
F I N A L T E C H N I C A L REPORT September 30, 1972

W I L L I A M MARSH R I C E U N I V E R S I T Y

DEPARTMENT OF ELECTRICAL E N G I N E E R I N G

LABORATORY FOR COMPUTER S C I E N C E AND E N G I N E E R I N G

F E A S I B I L I T Y I N V E S T I G A T I O N OF A
CELLULARLY O R G A N I Z E D DATA PROCESSOR

JPL CONTRACT 9532^6
Subcontract under NASA CONTRACT NAS7-100

Task Order No. RD-95

CAS
C

• • • - - • • • . • " •' ••• -by
V

Robert C. M i n n i c k , P r i n c i p a l I n v e s t i g a t o r
J. Robert Jump, C o - P r i n c i p a l I n v e s t i g a t o r
Robert G. A r n o l d , Student Assistant
John M. B e i r n e , Student Assistant

This wotfe was performed for tkc J«t Propalsion Laboratotr,
Califaenia Institute of Technology, ftponsotwl by, the
National Aeronautics and Spas« A4t)iifliimitioa< Under
Contract NAS7-100.

I. INTRODUCTION

The purpose of this project has been to study the application of

cellular arrays to NASA missions. C e l l u l a r arrays are iterative

logical and memory structures which can be programmed to accomplish a

wide variety of logical tasks. Used in long-duration space missions,

for example, spare cellular arrays can be remotely programmed to

replace faulty logical subsystems as the need arises.

While cellular arrays have been studied for a considerable

period of time*, only a modest amount of effort has been given to the

practical problems of implementation. A major purpose of this project

has been to address these practical problems.

The approach that has been taken is to study three different

cellular arrays, and to realize three different logical designs for

each. The cellular arrays that were chosen are

1. The microprogrammed array [2].

2. The cobweb array [3]. . .

3. The programmable array [4].

Array 1 has complex cells: each has as much logic as a one-bit

arithmetic unit. Array 2 has somewhat less complex cells, while array

3 has simple NOR elements as cells. Thus, the arrays that were chosen

for study cover a wide range of types..

*An extensive bib! iography.. is contained in [1].

Simi1iarly, the three logical designs were chosen to represent

a broad spectrum of NASA tasks. They are

1. A seven-bit serial multiplier.

2. A 31-bit sequence detector. • . • . . ,

3. A 31-bit feedback shift-register decoder. ' "'•'-.'•

All these cellular arrays were implemented using two different

techniques: a conventional random logic configuration, and a .

programmable logic array (PLA) configuration. For this PLA technique

of Texas Instruments [5], combinational logical functions are realized

in a read-only memory (ROM) where the word-selection logic can be pro-

grammed in the same way as the storage array. The structure consists

of two arrays: the first array is used to realize the product terms

and the other is used to realize the sum terms of a set of logical

functions in sum-of-product form.

There are two potential advantages of the PLA and similar

techniques over the random logic technique. First, the i n i t i a l cost

of customizing an array is less since only one mask must be modified

and the complex problem of wire layout is avoided completely. Second,

the PLA technique frequently results in less chip area than an .

equivalent random logic realization.

II. MICROPROGRAMMED ARRAY . ' , . "

A. General Description*

The interconnection structure of the microprogrammed array is

*Portions of this section are based on [2].

3

illustrated in Fig. 1, where all intra-cell lines propagate binary

signals in the indicated directions. All cells in the array are

identical logic networks with the form indicated in Fig. 2. Q^Qp'^s

and D are storage elements which determine the function performed by .

the cell. The operation of loading a microprogram into the array is

equivalent to loading these storage elements, in every cell, to im-

plement the desired microinstructions in the rows of the array. The

five output signals are combinational logical functions of the storage

elements and the five cell-input signals.

The three storage elements Q,, Q2 and Q3 determine a cell's type.

In Table I the eight different cell types and behavior are specified

by means of the logical equations for the cell output terminals. In

the first three types, the data fli p-fl op D is treated as a variable

which may change during execution. D can not be changed during

execution if the cell is programmed to one of the last five types in

the table. For the last four, it is used to modify the cell type.

Although the functional behavior of the array is completely

defined by Fig. 1 and Table I, some additional comments on the use of

the different cell types are in order. For this purpose, the cell types

are classified into three categories: computation-mode (types 1, 2 and.

3), path-mode (types 4 and 5), and control-mode (types 6, 7 and 8).

The descriptive symbols of Fig. 3 are used to represent the different

cell types. In order to simplify array diagrams, only the X, Y and S

lines are shown.

In order to explain the operation of the cell, it is also

convenient to classify theintra-cell lines of the array as control

Tines (G, L and S) and data lines (X, Y and S). The data lines carry

the data signals generated and transformed by the computation-mode and

path-mode cells of an array. The control lines carry signals, general

ed by control-mode cells, which control the operation of the com-

putation-mode and path-mode cells. The S line serves as a control

line for computation-mode cells and a data line for path-mode cells.
i

This is indicated by the dot on the S input line of the computation-

mode eel Is. . .
AI

The control lines G and L control the output signal Y of com-
/\ XV

putation and path-mode cells. Outputs X and S are not a function
/^ • '

of the value of G or L. If either G or L has value 0, then Y=Y.

Hence information passes through the cell, without modification,

in the vertical direction. In this case the cell is said to be

inactiye. For some microprograms, the control signal L of some cells '

may be fixed at 0. In this case the modified symbols shown in Fig, 4
s* . •

are frequently used to emphasize that Y=Y. If both inputs G and L
s*

have value 1 the cell is said to be active. In this case, Y is de-

termined by the cell type. Since both of these control lines are

effectively bussed through the cell, several cells in the same row

can be activated simultaneously.

