6

6

5

5

6

6

10

10

10

10

1

1

2

E
Times

64- Bit
Mode

1

1

1

1

1

1

1

1

12

3

2

1

Wm
5

3

4

4

3

3

5

5

6

6
7

7

1

1

2

Notes

b

b

6-15

Table 6-2. FINST/PE Instruction Timing (Cont.)

Program
Mnemonic

Code

Shift Instructions:

RTAL

RTAR

SHABL

SHABR

SHABML

SUABMR

SHAL

SI TAR

SHAML

SIIAMR

STA

STB

STR

STS

STX

SUB

SWAP

SWA PA

SWAPX

TCY

TCYS

TCYX

T3A

Transmit Instructions:

LDA

LDB

LDD

LDR

LDS

LDX

XD

XI

Shift: ' .

Variant Meaning

SH I RT .Shift 1 rotate

A| AB R O A l RGA + RGB
(single I double)

_|M Full register | mantissa

LlR ' Left 1 right

Store from RGA to memory

Store from RGB to memory

Store from RGR to memory

Store from RGS to memory '• • .

Store from RGX to memory .

Subtract 64-bit unsigned fixed point number (ADR)
from RGA

Interchange (RGA) and (RGB)

Interchange the inner and outer operands in RGA

Interchange the outer operand of RGA and the inner
operand of RGB

Transfer data from GDB to MAR

Add RGS to CDB and store in MAR

Add RGX to CDB and store in MAR

Transfer contents of C register <RGC) to RGA

Transmit source data to register indicated in op
code. (Source is specified in hits 13:3 and 16:1-6.)

Transmit to RGA

Transmit to RGB

Transmit to RGD

Transmit to RGR

Transmit to RGS

Transmit to RGX

Subtract (ADR) 48:16 from RGX -

Add (ADR) 48:16 to RGX

PE
Clock Times

32-Bit
Mode

WM
2

2

3

3
3

3

3
3

2

2

1

1

1

1

1

1

1

2

2

1

1

1

3

'9,ii
9

1

1

1

1

1

64-Bit
Mode

WAi
i
4

' | 4

: 4

' 4 .

1
1

1

1.

r .
i
i
i
i ..
i

i
2

•>

1

1

• 1

3

W^mmi
i
9

1

1

1

1

1

' Notes

a

a

c . . .

c

c

c

a i
a

a

a .

a

a

a

•

NOTES

a. If overlap does not occur, one (1) additional clock time is required in both the 32-bit and 64-bit modes.
b. Routing times given are for D equal to plus or minus 1 or plus or minus 8.. For other D's, the

times are either 1 + 4N (for RTG) or 1 + 2X (for RTL) where X is the number of elementary shifts
of distance eight and one required to make up the specified distance D.

c. Double length shifts are executed out of the Finst overlap station, and can therefore possibly overlap a preceding
instruction, but cannot be overlapped with a following instruction.

6-16

CONTENTS

I/O SUBSYSTEM TIMING 7-1

Obtaining a Descriptor . 7-2
CU Response to Descriptor 7-3
Loading Descriptors into Queuer 7-4
Response Time of Disk to Descriptor Found inQueuer 7-5
Data Transfer Rates from Disk to Array 7-6
Data Transfer Rates from BIOM to Array 7-6
Data Transfer Rates Between B6700 and BIOM ... 7-7

B6700 PERIPHERAL DEVICE TIMING . 7-7

SECTION VII

PERIPHERAL TIMING

I/O SUBSYSTEM TIMING

The I/O subsystem receives and passes on control actions from one portion of

the ILLIAC IV system to another. It also passes data from one portion to

another in response to controls.

Each action in the I/O subsystem is initiated by transmitting a command from

the B6700 to the I/O subsystem. This command causes the fetching of a

descriptor from memory. One of a number of things may happen in response

to a descriptor, as follows:

1. A disk descriptor is written into the disk queuer, from which

it is executed. An option is that a "list" of descriptors can

be loaded into the queuer, or several lists, interlaced in the

same block of memory space, in response to a single

"initiate I/O" command.

2. A descriptor to read or write to the CU will cause action to

take place between the I/O subsystem and the TMU portion

of the CU.

3. A transfer from BIOM to array memory may take place.

7-1

Timing information therefore consists of: ' . •

(a) The time to get a descriptor from ;the B6700 into the I/O

subsystem;

(b) The time for the CU to respond to the descriptor, if a

CU descriptor;

(c) The time to load descriptors into the queuer, if a disk

descriptor;

(d) The time for the disk system to respond to a descriptor

which is contained in the queuer; ' •

(e) Data transfer rates for disk to array;

(f) Data transfer rates for BIOM to array; and

(g) Data transfer rates for B6700 loading BIOM.

From the above, the time for I/O subsystem response can be determined since

the total time for any one such response is the sum of the appropriate times

listed above. A discussion of the individual time components follows.

OBTAINING A DESCRIPTOR

An "initiate I/O" command is held on the scan bus until the I/O subsystem

responds to the B6700. Therefore, the scan bus is tied up, after the beginning

of the operation, for twice the cable delay (which is constrained to be less than

one clock time in each direction, or 200 nanoseconds maximum) plus the time

for logic in the I/O subsystem. \ Following the scan bus operation, two .

(sometimes one) memory cycles are required to fetch the descriptor. At

1. 2 microseconds per memory cycle, 0. 2-microsecond response on the .

scan bus, and 0. 1-microsecond for logic, the total time required for fetching

the descriptor to the I/O subsystem is 2. 7 microseconds.

