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WIND TUNNEL INTERFERENCE FACTORS

FOR HIGH-LIFT WINGS IN CLOSED WIND TUNNELS

Robert Glenn Joppa

SUMMARY

A problem associated with the wind tunnel testing of very
slow flying aircraft is the correction of observed pitching
moments to free air conditions. The most significant effects
of such corrections are to be found at moderate downwash an-
gles typical of the landing approach.

The wind tunnel walls induce interference velocities at
the tail different from those induced at the wing, and these
induced velocities also alter the trajectory of the trailing
vortex system. The relocated vortex system induces different
velocities at the tail from those experienced in free air.
The effect .of the relocated vortex and the walls is to cause
important changes in the measured pitching moments in the wind
tunnel.

A method of calculating the interference velocities is
presented in which the effects of the altered wake location
is included. The flow fields of a lifting system are calcu-
lated in free air and in the tunnel, and when compared the
differences are charged to tunnel wall interference. Itera-
tive methods are used which require a large computer. The
tunnel walls are represented by a vortex lattice and the
results compared with classical methods for the undeflected.
wake case.

Results are presented comparing the tail interference
angles, with and without the effect of vortex wake relocation,
which show the importance of the wake shift. In some cases
the tail angle corrections are reduced to zero and may even
change sign. It is concluded that to correctly calculate the
interference velocities affecting pitching moments, the
effects of vortex wake relocation must be included.



SYMBOLS

fll Aspect ratio

[A] Matrix of coefficients of wall vortex elements

{B} Column matrix of coefficients of wing vortex system

b Wing vortex span

b Wing geometric span

C Wind tunnel cross-section area

C Wing lift coefficient

e Distance downstream to wake roll-up

h , . Normal distance to a point p from a line contain-
ing a vortex segment identified by subscript

h/ » / x Normal distance to a point p from a plane contain-
ing vortex segments identified by subscript

H Height of wind tunnel

T,j,k Unit vectors in the directions X, Y, Z

L,G Dimensions of rectangular vortex ring (Fig. 8)

n~ Unit vector normal to vortex ring

p Point having coordinates X, Y, Z

**/ \ Vector from point (X, Y,Z) to end of a vortex vector
' ' S indicated by subscript

R. . Magnitude of component of vector R, . indicated by
( ) second subscript * '

S Wing area
Wr

~§ Vector representing a vortex segment of strength P
and length S

S . . Component of S indicated by subscript

"v Unit vector in the direction of the total velocity
vector at a point



V Velocity induced at a point

V, . Velocity component in direction indicated by
1 ' subscript

w Vertical component of wall-induced interference
velocity

W Width of wind tunnel

W Vector representing a wing bound vortex of strength
r
w

X,Y,Z Cartesian coordinate of a point

P Angles defining direction to a point from the end
of a vortex segment (Fig. 7)

F Circulation strength of a vortex

Aa Difference between angle of attack in free air
and in wind tunnel

6 Wind tunnel interference factor

6. 6 Evaluated at tail location

6 6 Evaluated at wing location



I. INTRODUCTION

The problem of how to do meaningful testing of high lift
systems in wind tunnels has been with us for some time. That
wind tunnel testing is necessary for new types of slow flying
vehicles is evident because the nature of the problems of sta-
bility and control are different than in flight at cruising
speeds.

To obtain the necessary lift at low speed requires that
incoming air be deflected through a large angle and/or accel-
erated to a high discharge velocity at a moderate deflection
angle. In either case the change in angle or increase of
velocity is no longer small, and so linearized assumptions
are no longer valid. Pitching moments felt by the airframe
due to the large turning angle are generally large and non-
linear, and vary with forward speed as well as with angle of
attack.

The gross effects may be estimated by recourse to momen-
tum methods. Unfortunately, the gross effects are modified
by real fluid effects that are configuration dependent. Lift
is developed by real devices such as rotors, fans, and wings
with flaps. These devices are operated at or near their max-
imum capability, i.e., near the point of flow separation. In
many cases, flow separation and re-attachment occur cyclically
during normal operations, so that linear relationships such as
between forces and angles of attack, do not usually exist.

As a result of all this, classical aerodynamic theory,
which is linearized and limited to small angles, is incapable
of predicting performance. The only recourse left to the
designer, then, is to go to the wind tunnel to determine exper-
imentally the characteristics of a new machine.

Unfortunately, the wind tunnel introduces its own set of
problems. While it does indeed permit the solution of the
detailed problems of separation and mutual interference by
direct analogy, the quality of that solution depends upon the
quality of the match of the necessary similarity conditions.
These are the exactness of the model and the matching of
Reynolds numbers and Mach numbers.

High lift systems usually involve rather intricately de-
tailed parts such as blowing or suction slots, rotors with
dampered hinges and important elastic properties, or internal
ducting and fans. The accuracy with which these details can
be matched imposes some limit on the smallest feasible model
size; and, in addition, these elements may be the ones most
sensitive to mismatching of Reynolds number and Mach number.



Matching of Reynolds number and Mach number, of course,
are mutually exclusive except in the case of a full scale
model. Since the flight speeds of concern are usually low,
one's first thought is that the test Mach number might be
increased in favor of a larger Reynolds number, but this is
not usually possible. At high lift coefficients, local flow
velocities are often very high and large enough to be affected
by the local Mach number. Where rotating parts are in use,
the Mach number of an advancing blade'is frequently the con-
trolling factor. Thus, the test engineer is forced to do
what he has always done; to accept a lower Reynolds number
and attempt to extrapolate to full scale results on the basis
of previous experience. This experience is not extensive at
present and so he does this very reluctantly, insisting on
the largest possible model for a given tunnel.

The wind tunnel also introduces another set of problems
which are a direct result of the physical presence of the
boundaries of the test section. The flow from a high lift
"system—has—a~:large—local— downwash-angle-and—velocity ,__and_in
free air may require several times its own characteristic
length to reach final values which may still be very large.
The wind tunnel walls force the final value of downwash angle
to be zero and alters both the direction and curvature of the
flow in the immediate vicinity of the model by an amount which
is significant with respect to the camber of the lifting sys-
tem, especially when the model is long (e.g., a rotor, or a
horizontal tail aft of a wing).

That such flow interference exists has of course been
recognized from the earliest use of wind tunnels, and class-
ical theory exists for the prediction of the interference
effects and for the correction of data. Unfortunately, the
classical work depends on the assumption that the downwash
velocities are sinal}. and that the wake of the lifting system
goes straight downstream.