The control line G is used as an "enable" line and control line

S as a "clock" line for the data flip-flop in computation-mode cells.

Control line S is also bussed through computation-mode cells so that

data can be simultaneously set into several cells in the same row.

Computation-mode cells are the only ones whose data flip-flop can be

altered during the execution of a microprogram. Hence S serves as a

data line for path-mode cells.

An ADD cell realizes the function of a full adder with inputs
^ ^X, Y and D , carry o u t p u t X and sum o u t p u t Y . T h u s i t s p r i m a r y use

i s in the r e a l i z a t i o n o f a r i t h m e t i c m i c r o i n s t r u c t i o n s . I t can a l so

be used to p roduce t w o - v a r i a b l e l o g i c a l f u n c t i o n s of i n p u t s X and Y.

W i t h D se t t o 0 , X = X - Y and Y = X ® Y . W i t h D se t t o 1 , X = X v Y and Y = X ® Y .

The h o r i z o n t a l l o g i c of a C O M P ce l l can be used to test for
/\

equality of two words. Indeed, if the signal X, produced by the

leftmost cell of a row of COMP cells, is 1, then the word on the Y.

inputs to the row must be identical to the word stored in the D flip-

flops of the row. This cell function is useful in implementing the

.control structure of a microprogram and in realizing an arbitrary,

product term of Boolean variables. The vertical logic of a COMP cell'
y\

provides the logical complement of input Y at output Y. .

The primary function of a REGISTER cell is to store the operands
/\ **

of a computation. Both output signals X and Y equal the value of D.

Hence it can also be used to produce the logical constants 0 and 1

at either the X or Y input of an adjacent cell. The L-SHIFT, R-SHIFT

and NULL cells are used to form data paths between cells in the

obvious way.

After a thorough study of the microprogrammed array as it was

first reported [2], a modification was made in order to increase its

flexibility. This modified array can be used effectively to perform

each of the three tasks of the project by reprogramming. The original

version of the cell could only propagate information from top to

bottom in the vertical direction. Thus it was sometimes necessary

to route information from the output terminals along the bottom of

the array to the input terminals at the top. This required additional

switching logic external to the array. The new version of the cell

has an additional data path in the vertical direction which is used

to propagate information from the bottom to the top of the array. A

new cell type has also been added to perform the operation of re-

versing information flow in the vertical direction.

The functional behavior of the modified cell is specified by the

equations in Table II and the diagram in Fig. 5. The new signals are
<% . . - s* s*

1 and Z and the new cell type is R E V E R S E . The s igna ls P, P, C and C,

used to load spec i f i ca t ion bits initially are a lso shown in Fig. 5.

B. Cell Real i zat ion

In order to rea l ize the microprogrammed cell using the PLA

technique, the cell equat ions must be put into a sum-of -product form.

Standard two- leve l minimizat ion techniques can be used e f fec t ive ly

for this cell. The equat ions for the cell are given in Table III.

These equat ions along w i th the diagram in Fig. 6 completely speci fy

the PLA implementat ion of the microprogrammed cel l .

To obtain a random logic realization of the microprogrammed cell,

the cell equations were modified to reduce the number of gates. Two,

th ree and f o u r - i n p u t gates were a l l o w e d and the r e s t r i c t i o n o f two-

l e v e l l o g i c w a s r e m o v e d . T h e r e s u l t i n g e q u a t i o n s a r e g i v e n i n T a b l e

C . L o a d i n g t h e S p e c i f i c a t i o n B i t s

L o a d i n g t he s p e c i f i c a t i o n b i t s o f t he m i c r o p r o g r a m m e d ce l l i s

c o m p l i c a t e d s i n c e one of them (the D b i t) can be c h a n g e d d u r i n g exect

of the a r ray . Hence the cell has been d e s i g n e d so that it has two pi

o f o p e r a t i o n . D u r i n g the l o a d i n g p h a s e , t he D f l i p - f l o p and the th r«

f i x e d s p e c i f i c a t i o n f l i p - f l o p s Q^ , Q 2 > Q 3 a re c o n f i g u r e d i n t o a f o u r -

b i t s h i f t r eg i s t e r so tha t a c o l u m n of c e l l s can be l o a d e d s e r i a l l y .

D u r i n g t he e x e c u t i o n p h a s e , t he i n p u t t o t he D f l i p - f l o p comes f rom

t h e c e l l l o g i c i n s t e a d o f t h e f l i p - f l o p Q 3 . T h e p h a s e i s d e t e r m i n e d

the con t ro l s i g n a l P w h i c h i s asser ted d u r i n g t he l o a d i n g p h a s e . I n
y\

order to m i n i m i z e the n u m b e r of t e r m i n a l s of a c e l l , the Y and. Y

t e r m i n a l s of a ce l l a re a l s o u s e d as i n p u t and o u t p u t for the s h i f t

r e g i s t e r d u r i n g t h e l o a d i n g p h a s e . T h e o r g a n i z a t i o n o f t h e s p e c i f i -

c a t i o n f l i p - f l o p s i s s h o w n i n F i g . 6 .

D . S a m p l e D e s i g n s

1. M u l t i p l i e r ' " •, - - . . - . - , . .
. • ;>*i '. '••:> . • - - . '- • -. • •

Using the microprogrammed cell, it is feasible to

design a multiplier 'having either a parallel or a serial word

organization. Hence, both designs have been completed. The seven-

bit serial multiplier is shown in Fig. 7. It requires a 6 x 23-cell

array, or 138 cells.

