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WIND TUNNEL INTERFERENCE FACTORS

FOR HIGH-LIFT WINGS IN CLOSED WIND TUNNELS
Robert Glenn Joppa

SUMMARY

A problem associated with the wind tunnel testing of very
slow flying aircraft is the correction of observed pitching
moments to free air conditions.. The most significant effects
of such corrections are to be found at moderate downwash an-
gles typical of the landing approach.

The wind tunnel walls induce interference velocities at
the tail different from those induced at the wing, and these
induced velocities also alter the trajectory of the trailing
vortex system. The relocated vortex system induces different
velocities at the tail from those experienced in free air.

The effect of the relocated vortex and the walls is to cause
important changes in the measured pitching moments in the wind
tunnel. '

A method of calculating the interference velocities is
presented in which the effects of the altered wake location
is included. The flow fields of a lifting system are calcu-
lated in free air and in the tunnel, and when compared the
differences are charged to tunnel wall interference. Itera-
tive methods are used which require a large computer. The
tunnel walls are represented by a vortex lattice and the
results compared with classical methods for the undeflected
wake case. :

Results are presented comparing the tail interference
angles, with and without the effect of vortex wake relocation,
which show the importance of the wake shift. 1In some cases
the tail angle corrections are reduced to zero and may even
change sign. It is concluded that to correctly calculate the
interference velocities affecting pitching moments,. the
effects of vortex wake relocation must be included.



SYMBOLS

R Aspect ratio

[a] Matrix of coefficients of wall vortex elements

{B} Column matrix of coefficients of wing vortex system
b Wing vortex span

bg Wing geometric span

C Wind tunnel cross-section area

CL Wing lift coefficient

e Distance downstream to wake roll-up

h Normal aistance to a point p from a line contain-

()

ing a vortex segment identified by subscript

h( ) () Normal distance to a point p from a plane contain-
ing vortex segments identified by subscript

(s>

. Height of wind tunnel

1,3,k Unit véctors in the directions X, Y, Z

L,G Dimensions of rectangular vortex ring (Fig. 8)

n Unit vector normal to vortex ring

P Point having coordinates X, Y, z

R( ) Vector from point (X,Y,Z2) to end of a vortex vector
S indicated by subscrlpt

R( ) Magnitude of component of vector R( j indicated by

() second subscript

Sw_ Wing area

g ' Vector representing a vortex segment of strength T
and length S

S( ) Component of S indicated by subscript

v Unit vector in the direction of the total velocity

vector at a point



<|

()

=|

X,Y,2

Velocity induced at a point

Y

Velocity component in direction indicated by
subscript

Vertical component of wall-induced inter ference
velocity

Width of wind tunnel

Vector representing a wing bound vortex of strength
Ty
Cartesian coordinate of a point

Angles defining direction to a point from the end
of a vortex segment (Fig. 7)

Circulation strength of a vortex

Difference between angle of attack in free air
and in wind tunnel

Wind tunnel interference factor
§ Evaluated at tail location

d Evaluated at wing location



I. INTRODUCTION

The problem of how to do meaningful testing of high lift
systems in wind tunnels has been with us for some time. That
wind tunnel testing is necessary for new types of slow flying
vehicles is evident because the nature of the problems of sta-
bility and control are different than in flight at cruising
speeds.

To obtain the necessary lift at low speed requires that
incoming air be deflected through a large angle and/or accel-
erated to a high discharge velocity at a moderate deflection
angle. In either case the change in angle or increase of
velocity is no longer small, and so linearized assumptions
are no longer valid. Pitching moments felt by the airframe
due to the large turning angle are generally large and non-
linear, and vary with forward speed as well as with angle of
attack.

The gross effects may be estimated by recourse to momen-
tum methods. Unfortunately, the gross effects are modified
by real fluid effects that are configuration dependent. Lift
is developed by real devices such as rotors, fans, and wings
with flaps. These devices are operated at or near their max-
imum capability, i.e., near the point of flow separation., In
many cases, flow separation and re-attachment occur cyclically
during normal operations, so that linear relationships such as
between forces and angles of attack, do not usually exist.

As a result of all this, classical aerodynamic theory,
which is linearized and limited to small angles, is incapable
of predicting performance. The only recourse left to the
designer, then, is to go to the wind tunnel to determine exper-
imentally the characteristics of a new machine.

Unfortunately, the wind tunnel introduces its own set of
problems. While it does indeed permit the solution of the
detailed problems of separation and mutual interference by
direct analogy, the quality of that solution depends upon the
guality of the match of the necessary similarity conditions.
These are the exactness of the model and the matching of
Reynolds numbers and Mach numbers.

High lift systems usually involve rather intricately de-
tailed parts such as blowing or suction slots, rotors with
dampered hinges and important elastic properties, or internal
ducting and fans. The accuracy with which these details can
be matched imposes some limit on the smallest feasible model
size; and, in addition, these elements may be the ones most
sensitive to mismatching of Reynolds number and Mach number.
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Matching of Reynolds number and Mach number, of course,

- are mutually exclusive except in the case of a full scale
model. Since the flight speeds of concern are usually low,
one's first thought is that the test Mach number might be
increased in favor of a larger Reynolds number, but this is
not usually possible. At high lift coefficients, local flow
velocities are often very high and large enough to be affected
by the local Mach number. Where rotating parts are in use,
the Mach number of an advancing blade ‘is frequently the con-
trolling factor. Thus, the test engineer is forced to do
what he has always done, to accept a lower Reynolds number
and attempt to extrapolate to full scale results on the basis
of previous experience. This experience is not extensive at
present and so he does this very reluctantly, insisting on
the largest possible model for a given tunnel.

The wind tunnel also introduces another set of problems
which are a direct result of the physical presence of the
boundaries of the test section. The flow from a high lift
system—has—a-large—local—downwash-angle—and-velocity, and_in
free air may require several times its own characteristic
length to reach final values which may still be very large.
The wind tunnel walls force the final value of downwash angle.
to be zero and alters both the direction and curvature of the
flow in the immediate vicinity of the model by an amount which
is significant with respect to the camber of the lifting sys-
tem, especially when the model is long (e.g., a rotor, or a
horizontal tail aft of a wing).

That such flow interference exists has of course been
recognized from the earliest use of wind tunnels, and class-
ical theory exists for the prediction of the interference
effects and for the correction of data. Unfortunately, the
classical work depends on the assumption that the downwash
velocities are small and that the wake of the 1lifting system
goes straight downstream.

Three methods of coping with this lack of an adequate
interference prediction theory are available. One can use a
very small model in available tunnels, build bigger wind tun-
nels, or develop new theory. A criterion for smallness of
models was put forth in 1956 (Ref. 1) which suggested that
the change in curvature of the flow would be sufficiently
small if the interference angle at the lifting system cal-
culated by linear theory, was never larger than 2° That
this leads to extremely small models is demonstrated by Fig.
(1) where it is applied to a helicopter rotor. These small
models, of course, aggravate an already serious Reynolds num-
ber problem; and so the industry, still having no adequate
theory, began in the early 1960's to build larger wind tunnels
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having test sections of the order of 400 to 1000 square feet.
Even this new generation of wind tunnels is inadequate for
matching Reynolds number, although the new facilities do per-
mit construction of models large enough that detail can be
matched with available fabrication techniques. A consider-
able amount of effort has been devoted to the wall interfer-
ence problem but a complete solution is still not available.
This paper is devoted to the development of a new method of
predicting wind tunnel wall interference for an important
class of slow flying vehicles.



II. DEVELOPMENT AND CURRENT STATE OF
WALL INTERFERENCE THEORY

In the classical wind tunnel interference problem, it is
assumed that the model lifting system can be represented by a
lifting line and a pair of vortex filaments which trail down-
stream in a straight, level line from a point near the wing
tips. A cross-section normal to the flow is examined down-
stream from the plane of the lifting line, and a pattern of
other vortex filaments is chosen outside the tunnel walls in
such a way that the tunnel walls become streamlines of the
flow. The effect at the model of the added vortices then con-
stitutes the interference effect of the walls.

Prandtl presented a solution for the circular wind tunnel
(Ref. 2) which required only a single pair of vortices outside
the tunnel wall to cancel, at the wall, the effect of the
trailing pair inside, but he did not include the effect of the
lifting line itself. Consequently, his solution is valid only

at the plane of the lifting line and cannot give the longitu-
dinal variation of the interference angles.

Glauert followed (Ref. 3) with a solution for a rectangu-
lar tunnel. Since the walls were planes, it was required only
that each wall become a plane of symmetry of the vortex lines
inside the tunnel and those outside it, thus leading to a
doubly infinite set of vortex lines. In the rectangular tun-

" nel there is no problem of how to handle the bound vortex, for
its external image clearly joins the images of each trailing
pair. His solution then is valid for points fore and aft of
the lifting line, and it was possible to show that the effect
of the tunnel walls was different at the tail than at the wing.

Other authors have developed solutions for other tunnel
shapes, but no proper image system has been presented for any
other shape than the rectangular tunnel. Lotz (Ref. 4) was
successful in developing solutions for circular and elliptical
cross section tunnels which accounted for the effect of the
bound vortex. She added to the image system of Prandtl, a
potential function expressed in infinite series form, which
was required to cancel at the wall the normal velocities at
the wall caused by the bound vortex and also expressed in
infinite series form. The accuracy of the results depends on
the evaluation of the truncated series, and no indication is
given in the original report of the probable error.

Clearly the basic assumption of the straight downstream
wake trajectory had to be modified for the consideration of
the high downwash systems of interest here. The most success-
ful change to date was made by Heyson (Ref. 5) who let the wake
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be straight, but at an angle downward until it struck the tun-
nel floor. The zero size lifting system was represented by a
point doublet and the wake by a string of such doublets. When
extending to a finite span wing, a series of such point sys-
tems are placed side by side; and, since internal singularities
cancel each other, the result is equivalent to a lifting line
and a single trailing pair of vortex filaments. The angle of
descent of the trailing system was taken originally as 1/2 the
final downwash angle calculated by momentum theory for the
span-circle mass of air required to produce the lift of the
system. In a later publication (Ref. 6), he modified this to
1/4 of the final downwash angle, agreeing with a calculation
by the author that vortex filaments of a wake move downward

at approximately 1/5 the final momentum downwash value. Thus,
the angle of descent used in later work is representative of
the final wake trajectory, in free air, of the trailing vortex
system. Image systems are then constructed outside the tunnel
(rectangular cross-section). At the point where the trailing
wake strikes the floor, it is met by the first image wake,

and they are assumed to change direction and move aft together
in the plane of the floor.

With the image system constructed as described, it was
possible to sum the intérference velocities at the model due
to the external vortex system. It should be noted that the
doublets, normal to the plane of the downward trailing pair,
have fore and aft components as well as vertical components;
and, consequently, longitudinal as well as vertical interfer-
ence velocities exist. At the floor intersection, only the
vertical components are canceled; the longitudinal components
add and are retained.

Some controversy exists about the degree to which these
interference calculations are applicable. Evidence has been
presented (Ref. 6,7,8) to show that good results are achieved
when calculating interference velocities at the model and
using them to correct 1lift and drag. The method has not been
uniformly successful in correcting pitching moments, however.
As an indication of the controversy, it may be said that
another laboratory has offered evidence that wind tunnel and
flight stability data may agree more closely when no correc- .
tions whatever are applied. (Ref. 9). :

The solutions of Heyson, and others who have tried to do
something.similar, are deficient in at least two respects.
The first and most obvious is that the assumed wake position
is not correct. Others have attempted to improve on the wake
trajectory by using other assumptions or by modeling experi-
mentally measured wakes, and then using Heyson's computations
to calculate the interference velocities due to images of
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these more correct wakes. Results are reported to be little
"changed at the model location, but they are still inadequate
for pitching moments.

The second deficiency is the one which is the more impor-
tant and which no one has yet attempted to account for. This
is the direct effect on the model of the fact that the wake
trails along a different trajectory in the tunnel than in
free air. The effect arises this way. The presence of the
boundaries (as made evident by the image system) causes upwash
velocities which are felt everywhere in the tunnel; by the
model tail and also by the vortex wake itself. The result of
these upwash velocities is to cause the vortex wake to be
higher in the tunnel than in free air. This new higher posi-
tion is different with respect to the tail. For example, if
the tail is above the wake in free air, the wake will now be
raised closer to the tail and will induce on the tail a strong-
er downwash than in free air. This effect may equal or exceed
the wall or image induced upwash, and thereby dominate the
pitching moment interference.



III. A NEW APPROACH TO INTERFERENCE CALCULATIONS

A new approach to the problem is offered in this paper
which attempts to remove the two deficiencies of former meth-
ods. The interference must be computed for the correct wake
shape, and the direct effects of the relocated wake must be
included. In order to do this, the flow field of the lifting
system must be predicted both in the free air case and in the
wind tunnel, and the differences in flow velocities be charged
to wall interference. 1In order to develop the method, certain
restrictions to the problem were defined for practical reasons.

The principal effect which it is desired to show is that
the relocation of the wake by the interference of the walls
contributes a major influence on pitching moment interference,
which may be added to or subtracted from the usual interfer-
ence calculations. It is not difficult to show that the effect
. of a shift in the wake position will have a maximum effect when
the wake is only moderately deflected with respect to the tail
or the plane of a rotor. Figure (2) shows a section taken
(Trefftz plane) at a location representative of a tail with a
pair of trailing vortices at a distance h below the tail.

The downwash is given by the Biot-Savart equation, and is

T ,
b h ,2
1r5[14'(57§) ]

w =

The ratio of the downwash velocity to that experienced when
the wake is at the same height as the tail, (h=0), is given
by ' .

w _ 1

Wi _ oAy _h 2
(h=0) 1 + (b/2)

The maximum rate of change of downwash with height occurs when
h _ /1 _ '
572 =V 3 0.577 .
If the length of the model is of the same order as the
span, and the model is in a level attitude, then this corres-

ponds roughly to a downwash angle of the vortex wake of about
16°. Helmbold (Ref. 10), has shown that the maximum 1ift
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possible due to circulation alone will produce a wake trajec-
tory angle of just over 20°. Therefore, the attainable values
of circulation lift place the wake in the region where changes
in its location will produce the maximum effect on the down-
wash at the tail. ‘

Greater wake trajectory angles are of course produced by
highly powered lifting systems where the power is used to
increase the mass rate of flow through the system. Analysis
of highly powered systems is not included here for two prin-
cipal reasons. First, the larger downwash angles remove the
wake vorticity further from the tail plane, and so the effects
of wake relocation become less important. If the downwash
angles are large enough, the tail is almost unaffected by
changes in wake location, and in this case the methods of
Heyson become appropriate, and indeed have given good results.

A more practical reason for avoiding larger downwash
angles is that at some point interaction with the tunnel walls
produces an impossible situation. In the limiting case of
hovering inside a test section, the forces measured are clear-
ly different from those in free air because of recirculation
of the air. For a range of forward speeds above hovering,
recirculation still exists in the tunnel where it will not in
free flight, even near the ground. At speeds just above re-
circulation, experiments by Rae (Ref. 11) indicate that forces
measured are so far from what is expected that test results
are highly doubtful and may be useless. Apparently the rotor
wash is interacting with the entire tunnel flow and producing
a large circulation very close downstream in a way which has
yet to be satisfactorily explained. His test results show
that a fairly definite point can be determined at which this
effect (which he calls flow breakdown) disappears and one
expects credible results. This limit probably determines the
lower speed bound (maximum downwash angle) for corrections of
any type. Consequently, this region will not be examined here,
and the problem will be confined to lifting systems which can
be said to produce only circulation lift. :

This type of system is simply represented as a lifting
vortex line with a single trailing pair of vortices. Such a
mathematical model could represent a simple wing with some
sort of boundary layer control so that the large values of
circulation can be developed. It may also represent a heli-
copter rotor operating in the translational lift region. Since
we are primarily concerned with the flow field at a distance
from the model (at the tunnel walls), details near the model
are of lesser interest and a relatively simple model represen-
tation can be used.
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It is assumed that the trailing sheet of vorticity rolls
up immediately into a cylindrical core of vorticity which can
be represented by a single filament located at the center of
gravity of the original vortex sheet. Actually, this assump-
tion is not really necessary. It only need be shown that the
effect of the singular representation of one half of the trail-
ing sheet on the center of gravity of the other half is not
significantly different from the effect of the real sheet.

It is demonstrated in Appendix A that the effect of the unde-
flected sheet trailing from one half of an elliptically loaded
wing is only 2%% larger than the corresponding effect of a sin-
gularity at the center of gravity. After roll-up, the vortex
sheet becomes axially symmetrical and it is easily shown that
the effect at any external point of a uniform cylindrical vor-
tex sheet is identical to that of a filament at its center
having the same total strength.

Evidence that the wake does roll up quickly is given by
Sprieter and Sacks (Ref. 12) who report the roll-up distance
as a fraction of the geometric wing span to be

= = 0.28(8)
g L

In the high—lift case of interest here, MmR/C; is about 1.0,
so the roll-up distance would be of the order of a chord
length downstream. :

That a helicopter rotor can be represented by the lifting
line and trailing pair is graphically shown by data taken by
Heyson, (Ref. 13). Figure (3), taken from NACA TR 1319, shows
that for a rotor having a momentum downwash angle of 156, two
clearly defined vortex cores are already well developed at a
plane only just downstream of the rotor trailing edge. It
also shows that the cores are deflected less than one half as

much as the air mass, calculated by momentum theory.

In summary, the problem that will be presented is the cal-
culation of the interference due to the walls of a closed test
section wind tunnel, on a high-lift wing having a moderately
large downwash angle, taking account of the direct effect of
the relocation of the vortex wake on the longitudinal distri-
bution of downwash. The problem is approached by first cal-
culating the trajectory of the wake of a simple lifting sys-
tem and its flow field in free air. The lifting system is
then placed in a wind tunnel and its new trajectory and flow
field are compared at the same values of remote wind speed and
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model circulation strength; differences are interpreted in
- terms of tunnel wall interference.

In order to determine the
flow field in the wind tunnel, a new method of representing
the wind tunnel walls was developed and is also presented.

13



IVv. THE FREE AIR TRAJECTORY

Figure (4) shows a sketch of the vortex wake representing
a plane elliptical wing and indicates the induced velocity due
to an element of the vortex acting at an arbitrary point. The
element of induced velocity is evaluated by the Biot-Savart
law, and when integrated over the entire wake, the direction
of the flow at a point can be determined. The flow direction
is first determined along an initially assumed wake trajectory
and the wake is then deflected to assume the calculated direc-
tion. With the wake now deflected, a new calculation of flow
direction is made and the solution converges after several
iterations.

To facilitate the solution, the vortex system is broken
into a series of short straight line segments. The bound vor-
tex lies on the quarter chord line and has a span of m/4
times the geometric span, which is appropriate for represent-
ing an elliptical wing. The first trailing segments lie in
the plane of the wing, extending from the bound vortex tips
to the trailing edge. The downstream vortices are assumed to
spring from the trailing edge at that point and are divided
into segments whose length is approximately 1/10 of the vortex
span. The angle of the first segment, being in the plane of
the wing, is determined by adding the induced angle of attack
and the effective angle of attack at the plane of symmetry.
The induced angle of attack of the wing is computed at the
lifting line by summing the induced velocities of all the
trailing segments and adding them vectorially to the remote
velocity. The effective angle of attack is determined by
assuming two dimensional flow at the plane of symmetry and
setting the normal component of the local velocity vector
equal and opposite to the velocity induced by the bound vor-
tex at the three-quarter chord point. See Figure (5).

The direction of each downstream element, in turn, is
calculated by summing the individual velocities due to all
other elements at its own upstream end. This direction is
-used to determine the coordinates of the downstream end of
the segment; the entire string of segments downstream from
that point is translated so that it stays attached, and the
next segment direction is determined. Thus, the wake is
moved into place by sweeping along its length from the wing
aft in several iterations. .

When a vortex line lies in a plane and follows a path of
varying curvature, it induces on itself velocities normal to-
the original plane which vary with the curvature. The fila-
ment, which leaves the wing at a fixed location, curves upward
from its angle of departure, and so each downstream section

14



experiences an inward deflection from its own upstream ele-
ments. This vanishes as the trajectory straightens out, but
it must leave the final straight wake at a smaller vortex
span than it had on leaving the wing. The iteration process
must then allow for this lateral freedom, as well as for the
vertical motion of the wake.

When the above described process was first attempted,
simul taneously calculating both downward and inward deflec-
tions, the computation became unstable after only a few iter-
ations. This instability was avoided by a double iteration
process. First, one pass is made calculating only downward
deflections, .and then a second is made allowing only horizon-
tal or inward deflections. By this stepwise process, a tra-
jectory can be found which converges after only three or
four such double passes, and which converges before instabil-
ity develops.

It should be noted that the vortex line is physically
unstable in that curvature of the line causes more self-
induced curvature. A pair of vortex lines, if disturbed, will
break up into segments and eventually produce vortex rings.

An example may be observed in the contrails of jet aircraft,
where the engine exhaust is drawn into and makes visible the
cores of the trailing vortex pair. This instability could be
accentuated by round-off errors in the computing machine and
places a limit on the number of times an iteration can be car-
ried out.

A computer program with instructions and card listing
for the solution for the vortex trajectory from a lifting
wing is given in Appendix B,
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V. REPRESENTATION OF THE WIND TUNNEL WALLS

While the image systems described earlier are correct,
and could be used with proper modification for finding the
interference velocities due to the tunnel walls, they still
leave something to be desired. Since the vortex wake of the
lifting system in the tunnel will be curved, the external
images would also have to be curved; and furthermore, since
the final solution will have to be iterative, the geometry of
the image system will have to change also for each iteration.
These problems can be handled by a computer, but the method
has some more basic restrictions. Proper images are avail- -
able only for rectangular tunnels and the concept of an image
implies that the tunnel is of infinite length. Tunnels in
use for high lift testing are not all rectangular and, more
important, many of the special tunnels being built today have
such short test sections that some doubt exists about their
adequacy. Therefore, in an effort to satisfy these objections
a new approach was developed.

In this method the image concept was abandoned and the
tunnel walls are represented by a vortex lattice. The strength
- of each element of the lattice is found by simultaneously
requiring that the normal component of velocity vanish at a
control point in the center of each lattice element. This
method has the computational advantage that the geometry of
this system is unchanged during each iteration, and that the
1arge matrix of coefficients need be inverted only once for a
series of computations.

Further, it is applicable to any tunnel cross section to
the extent that it can be approximated by a polygon of equal
length elements, and the effects of finite length can be '
explored. In order to prove the method, it was first applied
to 'the classical problem of the undeflected wake. The devel-
- opment follows.

Problem Statement

‘The problem is to find that distribution of vort.city
lying in the tunnel walls which will prevent any flow through
the wall due to the action of a lifting system in the wind
tunnel. The lifting surface is assumed to be uniformly loaded
and is represented by a simple horseshoe vortex with the trail-
ing pair undeflected. In principle, any desired distribution
of 1ift could be built up of several such simple elements.

The walls are represented by a tubular vortex sheet of
finite length composed of a network of circumferential and
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longitudinal vortices having equal spacing. Helmholtz' theo-
"rem that a vortex filament can neither end nor begin in the
flow is satisfied most readily by constructing the network of
square vortex rings lying wholly within the plane of the walls.
Each square has a vortex strength T; , and each side is co-
incident with the side of the neighboring square. Thus, the
strength of any segment is the difference between the strengths
of the two adjoining squares., The boundary condition that the
wall must be impervious to flow is satisfied at a control
point in the center of each square. This results in a set of
simultaneous equations, one written for each control point, in
which the unknowns are the T .

A large number of equations results if the tube is very
.long, thus some judgment is required in choosing the geometric
arrangement. The use of square vortex rings requires a tunnel
of constant cross-section. One notes that for a wing mounted
in the center of the tunnel, lateral symmetry always exists;
and, if the wake is undeflected, vertical symmetry also exists,
thus reducing the number of unknowns. The trailing edge of a
finite length tube which represents the long tunnel requires a
slightly different treatment. At a far downstream section,
only longitudinal vorticity should exist. This is represented
by elongating the last ring of squares by a large amount, while
keeping the control point at the same location with respect to
the last circumferential station. Figure (6) shows the arrange-
ment for a rectangular tunnel with filleted corners.

Equation Setup and Solution

A right-hand axis system is established with the X-axis on
the longitudinal centerline of the tunnel, positive downstream.
The Y-axis is taken positive upward and the Z-axis positive to
the right side of the tube facing downstream.

Since the surface of the tunnel is to be made of square
elements, its cross-section is a polygon of equal segments
arranged to approximate the desired cross-section shape. In
this development, the cross-section will be assumed to be
symmetrical about the X , Y plane.

