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1. INTRODUCTION

The purpose of this project has been to study the application of

cellular arrays to NASA missions. Cellular arrays are iterative

logical and memory structures which can be programmed to accomplish a _' 

wide variety of logical tasks. Used in lohg-duration space misSions,
for example, spare cellular arrays can be remotely programmed to
replace faulty logical subsystems as the need arises.

While cellular arrays have been studied for a considerable
period of time*, only a mpdesf amount df effort has been given to the
practical problems of imp]emehtation. A major purpose of this project
has been to address these practical problems. | .

The approach that has been takén is to study three different

cellular arrays, and to realize three different logical designs for

each. The cellular arrays that were chosen are

1. The microprogrammed array:[Z].

2. The cobweb array [3],

3. The programmab]evarray [4]."A'
Array 1 has éomp]ex cells: each has as much logic as a one-bit
arithmetic_unit. Array 2 has somewhat less complex cells, while array
3 has simple NOR elements as cells. Thus, the arrays that were chosen’
for study cover a wide range of types.

*An extensive bibliography.is contained in [1].



Similiarly, the thfee logical designs were chosen fo represent
a broad spectrum of NASA tasks. They are

1. A seven-bit'serie] multiplier.

2. A 31-bit sequence detector. '4 | R

3. A 31-bit feedback sh1ft regISter decoder. ;fi.

A1l these cellular arrays were implemented using two different
techniques: a conventional random logic conf1gurat1on, and a- |

programmable logic array (PLA) configuration. For this PLA techn1que

of Texas Instruments [5], combinational logical functions are rea11zed'
in a'read-only memory (ROM) whefe the word-selection logic can be pro-
grammed in the same way as the storage array; The strdcture consists
of two arrays? tﬁe firstAarray is used te rea]ize the product tefms
and the other is used to realize the sum terms of a set of Iog1ca1
functions in sum-of- product form. |

There are two potential advantages of the PLA and simiTarl
techniques over the random 1og1c techn1que First, the initial cbst
of customizing an array is ess since only one mask must be mod1f1ed
and the complex prob]em of wire layout is avoided comp]ete]y Seeond,
the PLA technique frequently results in less chip area. than an f u

equivalent random Togic realization.

[I. MICROPROGRAMMED ARRAY

A. General Description¥*

The interconnection structure of the microprogrammed array is

*portions of this section are based on [2]-
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illustrated in Fig. 1, wheré all intra-cell lines propagate binary
signals in the indicated directions. All cells in the array are '

identical 1o§ic networks Qith the f&rm indicated in Fig. 2. Q],QZ,Q3
‘and D are storage e]emenfs which determine the function performed by
the cell; 4The operation of 1oading a micrdprogram into the array is
equivalent to loading these storage elements, in every cell, to im-
p]ement the desired microinstructions in the ron of the array. The
five output signals are comb1nat1ona1 log1ca1 functions of the storage
elements and the f1ve cell-input s1gna1s

The three storage elements Q], Q2 and Q3 determ1ne a ce]l S _lg_

In Table I the eight different cell types and behavior are specified
by means of the logical equations for thé'ce]l output terminals. In

the first three types, the data flip-flop D is treated as a variable

which may change during execution. D can not be changed during
execution if the cell is programmed to one of the last five types in.
the table. For the last four, it is used to modify the cell type |
A1though the functional behavior of the array is comp1ete]y
def1ned by Fig. 1 and Table I, some additional comments on the use of
the different cell typesare in order. For this purpose, the ce]lAfypes

are classified into three categories: computation-mode (types 1, 2 and.

3), path-mode (types 4 and 5), and control-mode (types 6, 7 and 8).

The descriptive symbols of Fig. 3 are used to represent the different
cell types. In order to simplify array diagrams, only the X, Y and S
lines are shown, |

In order to explain the operation of the cell, it is also



convenient to classify theintra-cell lines of the array as control

lines (G, L and S) and data lines (X, Y and S). The data lines carry
the data signals generatéd anﬂ transformed by the computation-mode and
path-mode cells of an array. Thg control lines carry signals, generat-
ed'by control-mode cé]]s,,which-contr@] the opefation of the éom-‘ |
putation-mode and path-mode cells. 'The S line sefves as a control
line for computation-mode cells and a data line for path-mode cells.
This is i%dicatedvby the dot on the S input line of the computation-
hode cells. ‘ . A ‘ |

The control lines G and L control-thé outbdt signal ? of com-
putation and path-mode cells. Outputs § and § are not a function
of the value of G or L. If either G or L has value 0, then ?=Y.n;
Hence information passes through the cell, without modificétion,
in tﬁe vertical direction. 1In this case the cell is said to be
ﬁnactive. For some microprograms, the control signal L of some cells
may be fixed at 0. In this case the modified symbols shown in Fig,}4
are frequently used to emphasize that Y=y. if both inputs G and L
have value 1 the cell is said to be active. In this case, Y is:dgff
termined by the cell type. Since both of these contkol lines are |
effectiveiy bussed through the cei], several cé]ls in the same row
can be activated simu]tane@us]y. | |

The control line G is used as an "enable" line and control line
S as a "clock" line for the data flip-flop in computation-mode cells.
Control line S is also bussed through'computation-mode cells so that

data can be simultaneously set into several cells in the same row.