In reference to Fig. 7, both the multiplier and the multiplicanc

are loaded into the array. . '

1]

B. CelT Realization

In Fig. 17, a NAND-NOR realization is shown for one cobweb cell.

By comparing Figs. 16 and 17 it can be verified that by setting the

specification bits S^, $2> $3 and S^ appropriately, the cell output,

z, is one of the specified functions of the cell input, x and y.

The R-S flip-flop in Fig. 17 is enclosed in dotted lines.

Since each cobweb cell has five inputs, as is shown on Fig. 15,

but produces an output that is dependent on only one or two of these,

some additional input selection logic to that shown in Fig. 17 is

needed. While the original cobweb cell used cutpoints for this

purpose, it is possible to accomplish the same results using electronic

techniques. One attractive circuit for the input selection logic is

shown in Fig. 18. This circuit uses open-collector TTL NAND gates

with a single pull-up resistor per line or buss. If a specification

bit for one of the open-collector NAND pairs is at Vcc, then the output

is the complement of the input. On the other hand, if a specification

bit is at ground, that NAND pair disconnects the input from the out-

put. With the circuit shown in Fig. 18, one has the advantage of a

wired-OR for the inputs, and furthermore the busses can be used for

bilateral jumpered connections. .

The.complete cobweb cell realization is shown as Fig. 19. This

incorporates the logic of Figs. 17 and 18. The R-S flip-flop of this

cell can readily be changed to one of another type. For instance, if

one elects to use a master-slave D flip-flop, the realization of Fig. 20

12

results. A block form of the cobweb cell is shown as Fig. 21.

The PLA implementation of the cobweb cell uses two arrays. One

is used to realize the selection logic w h i l e the other realizes the

cell function logic. This was done to minimize logic since the cobweb

cell is not well suited for two-level logical realization. This im-

plementation also differs from the random logical implementation in

that the number of specification bits has been reduced by coding the

possible specification words. This was done in this case since the

realization of a decoder in the PLA array uses less area than the

flip-flops that are eliminated. The PLA implementation is given in

Fig. 22 and Table V. It should be noted that the R-S flip-flop in

the cobweb cell is realized by means of the feedback line in the

second PLA array.

C. Loading the Specification Bits

The specification bits for the cobweb cell can be stored in

various ways. For the purpose of this study it is assumed that they

are stored in a shift register within the. cell. These shift re-

gisters are arranged so that the specification bits of a column of

cells can be loaded serially.

In the cobweb cell, this is straightforward since the specifica-

tion bits are not changed once they are loaded. Hence, unlike the

microprogrammed arrays, the operation of the shift register is in-

dependent of the function of the cell. The shift register is

controlled by two additional inputs and outputs, L and C, as shown in

13

the PLA realization of Fig. 22. Signals L and L are the data input

and output signals for the shift register and C is the clock.

D. Sample Designs

1. Multi pi ier

A seven-bit serial multipiier which uses the cobweb

array is shown as Fig. 23. It consists of four seven-bit shift

registers which store the mul t i p l i e r , the multiplicand and the two

halves of the product. The locations of these shift registers in

Fig. 23 are indicated by the overlay of Fig. 24. The m u l t i p l i c a n d

register contains one extra bit that is initially set to zero. T is

a signal that is a one during the first and each following eighth

step and zero during all others. The five control functions for the

m u l t i p l i e r are given in terms of the three control lines a,3,y and

are shown in Table VI.

2. Sequence Detector

A cobweb-array realization for a 31-bit sequence

detector is shown as Fig. 25. In this detector the inverted output

of each position in the storage shift register is exclusive-QR 1ed

with the corresponding position in the code. The AND of the exclusive-

OR output is the desired result.

In order to illustrate the results when cobweb arrays designed

according to Fig. 20 are used rather than those designed according

to Fig. 19, a seven-bit sequence detector using each of these arrays

appears as Fig. 26. The standard cell design requires a 5 x 28 array

of which 23 ce l ls are not used. The modif ied cell design requires

a 3 x 13 array of wh ich one cell is not used. Furthermore the standard

array uses a four -phase c lock wh i le the mod i f ied array requires only

a s i n g l e - p h a s e c lock. .; . ,

3. Feedback Shif t Register Decoder

A 31-bit feedback shif t register decoder is shown as

Fig. 27. It requires a 29 x 14-cell array.

IV. PROGRAMMABLE ARRAY '

A. General Description*

The programmable array is based on an earlier array of simple

NAND cells [6]. The original array, which was due to Spandorfer

and Murphy, is shown as Fig. 28. Each cell in this array is a one,

two or three-input, single-output NOR or NAND. In this simple array

the logic of each cell is fixed, while a subset of the interconnection

array is chosen by selectively opening the cutpoints shown as small

circles and triangles. For ease in drawing, the single output of

some cells (like cell 1,2) is shown connected at several points on

the periphery of the cell. This array connects each of n variables

x.j or x! or neither to cells (2i-l,2j), l<n , j£n, through the cutting*

of one or both of the arcs marked with small circles. Then by cutting

all arcs marked with small triangles except those immediately above

the bottom row, one obtains the desired switching function F in a

*Portions of this section are based on [4]

NOR-NOR form.

An inspection of Fig. 28 shows that the interconnection structure

repeats with a cycle length of two in both directions. Hence, it is

reasonable to define a 2 x 2 subarray as a single cell; this' is shown

as Fig. 29. This new cell of Fig. 29 has easily determined logical

properties. It is the version of the programmable cell [4] which has

appeared in the literature.