Three methods of coping with this lack of an adequate
interference prediction theory are available. One can use a
very small model in available tunnels, build bigger wind tun-
nels, or develop new theory. A criterion for smallness of
models was put forth in 1956 (Ref. 1) which suggested that
the change in curvature of the flow would be sufficiently
small if the interference angle at the lifting system, cal-
culated by linear theory, was never larger than 2°. That
this leads to extremely small models is demonstrated by Fig.
(1) where it is applied to a helicopter rotor. These small
models, of course, aggravate an already serious Reynolds num-
ber problem; and so the industry, still having no adequate
theory, began in the early 1960's to build larger wind tunnels



having test sections of the order of 400 to 1000 square feet,
Even this new generation of wind tunnels is inadequate for
matching Reynolds number, although the new facilities do per-
mit construction of models large enough that detail can be
matched with available fabrication techniques. A consider-
able amount of effort has been devoted to the wall interfer-
ence problem but a complete solution is still not available.
This paper is devoted to the development of a new method of
predicting wind tunnel wall interference for an important
class of slow flying vehicles.



II. DEVELOPMENT AND CURRENT STATE OF
WALL INTERFERENCE THEORY

In the classical wind tunnel interference problem, it is
assumed that the model lifting system can be represented by a
lifting line and a pair of vortex filaments which trail down-
stream in a straight, level line from a point near the wing
tips. A cross-section normal to the flow is examined down-
stream from the plane of the lifting line, and a pattern of
other vortex filaments is chosen outside the tunnel walls in
such a way that the tunnel walls become streamlines of the
flow. The effect at the model of the added vortices then con-
stitutes the interference effect of the walls.

Prandtl presented a solution for the circular wind tunnel
(Ref. 2) which required only a single pair of vortices outside
the tunnel wall to cancel, at the wall, the effect of the
trailing pair inside, but he did not include the effect of the
lifting line itself. Consequently, his solution is valid only
~a~t~the plane of~the~llTfting line and cannot give the longitu-
dinal variation of the interference angles.

Glauert followed (Ref. 3) with a solution for a rectangu-
lar tunnel. Since the walls were planes, it was required only
that each wall become a plane of symmetry of the vortex lines
inside the tunnel and those outside it, thus leading to a
doubly infinite set of vortex lines. In the rectangular tun-
nel there is no problem of how to handle the bound vortex, for
its external image clearly joins the images of each trailing
pair. His solution then is valid for points fore and aft of
the lifting line, and it was possible to show that the effect
of the tunnel walls was different at the tail than at the wing.

Other authors have developed solutions for other tunnel
shapes, but no proper image system has been presented for any
other shape than the rectangular tunnel. Lotz (Ref. 4) was
successful in developing solutions for circular and elliptical
cross section tunnels which accounted for the effect of the
bound vortex. She added to the image system of Prandtl, a
potential function expressed in infinite series form, which
was required to cancel at the wall the normal velocities at
the wall caused by the bound vortex and also expressed in
infinite series form. The accuracy of the results depends on
the evaluation of the truncated series, and no indication is
given in the original report of the probable error.

Clearly the basic assumption of the straight downstream
wake trajectory had to be modified for the consideration of
the high downwash systems of interestTiere. The most success-
ful change to date was made by Heyson (Ref. 5) who let the wake



be straight, but at an angle downward until it struck the tun-
nel floor. The zero size lifting system was represented by a
point doublet and the wake by a string of such doublets. When
extending to a finite span wing, a series of such point sys-
tems are placed side by side; and, since internal singularities
cancel each other, the result is equivalent to a lifting line
and a single trailing pair of vortex filaments. The angle of
descent of the trailing system was taken originally as 1/2 the
final downwash angle calculated by momentum theory for the
span-circle mass of air required to produce the lift of the
system. In a later publication (Ref. 6), he modified this to
1/4 of the final downwash angle, agreeing with a calculation
by the author that vortex filaments of a wake move downward
at approximately 1/5 the final momentum downwash value. Thus,
the angle of descent used in later work is representative of
the final wake trajectory, in free air, of the trailing vortex
system. Image systems are then constructed outside the tunnel
(rectangular cross-section). At the point where the trailing
wake strikes the floor, it is met by the first image wake,
and they are assumed to change direction and move aft together
in the plane of the floor.

With the image system constructed as described, it was
possible to sum the interference velocities at the model due
to the external vortex system. It should be noted that the
doublets, normal to the plane of the downward trailing pair,
have fore and aft components as well as vertical components;
and, consequently, longitudinal as well as vertical interfer-
ence velocities exist. At the floor intersection, only the
vertical components are canceled; the longitudinal components
add and are retained.

Some controversy exists about the degree to which these
interference calculations are applicable. Evidence has been
presented (Ref. 6,7,8) to show that good results are achieved
when calculating interference velocities at the model and
using them to correct lift and drag. The method has not been
uniformly successful in correcting pitching moments, however.
As an indication of the controversy, it may be said that
another laboratory has offered evidence that wind tunnel and
flight stability data may agree more closely when no correc-
tions whatever are applied (Ref. 9).

The solutions of Heyson, and others who have tried to do
something.similar, are deficient in at least two respects.
The first and most obvious is that the assumed wake position
is not correct. Others have attempted to improve on the wake
trajectory by using other assumptions or by modeling experi-
mentally measured wakes, and then using Heyson's computations
to calculate the interference velocities due to images of
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these more correct wakes. Results are reported to be little .
changed at the model location, but they are still inadequate
for pitching moments.

The second deficiency is the one which is the more impor-
tant and which no one has yet attempted to account for. This
is the direct effect on the model of the fact that the wake
trails along a different trajectory in the tunnel than in
free air. The effect arises this way. The presence of the
boundaries (as made evident by the image system) causes upwash
velocities which are felt everywhere in the tunnel; by the
model tail and also by the vortex wake itself. The result of
these upwash velocities is to cause the vortex wake to be
higher in the tunnel than in free air. This new higher posi-
tion is different with respect to the tail. For example, if
the tail is above the wake in free air, the wake will now be
raised closer to the tail and will induce on the tail a strong-
er downwash than in free air. This effect may equal or exceed
the wall or image induced upwash, and thereby dominate the
pitching moment interference.



III. A NEW APPROACH TO INTERFERENCE CALCULATIONS

A new approach to the problem is offered in this paper
which attempts to remove the two deficiencies of former meth-
ods. The interference must be computed for the correct wake
shape, and the direct effects of the relocated wake must be
included. In order to do this, the flow field of the lifting
system must be predicted both in the free air case and in the
wind tunnel, and the differences in flow velocities be charged
to wall interference. In order to develop the method, certain
restrictions to the problem were defined for practical reasons.