Computation-mode cells are the only ones whose data flip-flop can be
altered durihg the execution.of a microprogram. Hence S serves as a
data line for path-mode cells., |
An ADD cell realizes the function of a full adder withlihputs

X, Y and D,‘carry output § and sum output ?. Thus its primary use
is in the realization of arithmetic microinstruotions. It can also
be used to produce tho—variable ]ogfcal functions of inputs X and Y.
With D set to 0, X=X-Y and Y=X@Y. With D set to 1, X=XvY and Y=Xav.

 The horxzonta] 1og1c of a COMP ce]] can be used to test for |
equa11ty of two words. Indeed, if the s1gna1 X, produced by the
leftmost cell of a row of COMP cells, is 1, then the word on the Y.

1nputs ‘to the row must be 1dent1ca1 to the word stored 1n the D f]]p-,,f

flops of the row. This cell funct1on is useful in 1mp1ement1ng the
control structure of a m1croprogram and in rea11z1ng an arbitrary.
product term of Boolean variables. The vertical logic of a COMP ce]1fi
prov1des the logical complement of input Y at output Y R
The primary function of a REGISTER cell is to store the operandsz
of a computation. Both output signals X_and Y equal the value of D. -
Hence it can also be used to produce the logical constants 0 and 1
at either the X or Y input of an adjacent cell. The L-SHIFT, R-SHIFT
and NULL cells are used to form data paths between cells in the
~obvious way. |
After a thorough study of the microprogrammed array as it was

first reported [2], a modification was made in order to increase its



flexibility. This modified array can be used effectively to perform
each of the three tasks qf the prqject by reprogramming. The original
version of the ce]l‘could.on]y propagate information from top to
bottom in the vertical direction. Thus it was sometimes necéssary
to route information from the oUtput terminals along the botéom of
the array to the input termiﬁa]s'af the top. This required additional
A_ switching logic external to the array. The new version of the cell
has an additioné] data path in the verti¢a1'directidn which is used
to propagate %nformafion from the bottom to the top of the'arfay.  A
new cell type has also been added to perform the operation of re-~
vérsing iﬁformation flow in the vertical direction. -

The functional behavior of the modified cell is specified by tﬁe'”
equatiohs in fable II and the diagram in Fig. 5. The new signals are
Z and Z and the new cell type is REVERSE. The signals P, ;, C and C,
used to load specificatfon bits initially are also sthn in Fig. 5.

B. Cell Realization

in order to realize the microprogrammed cell using the PLA

technique, the cell equafions must be put into a sum-of—produtt_form.‘} B

Standard two-level minimization techniques caﬁ be used effectively
" for this éeﬂ. The equations for the cell are g{ven_in Tab1e I11.
- These equations along with the diagram in Fig. 6 completely specify.
the PLA imb]ementation of the microprogrammed cell.
To obtain a random logic rea]ization‘of fhe miéroprogrammed ce11,~;

" the cell equations were modified to reduce the number of gates; Two,



three and four-input gates were allowed and the restriction of two-
level logic was removed. The resulting equations are given in Table

C. Loading the Specification Bits

Loading the spec1f1catlon bits of the microprogrammed cell is
complicated since one of them (the D b1t) can be changed dur1ng exect
of the array. Hence the cell has been designed so that it has two pt
of operation. During the 1oéding phase, the D flip-flop and the thfe
fixed specification flip-flops Q], Q2, Q3 are configﬁred fnto a four-
bit'shift regfster so that a column of cells can be 1oaded'seria11y.
Durfng the execution phase, thelinput to the D flip-flop comes from
the cell logic inétead of the flip-flop 03. The phase is determined

the control signal P which is asserted during the 1oadfng phase. In

‘order to minimize the number of terminals of a cell, the Y ahd.Y

terminals of a ce]l'are also used as input and output for the shift.

register during the loading phase. The organization of the speeifi-

cation‘flip-f1ops is shown in F%g. 6.

D. Sample Designs

1. Multiplier »
| Using the~micreprogramhedAeeiT, it is feasible to
design a multiplier havihg either a parallel or a serial word
orqanization Hence, both deéigns have been comp]eted;. The seven-
bit serial mu1t1p]1er is shown in Flg 7. It requires a 6 x 23-cell
array, or 138 ce11s | A

~ In reference to Fig. 7, both the multiplier and the mu]tip]iCahc

are loaded into the array.
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B. Cell Realization

In Fig. 17, a NAND-NOR realization is shown for cne cobweb ce]l.'
By compariﬁg Figs. 16.aﬁd 17 it can be verified that by setting the
specification bits S], 523 S3Aénq 34 ;ppropriately, the_ce11 output,
z, is.one'of thé spécifiedifunttfons of'the'cellvinput, x and y.

The R-S flip-flop in Fig. 17 is enclosed in dotted lines.