In general, the velocity induced at any point p (Fig. 7)
due to a vortex segment may be written:
.V=L(cosa +cos B,) V (1)
4vh 1 2
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where VvV is-a unit vector to establish direction. The terms
required are written as follows:

R,+R
172 [ 2 _ o o_p )2
2R R,s LS = (Ry~Ry) ]

cos Bl + cos 82 =
: 2

i 35 x
R, R, R
o S
- Rl X S _ Sx SY Sz
Ir; x s| R,S sin g,
Noting that sin B, = b
= b4
1 Rl

(Rl S,~Ry sy); (Rl $,-Ry sx)§ (Rl SRy sx) %
oo Y Z_ - X 2 + X v
v = Sh Sh Sh

Finally, the velocity induced at a point due to a vortex seg-
ment is:

T, R1 R,

v [ 2 2 -
= S“-(R,-R.) ] [(R S -R, S ) i
T/4mh s2p 1752 1y z LY

2R1R2

(2)

+(R S_-R, S )§+(R S. ~R, S )i]
lz X 1x z 1x Yy ly X

One could then add the contributions of all four sides
of a vortex square, but it is more convenient to take advan-
tage of the lateral symmetry and sum the effects due to a
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pair of symmetrically located vortex squares of the same
strength. The arrangement is shown in Fig. (8) and the
following equation results:

Ren**re
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Similarly, the velocity induced at point p by a simple

"horseshoe vortex located in the center of the tunnel is de-

rived from Fig. (9) using Eq. (1). Summing the contributions

from the three segments yields:
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The normal velocity at a point on the wall is constructed
by taking the dot product of the induced velocity vector with

" the unit outer normal at that point. V, =V - @ . The nor-

mal is constructed using the cross product of a unit vector

in the downstream direction and a vortex ring vector lying in

the Y-~-2Z plane

ix (Rl—Rz)

me———1
|1 X (Rl—R2)|

The boundary condition is expressed.at each control point by
summing all the normal velocities due to the wall vortex rings
and setting it equal and opposite to the normal velocity
induced at the same point by the wing vortex. The result is
expressed in a matrix equation '

m ey -, (o)
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in which the {I'} are the unknown strengths of the wall vor-

tex elements, and the matrix [A] is fixed by the dimensions

and shape of the tunnel and the locations of the vortex rings

and control points. The column {B} describes the influence

of the lifting wing at the tunnel walls, and is developed from
the dot product of Egq. (4) with the unit outer normal at each

control point.

Because of the lateral symmetry assumed in writing Eq.

(3), it is necessary only to take control points on one side
of the tunnel. If the wing is also placed on the vertical

and the tunnel is vertically symmetrical, then the Tj
will also be symmetrical but of opposite sign. - It is then
necessary only to take control points in one quarter of the
tunnel. The matrix [A] is inverted, since it is fixed for
a given tunnel shape, and the values of T: may then be
found for a variety of wing spans by changing only the column
matrix {B} .

Once the Tj are known, the induced velocity due to the
walls can be calculated at any point in the tunnel by the use
of Eg. (3) summed over all the vortex rings in the tunnel
walls. The interference is expressed as an angle whose tan-
gent is the vertical component of interference velocity, w
divided by the tunnel wind speed, V . 1In the linear, unde-
flected wake case, the tangent is approximately equal to the
angle. Results are expressed in terms of the classical inter-
ference factor  § , defined by the equation:

2

S

= w
Ao = & C CL

The factor is computed in terms of wing circulation and vor-
tex span

5 = w_C
2b Fw

Results are presented graphically to show the longitudinal
variation of the factor § for different wing spans in a
variety of tunnels. A computer program with instructions and
card listing for the solution of the interference factor §
is given in Appendix C.
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Results and Comparison with Classical Results

In order to test the validity of the method, it was com-
pared with classical solutions where those were available.
Results of calculations made for three representative tunnel
shapes are presented in the form of graphs of the wall inter-
ference factor § . Values of § were calculated at points
along the tunnel centerline from the wing location downstream
for several values of wing vortex span. These are presented
for a circular, a square, and a 3:5 rectangular tunnel in
Figs. (10), (11), and (12). The average value of this inter-
ference factor over the vortex span of the uniformly loaded
wing was also calculated and is shown as a function of vor-
tex span for each of these tunnels along with the centerline
values in Fig. (13).

Sguare_tunnel. -- Glauert's concept of an infinite array
of images of the wing located outside the tunnel is applicable
only to rectangular (including square) tunnels and has been
applied by Silverstein and White in Ref. (14). Results are
presented there for square and 2:1 rectangular tunnels; only
the square tunnel results are used here for comparison,
since 2:1 tunnels are not common.

The number of line segments, each corresponding to the
side of a vortex square, to be used to adequately represent
" the square tunnel cross-section was determined by making a
series of calculations with increasing numbers of segments.
Fig. (14) shows the results of using 12, 16, and 20 segments
to make up the periphery of the square cross-section. The
results for 16 and 20 segments differ only slightly and
correspond very closely to the data taken from Ref. (14). .
The excellent agreement shown indicates that 16 segments are
enough to represent satisfactorily the square cross-section
tunnel.

Circular tunnel. -- In the case of the circular tunnel,
no exact solution is available for the downstream interfer-
ence factors, so two approximate results are compared with the
new calculations in Fig. (15). The results presented by Lotz
(Ref. 4) depend on the value of a truncated infinite series,
and the reference gives no indication of the accuracy expec-
ted in its evaluation. The result taken from Silverstein and
White (Ref. 14) was arrived at by following their suggestion
that the downstream interference factors for the circular
tunnel be taken as the same as for the square tunnel of the
same area. '

Four different approximations to the circular tunnel were
used for this calculation. Two regular polygons having 12 or
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16 sides were used for the cross-section shape; each was rota-
ted so that either points or flats of the polygon were at the
top and side centerline. All four calculations yielded the
same curve, with values within one-tenth of one percent. Thus,
it is concluded that a twelve-sided polygon is adequate to
represent the circular tunnel.

Length effect. ~- The effect of length of the tunnel to
be used in calculations was explored for the circular tunnel.
A twelve-sided polygon was used in the calculation, with the
model vortex span equal to 0.4 of the tunnel diameter. It is
evident from Fig. (16) that a length-to-diameter ratio of 3
or 4 is ample for convergence. The reason for this may be
seen in an examination of the distribution of the wall vor-
ticity. The bound vortex of the wing requires some circum-
ferential vorticity in the walls, but only in the region quite
near to the wing. Longitudinal vorticity is not required far
upstream, and far downstream only longitudinal filaments exist
to control the trailing pair from the wing. By using the
artifice of a very long last ring, the proper conditions are
met far downstream, and the vortex lattice need only be long
enough to provide the circumferential vorticity needed in the
immediate vicinity of the wing. In fact, all the vorticity
in the circumferential rings is qulckly transferred to the
longitudinal filaments.

Figure (17) shows the wall vortex strengths taken from
calculations made for circular tunnels of various lengths.
The circumferential vorticity strengths were taken at the
floor near the center of the tunnel where they are the strong-
est; the longitudinal vortex filament strength is that along
the side wall at model height. It is evident that the details
of the distribution are not strongly affected by the presence .
or absence of tunnel walls more than about one diameter up or
downstream from the wing.

Conclusion

The excellent agreement shown by the examples presented
verifies the hypothesis that the walls of the tunnel may be
adequately represented by a rather coarse network of vortex
rings. The advantage of this method is that any tunnel cross-
section can be represented by using an equivalent polygon of
16 or more equal length sides arranged to approximate the
actual geometry.
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VI. THE FINAL SOLUTION

The solution for the wake trajectory in the wind tunnel
is an iterative combination of the free air trajectory solu-
tion and the wind tunnel wall vortex lattice solution. The
lifting system, represented by a horseshoe vortex, is placed
inside a vortex lattice tube representing the tunnel, and is
given an initial value of circulation strength and an unde-
flected wake. A solution is found for the wall vorticity
exactly as described in the earlier section. The wake loca-
tion is then found exactly as in the free air solution, with
the exception that the velocities induced by the wall vortic-
ity found for the undeflected wake are added to those induced
by the wing on itself. After an equilibrium trajectory is
found, a second solution for the wall vorticity is made with
the wake in its deflected position, followed by a second iter-
ation of the wake location. In general, the two systems do
not interact strongly for the short span to tunnel size ratios
one expects to use in testing of high lift systems; and so
only two or three such cycles are usually necessary for con-
vergence.

Determination of the Interference Factors

In order to find the total interference effect, one
should compare the flow patterns of the system, operating at
the same conditions, in and out of the tunnel. The same con-
ditions, as used here, mean at the same circulation and remote
velocity. When the solutions are complete, they yiel? the
complete velocity field both in free air and in the vil. .z,
as well as the separate contributions to that field by the
wall vortex lattice and the lifting system.

The inter ference velocities are then defined by stating
that the difference between the velocity at a point in the
tunnel and the velocity at the same point in free air is the
total interference velocity. Both the horizontal and vertical
components of the interference velocity should properly be
considered, but because the moderate wake deflections of the
examples considered here cause only very small longitudinal
interference (3% in the extreme cases), only the effects of
the vertical component are presented. The vertical component
of the interference is felt as a change in the angle of attack
so it is convenient to present the interference in those terms.
Thus :

= - .
Aa c‘t:urmel free air
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These angles are not small enough to éllow the use of
‘the small angle approximation so they are defined by their

tangents.
\4 v
_ -1 \4 -1 Y-
Aa = tan (V ) - tan (V )
) b4 x

This data is usually presented in terms of a value of 5
defined by the equatlon

-S

W
Ao = & C CL

but since we are comparing at equal values of I instead of

¢, , we use the relation
\ CL _ %f _ 2p£Vb - égb
pVv Sw pVv Sw w
Thus
_ 2Tb
0. Bo =06 Ty
so g%’
\'/ \'
e -l (_y - -1 vy .
6 = [ZI‘b] l:tan (V ) tan (V ) ]
x"q x !

F.A.

A computer program listing is given in Appendix D for
the combined solution for the interference factor & for a
lifting wing with deflected wake in a closed tunnel.

Results

Calculations are presented for a plane wing, at lift
coefficients approaching the maximum theoretically possible
for an unpowered system. In order to achieve the highest wake
deflection angles, the aspect ratio of sample calculations was
taken at 3.0 so that high 'CL/HR values could be attained.
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The wing vortex span was taken as one half the tunnel width,
and the tunnel had a rectangular test section of height to .
width ratio 1:1.5 . ' o

_ Figure (18) shows the trajectory of the wake in free a1r
and in the wind tunnel for the sample wing. The difference in’
location of the wake in the tunnel is evident. -In Fig.- (19)-
the value of the interference factor § is shown as a func- °
tion of CL/Ai at the location of the wing and for three tail

LR \. o

locations assumed to be on the tunnel centerllne.

The tail interference angle is taken as‘the difference
between the interference angles at the wing and at the tail;
and presented as the difference between the values of - .§ ~at
these two points. Figure (19) also shows the tail interfer- -
ence factor (6t - 8 ) . This curve shows that, for the geom-‘

etry chosen, the pitching moment corrections may become small
or even negative at the higher lift coefficients. e

In order to demonstrate the effect of the wake Shlft
Flg.‘(ZO) was prepared for comparison with Flg. (19)’ The‘
same factors were calculated, but the contributioniof the ' *
deflected wake was left out. The interference anglé was cal-
culated using only the velocities induced by -the wall vortex:
lattice. The wake location as computed in the tunnel was used,
so- these results accurately represent interference. velocities
based upon only the wall induced effects. 4F1gure (20) also..
shows the tail interference factors calculated using only the
wall induced velocities. The importance of including the -
direct effects of the wake' relocation is shown when Flg.»(20)
is compared with Fig. (19).

Tail location is an important parameter, for if the tail
is initially below the vortex wake in free air, then the wake
shift upward in the tunnel will accentuate the wall induced
upwash. Figures (21) and (22) show this effect for tail
heights of 0.2 and 0.4 times the vortex span below the wing,
as well as the reversal which takes place when the wake moves
past the tail location.

In the preceding examples the interference angle factors: -
were calculated at fixed locations in the tunnel and do’ not
necessarily represent a physically realizable vehlcle. - The .
results can be interpreted to represent a tilt-wing type -
vehicle in which the body is constrained to a constant angle’

of attack

o ' For the case where body attltude changes it is necessary:
“to ‘calculate and compare flow angles at the tall in free air
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with those in the tunnel at angles of attack appropriate for
the same wing circulation. An example is presented in Fig.
(23) for a case where wing and tail are fixed to a body and
rotate as a unit. The tail is located above the plane of the
wing (0.2 of the vortex span) and three tail lengths are

shown. The interference factor shows a minimum where the tail
passes through the height of the vortex wake. The large varia-

tions of the factor indicate the importance of accounting for
the wake shift and for actual tail position.
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VII. DISCUSSION OF RESULTS

In this section the results and their implications will
be discussed in some detail. Some examples will be worked
out showing how corrections would be made using these inter-
ference calculations, some of the difficulties encountered in
" making corrections, and how these difficulties may be resolved
by modifying the test program. Additional discussion considers
the adequacy of the mathematical model, computational problems,
and suggestions for possible future modification or growth of
this method.

Examples of Corrections of Test Data

The results presented in the previous section are in the
form of the factors 6§y, used to calculate the correction to

the angle of attack at the wing, and >(6t - 5w) used to cal-

culate the difference in angle of attack at the tail from that
at the wing. These values will be used here to compute exam-
pPles of actual corrections that should be applied and show
their effects on final data.

The factor §,, is used to calculate the interference.
angle at the wing in the following formula

— S :
Aa = éw c CL

where Aq 1is the increase in angle of attack at the wing
caused by the restriction of downwash by the tunnel boundaries.
For the examples presented earlier, the following values
result., The wing has MR = 3 and its vortex span is one-half
of the tunnel span. The wing area to tunnel cross section area
ratio is then 2/m2 , assuming a vortex span ratio of u/4 .
From Fig. (19), the value of §,, is almost constant at the
wing up to CL/Ez = 0.5 and is only changed by 10% out to

CL/Hl approaching 1.0. The table shows values of the angle

of attack interference at selected lift coefficients.
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deflected wake straight wake

C, /R C 8 Aa AC ba AC
L L deg Dt deg Dt
0.0 0.0 0.111 0.0 0.0 0.0 0.0

0.5 1.5 | 0.115 | 2.01 | 0.0525 1.94 | 0.0507
0.7 | 2.1} 0.120 ] 2.93 | 0.1076 2.72 | 0.0995
0.9 2.7 | 0.130 | 4.08 | 0.1925 3.48 | 0.1642

The Agq shown is a correction to be added to the angle of
attack measured in the tunnel. In free air the wing would
have to be at the higher angle in order to produce the same
lift as in the tunnel.

When the angle of attack is corrected the 1ift vector is
rotated by the same amount. The effect of the rotation of the
lift vector then causes a component of the lift to appear as
an additional drag, the magnitude being equal to the 1ift co-
efficient multiplied by the interference angle in radians.
This result is also shown in the table above.

If the wake was not deflected, the value of 8w would
be constant at all lift coefficients, and the corrections
would have been smaller. The corresponding values of Aq
and ACDt for the undeflected wake are also shown in the

table. Comparison of the corrections shows that only small
changes, of the order of 15% of the drag correction, are due
to wake shift. Since the total drag correction is of the
order of 25% of the induced drag at the highest 1ift coef-
ficient, this change is less than 4% of the measured dra .

Calculating the difference in interference at the tail
shows a more dramatic effect. In the normal case (undeflected
wake and low C;/R) where §¢ and &, are constant over the
range of C; of interest, one calculates the difference in
angle of attack at the tail and the wing caused by the inter-
ference and uses this angle to calculate a correction to the
pitching moment. Since the tail experiences a greater
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interference angle than theé“wing, thé'fidments measured in the
tunnel are more negative for positive lift coefficients.
Because the interference angles are proportional to r’C" the
effect is to measure a larger negative value of the slope

dcC /dC in the tunnel, making the model appear more'stable

than it would be in free air, JERTEE RPN
Because of the wake deflectionj;ythe tail. angle;correction-
will be different from what it would Jbezwithout-wake deflec-

tion. The curves of Fig. (19) (21) and (23) show thlS for
three different.examples: y-rswzi i+l ©F .

'To calculate the change in pitching:moment requires know- :
1edge of the characteristics of the horizontal tail. For an
example calculation: let: us-assume;that the.tail-length:is equal
to the vortex span, the tail volume coefficient Vi = 1.0, the
tail- aspect ratio is about the same as "Efe wiﬁg;“and fas a lift
curve slope of m/radian. Then the correctlon to the pltchlng

moment would be _ AELE
N 2 luvay conoe2all fP e souousgrnel oF 2 Ting
dc
RN M Foaigorr ™ 3o o einT
RSN C = —_—— - PRI TR 2 TSRS
ACy da, (Aat Aoy)
N . Toann s xugnn R
TR DL
dc
; ac ' L _
k :there M = £ v RV :
- dog da h Mt
i G - )
P e st BDL.E UL IgL 2d 3o <

and ne = 9/9

-Then,; lising the "assumed values, =~ ™

2
ACy = ﬂ'(n—z')(ét -8 )C
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The following table compares the corrections for the
several cases with those expected when the wike goes straight
back and the tail is at wing height. In the tilt wing case,
the tail remains fixed at wing height while the wing rotates
to increase 1lift. The column headed low tail“is$ also a tilt
wing, but the tail is fixed in the tunnel at 0.2b below the
wing height. 1In the moving tail case, the tail is assumed
attached to the wing at 0.2b above-the plane 6f the wing, and
moves as the wing rotates in the tunnel.

M .
- P - . PR B . ot

straight wake | -tilt wing | low tail .| moving tail
c, aC, ' ' ‘:Acﬁ’” | 6Cy, AC,,
oo | 0.0 | o00.:. ) 00 "} 0.0
0.9 | . 0.0636- .|.o0.0522. | o0.s0s. | o0.062
1.5 0.205 | o0.o679 | “o0.1482 | o.134
2.1 | o.1a7 | 00535 |-, 0,200, 0.268
2.7 - 0.189; s .. 0.0 .|z :0.2325 .}

The tabulated values are plottéd in ‘Fig. (24) 'to show the

correction to the pitching moment coefficient for the sev-

eral cases. If the wake is not deflected, the interference

would be proportional to C; as shown, and the apparent

interference is just a change in the stability derivative,

<iCM/dC&‘, of the aircraft. For the case shown this amounts
dc

to a change in that derivative of A EEM = 0.07 and is inter-

L
preted as a change in the location of the center of gravity
for neutral stability of 7% of the wing mean aerodynamic chord.

The other cases are not as simple. The effect of the wake
shift changes the correction very much and how it does so is a
function of the exact location of the tail with respect to the
wing. For the case where the wing tilts and the tail stays
fixed in the tunnel at the height of the wing, the total inter-
ference may be seen to be the same as for the undeflected wake
at low Cj, , but reach a maximum and decline to zero at high
Cr, - If the tail is lower than the wing, the wake shift effect
causes the interference to be larger than in the undeflected
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case because the wake moves closer to the tail. 1In the case
where the entire aircraft rotates so that the tail starts
above the wake and moves past it, the curve shows a reversal
of initial trend and finally deviates very markedly from the
no~-deflection case.

The tilt-wing case is perhaps the most interesting of the
three cases. At low Cj values, the corrections are identical
to those for the undeflected wake, and the stability level in

dc
the tunnel is apparently too high by A EEM = - 0.07 . At
L
about Cp, = 1.5 , the interference effect is now constant,
so the apparent stability is the correct value. However, a
constant ACy is introduced which corresponds to a change in
stabilizer angle of about 1.24°. At Cp, = 2.7 no correction
in stabilizer angle will be required, but the apparent stabil-
dac :
ity is now less than the correct value by A EEM = 0.13 . The
L
effect of this change in pitching moments is to move the loca-
tion of the neutral point a distance of 20% of the wing chord
over the range of available 1lift coefficients. This is about
the same as the usual allowable movement of the center of
gravity of a normal aircraft.

These three cases taken together show that the fact that
the wake does move with respect to the tail causes the pitch-
ing moment interference to vary widely:; in the examples, from
zero to nearly twice the values calculated in the usual way
assuming no wake deflection and tail fixed on tunnel center-
line. Because of this wide variation it is not possible to
generalize on the results beyond saying that the interference
is dependent on the configuration of the aircraft and the wind
tunnel, and must be calculated for each case. Because the
variations of interference are of the same order as the linear
interference and may be of either sign, they are certainly too
large to be ignored. :

Difficulties in Application

Actual application of these interference calculations is
not as easy as presented above, particularly with respect to
the computation of the pitching moment correction. As this
correction was presented earlier, it was presumed that the tail
effectiveness was represented by the derivative (iCM/dat and

that this value was a constant. In the normal airplane this
is often so, but in the case of the STOL aircraft one cannot
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make that assumption. The specific difficulties are that the
local flow angles may be so large that the lift curve slope
dCL/dat is in a nonlinear range, and that the dynamic pressure
at”the "tail may not be anywhere near the free stream value due
either to being immersed in low energy wakes from wing flaps
or high energy wakes from propulsion devices. Consequently,
it is usually advisable to measure separately the tail effec-
tiveness by making several runs at different stabilizer angle
settings and computing directly from this data the values of
dCM/dat over the range of lift coefficients of interst. This
much is often done in ordinary wind tunnel work and is even
more important in the testing of STOL aircraft.

An additional consequence of the wake shift is now appar-
"ent. The energy wakes are shifted in position and so are
likely to change the dynamic pressure at the tail. While the
process described above of measuring the tail effectiveness
derivative will allow correction under the conditions of test
in the wind tunnel, these are different from free air condi-
tions. What is desired is that the tail in the wind tunnel
be placed in the same air conditions that it would experience
in free flight. Since the wake in the tunnel is in a differ-
.ent place than in free air, the tail should be moved to occupy
the same position with respect to the wake.

The present method allows one to calculate in advance of
the test program what the wake shift will be for each value of
the wing circulation. A model could be constructed so that
the tail height would be adjustable. Stability testing would
then be done at several positions of the tail to produce a
. family of curves of pitching moment, each one of which will
be valid for a given lift coefficient, and final data will be
a composite curve taking data from the several curves at the
appropriate points. If the wake shifting of the air impinging
on the tail is the same as that of the vortex cores, and the
tail is moved that amount, then the wake shift effect on the
tail moment correction is reduced to zero and only the wall-
induced effects would be necessary. Variations of induced
velocity across the span of a model are not large (of the order
of 10% or less) for models less than two-thirds of the tunnel
width, and so this method appears to have promise.

Another uncertainty in the application of these interfer-~
ente results stems from the estimate of the vortex span and
the resulting value of the circulation strength which is cal-
culated using the Kutta-Joukowski law. It is apparent that
this value should be estimated rather carefully before apply-
ing interference corrections to the data. It may be desirable
to make some attempt to measure it directly by locating the
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vortex trajectory:in the tunnel. It should be mentioned in
passing that this is not a new problem and it has always been
necessary in applying classical corrections to make this esti-
mate: because the corrections are larger at higher lift co-
efficients, the estimate is more important.

‘- : - ,T .o

Discussion of ' Accuracy and Computation Method

It will have become apparent in the above discussion that
the quality of the interference calculation depends on the
representation of the 1lifting system and the resulting accu-
racy of the free air flow fields. It is recognized that, -1f
one could actually predict the real flow fields with a hlgh "
degree of accuracy, the wind tunnel would no longer be neces-
sary; and that, if the accuracy is poor, the interference cal-
culation will have little value. = This statement is not as
contradlctory as it may seem, because there is a difference
between the detailed effects felt in the near field -and the
gross effects in the far field. Regardless of how it may be’
produced, llft is a result of the genéeration of c1rculat10n .
about somé location fixed in the flow field. Consequently,
if 1ift is measured and’ the vortex span carefully estimated
or measured, the induced effects at points as far away as the;
tunnel walls are very well predicted by the Biot-Savart law.

“A W1nd ‘tunnel program ‘is de51gned to measure more detailed
effects, partlcularly ‘those. due to local flow separatlon and -
those due to mutual 1nterference of the components of the air-.
craft on each other. No one at this’ time reallstlcally expects
to be able to predict these complex events: and so replace the’
wind tunnel with a computer. Since ‘the 1nterference calcula-
tions presented here depend only on ‘the gross 1nduced effects,
the accuracy should be adequate for the purose. The represen-
tation of the model may be improved as much as desired by super-
position of additional vortex systems, and should be modified
for other conflguratlons but the effects at the tunnel wall,
and therefore the wall vorticity and the resultlng induced '
velocities, will not be changed very much._ What such improve-
ment and modlflcatlon will do is account more accuratély for
the direct effect on pltchlng moments due to wake shift., Cer-
tainly such work should be done, but the wide varlety of
arrangements possible preclude any generalization in advance’
and so it will be done on an ad hoc basis.

Some remarks are in order on the convergence of the numer-
ical solution, and the instabilities expected in it. Any dif-
ficulties to be found would be expected in situations where
the wake was forced to curve most sharply, and this would be
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when the wing is inside ‘a tunnel ahd operating at the highest
lift coefficients. A detailed study was made of such a tra-

" jectory over" Sseven itérations: for the aspect%ratlo 3-wing at
Gy, /A{ ‘about 1. Two-regions ‘0f- the wake were selected which
uexhlblted the two areas of concernﬂu-lnstablllty and conver—

'~gence. eolSn rd. T e

B 3 S B o o SRR '7.* 5
£ N .