7-2

CU RESPONSE TO DESCRIPTOR

Descriptors controlling the interaction with the CU are of four types:

Read CU: This descriptor causes a word, obtained from the CU,

to be inserted into B6700 memory;

Write CU: This descriptor causes a word obtained from B6700

memory to be inserted into the designated register in the CU;

Scan CU: This descriptor .causes a word obtained from B6700

memory to be inserted into the control register in the CU, and

a word obtained from the CU in response to those controls to be

inserted back into the B6700 memory at the same location (a

"double length" variation on the scan retrieves two words from

the CU for each word of control information sent to the CU);

Stop CU: This is the "quadrant disable" descriptor, which issues

a stop command to the CU, and retrieves nothing.

The read, write, and scan CU descriptors all operate in a "handshaking" mode,

so that cable delays, regardless of the length of cable, are waited out. . Fur-

ther, no synchronism between CU and I/O is required, each being treated as

though it were asynchronous with the other; each signal passed back and forth

across this interface is resynchronized.

"Read" requires, as a result of the above, two cycles (200 nanoseconds) of

I/O clock and two cycles (100 nanoseconds) of CU clock, plus twice the cable

delay from I/O to CU (300 nanoseconds if 100 feet), plus the time for TMU

operations, 'plus the time for the memory cycled. 2 microseconds) in the

B6700. The TMU time is seven CU clocks if no action internal to the CU is

taking place, therefore, the total "read" time takes slightly more than 2

microseconds.

7-3

"Write" requires the same steps as "read". However, "write" will result in.'

an instruction being inserted into the TMU's control register (TCR). This . :

instruction niust -await an opportunity to be executed (in general, just before '•

ILA passes the next instruction to ADVAST if the clocks are running, although

there is no wait if the quadrant is in single-step mode for debugging), and the

instruction will then take time of its own for execution in TMU. A typical ' ;

TMU instruction (LICR, LISR, SA, SL, SR, SOC, SOD, TIC, and TOG) is

estimated to be five clocks long in the execution phase, although this varies.

Therefore "write" takes about 2. 5 microseconds plus the time that the TMU is

waiting to get control of the CU.

"Scan" is divided in the I/O into separate write and read commands, taking

4.6 or 6.6 microseconds depending on whether the read is single or double.

"Stop", or quadrant disable, requires only a one-way cable delay, plus the
^ ' • . ' . • '" •""• , ' ' . - , ' ' • ' v

; - . • ' '

TMU time needed to recognize the command, or about 0.400 microsecond.

LOADING DESCRIPTORS INTO QUEUER

The queuer action is divided into scan cycles; a scan cycle being the time it

takes to scan all possible queuer contents for transactions which refer to a

single storage unit. If there are *'S" sto'rage units in the system, there will be

no more than "S" scan cycles before the first storage unit is scanned once

again. A storage unit for which there is no descriptor in the queuer does not

get a scan cycle.

A scan cycle, for the i**1 storage unit, takes 0. 2 + 0.4 D. microseconds when

there are D. descriptors stored in the queuer for the i storage unit. At the

end of any one scan cycle, one word, if descriptors are waiting to be loaded,

is fetched from memory and inserted into the queuer. The memory access

time of the next word allows the next scan cycle to start. The worst-case for

7-4

loading descriptors into the queuer occurs when there is only one storage unit,

say j, having valid descriptors, and D. is large. Then each scan.cycle takes
J

0.2 + 0, 4D. microseconds, and each two-word descriptor takes two scan
J

cycles to be loaded into the queuer. There are 24 slots in the queuer. One

descriptor can be loaded when D. is as high as 23, or one descriptor can take
J

as long as 18. 8 microseconds. A list of 24 descriptors, all destined for the

same storage unit, can take as long.as 249. 6 microseconds to be loaded.

The times given above are worst-case maxima. Typical times are much
• ' . . . • ' ' . ; • • .-•}- • • ' • • . .
shorter, but depend on the number of descriptors in the queuer and their

distribution among storage units.

RESPONSE TIME OF DISK TO DESCRIPTOR FOUND. IN QUEUER •

The address is offset from its associated information segment by an amount

dependent on circuit settling time. This offset is estimated at two segment's

worth, or 65.4 microseconds. There will be, therefore, a maximum of 65.4

microseconds between the finding of an address in the queuer and the start of

the associated data segment(s) transfer to or from the disk.
I

A related question is whether there is any possibility that a disk transaction

when due, can somehow be missed, having to wait an unnecessary revolution.

This cannot happen, as shown by the following analysis. . , .

The time that it takes the queuer to go through a complete series of scan

cycles for each storage unit in the system may be expressed as:

T = 0 . 1 N + / ^ (0 .2 + 0 . 4 D .) :

i = 1

Where S = number of storage units present in the system,

N = number of storage units for which no descriptor is found,

D. = number of descriptors in the queuer for the i storage unit.

7-5

The upper limit on D. is given by:

D. < 24
1:

i = 1

since there are only 24 slots in the queuer. For any value o f - N or S up,to the

maximum S of 32, the time T is always less than 19. 1 microseconds. The

addressable segment on each storage unit therefore is compared at least once

with the contents of the queuer, so'there is no1 possibility of waiting a revolu-

tion unnecessarily. Only during an actual transfer which makes the DFC (disk

file controller) busy will disk transactions be passed over. ;

DATA TRANSFER RATES FROM DISK TO ARRAY '•

The time per data segment on the disk is stated to be 32. 7 microseconds per

16,384,-bit segment.. This is one 1024-bit I/O word per 2. 04,microseconds in

either or both of the DFCs, and results in interference to memory of a

maximum of one memory cycle per I/O word.