Since each cobweb ée]] has five inputs, as is shown on Fig. 15;
but produces an outpuf fhaf is'dependent on'only one or two of. these,
sbme additional input selection logic to that shown in Fig. 17 ‘is
needed. While the original cobweb cell used cUtpoints'for this
purpose, it is possible to accomplish the.sameArésults using electronic
techniques. - One attractive circuit'for the input se]éction logic js
shown in Fig., 18. This circuit uses open-collector TTL NAND gates =
with a single pull-up resistor per line or buss. If a specification

bit for one of the open-collector NAND pairs is at V then the output

cc?
is the complement of the input. On the other hand, if a specification
bit is at Qrdund, that NAND pair discbnnects the input from the out-
put. With the circuit shown fn Fig. 18, one has the advantage bf a
wired-OR for the inputs, and fdrthermore thé busses can be used fof
bilateral jdmpered'connections.l

The,comp]ete.cobweb cell realization is shown és Fig. 19. This
incorporates the logic of ?igs. i?'ahd 18. The R-S flip-flop of tﬁis

cell can readily be changed to one of another type. For instance, if

one elects to use a master-slave D flip-flop, the realization of Fig. 20

A
~
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results. A block form of’fhe cobweb cef] is shown as Fig. 21.

The PLA imp]ementatigh of the cobweb cell uses two arrays. One
is used to‘realize the selection logic while the other realizes the
cell function logic. This was done to minimize.logic since the cobweb
cell is not well suited for twd-ié&e] togical realization. Thfs im-
-plementation‘also'diffefs.from the random logical implementation in
that the number of specification bits has been reduced by coding the
possible specification words. This was done in this case since the
realization of a decoder in the PLA afray'uses less area than the
flip-flops that are eliminated. The PLA implementation is given in .
Fig. 22 and Table V. It should be noted that the R-S f]ipff]op~in
the cobweb cell is realized by means of.the feedback line in the
second PLA array. | o

C. Loading the Specification Bits

The specification bits for the cobweb cell can be stored in
various ways. -For the phrpose of fhis study it is assumed that,fhey
are stored in a shift fegister within the cell. These shift re-
giéters are arranged so'that the specification bits of a column of
cells can be loaded serially. |

AIn the cobweb cell, this is straightforward since the specifica-“*
tion bits are not changed onée they are loaded. Hence, unlike the
microprogrammed arrays, the operation of the shift register is in-
deﬁendent of the function of the cell. The shift register is

controlled by two additional inputs and outputs, L and C, as shown in



the PLA realization of Fig. 22. Signals L and L are the data input
and output signals for thg'shift register and C is the clock.

D. Sample Designs

1. Multiplier

A seven-bit serié] huitip1ier’which uses the cobweb
array is shown as Fig. 23. It consists of four seven-bit shift
registers which store the multiplier, the mu]tiplicand and the two
halves of the product. The 1ocatiohs of these shift registers in
Fig. 23 are'indicated.by the overlay df Fig. 24. The multiplicand
register contains one extra bit that is initially set to zero. T is
a signal that is a one during the first and each fd]]owing eighth
step and zero during all others. The five control functions for the
~multiplier are'given in terms of the three control lines a,B,y and
~are shown in Table VI. - | |

2. Sequence Detector

A.cobweb-array rea]izaiion for a 31-bit sequenée .

detector is shown as Fig. 25. In this de;ehtor the inverted.output
of each position in the sto}age shift register is exclusive-OR'éd
with the corresponding position in the code. The AND of the exclusive-
OR output is the desired result. | |

In order to illustrate the results when cobweb arrays’designed
according to Fig. 20 are used rather than those designed according
to'Fig. 19, a se&en—bit sequence detector using each of these arrays

appears as Fig. 26. The standard cell design reduires a 5 x 28 array
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of which 23 cells are not used. 'The modified cell desigﬁ requires

a 3 x 13 array of which one;ce]l is not used. Furthermore the §tandard
‘array uses a four-phase c{ock while the modified array requires only

a single-phase clock. | |

3. Feedback Shift'Regjéte} Decoder

A 31-bit feedback shift register decoder is shown as

Fig. 27. It reduires a 29 x 14-cell array.

IV. PROGRAMMABLE ARRAY

A. General Description*

The programmable ‘array is based on an earlier array of simple
NAND cells [6]. The original array, which was due to Spandorfef
and Murphy, is shown as Fig. 28. Eaéh cell in this array is a one,
two or three-input, Sing]e-output NOR or NAND. 1In this simple array
‘the logic of each cell is fixed, while a subset of the interconnectionf
array is chosen by selectively opehing the cutpoints shown as small
circles and triaﬁgles. ‘For ease in drawing, the single output of
some cells (like cell 1,2) is shown“connectea at several points on
the periphery of the cell. This array connects each of n variaﬁles
Xx; or x% ofAneither to ce]]s'(Zi;l,Zj), 1<i jin, through the cutting. -
of one or both of the arcs marked with small circles. Then by Cutting )

all arcs marked with small triangles except those immediately above

the bottom row, one obtains the desired switching function F in a

*Portions of this section are based on [4]
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NOR-NOR form.