As originally reported, the programmammable cell had two speci-

fication bits which allowed it to be set to one of four conditions as

follows:

Input x is connected.

Input x1 is connected.

Neither input is connected.

Collector row is connected.

After a thorough study of the applicability of this array to practical"

logical designs, it was determined that a modified version of this

cell would lead to more efficient results. In this modified version,

a turning condition was added to the collector row connection such

that the y input was connected to the X output (see Fig. 29).

For this revised cell the logical equations are

X=(S1S2)
lx+S1S2(z'+y)

wh ere S^ and $2 are two specification bits. The revised cell is drawn

16

•in Fig. 30. The numbers in the cell of part (b) of that figure

represent the values for the specification bits S^, $2, expressed

in decimal form.

B. Cell Realization

A s imple real izat ion for this programmable cell wou ld be in

terms of a uniform array of NAND elements. There fore , fo l lowing

[4], a 5 x 5 array of N A N D ' s wh ich rea l izes the cell of Fig. 30 is
v

drawn as Fig. 31. This cell also can be realized using PLA and

similar techniques.

It is seen from Fig. 31 that the following count of NAND elements

i s u s e d:

5 1-input

8 2-input

7 3-input

4 4-in put

C. Loading the Specification Bits

In Fig. 31, the two flip-flops which represent S-j and $2 are set

and reset as follows:

Set S,: LaLbCjC2

Resets,: L^CJCJ"

Set S2: L^CjCg

Reset S2 L^C^ .

The L and L. lines are used in a coordinate-access method which

allows one cell like that shown in Fig. 31 to be selected from an

17

array of cells. Such an array is shown as Fig. 32. In Fig. 32 the

signals C, and C« result in the appropriate specification bit being

set or reset according to the above equations.

D. Sample Designs 7

1 . Multip!ier

In order to find practical realizations for this

simple microprogrammed cellular array, it is necessary to perform

any storage externally to the array. It should be noted for the

other two cellular arrays that were studied tKat this was not a re-

quirement.

For this reason, the design of a seven-bit m u l t i p l i e r reduces

to the design of a seven-bit parallel adder combined with the necessary

controls. One bit of such a gated full adder is shown as Fig. 33;

seven such arrays laid out horizontially in a 6 x 63 array yield the

complete adder. The remai ni ng registers, as well as the load and shift

controls are outside the array.

2. Sequence Detector

A 31-bit sequence detector requires a 5 x 124 array

of programmable cells. One of the 31 stages for this detector is

shown as Fig. 34. As in the case for the m u l t i p l i e r , the two registers

for this sequence detector circuit are external to the cellular array.

3. Feedback Shift Register Decoder

In order to realize a feedback shift register with a

programmable cellular array, the actual register is formed ex-

ternally, and only the logic of the feedback is determined in the

8

array. From Fig. 30 it is seen that a cascade of 0, 1 and 2 cells,

with the z input having the value of 1, can be found for any product

of literals'on the x inputs. Furthermore, the 3-cell can be used to

form the disjunction of these conjunctions. For example, it will be

supposed that the following feedback logic is to be found:

F=(xl§x3ftx5ya(xlx3x5+xlx3x5+xlx3x5+xlx3x5)1

A programmable array which accomplished this is shown as Fig. 35.

Clearly, any other feedback logic can be found in a similar array.

For instance, a 31-stage feedback shift register which uses 16 terms

in the feedback equation requires a 32 x 16-cell array plus the ex-

ternal shift register.

V. COMPARISONS '

A. Assumptions • - • '

Estimates of the chip area required for the cell implementations

described in Section II, III and IV have been calculated. In order

to make these calculations, the area requirements for gates, random

logic wiring, PLA arrays and flip-flops given in [5] have been used.

Although these figures may vary considerably with different technology

and fabrication techniques, it is felt that they will give valid re-

lative comparisons of the different implementations considered.

For the area of a MOS gate, the following formula was used:

(AREA)Q=(12 mi Is)x(number of pins/gate)x(l.2 mils/pin).

This figure does not include the area needed to interconnect the gates

It was assumed that from 50% to 80% the circuit area was used for

19

interconnection leads.

A PLA array uses from one to two square mils per bit. Thus the

area of an array is given by the following formula.
2(AREA)A=(1 or 2 mils)x(number of product terms)x(number of sum

terms + 2 (number of variables)).

The area required for the specification bit shift register was
2assumed to be from 100 to 300 mils per stage.

B. Area Calculati ons

The results of the area calculations are given in TablesVII and

VIII. In Table VII the area' requi red for PLA implementation is presented

for four different assumptions. The area required per shift register
2 2stage was assumed to be either 100 m i l s or 300 mils and the area

2 2required per PLA bit was assumed to be either 1 mil or 2 mil . The

are requirements for random logic implementation were also computed

for four different assumptions as shown in Table VIII.

C. Discussion

The numbers in Tables VII and VIII provide a measure of the relative

complexity of the microprogrammed cell, the cobweb cell and the

programmable cell. Some observations on these results can be made:

1. Most of the trends in the table can be predicted from the

fact that the area used for cell logic dominates for the

microprogrammed cell, while the shift register dominates

for the cobweb cell.

2. In all cases considered, the PLA implementation used less

20

area than the random implementation. This difference was

greatest and is nearly the same ratio in the case of the

microprogrammed and the programmable cells, but the random

logic version of the cobweb cell still requires approximately

twice as much area as the PLA version.

3. Comparing the random logic versions of the three cells, the

cobweb cell requires from 40% to 80% as much area as the

microprogrammed cell, while the programmable cell requires

from 21% to 24% as much area as the microprogrammed eel 1.