DATA TRANSFER RATES FROM BIOM TO ARRAY

Data from BIOM to array is transferred through the same channels designed

for use by the disk system. Since these channels are designed to keep ahead

of the disk rate of 2. 04 microseconds per 1024-bit I/O word, and since BIOM

is an on-demand device potentially much faster than the disk, the disk transfer

rate also serves as a lower bound on the transfer rate between the BIOM and

array. More precise estimates of this rate are not fruitful, since the rate

depends on unspecified cable lengths, and on the phase and frequency

relationships between I/O clock and quadrant clock.

7-6 .

DATA TRANSFER RATES BETWEEN B6700 and BIOM • . • ..

To the B6700 the BIOM appears as one of its normal memory modules, as

far as the hardware is concerned. A response time of 1. 2 microseconds is

expected when the B6700 is operating one of its own memory modules from a

single processor or I/O. This time is: also an estimate of the time per

memory -cycle required to load a series of words into the BIOM.

This limit will not usually be the controlling factoj in loading the BIOM.. One

visualizes loading the BIOM from a peripheral device, or creating within it a

file by executing a program. This file .would be written onto the.disk or into ,

the array memory. In one case, the data,rate of the peripheral device will be

the controlling factor; in the other case it'depends on the execution time of

the program. . . ,- -. ,

Loading the BIOM from the B6700 side is not pe'rmitted;when the BIOM is busy

with a disk transfer. ThereUs not sufficient time to inject B6700 cycles

between the BIOM cycles required to keep pace'with the disk.

B6700 PERIPHERAL DEVICE TIMING

Table 7-1 presents a summary of the operating times for several typical

B6700 peripheral devices. More detailed information can be found in the

Burroughs B6700/B7500 Information Processing System Characteristics

Manual.

7-7

Table 7-1,

Unit

B-9111 Card Reader

B-9213 Card Punch

B-9243-1 Line Printer

B-9220 Paper Tape Punch

B-9391 Magnetic Tape Unit

B-9382-4 Magnetic Tape
Cluster

B-9375-10 Disk File

Peripheral Device Timing

Char act eri stic s

800 CPM, 2400 card capacity

300 CPM, 1000 card capacity

1040 lines per minute, 120 print
positions .(.standard)

"v t ... ' , = . " . , . ' • ' ' •" .v~

100 characters,per., second, BCL or
Baudot code' •

7 channels, 800/556/200 BPI,
72/50/18 KB per second

9 channels, 1600 BPI, 72 KB per
second

c>
133 X 10 characters, 23 milliseconds
access time

7-8

APPENDIX A

GLOSSARY

APPENDIX A

GLOSSARY

ACO-3
(ACARs)

ACR

ACU

ADA

ADB

ADC

ADVAST

APR

AIN

ADVAST Accumulator Registers 0-3; Serve as accumu-
lators for all CU operations; as the source of
memory address for ADVAST memory operations (bits
40-63); as the source of the first operand for instruc-
tions requiring two operands; as a local memory location;
as an index register (bits 1-15 are the increment bits,
bits 16-39 are the limit bits, and bits 40-63 are the ad-
dress bits). Bit 0 is the half-word designator for transfers
between ICR or HA.

ADVAST Control Register: A 16-bit register that contains
indicators which may be used to determine the state of
various conditions within the CU.

Absolute CU Number: A hard-wired 4-bit register which
contains the CU number of this CU in logical form, i. e.,
CUO = 1000; GUI = 0100; CU2 = 0010; CU3 = 0001.

PE Address Adder: A 16-bit adder in the PEs used to
generate PE memory addresses and index values.

ADVAST Data Buffer: A 64-word, 64-bit per word
random access memory that is part of local memory.

ADVAST Data Control: An 8-bit register used to control
the loading of local memory.

Advanced Station, CU: Processes all instructions either
completely or transmits them to the final station (FINST) if
they are to be executed by the PUs. Program control
and interrupt handling are accomplished in this station.

ADVAST-to-FINST Instruction Register: A 12-bit register
which contains the instruction which is being transferred to
the FIQ.

ADVAST Interrupt Register: A 16-bit register used to store
the various conditions which will cause the CU to transfer to
the interrupt routine.

A-l

AIR

AIT

ALR.

AMR

APC

Array- ' : ; < • " • ' " •

AWR

BIOM

Broadcast

BSW

CDB

CPA V"

DC

ADVAST Instruction Register: A 32-bit register which re-
ceives instructions from IWS during normal instruction

-execution^ '-' - • ' • ' - • - ••" • ' • ' '• "' •..; '...v'•..'.. "L

ADVAST. Instruction Timer: Generates the proper timing
commands for instruction execution at ADVAST.

ADVAST Local Memory Address ^Register;, An 8-bit-.re-.-.; •-•
. ;gister\used,to store the local memory, address. It receives

the address from the AIR for all instructions that require
access'-'to'PE Memory;' ' , . ; , ' ; . -• .'_;..'.

. , , . ADVAST, Mask .Register; A 16-bit, register, that establishes
which of the bits in AIR will be permitted to cause an in-

.• :• terrupt. ''••:•-' ' ''••' '• "' ' '"\ :--~' : . ' " • " ' • ' • • • - _• - • - ' ' • - ' ' ' „ . . - ' • • ' ' • •

ADVAST Instruction' Parity Checker;. Used to check parity
of the instruction contained in the AIR/ before modification,

.for,,,instructionst-,loa,ded from IWS. ,..= .,, - , • . .

•An array is composed'bf thV'set of;'-PUs that'are being used
in a coordinated manner. The set is specified in the MC
registersy .. ,. ;; .v/n ,-• L . • . • ...,.rf-; - . . ' . ; . • . 5 ; - ' . ..- - -.