An inspection of Fig{.28 shows that the interconnection structure
repeats with a-cyc1e'1ength of two in both directions. Hence, it is
reasonable to define a 2 x 2 subarray as a singlélce11; fhis’is shown
as Fig. 29. This new cell of Fig. 29 has eééi]y determined 1égica1
properties. It is the version of the programmable cell [4] which has
appeared in the literature. . |

As originally reported, the programmammabie cell had two speci-
fi;ation bits which allowed it to be set to one of fouflcondftibns as
follows:

Input x is connected.

Input.x' is connected.

‘Neither input is connected;
_ Collector row is connected.
After a thorough study of the applicability of this array to practical
logical designs, it was determined that a modified version of this
cell would 1eéd to more efficient resu]fs. In thfs modified versioh,

a turning condition was added to the collector row connection such

that the y input was connected to the X output (see Fig. 29).
For this revised cell the logical equations are
X=(5,5,) ' x+5,S,(z"'+y)
ot le ty ' 1
Y=z +S]yf5152 xy+S152x y
L=y'+S{+S5°

where S] and S2 are two specification bits. The revised cell is drawn
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“in Fig. 30. The numbers in the cell of part (b) of that figure
represent the values for thg specification bits S], 52, expressed
in decimal form. |

B. Cell Realization

A simple rea]izatioh for fhié pfogrammab]e cell would be in
terms of a uniform array of NAND elements Therefore, following
[4], a 5 x 5 array of NAND's whlch rea11zes the cell of Fig. 30 is
drawn as Fig. 31. Th1s ce]] a]so can be rea]1zed using PLA and
simi]af techniques. |

It is seen from Fig. 31 that the following count of NAND elements
is used: |
1-input
2-input
3-input

s N oo oo;

4-input
C. Loading the Specification Bits

In Fig. 31, the two flip-flops which represent S, and S, are set
and reset as fo]]ows o ' '

1 L LbC]CZ-

Set S
Resgt S]: LaLbC]Cé_
Set 52: L LbC]CZ'

Reset 52 LaLbc]CZ

The La and L, lines are used in a coordinate-access method which

b ‘
allows one cell like that shown in Fig. 31 to be selected from an



array of cells. Such an array is shown as Fig. 32. In Fig. 32 the
signals C] and C2 result in the appropriate specification bit being

set or reset accordihg to the above équations.

D. Sample Designs . N ' o - 7. -

1. Multiplier

In order to find practical realizations for this
simple microprogrammed cel]uiar array, it is nécessdky to perform
any storage externa]]j to the array. It sth1d be ncted for the
other two cellular arrays that were stUdiéd that this was not a re--
quirement, L |

For this feason, the design ofva séven-bit multiplier reduces‘
to the design of a seven-bit péra11e1 adder combined with the neceséafy» .
contro]s.\ One"bit of such a gated full adder is shown as Fig. 33;
seven such arrays laid out horizohtia]]y in a 6 x 63 array yie]d the
Hcomp]ete adder. The remainingvegisters,'as well as the 1oad and shift
controls are outsfde the array. )

2. Sequence Detector

| A 31-bit sequence detector'requires a s x 124 array,'g,' 
bf programmable cells. One of the 31’stages for this detector is
shown as Fig. 34. As in the case for the multiplier, the two registers

for this sequence detector circuit are external to the cellular array.

3. Feedback Shift Register Decoder

In order to realize a feedback shift register with a
programmable cellular array, the actual register is formed ex-

ternally, and only the logic of the feedback is determined in the
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array. From Fig. 30 it is seen that a éascade of 0, 1T and 2 cells,
with the z input having fhe value qf 1, can be found for any product
of literals on the xvinpuwl Furthermore, thé 3-cell can be used to
form the disjunction of these conjuhctions. For example, it will be
supposed that the fo1lowing feedback logic.is to be found: ‘
F=(x]$x36x5Y=(xixéx5+xix3xé+x]xéxé+x]x3x5)'
A programmable array which accomplished this is shown as Fig. 35.
Clearly, any other feedback logic can be found in a similar array.
For instance, a 31-stage feedback shifi register which uses 16 terms
in the feedback equation requires a 32 x 16-cell array plus the ex-

ternal shift register,.

V. COMPARISONS

A. Assumptions

Estimates of the chip area required for the cell imp1ementatioh5‘
described in Section II, III and IV have been calculated. In order
to make these ﬁélcu]ations, the area requirements'for gates, random
logic wiring, PLA arrays and flip-flops given in [5] have been used.
Although these figures may véry considerably with different technology
and fabrication techniques, it is felt that they will give valid re-
lative comparisons of the different implementations considered.

For the area of a MOS gate, the following formula was used:'

(AREA)G=(12 mils)x{number of pins/gate)x(1.2 mils/pin).

This figure does not include the area needed to interconnect the gates.