3

It was expected that in regions of sharp curvature’ the
self-induced effects of adjacent segments of the vortex, made

‘somewhat unreal by being broken ' up ‘into short straight sectlons

and aggravated by round-off errors, would initiate ' local cur-

«vature anomolles and cause the solutlon to degenerate. o

ThlS effect dldwlndeed appear" as a wavy motion 'of the
segments alternatlng around-a mean-line. -Two or“ithree such
zig-zags appeared in 'thé second ahd 'third iteraticns and ‘about

twelve segments were involved in the seventh.: The' amplitude

of these motions grew slowly and did not reach 20% of the'- ~
length of the segments until the seventh iteration. This cor-

responded*to-'a deviation of -the--segment direction:of 13° or

less' from a'fedn line ‘drawn ‘through™them. '~ These waves disap-

'1peared “in"‘the- seventh'itération, -at -about’one w1ngspan ‘down-

stream from: the wing where the slope ‘Of -the trajectory ‘had: -

- beeome nearly” constanti ~The’ effects” of? these small’ ‘changes
- of direction*were judged to be negllglble and ‘SO no smoothlng

.

. . ; o e
RN o ! H I S . ki

sub—routlnes were used - AT

Convergence was examlned at’ a point* one vortex span down—
stream from the wing where the trajectory of the vortex line
was straight over- a- length of about one span. The locus of

‘points of’ 1ntersect10n ‘'0f ‘the vortex line and ‘the tunnel. cross

section was found to be a splral over'i'the seven iterations.

‘Convergence was approx1mately logarlthmlc with each motion- -

from one iteration to ‘the next being one-half toc oné-third of
the previous one. Thus the convergence is so rapid that the

lfflfth 1teratlon moves the wake less than l% of the w1ngspan.

N P RO S -

One concludes from the above™ that the solutlon is: qulte

“well behaved'and no conflict ex1sts between convergence and

stability. Acceptable convergence is'had at the fourth iter-
ation, and the growing" 1nstab111ty is still acceptable at: the

,seventh leaving a wide region ‘'of choice for the user.

Future work could well be done- on“apprOX1mate methods of
predicting wake deflection; for example by choosing a general
form for the trajectory curve, and finding its amplitude at:
only a few points. Certainly other approximations will--sug-
gest themselves.- T ST R oo

W
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The results presented here, and the method of approach,
appear to provide as near to an exact solution as is likely
to be found, and may be used as a standard to which approxi-
mate and more convenient methods may be compared.
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VIII. CONCLUSIONS

The problem of determining the wind tunnel wall interfer-
ences for high lift wings or lifting systems for slow flight
has been examined, and a new method of calculating the inter-
ference effects has been developed. It has been shown that
the most significant interference is on the measured pitching
moments and the apparent longitudinal stability of an aircraft
having a tail, or at least having a longitudinal characteristic
dimension of the order of its spanwise dimension. The inter-
ference is a maximum when the system is operating at moderate
downwash angles which are attainable with lifting systems using
only small amounts of power and which can be represented by
passive systems in potential flow.

The solution developed is based on the use of a vortex
lattice to represent the tunnel boundaries, and takes into
account the direct effect of the interference-caused reloca-
tion of the vortex wake on the flow direction in the region
of the tail. A method of testing is proposed which can mini-
mize this effect.

The following conclusions may be stated.

1. Representation of the wind tunnel boundariés by a

: vortex lattice system may be used to calculate
interference velocities for a tunnel of arbitrary .
cross-section. ‘

2. Simplified representations of lifting systems may
be used. The vortex span and point of origin of
the trailing system are the most important choices.

3. Wall induced velocities cause the vortex wake and
‘high or low energy wakes to be deflected less in
.the wind tunnel than in free air.

4. - The relocated vortex and energy wakes cause dif-
ferent flow angles and velocities to be felt at
the region of a tail and these effects are prop-
erly charged to tunnel boundary interference along
with the wall-induced velocities.,

5. The direct effect of the vortex wake shift on a
©  tail may be of the same order as the usual wall-
induced velocities and may be of either sign.

6. The amount and direction of wake shift effects
depends strongly on the tail location and so
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effects must be calculated for each conflgura-
tion of interest. C

. . Wake shift effects may be reduced or avoided by

testing with models whose tail heights can be
adjusted to match the energy and vortex wake -

locations for partlcular reglons of 1nterest

The numerlcal calculation presented converges
rapidly (in about three to four iterations),

but may develop instabilities if carried beyond
seven or eight such iterations.

The quality of the solution presented is as near
an exact solution as practical representation of
a lifting system will permit, and should serve
to guide the formation of approximations and as
a standard to evaluate them.
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Fig. 5 Flow geometry at the wing.
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Fig. 9 Definition of distances for a horseshoe vortex representing
a wing located with its midspan at the origin of coordinates.
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Fig. 19 Interference factors at wing and tail including

~ wake relocation effects. Tail on tunnel centerline.
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Fig. 20 Interference factors at wing and tail using only
wall-induced effects. Tail on tunnel centerline.
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Fig. 21 Interference factors at wing and tail at .2 by
below tunnel centerline.
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APPENDIX A

COMPARISON OF THE INDUCED VELOCITY OF A DISTRIBUTED

VORTEX SHEET WITH THAT DUE TO A SINGULAR VORTEX

Betz* has shown that the first moment (center of gravity
location) of a group of vortex filaments in a trailing vor- '
tex sheet is constant as they move about in the process of
rolling up into a cylindrical arrangement. It is well known
that the spanwise location of the center of gravity of the
vortex sheet trailing from an elliptical wing is at m/4
times the semispan, measured from the plane of symmetry of
the wing. It is also well known that the induced velocity
at some large distance from the vortex sheet may be computed
accurately by replacing the vortex sheet with a single vortex
of the same total strength located at the center of gravity
of the sheet it replaces. What is not widely known is the
variation close to the sheet when this substitution is made.
The following analysis is presented to show the ratio of the
induced velocity in the near field computed using the trail-
ing sheet, to that computed using a concentrated vortex loca-
ted at the center of gravity of the sheet.

Consider the Trefftz plane, but just behind an ellip—
tically loaded wing, as shown below.

r

A

y Yo
dy  b/2 ’;
w

>y

*Betz, A.,
June 1933,

"Behavior of Vortex Systems,"” NACA T.M. 713,
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The circulation on the wing is given by

‘ 2
F=Fom

and the strength of the vortex trailing from the point y is

=( 4t
& A_(dy )dy

This element of the vortex sheet induces a downwash velocity
at a point Yy,

at

= an —
y' (Yo - Y)

dw
Yo

These equations are combined, and non-dimensionalized by

1etting y = B%f and 'y, = ﬁ?; . The integralvés evaluated

only over 0 < y <1 because we are only interested in the
effect of one half of the wing on theAcher half.

wyo = = r‘% jl y 4y
y 4m3zy °° (Yo"Y).\/l-y:

The integral can be put into a standard form by making the
transformation

X = ¥o - Y
Then,
Y =Y - %
2 2 2
Y =Yoo - 2yo%x + X

dy = - dx
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and the limits of integration become

when y =0 , x =Y,
when. y =1 , x =y, -1
Then
w _ Do Iyd-l (yo - x) dx -
b
Yoy 4T 3 Yo xa/ (1 - y02) +2yox - x?
This is integrated for values of -1 <y, < 0 , using

integrals number 161 and 182 from Pierce, A Short Table of
Integrals, Ginn and Company, 1929. The result is

Wyo = b

To |m_ __yo 1n( =2
2 2 2)
y 43 1-¥o 1+ 1-¥°.

Now compare this solution with that of the simpler case, where
the total circulation, - Ty, , is assumed to be concentrated
at y, = n/4 - b/2 , and find its effect on the other side of.
the wing. We have, then ' : :

w _ _I‘o.,
Yo bf{ yo_ _T
y 4“,2(_13/2 4)_

The ratio 6f the downwash due to the sheet to that due to the
single vortex is

w (sheet)

n o Yoy - (E_L)[ﬂ__zo__ln(_;m__)]
\/ . 4 Db/2 2 /v 2\ /
.y°y(51ng1e) _ /2] 1l-yo 1+ 1--y02
We are particularly interested in the value when Yo = T/4 ,

and that value is :
R = 1.02566

67



The graph following shows the variation of this ratio over
a range of distances from the wing.

—-1.25
—1.20
| R
1.15
—1.10
'—"005
] l
[
Y
b/2
r\
I:,-
L
S .y
% 0 | b/2

DOWNWASH ALONG THE EXTENDED LIFTING LINE

R is the ratio of downwash due to a vortex sheet
trailing from one half of an elliptically loaded wing to
the downwash due to a single trailing vortex of the same
strength located at the center of gravity of the trailing
sheet.
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: APPENDIX B
PRIOGRAM TO COMPUTE THE WAKE TRAJECTORY
OF A VORTEX PAIR TRAILING FROM A FINITE WING

PROGRAM FRAIR (INPUT,OUTPUT, PUNCH,TAPES‘INPUT,TAPE6 OUTPUTn
. 1 TAPE7=PUNCH)

APPROXIMATE STORAGE REQUIREMENT FOR THIS PROGRAM IS 14600 (OCTAL).
EXECUTION TIME IS APPROXIMATELY 25 SZCONDS PER CASE WITH 180 SURVEY

YIELOS A PUNCHED CARD DECK JUTPUT,
INPUT DATA SEQUENCE

SPAN, GAMAM, SPEED, ASPECT, NW (4F10,5,I10)

SPAN IS WING VORTEX SPAN, FEET

GAMAM IS WING CIRCULATION, SQUARE FEET/SE'COND
SPEED IS REMOTE WINJ SPEZED,. FEET/ SECOND

THE VORTEX SPANe VORITEX SPAN IS PI/4 TIMES GEOMETRIC SPAN,

DELTAX (F10.5) :
LENGTH OF TRAILING sscnzms, FEET, USUALLY TAKEN SPAN/10

XH(1), YH({1) (2F10.5) :

X AND Y COOROINATES OF SENTER OF BOUND VORTEK, USUALLY 0.0. 0.0
X AXIS IS POSITIVE OOHNSTREAM, Y IS POSITIVE UPHARD, Z TO RIGHT
LOOKING DOWNSTREAM

TLMN, TLMX, DELTX (3F10.3)

- MINIMUM AND MAXIMUM TAIL LENGTHS, FRACTION OF SPAN, DEFINING

* . LONGITUDINAL REGION TO 3E SURVEYED, AND INCREMENT BETHWEEN
SURVEY POINTS, FRACTION OF SPAN, v ,

THMN, THHX, DELTY (3F10,5)

MINIMUM AND MAXIMUM TAIL HEIGHTS, FRACTION OF SPAN, DEFINING
VERTICAL REGION TO BE SURVEYED, AND INCREMENT BETWEEN SURVEY
POINTS, FRACTION OF SPAN, -

THSP, DELTZ (2F10,5) - . .
SEMISPAN OF TAIL, FRACTION OF SPAN, DEFINING LATERAL REGION TO
BE SURVEYED, AND INCREMINT BETHWEEN SURVEY POINTS, FRACTION OF
SPAN. : ' X

KK (I1)

INTEGER VARIABLE SET EQUAL TO ONE IF SURVEY REGION ABOVE Is
REFERENCED TO HWING, AND TO ANY OT HER VALUE IF REFERENCEO To
SPACE COORDINATES .

ADDITIONAL CASES' - ’ s : :
REPEAT THE PRECEDING SEF OF SEVEN DATA CARDS FOR AS MANY CASES
AS DESIRED

PUNCHED OUTPUT RESULTING FROM EACH CA'SE WILL BE AS FOLLOWS

THIS PROGRAM IS WRITTEN IN FORTRAN IV FOR THE CDC-6400 COMPUTER. THE

POINTS, 30 TRAILING SEGMENTS, AND 8 ITERATIONSs NOTE THAT THIS PROGRAM

ASPECT IS ASPECT RATIO OF THE GEOMETRIC WING BEING REPRESENTED 8y
NW IS THE NUMBER OF TRATIL ING SEGMENTS IN THE WAKE, LESS THAN S0
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AT

e
~N e

4100

4150

4160

4170

4175

4180 -

4190

" 4200

70

4250

4260

4270

4280
4281
4285
4290
4295
4300
4310
432¢
4330

CARD 1-3. VYORTEX SPAN, REMOTE VELOCITY, WING CIRCULATION, ASPECT
RATIO, LIFT, ORAG, TOTAL X=VELOCITY AT WING CENTER SPAN, TOTAL
Y=VELOCITY AT WING CENTZR, WING GEOMZTRIC ANGLE OF ATTACK (4E2Ue10)

CARD & AND FOLLOWING CARDS, COORDINATES OF SURVEY POINTS XCI, YCJ,
AND 2CJ (SPACE FIXED) AND TOTAL X, Y, AND Z VELOCITY COMPONENTS

LAST CARD. THE NUMBER 10000 IS PUNCHZ'O TO INDICATE THE END OF
EACH CASE. THIS SPECIAL PUNZHING IS USED BY THE WING-~IN-TUNNEL
PROGRAM TO LOCATE THE END OF EACH DATA DBCK. (40X, E20.10)

" FORMAT (7F15.5)

EACH SURVEY POINTe (4E20.10)

FORMAT (4F10.5,I10)

FORMAT (F10.5)

FORMAT (18H ITERATION NUMBER 129

FORMAT (10F10.5)

FORMAT (3F10.5) ~

FORMAT (10F12.6) L

FORMAT (2F10.5) :

FORMAT (13H CL/ASPECT = ,FB8453515X,13HCDI/ASPECT = sF8e 51
FORMAT (I3,5F10.5) “
FORMAT (2I10)

FORMAT (12)

FORMAT (74H=-NOTE = ALL )ISTANCES MEASURED FROM ASSUMED LIFTING LIN
1E POSITION AT XW(1) )

FORMAT (18H WAKE COORDINATES ,f. OXy 2HXH g 13X y2HY Wy 13Xy 2HZH 13X,
1 3HOSM) . : :

FORMAT (4F15,5) : :

FORMAT (1HO,8HGAMAM = ,F10.4)

FORMAT (1X3I2,3F10.4, 2X.3F10.h 2X 93F1044)

FORMAT (19H ANGLE OF ATFACK = ,F5'3 12H RADIANS OR ,F7.358H DEGREE
1s ) :

FORMAT (22H ANGLE OF Z2ERO LIFT = ,F6¢3y12H RADIANS OR »F7.3,8H DEG
1REES ) ' ’

FORMAT (23H TAIL SPAN (ABSOLUTE) =,F9.4,2Xy328 HTAIL SPAN/WING SPAN
1=,F9. ) .

FORMAT (1H1,5X,7THSPAN = 4 F643y21X ,18HREMOTE VELOCITY = ,F9, 3,
17X s 14HCIRCULATION = ,F9,3,/36X,15HASPECT PATIO = ,F6e3513Xy7HLIFT
1= yF344;18X,7HORAG = yFIe 5,/ 96Xy 1 3HVX AT WING = ,F10Geby11Xy
113HVY AT WING = ,F10.4,11X,18HGEOMETRIC ALPHA = ,Fbe2,8H DEGREES,
1/49/7 37 38Xy 16HNING COOQDINATES;i&Xpi?HEARTH COORDINATES 917X,
119HVELOCITY COMPONENTS )

FORMAT (1H , 3F10. 495Xy 3F10e4,5Xy3F1Cs )

‘FORMAT (12H TAIL SPAN = ,FB8.4,4Xy23HTAIL SPAN/HWING SPAN = ,FB8ek)
FORMAT (4E20.10) . : o . .
FORMAT (4 0X,E20.10) .

FORMAT (4F10.4) S :
FORMAT (1HQ, 12H2=0 ALPHA = ,F 8,5, 12H RADIANS OR 4F7e¢348H DcGREES)
FORMAT (1H ,16HINOUCED ALPHA = ,Fi845,12H RADIANS OR ,F7+43,5H DEG,)
FORMAT (41H , 18HGEOMITRIZ ALPHA = ,F8.5,94 RADs OR 4F7+3,5H DEG,)
FORMAT (1H1) ) ' I
FORMAT (1HO,44Xy3HX =,FI.4)

FORMAT (1HOy) 44Xy3HY =,F344)

PN DI DT RPITV DD DIV RIOIOPFOIODOPIPDOPDOPRDRIPRODD DRI IONPDORD®

105
196
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4340
4350

30
3

-C

80

90

81
c

FORMAT (1H ,41X,1B8HI[EFEIENCED TO! WING)

FORMAT (1H ,40X,20HREFEIENCED TO TUNNEL)

REAL LIFT .

DIMENSION VX(Z),VY(7),VZ(T)

OIMENSION VMX(7), VMY (7),VMZ(T)

DIMENSION VCX(7), VCY(7),VCZ(T7) :

DIMENSION XW(50), YW(53), ZW(50), RW(2,2), DSM(50),VBAR(2)
DIMENSION ALPHA(7) o BETA(7) .
RHO = ,002378

CONTINUE

READ (5,1) SPAN,GAMAM,S®EED,ASPECTyNNH .

IF (EOF,5) 60,31

READ (5,2) DELTAX

READ (5,7) XHW(1), YH(1)

IF (EOFy5) 60,80

C COMPUTE INITIAL COORDINATES, WING DIMENSIONS,’ TRAILING SEGMENTS

CONTINUE
NH1 = Nd + ¢

ZW(1) = SPAN/2.

CHORD = SPAN/ (ASPECT*.785398163%%2)
ALFAA=ASIN(GAMAM*2,/ (6,28 31853*CHORO*SPEED))
XCI = 0. 75%CHORD*SQRT (14~ (+78539816%%2))
XH(2) = XW(L) ¢ XCI*COS(ALFAA)

YH2) YH(1) = XCI*SINCALFAA)

ZH (2) W)

XCI = DELTAX + XW(2)

YCJ = YH(2)

2Cy = ZH (1)

DO 90 N=3,NW

ZH(N) = Z2Cy

YH(N) = YCJ

XCI

XCI = XCI + DBELTAX

.CONTINUE
XH(NH1)
YW (NW1)
ZH (NW1)

x
x
z
-~
i

XHINW) + 1000.0
YCJ

0J

D0 81 I=1,NHW

J =z let

OSM(I) = SQRT((XH(I)-XH(J))"2+(YH(I)-YN(J))“Z&(ZH(I)-ZH(J))“Z)

C CARRY QUT ITERATIVE SOLUTION

NUMIT = GAMAM/19, ¢ 3.

HWRITE (6,4310)

00 100 NUHB:Q = 1,NUMIT

CALL WKIT { XWy YH,y ZN,USH,GAHAN,SPEEU,SPAN,NH NH1,
1 ALPHAQ , ALPHAI,ALFAAyCHORD)

IF (INUMIT=-NUMBER), GT.3) GO Y0 95 : C

HWRITE (6,3) NUMBER

WRITE (5,4150)

WRITE (654160) (XWIL),YWH(L)} ZH(L),DSH(L),L 15 NW1)

CALL LCOMP (XU, YH,ZH,DSH GAMAH,SPEED,SPAN,NH,NHl,LIFT,RHO,'

1 VXWC, VYHC,DRAG)
WRITE (6,4170) GAMAN
ALPHAD = ~ALPHAQ

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
153
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95

-1000

100
C SET

4

ALFAA = =ALFAA
DEG=ALPHAO*57,29578

HRITE (594290) ALPHAQ,DZG -
DEG=ALPHAI*57,29578

MWRITE (6,4295) ALPHAI,DIG
-DEG = ALFAA®57,29578

WRITE (554300) ALFAA,OES
XCI = XW (1)

DO 1000 L = 4,4NWL

IF (XW{L).LT.XCI) GO TO 999
CONTINUE :
CONTINUE

UP COORDINATES FOR VELOSITY SURVEY -

_ READ (595) TULMNaTULMX,DELTX

READ (5,5) THMN,THMX,DELTY

READ (5,7) THSP,DELT2

- NTL=INTC(TLMX=-TLMN)/DELT X +0, 5)*1

NTH=INTC (THMX=THHN)/ZDELTY +0.5) ¢4
NTS=INT(THSP/DELTZ+3.,5)¢1

COSA=COS (ALFAAY _
SINA=SIN(=ALFAA) - '
WRITE (7,4280) SPAN,SPEED,GAHAH,ASPECT;LIFT,DRAG,VXHC,VYHC,ALFAA
READ (5,k0) KK

FORMAT (I1)

" 00 400 T=1,NTH

YC=(THMN+ FLOAT(I=1)*DELTY)¥SPAN

WRITE (5,4250)  SPANySPE:Z D,GAHAM,ASPECT;LIFT,ORAG,VXHC;VYHC:DEG
‘WRITE (6,4330) YC

IF (KKesEQe1): WRITE (6,4340)

"~ IF (KKeNE.1) WRITE (6, 4350’

00 400 J=1,NTL

XC={TUMN+FLOAT (J=1)*DELT X ) *SPAN
WRITE (5,4320) XC

IF (KKeEQs1) WRITE (6,4340)

" IF (KKNEes1) -WRITE (6,4350)
- D0 400 K=41,NTS

51

52
c

C
c REF

72

C COMPUTE VELOCITY COMPONENTS AT SURVEY POINTS

IF (KKJNEe1) GO TO 51
XCI=XC*COSA® XH (1) ~YC2SINA
YCJ=XC*SINA+YC*COSA+YH (1)
ZCJ=FLOAT (K-1)*DELTZ*SPAN
GO TO 52

CONTINUE

XCI=XCHXHW (1)
YCJ=YC+YH 1)
ZCJ=FLOAT (K~1) *DELTZ*SPAN
CONTINUE

CALL vCOoMP (XCIyYCJ,2CJ, DS& G AMAM, SPAN,SPEED,
1VXHOD,VYHOD,VZHOD,VXTOT,VYTOT,VZTOT,XH YH,ZH.NH,.FALSE-)

ERENCE SPACE FIXED COORDINATES T0 BOUND VORTEX
XCI=XCI-XHW(1)
YCJ=YCJI=YH(1)

. WRITE: (7,6260) XCI,YCJ,ZCJ,VXTOT,VYTOT,VZTOT

168

165
166

. 167
168
- 169

170
174
172
173
174
175
176
177
178
179
180
184
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206
207

208
209
210
211
212
213

- 214

215
216
217 -
218

219



WRITE (6,4260) XCyYCyZCJy XCLyYCJy ZCJy VXTOT4VYTOT ,vZTOT 8 220
30 CONTINUE ' ‘ ) 3 221
ZCJ=10000. 3 222
NRITE (7,4281) 2CJ 3 223
c : B 224
C READ INPUT DATA FOR NEXT CASE 8 225
GO To 38 - 3 226
839  CONTINUE 8 227
60 sTop 8 228
END 8- 229

13



SUBROUTINE HKIT (XWyYW,ZW ,DSMyGAMAM,SPEED y SPAN;NW ,NHY
1 ,ALPHAO,ALPHAI,ALFAA,CHORD)
[
C SUSROUTINE TO ITERATE TRAILING WAKE POSITION
c

DIMENSION XH(50),YRI50),ZW(50),0SM(50),RWN (2,2),¥BAR(2)
LOGICAL SKP,WTEST
SKF = LFALSE.
c
C HAKE THO PASSESy FIRST FOR X=-Y MOVEMENT, SECOND FOR X=Z MOVEMENT
DO 20 N = 1,2
31 NNN = NHW
40 DO 47 M = 1,NNN
HTEST = ,FALSE,
IF (Me.EQel) WTEST = + TRUE »
IF ((MeEQe1) ¢ AND.SKP) GO TO 47

c
C CHOOSE COORDINATES FOR VELOSITY COMPUTATION
o1 XCI = XH(M)
YCJU = YH(M)
IF (M.EQ.1) GO TO &2
ICJ = ZU (M) :
GO TO 43
42 2CJ = Ta 0
43 CONTINUE
c :
C-COMPUTE VELOCITY COMPONENTS AT CHOSEN COORDINATES
CALL VYWKIT (XCI,YCIy 2CJ, DSM,GAMAM,SPAN, SPEED,
1VXMOD VY MODs VZMOD yVXTOTy VYTOT yVZT OT 9 X Wy YH 5 ZW,NW, WTEST)
VXM = ¥XTOT
VYM = VYTOT
VZM = VZTOT
VEL = SQRT(VXTOT**2 + YWTOT**2 ¢+ VZTOT**2)
' d o= M#l
c

C COMPUTE NEW ANGLE OF ATTACK OR SEGMENT ORIENTATION, AND SHIFT
C TO BE APPLIED TO FOLL OWING SEGMENTS

IF (MoNEe1) GO TO 45

ALPHAQ=ASIN(~ GANAH'Z./(B.2831853'CHORD'V=L,)

ALPHATI = ATAN(VYN/VXM)

ALFAA = ALPHAD ¢+ ALPHAI
XSHFT = DSM(1)*COS(ALFAA) + XHW(1) = XW(2)
YSHFT = DSM(1)>»SIN(ALFAA) + YH{1) =~ YW(2)
ISHFT = 0.0
GO 7O 57

3 DCHX = VXM/VEL

XSHFT = DSMIM)®DCHX + XW(M)
XSHFT = XSHFT = XW({J) '
IF (SKP) GO TO 49
DCHY = VYM/VEL
YSHFT = DSMIM)*DCHY ¢+ YWIM)
YSHFT = YSHFT = YW(S
GO TO S7

49 = DCHWZ = VIM/VEL - ’
ZSHFT = DSMIM)®DCWZ ¢ ZWIM) '
ISHFT = ZSHFT = ZHUJ)
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230
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233
234
235
236
237

‘238

239
240
241
242
243
24h
245
246
247
248
249
250
251
252
253
254
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256
257
258
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260
261

268

- 269

270
271
272
273
274
275
276
277
278
279
280
281

. 282

283
284
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IF (JoEQeNWL) ZSHFT = 0,

C COMPUTE NEW COORDINATES OF TRAILING SEGHENTS DOWNSTREAM OF
- C NEWLY ORIENTED SEGMENT
57 00 48 L=J,yNH1

XH(L) = XW(L) ¢ XSHFT

IF (SKP) GO TO 59

58 YWIL) = YW(L) & YSHFT
GO TO 50

-59 ZH(L) = ZW(L) + ZSHFT

50 K =L=-1

DSM(K) = SORTC(XH (L) =XWIK)I*22+ (Y H(L) =YH(K))I**2% (ZW (L) =ZW(K)) **2)
L8 CONTINUE -
:7 . CONTINUE
C RETURN FOR NEXT PASS
: SKP = QNOTQSKP
20 CONTINUE

RETURN

END
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(2 N3 X <]

76

SUBROUTINE LCOMP (XH,YH.ZH.DSH,GAHAH,SPEED,SPAN,NH,NHi.LIFT RHO. .