4. Comparing the PLA versions of the two cells, the cobweb cell

requires from 60% to 120% as much area as the microprogrammed

cell, w h i l e the programmable cell requires from 25% to 30%

as much area as the microprogrammed cell.

VI. SUMMARY AND CONCLUSIONS

In Table IX and X the nine combinations of array types and designs

are summarized for PLA and random logic implementation. For row 1 of

these tables, the serial version of the microprogrammed-cell multiplier

was used. In row 3, the programmable realization includes 22 bits

of storage that is external to the cellular array. In row 6, the

programmable array includes 62 bits of external storage. For row 7,

a linear feedback shift register having a serial load is assumed.

Sixteen terms are assumed in the feedback equations on rows 7 and 9.

On row 9 an external 31-bit shift register is assumed as well.

21

W h i l e Tables IX and X gives some measure of comparisons, it should be

emphasized that because of the essential differences among the arrays

that were studied, a direct numerical comparison of chip sizes may

be misleading. In particular, the sizes shown in the table for the

programmable array are low because all storage except for the

specification bits appears outside the array. Thus, while the micro-

programmed and the cobweb realizations each are in terms of single

arrays, the programmable realizations are in terms of two or more

arrays when the external registers are counted.

It should also be observed that in some cases the ground rules

differed slightly for the comparative designs because they were

accomplished by different persons at different times.

With this caveat in mind, some conclusions can be drawn from

the results in Tables IX and X. First, it is clear that as the cell is

made more complex, the efficiency of the design increases. Second,

the programmable array could be greatly improved by the addition of

one or more storage bits per cell. Third, the cobweb array could be

improved by using a more sophisticated flip-flop, and perhaps by

increasing its number of storage bits per cell. Fourth, since all

three cellular arrays that were studied were modified in the light

of practical design tasks, it is expected that further study would

lead to even more improvements to these and other cellular arrays.

Fifth, PLA or similar techniques appear to be better suited for the

realizations of all the cellular arrays than is random logic.

22

REFERENCES

1. Minnick, R.C., "A Survey of Microcel1ular Research," Journal of
the Association for Computing Machinery, Vol. 14, No. 2,"
pp. 203-241 , April 1967.

2. Jump, J.R. and Fritchie, D.R., "Microprogrammed Arrays," IEEE
Trans, on Computers, Vol. C21, No. 9, pp. 974-984, September 1972.

3. Minnick, R.C., "Cobweb Cellular Arrays," Proceedings of the 1965
Fall Joint Computer Conference, pp. 327-341, AFIPS, Vol. 27,
Spartan Books , 1965.

4. Minnick, R.C., "A Programmable Cellular Array," Proceedings of the
1971 IEEE International Computer Group Conference, pp. 25-26,
Institute of Electricaland Electronic Engineers, Inc., 71C41-C
(September 22-24, 1971).

5. Andres, K. , "MOS Programmable Logic Arrays," Technical Report,
Texas Instruments, Inc., Dallas, Texas.

6. Spandorfer, L.M. and Murphy, "Synthesis of Logic Functions on
an Array of Integrated Circuits," final report for UNIVAC
Project 4645, prepared for the AFCRL on Contract 19(628)2907
(November 30 , 1965).

•̂ -̂ ^̂ OUTPUT

CELL̂ ""̂ -̂ _
TYPE ^̂ ^̂ ^̂

1 - ADD

2 - COMP

3 - REGISTER

4 - NULL
r L-SHIFT
0 " (0=0) R-SHIFT

(0=1)

6 - LOCAL
(0=0) STORE '

(0=1)

7 - BOUNDARY .
. (0=0) BEND

(0=1)

8 - BLOCK
(0=0) PARTITION

(0=1)

X

XYvXDvYD

X(Y6D)

0

X

DYvDX

Y

DvX

DX

'

Y

(SvL)YvGL(X«Y6D)

(GvL)YvGL?

(GvL)YvGLD

Y

(gvL)YvGL(DXvDS)

Y

GYvG(DYvDX)

GYvG(DXvDY

S

S

S

S

S

DSvDY

SvDG

DSYvDS

S

L

L

L

L

L

L

LvDG

L

Y

G

G

G

G

G

G

G

D(LvS)

G

Dset

GSY

GSY

GSY

0

0

0

0

0

clear

GS?

GSY

GSY

0

0

0

0

0

TABLE I. CELL EQUATIONS FOR THE MICROPROGRAMMED ARRAY

OUTPUT
2RMINAL

CELL
TYPE set clear

1 - ADD XYvXDvYD (GvL)YvGL(X®Y®D) GSY GSY

2 - COMP X(Y©D) (GvL)YvGLY GSY GSY

3 - NULL
(D=0)^/" REVERSE

(D=l)

DYvDZ DZvDY

A - REGISTER (GvL)YvGLD GSY GSY

5 - L-SHIFT
(D=0)^X" R-SHIFT

(D=l)

DYvDX (GvL)YvGL(DXvDS) DSvDY

6 - BOUNDARY
(D=0) / BEND

DvX GYvG(DYvDX) DSYvDS D(LvS)

7 - LOCAL
(D=0)

SvDG LvDG
STORE
(D=l)

8 - BLOCK DX GYvG(DXvDY)
PARTITION

(D=l)