ADVAST-to-FINST Data Register: 'A 64^-bit register which
contains data that is being-transferred to the FDQ. >,

: Buffer 'Input -Output Memory: A 1024-word', 128-bit memory
when used by the DC and a 2730-word 48-bit memory when

..used.by the B670Q.system. It functions as a speed differential
buffer between:the.two systems'.',".It's cycle time is 250 nano-

. seconds. fpr.la,r,ead/.restore cycle,for ,12.8-bit .words.

To make-information available to all CUs dr PUs in an
array simultaneously. . . , . . . ,

•-Barrel Switch: "A logic network that accomplishes shifts
of up to 64'bits in'orie clock time. f - '

• • . . . * • •> • • ,> • • • . . -a , i . - • . . - . • • • - - • • ' : . - . - . • • • . • .
Common Data Bus; The set of 64 lines on which addresses,
counts, and data words are broadcast from CUs to PUs.

(, Carry Propagate Adder; A device in which one output is
a sum representation of the quantities represented by its
inputs., The unit is a 64-bit carry propagate adder, par-
titioned into group segments of four bits each. The bit-

" -and group-level! carry signals are propagated.in.parallel •''
: segments to form the adder summed output.

Descriptor Controller, DC; A section of-the !

. IOS /DC. . It contains the.queuer and control registers, .,- , .
and performs descriptor, interpretation'and "generation r.
functions. . . . • : . - , . . ,

A-2 '

cu

Descriptor

DFC

DFDC

1 • TV . . '

Disk, II AP

c'-i

Driver (DR)

EU

FATR

FCC

FCDA
FCDB
FCDC
FCDD

FCE

FCLDA
FCLDB
FCLDC
FCLDD

Control Unit: The CU is composed of the ADVAST, FINST,
ILA, MSU, and TMU subunits. Its functions are to control a
quadrant of 64 PUs directly and to synchronize multiquadrant
operation. •

A block-of •control information exchanged between either a pro-
cessor or memory and its connected input-output controllers.

Disk File Control: Controls data flow between a disk storage
unit (SU) and another memory. It can select among five attached
electronics units (EUs) to which the SUs are connected. ;

Disk File Descriptor Control: That portion of the DC
associated with, and containing the controls for, a
specific DFC.

The bulk storage unit for the ILLIAC IV system. It has an
instantaneous transfer rate of approximately.0. 5 billion bits-
per second. , ,, .. .

\
A circuit capable of transmitting a signal over long distances
through a cable; , . : • . .

Electronics Unit, Disk: Controls the disk units (SU) attached
to it and the packing and unpacking of. data being exchanged
with a disk.unit. .' .""

FINST Address Transmission Register;' These 24 bits of
storage contain the memory addresses for MSU sampling.
Its 'content is updated for every memory reference required
by.the PE instructions processed by FINST. . . . •

FINST Control Counter; This 8-bit counter is used to
control the-repetitions of commands within instructions.
From the decremented contents, of this register are derived
the controls for the routing interconnections in the
cabinet logic. ' '-

FINST Command Drivers; Each group of 260 drivers sends
the PE subcommands from FINST to two PU'cabinets, where
subcommands are distributed'to each PE.' All of these
'drivers receive inputs from the FINST control register.

FINST Compare Equal; This logic compares the values of
the load pointer and .the read pointer to -determine when
the final queue becomes empty or full. Its outputs are
fundamental to the coordination,of FINST and ADVAST.

FINST Cabinet Logic Drivers: • Each of these four groups
of eight drivers sends controls to the cabinet logic for
routing and other MSU uses of the quadrant data paths. One
group of drivers provides signals to two cabinets where they
are distributed to the separate cabinet and PE Logic.

A-3

FCLR

FCR

FOB

FDDA
FDDB
FDDC
FDDD

FDE

FDF
FDH

FDG

FDQO
through
FDQ7

FDR

FDS

FGS

FINST Cabinet Logic Register: This 8-rbit register stores for
both retiming and buffering the six FINST-generated and six
MSU-generated enables (4 are common) to be sent to the
cabinet logic.

FINST Command Register; The first 260 bits of this
register receive inputs from the ROM which are PE sub-
commands to be retimed before being driven from the CU ,.
cabinet. The next 100 bits of FCR retime the internally

'used subcommands generated by the ROM for FINST and
other parts of the CU. The final'eight bits of FCR retime
subcommands generated in the MSU for transmission to
the PE concurrently with related subcommands.

FINST Data Buffer: A 16-bit buffer which provides drive
f o r t h e outputs o f , FDS. " . • • . . ' ' • '

FINST Data Drivers; Each group of 64 drivers sends the
PE data, shift.-amount, or addresses over the common data
bus to two PU-'cabinets, where the bits are distributed to
each PE. All of these drivers receive inputs from the FDR.

FINST Mode Enables; A group of 64 drivers used to
transmit the contents of a selected ACR to the proper mode
bit of each PE in the quadrant. Each bit is sent to a unique
P E . ' • - : ' • ' • ' : ' • • ' ' • . ' - • • -
FINST Data Queue Select Gates: These units select one
of the five or three, respectively, words of.the data queue
for use in. FINST. .

FINST Data Gates; Select the 64-bit parallel word from ;
the preceding gates and eight registers of the data queue
for use in FINST or MSU. :'•' • •

FINST Data Queue: Registers 0 through 7. The queue
stores data in these eight registers of 64 bits each. The :'
data is interpreted by the nature of the instruction to be
literal, address, shift amount, or variant. The queue
is loaded from AWR of ADVAST.