The principal effect which it is desired to show is that
the relocation of the wake by the interference of the walls
contributes a major influence on pitching moment interference,
which may be added to or subtracted from the usual interfer-
ence calculations. It is not difficult to show that the effect
of a shift in the wake position will have a maximum effect when
the wake is only moderately deflected with respect to the tail
or the plane of a rotor. Figure (2) shows a section taken
(Trefftz plane) at a location representative of a tail with a
pair of trailing vortices at a distance h below the tail.
The dpwnwash is given by the Biot-Savart equation, and is

w = , h v
(b72)

The ratio of the downwash velocity to that experienced when
the wake is at the same height as the tail, (h = 0), is given
by

w

The maximum rate of change of downwash with height occurs when

572 =/F=°-577 •
If the length of the model is of the same order as the

span, and the model is in a level attitude, then this corres-
ponds roughly to a downwash angle of the vortex wake of about
16°. Helmbold (Ref. 10), has shown that the maximum lift
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possible due to circulation alone will produce a wake trajec-
tory angle of just over 20°. Therefore, the attainable values
of circulation lift place the wake in the region where changes
in its location will produce the maximum effect on the down-
wash at the tail.

Greater wake trajectory angles are of course produced by
highly powered lifting systems where the power is used to
increase the mass rate of flow through the system. Analysis
of highly powered systems is not included here for two prin-
cipal reasons. First, the larger downwash angles remove the
wake vorticity further from the tail plane, and so the effects
of wake relocation become less important. If the downwash
angles are large enough, the tail is almost unaffected by
changes in wake location, and in this case the methods of
Heyson become appropriate, and indeed have given good results.

A more practical reason for avoiding larger downwash
angles is that at some point interaction with the tunnel walls
produces an impossible situation. In the limiting case of
hovering inside a test section, the forces measured are clear-
ly different from those in free air because of recirculation
of the air. For a range of forward speeds above hovering,
recirculation still exists in the tunnel where it will not in
free flight, even near the ground. At speeds just above re-
circulation, experiments by Rae (Ref. 11) indicate that forces
measured are so far from what is expected that test results
are highly doubtful and may be useless. Apparently the rotor
wash is interacting with the entire tunnel flow and producing
a large circulation very close downstream in a way which has
yet to be satisfactorily explained. His test results show
that a fairly definite point can be determined at which this
effect (which he calls flow breakdown) disappears and one
expects credible results. This limit probably determines the
lower speed bound (maximum downwash angle) for corrections of
any type. Consequently, this region will not be examined here,
and the problem will be confined to lifting systems which can
be said to produce only circulation lift.

This type of system is simply represented as a lifting
vortex line with a single trailing pair of vortices. Such a
mathematical model could represent a simple wing with some
sort of boundary layer control so that the large values of
circulation can be developed. It may also represent a heli-
copter rotor operating in the translational lift region. Since
we are primarily concerned with the flow field at a distance
from the model (at the tunnel walls), details near the model
are of lesser interest and a relatively simple model represen-
tation can be used.

11



It is assumed that the trailing sheet of vorticity rolls
up immediately into a cylindrical core of vorticity which can
be represented by a single filament located at the center of
gravity of the original vortex sheet. Actually, this assump-
tion is not really necessary. It only need be shown that the
effect of the singular representation of one half of the trail-
ing sheet on the center of gravity of the other half is not
significantly different from the effect of the real sheet.
It is demonstrated in Appendix A that the effect of the unde-
flected sheet trailing from one half of an elliptically loaded
wing is only 2%% larger than the corresponding effect of a sin-
gularity at the center of gravity. After roll-up, the vortex
sheet becomes axially symmetrical and it is easily shown that
the effect at any external point of a uniform cylindrical vor-
tex sheet is identical to that of a filament at its center
having the same total strength.

, Evidence that the wake does roll up quickly is given by
Sprieter and Sacks (Ref. 12) who report the roll-up distance
as a fraction of the geometric wing span to be

-- = n 28 ( - )
k C_ 'g L

In the high-lift case of interest here, R̂/CL is about 1.0,
so the roll-up distance would be of the order of a chord
length downstream.

That a helicopter rotor can be represented by the lifting
line and trailing pair is graphically shown by data taken by
Heyson, (Ref. 13). Figure (3), taken from NACA TR 1319. shows
that for a rotor having a momentum downwash angle of 15 , two
clearly defined vortex cores are already well developed at a
plane only just downstream of the rotor trailing edge. It
also shows that the cores are deflected less than one half as
much as the air mass, calculated by momentum theory.

In summary, the problem that will be presented is the cal-
culation of the interference due to the walls of a closed test
section wind tunnel, on a high-lift wing having a moderately
large downwash angle, taking account of the direct effect of
the relocation of the vortex wake on the longitudinal distri-
bution of downwash. The problem is approached by first cal-
culating the trajectory of the wake of a simple lifting sys-
tem and its flow field in free air. The lifting system is
then placed in a wind tunnel and its new trajectory and flow
field are compared at the same values of remote wind speed and

12



model circulation strength; differences are interpreted in
terms of tunnel wall interference. In order to determine the
flow field in the wind tunnel, a new method of representing
the wind tunnel walls was developed and is also presented.

13



IV. THE FREE AIR TRAJECTORY

Figure (4) shows a sketch of the vortex wake representing
a plane elliptical wing and indicates the induced velocity due
to an element of the vortex acting at an arbitrary point. The
element of induced velocity is evaluated by the Biot-Savart
law, and when integrated over the entire wake, the direction
of the flow at a point can be determined. The flow direction
is first determined along an initially assumed wake trajectory
and the wake is then deflected to assume the calculated direc-
tion. With the wake now deflected, a new calculation of flow
direction is made and the solution converges after several
iterations.

To facilitate the solution, the vortex system is broken
into a series of short straight line segments. The bound vor-
tex lies on the quarter chord line and has a span of rr/4
times the geometric span, which is appropriate for represent-
ing an elliptical wing. The first trailing segments lie in
the plane of the wing, extending from the bound vortex tips
to the trailing edge. The downstream vortices are assumed to
spring from the trailing edge at that point and are divided
into segments whose length is approximately 1/10 of the vortex
span. The angle of the first segment, being in the plane of
the wing, is determined by adding the induced angle of attack
and the effective angle of attack at the plane of symmetry.
The induced angle of attack of the wing is computed at the
lifting line by summing the induced velocities of all the
trailing segments and adding them vectorially to the remote
velocity. The effective angle of attack is determined by
assuming two dimensional flow at the plane of symmetry and
setting the normal component of the local velocity vector
equal and opposite to the velocity induced by the bound vor-
tex at the three-quarter chord point. See Figure (5).

The direction of each downstream element, in turn, is
calculated by summing the individual velocities due to all
other elements at its own upstream end. This direction is
used to determine the coordinates of the downstream end of
the segment; the entire string of segments downstream from
that point is translated so that it stays attached, and the
next segment direction is determined. Thus, the wake is
moved into place by sweeping along its length from the wing
aft in several iterations.

When a vortex line lies in a plane and follows a path of
varying curvature, it induces on itself velocities normal to
the original plane which vary with the curvature. The fila-
ment, which leaves the wing at a fixed location, curves upward
from its angle of departure, and so each downstream section

14



experiences an inward deflection from its own upstream ele-
ments. This vanishes as the trajectory straightens out, but
it must leave the final straight wake at a smaller vortex
span than it had on leaving the wing. The iteration process
must then allow for this lateral freedom, as well as for the
vertical motion of the wake.