1 VXTOT,VYTOT,ORAG)
SUBROUTINE TO COMPUTE CIFT ANO INOUCED ORAG OGN HING i

DIMENSION XH(SO),YH(50),ZH(50),DSM(SD),RH(2,2),VBAR(2),ALPHA(7)9
18ETA(T)
REAL LIFT
FORMAT (1H],6HLIFT -,Fiﬁ.b,SX,6HDRAG -,FIO.B)
FORMAT (1HD,17HCL/ASPECT RATIO -pFiOok;SXpi7HCD/ASPECT RATIO =9
1F10.4)
) FORMAT (1H0,23HVX AT WING CENTEQLINE -,F10a5,/;1H0923HVY AT HING C
’1ENTERLINE —,F10o5) : ,
- KK-= 1
XCI X4 (KK)
YCJ YH (KK):
26y 0. .
CALL ViCONMP (XCI YCJ,ZCJ, - DSMyGAMAM,SPAN, SPEED,
'1VXHOD,VYHOD,VZHOD VXTOT.VYTOT,VZTOT,XN YH,ZH,NH,.FALSE.)
LIFT = RHO*VXTOT*SPAN*GAMAM : ‘
ORAG = =RHO*VYTOT *SPAN*3AMAM
"CDIAR = (3.,14159/ ) %%27 (, S‘RHO'(SPEED“Z)‘(SPAN"Z))
CLAR = LIFT*CDIAR
. CDIAR = ORAG*COIAR
WRITE (5,1) LIFT, DRAG
WRITE (692) CLAR,CDIAR -
WRITE (64 3) VXTOT,VYTOT

RETURN -
" END .

-306

207
308

-339

310
311
312
313
3L
315
316
317
318
319
320
321

322
323

324
328
326
327
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c

C SUBROUTINE TO COMPUTE VELOCITY COMPONENTS

c

10

c

C INITIALIZE VARIABLES TO COH’UTE VELOCITY INDUCED BY THE SEGHENT :
c PAIR UNDER CONSIDERATION :

43

&Yy

45
-IF (HelTe1.E~10) GO TO &7
.. VBAR2 = °GAHAH‘(DSMK2'(lHiZ-RHZZ)"2)‘(RH12*RH22)/(P‘RH12‘RH22‘H)‘

o

48
c

1,VXMO0,VVYMOD,VZH40D,VXTOT, VYTOT VZTOT, XW YH,Z“,NH,HTEST)

J = Ked

XHJ = XH(Y)
YHJ = YR(J))
ZHJ = ZW (Y)Y

. RH212 = RH2Z2 + (ZHJ=2CH**2

RW222 RW22 + (ZWJ*ZCJ)"Z
RW21 = SQRT(RHW212)

RW22 = SQRT(RW222)

"OSMK = BSM(K)

. DSMK2 = DSMK®*»2

" IF (HelTe14E=10) GO TO 44

C COMPUTE VELOCITY COMPONSENTS INDUCED BY EACH SEGMENT PAIR

SUEROUTINE VHKIT (XCI ,YREF,ZREF, DSH,GAMAM,SPAN.SPEED

DIMENSION XH(:O),YH(SO).ZH(SO),DSH(SO),QH(Z,Z),VBAR(Z)
LOGICAL WTEST,LTEST

LTEST = +FALSE.

GO TO 10

ENTRY VCOMP

LTEST = +FALSEs

G0 TO 10

ENTRY VLCOMP

LTEST = +TRUE.

VXM=0,0
VYM = 0. 0
VZIM = 0. 0
YCJ = YREF
2CJ = ZREF

= 502831853

“XWK = XW (1) ) : N
YHK = YH (1)
ZNK = ZW (1)

RH12 = {XWK=XCI)®**2 + (YHK=YCJ)*%:2

RW112 = RHW12 + (ZHK-2CJ) **2
RW122 = RHW12 + (ZWKrZCJ) **2
RWi1 SART{RW112)

RW12 = SQRT(RW122)
D0 46 K = 1,NW

RH22 = (XWJ=XCI)**2 + (YHJ’YCJ)"Z

H = 44"RW112*%0S4K2 = (RH112-RH212+DSHKZ)“Z

VBARL = 'GAHAH'(DSHKZ (QHii-RHZi)"2)‘(RH110RH21)I(P'RH11‘RH21'H)
GO TO 45

VBARL = 0,90

H. = ho'ﬁ“i??'OSNKZ'(RHiZZ =RW222¢ D SMK2) »»2

GO TO &8
VBARZ = 0,0
CONTINUE -
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VXM = VBARL® ((YWK=YCJU)*(ZHJ=THK) = (ZWK=2CJ)* (YNJ=YHK)) :
1 «VIAR2* ((YWK=YCJ) *(ZWK=Z W) = {=ZHK-ZC J) *(YWI=YHK) } + VXM

VYM = VBARL* ((ZWK=2CJ) *(XWJ=XHK) = (XHK=XCI) * (ZWJ=ZHK))
1 «~VBARZ* ((=2WK=ZCJ)* (XWJI~ XHK)-(XHK~XCI)'(ZNK ZWJ)) + VYM

IF (LTEST) GO YO 55 .
VIM = (VBAR1i- VBARZ)‘((XdK-XCI)‘(VHJ-YHK)-(YHK-YCJ)‘(XHJ XHK)) +VZM
55 CONTINUE

RW11 = RW21
RW12 = RW22
RW112 = RW212
RW122 = RW222
XWK = XHJ
YHK = YHJ
ZWK = ZHJ
45 CONTINUE
IF (WTEST) GO TO 60
XWK = XH ()
YHK = YH (1)
ZWK = ZW(1)
HMZ = (XWK=XCI)**2 ¢ (YAK=-YCJ)**2

IF (HM2.LT..03001) GO TO 60
. RM1 = SQRT(HMZ2 + (ZWK=23J)%*2)
RM2 = SQRT(HM2 ¢+ (ZWK+2Z0J)*»2)
' , P = 25.13274
c- .
C COMPUTE VYELOCITY INDUCED BY BOUND VORTEX
VXM = GAMAM® (RM1+¢RM2)* (SPAN**2 -(RHi-RHZ)"2)'(YCJ~YHK)/(P‘SPAN‘
1RM{*RM2*HM2) + VXM
VYM = GAHAH‘(Qﬁi*RMZ)'(SPAN“Z -(RH1-RH2)"2)‘(XHK~XCI’/(P‘SPAN'
2RM1+RM2* HM2) + VYN
60 CONTINUE

95 VXMOD = VXM
VYMOD = VYM
VZMOO = VZIM
c
C STORE TOTAL VELOCIYIES
VXTOT = VXM + SPEED
VYTOT = VVYM
VZITOT = VIM
RETURN
END

8
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APPENDIX C

PROGRAM TO COMPUTE LINSARIZED WALL INTERFERENCE FACTORS
FOR TUNNELS OF ARBITRARY CROSS SECTION

PROGRAM STWKWT (INPUT,OUrPUT,TAPES=INPUT,TAPE6E=0UTPUT)

FOR WIND TUNNELS WITH VERTICAL AND LATERAL PLANES OF SYMMETRY IN THE
SPECIAL CASE OF THE MODZIL LOCATED ON THE PLANE OF VERTICAL SYMMETRY.
THE MODEL IS A SIMPLE HORSESHOE VORTEX SYSTEM.

TH’GCROSS SECTION OF THE TUNNEL MUST REMAIN GCONSTANT OVER THE FULL
LENGTH,

THIS IS A FORTRAN IV PROGRAM WRITTEN FOR THE CDC 6400 COMPUTER.
STORAGE .REQUIREMENT FOR THIS PROGRAM IS APPROXIMATELY 46000 (OCTAL)
LOCATIONS ON THE CODC 6400.-

EXECUTION TIME ON THE COC 6%00 IS APPROXIMATELY 95 SECONDS FOR ONE
CASE INCLUDING THE MATRIX INVERSION.'

INPUT DATA SEQUENCE,

TITLE (8A1D).
ANY TITLE MAY BE USED T) ACCOMPANY OUTPUTo

MM, NN (2I2)

MM IS THE NUMBER OF COORDINATE PA'IRS DEFINING THE COMPLETE CROSS=-
SECTIONAL SHAPE OF THE TUNNEL, MM CANNOT EXCEED 20.

NN IS THE NUMBER OF VORTEX RECTANGLES MAKING UP THE LENGTH OF THE
UNNEL. NN GANNOT EXCEED 25.

Y,-Z (2F15.5) » ’ :
Y AND Z ARE THE COORDINATES, IN FEET, OF THE POINTS DEFINING THE
SHAPE OF THE TUNNEL. MM CARDS ARE REQUIRED. )

- THE ORIGIN OF THE COOROINATE SYSTEM IS TAKEN ON THE TUNNEL CENTER

THE FIRST COORDINATE TO THE RIGHT (POSITIVE Z) OF THE POSITIVE Y
SEGMENT LENGTHS BETWEEN ADJACENT POINTS SHOULD BE EQUAL.

DELTAX (F15.5)

LENGTH IN FEET OF THE VIRTEX RECT ANGLES IN THE STREAMWISE
DIRECTION. SHOULD B EQJAL ‘TO THZ LENGTH OF SEGMENTS IN THE
CROSS-SECTION, K

SPAN (F15.5) : o
VORTEX SPAN, IN FEET, OF THE WINS o

ADDITIONAL CASES
REPEAT THE LAST CARD, SPAN (F155), FOR AS MANY CASES AS DESIRED.

FORMAT (212
FORMAT (2F15,5)

" FORMAT (F15,5)
FORMAT (4F15,5)

THIS PROGRAM CONMPUTES LINEAIZED WIND TUNNEL WALL INTERFERENCE FACTORS

LINE WITH X POSITIVE OOANSTREAM, Y POSITIVE UPWARD, AND Z POSITIVE
TO THE RIGHT LOOKING DOWNSTREAM.. THE FIRST CARD IN THE SEQUENCE IS

AXIS, AND SUBSEQUENT POINTS ARE TAKEN CLOCKWISE AROUND THE TUNNEL.

G X X R e Kt e e e e e e e e i e e ke L e e s i e e e K e X e e e K e K X e Ko Xe Xa XKe X X X3

O OENOVIEFEWNPS
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] FORMAT (1F10.5) c 51
7 FORMAT (3F15.5) c 52 .

9 FORMAT (8A10) c. 53

210 FORMAT (1H1, Zox,aAio) | ) : ‘ c 54

211 FORMAT (1H0,53%X,21H4 0 D E L " D AT A 9/79/925X 3 THSPAN = C c 55
1F6e3y, S5Xy4HXM = HF64.3y BX, YHYM = 5F64395X9y13HCIRCULATION = P 56
2F73 ) . . c 57 -

212 FORNAT (1HO, 48X,23HT U ‘ N.E L DATA 3/4/9s35%X,9HPOINT NO, c 58

' 1,7X,1HY.9X,1HZ,8X,1bHLENGTH OF SIDE o /9U/ 338Xy 127Xy FBelty2XyFBalsy C 59

29X, F7e4)) c 60

213 FORMAT (1H1,54%,13HR E S U L T S./’/,5x,11”c00RDINAT5595X9 C 61

110HCORRECTION,y 6Xy 16HTOTAL VELOCIT IES, 13X, 25HTUNNEL INODUCED VELOCIT C 62

2IESy10Xy24HMODEL . INDUCED VELOCITIES,/ 94Xy 1HX,5Xy 1HY 45X31HZ,7Xy -C 63

"33IHDEL 96Xy 2HV X 98Xy 2HVY 4 X ZHVZQQX, 3HV*C)3X,3HVYC, 8Xy3HVZC,y8Xy3HVYXM, C -1'%

H8X93HVYM 8%, 3HVZM ) c 65

214 FORMAT (1HOy 3F6.29FBs 3,3F11.“,3F11.‘0,‘3F110") c 66

215 FORMAT (/3/y48%X 1 7HSECTION LENGTH = 2FTels) i c 67

216 FORMAT (/ 3/y45X,22HCR0OSS SECTIONAL AREA = 9F100‘0) c 638

" INTEGER Ay8,C,y0,E . 69

_LOGICAL 0PT1, OPT2 c 70

DIMENSION X(26),Y(20) ,Z(ZU),SINWI(ZU),CDSPHI (20) yXCPT(25), c 71

1YCPT(11) , 2CPT (11) ’SIDE(ZO’ »CC (100: ,100,,5(25,'GA"AK(100)) c 72

.. 1GAMA (25, 11),ZM(2) c 73

DIMENSION R(ZS,ZO’,HL(ZS, 20) s HD(20) yHYZ(20) c 7%

'DIMENSION GL(11), GDC11) - C 75

DIMENSION TITLE(G, c 76

ID = 26 c 77

JO = 25 c T8

KD = 26. c 79

Lo = 11 c 80

"D = 100 c 81

¢ 82

: C READ TUNNEL AND MODEL OESCRIPTION FROM ClQDS c 83

35 READ (5,19) (TITLE(I), I=1,8) c 8&

IF (EOF,5) 700,35 c 85

35 'READ (5,1) MMy,NN c 86

' IF ((MMeGTe20)eO0Rs(NNsGT, 25)) GO TO0 700 c 87

. N1 = NN + 1 - R 88

READ (5,2) (Y(D),Z(1I),I= 1,""' c 89

READ (5, 3) DELTAX c 90

€ . : c 91
C c 92

C COHDUTE THE COORDINATES OF THE TUNNEL. C 93

CALL COORD (XyYyZ s XCPY,YCPT,ZCPT, S,SINPHI,COSPHI,UELTAX, - C %

A1SIOE,OPT 1,0™T2,MM 4yNNyLLyKKyN1,NK, ID,JD,KD,LD,yAREA) g gg

C GENERATE THE MATRIX OF COEFFICIENTS,: c - 97

. CALL- MATRIX (X,Y,Z¢XCPT,YCPTy 2CPT ,SINPHI,COSPHI,SIDE,S,CC, C 98

: _1HH’NN’LL’KK,Ni,NK,OPT1.3PT2,R,HL. ”D,HYZ,ID,JD,KD)LD,"D’ g g:

’ 1

c cC 101

Cc CONPU'IE INVERSE OF THE CC MATRIX, STORE RESULT IN CC ARRAY. c 102

70 CALL INVR(CC NKoMD) : C 103

c C 104

c o . o ¢ 135
C READ MODEL DATA FROM PUNCHED CARDS. C. 106 -

80



75

80
c

OO0

130

150
C

.C WRITE RESULTS OF COMPUTATIONS,

500

501 -
50 2
250

. 251
- 252
. 253

"40.00
%002

40 04
4010
4015
4020
4025
" 4030
L340
4050

4055 -

READ (5, 3) SPAN
IF (EOF,5) 700,80
CONTINUE

C GENERATE THE RIGHT HAND SIOE OF THE MATRIX EQUATION,
CALL RHS(SP ANy XM 3 ¥ H 4 ZM, GANAH,XCPT,YCPT,ZCPT,SINPHI,
1COSPHIZGAMAK,yJO,KDyLD, N),NN,KK!-

HULTIPLY RIGHT HANO SIODE BY HATRIX INVERSE, STORE RESULT IN GAMA ARRAY

M =20

DO 150 I
00 15¢ J
M=M+ 1
XCI = 0.0
DO 130 K = 1,NK

14NN
1, KK

XCI = XCI ¢ CC(M,K)®*GAMAK (K)

GAMA(I,J) = XCI
L=Lles 10
GAMA(I,L) = =XCI ~
IF ((4NOT.OPT2)4AND,
CONTINUE

FORMAT (30H1 CALCULA

* WRITE (6'9500)

B0 502 J = 1,NN
WRITE (6,501) (GAMAC
FORMAT (/,11F11,6)-

- CONTINUE

FORMAT (81HOOPTL = ,
AIND BOTTOM CENTER OF

IF (OPT1) WRITE (6,250)

FORMAT (85SHODOPTL = o
10P AND BOTTOM CENTER

IF (aNOTLOPT1) WRITE

"FORMAT (76H00PT2 = ,
1 OF VERTICAL SYMMETR

IF (OPT2) WRITE (6,2
"FORMAT (8C0HJQOPT2 =,
1LANE OF VERTICAL SYM

‘IF- (o NOT 4 0PT2) WRITE
FORMAT (27HLRESUL TAN

FORMAT. (13HIRING NUM
1EL OISTANCE = ,LF1C.
111F11.6))

FORMAT (15HOSECTION

WRITE (654034)

DO 4140 L= 1,N1

M=L=1

DO 4075 I=1,LL

IF (L=2) 4850, 4060,

IF (L=N1) 4060, 4070
GL(I) = GAMA(L,I)
G0 TO 4075

A9 8X, 22HMODEL DISTANCE/SPAN
‘NUMBER 513,/ ,11F11,6)

(J-EQ.KK)) GAHA(I,J*i) = 040 -

TED VORTEX STRENGTHS :).
J,K) [ K=1'LL, : )

TRUZ, THIS IMPLIES VORTEX SINGULARITY AT TOP A
TUNNEL )

FALSE., THIS IHPLIES NO VORTEX SINGULARITY AT T

OF TUNNEL ) : . .

(6y 251)
TRUZ. THIS IMPLIES VORTEX SINGULARITY ON PLANE
Y .
52) .

FALSEs THIS IMPLIES NO VORTEX SIMGULARITY ON P

METRY ) ’ .
(64253) ‘ .

T VIRTEX STRZ NGTHS y _ i

BER 912,8X,15HX COORDINATE 9F10e4,8X,17HMOD
1Flleley (/y .

#0430
’ #190

0000000000000 NNONNNNNNNNNNNNNNNNNNNDNNDANDNNNNONO0

197
108
109
110
111
112
113

T 116

115

116

117
118
119

120

124
122
123
124
125
126

127
. 128

129
130
131
132
133 .
136
135
136 -
137
138
139
140
161

142

143
1ib
145
146
147
148
149
158 .

151

152

‘153

156
155
156
157
158
159

. 160

161
162

81



4060 GL(I) = GAMA'(L,I) = GAMA(M,I)

4065 GO TO 4075

L0070 GL{I) = ~GAMA (M,I)

4375 CONTINUS

4077 XOR = X{L)=XM

4078 XCI = XOR/SPAN o
4980 WRITE (5,4002) L, X(LD)yXIR,XCI,(GL (I), I=1,LL)
4100 IF (L=N1) 4110, 4140, 4140

41106 00 4125 T=2,LL :

4115 J=I-1 - )

4120 GL(J) = GAMACL,D) = GAMA(L,I)

4425 CONTINUE

4130 MMM = LL - {

4135 WRITE (5,4004) L,(GL(J);J 1, MMM)

41640 CONTINUE

OO0OOOOHOOO0OD

WRITE (6,2108) TITLE

HRITE (6y212) (I,Y(I), Z(I),SIDF(I), I 1,NH7
WRITE (6,215) DELTAX

WRITE (6,216) AREA

HRITE (B, 211) SPAN,XM,Y4, GAMAM

NOW BEGIN SURVEY OF TUNNEL FLOW FIELD, . :

PERFORM SURVEY IN THZ PLANE OF THE MODEL.,: SURVEY FJOM APPROXIMATE
GEOMETRIC WINGTIP TO CENTERLINE OF TUNNEU WITH FIXED X COORDINATE,
THEN SURVEY ALONG CENTERLINZ OF TUNNZIL DOWNSTREAM FROM BOUND VORTEX,
SURVEY INCREMENT IN 30TH DIRECTIONS IS (VORTEX SPAN)/20

SURVEY BEGINS AT BOUND VORTZIX AND CONTINUES FOR THREE VORTEX SPANS
DOHNSTREAH OF THE BOUND VORTEXe

WRITE (6,213}
- DTP = SPAN/20s0
SET XTP, YTP, ZTP TO INITIAL SURVEY COORDINATES.

XTP =
YTP = Y‘
27p = S”AN’130120.

600 CONTINUE

0000

82

CALL SURVEY (XTP,YTP, ZTP,X YyZyX%,YMyZM, SINPHI COSPHI,S,
" 1GAMA,SIDE, 0P T1,SPAN,GAMAM ,VXC,VYC, VZC,VXT,VVT,VZT,VXH,VYN,VZH,
1LL, MM 4NN, Ni,R,HL,HD,HYZ,ID,JO,KD.LD R

XOR XTP -XM

DEL VYC‘AQEA/SPAN/GAHQH/Z._

waN

V*T ARE TOTAL VELOCITY COMPINENTS (SUM OF V*C AND V*M),

'V*C ARE VELOCITY COMPONENTS INDUCED 3Y TUNNZL WALLS.

V*M ARE VELOCITY COMPONENTS INDUCED BY MODEL.

XOR IS X COORDINATE OF SURVEY POINT RELATIVE TO BOUND VORTEX, )
WRITE (6B,214) XOR,YTP,ZIP ,0EL,VXT, VYT,VZT,VXC VYC,VZC’VXH VYH,VZH
IF (ZTP.GT.0.0) GO TO 601
XTP = XTP + DTP
TP = 040
IF (XTPeLE.XM#+3,0*SPAN) GO TO 600

READ DATA FIR NEXT MODEL FRJH PUNCHED CARDS.
GO T0 75

e Xz X2 X2 Xe X2 Ko X2 X Ko X K X2 2 Ko X1 X Rz R R 2 Ko K Xy e A X2 X1 X e KAy K3 Ke X1 X2 X K1 X Ay v He Ko Ks Ne s Ko X Xe Xe Ko XY Ko Ry o X Xo )

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

1864

185 .
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

211

212
213
214
215
216
217

218



601

633
700

2Te = ZTP - DTP
G0 TO 630
CONTINUE

sToOP

END

OO0

219
220
221

223
224

83



SUBROUTINE COORD (X,Y,ZpXCPY,YCPf,ZCPT,S,SINPHI,COSPHI,DELTAX,
1SIDE, OPT 1,0PT2,yMM,NN LL,KK,Nl,NK,ID,JD,KD,LD,AREA)

c :
C THIS IS A SUBROUTINE T0 COHPUTE THE TUNNEL COORDINATES-
c
LOGICAL OPfi,OPTZ
OIMENSION X(ID)’Y(KD),Z(KD),XCPT(JD),YCPT(LD),ZCPT(LO),S(JD),
1SINPHIIKD) yCOSPHI (KD) ,SIDE(KD)

]

C COMPUTE VORTEX RING X=COORDINATES,
XCI = 060 . V
B0 20 I=1,4NN
X{I) = XCI

20 - XCI = XCI + DELTAX
‘X(N1) = 105000 + X{NN)
C
C TEST TUNNEL SHAPE COORDINﬂTES ANO DEYERHINE TOTAL NUHBER OF
G UNKNOWNS (NK), -
OPTL = Z(MN).EQ.O-O
I = MW/ .
J = (MM/3) & 1
oPT2 = (Y(D) QEQQU 0) s OR,;(Y () .EQ. ge 0P
IF (JNOT.OPT1) GO TO 190

LL = MN/2
KK = MM/ 4
GO TO 1%

10 - IF (.NOT,OPT2) GO TO 12
S KK = MMZL + 1
G0 TO 13
12 KK = MM/L
13 LL = MW2 + ¢
1% - CONTINUZ:
" NL = NN * LL

NM = NN®MM

NK = NN*KK
| IF (NK.LE+100) GO TO 17

c
C IF NK IS GR:ATEH THAN 130, TERMINATE EXECUTION.‘
- WHRITE (5,15) NK

15 FORMAT (1H0,25HDI“ENSIO‘S EXCEEDS D, ‘NK -,I3,16H REDUCE MM OR NN )

STOP.
c
C GENERATE voarsx RECTANGLE PARAMETERS.
17 00 21 I = 1,NN _
21 S(I)=X(I+1) = X(I)

B0 23 I=2yMM.
22 SIDE(I) = SAQRTI(Y(I) = Y(I=1))*%2 + (Z(D) = Z(I-i))"Z)
. CSINPHII) = ((Y(I)=Y(I=-1))/(SIDE(I))) :
.23 _COSPHI(I) = ((Z(I)=Z(I=-1))/(SIDECI)))
' SIDE(1) = SQRT((Y(1) = Y(MM))*22 ¢ (Z2(1) - Z(HN))"Z)
SINPHIC(L) = C(Y(1)=Y(HM))/(SIDE(L1)))
COSPHI() = ((Z(1)=-ZC(MM))/(SIOCE(1)))
c
C GENEQATE CONTROL POINT LOCATIONS,
00 26 I = 2yLL -
YCPT(I) = (V(I)eY(I-1))}/:2,)

84
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- 225

226
227
228
229
230

-231

232
233
234
235
236
237
238
239
240
261
242
243
244
245
246
247
248
249
250 .
251
252
253
254
255
256
257
258
259
260
261
262
263

264 -

265
266
267

. 268

269

- 270
- ars

272
273

2Tk
- 275

276
277

278.