It was assumed that frbm 50% to 80% the circuit area was used for
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interconnection leads.
A PLA array uses from one to two square mils per bit. Thus the
area of an array is given.by the following formula.
| (AREA)A (1 or 2 mils ) (number of product terms)x (number of sum
terms + 2 (number of var1ab1es)) '
The area required for the spec1f1cat1on bit shift register was
assumed to be from 100 to 300 m1152 per stage. "

B. Area Ca]cu]at1ons

The results of the area~ca1cu1ations are given in Tables VII and
VIII, In TableVII the area required for PLA implementation is presented

for four different assumptions. The area required per shift register -

2 or 300 mi]s2 and the area

2

stage was assumed to be either 100 mils
required per PLA bit was assumed to be either 1 m1'12 or 2 mil The
are requirements for random logic implementation were also computed

“for four different assumptions as shown in Table VIII.

C. Discussion

The numbers in Tab]esVIIand VHIprov1de a measure of the re]at1ve’<
complexity of the m1croprogrammed cell, the cobweb cell and the |
programmable cell. Some observations on these results can be made:

1. Moét_of the trends 1in the table can be predicted from the

fact that the area used forAce11 logic dominates for-the
microprogrammed cell, while the shift register dominates
for the cobweb cell.

2. In all cases consideréd, the PLA implementation used less
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area than the random implementation. This difference was
greatest and is nearly the same ratio in the case of the
micropkogrammed:and thé‘pfogrammab]é cells, but fhe random
logic version of the cobweb cell still requires approximately
twice as much area as the PLA version. |

3. Comparing the random logic versions of the three cells, the
cobweb cell requires from 40% to 80% as much area as the
microprogrammed cell, while the programmable cell requires
from 21% to 24% as much area as the microprogrammed cell. .

4. Comparing the PLA verSibn§ of the two cells, the cobweb cell
requires from 60% to 120% as much area as the microprogrammed
cell, while the programmable cell requires from 25% to 30%

as much area as the microprogrammed cell.

"VI. SUMMARY AND CONCLUSIONS

In Table IX and X the nine combinations of array types and designs
are summarized for PLA and random 1ogic'imb1ementation; For row 1 of
these tables, the serial version of the microprogrammed-cell multiplier
was used. In row 3, the programmab]é~rea]ization inc]udes 22 bits
of storage that is externa] to the cellular array. In row 6, the
programmable array includes 62 bits of external storage. For row 7,

a linear feedback shift régister having a serial load is assumed.
Sixteen terms areiassumed iﬁ the feedback equations on rows 7 and 9.

On row 9 an external 31-bit shift register is assumed as well.
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While Tables IX and X gives some méasure of comparisons, it should be
emphasized that Becausé of the essentia]'differences among the arrays
that were studied, a‘direét numerical comparison of chip sizes may
be misleading. In particular, the sizes shown in the téb]e.for the
programmable array are low because al] storage except for the
specification bits apbeas outside the array. Thus, while the micro-
programméd and the coﬁweb realizations each are in terms of single
arrays, the'programmable realizations are in terms of two or more
arrays when the external registers aré counted;

It should a]so'be observed that in some cases the ground rules
dfffered slightly for the comparative designs becahse they were
accomp]ished by different persons at different times. |

With this.caveat in mind, some conclusions can be drawn from
the results in Tables IX and X. First, it is c]éér that és the cell is
made more complex, the effiéiency of the design increases. Second,
the programmable array could be greatly improved by the addition.of.
one or more storage bits per cell. Third, the cobweb array could be.
imbroved by using a more sophisticated flip-flop, and perhaps by
increasing its number of storage bits per cell. Fourth, sinﬁe all
~three cellular arrays that were studied were modified in the light
of practical design tasks, it is expected that further study would
lead to even more improvements td these and other cellular arrays.
Fifth, PLA or similar techniques appear to be better suited for the

realizations of all the cellular arrays than is random logic.
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QUTPUT

TERMINAL .

’ CELL A A - ~ A D . D
TYPE X Y S L G - set clear
) - ADD XYVXDvYD | (GvL)YvGL(X®Y8D) | S L G GSY GSY
2 - COMP Xx(Y8b) (GvL)YvaLY S L G GSY - 6SY
3 - REGISTER D (BvL)YvGLD S L G GSY GSY
4 - NULL X Y S o G 0 0

L-SHIFT - h ~
5 - (0-0) R-SHIFT DYVDX (GvL)YvGL(ﬁXvDS) DSvDY | L G 0 0
' (D=1) '
6 - LOCAL | Y Y SvD6 | LvbG G 0 0
(D=0)  STORE ,
| (p=1). | .
7 - BOUNDARY . ovx | Gyve(Byvox) DSYVDS | L B(LvS) 0 0
. (D=0)  BEND o e | -
| (D=1)
8 - BLOCK DX GYvG(DXvDY. 'S Y G 0 0
©(D=0)  PARTITION{. o ' ~
(p=1)
 TABLE I. CELL EQUATIONS FOR THE MICROPROGRAMMED ARRAY ~ -