When the above described process was first attempted,
simultaneously calculating both downward and inward deflec-
tions, the computation became unstable after only a few iter-
ations. This instability was avoided by a double iteration
process. First, one pass is made calculating only downward
deflections, and then a second is made allowing only horizon-
tal or inward deflections. By this stepwise process, a tra-
jectory can be found which converges after only three or
four such double passes, and which converges before instabil-
ity develops.

It should be noted that the vortex line is physically
unstable in that curvature of the line causes more self-
induced curvature. A pair of vortex lines, if disturbed, will
break up into segments and eventually produce vortex rings.
An example may be observed in the contrails of jet aircraft,
where the engine exhaust is drawn into and makes visible the
cores of the trailing vortex pair. This instability could be
accentuated by round-off errors in the computing machine and
places a limit on the number of times an iteration can be car-
ried out.

A computer program with instructions and card listing
for the solution for the vortex trajectory from a lifting
wing is given in Appendix B.
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V. REPRESENTATION OF THE WIND TUNNEL WALLS

While the image systems described earlier are correct,
and could be used with proper modification for finding the
interference velocities due to the tunnel walls, they still
leave something to be desired. Since the vortex wake of the
lifting system in the tunnel will be curved, the external
images would also have to be curved; and furthermore, since
the final solution will have to be iterative, the geometry of
the image system will have to change also for each iteration.
These problems can be handled by a computer, but the method
has some more basic restrictions. Proper images are avail-
able only for rectangular tunnels and the concept of an image
implies that the tunnel is of infinite length. Tunnels in
use for high lift testing are not all rectangular and, more
important, many of the special tunnels being built today have
such short test sections that some doubt exists about their
adequacy. Therefore, in an effort to satisfy these objections
a new approach was developed.

In this method the image concept was abandoned and the
tunnel walls are represented by a vortex lattice. The strength
of each element of the lattice is found by simultaneously
requiring that the normal component of velocity vanish at a
control point in the center of each lattice element. This
method has the computational advantage that the geometry of
this system is unchanged during each iteration, and that the
large matrix of coefficients need be inverted only once for a
series of computations.

Further, it is applicable to any tunnel cross section to
the extent that it can be approximated by a polygon of equal
length elements, and the effects of finite length can be
explored. In order to prove the method, it was first applied
to the classical problem of the undeflected wake. The devel-
opment follows.

Problem Statement

The problem is to find that distribution of vorticity
lying in the tunnel walls which will prevent any flow through
the wall due to the action of a .Lifting system in the wind
tunnel. The lifting surface is assumed to be uniformly loaded
and is represented by a simple horseshoe vortex with the trail-
ing pair undeflected. In principle, any desired distribution
of lift could be built up of several such simple elements.

The walls are represented by a tubular vortex sheet of
finite length composed of a network of circumferential and
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longitudinal vortices having equal spacing. Helmholtz1 theo-
rem that a vortex filament can neither end nor begin in the
flow is satisfied most readily by constructing the network of
square vortex rings lying wholly within the plane of the walls.
Each square has a vortex strength I*i , and each side is co-
incident with the side of the neighboring square. Thus, the
strength of any segment is the difference between the strengths
of the two adjoining squares. The boundary condition that the
wall must be impervious to flow is satisfied at a control
point in the center of each square. This results in a set of
simultaneous equations, one written for each control point, in
which the unknowns are the r^ .

A large number of equations results if the tube is very
long, thus some judgment is required in choosing the geometric
arrangement. The use of square vortex rings requires a tunnel
of constant cross-section. One notes that for a wing mounted
in the center of the tunnel, lateral symmetry always exists;
and, if the wake is undeflected, vertical symmetry also exists,
thus reducing the number of unknowns. The trailing edge of a
finite length tube which represents the long tunnel requires a
slightly different treatment. At a far downstream section,
only longitudinal vorticity should exist. This is represented
by elongating the last ring of squares by a large amount, while
keeping the control point at the same location with respect to
the last circumferential station. Figure (6) shows the arrange-
ment for a rectangular tunnel with filleted corners.

Equation Setup and Solution

A right-hand axis system is established with the X-axis on
the longitudinal centerline of the tunnel, positive downstream.
The Y-axis is taken positive upward and the Z-axis positive to
the right side of the tube facing downstream.

Since the surface of the tunnel is to be made of square
elements, its cross-section is a polygon of equal segments
arranged to approximate the desired cross-section shape. In
this development, the cross-section will be assumed to be
symmetrical about the X , Y plane.

In general, the velocity induced at any point p (Fig. 7)
due to a vortex segment may be written:
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where v is a unit vector to establish direction,
required are written as follows:

The terms

cos P + cos
2RLR2S

[s2 - (RrR2)
2]

R, x S

i j k

R

Sx Sv

JR, x S1 R,S sin p.

Noting that sin 0, = ~- ,

Sh Sh Sh

Finally, the velocity induced at a point due to a vortex seg-
ment is:

1 2
r/4nh [s2-(Rl-R2>

2] [(R sz-Rl sy)l

(2)

One could then add the contributions of all four sides
Of a vortex square, but it is more convenient to take advan
tage of the lateral symmetry and sum the effects due to a
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pair of symmetrically located vortex squares of the same
strength. The arrangement is shown in Fig. (8) and the
following equation results:

"» f- ['2-"»-"»)! 1 • ̂t ( ''-«»-»>' 1 }R " J

. ,, f *HD*RKC r.2 .„ _ ,21 "MD̂ C f.2 . )2ll
I h 2 R R I •(*HD-*HC) J " h 2 , p L L -(RMD-RMC) J J1 h ** h "" J

+ cos

NANB N2

(3)

c m

8

. . f ̂ "̂MD f.2., . ,21 . _, BMA^RHB T L a. ( ., , 2 1 | ( x)8in *B 1 ~2 I I L (Rnc RMD' J h
 2 B R «• ^* MB J J *

l h R R ' **l?mhM2
RMCRMD

b RNDBMD

Similarly, the velocity induced at point p by a simple
horseshoe vortex located in the center of the tunnel is de-
rived from Fig. (9) using Eq. (1). Summing the contributions
from the three segments yields:
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(4)

The normal velocity at a point on the wall is constructed
by taking the dot product of the induced velocity vector with
the unit outer normal at that point. Vn = V • "n . The nor-
mal is constructed using the cross product of a unit vector
in the downstream direction and a vortex ring vector lying in
the Y - Z plane

x

The boundary condition is expressed at each control point by
summing all the normal velocities due to the wall vortex rings
and setting it equal and opposite to the normal velocity
induced at the same point by the wing vortex. The result is
expressed in a matrix equation
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in which the {F} are the unknown strengths of the wall vor-
tex elements, and the matrix [A] is fixed by the dimensions
and shape of the tunnel and the locations of the vortex rings
and control points. The column {B} describes the influence
of the lifting wing at the tunnel walls, and is developed from
the dot product of Eq. (4) with the unit outer normal at each
control point.