TABLE II. MODIFIED CELL EQUATIONS FOR THE MICROPROGRAMMED ARRAY

X « Q1Q2Q3D + Q2Q3D X 4- Q1Q2Q3X + Q1Q2Q3Y + QLQ

QjQ3X Y + Q̂ D̂ Y + Q^D X Y + Q^D X Y

Y « P QY G + P QY G + P QY L + P QQ Y L + P QQ L + P

P Q1Q2Q3Y D + P Q1Q2Q3Y G L + P Q1Q2X Y D G L + P Q^X Y D G L + P Q1Q2Q.}X Y D + P'Q̂ X Y D +

P Q1Q2Q3
D G L + P QjQgQgX D G + P QLQ2Q3X D G + P Q^X D G L + P Q j Q D G L S + P Q^D Z + PD

Q1Q2̂ 3
I) Y + ̂iQ2̂ 2 + Q!Z + Q2

Z + Q3z '

Q2S + Q3D S + Q3D S + D Y S + Q̂ ^̂ G +

Dset = 2G Y + 1Q3G Y + P Q3

'clock - P C + P S

clock = clock

P = P

Table III. Microprogrammed Cell Equations for PLA Implementation

A

X

A

Y

A

Z

A

G

A

L

A

S

Dset

clear

Dclock

.» Q,QoY(I>hQ,) + D Q-CQiQ.Q, + Q.Q, + Q,X + Q.X Y) + Q,Q7X(Q, + D Y + D) +
i -J / 3 L £ J 1 Z £. I £ J 1

^lVQ2X + X Y + Q2^3D Y>

- P {D G L(Q.Q0X Y + Q.Q,Q- + Q,Q0Q,S) + D X G(L Q,Q0Q, + L Q.Q0Y + Q,Q0Qj +12 L Z J 12 J 126 I / 123

G Q Q.(Q D X + Q Y L) + Y Q (G + Q,L + Q L + Q,Q,X D) +
fcJJt 1- 2. * «J i «J

Y Q (G + Q L + Q Q . D + Q Q) - i ' Q Q (Y D X + Q D Z) + Q Q D Y } + P D
3 1 1 2 1 2 3 1 2 1 2

= Q Q Q (D Y + D Z) + Z(Q +Q + Q) t = Q Q (D Y Q + D Z O) + Z(Q, +0 + Q)
1 2 3 1 2 3 1 3 2 2 1 2 3 '

= G(Q1 + Q3 + Q192) + D Q^CQ^ + Q3S)

= L(QL + Q3 + Q2) + Q1Q2(Q3D G +. Q3Y)

«= S(Q + Q) je S Q.D + S D(Q, + Y) + Q,Q,(D Q0G + Q0Q,D Y)
1 i J • o 1 J 2 i j

« P QLG Y(Q2 + Q3) + P Q3 = Y(P Q.G Q2 + P (^G Q3> + P Q3

= P Q-G Y(Q9 4- Q.,) + P Q = Y(P Q G Q0 + P Q,G Q_) 4- P Q,

• P C + P S

Table IV. Microprogrammed Cell Equations for Random Logic Implementation

WlO1! + 88S9S10X2 + S8S9S10X3 + WlOX4 + S8X
5

Q •> S4X Y + Q S + Q Y

Table V. Cobweb Cell Equations for PLA Implementation

FUNCTION

0

1

2

4

6

a 6 Y

0 0 0

0 0 1

0 1 0

1 0 0

1 1 0

OPERATION PERFORMED

NO OP

MULTIPLY

LOAD MULTIPLIER,

CLEAR HIGH PRODUCT,

CLEAR ADDER

OUTPUT HIGH PRODUCT,

SHIFT LOW PRODUCT TO

H I GH

LOAD MULTIPLIER, SHIFT

PREVIOUS CONTENTS TO

MULTIPLICAND

TABLE VI. SEVEN-BIT MULTIPLIER CONTROL FUNCTIONS

CELL
TYPE

MICRO-
PROGRAMMED

COBWEB

PROGRAMMABLE

DIMENSIONS

INPUTS

12

18

9

OUTPUTS

9

4 .

7

ROWS

33

40

25

PRODUCT
TERMS

63

23

15

LOGIC
LEVELS

2

4

2

$ BITS
STORAGE

4

10

2

AREA/ >/A~REA

100m£2/bit of storaae
ImWbit

2479/50

1920/44

575/24

2mA*/b1t

4558/68

2840/53

950/31

300mfc2/bit of storage
lm£z/bi t

3279/57

3920/63

975/31

2m£z/bit

5358/73

4840/70

1350/37

TABLE VII. AREA CALCULATIONS FOR PLA IMPLEMENTATION

CELL
TYPE

MICRO-
PROGRAMMED

COBWEB

PROGRAMMABLE

NUMBER OF GATES

1 INPUT

0

0

5

2 INPUT

43

34

8

3 INPUT

26

3

7

4 INPUT

20

1

4

6 INPUT

1

0

°

LOGIC
LEVELS

6

7

2

TOTAL
PINS

340

129 .

82
'

BITS
STORAGE

4

14

2

AREA/ v/ARtA"

100tU2ytnt of storage
50% Wiring

10192/101

5115/71.5

2361/49

80% Wiring

24880/158

10688/103

5904/77

300mfcVbit
50% "Mr ing

10992/105

7915/89

2361/49

of s torage
TK)!! wiring

25680/160

13488/116

5904/77

TABLE VIII. AREA CALCULATIONS FOR RANDOM LOGIC IMPLEMENTATION

ROW

1

2

3

4

5

6

7

8

9

TASK

SEVEN

BIT

MULTIPLIER

31-BIT

SEQUENCE

DETECTOR

31-BIT

FEEDBACK

SHIFT

REGISTER

DECODER

CELLULAR
ARRAY

MICRO-
PROGRAMMED

COBWEB

PROGRAMMABLE

MICRO-
PROGRAMMED

COBWEB

PROGRAMMABLE

MICRO-
PROGRAMMED

COBWEB

PROGRAMMABLE

ARRAY SIZE-PLA IMPLEMENTATION
(UNITS ARE INCHES2)

NUMBER
OF

CELLS

138

432

342

165

480

610

720

406

512

100 Mils 2/bit in Shift Register
1 Mils z/bit
in PLA array

0.342

0.829

0.199

0.409

0.922

0.356

1.784

0.780

0.297

2 Mils'/bit
in PLA array

0.629 .