OUTPUT

ERMINAL
CELL . A A . ) ) b b
TYPE X Y Z S L G set clear
1 - ADD XYVXDVYD | (GVL)YVGL(X®Y®D) | z s L G GSY | GSY
2 - COMP X (YOD) (GVL)YvGLY z S L ¢ Gsy | esy .
3 - NULL X DYvDZ DzvDY | § L G 0 0
"(D=0) REVERSE '
(D=1)
4 - REGISTER D (GVL)YvGLD 2 S L ¢ GSY | 6SY
5 - L-SHIFT DYvDX | (GVL)YVGL(DXvDS) |z DSvDY |L G 0 0
(D=0) R-SHIFT » ' :
(D=1)
6 - BOUNDARY DvX GYvG (DYVDX) z DSYVDS | L D(Lvs) | 0 0
. (D=0) BEND o
7 - Y. Y z svbe |LvDG |¢ 0 0
8 - DX z s Y G 0 0

(p=1)

" PARTITION

GYVG(DXVDY)

TABLE II.

MOD;;IED“CELL EQUATIONS FOR THE_MICROPROGRAMMED ARRAY




- e s &

6>

= QQ,Q;D + Q,QD X + QQ,Q5X + QQ,Q5Y + QQ,Q5X + @ QQyD + Q)QyD X + QD ¥ +

QQ,X ¥ 666DY+61Q3DXY+62Q31_)X§

2Q3 Y L+P Q1Q3Y L+?® Q1Q2Q3Y + 7 Q QZY D+ P Q2Q3Y D+

rcl
ol

+ P QQY L+

[S4)
n

vl
waO
]
@
+
~
N‘o

.O!

'6 3? GL+§6{62}??DGL+PQ1Q2QXYD+'§-66§ YD+

)
»<|
*ol
ol

QQ)Q3¥ D+ P QQ,Q,Y 6 L +

P QQ,Q,0 G L + P QQ,Q;X D G + P QQ,Q,4X DG+ P QQQ;X D G L + P Q1Q2Q3p G .L. S + P QQ,Q,D 2 '+ PD

3 - BIQZBBD Y +7Q,Q,Q,D 2 + Q2 + Q2 + Qy2 ‘
G = Q06 + Q6 .+ QQ,6 + Q,Q,Q;D L + Q,Q,Q,D S
L= ElL + QL + QL + Q1Q2535 G ‘+ Q,Q,Q,Y
S = Els + QS + §3D ?,"_‘535 s +'15Y S + QIQZ_Q?D G + Q1'62'63D L | | -
set P BIBZG Y+ P 61Q3G Y+ P Q3
Dclear = E EIGZG Y+ P 61Q3G Y+ P 63
Dclock = PC +-§ §
elock = clock
P=pP ‘

Table II1. Microprogrammed Ce_ll Equatidns' for PLA]Iinplementation .




5¢y

1Q3

= QQY(DHY,) + D Qu(Q)Q,Q; + QQ, + QX + QX Y) + Q,Q,X(Q, + D Y + D) +

(QX+XY+Q2QDY)

¥

=2 (DG L(Ql'ciz'ri Y +Q,Q,Q, + Q,Q,Q58) + D X G(L QQ,Q5 + L QQ,¥ + Q,Q,Q,) +

g Q2Q3(Q1D x + QlY L) +Y Q2(G + QIL' + Q3L + Q1Q3x D) +

AY Q3(G + QlL + QIQZD + Qle) + Q3Q1(Y DX+ Q2D Z) + QIQZD Y} +PD

N2

= QD ¥+ D 2) + 2(Q + Qy + Q) = QD ¥ Q, + D 2 Q) + 2(Q +Qp + Q)

§ = 6@ +Qy + Q) + D Qq,(QL + Q;8)
L = L(Q, + Q; +Q,) + @Q,(2;D G + Q,¥)
§.=-s(61 + Qé);f S QD + 8 D(Q, + V) + Q£33(D Q)6 + Q,Q,D ¥)
Dyt P QG ¥(Q, + Q) + P Q3 = Y(P QG Q, + P QG Q) + P Qq
clear = F 6 Y@, +0) + 2 Q = Y(® Q0 G Q, +P QG Q) +PY
clock =B C+PS
M‘icr;)progl:ranun.ed Ce11> Equations for Randot'n Logic _Implegentation

Table IV.




>4

=558

5671

S 1

SSI +3

586 752 F 855¢8,T

3 + 85868714 + 8515

¥ = Sg8¢810h * Sg5g510T, + 5g555,015 + 888951014 + Sglg
2=75555, +555Y+555X+55,5,Y+57553%+ XY +sFAT4ss SR 50
Q=5XY+QS +QY

‘Table V,

Cobweb Cell Equations for PLA Implementation




FUNCTION

OPERATION PERFORMED

NO OP

MULTIPLY

LOAD MULTIPLIER,
CLEAR HIGH PRODUCT,

. CLEAR ADDER

QUTPUT HIGH PRODUCT,
SHIFT LOW PRODUCT TO
HIGH

LOAD MULTIPLIER, SHIFT

PREVIOUS CONTENTS TO -
MULTIPLICAND |

TABLE VI. SEVEN-BIT MULTIPLIER CONTROL FUNCTIONS




AREA/ VAREA

DIMENSIONS :