Because of the lateral symmetry assumed in writing Eq.
(3), it is necessary only to take control points on one side
of the tunnel. If the wing is also placed on the vertical
?, and the tunnel is vertically symmetrical, then the TI
will also be symmetrical but of opposite sign. It is then
necessary only to take control points in one quarter of the
tunnel. The matrix [A] is inverted, since it is fixed for
a given tunnel shape, and the values of T* may then be
found for a variety of wing spans by changing only the column
matrix {B} .

Once the Tj_ are known, the induced velocity due to the
walls can be calculated at any point in the tunnel by the use
of Eq. (3) summed over all the vortex rings in the tunnel
walls. The interference is expressed as an angle whose tan-
gent is the vertical component of interference velocity, w ,
divided by the tunnel wind speed, V . In the linear, unde-
flected wake case, the tangent is approximately equal to the
angle. Results are expressed in terms of the classical inter-
ference factor 6 , defined by the equation:

S
Aa = 6 -f CL

The factor is computed in terms of wing circulation and vor-
tex span

6 = ov. ?

Results are presented graphically to show the longitudinal
variation of the factor 6 for different wing spans in a
variety of tunnels. A computer program with instructions and
card listing for the solution of the interference factor 6
is given in Appendix C.
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Results and Comparison with Classical Results

In order to test the validity of the method, it was com-
pared with classical solutions where those were available.
Results of calculations made for three representative tunnel
shapes are presented in the form of graphs of the wall inter-
ference factor 5 . Values of 6 were calculated at points
along the tunnel centerline from the wing location downstream
for several values of wing vortex span. These are presented
for a circular, a square, and a 3:5 rectangular tunnel in
Figs. (10), (11), and (12). The average value of this inter-
ference factor over the vortex span of the uniformly loaded
wing was also calculated and is shown as a function of vor-
tex span for each of these tunnels along with the centerline
values in Fig. (13).

Square tunnel. —Glauert's concept of an infinite array
of images of the wing located outside the tunnel is applicable
only to rectangular (including square) tunnels and has been
applied by Silverstein and White in Ref. (14). Results are
presented there for square and 2:1 rectangular tunnels; only
the square tunnel results are used here for comparison,
since 2:1 tunnels are not common.

The number of line segments, each corresponding to the
side of a vortex square, to be used to adequately represent
the square tunnel cross-section was determined by making a
series of calculations with increasing numbers of segments.
Fig. (14) shows the results of using 12, 16, and 20 segments
to make up the periphery of the square cross-section. The
results for 16 and 20 segments differ only slightly and
correspond very closely to the data taken from Ref. (14).
The excellent agreement shown indicates that 16 segments are
enough to represent satisfactorily the square cross-section
tunnel.

Circular tunnel. — In the case of the circular tunnel,
no exact solution is available for the downstream interfer-
ence factors, so two approximate results are compared with the
new calculations in Fig. (15). The results presented by Lotz
(Ref. 4) depend on the value of a truncated infinite series,
and the reference gives no indication of the accuracy expec-
ted in its evaluation. The result taken from Silverstein and
White (Ref. 14) was arrived at by following their suggestion
that the downstream interference factors for the circular
tunnel be taken as the same as for the square tunnel of the
same area.

Four different approximations to the circular tunnel were
used for this calculation. Two regular polygons having 12 or
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16 sides were used for the cross-section shape; each was rota-
ted so that either points or flats of the polygon were at the
top and side centerline. All four calculations yielded the
same curve, with values within one-tenth of one percent. Thus,
it is concluded that a twelve-sided polygon is adequate to
represent the circular tunnel.

Length effect. — The effect of length of the tunnel to
be used in calculations was explored for the circular tunnel.
A twelve-sided polygon was used in the calculation, with the
model vortex span equal to 0.4 of the tunnel diameter. It is
evident from Fig. (16) that a length-to-diameter ratio of 3
or 4 is ample for convergence. The reason for this may be
seen in an examination of the distribution of the wall vor-
ticity. The bound vortex of the wing requires some circum-
ferential vorticity in the walls, but only in the region quite
near to the wing. Longitudinal vorticity is not required far
upstream, and far downstream only longitudinal filaments exist
to control the trailing pair from the wing. By using the
artifice of a very long last ring, the proper conditions are
met far downstream, and the vortex lattice need only be long
enough to provide the circumferential vorticity needed in the
immediate vicinity of the wing. In fact, all the vorticity
in the circumferential rings is quickly transferred to the
longitudinal filaments.

Figure (17) shows the wall vortex strengths taken from
calculations made for circular tunnels of various lengths.
The circumferential vorticity strengths were taken at the
floor near the center of the tunnel where they are the strong-
est; the longitudinal vortex filament strength is that along
the side wall at model height. It is evident that the details
of the distribution are not strongly affected by the presence
or absence of tunnel walls more than about one diameter up or
downstream from the wing.

Conclusion

The excellent agreement shown by the examples presented
verifies the hypothesis that the walls of the tunnel may be
adequately represented by a rather coarse network of vortex
rings. The advantage of this method is that any tunnel cross-
section can be represented by using an equivalent polygon of
16 or more equal length sides arranged to approximate the
actual geometry.
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VI. THE FINAL SOLUTION

The solution for the wake trajectory in the wind tunnel
is an iterative combination of the free air trajectory solu-
tion and the wind tunnel wall vortex lattice solution. The
lifting system, represented by a horseshoe vortex, is placed
inside a vortex lattice tube representing the tunnel, and is
given an initial value of circulation strength and an unde-
flected wake. A solution is found for the wall vorticity
exactly as described in the earlier section. The wake loca-
tion is then found exactly as in the free air solution, with
the exception that the velocities induced by the wall vortic-
ity found for the undefleeted wake are added to those induced
by the wing on itself. After an equilibrium trajectory is
found, a second solution for the wall vorticity is made with
the wake in its deflected position, followed by a second iter-
ation of the wake location. In general, the two systems do
not interact strongly for the short span to tunnel size ratios
one expects to use in testing of high lift systems; and so
only two or three such cycles are usually necessary for con-
vergence.

Determination of the Interference Factors

In order to find the total interference effect, one
should compare the flow patterns of the system, operating at
the same conditions, in and out of the tunnel. The same con-
ditions, as used here, mean at the same circulation and remote
velocity. When the solutions are complete, they yiel-^ the
complete velocity field both in free air and in the ci.. .:JI,
as well as the separate contributions to that field by the
wall vortex lattice and the lifting system.