1.071

0.327

0.752

1.363

0.585

3.282

1.153
'

0.489

300 Mils 2/bit in Shift Register
1 Mils z/bit
in PLA array

0.453

1.693

0.341

0.541

1.882-

0.613

2.361

1.592

0.508

2 Milsz/bit
in PLA array

0.739

2.090

0.469

0.884

2.323

0.843

3.858

1.965

0.700

.'.;• TABLE IX. SUMMARY OF PLA IMPLEMENTATIONS

ROW

1

2

3

4

5

6

7

8

9

TASK

SEVEN

BIT

MULTIPLIER

31-BIT

SEQUENCE

DETECTOR

31-BIT

FEEDBACK

SHIFT

REGISTER

DECODER

CELLULAR
ARRAY

MICRO-
PROGRAMMED

COBWEB

PROGRAMMABLE

MICRO-
PROGRAMMED

COBWEB

. PROGRAMMABLE

MICRO-
PROGRAMMED
COBWEB

PROGRAMMABLE

ARRAY SIZE-RANDOM LOGIC
(UNITS ARE INCHES2)

NUMBER
OF

CELLS

138

432

342

165

480

610

720

406

512

100 Mils 2/bit in Shift Register

50% Wiring

1.406

2.210

0.809

1.682

2.455

1.446 •

7.338

2.077

1.094

80% Wiring"

3.517

4.617

1.824 ;

4.105

5.130

3.256

17.91

4.339

2.731

300 Mils 2/bit in Shift Register

50%-Wiring

1.517

3.419 '

0.813

1.814

3.799

1.459

7.914

3.213

1.100

80%Wiring

3.544

5.827

1.829

4.237

6.474

3.269

18.48

5.476 •

2.737

TABLE X. SUMMARY OF RANDOM LOGIC IMPLEMENTATIONS

INPUT TERMINALS

O
r

r\ ».
0 . p*iP*jr^

n i it
0 — »

... h,—- *

n ?•
f\ _ f»U v

__^
I *

L _

i

i

J

r

r

r

.

r

^

Ifn

ft5

d

•«

Ih

-•

T

1

,

/*

r

r

1

1 : •
•

I'"

v

^

k~
"

h
. EJ

•̂™

"

.- ,' • - ' • - • " • :

- ^
tk&•
to

5 . '

i

.

; ' J

X

>

[•

i
-

i

- - -,

»
î .— ̂A . . /*\v • •• o

«^
^^^

Jbk

d A4 U

ih
_..*>
•̂ •̂ fck

dl.« rt0 U

J

O

OUTPUT TERMINALS

Fig. 1. Microprogrammed array interconnection structure.

A

X

1

D

1

A

A

L

Fig. 2. Microprogrammed cell var iab l es

—

1 r

|

/•

/

i

k.

1
' s

V
\
^(a) NULL (b) L-SHIFT (c) R-SHIFT

V V
(d) ADD («) COMP (f) REGISTER

P

T /

(9) PARTITION (h) LOCAL (0 BOUNDARY

B

(!) BLOCK (k) STORE (D BEND

Fig. 3. Microprogrammed ac t i ve cel l symbols .

-s>

(a) NULL (b) L-SHIFT (c) R-SHIFT

JIt !)9
A

i

d

r'

.. . b ... fw "" u»9

C
1

d

r

:

— <- R
i

d

'
(d) ADD (e) COMP (f) REGISTER

Fig. 4. Microprogrammed i nac t i ve eel] symbols

2 Nv

1 - ^1 S

\g 7

Y /A V

\

-

/

Qi

\

(

/

%

\ / \

\

1

Qz

D

/

3

/

\

>

/

t

/ \

Q3

s

I

\

;

. .

•

\

\

L

Fig. 5- M o d i f i e d microprogrammed c e l l variables.

\s

I PLA ARRAY

y >
X >

z >

I >
s >
p > "AND MATRIX"

"OR MATRIX"

\/
X Y Z G L S C

Fig. 6. PLA realization for the microprogrammed cell

K3 K2 Kl CLK
multiplier

Ys Ye Ys Yi Yp
multiplicand

*6 X5 xl

ZI3 ZI2 Z8 Z7 Z6 Z5
END

*0

FIG. 7. MICROPROGRAMMED ARRAY SERIAL MULTIPLIER USING A PARALLEL ADDER,

K2 Kl CLK 0

I
multiplicand

.Fie. 8. MICROPROGRAMMED ARRAY PARALLEL MULTIPLIER
PHASE 1 - LOAD MULTIPLICAND (K2,K1)=(L.O).

K2 Kl CLK
multiplier

0 0

— A

— A

0 0

I
0 0 0

— A

— A

- A

t-A

I-A

-A

Fie, 9, MICROPROGRAMMED ARRAY PARALLEL MULTIPLIER:
PHASE 2 - EXECUTE (K2.K1)-<0,1),

K3 K2 Kl CLK 0 0 IN KO

match

-C

h-C

X X X X X X X

FIG. 10, MICROPROGRAMMED ARRAY - SEQUENCE DETECTOR:
PHASE 1 - SHIFT (K̂ KjKg)

PHASE 2 - SET SEQUENCE (1010),

K2 Kl CLK 0

F1g. 11. Microprogrammed array: linear FSR

(load - 10, read - 01, ex - ll)(parallel initial load).