CELL : PRODUCT | LOGIC # BITS Q0me2/bit of storaqe | 300me2/bit of staorage

TYPE INPUTS | QUTPUTS | ROWS TERMS LEVELS | STORAGE Tme2/bit [2me?/bit TmeZ/bit [ 2me2/bit
MICRO- . '
PROGRAMMED . 12 33 63 - 2 4 2479/50 |4558/68 3279/57 |5358/73
COBWEB 18 40 23 4 10 1920744 | 2840/53 3920/63 | 4840/70
PROGRAMMABLE 9 25 15 2  2 : 575724 950/31. 975/31 | 1350737

FOR PLA IMPLEMENTATION

"TABLE VII.

AREA CALCULATIONS




" CELL

NUMBER OF GATES

AREA/ VAREA

100mg?/bit of storage

LOGIC | TOTAL | # BITS 300me2/bit of storage
TYPE 1 INPUT [ 2 INPUT |3 INPUT {4 INPUT | 6 INPUT |LEVELS | # PINS | STORAGE |[50% Wiring] 803 Wiring|50% Wiring[B0% wiring

MICRO- ._ . '

PROGRAMMED 0 43 26 - 20 1 6 340 4 10192/101 | 24880/158 [10992/105 |25680/160

COBWEB 0 34 3 1 o 7 129 . 14 5115/71.5| 10688/103 | 7915/83 |13488/116

PROGRAMMABLE 5 8 7 4 0 2 82 2 2361/49 5904/77 | 2361/49 | 5904/77

TABLE VIII.  AREA CALCULATIONS FOR RANDOM LOGIC IMPLEMENTATIO& '

' -



ARRAY SIZE-PLA IMPLEMENTATION
(UNITS ARE INCHES?)
NUMBER|100 Mils?/bit in Shift Reqister}300 Mils?®/bit in Shift Register
CELLULAR OF [T Mils?/bit [z Mils?/bit . 1 Miis?/bit ]2 WilsZ/bit
ROW | TASK -. ARRAY quiELLS in PLA array |in PLA array in PLA array |[in PLA array
V| seven | MICRO- 1138 | 0.382 - | o0.629 . . 0.453 . . | 0.739
| PROGRAMMED T | |
2 | BIT | coBwEB 432 | 0.829 1.071 | 1.693 2.090
- | muLTreLIErR | | R | -
3 PROGRAMMABLE | 342 | 0.199 ] 0.327 0.341 | 0.469
N [P MICRO- 165 | 0.409 1 0.752 - 0.541 0.884
PROGRAMMED . . - |
5 | SEQUENCE COBWEB 480 | 0.922 1.363 1.882. | 2.323
DETECTOR | . . T
6 PROGRAMMABLE {| 610 | 0.356 0.585 - -] o0.613 0.843
7 13y-piy - | MICRO- 720 | 1.784 - | 3.282 -] 2.31 3.858
PROGRAMMED o : -
g | FFEDBACK 1 copyes | 406 | o0.780 1.163 1.592. | 1,965
SHIFT - o
DECODER

f,i-_TABLE' IX. SUMMARY OF PLA IMPLEMENTATIONS



ARRAY SIZE-RANDOM LOGIC N
o (UNITS ARE INCHESZ?) -
NUMBER|100 Mils?/bit in Shift Register|300 Mils?/bit in Shift Register
| ceLLuLAR - OF = : -
ROW | TASK | ARRAY CELLS |50% Wiring | 80% Wiring 50%-Wiring | 80%Wiring
1 | MICRO- 138 | 1.406 3.517 o lsir 3.544
SEVEN | pROGRAMMED < . - |
2 | BIT COBWEB 432 | 2.210 4.617 | 3.419 | 5.827
MULTIPLIER - | . o
3 | PROGRAMMABLE || 342 | 0.809 1.824 o813 | 1.829
R MICRO- 165 | 1.682 4.105 | 1.814 4.237
PROGRAMMED || |
5 | SEQUENCE | copuep: Al 480 | 2.455 1 5.130 3.799 6.474
DETECTOR | | ' | h o
6 o _PROGRAMMABLE || 610 | 1.446 - 3.256 1.459 | 3.269
A P MICRO- 720 1 7.338 | 1791 Ct7.914 | 18.48
- T | proGRAMMED || S R IR
g | FEEDBACK CORWEB 206 | 2.077 4.339 - 13213 | 5.476
. | SHIFT o , , S | o o
9 | REGISTER PROGRAMMABLE ||s12 | 1.094 | 2.731 19000 | 2,737
DECODER

TABLE X. SUMMARY OF RANDOM LOGIC IMPLEMENTATIONS
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OUTPUT TERMINALS

‘ Fi'g.'1.' Microprogrammed array interconnection structure,
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Fig. 2. Microprogrammed cell variables.
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Fig. 3. - Microprogrammed active cell symbols. 3
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'Fig. 4. Microprogrammed inactive cell symbols.
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. Fig. 5. Modified micropro.grammed cell variables.