The interference velocities are then defined by stating
that the difference between the velocity at a point in the
tunnel and the velocity at the same point in free air is the
total interference velocity. Both the horizontal and vertical
components of the interference velocity should properly be
considered, but because the moderate wake deflections of the
examples considered here cause only very small longitudinal
interference (3% in the extreme cases), only the effects of
the vertical component are presented. The vertical component
of the interference is felt as a change in the angle of attack
so it is convenient to present the interference in those terms.
Thus

Aa = atunnel " afree air
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These angles are not small enough to allow the use of
the small angle approximation so they are defined by their
tangents.

. / V \ 1 / V \

4«- tan' ^J - tan' ^j
T X F.A.

This data is usually presented in terms of a value of 6
defined by the equation

S
Aa = 6 -TT C_

but since we are comparing at equal values of T instead of
C , we use the relation

2L 2pFVb 2Fb

' Pv
2s "w

Thus

A « 2FbA a = 6 - -

A F.A.

A computer program listing is given in Appendix D for
the combined solution for the interference factor 6 for a
lifting wing with deflected wake in a closed tunnel.

Results

Calculations are presented for a plane wing, at lift
coefficients approaching the maximum theoretically possible
for an unpowered system. In order to achieve the highest wake
deflection angles, the aspect ratio of sample calculations was
taken at 3.0 so that high Ĉ /ZR values could be attained.
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The wing vortex span was taken as one half the tunnel width,
and the tunnel had a rectangular test section of height to .
width ratio 1:1.5 .

Figure (18) shows the trajectory of the wake , in free."air'
and in the wind tunnel for the sample wing. The difference1 in
location of the wake in the tunnel is evident. In Fig*- (19)
the value of the interference factor 6 is shown as a fund- ,
tion of CT/ZR at the location of the wing and for three tail

locations assumed to be on the tunnel centerline. ""*'

The tail interference angle is taken as the difference
between the interference angles at the wing and at the tail,
and presented as the difference between the values of 6 "at
these two points. Figure (19) also shows the tail interfer- r
ence factor (6 - 6.,) . This curve shows that, for the ge6m-

t VV

etry chosen, the pitching moment corrections may become small
or even negative .at the higher lift coefficients.

••' ~i-' ("< ,"'

In order to demonstrate the effect of the wake .shift, ;
Fig. (20) was prepared for comparison with Fig. (19)'. The
same factors were calculated, but the contribution1of thê  i
deflected wake was left out. The interference -angle was1 cal-
culated using only the velocities induced by the wall vortex,
lattice. The wake location as computed in the tunnel was used,
so these results accurately represent interference, velocities
based upon only the wall induced effects. Figure (20) also.,
shows the tail interference factors calculated using only tlie
wall induced velocities. The importance of including the ;:

 ;
direct effects of the wake'relocation is shown when Fig. (̂0)
is compared with Fig. (19). •

Tail location is an important parameter, for if the tail
is initially below the vortex wake in free air, then the wake
shift upward in the tunnel will accentuate the wall induced
upwash. Figures (21) and (22) show this effect for tail ;
heights of 0.2 and 0.4 times the vortex span below the wing,
as well as the reversal which takes place when the wake moves j
past the tail location.

In the preceding examples the interference angle factors:
were calculated at fixed locations in the tunnel, and do not
necessarily represent a physically realizable vehicle. The
results can be interpreted to represent a tilt-wing type
vehicle in which the body is constrained to a constant 'angle
of attack.

For the case where body attitude changes, it is necessary
to calculate and compare flow angles at the tail in free air"
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with those in the tunnel at angles of attack appropriate for
the same wing circulation. An example is presented in Fig.
(23) for a case where wing and tail are fixed to a body and
rotate as a unit. The tail is located above the plane of the
wing (0.2 of the vortex span) and three tail lengths are
shown. The interference factor shows a minimum where the tail
passes through the height of the vortex wake. The large varia-
tions of the factor indicate the importance of accounting for
the wake shift and for actual tail position.
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VII. DISCUSSION OF RESULTS

In this section the results and their implications will
be discussed in some detail. Some examples will be worked
out showing how corrections would be made using these inter-
ference calculations, some of the difficulties encountered in
making corrections, and how these difficulties may be resolved
by modifying the test program. Additional discussion considers
the adequacy of the mathematical model, computational problems,
and suggestions for possible future modification or growth of
this method.

Examples of Corrections of Test Data

The results presented in the previous section are in the
form of the factors 6W used to calculate the correction to

the angle of attack at the wing, and (6t - 8W) used to cal-

culate the difference in angle of attack at the tail from that
at the wing. These values will be used here to compute exam-
ples of actual corrections that should be applied and show
their effects on final data.

The factor 6W is used to calculate the interference
angle at the wing in the following formula

^ - 6w t °L

where Aa is the increase in angle of attack at the wing
caused by the restriction of downwash by the tunnel boundaries.
For the examples presented earlier, the following values
result. The wing has PR = 3 and its vortex span is one-half
of the tunnel span. The wing area to tunnel cross section area
ratio is then 2/ir2 , assuming a vortex span ratio of rr/4 .
From Fig. (19), the value of 6W is almost constant at the
wing up to C-/5* = 0.5 and is only changed by 10% out to

C-/1R approaching 1.0. The table shows values of the angle

of attack interference at selected lift coefficients.
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V*
0.0

0.5

0.7

0.9

CL

0.0

1.5

2.1

2.7

6

0.111

0.115

0.120

0.130

deflected wake

Ad
deg

0.0

2.01

2.93

4.08

*C°t

0.0

0.0525

0.1076

0.1925

straight wake

Act
deg

0.0

1.94

2.72

3.48

AC"t
0.0

0.0507

0.0995

0.1642

The A<x shown is a correction to be added to the angle of
attack measured in the tunnel. In free air the wing would
have to be at the higher angle in order to produce the same
lift as in the tunnel.

When the angle of attack is corrected the lift vector is
rotated by the same amount. The effect of the rotation of the
lift vector then causes a component of the lift to appear as
an additional drag, the magnitude being equal to the lift co-
efficient multiplied by the interference angle in radians.
This result is also shown in the table above.

If the wake was not deflected, the value of 6W would
be constant at all lift coefficients, and the corrections
would have been smaller. The corresponding values of Aa
and ACDt for the undeflected wake are also shown in the

table. Comparison of the corrections shows that only small
changes, of the order of 15% of the drag correction, are due
to wake shift. Since the total drag correction is of the
order of 25% of the induced drag at the highest lift coef-
ficient, this change is less than 4% of the measured dra .

Calculating the difference in interference at the tail
shows a more dramatic effect. In the normal case (undeflected
wake and low dr/fll ) where 6t and 5W are constant over the
range of CL of interest, one calculates the difference in
angle of attack at the tail and the wing caused by the inter-
ference and uses this angle to calculate a correction to the
pitching moment. Since the tail experiences a greater
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interference angle than the wing, 'theumoments measured in the
tunnel are more negative for positive lift coefficients.
Because the interference angles are proportional to "££ , the
effect is to measure a larger negative value of the slope
dCM/dC in the tunnel, making the model appear more'stable

than it would be in free air. • . , : • _ : ' • o~:-.