K3 K2 Kl CLK 0

L

Fig. 12. Microprogrammed array: linear FSR

(load - 110, read - 100, ex - 011)(serial load).

Kl CLK

Fig. 13* Microprogrammed array: nonlinear FSR

(load - 10, read - 01, ex - ll)(parallel initial load).

K3 K2 Kl CLK

X X X X X
F1g. 14* Microprogrammed array: nonlinear FSR

(load -.110. read - 100,. ex - Oll)(ser1al load).

T

Fig. 15. Structure of the cobweb array,

INDEX

0

1

2

3

4,

5

6

7

F

Sl S2 S3 S4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

z

1

y
x ' +y '

x ' y 1

x+y

xy '

z»y

0

x = S, y=R

Fig. 16. Functions of one cobweb cell

X

Y

S«

L

FIG. 17. NAND-NOR REALIZATION FOR THE INTERNAL PORTION OF ONE COBWEB CELL.

s.

BAR INDICATES

OPEN COLLECTOR

YU

»cc

FIG. 18. INPUT SELECTION LOGIC FOR THE COBWEB CELL.

-• IN,

-O IN.

-e IN,

SS

/I

-

ir bidlcaUi ep«n ealUctor output
FlG 19. TTL REALIZATION FOR THE COBWEB CELL USING AN R-S FLIP-FLOP.

Only I each required / Row or Column

S3 S6 S7 S8 S9

/r-Y

zA

lor indicates open collector output

... f 1C, 20. TTL REALIZATION FOR THE COBWEB CELL USING A MASTER-SLAVE D FLIP-FLOP,

r
v>-f £

INPUT
SELECTOR

-r — T 1
I I I

JL _ J 1
X SELECT

I I
I 1

S
E
L

C
T

Z OUTPUT

FUNCTION
LOGIC

N/
U

<y

_ _ _ J

W

Fig. 21. B lock form of one cobweb cell.

r PL A ARRAY

X SELECT

"AND MATRIX"

Y SELECT

"OR MATRIX"

I I

r PL A ARRAY ,

"AND MATRIX"

"OR MATRIX"

L

FlG 22. PLA IMPLEMENTATION OF THE COBWEB CELL.

tTLZMJ!&U\JUlU2±LJj!^^X>/-X^si^i/Xi5iVJL-Atil

'AJ^MW&A^^

WKKKKKK?KFL/V l/\ rLJ\ Fl /V l/\.'] / \ < 5 L / \ 5

WKKKKKKELel/vi"32jL£Xd£i^>LdL>L£sL5Jj3i5i.

T"77v i/d l/(i 1

F I G , 23. COBWEB R E A L I Z A T I O N OF A SEVEN-BIT S E R I A L M U L T I P L I E R .

INPUT

i T r !•

UP BIT
CONTROL
FUP FLOP

MULTIPLIER

OUTPUT

FULL
ADDER

I "I BUFFER

J j FLIP FLOP

MULTIPLICAND

HIGH PRODUCT

LOW PRODUCT

CARRY

FUP FLOP

FIG. 21. OVERLAY FOR THE COBWEB MULTIPLIER.

Input SERIAL DATA STREAM

MATCH

NOTE: T*e output will tecorrw T<u*
•pproiimaWr 20 cell dalay timn
•Her • «srtt*il<i9 p«1«rn it shifted
Into tcglctn.

Fl6. 25. 31-BIT SEQUENCE DETECTOR.

CLOCK-, .INPUT
'SERIAL DATA

INPUT U SEWAU DATA

o
U
.Q
0

1
o
•o
0

X)
O

Fl, 26.
os.c .0 COB.B «us.

Control
1 lor 25 BITS
0 for 6 BITS

1 for '31 BITS

Input
25 MESSAGE

DIGITS
6 PARITY CHECK

BITS

Output
CORRECTED
MESSAGE APPEARS
AFTER 31 CHECK
TIMES

FIG. 27. COBWEB REALIZATION FOR A 31-Bir FEEDBACK SHIFT REGISTER DECODER.

Fig. 28. Spandorfer array.

V tf

,x —

Y

Fig. 29. Original programmable array cell

(A) NOTATION FOR THE CELL.

X=x x

(B) SPECIALIZATION.

FIG. 30. MODIFIED PROGRAMMABLE ARRAY CELL.

LaU Y

FIG. 3lA. NAND REALIZATION OF THE MODIFIED PROGRAMMABLE CELL.

Fig. 31b. Notation for the modified programmable cell

c,c2

Fig. 32. Overall organization of the modified programmable array,

—^

V

_^£

-}
V

-x*

isi/is.L/is.L/'.L/1

_v

.V

^L

^L

-±t

I

\ /

_V

->

\ /

-^

\/_

Sd

\/

v / v /:• v' '/ v

\t

±L

±L

\(_

\f

\ f

\ f

^L

^L

\ f_

V

\/_

M.

\ f

\/

I /T/T
l '+ACj I(xi*ri)4A lx i

FIG. 33, . GATED FULL ADDER FOR ONE B I T ,

X1 71An-i^n-

U0f,...fn_|)

/T/nr/T/^

FIG, 34, ONE STAGE OF A SEQUENCE DETECTOR,

F=(x,ex3ex3)
1

FIG, 35, SAMPLE LOGIC FOR FEEDBACK SHIFT REGISTER DECODER,