FINST Data Register; This 64-bit register provides
retiming and buffering of the common data bus infor-
mation before it leaves the CU through the data drivers.

FINST Data Selection; Gates for the selection of address
from either. MSU.or the queue as a 24-bit parallel word.
An adder in FDS corrects shift amounts, and other gates
force special shift values onto the common data bus.

A. 5-input operand select gate 64 bits wide used to supply
the TMU with the desired FCR or FDR outputs.

A-4

FGTV,

FIAD

FIAR

FIB

FICL

FID

FIF
FIH

FIGR

FINQ

FINST

FIP

FIQO
through
FIQ7

FIR

A set of multiple input operand select gates arranged to
format into 64-bit words the outputs of important shorter
registers for. display by the TMU.

FINST Instruction Address Decoder; "These gates decode the
instruction into the first (perhaps only) .address for accessing
of the read-only memory.

FINST Instruction Addressing Register; A 12-bit register
which stores all instructions as their first (perhaps only)
address is decoded for accessing of the read-only memory.

FINST Instruction .Buffer; A 12-bit buffer for driving the
output of the instruction,queue to the instruction register.

FINST Instruction Control Logic; These gates participate
in the sequencing of instructions from FIR to the read-only
memory.

FINST Instruction Decoder: Logic for the decoding of the
instruction register for use in developing the particular
subcommands. '

FINST Instruction Queue Select Gates: These units select
.one of four words of the instruction queue for'use in FINST.

FINST Instruction Gating Register; This register contains
one bit for each of the PE instructions executed from the
read-only memory which has more than one clock time.
It is.set to the proper value by the FIAD during the first
step of the instruction and cleared at the end of the instruction.

Final Queue: Eight 80-bit word storage composed of FIQ and
FDQ. It stores instructions and data passed from ADVAST to
FINST before FINST execution. FINST services FINQ on a
first-in first-out basis.

Final Station CU: Accepts partially decoded instructions from
the. ADVAST, converts them into fully converted microsequences,
and broadcasts the microsequences and other data to 64
connected PUs.

FINST Instruction Picker: A set of 12 operand select gates
for selection of one of the TMU, FIF; or FIH inputs to be the
instruction for execution.

FINST Instruction Queue;' Registers 0 through 7. The queue
stores instructions in these eight registers of 12 bits each.
The queue is loaded from AFR to ADVAST.

FINST Instruction Register; A 12-bit register which stores
the output of the instruction queue buffers as the instruction
is being interpreted for execution.

A-5

FISC

FITE

FLP

FOAD

FOAR

FOB

FOCL

FOD

FOGR

FOP

FOR

FOSC

FOTE

FINST Instruction Step Counter; A "set-of latches arranged-
as a shift register for sequencing the steps in a multiple-
step PE instruction.

FINST Instruction Gate Enables; This set of AND gates
selects each word address for the steps of the multiple-step
PE instructions in-accordance with the outputs of FIAR and

, FISC. . , , _ , , . . . - . .

FINST Load Pointer; An 8-bit shift register used to
select the next register of the FIQ and FDQ to be loaded
to.ADVAST. . : \ , , ; , ' . • , . ' ; • • ' • ' * ,

'FINST Overlap Address. Decoder; These gates decode the
'overlap into the first (perhaps'only) address for accessing
of the read-only memory. - •

FINST Overlap.Addressing Register; A 12-bit register
which stores all overlaps as their first (perhaps only)
address is decoded for accessing of the read-only memory.

FINST Overlap Buffers: A set of 12 buffers for driving
.the output of the instruction queue to the overlap register.

FINST Overlap Control Logic; These:<gates participate
in'the sequencing of overlaps from FOR to the read-only
memory. • • . • . , . . .

FINST Overlap Decoder: Logic for the decoding of the
overlap register for use in developing the particular
subcommands. ' ' ' • - • • '

FINST Overlap Gating Register; This register contains
one bit for each type of overlap executed from the read-
only memory which has more than one clock time. It is
set to the proper value by the FOAD during the first step
of the overlap-and cleared at the-end of the overlap.

FINST Overlap Picker; A set of 12 operand select gates
for selection of one of the TMU, FIF, or FIH inputs to be
the overlap for execution.

FINST Overlap Register; A 12 -bit register which stores
the output of the overlap buffers as the overlap is being
interpreted,for execution. . . ' " . . • . .

FINST Overlap Step Counter: A set of latches arranged
as,a shift register for sequencing the steps in a multiple-
step overlap. ' .

FINST Overlap Gate Enables: 'This set of AND gates
selects each word address for the steps of the multiple-
step overlaps in accordance with the outputs of FOGR and
FOSC. ' ' ' ' ' - - ' - • ^ • -

A-6

FRCL ...

FROM
• 7' i ' •

'; •

FRP

FRR

IAM

ICR

IIA

ILA

FINST Route Control Logic:' This logic generates the six cabinet
logic-control signals needed, to arrange the quadrant data paths
for the ROUTE instruction. . • . , -. . - • . . ; •

FINST Read Only Memory;- A -transistor matrix memory of 720 r-
words.and.360 bit's."; Each word is a-~step of a PE instruction;
each bit is a PE or ;FINST..subcommand._-.-._

FINST Read Pointer; An 8-bit shift register used to select the
next register of the FIQ, and FDQ to be, read. by. FINST.

FINST'Route Register; Ah 8-bit register used to store the route
distances derived from the address field of the'data queue.