279
280



26

25
c

(ZAI)+Z (I=1))/ (24}

ZCPTLI) =
2CPT(1) = (Z(1)eZ (M))7(20)
YCPT (1) = (Y (1VeY (MM)D/(2,)

MMM = NN = 1

D0 25 I = 1,HMMH

XCPT(I) = (X(I+l) & X(DI/L24)
XCPTI(NN) = X (NN) + DELTAX/2.0

C_GENERATE TUNNEL CROSS SECTIONAL AREA,

30
c

AREA = 040

J = HHM

00 30 I = 1,MM ,
AREA = AREA + ABS (Y(I)=Y(J))*ABS(Z(I)+Z(J))
J=1 ‘ :
AREA = AREA/2.

C RETURN TO CALLING PROGRAM, .

c

RETURN
END

DO OONOOO0

281
282
283
284
285
286
287
288
289
290
291
292
232
294
295

' 296

297
298
299.
300
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o000

OO0

25
c
c

c
c
c

10

2r

17
11

86

SUBROUTINE MATRIX (X,Y,l,XCPT,YC’T,ZG”T;SINPHI’COSPHI,SIDE;5,009-

1MM,NN,LL g KKy N1yNK 3 0PT1,0P T2y RyHLy HDyHYZ 1Dy JDOyKD,»LOyMOD)

THIS IS A SUBROUTINE TO GENZRATE THE MATRIXVOF COEFFICIENTS FOR THE
SPECIAL CASE OF VERTICAL SYMMETRY.

LOGICAL OPT1,0PT2

INTEGER A,B,CyD,E

DIMENSION X(ID)sY (KDY »Z{KD)ySINPHI(KD),COSPHI{KD) ,XCPT(JD),
1YCPT(LD),ZGPT(L0),R(ID,(D,,SIDE(KD),CC(MD,MD),HL(ID,KD),HD(KD),
1SC(J0) ,HY Z (KD)

P = 25.,1327%

CYCLE THROUGH CONTROL POINTS,

M=o

D0 50 I=1,NN

DO 49 J = 1,KK:

M=M4+1

SELECT VARIASLES FOR THIS CINTROL POINT.
SINJ = SINPHI(J)
CO0SJ = COSPHI(WM
XCI XCPT(I)
YCJ YCPT(I)
pAr) LPTI)

KL A ]

GENERATE COORDINATES OF VORTE X RECTANGLES RELATIVE YO PRESENT CONTROL
"POINT,

DO 26 JJ=1,MM
HO(JJ) = SQRTC(YCU=Y (JJ)) **¥2 & (ZCI=Z(JN)**2) .

HYZ(JI=SORT (((2CJ=Z(JJ)) *SINPHIC(JYJ) = (YCJ=-Y (JJ)})I*COSPHI(JJI**2)

00 26 II=1,N1
R(II,JuN = SQRT((XCI-X(II))"2*(YCJ-Y(JJ))"2#(ZCJ -2(JJ))**2)
CHL(II 4 0J) =SQRT (X (IT)=XCI)**2 ¢ HYZ(YJI**2)

CYCLE THROUGH VORTEX UNKNOWNS,
N=0 '
D0 48 K=1,NN
DO 47 L=1,KK
N=NS®1

SELECT VARJABLES FOR THIS PARTICULAR RECTANGLE OR RECTANGLES.

B =1
€ = K+t
. MNIMIZ = @ '
1 IF (OPT1) GO TO 15
A = B=t :
C = 2%.L~-8
D = C-1

IF (B=1) 50,29,27
IF (LL-3) 50,29,28
IF (8-1) 50,18,17

IF (LL-B) 50,19,11
A = 8-1
C' = MM-A

301
302
303
304
305
366
337
308
309
310

311

312
313
314
315
316
317
318
319
320.
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

34k
345
346
37
348
349
350
151
352
353
350 .
355
356



18

19

28

29

Cc
c

D = MM-B
GO TO 28
A = MM
C = MM
D = MN-1
GO TO 28
A =tLL=-1
C = LLd
0 =LL
GO TO-28
RKA = R{K,A)
RKC = RIK,0)
REA = R(E,A)
REC = R(E,C)
HLKC = HL (K, C)
HLEC = HL(E,C)
HOA = HD(A)
HOC = HD(C) .
YA = Y{(A)
ZA = Z(A)
2C = 2{C)
HYZA = RYZ(A)
HYZC = HYZ(C)
SINL = SINPHI(B)
COSL = COSPHI(B)
RKB = R(K,B)
RKD = R(K,D)
REB = R(E,B)
RED = RCE,D)V
HLKB = HL (K,B)
HLEB = HL (E,8)
HDOB = HD (8)
HDD = HD(D)
SIDEB = SIDE(B)
0K=S(K) -
Y3 = Y{(3)
ZB8 = Z(3)
Z0-= Z()
XK = X(K)
XE = X{(E)
HYZB = AYZ(3)

" HYZD = HYZ(D)

C COMPUTE VELOCITY COMPONENTS INDUCED 3Y RECTANGLE OR RECTANGLES,
C TAKE ANY SPECIAL CASES INTO ACCOUNT. '

31
15
32

IF
IF
IF
IF
IF
VY=
2HLK
2*RK
2HLE
2*RE

(COSJ.EQs 0, 00606) GO TO 35

(3=1) 50,16,31

(LL=-3) 50,165,332

(s NOT . OPT1) GO TO 33

(COSL.EQ. 0. 0390C) GO TO 62

(COSL/ (P*SIDE3)*(~( (RIKA+RKB)* (SIDEI**2~(RKA~-RKB) **2)/ ((

B*%2) *RKA*RK3) 4 (RKD#RKC)*(SIDEB**2 = (RKC=RKD)*+2)/ ((HLKC**2)
C*RKD))I*(XK=XCI) ¢ ((REA+REB)*(SIDER**2 -(REA=REB)**2) /(1
B*%#2) *REA®REZ) + (REC+RED) *(SIDEB**2 = (REC-RED)**2)/ ((HLEC**2)
C*RED)I*(XE=XCI)) ¢ 1,/7(P*DK)* ({(RKB4REB)*(DK**2 ={(

v

OOOGOOOQOQOOOOOOOOOOOOOOOOOOOOOO(DOOOOOOOOOOOOOOOOOOOOOOO

357
358
359
360
361
362
363
364
365
366
367
368
369
370

371

372
373
374
375
376
377
378
379
380
331
382
383

384 .

389
386
387
388
389
390
391

1392

393
394
395
396
397
338
399
L9e
401

402

403
494
»05
406
407
498
409
410
411

412
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62

ZRKB-REB)"2)[((HDB“Z)‘RKB'REB))‘(ZB-ZCJ)-((RKD#RED)‘(DK"Z-(RKD-
2RED)I**2) / ((HOD»*2) *RKD*RE D)) # (2D= ZCJ) + ({RKC+REC) * (DK**#2=(RKC~REC)

2%%2)/ ((HOC**2) *RKC*EC)) * (ZC~ZCJ) = ( {RKA+REA)* (DK *#2= (RKA=REA) **2)

27 CTHDA®* 2) *RKA®REANI * (ZA-Z2CH M)

60 TO 36

vy = ' : (1./(P*DK)* (( (RKB4+REB)I* (DK**2 ~{(
2RKB-REB) *#*%2) /7 ((HDB**2) *K B*RE D)V * (ZB=2CJ) ~ ({(RKD*RED) * (DK**2~-(RKD~-

© . 2REDI**2) /7 ((HDD®*2)*RKO*RE D)) *(20~2CJ) + ((RKC+REC) * (DK** 2= (RKC-REC)

33

63

35
- 36

3

39

6h

49

b2
43
105

c

2%%2)/ C((HOC*#2) *RKC*RECI) * (ZC- ZCJ) = ((RKA+REA)I* (0K **2~ (RKA=REA) **+2)
2/7C(HDA®® 2) *RKA®RZA)) * (2= ZCJ)))

GO TO 36

IF (COSL+EQ.0.00000) GO TO 63

VY = (COSL/(P*SIDEB) *(-( (RKD+RKB) *(SIDER**2=-(RKD~RKB) **2)/((
2HLKB##2) #*RKD*RKB) ) *{XK=XCI) + ((RED+RcZB)* (SIDEB**2 ~(RED~REB)**
22)/((HLEB¥*2)*RED*REB) )®* (XE=XCI)) + 1./(P*DK) *(( (RKB¢REB) #(DK**
22= (RKB=REB)**2)/( (HDB**2) *RKB*REB )) *(78=Z CJ)= ((RKD+RED) * (DK ** 2~
2 (RKD-RED) *#2)/ ((HDO**2) *RKD*RED} ) *(Z2D=-2CJ))) '

GO TO 36

VY = (14/7(P®DK) *(( {RKB+REB) * (DK**
22-(RKB=-REB)**2)/( (HDB**2) *RKB*REB))I *#(ZB-ZCJ)= ((RKD#RED)‘(DK"Z-

‘2 (RKD=RED) **2)/ ((HDD**2) *RKO*RED)) *(ZD=2C4)))

G0 TO 36

VY = 0.,30000

IF (SINJ.EQ,0.09000) GO TO &2

IF (8-1) 50,55,38 '

IF (LL-B) 53,55,39

IF (4 NOToOPT1) GO TO 640

IF (SINL+EQs0.020UC) GO TO 6“

VZ = (SINL/(P*SIDER)*(((RKA+RKB)* (SIDEB**2 «(RKA=-RKB)**#2)/((
SHLKB*#2) *RKA#RKSB) = (RKG+RKD) *(SIDEB**2 = (RKC=RKD)**2)/ ((HLKC**2)
3*RKC*RKD) I *(XK=XCI) + ((REC+RED)® (SIDEB**2 - (REC=-RED)**2)/( (
3HLEC*#2) *REC®RED) -~ (REA+REB)>(SIDEB**2 = (REA=REB)**2)/ ({HLER®**2)
I*REA*REFII*(XE=XCI)) + 1,/ (P*0K)* (((RKA+REA)*(DK**2 =~ (RKA .
3-REA) ##2) / ((HDA%* 2)*RKA®REA) = (RKC+REC)* (DK**2 = (RKC=REC)I**2)/ ((

-3HDC**» 2)*RKC*REC)) *(YA=Y3J) & ((RKD#RED)*(DK**2 ~(RKU=-RED)**2)/

3 ((HDD**#2)*RKD*RED) = (RKB+REBI*(DK**2 =(RKB-REB) #*2)/ ({HDB**2)*

3RKB‘REB))'(YB~VCJ)))

GO TO 43 :

VZ = (Le /(P*DK)® (((RKA+REA)® (DK**2 = (RKA
3=-REA}**¥2) / ((HDA®** 2)*RKA*REA) =~ (RKCH+REC)I* (DK**2 ~ (RKC=RECI**2}/ ((
3HDC**2)*RKC*REC)) *(YA=-Y2J) ¢+ ((RKD#RED)*(DK**2 «(RKD=RED)**2)/
3((HDD**¥2) *RKD*¥RED) = (RKBREB)*(DK**2 =(RKB=REZ) *#%2)/ ((HDB**2)*
3RKB*RER) ) #(YB=YCJ)))

GO TO 43 ‘ '

VZ = (1.7 (P*OK)I*( ((RKD4+E D) * (OK** 2 -(RKD-”ED)"Z)/((HOD"Z)'RKD‘
3RED) ~(RKB + REB) *(DK**#2= (RKB-REQ)"Z)/((HDB"Z)'RKB'REB))’
3(vB=YCJ) )

GO TO 43

VZ = 0.00000

IF (MNINIZ) 586,105,106

B = LL#1-B

MNIMIZ = 1

C STORE NORMAL VELOCITY IN CC ARRAY, ACCOUNT FOR VERTICAL SYMMETRY,

88

CC1 = VY*COSJ = VZ*SINJ
GO TO 131
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413
414
415
416
417
418
419
420
421
422
423
424
425
426
w27
428
429
%30
431
432
433
434
435
436
437
438
439
Lug
NN
442
443,
Lk
445
NN

LYY
b48

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468



SR

. CCIMy,N) = CC1 ~ VY®COSJ ¢ VZ*SINJ

CONTINUE
CONTINUE
CONTINUE
CONTINUE

MATRIX IS COMPLETE, RETURN TO CALLING PRO'GRAM,

RETURN
END

Doooono00o000
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90

SUBROUTINE INVR(A,N,ISIZE)

THIS IS A SUBROUTINE TO INVEIRT THE MATRIX A.

THE INPUT MATRIX A IS DESTROYED AND REPLACED BY ITS INVERSE.

A IS ASSUMED TO CONTAIN N RIWS AND COLUMNS OF DATA.:
A IS ASSUMED TO BE DIMENSIONED ISIZ2E BY ISIZE.

15
30

w0

. 45

50
60
70

80 .

Sd
95
169

195
110

130

140 .

150
160
170
200
260
270
310

330
340
350

380
390
400
429
439

OIMENSION IPIVOT(103),A(ISIZE,ISTZE),'INDEX(100,2),PIVOT(100)
EQUIVALENGE (IROW,JROW), (ICOLUMyICOLUMY, (AMAX,T,SHAP)

00 20 J=1,N
IPIVOT(J) =0
D0 550 I=1,N

SEARCH FOR PIVOT ELEMENT

AMAX=040

DO 105 J=1,N

IF (IPIVOT(JS)-1) 60, 105, 60

00 160 K=1,N

IF (IPIVOT(K)=1) 80, 100, 740
IF(A3S(AMAX) =ABSTA(J,K))) 85,108,100
IROW=J

ICOLUM=K

AMAX=ACJ, K)

CONTINUE

CONTINUE
IPIVOT(ICOLUM) =IPIVOT (ICOLUM) +1

INTERCHANGE RONWS TO PUT PIVOT ELEMENT ON DIAGONAL .

IF (IROW=-ICOLUM) 143, 250, 140
CONTINUE

DO 200 L=1,N

SHAP=A(IROW, L)
A(IROW,L)=ACICOLUM,L)
ACICOLUN,L)=SHAP
INDEX (I, 1)=IROK

INDEX (I,-2)=ICOLUN

PIVOT (I) =A(ICOLUN,ICOLUY)

OIVIDE PIVOT ROW BY PIVOT £LEHENT

ACICOLUM, ICOLUMY =140
00 350 L=1,N
ACICOLUN,L)=A(CICOLUM,L)ZPIVOT ()

REDUCE NON-PIVOT ROWS

DO 550 L1=1,N

IF(L1~-ICOLUM) &00, 550, 400
T=A(L1,ICOLUM) a
ACLL, ICOLUMY =040

DO 450 L=1,N

XX+ N Eels R No o NeoNoNe oo Re Ny Noe Ns Ro N Re s N o o N X2 R2 ReNo N Ne NoRo Mo No NP Ao R N NP N R Y NS R R N2 N Ne Ne No o> Ne N/

‘480

481
432
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
534
505
596
507

508

539
510
511
512
513
514
515

- 516

517
518
519
520
521
522
523
524
525

526

527
528

529

530
531
532
533
534
535

P



OO0

450
550

600
610
620
630
640
650
660
670
700
705
710
740

ACLL,L)=A(L1,L)=-ACICOLUY, L) *T
CONTINUE

INTERCHANGE COLUMNS

D0 71GC I=1,N

L=N+i-1

IF C(INOE X(L,1)=-INDEX(L,2)) 630, 710, 630
JROW=INDEX (L ,1)
JCOLUM=INDEX (L,2)

D0 7085 K=1,N
SHAP=A(K 4 JRO'W)
A{Ky,JROH) =A(K, JCOLUM)
A(Ky JCOL UM)=SHAP ~
CONTINUE

CONTINUE

RETURN

END

OOOOGQOOOOOOOQOQOO
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su0
541
542
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S4b
545
546
S47
548
549
550
551
552
553

91



QOO O

a0

OO OO0

(s N o]

- 51
52

53
c

SUBROUTINE RHS(SPANyXM,¥M4ZM,GAMA M, XCPT,YCPTy ZCP T,SINPHI,
1COSPHI 6 AMAK, JOyKDyL D,y M0y NN, KK)

’THiS IS A SUBROUTINE TO COMPUTE THE RIGHT HAND SIDE OF THE
MATRIX EQUATION FOR THE STRAIGHT WAKE IN WIND TUNNEL PROGRAM,

DIMENSION XCPT(J0),YCPTLL D) yZCPT(LD),y SINPHI(KD) , COSPHI(KD),
1ZM(2) yGAMAKIMD)I

GENERATE MODEL COOROINATES FOR USE fN GENERATING THE GAMAK MATRIX AND
FOR LATER USE IN THE SURVEY SUBROUTINE.

GAMAM = 1,0

I = NN/2 + 1

XN = XCPT(I)

YM = Q0,0

ZM(1) = SPAN/2.
IM(2) = =2ZM(41)
ML = M (1)
IM2 = ZM(2)

GENERATE THE RIGHT HAND SIDE OF THE MATRIX EQUATION.

P = 25,13274

CYCLE THROUGH CONTROL POINTS.

M =g

DO 50 I = 1,NN
00 59 J = 1,KX
M=M+es1

SELECT VARIABLES FOR THIS CONTROL POINT,

SINJ = SINPHI(J)
CO0SJ = COSPHI(J)

XCI = XCPT(I)
YCJ = YCPT(S)
2CJ = ZCPT WM

COMPUTE VELOCITY INDUCED AT CONTROL POINT BY MODEL,

RM1 = SQRT((XM=~XCI)**2 ¢+ (YM = YD J)**2 &+ (ZM(1) ~ ZCJ)**2)
‘RM2 = SARTL(XM=XCI)®**2 ¢+ (YM = YCJUI**2 ¢+ (ZM(2)=2CI)**2)
HM1 = SIRT((YCJ=-YMI®*2 ¢ (ZCJ = ZM(1))**2)

HM2 = SARTI(YCY = YM)**2 + (XCI=XM)**2)

HM3 = SARTU(YCJ=YM)**2 ¢+ (ZCU=-ZM(2))**2)

IF (COSJ,EQe G.CO000) GO TO 51

VYM = GAMAM® ((RM1+PM2) *(SPAN®**2 = (RM1~- RHZ)“Z)'(XH-XCI)/(P'SOAN'
2RMI*RM2% (HM2%%2)) #2, /P*( (1e +(XCI=XM)/ (RM1))I* (ZCI=-2ZM1)/ (HM1**2) +
2(1e+(XCI=XM)/ (RM2))*(ZM2~ ZCJ)/(HH3"2)))

GO TO 52

VYM=(,00000 ‘

IF (SINJ.EQe 0,08000% GO TO 53

VZIM = GAMAM® ((YCJ=YM)*2,/P)*( (1, +(XOI-XM)/RM2)/ (HM3**2) = (1. +(
IXCI=XM)/ (RM1))/{HML1*¥2))

GO TO 56

VZIM = 0..00000

C STORE NORMAL VELOCITY COMPONENT IN GAMAK ARRAY,

92

OOOOOOOOOOODOOOQOOOOOOOOOOQOOOOOQOO&’OOOOOQOOOOOOO0.0QGOOQ

‘654

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
5740
571
572 .
573
574
575
576
577
578
579
580

581

582
€83
534
585
586
587
588

. 589

590
591
592
593
594
595
536
597
598
599
609
601
602
603
604
695
606
607
608
609



1 GAMAK(M) = VZM*SINJ = YYM*COSJ
59 CONTINUE
60 CONTINUE

c .

C RIGHT HAND SIDE IS COMPLETE, RETURN T-0 CALLING PROGRAM.
RETURN
END

DOOOOOO
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SUBROUTINE SURVEY (XTP,YTP,ZTP,Xs¥y2ZyXMyYMyZM,SINPHI, COSPHI,S,
1GAMA,SIDE,)OPT1,SPANy) GAMAM y UXC VYL 4 VZC s VXT 3 VYT ,VZT VXM, VY M,V 2ZH,
1LL,yMMyNNy N1, RyHLy HOyHYZy, I 0,J0,K0, L0 }
c .
C THIS IS A SUBROUTINE TO COMPUTE VELOCITY COMPONENTS AT COORDINATES
C XTPy YTP,Z1P,

C
LOGIGCAL OPT1
INTEGER A,8,C,0,E
DIHENSION X(ID),Y(KD,,Z(KD),SINPHI(KU),COSPHI(KD),
R(ID,XD)o,SIDE(KDI,HL(ID,KD) yHD(KD),S(JO),
isA”A(JD,LD),ZM(Z),HM(3)'HYZ(KD),RH(2)
(o}
C OEFINE POSITION OF MODEL AND VORTEX RECTANGLES RELATIVE TO SURVEY
C POINT,
IM1 = ZM (1)
M2 = 724(2)

601 RM(1) = SQRT ((XM-XTP)®%2 + (YM = YTPI**2 #+ (ZM(1) = 2TP)**2)
RM(2) = SQRT ((XM-XTP)*#2 + (YM = YTP)**¥2 4+ (ZM(2)=ZTP)**2)
HM1 = SQRTC((YTP-YM)®®2 # (ZTP. = ZM{1))**2)
HMZ = SQRT((YTP = YM)*%2 + (XTP=XM)*+2)
HM3 = SQRT(CYTP-YM)**2 + (ZTP=-ZM(2))**2)
DO 127 J = 1,MM
HD(J) = SORTU(YTP~Y(J))I**2 + (IZTP = Z(J))**2)
HYZ(J) = SQRT(((ZTP-Z(J)) *SINFHI(J)=(YTP=Y(J))*COSPHI ()} ++2)
D0 127 I = 1,N1
R(Iy4) = SORT((XTP=X(I})**2 + (YTP=Y(J)I*%2 4 (ZTP=Z(J))**2)
127 HL (I, J)I=SORT ((X(ID=XTP)I**2 & HYZ([J)**2)

VXC = 0.0
VYC = 0..0
VZC = 0.0
c
C CYCLE THROUGH VORTEX STRINGIHS,
DO 150 K -= 1,NN

D0 156 L = 1,LL
c . .
C SELECT PARAMETERS FOR THIS PARTICULAR VORTEX STRENGTH,

B =1

E = K#1

IF (0PTL) GO TO 110
A= L=

C = LL*2~-L

D = C=-1

IF (L=-1) 150,129,125

125 IF (LL-L) 150,129 128
110 IF (L=1) 150,113,111
11 IF (LL-L) 150,114,112
112 L-1
MM=A
MM-B
0 YO 128
MM
MM
MM-1
O TO0 128

= LL-1

113

POOOPOIOP

114

94

0000000000000 00000000000000000NNNN0NNNNN0N00NNNNN0N000O0

617

- 618

619
620
621
622
623
624
625
626
627
628
629

630

632
633
634
635
636
637
638
639
640
641
642
643
646
645
646
647
648
649

. 650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

668

669
670
671
672



128

129

c

= LLeg
D=1tL
GO TO 128
RKA = R{K,A)
RKC = R(K,C)
REA = RU{E,A)
REC = R(E,LC)
HLKC = HL (X, 0)
HLEC = HL (E,C)
HOA = HD (A)
HOC = HD(C)
YA = Y(A)
ZA = Z(A)
ZC = Z(©)
HYZA = HYZ(A)
HYZC = HYZ(C)
SINL = SINPHI(L)
COSL = COSPHI(L)
RK8 = R(K,8)
RKD = R(K,D)
RES = R(E,B)
REOQ = R(E,D) -
HLKS = HL (K, 3)
HLEB = HL (E,B8)
HOB = HD(B)
HDO = H) (D)
SIDEB = SIDE(S)
0K = StK)
Y8 = Y(3)
Z8 = 2(8)
0 = Z1)
XK = X(K)
XE = X(E)

HYZ2B = HYZ(8)
HYZD = HYZ(D)
P = 25413274

C COMPUTE VELOCITY INDUCED BY VORTeEX R_CTANGLE OR RECTANGLES, TAKE ANY
C SPECIAL CASES INTO ACCOUNT,

131
1165
130

230

IF (L= 150,115,131
IF (LL-L) 150,115,132
IF (0OPT1) GO TO 132

VXPS = 0.0
VYPS = 0.0
VZIPS = 0.0

IF (YTP,EGQ.Q.0) GO TO 290

VXPS = 1./ (P*SI0SB)*(HYZB*({(RKD#RKR)*(SINER**2~(RKD=RKB)**2)/ ((
1 HLKB* *#2) *RKD*RK3) =~ (R‘)*REB)‘(SIDEB"Z-(R‘D-R;Q)“2)/((HLEB"2$
1*RED*RET) I+ GAMA(K,LY

IF (COSL«EQsD+0) GO TO b6

VYPS = (COSL/ (P*SIDEB) *(= ({RKD+R(BI*(SINER*#2~-(RKD=RKB)I**2)/((
2HLKB*¥2) *RKD*RK3) ) *(XK=XTP) + ((RED4+REB)* (SIDEB**2 -(RED=-REB) **
22)/((HLEB**2) *RED*REB)I*(XE=XTP)) + 1./ (P*DK) *({ (RKB+REB) *{(DK**
22= (RKB=REB)**2)/( (HD3**2) *RKB*REB))*(Z%=ZTP)= ((RKD+RED) * (DK** 2=
2 (RKD=RED) #*2)/ ((HDD**2) *RKD*RED) ) *(Z20=ZTP)) ) *GAMA (K,L) -
GO 10 67
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673
674
675
676
677
678
679
680
681
682
683
684
685
686

687 .