Because of the wake deflec.tion^-fthe tail; angle ; correction"
will be different from what it vWould..>beswithputTwake\deflec-
tion. The curves of Fig. (19), (21), and (23) show this for
three dif ferent̂ examples'.-. ,}->na-:;;:l _.>/•;>;• oj :.-.•... ._.; :'.•.<' ; : 7.-

;\ To calculate the change in pitching ̂moment requires know- ;
ledge of the characteristics of the horizontal tail. For an
example calculation ;letrus- assume.;,that thet tail .Length 7i"s equal
to the vortex span, the tail volume coefficient V, = 1.0 , the

tail- aspect ratio is about the same as'nttve' wiriĝ '1 and 'lias a lift
curve slope of n/radian. Then the correctipn to the Bitching
moment would be :.-<:-.-.3v±-.c r.ns --.£.'. '-'• -••- - .-'

'^£ a:.'.:?ĵ 95-; .-v"., •. 325.T.: ii3l->~ ?ou.-")..-ia/;̂ -J ' ' ~ * ' "^-cvJ
dC..

'where

(Aat - Ao^) = (6fc -

and T|. = Qj./*!

Then, • iisirig the "assumed values,
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The following table compares the corrections for the
several cases with those expected when the wake goes straight
back and the tail is at wing height. In the tilt wing case,
the tail remains fixed at wing height while the wing rotates
to increase lift. The column headed low tail-"is also a tilt
wing, but the tail is fixed in the tunnel at 0.2b below the
wing height. In the moving tail case, the tail is assumed
attached to the wing at 0.2b above'-the plane of the wing, and
moves as the wing rotates in the tunnel.

CL

0.0

0.9

1.5

2.1

2.7

straight wake

0.0

0.0636 ,

0.105

0.147

0.189; .,,-: .-.,

tilt wing

0.0 ,. ...

' 0.0522.. :

oVb'679

.-.*>, 053S,.

o.o

low tail

0.0

0.805 _:,

0.1482

t 0.2 09, ;
-7 rp.2325 ....

moving tail

0.0

0.062

0.134

0.268

The tabulated values are plo'tted in Fig. (24)] 'to show the
correction to the pitching moment coefficient for the sev-
eral cases. If the wake is not deflected, the interference
would be proportional to CL as shown, and the apparent
interference is just a change in the stability derivative,
dC/dC , of the aircraft. For the case shown this amounts

to a change in that derivative of A
dC

dC
= 0.07 and is inter-

preted as a change in the location of the center of gravity
for neutral stability of 7% of the wing mean aerodynamic chord.

The other cases are not as simple. The effect of the wake
shift changes the correction very much and how it does so is a
function of the exact location of the tail with respect to the
wing. For the case where the wing tilts and the tail stays
fixed in the tunnel at the height of the wing, the total inter-
ference may be seen to be the same as for the unde flee ted wake
at low CL , but reach a maximum and decline to zero at high
CL . If the tail is lower than the wing, the wake shift effect
causes the interference to be larger than in the undeflected
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case because the wake moves closer to the tail. In the case
where the entire aircraft rotates so that the tail starts
above the wake and moves past it, the curve shows a reversal
of initial trend and finally deviates very markedly from the
no-deflection case.

The tilt-wing case is perhaps the most interesting of the
three cases. At low C^ values, the corrections are identical
to those for the undeflected wake, and the stability level in

dc
Mthe tunnel is apparently too high by A •.„ = - 0.07 . At

ac-L
about CL =1.5 , the interference effect is now constant,
so the apparent stability is the correct value. However, a
constant ACM is introduced which corresponds to a change in
stabilizer angle of about 1.24°. At CL = 2.7 no correction
in stabilizer angle will be required, but the apparent stabil-

dCMity is now less than the correct value by A ~̂ pr~ = 0.13 . The
aCL

effect of this change in pitching moments is to move the loca-
tion of the neutral point a distance of 20% of the wing chord
over the range of available lift coefficients. This is about
the same as the usual allowable movement of the center of
gravity of a normal aircraft.

These three cases taken together show that the fact that
the wake does move with respect to the tail causes the pitch-
ing moment interference to vary widely; in the examples, from
zero to nearly twice the values calculated in the usual way
assuming no wake deflection and tail fixed on tunnel center-
line. Because of this wide variation it is not possible to
generalize on the results beyond saying that the interference
is dependent on the configuration of the aircraft and the wind
tunnel, and must be calculated for each case. Because the
variations of interference are of the same order as the linear
interference and may be of either sign, they are certainly too
large to be ignored.

Difficulties in Application

Actual application of these interference calculations is
not as easy as presented above, particularly with respect to
the computation of the pitching moment correction. As this
correction was presented earlier, it was presumed that the tail
effectiveness was represented by the derivative d C /da., and

that this value was a constant. In the normal airplane this
is often so, but in the case of the STOL aircraft one cannot
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make that assumption. The specific difficulties are that the
local flow angles may be so large that the lift curve slope
dC /da. is in a nonlinear range, and that the dynamic pressure
at the tail may not be anywhere near the free stream value due
either to being immersed in low energy wakes from wing flaps
or high energy wakes from propulsion devices. Consequently,
it is usually advisable to measure separately the tail effec-
tiveness by making several runs at different stabilizer angle
settings and computing directly from this data the values of
dC^/dat over the range of lift coefficients of interst. This
much is often done in ordinary wind tunnel work and is even
more important in the testing of STOL aircraft.

An additional consequence of the wake shift is now appar-
ent. The energy wakes are shifted in position and so are
likely to change the dynamic pressure at the tail. While the
process described above of measuring the tail effectiveness
derivative will allow correction under the conditions of test
in the wind tunnel, these are different from free air condi-
tions. What is desired is that the tail in the wind tunnel
be placed in the same air conditions that it would experience
in free flight. Since the wake in the tunnel is in a differ-
ent place than in free air, the tail should be moved to occupy
the same position with respect to the wake.

The present method allows one to calculate in advance of
the test program what the wake shift will be for each value of
the wing circulation. A model could be constructed so that
the tail height would be adjustable. Stability testing would
then be done at several positions of the tail to produce a
family of curves of pitching moment, each one of which will
be valid for a given lift coefficient, and final data will be
a composite curve taking data from the several curves at the
appropriate points. If the wake shifting of the air impinging
on the tail is the same as that of the vortex cores, and the
tail is moved that amount, then the wake shift effect on the
tail moment correction is reduced to zero and only the wall-
induced effects would be necessary. Variations of induced
velocity across the span of a model are not large (of the order
of 10% or less) for models less than two-thirds of the tunnel
width, and so this method appears to have promise.