ILA..Associative Memory: A contentraddressable memory which,
. contains eight 21-bit .block addresses'of the, words stored in the

IWS. Associated with each.of, the .eight addresses is a "present"
bit (IAMP) which is set when the first word of a block of in-

! " . . , • < • • , _ ' . , i '

structioris is'stored in.IWS. Note that.it is not'.necessary to' '
'clear the eight locations on ah IWS clear Operation; it is suffi-
cient to clear the lAMPs and use'their 'status to establish if
the address .stored,.in IAM is,valid; •. -t • • ,. • . • ' , - ,

ILA Instruction'Counter:' 'A 25-bit registeVwhich contains a
: bi.na-ry number ;representing..the address of the.,instruction pre-
.. sently under execution by A'DVAS.T... -The bin'a'ry number is

interpreted by the configuration control logic.to determine the
absolute memory address of the instruction.

ILA Interrupt Address: 'A 25-bit register used.to identify the
location of the next program instruction in the interrupted pro-
gram. It is also used as a base for storing pertinent information
which is necessary to return to'the noninterrupt program at the
completion of the interrupt program.

- Instruction Look-ahead Unit, CU: A subunit of the Control Unit
that maintains a queue of up.to 128 instructions for the ADVAST
unit. It contains an associative memory (IAM), the instruction
counter (ICR), and a 64-word-bit instruction' store (IWS).

IOS ' Input Output Switch:'. A buffer between the DC unit and the
' ILLLAC IV memory. It blocks'256 words from the DC into

1024-bit words for ILLIAC IV memory and the reverse.

I/O Word The package of information transmitted to or from IOS from
•'•' or to PEM during a single'memory cycle. Initially, this

is 1024 bits.

IWS .' ILA'Instruction Word Storage; ' A 4096-bit memory of 64 X
, 64-bit word's sectioned into ieight-wor'd blocks. The in-

structions are fetched from memory arid s.tored in IWS in
512-bit blocks. ' '

A-7

List

LOD

LOG

Mantissa

MAR

MCO.JMC1.
MC2

MDG

MLU

MPX

MSG

MSU

OSG

PAT

In this manual, a sequence .'of I/O descriptors which can be
initiated by a single command from'the B6700 processor.

Leading Ones.Detector; A set of logic used to generate a
shift count that indicates the bit distance between the high-
order "one" bit and the high-order position of a word. ...

Logic Unit: : A set of logic'that performs logical operations
(such as NOT, A'ND, and OR) on operands

As used in this manual, the fractional portion of a number in
floating-point representation. . :

Memory Address Register, PE; A 16-bit register that
holds an effective, address used to read or write a word in
P E Memory. ' . ' . ' .

MSU Configuration Control Registers;. Three 4-bit registers
used to determine which CUs are in the array for a particu-
lar operation. .MCO is the array size register; MCI controls
program fetches and establishes (relative to MCO) the lo-
cation of the stored program; MC2 is used to control
instruction execution.

Multiplier Decoder Gates, PE; Generate the weight values,
used by the multiplicand select gates (MSG) for the multiply

. algorithm. . . . ,:

'••'•Memory Logic-Unit: A set of logic and registers that controls
all memory accesses to its associated Processing Element
Memory.

Multiplexor, B6700: The unit that controls the operation
of a B6700 input-output exchange.

Multiplicand Select Gates, PE; Generate subproduct inputs
that are used in mechanizing the multiply algorithm.

Memory Service Unit, CU; A subunit of the Control Unit
that resolves memory request conflicts and converts binary
addresses into array addresses by'using the configuration
control logic (see MCO, MCI, MC2).

Operand Select Gates: A set of logic that selects one of sev-
eral inputs for transmission to another stage of logic or a
register.

Pseudo-adder- Tree; Receives five 56-bit input word signals
in parallel to three carry-save adders (CSA). The pseudo-
adder tree inputs are reduced to sum and carry outputs,
which are in turn added again until the input words are re-
duced to a single pseudo-adder tree sum and carry output. '
Implementation of this process requires three CSAs per
bit position. ' .

A-8

PE

PEM

PEM

PU

PUC

Queue r

Receiver
(RCVR)

Result
Descriptor

RGA

RGB

RGC

RGD

RGR

Processing Element; A set of registers .and combinational
logic which is capable of executing a large complement of
externally decoded instructions. Each PE can communi-
cate directly with its orthogonal neighboring PE and has
access to its own PE Memory.

Processing Element Memory; Contains 2048-word 64-
bit per word memory which may be accessed from either
its associated PE or the IOS. Its cycle time is approxi-
mately 250 nanoseconds.

The register of PE memory error latches (address 154
on p. 5-6).

Processing Unit; A pluggable unit containing one PE,
one MLU, and one PEM.

Processing Unit Cabinet: Holds eight PUs and contains
their power supplies and other common circuitry.

An associative storage unit in the DC that stores disk
type descriptors from the B6700 and services them in
such a way as to minimize disk rotation access latency.

A circuit capable of detecting signals transmitted over
long distances through cables.

A word of information prepared at the end of the execution of
an I/O descriptor and passed back to the B6700 via the
scan bus.

PE Register A; A 64-bit register in which the result of
an arithmetic or logic operation is formed. The register
is operative only when a PE status is enabled.

PE Register B: A 64-bit register in which second oper-
ands are stored for arithmetic or logic operations..

i PE Register C: A 64-bit register in which carries are
stored for later propagation. Its contents may be accessed
by the OFB instruction.

PE Register D (Mode Register): Provides intermediate
storape;between a PE and its CU. The unit is an 8-bit
register in which a result may be formed by signals ob-
tained locally from executed instructions or remotely
from the CU. Decoded register bit positions form outputs
which specify a PE's status (operative or inoperative),
arithmetic overflow, instruction test results, and the
logic level of a specified bit.