688
689
690
691
692
693
694
695
636
697
698
699

‘700

704
702
703
706
705
Td6
707
798
709
710
711
712
713
714
715
716
717
718
719
720
721
r22
723
724
725
726
727

728
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65 .

67

201

132

292

© 2*REC®RED))I*(XE=XTP)} + 1,/(P*OK)*{{(RKS+REB)*(DK**2 =(

63

69

70

7t

96

" 2HLKS*%*2) *RKA®RK3) + (RKI+RKC) *(SIDEB**2 = (RKC=RKD)**»2)/ ((HLKC**2)

_ 3*RKC*RKD) I *(XK=XTP) ¢ ((RECHRED)* (SIDEB**2 -(RIC~RED) **2)/ ((
3HLEC**2) *REC*RED) = (REA+RES) *(SIDEB**2 =« (REA=REB)I*¥2)/((HLEB®**2)

VYPS = (1o /7(P*DK) * (( (RKB+REB) *{DK*#+
22-(RKB=REB)I**2)/( (HIB**2) *RKB*RZ3)) *(ZB3=Z TP} =~ ((RKO+RED) * (DK** 2=
2 (RKD=RED) #%2) /({HDD**2) *RKO*RED) ) *(ZD~2TP) DI} *GAMA (KL )~

IF (YTP.€Q.J40) GO TO 231

IF (ZTPsEQe0.0) GO TO 201

VZPS = (1,7(P*DK) *{(((RKD+RED) *(DK**2 '(RKD-QED)"Z)/((HDD"Z)‘RKO‘
3RED) =(RKB + REB)'(DK"Z'(RKB-R‘B)"Z)/((HDB"Z)‘RKB‘REB))‘
3(YB=-YTP) ) ) *GAMA(K,L) -

vXC = VXC + VXPS

VYC = VYC ¢ VYPS
V2ZC = VIC & VZPS
G0 TO0 1590

VX = 060

VY = 0.0

VZ = Q.0

IF (YTP.EQ.0,.,0) GO TO 202

VX =({1.,/ (P*SIDEB) *((HYZ3* ((RKA+RKB) *{SIDEB»#2 ~{RKA=RKB)**2)/ ((
1HLK8##2) *RKA*RK3) = (REA+RES)*(SIDEB**2 = (REA~RE3)**2)/ ((HLER®**2)
1*REA*REB))) + (HYZC* ( (XKD +RKCI*(SIDEB**2 -(RKD=RKC)**2)/((
1HLKC®**2) *RKC*RKD) = (RED+REC)*(SIDEB**2 = (RED=REC}I**2)/ ((HLEC**2)
1*REC*RED) ))I) ) *GAMA(K,yL)

IF (COSL.EQsDs0) GO TO 58

VY=(COSL/ (P*SIDES) * (= ({RKA+RKE)* (SIDEB**2~ (RKA=RKB)**2)/ ((

2%RKC*RKD) I *(XK=XTP) + ((REA+REB)* (SIDEB**2 <(RCA=REB)**2)/((
ZHLEB®**2) *REA®RED) + (RES+RED)*(SIDEB**2 = (REC=RED)I**2)/ ((HLEC**2)

2RKE~REB) ##2) / L (HI)B**2) K BEREN ) * (ZB=ZT2) = {(RKN+RED)* (CK**2=(RKD~
2RED) *%2) / ((HOD**2) *RKD*AE D)) * (20~ ZTP) + [ (AKC+R:EC) * (DK** 2~ (RKC~REC)
2%%21/7 ((HOC**2)*RKC*REC))I* (2C~7TP) = ( (RKA+REA) * (DK **2=-(RKA=REA) #+2)
27 ((HDA®*2) *IKA*REA)) *(ZA=2TP) ))*#G AMALK, L)

GO TO 6%

vY = (1.7 (FP*OKI* ({ (RKB+REB)* ([ DK**2 = (
ZRKE-REB)“2’/((HJB"Z)‘QKB‘REB))‘(ZB-ZTD)-((RKD*RED)‘(DK"Z =(RKD=
2RED)I**#2)/ ((HDD**2)*RKD*RE D)) * {ZD= ZTP) + ( {(RKCHREC) * (DK** 2= (RKC-REC)
2%%2)/ ((HDC**2) *KC*REC)) * (2C~ ZTP) = ( (RKASREA)* (DK **2= (RKA=REA) **2)
2/ ((HDA¥* 2) *RKA*REA)) *(Z8=2TP) ) ) *GAMA LK, L}

IF (YTP,EQeJ40) GO TO 71 ‘

IF (ZTP.EQe0.0) GO TO 71

IF (SINL.EQ.D.00000) GO TO 70

VZ = (SINL/(P*SIDEB)* (((RKA+RKB)* (SIDEB**2 ~(RKA=RKB)**2)/((
JHLKB#*2) *RKA®RK3) = (RK3Z+RKD) *{SIDEB**2 = (RKC=RKD)**2)/ ((HLKC**2)

3*REA®REZ) I*(XE=XTP)) + L./ (P*DK)* (((RKA+REA)* (DK**2 « (RKA .
3=REA)I**2) / ((HDA®* 2)*RKA*REA) = (RKC+REC)* (DK**»2 = (RKC-REC)I**2)/((
3HOC** 2)*RKC*REC)) *(YA=YIP) + ((QKOD+RED) *#(DK**2 =(RKO=RED)**2)/
3((HDD**2) *RKD*RED) = (RCB+REBI*(DK**2 ={(RKB=REB) **2)/ ((HDA*»2)+
IRKB¥REB) ) *(VB=YTP))) *GAYA (K,4L)

GO TO 71 .

vZ = : (1./(P'DK)‘(((RKAGREA)‘(DK"2 = (RKA
3=REA) *%2) / ((HDA®*2)*RKAPREA) = (RKC4REC)™ (DK**2 - (RKC=REC)*%2)/ ((
3HOC**2)*RKC*REC)) *(YA=YTP) ¢ ((RKD+RED) *(DK**2 «(RKD=RED)*+2)/
3((HDO®**2) *RKD*REN) ~ (RKB4+REB)*(DK**2 -(RKB-REB)“Z)/((HDB"Z)‘
3RKB‘REB))‘(YB-YTP’))‘GA*A(K,L)

VXC = WC + VX
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VYC = WC ¢ VY c 785
VZIC = VIC + V2 C 786
150 CONTINUE c 787
c C 788
C COMPUTE VELOCITY INDUCED BY MODEL. c 789
RM1 = R¥ (1) c 790
RM2 = RM(2) cC 791
VXM = 0,0 C 792
VYM = 0,0 c 793
VIM = 0.0 cC 79
IF (HM1.LT.1.E~10) GO T3 155 c 795
VYM = GANAH'Z./P'(1.&(XTP-XH)IRH1)I(HMl"Z) C 796
VIM = =YYM#(YTP=YM) c 797
VYM = YYM®(ZTP=2IN1) cC 798
155 IF (HM3,LT.1.E~10) GO T) 160 cC 799
VXM = GAMAM®2,/P*% (14 + (XTP=XM)/RM2 )/ (AM3*5 2) cC. 809
VZIM = VKM®(YTP=Yd) + VZ¥ c 80t
VYM = vxn'(znzuzrp) + VIM C 8902
VXM = 0,0 ¢ 813
160 IF (HMZ.LT.i.E-iO) Go T 165 C 804
VXM = GAMAM® (RM1#RM2) * (3P AN®*2-(RM1= RNZ)"Z)I(P'SPAN'RHi‘RHZ' C 805
1 (HM2*%2) ) cC 896
VYM = VUYM + vxn‘(xn-xron ¢ 807
VXM = UXM* (YTP=YM) C 808
c ' o c 609
C COMPUTE TOTAL VELOCITY COMPINENTS. ¢ 810
165 VXT = UXC & VXM c 811
‘ VYT = WC ¢ VYN c 812
VZT = YIC + VIM C 813
RETURN C 814

END c

815
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APPENDIX D

PROGRAM TO COMPUTE NON~LINEAR WIND TUNNEL WALL INTERFERENCE
FAGTORS FOR HIGHLY LOADED LIFTING SYSTEMS

PROGRAM WINGT (INPUT,OUTPUT,TAPES =INPUT,TAPE6=0UTPUT)

THIS PROGRAM IS WRITTEN IN FORTRAN IV FOR THE COGC 6400 COMPUTER.
APPROXIMATE STORAGE REQUIRSMENT IS 52000 (OCTAL).

EXECUTION TIME IS APPROXIMATELY 230 SECONDS PER CASE WITH 29 TRAILING
SEGMENTS, 7 ITERATIONS, AND 1G0 SURVEY POINTS.

THE WIND TUNNEL CROSS=SECTION MUST HA'VE A PLANE OF LATERAL SYMMETRY
AND MUST REMAIN CONSTANT DVIR THE LENGTH OF THE TUNNEL

INPUT DATA SEQUENCE

I (I1)
AN INTEGER PARAMETER WHICH DETEIMINES THE Z COOROINATE OF ToP
AND BOTTOM GENTER CONTROL POINTS.: IF I.NE.1 THESE CONTROL POINTS
WILL BE LOCATED ON THE CENTERPLANE OF THE TUNNEL (I+Ee Z=0e0)o
IF I.EQe1 THESE CONTROL POINTS WILL BE LOCATED AT Z(1)/2

MMy NN (2120 '
MM IS THE NUMBER OF COORDINATE PAIRS DEFINING THE COMPLETE CROSS~
SECTIONAL SHAPE OF THE TUNNEL. MM CANNOT EXCEED 20,
NN IS THE NUMBER OF VORTEX RECTANGLES MAKING UP THE LENGTH OF
THE TUNNELs NN CANNOT EXCEED 14

Y(I)y Z(I) (2F13.5)
Y AND Z ARE THE COORDINATES, IN FEET, OF THE POINTS DEFINING THE
CROSS=SZCTION SHAPE OF THE TUNNEL. MM CARDS ARE REQUIRED.,
THE ORIGIN OF THE COORDINATE SYSTEM IS TAKEN ON THE TUNNEL CENTER
LINE WITH X POSITIVZE DOWNSTREAM, Y POSITIVE UPWARD, AND Z POSITIVE
TO THE RIGHT LOOKINS DOWNSTREAM, THE FIRST CARD IN THE SENUENCE IS
THE FIRST COORDINATE TO THE RIGHT (POSITI'VE 2) OF THE POSITIVE Y
AXIS, AND SUBSEQUENT POINTS ARE TAKEN CLOCKWISE AROUND THE TUNNEL.
SEGMENT LENGTHS BETWEEN ADJACENT FOINTS SHOULD BE EQUAL, EXCEPT
THAT, IF CONYENIENT SPACING REQUIRES POINTS ON TOP AND BOTTOM
CENTER LINE, THOSE POINIS ARE OMITTED AND THE FIRST DATA CARD
ABOVE, I, IS SET TO 1,0,:

DELTAX (F10,5) :
LENGTH IN FEET OF THE VIRTEX RECTANGLES IN THE STREAMWISE
DIRECTION, SHOULD Bz EQJAL TO THE LENGTH OF SEGMENTS IN THE
CROSS=SECTION.

BVOATA (F10.5)
THE VORTEX SPAN OF THE WING IN FREE AIR WHICH PRODUCZD THE PUNCHED
CARD DATA TO' BE USED IN THIS PROGRAM!

BVOTW (F10.5)
THE RATIO OF VORTEX SPAN TO MAXIMUM TUNNEL WIDTH TO BE USED IN
THIS COMPUTATION,,

YH(1) (F10.5)

T
N
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THE VERTICAL LOCATION OF THE MODZIL BOUND VORTEX IN THE TUNNEL.

DELTAX (F10.5)

THE VORTEX SEGMENT LENGFH TO BE YSED IN CONSTRUCTING THE
TRAILING VORTEX PAIR IN THE TUNNEL. NEED NOT BE THE SAME
AS THAT USED IN THE FREZ AIR PROSRAM, USUALLY SPAN/10

IMAXy YMIN (2F10.5)

MAXIMUN Z COORDINATE AN) MINIMUM Y COOROINATE TO BE ALLONED
IN SURVCY OF WALL INTERFERENCE VA'LUES. THESE PARAMETERS WILL

.BE USED TO DETERMINEZ IF A SURVEY POINTY LIES TOO NEAR THE TUNNEL

FLOOR OR SIDE WALLS FOR ACCURATE INTERFERENCE COMPUTATION.

SPAN, SPEED,  GAMAM, ASPECT, FAL, VXWC, VYWC, ALFAW (4E20.10)
THESE THREE CARDS DEFINZ THE MODZIL TO B8S USED IN THIS CONPUTAYION.
AND ARE PART OF THE DECK PUNCHED BY THE HING-IN-FREh-AIR PROGRAM.

SPAN IS WING VORTEX SPAN, FEET,
SPEED IS REMOTE WIND SPESED IN THI TUNNEL, FEET/SECOND

GAMAM IS MODEL WING CIRZULATION, FEET SQUARED/SECONOe. IF GAMAM IS

LESS THAN OR EQUAL TO Z2RO, THE ZERO LIFT CASE IS PERFORMED,
ASPECT IS THE ASPECT RATIO OF THE WING.

FAL AND FAO ARE THE LIFT AND CRAG OF THE WING IN FREE AIR, POUNDS.
VXWC AND VYWC ARE VELOCITY COMPONENTS AT THE CLNTER OF THE B0UND

VORTEX IN FREE AIR.
ALFA IS THE WING ANGLE QF ATTACK IN FREE AIR-

XFAy YFA, ZFA, VXTOT, VYTOT, VZTOT. (4E20.,10)

THESE ARE THE COJRDINATZS AND VELOCITISS SURVEYSD 3Y THE

WING-IN~FRES-AIR PROGRAM AND PUNCHED IN A CARD DECK. THE

COORDINATES ARE REFZIRENSED TO THI WING,

NOTE THAT ZFA AND YFA ARE ALSO PROGRAM BRANCHING PARAMETERS.

IF (ZFA.E0.10000,) THE PROGRAM TRANSFERS TO NEW MQOEL DATA,

THEN IF (YFA.EQe10030.) THE PRESINT MODEL WAKE COORDINATES

ARE USED FOR THE FIRST ITERATION OF THE NEW WINGe THIS REDUCES
" THE ‘NUMBER OF ITERATIONSe *

FORMAT (212)

FORMAT (2F10,5)

FORMAT (F10.5)

FORMAT (4F10.5)

FORMAT (1F10.5)

FORMAT (I2)

FORMAT (2F13.5)

FORMAT (I1)

FORMAT (I1347F1045)

FORMAT (4E20,10)

FORMAT (3F1d.5)

FORMAT (5F1d.5)

FORMAT (1H1,13X,19HTUNNZL COORDINATES,/y/y14Xs1HY,13X,1HZ,
10/ 310X4,F10.5,4X,F10,5))

FORMAT (/43/515X31 0HX STATIONS, (/,4X,5F6,2))

FORMAT (1HD,22HCROSS SECTIONAL AREA =,F10.4)

FORMAT (1HOy 14HTAIL LENSTH = 4F742,5Xs14HTAIL HEIGHT = ,F642,5X,

119HSPANWISE STATION = ,56.2}
FORMAT (1H ,13H(FehAs) VX = ,F9,3,6X,5HVY = ,F9,3,6X,5HVZ = ,
1F943,6Xy BHALPHA = (FTol4ybXy7HBETA = ,F744)

99



S020 FORMAT (1H 5 13H(TUNs) VX = 3F9e3,6XySHVY = 4F94'3,6X,5HVZ
1F94 3y 6Xy BHALPHA = ,FTo496 XyTHBETA' = 4F7.44)

5030, FORMAT (1H ,13H(CORs) VX = ,F3e3,6XySHVY = 4F9.3, GX,SHVZ
1F3e356Xy BHALPHA = FTe49b6Xy7THBETA = yFT7¢4)

5040 FORMAT (1H , 34HCORRECTION FACTORS DEL{ALPHA) = 4FB8e¢3510Xy12HDEL(
1BETA) = ,FB8¢3,10X,5400 = ,F844)

5100 FORMAT (1H1, 12HWING SPAN = gF6.2910X,8HGAHAH = 9F7¢2y10X915HASPECT
1 RATIO = ,F5¢2,10X,18HRIMOTE VELOCITY = , F8,2)

?

14

5110 FORMAT (1H ,23H(FsAe CENTER) LIFT = »,F84¢3,10Xy THORAG = ,F7e by
113Xy5HYX = 4F843,10X,SHVY = F8.3} '
5120 FORMAT (1H ,23H(TUNs CENTER) LIFT = ,F8¢3,10Xy 7THORAG = ,F7,4,

110X,5HVX = ,FB(},iOX.SHVY = ,FB.S)
5130 FORMAY (1H ,23H(CORs CENTER) LIFT

110X,5HVX = o FB8e3,10X,5HVY = ,F8.3)
5140 FORMAT (1H , 34LHCORRECTION FACTORS:. DEL(ALPHA) = ,F8¢3,10X%,

15H0Q = yF8els}

DIMENSION X(15)pY(ZD)92(20),SINPHI(20),CDSPHI(ZU)’XCPT(ib),
1YCPT(10), ZCPT(13) yR(15,20) ySIDEL20C) yHL (15,20) ,HD (20),S(14),ZM(2),
1HM(3) ,HY Z (20) ,RM(2),GL(10)

DIMENSION CC'(100,100) 3GAMA(14,10) 4GAMAK(1GO0,y1)

DIMENSION XW(40), YH(QG’)ZH(QO),RH(2)2),DSM(39),VBAR(2)

LOGICAL STHK,OPTl

REAL LIFT

RHO = 002378

YFA=0,0

1% CONTINUE

c R

C READ OATA DESCRIBING TUNNEL FROM PUNCHED CARDS.
READ (5,8) I
OPTL = I.EQe1

36 READ (5,1) MM,NN

READ (5,7) (Y(I),Z(I)y, Iz=14MM)

READ (5, 3) DELTAX

14

,F8.3,10X,7HDRAG = ,F70“,

c

€ TEST DIMENSIONS
c O IF ((HH.GT.ZO).OR.(NN.GT.1“)) GO T0 906
c

C TEST SCALING OF TUNNEL, IF NECESSARY CHANGE SCALE SO THAT THE WING
C SPAN OF MODEL IN TUNNEL CORRESPONDS TO THAT OF MODEL IN FREE AIR.
XCI = 2(1)
C READ SCALING DATA FROM PUNCHED CARDSe
READ (5,3) SVDATA
READ (5,3) BVOTH
DO 35 I = 2,MM
IF (Z(D) +GTeXCI) XCI = Z(I)
33 CONTINUE
YCJ = BUDATA/BVOTH/2,
XCI = YCJ/XCI ,
C IF THE SCALING FACTOR IS UNITY DO NOT CHANGE TUNNEL SIZE.
IF (XCI.EQ.is) GO TO 37
DO 36 I=1,MM
Y(I) = v (I)*XCI
Z(I) = Z(I)*XCI
3 CONTINUE ,
- DELTAX = DELTAX*XCI
37 CONTINUE
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c
C COMPUTE TME CROSS SECTIONAL AREA OF THE TUNNEL.
AREA = 0.0 '
0o 38 I = 25 MM
AREA = AREA + ABS (Y{I)=Y (I=1))*ABS(ZCI)+Z (I-1))
33 CONTINUE
AREA = AREA/2,.

C NOW COMPUTE THE TUNNEL PARAMETERS TO BE USED IN YTHE COMPUTATION,
LL = MM/2 ¢ 1
NL = NN * LWL
IF (NL.GT.100) GO TO 906
NM = NN*MM
Ni = NN + 1
XCI = 0.0
DO 20 I=1,NN
X(I) = XCI

20 XCI = XGI + DELTAX
X(N1) = 1000.0 ¢ XINN)

. DO 21 I = 1,NN

s & S(IV=X(L+1) = X(I)
D0 23 I=2.MM

22 SIDE(I) = SARTUY(I) = ¥{(I-1))%%2 ¢+ (Z(I) =~ Z(I-1))%**2)

. SINPHICI) = ((Y(I)=Y(I~1))/(SIDEC(I)))

23 COSPHI(I) = ((Z(I)=2{I~-1))/(SICE(I))) )
SIDE(1) = SQRTI(Y (1) = Y (MM))*%2 + (Z(1) = Z(MM))¥*2)’
SINPHI() = ((Y(1)=Y(MM)) /(SIOE(L)))

COSPHI(L) = ((Z(1)=Z(MM)) /(SIDEC(1)))

DO 24 I = 2,LL

YCPT(I) = (Y(I)eY (I=1))/(2,)
2% ICPT(I) = (Z(I)#Z2(TI=1))/(2,)

ZCPT(1) = (Z(1)+Z (M) /(24

YCPT (1) = (Y(1)+Y (M) /(2,)

IF («NOT,0PT1) GO TO 91
IGPT(1) = Z2(1)/2. '
ICPTILLI=Z(LL-1Y/2,
a1 MMM=NN-1
00 25 I = 1,MMM
25 XCPT(I) = (X(I+1) & X(I))/(2,)
. XCPTINN) = X(NN) ¢ DELTAX/2.0
C ALL TUNNEL PARANETERS HAVE 3EEN COMPU TEDe!

Cc
c
.C GENERATE THE MATRIX OF COEFFICIENTS,
CALL MATRIX . (NH.N‘,LL,Ni XslYyZySINPHI, COSPHI.SIOE,S,XCPT,
1YCPT,ZCPT,CC)

c
C INVERT THE MATRIX OF COZFFICIENTS,
CALL INVR(CC,NL,100,100)

c .

C WRITE A DESCRIPTION OF TUNNZL.
WRITE (5,300 (Y(I),2(I), I=1,MM)
WRITE (65431) (X(I)y I=1,N1)
WRITE (5,32) AREA
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C READ MODEL INFORMATION FROM PUNCHED G ARDS,
READ (5,3) YW(1)
READ (5, 3) DELTAX
READ (5,7) ZMAXyYMIN
15 CONTINUE
READ (5,11) SPAN,SP”EO,:AHAM ASP:CT,FAL,FAD,VXNC,VYHC,ALFA
: IF (EOFy5) 907,16
16 CONTINUE
IF (YFAJEQe10003.) GO T3 40

C NOW GENERATE MODEL PARAMETERS.
IF (GAMAM.GT.d,0) NW=30

I = NN/2-

XH((1) = X(I)
XH(2) = XHW1)
YW(2) = YH(L)
ZH(1) = 0.0
ZW(2) = SPAN/ 2y
ZW(3) = ZW(2)

STHK= (GAMAM.LE.J. O)

IF (STWK) GO TO 18

NW1 = NW + %

CHORD = SPAN/ (ASPECT*,.735398163**2)

ALFAA = ASIN(GAMAM/(3.1%15927*CHORD*SPEED))
XCI = Lo 75*CHORD*SORT (1.~ (785393 16%*2))
XH(3) = XW(2) + XCI*COS(ALFAA)

YHR(3) = YH(2) = XCI*SIN(ALFARA)

XCI = DELTAX + XW(J)

= YH(3) '

XCI = XCI + DELTAX
9] CONTINUE
XWINWL) = XH(NW) + 1000.0
YW (NW1) = YCU
ZW(NW1) = Z2CJ
GO TO0 19
c _ - .
C IF THE STRAIGHY WAKE (ZERO LIFT COEFF ICIENT) SOLUTION IS REQUIRED
C SET UP A HORSESHOE VORTEX MODEL. SET SPEED TO 1006%e«y GAMAM TO 1.0, .