N
~ ——-PLA ARRAY—— —
My - FT

y >4 | . | _Dol
X >— o | J K o
z > Q q
9> -6—’——1 |
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~Fig. 6. PLA realization for the microprogrammed cell.




S S multiplier multiplicand
KI3 ’jz Ki CT-K. . Jys Yo Y5 ----- Yi Yo xls X6 X5 ----- Xi  Xo
1| 5 G % 3
A
7.
L G
- | . T . . 5
— N\ OTN\O ¢ — NI Nt Ne N0 — -~ O tN\0
S| LG TR TR RN R RS TR R RN RY R RN IR
] I [ 1 |
p N\, ¢ b . --- - I —¢ X Kgh— = = = X 4
s P . G-—Ao—-AO-—A' 0B j'AO:---,:Ao Ao Ao N 'AS_--_—*A'_A%
1 I [ ] T ] 1 | I
S (K& NS n/gnign/gnyunigny
1 | I | [
cl®| K kK& - <
v | : ' Zs Z;3  Zp ----- Zg Zy Zg Zs Zg - - - - - Zo
END | | | .

. F16. 7. MICROPROGRAMMED ARRAY SERIAL MULTIPLIER USING A PARALLEL ADDER.
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16, 8, MICROPROGRAMMED ARRAY PARALLEL MULTIPLIER®
PHASE 1 - LOAD MuLTIPLICAND (K2.KD)=(L.0).
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F1e. 9, MICROPROGRAMMED ARRAY PARALLEL MULTIPLIER:

- PHASE 2 - execute (K2.K1)=(0,1),
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Filé. 10. MICROPROGRAMMED ARRAY - SEQUENCE DETECTOR:
- PHASE 1 - SHIFT (KgKoKiK)=(0L11).

PHASE 2 - SET SEQUEnce (101C8).,
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Fig. 11. Microprogrammed array: linear FSR

- (load - 10, read - 01, ex - 11)(parallel initial load).
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Fig. 12. 'Microprogrammed array: linear FSR

(load - 110, read - 100, ex - 011)(serial load). -




7 kgl [N] RO
S| K4 =8 ] RN RN RN R\ R
g 6| R ol
L G| (A0 RORAI
L GRS c|’
L G /XCD P | c I c | c I
L G
L G
Fig. 13. Microprogrammed array: nonlinear FSR

© (load - 10, read - 01, ex - 11)(parallel initial load).
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~ Fig. 14. Microprogrammed array: nonlinear FSR

(]oad - 110, read - 100, ex - 011)(serial load);-
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INDEX S] S2 53 54 z
0o.{0 0 o0 ofn
1 0 0 0 1 y'
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4.10-1 0 0 xfy‘
5 |0 1 0 1| xy'
6 0 1 1 0| zéy
7 0 1 1 110
Fopr v 01 | x=s, y=R

Fig. 16.

Functions of one cobweb

ce]];;“
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Fre. 17, NAND-NOR REALIZATION FOR THE INTERNAL PORTION OF ONE COBWEB CELL. .
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Fig, 18. [INPUT SELECTION LOGIC FOR THE COBWEB CELL.
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- 'F16 19, TTL REALIZATION FOR THE COBWEB CELL USING AN R-S FLIP-FLOP,




‘j, Only | each required / Row or Column
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‘ tﬁar indicates open collector output L ' ‘ ' -

- e T . Fi16. 20, TTL REALIZATION FOR THE -COBWEB CELL USING A MASTER-SLAVE D FLIP-FLOP.
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Fig. 21. Block form of one cobweb cell.
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Fie 22, PLA IMPLEMENTATION OF THE COBWEB CELL.
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FiG, 23, COBWEB REALIZATION OF A SEVEN-BIT SERIAL MULTIPLIER.
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Fic. 24, OVERLAY FOR THE COBWEB MULTIPLIER.
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f16., 25. 31-B1T SEQUENCE DETECTOR.



Modifled Cobweb Cell
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F1G. 26. SEvEN-BIT SEQUENCE DETECTOR USING WO COBWEB CELLS.

Standard ‘- Cobweb Cell
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Fic. 27. COBWEB REALIZATION FOR A 31-B1T FEEDBACK SHIFT REGISTER DECODER.
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Fig. 28. Spandorfer array.

Fig. 29. Original programmable array cell.
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(A) NOTATION FOR THE CELL.

Xsy+zfz

Y=y+z' o Yey.2

(8) SPECIALIZATION,

F16, 30. MoD!FIED PROGRAMMABLE ARRAY CELL.
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~ "Fre. 31a. NAND REALIZATION OF THE MODIFIED PROGRAMMABLE CELL.
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Fig. 32. Overall organization of the modified programmable arréy.'
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Fie. 34, ONE STAGE OF A SEQUENCE DETECTOR,
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Fig, 35, SAMPLE LOGIC FOR FEEDBACK SHIFT REGISTER DECODER. -