PE Register R: A 64-bit register which provides inter-
mediate storage during instruction execution. The
register is accessible even though the PE's mode status
is disabled.

A-9

RGS

RGX

Scan Cycle

Scan Bus

SU

TCC

TCI

TCR

TDC

TMP

TMU

TRI

TRO

Word Bus

PE Register S; A 64-bit register in which intermediate
results obtained during PE processing are stored. The
register is operative only when a PE status is enabled.

PE Register X; A 16-bit register whose content is added
to an operand address or literal field prior to or during
the execution of an instruction.

The time required by the queuer to search its own contents
for all descriptors pertaining to a single storage unit.

A bus linking all elements of the B6700 and the DC, used by
the B6700 processor to initiate I/O operations, and used by
the I/O controllers to pass result descriptors back to the
processor.

Storage Unit, Disk; A module of disk storage containing
20 million, 8-bit bytes of data.

TMU Condition Control Register;' A 9-bit register that
exercises control over operation of the CU subunits.

- . ' . - • ""• ' ' '.' : '": - . ' •• . ' - !• , I « :

TMU Condition Indicator Register: A 16-bit register that
describes the content of the TRO register.

TMU Command Register; A 48-bit register that receives
its input from the TMP or the B6700 from which the data
is interpreted as instructions.

TMU Data Comparator; A 64-bit comparator which may
be used to compare test values with CU register contents.

Test Maintenance Panel, TMU: A set of indicators,
switches, and controls which can be manually operated
to control the operation of the CU.

Test Maintenance Unit, CU: A subunit of the Control Unit.
It can be used to communicate with the B6700 via the DC
and to exercise control over an ILLIAC IV quadrant.

TMU Input Register; A 64-bit register that may.be used
to hold data words sent from the B6700 until required by
other sections of the CU.

TMU Output Register; A 64-bit register which may be
used as a temporary storage register by the ADVAST in-
struction set or as a holding register for data words being
sent to the B6700.

A port of the B6700 I/O multiplexer which allows access to
B6500 memory via the multiplexer's path to memory. Used
for DC access to the B6700's memory.

A-10

APPENDIX B

INSTRUCTION INDEX

ADVAST INSTRUCTION INDEX

Mnemonic
Code

A LIT
BIN
BINX
CACRB
CADD
CAND
CCB
CEXOR
CLC .
COMPC
COPY
COR
CRB
CROTL
CROTR
CSB
CSHL
CSHR
CSUB
CTSBF •
CTSBT
DUPI
DUPO
EQLXF
EQLXFA
EQLXT
EQLXTA
EXCHL
EXEC
FINQ
GRTRF
GRTRFA
GRTRT
GRTRTA
HALT

Octal
Code

16XX
0610
0611
0001
0402
0410
1101
0407
0005
0006
0204
0411
0207
0015
0017
0013
0014
0016
0403
1102
1100
0401
0400
1417
1416
1415
1414
0406
0004

• 0010
1503
1502
1501
1500
0000

Ref.
Page

3-12
3-13
3-13
3-15
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3r32

3-32
3-34
3-35
3-64
3-64
3-64
3-64
3-36
3-38
3-39
3-65'
3-65
3-65
3-65
3-40

Mnemonic
Code

INCRXC
INR
JUMP
LDC
LDL
LEADO
LEADZ
LESSF
LESSFA
LESST
LESSTA
LIT
LOAD
LOADX
ONESF
ONESFA
ONEST
ONESTA
ONEXF
ONEXFA
ONE XT
ONE XT A
ORAC
SETC
SKIP
SKIPF
SKIPFA
SKIPT
SKIPTA
SLIT
STL
STORE
STOREX
TCCW
TCW

Octal
Code

0002
0007
17XX
0011
0405
0201
0200
1507
1506
1505
1504
0003
0600
0601
1007
1006
1005
1004
1017
1016
1015
1014
0205
0012
1103
1107
1106
1105
1104
16XX
0404
0602
0603
0203
0202

Ref.
Page

3-41
3-42
3-43
3-44
3-45
3-46
3-46
3-66
3-66
3-66
3-66
3-48
3-49
3-49
3-67
3-67
3-67
3-67
3-68
3-68
3-68
3-68
3-52
3-53
3-54
3-69
3-69
3-69
3-69
3-55
3-56
3-58
3-58
3-60
3-61

Mnemonic
Code

TXEF
TXEFA
TXEFAM
TXEFM
TXET
TXETA
TXETAM
TXETM
TXGF
TXGFA
TXGFAM
TXGFM
TXGT
TXGTA
TXGTAM
TXGTM
TXLF
TXLFA
TXLFAM
TXLFM
TXLT
TXLTA
1XLTAM
TXLTM
WAIT
ZERF
ZERFA
ZERT
ZERTA
ZERXF
ZERXFA
ZERXT
ZERXTA

Octal
Code

1413
1412
1216
1217
1411
1410
1214
1215
1403
1402
1302
1303
1401
1400
1300
1301
1407
1406
1306
1307
1405
1404
1304
1305
0206
1003
1002
1001
1000
1013
1012
1011
1010

Ref.
Page

3-70
3-70
3-71
3-71
3-70
3-70
3-71
3-71
3-72
3-72
3-73
3-73
3-72
3-72
3-73
3-73
3-74
3-74
3-75
3-75
3-74
3-74
3-75
3-75
3-78
3-76
3-76
3-76