13 XW(3) = XW(2) + 1000, .
YW(3} = YH(2) :
SPEED = 1000,
GAMAM = 1,0

C

C COMPUTE THE LIFT AND INDUCED ODRAG OF THE HWING IN FREE AIR.
FAL = RHO¥SPEED*SPAN*GAYAM
FAD = RHO*(GAMAM**2)/3,14159
NW = 2 ’
NWi = Nd ¢+ 1
19 DO 81 I = 1,NW
J = I+l . ’
81 DSM(I) = SGRT(XH (D) =XH(J))I®* 26 (Y HII) =YUL D)) * 22+ (ZH(I) =ZH(J)) **2)
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Q = +S5*RHO*SPEED**2
¢

‘'C BEGIN ITERATIVE PROCEDURE. NUMIT IS THE NUMBER OF ITERATIONS TO BE '

C USED., IF THIS CASE REPRESENTS A SMALL CHANGE FROM A PREVIQUS
C EQUILIBRIUM STATE, REDUCE NJSMIT.
NUMIT = GAMAM/19, + 2,
%9 CONTINUE .
IF (YFAJLEQe10000s,) NUMIT = GAMAM/'30s + 24
903 DO 901 NUMBER = 1,NUMIT

C
C COMPUTE THE RIGHT HANO SIDE OF THE MATRIX EQUATION,
CALL RHS (XCPT,YCPT yZCP Ty XW 4 YW,iZW,DSMyGAMAM SPAN,SPEEO,
1GAHAK,NN,LL,NH,SINPHI,COSPHI)
C

C COMPUTE THE VORFTEX STRENGTHS.
1001 DO 101 I=414NL
J = (I=-1)/LL + 1
K= (1=5)%L + I
XCI = 0.0
00 100 L=1,NL
100 XCI = XCI¢CC (I,L)*GAMAKI(L,1)
 GAMA(J,K) = XCI
131 CONTINUE
[ .
C IF THIS IS WITHIN THREE ITERATIONS OF THE LAST WRITE COMPUTED VORTEX
C STRENGTHS, .
IF ((NUMIT-NUMBER).GEe3) GO TO 110
3399 FORMAT (19HLITERATION NJMBER ,I2)
WRITE (5,32999) NUMBIR
500 FORMAT (3CH) CALCULATED VORTEX STRENGTHS )
HRITE (5,533}
D0 502 J = 14NN
HRITE (6,501) (GAMA(J,K), K=1,LL)
531 FORMATY (/,11F11.5)
502 CONTINUE
4000 FORMAT (27HLRESULTANT VORTEX STRZMNGTHS )
4002 FORMAT (13H3RING NUMBER 412,/y11F11e5)
4304 FORMAT (15HJISECTION NUMIER LI3 5/, 11F11.5)
4010 WRITE (6,4000) )
4315 D0 4140 L=1,N1
4320 M=L~%
4325 D00 4375 I=1,LL
4030 IF (L=2) 4(50, 4060, LULO
4340 IF (L=N1) 4060, 070, 4140
4350 GL(I) = GAMAUL,D)
4355 GO TO 4975
4360 GL(I) = GAMA(L,I) = GAMA(M,I) -
4965 GO TO 4075 R -
4370 GL(I) = =GAMA(M,I) . :
4075 CONTINUZ
4080 HWRITE (6,40082) L, (GLEI), I=1,LL)
4100 IF (L=N1) 4110, 4140, 4140
4110 D0 6125 I=2,LL
4115 J=I-1
4120 GL(J) = GAMA(L,J) - GAMA(L,D)
4125 CONTINUE
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4130 MMM = LL = 1 0 331
4135 WRITE (6,4004) L, (GLUJ),J=1,MMH)" D 332
4140 CONTINUE 0D 333
c : D 33
c B 0 335
C PERFORM WAKE ITERATION PROCISS. 0D 336
110  CONTINUE 0 337
CALL WKIT (XHy YWy ZH y Xy ¥ 325 S INPHI,COSPHI ,STDE, S, GAMA ,DSM .0 338
1GAMAM ,SPEED, SPANy NHy NNy MM g N1 » LLyNW1 yRHO,0 o FAL yFA'D,CHORD,LIFT,0RAG, O 339
LSTHK, VXTC,VYTC,ALPHAQ, ALP HAT y ALFA'A 5 VXMC,V YMC): 0 340
c , D 341
. C IF THIS IS THE LINEAR CASE (ZERO LIFT COEFFICIENT) GO DIRECTLY T0 D 342
C WALL CORRECTION SURVEY, DO NOT PERFORM ANY ITERATIONS. 0 343
IF (STHK) GO TG 810 D 344
901  CONTINUE 0 345
: GO TO 811 0 346
: D 347
C COMPUTE VXWZ AND VYWC FIR SPECIAL CASE OF ZERO LIFT COEFFICIENT, 0 348
810 VXWGC = VXHC + SPEED D 349
VYNC=VYNG 0 350
c 0 351
C WRITE A DESCRIPTION OF MODEL ANO TUNNEL OPERATING CONDITIONS. 0 352
811 WRITE (5',4240) GAMAH o 353
4240 FORMAT (1H0,19HMODEL CIRCULATION =,F10.5) 0 356
. WRITE (5,4135) SPAN .0 355
4195 FORMAT (14HIVORTEX SPAN = ,F10.5) 0 356
WRITE (6,4200) Q - D 357
4200 FORMAT (11HOTUNNEL Q = ,F1045) D 358
WRITE (6,4185) SPEED : 0 359
4185 FORMAT (26HITUNNEL NOMINAL VELOCITY = ,F10,5) 0 360
- WRITE (6,5100) SPAN,GAMAM,ASPECT, SPEED 0D 351
. C D 362
C WRITE FREE AIR RESULTS. D 363
WRITE (6,5110) FAL,FAD,VXHC,VYHC D 364
c D 365
€ WRITE TUNNEL RESULTS. , D 366 .
WRITE (5,5120) LIFT,DRAG,VXTC,VYTC 0 367
FAL=FAL=LIFT D 368
* FAD=F AD- DRAG D 369
DA=VX WC=V XTC D 370
D8=VYWC-VYTC o 371
c . 0 372
'C WRITE CHANGES DUE TO TUNNEL.! D 373
WRITE (6,5130) FAL,FAD,DA,D8 D 374
DA=(ATAN (=VYHC/VXWC) =ATAN (=VYTC/V XTC) ) *AREA*Q/LIFT D 375
DQ=(VXKC**2+ VYNC* #2-VXTS* *2=VYTG* *2)/ (SPEEQ**2) D 376
c 0 377
C.WRITE ANGLE OF ATTACK CORREZTION FACTOR AND DYNAMIC PRESSURE RATIO. ~ 0 378 -
WRITE (6,5140) DA,DQ D 379
801  CONTINUE 4 D 380
READ (5,11) XFA,YFA,ZFA,VXTOT,VYTOT,VZTOT D 381
IF (EOF,5) 907,802 "D 382
802 CONTINUE 0 383
IF (2FA,£0.10000,) GO TO 15 D 384
IF (ZFA, GT.ZMAX) GO TO 801 0 385
DA=ATANC YFA/ XFA) D 386

104



850

306

932
997

DB=ALFA+DA

TL=SQRTIYFA* *2+4XF A%+ 2)

TH=TL®SIN (08)

TL=TL®*COS(DB) .

XCI=XW(L) ¢TL*COSCALFAA) +TH*SIN(ALFAA)
YCJ= YH(l)-TL‘SIN(ALFAA)*TH‘GOS(ALFAA)
ZCJ=ZFA

IF (YCJsLTSYMIN) GO TO 801

CALL XYZVEL (XCIsYCJUyZC Iy X yYHyZW X 3¥ 4Z ySINPHI,COSPHI ,SIDE,S

19GAMA,DSMyGAMAM,SPEED, SPAN)NW NNy MM yN1,LL VXT3 VYT ,VZT ,VXRyVYR,
AVZR,V XMy VYM, VZM)

IF (+NOT.STHK) GO TO 853

VXTOT=VYXM+SPEED

VYTOT=VYM

VZTOT=VZM

WRITE (6,5C00) TL,TH,ZCJ
ALPHA=ATAN(=VYTOT/VXTOT)

B TA=ATAN(VZTOT/VXTOT)

WRITE (655010} VXTOT,VYFOT,VZTOT, ALPHA,BETA
DA=ATAN(=VYT/VXT)

DB=ATAN(VZT/VXT)

WRITE (6,5620) VXT,VYT,VZT,DA,DB
DQ=VXTOT**2+¢ VYTOT **24VZI0T**2
VXTOT=YXTOT=VXT

VYTOT=WTOT=VYT

VZTOT=VZITOT=-VZT

OA=ALPHA=DA

DB=BETA-DB

WRITE (5,5039) VXTOT,VYTOT,VZTOT,OA DR
DA= DA'AQEA'QILIFT

D8=DB*AREA*N/LIFT
DQ-(OQ-(VXT"Z*VYT"Z*VZT"Z))/(SPEED"ZY
WRITE (6'950490) DA,D3,0Q

GO TO 801

CONTINUE .

HRITE (6,902}

FORMAT (52HIDIMENSIONED STORAGE Z XCEEDED - EXECUTION TERHINATED
CONTINUE

sTop

END

)

387
388
389
390
391
392
333
394
395
396
397

- 398

399
%00
401
402
403
404
405
436
4o7
408
409
419

3§

412

413

Hik
415
416
417
418
419
420
421
422
L23
424
425
426
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SUBROUTINE MATRIX (HH,NQ,LL,Ni,XstZ,SINPHI,COSPHI,SIDE,S,XCPT,
1YCPT, ZCP T 4CC)

c .

C THIS‘IS A SUBROUTINE TO COMPUTE THE MATRIX OF COEFFICIENTS,

c - .

DIMENSIDON X{15),¥ (29),2(20),SINOHI(20),COSPHI(20) 4XCPT(14),

1YCPT(1D), CDT(io),R(15,20),SIDE(20),HL(15,20),HD(ZG),S(i#),ZH(Z),

AHM(3) ,HY Z (200 ,RM(2),GL (10)

DIMENSION CC(109,100)

INTEGER A,8,C,yDyE

M =20

c .
C CYCLE THROUGH CONTROL POINTS (I.Ee. ROWS OF COEFFICIENT MATRIX).
00 50 I = 14NN : ‘

00 49 J = &,LL
M=M+1

RECALL PARAMETERS FOR THIS CONTROL POINT,' GENERATE PARAMETERS FOR
VORTEX NET WITH RESPECT TO THIS CONTROL POINT.
P = 25.,13274
SINJ = SINPHI(J)
COSJ = COSPHI(J)
XCI = XCPT(I)
YCJ = YCPTJ)
2CJ = LTPT(H
37 DO 26 JI=1,M4M
HD(JJ) = SORT((YCJ=Y(JJ)) **2 & (ZCJ=Z(JJ))**2)
HY Z(JJI=SORT ( ({20 J-2(J ) *SINPHI(JJ) = (YCJ=Y (JI))*COSPHI (JJ) ) **2)
D0 26 II=1,Ni
RUIT, JJ) =SORT ((XCI=X (II)) **2+ (YCJ=Y (3J)) % #24(ZCI=2(JJ)) ¥*2)
25 HL (I1,40) =SQRT ((X (I1) =X %52 + AYZ(JJ)**2) ,
N=20

HO00O0

c . . : .
C CYCLE THROUGH VORTEX RECTANGLES (I.Es COMPUTE ELEMENTS IN ‘THIS ROW
C OF THE COEFFICIENT MATRIX). :

DO 48 K=1,NN

DO 47 L=1,LL

N=N+®1
c
C RECALL VARIABLES FOR THIS PARTICULAR VORTEX RECTANGLE PAIRe
A= (L=1)
8 =L
€ = 2%tL-L
0 = C=1
E = K#1
c

C IF THIS IS A SINGLE VORTEX IN THE TOP OR B80TTOM OF THE TUNNEL, NOT
C ALL PARAMETEZRS ARE NEEDED.
IF (L=1) 50y29,27

ar IF (LL-L) S0, 29, 28
28 RKA = R(KjyA)

RKC = R(K,C)

REA = R(E,A)

REC = R(E,C)

HLKC = HL (K,C)

106
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427
428
429
%30
431
432
433
434
435
436
437
438
439
440
NN
442
443
Wiy
445

L47
L48
449
450
451
452
453
454
455.
456
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458
459
460
461
462
463
464
465
466
467
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L74
475
476
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c
c

HLEC = HL (E,C)

HDA = HD (A)

HOC = HD(C)

YA = Y{A)

ZA = Z(A)

Z2C = Z(C)

HYZA = HYZ(A)
HYZC = HYZ(()
SINL = SINPHI(L)
COSL = COSPHI(L)
RKB = R{K,B)
RKD = R(K,D)
RE8 = R{(E,8BM
RED = R(E,D?
HLKB = HL (Ky8)
HLEB = HL (E,8)
HDB = HD(B)

HOD = HD (D)
SIDEB = SIDE(B)
DK=S (K)

Y8 = Y(3)

B8 = 2(8)

D = Z()

XK = X(K)

XE = X(E)

HYZB = HYZ(3)
HYZD = HYZ(D)
IF (COSJ.EQ.,0.00000 GO YO 35

C COMPUTE THE Y, z VtLOCITV COMPONENTS INOUCEO BY VORTEX RECTANGLE

C OR RECTANGLE PAIR.
C USE EQUATIONS APPLYING TO VARIOUS SPSCIAL CASES,

31

32

62

33

IF(L=1) 50,33,31

IF (LL-L) 50,33,32

IF (COSL«EQe04G0J300) GO TO 62

VY=(COSL/ (P*SIDES)* (= ((RKA+RKBY* (SIDEB**2~(RKA=RKB)**2)/ ((
2HLKB**2) *RKA*RKS) + (RKD+RKC)*(SIDEB**2 = (RKC=RKD)**2)/ ((HLKC**2)
2*RKC*RKD) ) *(XK=XCI) + ((REA+RER)* (SIDEB**2 ~-(PIA-REB)**2)/(!{
2HLEB®**2) *RCA®REB) + (REC+RED) *(SIDEB¥*2 = (REC=RED)**2)/ ((HLEC**2)
2*REC*RED)I*(XE=XCI)) + 1./7(P*DX)* (((RKB+REZ)*(DK**2 =(

2RKB=REB) **2)/ ((HDB*##2) *RKB*REL)) * (ZB=Z2CY) = ((RKD+RED) * (DK**2=(RKD="

2RED)*%2) / ({HDD**2) *RKD*RE D)) * (ZD= ZCJ):+ ( (RKC+REC) * (DK** 2= (RKC-REC)

.2"2)/((HDC'*Z)‘RKC*QEC))’(ZC-ZCJ)-((RKA#REA)’(OK"Z-(RKA-Q:A)"Z)

2/ ((HDA** 2)*RKA®REA))* (24~-ZCJU)))

GO TO 36

VY = (1./(P'0K)‘(((RKB#QEB)‘(DK"Z -
2RKEB=REE) **#2) / {(HDB**2) *RKB*REB)) * (ZB=ZCJ) =((RKD+RED) * (DK**2~ (RKD-
2RED)**2) / ((HDD**2)*KD*ED)) * (ZD~ ZCJ) + ((RKC+REC) * (OK**2~ (RKC=REC)
2¢%2)/ (THDC**2) *RKC*REC))I * (ZC~-2CJ) = ((RKA+REAI* (DK **2=(RKA=REA) #*2)
2/ C(HDA®*2) *RKA*REA)) #(2A=Z2CN )

GO T0 36

IF (COSL.EQ.0.00000) GO TO 63

VY = (COSL/(P*SIDEB)*(~ ( (RKD#RK3) * (SIDE3* *2=(RKD=RKB) **21 / ((
2HLKB**2) *RKD*RKB) ) *{XK-XCI) # ((RED+REB)* (SIDER**2 - (RED-REB)**
22)/7((HLEB**2) *REDO*RZB) ) * (XE=XCI)) + 1./(P*DK) *((:(RKB+REB)*(DK**

(=R ejogeololololojeeleleoe oo ool N=-NoleRe ool Enlele oo o loolc oo NoNolwloReojoBoolololoNeNe RN Ro Ne R
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501
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520
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530
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63.

35

33
39

6%

43 .

42
C
C

C AT
43

108

22~ (RKB=REB)I**2)/( (HI3**2) *RKB*REF)I)*(2B=~ZCJ) = ((RKD+RED) *(DK**2~
2 (RKD=RED) **#2) 7/ ({HOD**2)*RKD*RED) ) *(20~-72CJ)))

GO T0 36 .

VY = (1/7(P*DK) *(({{RKB+REB) * (OK**
22~ {RKB=-REB)**2)/( (HDB*¥2) *RKB*REB) ) *{28~2CJ) = ({RKD+RED) * (DK** 2~
2 (RKD~RED) **2)/ ((HDD**2)*RKO*RED)) *(20=2CJ)))

60 TO 36

vY = 0,30000

IF (SINJJEQ.0.00000) GO TO &2

IF(L-1) 50,‘00,38

IF(LL~-L) 50,40,39

IF (SINL+.EQs0esQJ000) GO TO 64

YZ = (SINL/(P*SIDEB)*({{RKA+RKB)* (SIDER**2 =(RKA=RKB) **2)/ ((
JHLKB*#2) *RKA*RKB) = (RKC#RKD) *(SIDEB**2 « (RKC=RKD)**2)/ ((HLKC**2)
3*RKC*RKD) ) * (XK=XCI) + ((REC+REO)* (SIDEB**2 ~(REC=RED) *+2)/ ((
JHLEC*+2) *REC*RED) = (REA¢REB)*(SIDEB**2 = (REA=REB)I**¥2)/ ((HLEB**2)
3*REA*REB) I *{XE=XCIV) + Lo/ (P*DK)* ({(RKA+REA)* (DK**2 = (RKA . .
3=REA) #¥2) /7 ((HDA** 2)*RKA*REA) = (RKC+RECI* (OK**2 = (RKC=RECI**2)/((
IHDC** 2)* RKC*REC)) *(YA=V3y) + ((PKD+RED) *(DK**2 ~(RKD=-RED)**2)/
3((HDO**2) *RKO*RED) = (RKB+REB)I*(OK**2 «{(RKB=REB) **2)/ {(HDB**2)*
3RKB*RED ) *(YB=YCJ)))

GO TO 43

VZ = (1.7 (P*DK) * {((RKA#REA)®* (DK**2 = (RKA
3~REA)*%2)/ CLCHDA** 2) #RKA*REA) = (RKC+REC)* (DK**2 « (RKC=~REC)I**2)/ ((
IHDGC**2)* RKC*REC)) *(YA-Y2J) + ((RKD+RED) *(DK**¥2 =(RKD=RED)**2)/
3((HDD*%2) *RKD*REN) = (RKB+REBI¥(DK**2 = (RKS=REB) *%2)/ ((HDR**2)*
3JRKB*REB) ) *(¥YB=YCJ))) ’

GO TO 43 _ .

VZ = (1.7 (P*DKI*({ ((RKD+E D) * (DK** 2 = (RKD~REDI**2) /( (HDD**2) "RKD*
3RED) «{RKB & REB) *(DK*¥2= (RKB3=RE3)*¥2)/ ((HOB**2) *RKB*REB) ) *
3(¥YB=YCN)) :

GO TO 43

VZ = 0.00000

C THE VELOCITY COMPONENTS HAVE BEEN COMPUTED, STORE THE NORMAL VELOCITY

THIS CONTROL POINT IN CC ARRAY ELZMENT M,N,
CC(M,N) = VY*COSJ = VZ*SINJ

CONTINUE
CONTINUE
CONTINUE
CONTINUE

MATRIX HAS BEEN GENERATZD, RETURN TO CALLING PROGRAMs

RETURN
END

DO OUOUDUDNOEODUDDODUNUCDODVO0CC0UC0DO0000DO00DOD0 O
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SUBROUTINE INVR(A yNy ISIZE ,JSTZE)

SUBROUTINE TO COMPUTE THE INVERSZ OF A MATRIX OF SIZc LESS THAN
OR EQUAE TO 100

MATRIX A IS REPLACED BY ITS INVERSE,
MATRIX IS ASSUMED TO CONTAIN N ROWS AND COLUMNS,

ISIZE AND JSIZE ARE THE DIMENSIONS OF A, ) .
NOTE THAT THIS SUSROUTINE DJES NOT TEST THE SINGULARITY OF A,

15
.20
30

-130

140
150
160
170
200
260
270
310

330
340
350

380

390
400

DIMENSION IPIVOT(1G))yA(ISIZE,JST ZE) 4 INDEX(10:6,2) ,PIVOT(103)
EQUIVALENCE (IROH,JQON),(ICOLUH,JCOLUH),(AHAX,T,SNAP)

D0 20 J=1,N
IPIVOTWI) =0
DO 550 I=1,N

SEARCH FOR PIVOT ELEMENT

AMAX=0,0

DO 105 J=1,N

IF (IPIVOT(UY-1) 60, 105, 60

DO 108 K=1,N

IF (IPIVOT(K)=1) 80, 100, 740
IF(ABS(AMAX)=ABS(A(J,K))) 85,100,100
IROW=J ’

ICOLUM=K

AMAX=A(J,K)

CONTINUE

CONTINUE
IPIVOT(ICOLUMI=IPIVOT(ICOLUM) ¢1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF (IROW~ICOLUM) 140, 250, 140
CONTINUE

00 230 L=1,N

SHAP=A(IROW,L)

ACIROW,L) =ACICOLUM,L)
A(ICOLUM,L)=SHWAP
INDEX(I,1)=IRONW

INDEX (I,2)=ICOLUM

PIVOT (I) =A(ICOLUM,ICOLUY)

DIVIDE PIVOT ROW BY PIVIT ELEMENT
ACICOLUM, ICOLUMI = 1.0

D0 350 L=1,N
A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(D)
REDUCE NON-PIVOT ROWS

DO 550 L1=1,N

IF(L1-ICOLUM) 400, 550, 400
T=A(L1,ICOLUNM)

587

588
539
590
591
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594
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597
598

. 599

600
601
602
603
594
605
696
607
€08
609
610
611
612
613
e14
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625
626
627
628
629
630
631
632
633
634
635
636

633
639
640
641
642

109



AOO

420
430
450
550

600
610

- 620

630
6640

- 650

110

660
670
700
705
710
740

A(LL,ICOLUM) =040

‘D0 450 L=1,N

ACLL,L)=A(LL,L)=A(ICOLUM, L)*T
CONTINUE

INTERCHANGE COLUMNS

DO 710 I=1,N’

L=N+¢1-1

IF (INDEX(Ly1)-INOEX(Ly2)) 630, 710, 530
JROW=INDEX(L,1)
JCOLUM=INDEX (L y2)

DO 705 K=1,N
SHAP=A(Ky JROH)

A(K, JROW) =A{K,JCOLUM)
A(Ky, JCOLUM)=SHAP
CONTINUE

CONTINUE

RETURN

END

CO00o00U0DVO0OOUDUO0OOVOUOOODO O

643
644
645
646
647 .
648
649
650
651
652
653
654
655
656
657.
658
659
660
661
662



c

SUBROUTINE HS (XCPT,YC>T ,ZCPT,XH YW, ZW,DSM,GAMAM,SPAN, SPEED)
1GAMAK yNN o LLy NW,SINPHIyCOSPHI)

C THIS IS A SUBROUTINE TO COMPUTE THEZ RIGHT HAND SIDE OF THE HATRIX
C EQUATION DEFINING THE VORTEX STRENGTHS,

c

c

DIMENSION XW(40), YN(40) 3 ZW (4D ,RH (2,2)30SM(39),¥BAR(2)
DIMENSION GAMAK(100,1)

" DIMENSION SINPHIC20) ,COSPHI(2C),XCPT(14),YCPT(10),Z2CPT(10)
P = 6.2831853
M=0

C CYCLE THROUGH CONTROL POINTS.

a0

C -

00 50 I=1,4NN
D0 49 J=1,LL

M=M+1

VYM = 0,0

VIM = (0, 0

SINJ = SINPHI(Y)
COSJ = COSPHI(M
XCI = XCPT(I)
YCJ = YZPT(J)
2CJ = ZCPT(H)

C COMPUTE VELOCITY INDUCEDlaY‘HODELo

45 CONTINUE '
00 44 L=1,2
LY VBAR(L) ==GAMAM*{DSM(K)** 2=a({RW{1y L) =RW(2,L))**2) * (RW(1,L) #«RW(Z2,L))
1/(P'RW(1,L)'QH(Z,L)‘(Q.D‘(Rw(i,L)"2)‘(DSM(K)**2)-(PH(1,L)”2 RW(2
29L)** 2+DSM(K) **2) **%2)) _
L = K#i
IF (COSJeEQe0s0) GO TO Wt
VYM = VBAR(i)'((ZH(K) =ZCJ) ¥ (XHIL) =XWIK) )= (XH(K)~ XCI)’(ZH(L)-ZH(K))
1)-VBAR(2) *((~ ZH(K)-ZCJ)'(XN(L)-XH(K)l-(XN(K) XCIV#(ZW (K)=ZW (L))}
2% VYM
Lt IF (SINJJENeDsC) GO TO 46 )
VIM = (VBAR(1)=VBAR(2))*{ (XWIK)=XCI)*(YH{L)=YW(K))=(YH(K)=YCJI)?*
1 (XWIL)I=XH(K))) + VZM
45 CONTINUE
(]
C STORE NORMAL VELOCITY IN GAMAK ARRAY ELEMENT M,
5% GAMAK (M, 1) = VIM*SINJ = VYM*COSJ
49 CONTINUE
50 CONTINUZ
c

c

D0 46 K=1,NW

JJ = K
D0 45 L=1,2
RWIL, 1) = SARTUIXW(JI) =XCII** 2+ (Y H{JJI=YC I ** 2+ (ZH(JJ)~ ZPJ)“Z)

RN (Ly2) = SQARTUIXH(JI) =XCI)**2¢+(YH(JI)=YCU)*22¢(ZN(JJ) *+ZCJ) **2)
JJ = K¢t

C THE RIGHT HAND SIDE HAS BEEN GENERATED, RETURN TO CALLING PROGRAM,

RETURN
END
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SUBROUTINE WKIT C(XW,YW,2W ,X,Y ,2,S- INPHI,COSPHI,SIDE,S, GAMA,DSM,
1GAMAM,SPEED, SPAN, NW,NN ﬁH,Nl,LL,VHi,RHO Q FAL,FAD,CHORD,LIFT,DRAG,
1STHKyVXTC,VYTC,ALPHAO,ALPHAI,ALFAA,VXHC,VYHC) '

THIS IS A SUBROUTINE TO ITERATE THE TRAILING VORTEX PAIR POSITION
AND TO COMPUTE LIFT AND INDUCED DRAG VALUES BASED UPON THE VELOCITY
AT THE CENTZR OF THE BOUND VORTEX.