• 3-76
3-77
3-77
3-77
3-77

TMU INSTRUCTION INDEX

Mnemonic
Code

EFA
EFF
LICR
LISR
RPT
RUN
SA

Octal
Code

160
164
041
040
001
020
007

Ref.
Page

5-16
5-18
5-20
5-21
5-22
5-23
5-24

Mnemonic
Code

SAT
SIS
SIV
SL
SLT
SOC
SOD

Octal
Code

047
120
100
006
046
Oil
010

Ref.
Page

5-25
5-26
5-27
5-24
5-25
5-30
5-32

Mnemonic
Code

SR
SRT
TIC
TOC
WIS

Octal
Code

005
045
121
002
044

V
Ref.
Page

5-24
5-25
5-33
5-34
5-35

B-l

FINST/PE INSTRUCTION INDEX

Mnemonic
Code

AD
ADA
ADB
ADD
ADEX
ADM
ADMA
ADN
ADNA
ADR
ADRA
ADRN
ADRNA
AND
ANDN
ASB

CAB
CHS A
CLRA
COMPA
DV
DVA
DVM
DVMA
DVN
DVNA
DVR
DVRA
DVRM
D'VRMA
DVRN
DVRNA
BAD
EOR
EQV
ESB
GB
IAG
IAL
IB
ILE
ILG
ILL
ILO
ILZ
IME
IMG
IML
IMO
IMZ
ISE
,ISG
ISL
ISN
IXE
IXG
IXGI

Octal
Code

3504
3505
2606
2604
2500
3414
3415
3404
3405
3506
3507
3406
3407
2704
2706
2507

3700
3700
2411
2211
3304
3305
3214
3215
3204
3205.
3306
3307
3216
3217
3206
3207
2010
2505
2504
2410
2106
3714
3716
3502
3516
3314
3316
3310
3312

• 3514
3114
3116
3110
3112
2512
2112
2312
3502
2510
2110
2710

Ref.
Page

4-17
4-17
4-22
4-23
4-24
4-17
4-17
4-17
4-17
4-17
4-17
4^17
4-17
4-27
4-27
4-26

4-33
4-35
4-39
4-40
4-41
4-41
4-41
4-41
4-41
4-41
4-41
4-41
4-41
4-41
4-41
4-41
4-45
4-29
4-30
4-48
4-50
4-52
4-52
4-54
4-55
4-55
4-55
4-57
4-57
4-55
4-55
4-55 \
4-57
4-47
4-59
4-59
4-59
4-54
4-59
4-5S
4-61

Mnemonic
Code

IXL
IXLD
JAG
JAL
JB
JLE
JLG
JLL
JLO
JLZ
JME
JMG
JML
JMO
JMZ
JSE
JSG
JSL
JSN
JXE
JXG
JXGI
JXL
JXLD
LB
LDA
LDB
LDD
LDE
LDE1
LDEE1
LOG
LDH
LDI
LDJ
LDR

LDS
LDX
LEX
ML
MLA
MLM
MLMA
MLN
MLNA
MLR
MLRA
MLRM
MLRMA
MLRN
MLRNA
MULT
NAND
NANDN
NEB
NOR
NORM

Octal
Code

2310
2712
3715
3717-
3503
3517
3315
3317
3311
3313
3515
3115
3117
3111
3113
2513
2113
2313
3503
2511
2111
2711
2311
2713
2107
2617
2700
2212
2114
2115
2116 .
2314
2315
2316
2317
2701

2702
2703
2117
3104
3105
3014
3015
3004
3005
3106

\ 3107
\3016
*3017
3006
3007
2213
2705
2707
2210
2305
2013

Ref.
Page

4-59
4-62
4-52
4-52
4-54
4-55
4-55
4-55
4-57
4-57
4-55
4-55
4-55
4-57
4-57
4-59
4-59 -
4-59
4-54
4-59
4-59
4-61
4-59
4-62
4-63
4-104
4-104
4-104
4-69
4-69
4-69
4-69
4-69
4-69
4-69
4-104

4-104
4-104
4-64
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-72
4-27
4-27
4-73
4-31
4-74

Mnemonic
Code

NORN
OFB
OR
ORN
RAB
RTAL
RTAR
RTG
RTL
SAB
SAN
SAP
SB
SBA
SBB
SBEX
SBM
SB MA
SEN
SBNA
SBR
SERA
SBRN
SBRNA
SCM
SETE
SETE1
SETF
SETF1
SETG
SETH
SETl
SETJ
SHABL
SHABML
SHABMR
SHABR
SHAL
SHAML
SHAMR
SHAR
STA
STB
STR
STS
STX
SUB
SWAP
SWA PA
SWAPX
T3A
TCY
TCYS
TCYX
XD
XI

Octal
Code

2307
2506
2304
2306
3701
3513
3512
2413
2412
3702
3702
3701
3704
3705
2607
2501
3614
3615
3604
3605
3706
3707
3606
3607
2104
2514
2515
2516
2517

^2714
2715
2716
2717"
3711
3713
3712
3710
3501 '
3511
3510
3500
2612
2613
26.14
2615
2616
2605
3103
3303
3703
2105
3100
3101
3102
2503
2502

Ref.
Page

4-31 '
4-76
4-31
4-31
4-36
4-87
4-88
4-77
4-77
4-36
4-38
4-38
4-79
4-79
4-82
4-83
4-79
4-79
4-79
4-79
4-79
4-79
4-79
4-79
4-85
4-69
4-69
4-69
4-70
4-70
4-70
4-70
4-70
4-89
4-91
4-92
4-90
4-93
4-95
4-96
4-94
4-97
4-97
4-97
4-97
4-97
4-99
4-100
4-101
4-102
4-103

4-107
4-108

B-2

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D.C. 2O546

OFFICIAL. BUSINESS

FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
451

POSTMASTER : If Undeliverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion .of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Washington, D.C. 20546