DIMENSION Xfi5),Y(20)92(20),SINPHI(20),COSPHI(20),SIDE(ZU).S(ih)
DIMENSION GAMA{1Lk,10)

DIMENSIOBN XH(“O),YH(EO,,ZH(hO),RH(2,2)908"(39),VBAR(2)

INTEGER A,B8,C,0,E

LOGICAL STWK

REAL LIFT

ALPHAL = 0,0

ALFAA = 0,0

ALPHAD = ©.0

IF THIS IS TO BE THE LINEARIZEC CASE, DO NOT ITERATE THE TRAILING
PAIRe GO DIRECTLY TO COMPUTE THE LIFT AND ORAG. -

IF (STWK) GO TO 704

MMMN = NH=1

CYCLE THROUGH VERTICAL AND LATERAL SiIFT OPERATIONS,
D0 701 LSHFT = 1,2

CYCLE THROUGH WAKE SEGMZINTS,.
D0 700 M = 2,MMMN i
IF ((MeEQe2) ¢ ANDs (LSHFT.EGs2)) GO TO 700

SELECT COORDINATES FOR VELOZITY COMPUTATION. NOTE ZCJ = 0.0 FOR CASE
OF FIRST TRAILING VORTEX SESMENT. »

XCI = XH(M)

YCJ = YH (M)

IF (M.EQe2) GO TO 20

2Cd = H(MY

GO TO

ZCJ = 0.0

CONTINUE

COMPUTE VELOCITY AT THIS POINT,

CALL XYZVEL (XCI,vCJ, ZCJ,Xd,VH,ZH X yY,Z4SINPHI, COSPHI,SIDE’S

1,GAMA DSH,GAHAM,SPEEO,S’AN,NH,NN,MM N1i,LL, VXT,VYT,VZT,VXR,VYR,
LVZRy VXN VYMy VZH)

VEL = SQRTIVXT**2 + VYT“Z + VIT**2)

J = Ml

IF (MeNZs2) GO TO 743

IF THIS IS THE FIRST SEGMENT, COMPUTE NEW ANGLE OF ATTACK,
ALFHAD ASIN(~GAMAM®2,/ (64283185 3*CHORD* VEL))
ALPHAI ATAN(VYT/ZVXT)

ALFAA = ALPHAO + ALPHAIX

COMPUTE COORDINATE SHIFT.
XSHFT = DSM{1)*COS(ALFAA) + XW{1) = XH(2)
YSHFT = DSM(1)*SINCALFAA) + YH(1) =~ YHW(2)
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763

T 149

c
57

58

59
c

ISHFT = 000

GO TO 57

CONTINUE:

DCHX = UXT/VEL

DCHY VYT/VEL

OCWZ VZT/VEL

XSHFT = DSMIM)*DCHX # XH (M)
XSHFT = XSHFIT « XW(J)

IF (LSHFTLEQe2) GO TO 149

YSHFT = DSM(M)*OCHY & Yd (M)
YSHFT = YSHFT = YH(J)

GO Y0 57 )
ISHFT = DSMIM)®DCWZ + ZWH (M)
2SHFT = ZSHFT = ZH({J)

C SHIFT ALL COOROINATES DOHNSTQEAM ‘OF VELOCITV COMPUTATION POINT,

00 748 L=JyNW1
K=L~-1

UXHAL) = XWIL) + XSHFT

IF (LSHFT.EN.2) GO TO'59
YW(L) = YWIL) + YSHFT

GO TO 148

ZWIL) = ZW(L) + ZSHFT

C COMPUTE NEW SEGMENT LENGTH,

1% 8

7% 8

790

701

4150
c

C WRITE RESULY OF ITERATION PROCESS,

4160

703
704
c

C CONPUTE LIFT AND INODUCED DRAG OF WING , COMPARE WITH FREE AIR RESULT,

702

DSHM(K) = SQRT((XH(L)-XH(K))"Z#(YH(L)°YH(K))“Z&(ZH(L)-ZH(K))“Z)

CONTINUE
CONTINUE
CONTINUE:

FORMAT (1BHOWAKE COORODINATES

WRITE (6,4150)
FORMAT (3F15.5)
XCI = XW (1)

DO 703 I = 1,NW_
YCJ = XH(I) = XCI

HRITE (654160) YCJyYH(I) 5 ZW(I)

CONTINUE
CONTINUE

XCI = XM (1)
YCJ YH(1)
-2CJd O -

CALL XYVEL

1VZP,VXH,VYH,VZH)
VXTC=VXT
- VYTC=VYT
VXMC=VXM
VYMC= VYR
LIFT RHO*SPAN*®G AMAM
. ORAG -LIFT*VYT '
LIFT YXTALIFT
CLAR

sls 9X2HXW 313X 4 2HYH, 13X, 2HZW)

(XCIsYCJyZCJyXW 9y Y W9 ZWyX 9Y 3 Z3SINPHI, COSPHISSIDEYS
1,GAMA,0SM,GAMAM,SPECD,ySPAN,NH NNy MM N1,LL ,VXT,VYT,VZT 3 VXR, VYR,

((3.1“159/“.)“2)/(0‘(S°AN"Z))

[~N=A-R-R-j=N-R-j~J=N=g=NoNot=R=N- 1NN Fog-J=N-N-Nol~NoNolvN-NoReNoN-T- NN X NoleNoNoloNeNoN= NN XK= N X N-No)

775
776
777
778
779
780
781
782
783
78%
785
786
787
788
789
790
791
792

-793

794
795
796
797
798
799
890
801
802
833
804
805
806
807
808
809
810
811
812
813
816
815
816
817
818
819
820
821
822
823
824

826
827
828
829
830
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CDOIAR = DRAG*CLAR

0 831

CLAR = LIFT*CLAR 0 832
DELTAL = LIFT = FAL D 833
DELTAD = DRAG=-FAD D 834

IF (STWK) ALFAA=0.0 D 835
ALFAA==ALFAA 0 83
ALPHAO==~ALPHAQ 0 837

c A D 838
C WRITE RESULTS OF COMPUTATIONS. D 839
WRITE (6,4176) ALFAA, ALPHAQ, ALPHAI D 84
4176 FORMAT (2X,7HALFAA =,F7,/s,3Xy BHAL PHAD =,F74.4,'3X, BHALPHAL =,F7.,4) N 841 .
_ WRITE (5,4175) LIFT,DELTAL 0 842
4175 FORMAT (12HIWING LIFT =,F 10.5,4X,22HCHANGE OUE TO TUNNEL = ,F10.5) D 843
- WRITE (6,4177) DRAG,DELTAD D 844
WL77  FORMAT (12HOWING ORAG =,F1045,4X,-22HCHANGE OUE TO TUNNEL =,F10.5) O 845
WRITE (6,4200) VXT,VYT D 846

420G FORMAT (1H0,39HTOTAL VELOCITIES AT WING CENTER VX = ,F10.4,5X, 0 847
15HVY = ,F10.4) A D 848
WRITE (6,4219) CLAR,CDIAR D 849

4210 FORMAT (1HO» 29HMEASURED IN TUNNEL CL/AR = ,F10.5,5X,9HCOI/AR = , D 850
1F1645) : D 851

c n 852
C RETURN TO CALLING PROGRAM, D 853
c ' D 854
RETURN D 855

END 0 856
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SUBROUTINE XYZVEL (XCI,,YCJyZCJIyXW 4 YW, ZH X ,Y,2,SINPHI,COSPHI,SIDE,S

1,GAMA4DSM,GAMAM,SPEEDySPANSNWyNNy MMyNL,LL g VXT3 VYT, VZT yVXR, VYR,
1VZIR,VXMy VYM, VZM)

c
C THIS IS A SUBROUTINE TO COMPUTE VELOCITY COHPONENTS INOUCED BY
C TUNNEL AND LIFTING SYSTEM,

c
‘DIMENSION XU15),Y (20),2(20),SINPHI(20),COSPHI(20),SIDE(20),S(14),
1R(15,20) , HL(15,20) ,HD (20) yHYZ (20) yXHCL0) s YW(LT) 5 ZH(HO) yRH(2,2),
10SM(39), VBAR(2),GAMA(14,10)
INTEGER A,B8yCyDyE
o LOGICAL XONLY,XNY,YNZ

C SET LOGIGCAL VARIABLES TO COYPUTE ONLY VELOCITY COMPONENTS REQUIRED.
IF (ZCJseEQel4) GO TO 10
XONLY = o+ FALSE,
XNY = o ALSE.
YNZ = +FALSE.
GO TO 643
ENTRY XVEL
XONLY = +TRUE,
XNY = oFALSE.
YNZ = +FALSE,
GO TO 6%3
ENTRY XYVEL

10 CONTINUWE
XNY = +TRUE,
XONLY = o FALSE,
YNZ = JFALSE,
GO TO 643
ENTRY YZVEL
YNZ = JTRUE,..
XONLY = (FALSES
XNY = +FALSE,

643 XTP = XC1I
YTP = YCU
2TP = LY

c

C COMPUTE LOCATION OF VORTEX VNET HITH RESPECT TO POINT OF VELOCITY
C COMPUTATION,:
: D0 127 J = 1,MM
HO(J) = SORP((YTP-Y(J))"Z + (ZTP - Z(J))"Z)
HYZ(J) = SQRT(C(ZTP=Z(J)) *SINPHI( N =LYTP=Y(J))*COSPHI(U)) *+2)
DO 127 I = 1,N1
R(IyJ) = SORT(IXTP=X(I1)**2 +« (YTP=Y(J))**2 ¢+ (ZTP=Z(J))**2)
127 HL(I,J)=SART (A(X(I)=XTP)**2 & HYZ(J)**2)

VXR = 0.,:6CC00
VYR = 0. 00C00
VZR = 0006000
C .
C CYCLE THROUGH VORTEX RECTANGLES,
DO 150 K = 1,NN .
00 150 L = 1,LL
c .
C SELECT VARIABLES FOR THIS PARTICULAR VORTEX RECTANGLE OR RECTANGLES,

A=L -1

cooooooocooobooooccocooooooqoooooooocoooocooooooccoooaco

857

858

859
860
861
862
863
864
865
866
867
868
869
870
8714
872
873
874
875
876
877
878
879
880
881
882
883
834
885
886
887
888
889
890
891

892

893
894
895
896
897
898
899
900
301
902
03
904
905
906
997
908
909
310
911
912
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125
128

129

c

C DETERMINE WHETHER OR NOT VOQTEX RECTANGLE LIES ON PLANE OF SYHMETRY.

131
130
c

c VOQTEX RECTANGLE LIES ON PLANE OF SYMMETRY, USE FOLLOWING EQUATION T0
C COMPUTE VELICITY COMPONENTS TAKING SPECIAL CASES INTO ACCOUNT,

135

1HLKB**2) * RKD*RK3)
. 1®RED®*RES)I I I*GAMA(K,L) .

B =1L

C = LL*2 - L
0=C-1
E=K=+1

IF (L - 1) 150, 129, 125
IF (LL-L) 150,129,128

RKA = R(K,A)
RKC = RUK,C)
REA = R(E,A)
REC = RUE,C)
HLKC = HL (K, C)
HLEC = HL (E,C)
HDA = HD (A)
HDC = HD(C)
YA = Y(A)
Za = Z(A)
Zc = 2()
HYZA = HYZ(A)
HYZC = HYZ(G)
SINL = SINPHI(L)
COSL = COSPHI (L)
RKB = R(K,B)
RKD = R(K,D)
REB = R(E,B)
RED = R(E,D)
HLKB = HL (K, B)

" HLES = HL (E,5)
HDB = HD (B8)
HOD = HD (D)
SIDE8 = SIDE(B)
DK = S(K)
Y8 = Y(8)
28 = 2(3)
720 = 2(0)
XK = X(K) .
XE = X(E)

HYZB = HYZ(3)
HYZ0 = HYZ(D)

‘P = 25.13274

IF (L-1) 153, 130, 131
IF (LL-C) 132,130,150
CONTINLE :

VXPS = 0.0
VYPS = 0.0
"VZIPS = 0.0

IF (YNZ) GO TO 135

"UXPS = 14/(P*SIDEB)*(HYZB* ((RKD#RKB)* (SIDFR**2- (RKD=RKB)**2)/ ((
= (RED+REB)*(SIDEB®*2=-(RED~-REB) **2) /((HLEB**2)

IF (XONLY) GO YO 72
IF (COSL+EQsD.G) GO TO 56

DOOODDUQOODOOUUODOOOOOQODOOUOQODOQQOOQOODVQOQUQOOOUQOUQQO

913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
ayq
942
943
944
945
946

97

948
949

950

951
952
953
954
955
356
957
958
959
960
961
962
963
964
965
966
967
968
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65

67

72

c

VYPS = (COSL/(P*STID=3)*(~ ((RKD#RKB)>(SIDEB**2-(IKD~RKB)**2)/( (
2HLKB*#2) #RKD*RK3) ) *(XK=XTP) ¢ ((REOQ+RED)* (SIDEB**2 =-(REZD=RER) #+
22) /7 ((HLEB**2)*RED*RCBI I* (XE=XTP)) + 1,/ (P*DK)*(( (RKB+REB) * (DK**
22=(RKB-REB)**2)/( (HD3#%2) *RKB¥*RE3)) *{ZB=-2TP) =~ ((RKD+RED) * (DK** 2~

- 2{(RKD=RED) **2)/ ((HDD**2)*RKO*RED)) *(ZD=ZTP)) I *GAMA (K,L) -

IF (XNY) GO TO 72

GO T0 o7

VYPS = (1. 7(P*DK)*(( (RKS+REB) * (DK**
22-(RKB=REB)**2) /{ (HD3**#2) *RKB¥*RE3))*(7ZB=-2TP)= ((RKD+RED) * (DK** 2~
2 (RKD-RED) **2)/ ((HOD**2) *RKD*RED)) *(ZD~ZTP)))I*GAMA(K,L)

IF (XNY) GO TO 72

VZPS = (1,/7(2*0K) * (((RKI+RED) *(DK**2 -(RKO-RED)*'Z)/((HDD"Z)‘RKD'
3RED) = (RKB ¢ RES) *(IK**2= (RKB=RE3)**2)/ ((HDY**2) *RKB*REB) ) *
3(YB=YTP) ) ) *GAMA(K,L)

VZR = VZR ¢ VZPS
VXR = WXR + VXPS
VYR = ¥YYR + VYPS
GO TO 156

C VORTEX RECTANGLES DO NOT LIZ ON PLANE OF SYMMETRY, USE FOLLOHING
C EQUATIONS TO COMPUTE VELOCITY COMPONZNTS TAKING VARIOUS SPECIAL CASES
C INTO ACCOUNT.

132

150

CONTINUE
VX = 040
VY = Ooﬂ
VZ = 0.0

IF (YN2) GO TO 1490

VX =(1, /(P‘SIOEBD‘((HYZi‘((RKAfRKB)‘(SIDCB"Z = (RKA=RK3)**2) 7/ {(
1HLKB**%2) *RKA®RKB) = (REA+REB)*(SIDEB**2 = (REA=REB)I**#2)/ ((HLEB**2)
1*REA*REB))) + (HY ZC* ((RKD+RKCI*(SIDEB*#*2 «(RKD=-RKCI**2)/((
1HLKGC**2) *RKC*RK0O) =~ (REJI+REC)*(SIDEB®**2 =~ (RED-REC)**2)/((HLEC**2)
1*REC*RED) 1)) ) *GAMA (K, L)

IF (XONLY) GO TO 73

IF (COSL.EQ.0,0) GO TO 58

VY=(COSL/ (P*SIDES)* (= ((RKA+RKE)* (SIDER**2= (RKA=RKB)**2)/ ((
2HLKB*%2) *RKA*RK3) + (RKD+RKCI*(SIDEB**2 = (RKC=RKD)I**2)/ ((HLKC**2)
2*RKC*RKD) ) *( XK=XTP) ¢ ((REA+REB)* (SIDEB**2 ~(RZA-REB)**2)/((

- 2HLEB**2) *REA®*RES) ¢ (REC+RED) *(SIDEB**2 = (REC-REN)**2) /((HLEC**2)

2%*REC*RED) I *(XE=XTP)) & 1,/ (P*DK)* (L(RKB+REB)*(DK**2 ={(

- 2RKB=REB) #*2) / ({HDB%*2) *IK B*REB))* {ZB=ZTP) = ((RKD*RED)* (DK**#2~(RKD~

68

63

2RED)**2) /7 ((HDD**2)*RKD*RED) ) * (ZD= ZTP) + ( (RKC+REC) * (DK**2= (RKC=REC)
2%%2)/ ((HDC**2) *RKCH¥REC)) * (ZC=ZTP) =( (RKA+REA) *(DK*»2=~ (RKA-REA) **2)
27 C(HDA®* 2) *KA*RE AN * (ZA= ZTP) ) 1 #G AMATK,L)

IF (XNY) GO TO 73

GO TO 69 :

vy = - (1,7 (P%DK)* (¢ (RKB+REBI* (DK**2 =
ZRKB-REB)"Z)/((HDB“Z)'!KB'REB))'(ZB-ZTP)°((RKDOREO)‘(OK“Z-(RKo-
2RED) **2) / ((HDD**2 ) *RKD*IE D)) * (ZD= ZTP) + ((RKC¢REC) * (DK*#2={RKC-REC)

'Z“Z)I((HDC"Z)‘QKC‘QEC))‘(ZC-ZTP)-((RKAfREA)'(D("Z-(RKA-°EA)"2)

27 C(HDA®® 2)*RKA*REA)) * (ZA=ZTP) ) I*GAMACK,L)

IF (XNY) GO TO 73

IF (SINL.EG.0.03000) GO TO 70

VZ = (SINL/(P*SIDEB)* (({RKA+RKB)* (SIDZR**2 =~(RKA=RKB) **2)/((
3HLKB**2) *RKA®RK3) = (RKZ+RKD) *(SIDEB**2 = (IWKC=RKD)**#2)/ ((HLKC**2)

© 3*RKC*RKD) ) *(XK=XTP) + ((REC+RED)* (SIDEB**2 «(REC-RED)**2)/.((

3HLEC#*2) *REC*RED) = (RZA+REB)*(SIDEBR**2 = (REA=REB)**2)/ ((HLEB®**2)

969
970
971
972
973
974
975
976
977
978
979
930
984
982
983
984
9835
986
987
988
939
930
991
992
993
994
995
996
997
998
999

1000

1001

1002

1003

1004

1005

1006

1ca7

1098

1609

1010
1011
1012
1013
1016
1615
1C¢16
1617
1018
1019
1020
1624
1022
1023
1024
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79

71
73

C NOW
150

765

730
744

750

746

118

3*REA*RE3) I*(XE=XTP)) + 1./ (P*DK) * ({{RKA+REA) * (DK**2 = (RKA
3-REA) *#*#2) /7 ((HDA¥* 2) ¥ RKA*REA) =~ (RKC4+REC)* (DK**2 =~ (RKC~REC)**2)/ (¢
3HDC** 2)*RKC*REC)) *(YA=YTP) + ((RKD#RED)*(DK*%*2 =(RKD~RED)**2)/
3((HDD**2) *RKD*REN) = (RKB+REBI*(DK**Z2 - (RKB=REB)**¥2)/ ((HOB*»2)+
3RKB*REB) }» *(YB=YTP))) *GAMA (K,L)

GO TO0 71

vZ = (1.7 (P*BK)* (((RKA+REA)* (DK**2 = (RKA
3=-REA)**2)/ (CHDA** 2)*RKA*REA) = (RKC+REC)™ {(OK**2 = (RKC=-REC)**2)/ ((
3HOC**¥2)*RKC*REC)) *(YA=YIP) + C(RKD+RED) *(DR**2 =(RKD=-RED)**2)/
3((HDD**2) *RKD*RED) = (RKB+REB)*(DK**2 =(RKB=REB) **2)/ ((HDB**2)*
JRKB*RER) ) *(Y'B=YTP))I*GAMA (K,L)

VIR = VIR + VZ

VXR VXR ¢+ VX

VYR VYR + VY

(1)

COMPUTE VELOCITY INDUCED BY MODEL.

CONTINUE

P = 62831853

VXM 0. 0

VYM 8. 0

VZM Ge O

DO 746 K=1,NW

J =K
D0 745 L=1,2

RW(L,1) SQRT((XH(J)-X”I)"Z#(YH(J)-YCJ)“20(7W(J)‘ZCJ)"Z)

RW (L, 2) SARTULIX WIS =XCI)** 2+ (YW (J)=YCJ) #2224+ (ZH (J) ¢ZCJI) **2)

J =K+ 1 : :

CONTINUE

DO 744 L=1,2 . '

. H = 4% (RW(1, L)"Z)‘(DSH(K)“Z)‘(RH(i L)“ZORW(Z,L)"?#DSW(K)*’Z)

"2

IF (HelTo ({LsE=H) *4,*DSM(KI**2)) GO TO 730

VBAR(L) ==GAMAM¥(DSM(KI**2=~(RN{1,L)=RUH{2,L)I1*¥2)* (RH{1,L) +RH(2,L))
1/7(P*RH(L,L)*RW (2, L)*H)

GO TO T4&

V3ARI(L) = 0.0

CONTINUZ

L = K&

IF (YND) GO TO 750"

VXM = ¥Y3AR{1I* ((YH(K)~- Y;J)'(ZH(L)-ZH(K)‘-(ZH(K’ ZCJY* (YH(L) =YH (K))
1) =- VBAR(Z)'((YH(K)-YCJ)‘(ZH(K)-ZH(L)) ={=ZN(K)=ZCU) *(YH(L)=YH (K)))
2 & VXH

IF (XONLY) GO TO 746

CONTINUE

VYM = VIAR(L) * ((ZWIK) =ZC Y2 (XHIL) =XWIK) )= (XW{K)=XCI)* (ZN(L)=ZH (K))
1)~-VBAR(2) *((~ ZH(K)‘ZCJ)'(XH(L)'XH(K)) «(XH(K)=XCT ) *(ZW (K)=ZHW(L)))
2+ VYM

IF (XNY) GO TO 746

VZIM = (VBAR(1)=VIAR(2)I)I* { (XW(KI=XCI)* (YH(L)=YW(K) )= (YW(K)=YCJ) *
LIXHILI=XWIK))) ¢ VIM

wonu

CONTINLE
VXT = VUXM&#VXRSPEED
VYT = VYMHVYR

= VIM4VIR

vzt

QOUOUO000VLVO0VUOLDOIO0EOUVLOOLOVODUDUOVLDOLVODUDUODODVLLOUODOVODOOOODOD

1025
1026
1327
1028
1029
1030
1031
1632
1033
1034
1635
1036

1037

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1553
1054
1055
1056
1657
1058
1059
1050
1061
1062
1063
1064
1065
1066
1067
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1069
1070
1071
1072
1073
1074
1075
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