Another uncertainty in the application of these interfer-
ence results stems from the estimate of the vortex span and
the resulting value of the circulation strength which is cal-
culated using the Kutta-Joukowski law. It is apparent that
this value should be estimated rather carefully before apply-
ing interference corrections to the data. It may be desirable
to make some attempt to measure it directly by locating the
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vortex trajectory, in the tunnel. It should be mentioned in
passing that this is not a new problem and it has always been
necessary in applying classical corrections to make this esti-
mate: because the corrections are larger at higher lift co-
efficients, the estimate is more important.

Discussion of' Accuracy and Computation Method

It will have become apparent in the above discussion that
the quality of the interference calculation depends on the
representation of the lifting system and the resulting accu-
racy of the free air flow fields. It is recognized that, if
one could actually predict the real flow fields with a high
degree of accuracy, the wind tunnel wOulcl no longer be neces-
sary; and that, if the accuracy is poor, the interference cal-
culation will have little value. This statement is not as
contradictory as it may seem, because there is a difference
between the detailed effects felt in the near field and the
gross effects in the far field. Regardless of:how it may be
produced, li'ft is a result of the generation of circulation ,
about some'location fixed in the flow field. Consequently,
if lift is measured arid' the vortex span carefully estimated
or measured, the induced effects at points as far away as the
tunnel walls are very well predicted by the Biot-Savart law.

A wind tunnel program is designed; to measure more detailed
effects, particularly those, due to local flow separation and
those due to mutual interference of thej components of the air-
craft on. each other. No one at this time, realistically expects
to be able to predict these complex events- and so replace the
wind tunnel with a computer. Since the interference calcula-
tions presented here depend only on 'the gross induced effects,
the accuracy should be adequate for the purose. The represen-
tation of the model may be improved as much as desired by super-
position of additional vortex systems, and should be modified
for other configurations, but the effects at the tunnel wall,
and therefore the wall vorticity and the resulting induced"
velocities, will not be changed very much. What such improve-
ment and modification will do is account more accurately for
the direct effect on pitching moments due to wake shift. Cer-
tainly such work should be done, but the wide variety of
arrangements possible preclude any generalization in advance
and so it will be done on an ad hoc basis.

Some remarks are in order on the convergence of the numer-
ical solution, and the instabilities expected in it. Any dif-
ficulties to be found would be expected in situations where
the wake was forced to curve most sharply, and this would be
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when the wing is inside a turirieY and operating at the highest
lift coefficients. A detailed study was made of such a tra-
jectory over seven i-terati'ohs' for the aspect:-ra"tib* 3-wing at
CL/ai -about 1 . "Two-regions -of the wake were selected which
exhibited the two areas of concern-— instability and conver-
gence. ; - -- " '--•-•- -- •"-» ----• '^ • -f̂ ''-'- •"-:----c- H_. v~.

It was expected that in regions of sharp curvature "the
self-induced effects of adjacent segments of the vortex, made
somewhat unreal by be'ing broken up'ihto short straight sections
and aggravated by roiincl-off -errors, would initiate local cur-
vature anomolies-and cause the-solution to'degenerate.

" 'This effe'ct did- indeed appear as" a wavy mot ion of the
segments alternating around 'a mean- line. -Two or--rthree such
zig-zags appeared in 'the second and 'third iterations and about
twelve segments were involved in the seventh. The amplitude
of these motions grew slowly and did not reach 20% of the-- "
length of the segments until the seventh iteration. This cor-
responded;j:to-a deviation of -the-segment direction of 13° or
less -from a:fmeah line drawn through "them.'''"These-waves' disap-
peared, in 'the- seventh" iteration, -at about" one wihgspari" "dowh-
S;tream from-the wing where the slope' 'df the tr'aj'ectbry rhad:

b'e'eome nearly" cons tan tv "The erf feet's" of L;the%e -small" changes
of di:rection^ were judged to. be negligible and 'so noTsMoothing
sub-routines were used-. '- -"•'"' ~'-"••'"- "". ""'• ^^

-'Gohvergehce was examined at' a p'oint'-orie vortex span ;down-
stream from the wing where the trajectory of the vortex line
was straight over a length of about" one span". The locus of

: points of intersection :6f the Vortex 1'ine and the tunnel cross
section was found to" be a spiral over"i!the seven iterations."
'Convergence was approximately loga;ri-thmic with each motion
from one iteration to the next b'eihg one-half to one-third of
the previous one. Thus, the convergence is so rapid that the
fifth iteration moves''the wake"* less than 1% of the wingspan.

One concludes from the above"that the solution is quite
well behaved'and no conflict exists-" between convergence and
stability. Acceptable convergence" is"'had at' the fourth ite'r-
ation, and the growing instability is still acceptable at- the
seventh, leaving a wide region of choice for the user.

Future work could well be done bnr'approximate methods of
predicting wake deflection; for example by choosing a general
form for the trajectory'curve, and" finding" its amplitude at
only a few points. Certainly'other approximations will sug-
gest themselves. ' •' : "' ' "
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The results presented here, and the method of approach,
appear to provide as near to an exact solution as is likely
to be found, and may be used as a standard to which approxi-
mate and more convenient methods may be compared.
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VIII. CONCLUSIONS

The problem of determining the wind tunnel wall interfer-
ences for high lift wings or lifting systems for slow flight
has been examined, and a new method of calculating the inter-
ference effects has been developed. It has been shown that
the most significant interference is on the measured pitching
moments and the apparent longitudinal stability of an aircraft
having a tail, or at least having a longitudinal characteristic
dimension of the order of its spanwise dimension. The inter-
ference is a maximum when the system is operating at moderate
downwash angles which are attainable with lifting systems using
only small amounts of power and which can be represented by
passive systems in potential flow.

The solution developed is based on the use of a vortex
lattice to represent the tunnel boundaries, and takes into
account the direct effect of the interference-caused reloca-
tion of the vortex wake on the flow direction in the region
of the tail. A method of testing is proposed which can mini-
mize this effect.

The following conclusions may be stated.

1. Representation of the wind tunnel boundaries by a
vortex lattice system may be used to calculate
interference velocities for a tunnel of arbitrary .
cross-section.

2. Simplified representations of lifting systems may
be used. The vortex span and point of origin of
the trailing system are the most important choices.

3. Wall induced velocities cause the vortex wake and
high or low energy wakes to be deflected less in
the wind tunnel than in free air.

4. - The relocated vortex and energy wakes cause dif-
ferent flow angles and velocities to be felt at
the region of a tail and these effects are prop-
erly charged to tunnel boundary interference along
with the wall-induced velocities.

5. The direct effect of the vortex wake shift on a
tail may be of the same order as the usual wall-
induced velocities and may be of either sign.

6. The amount and direction of wake shift effects
depends strongly on the tail location and so
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effects must Toe calculated for each configura-
tion of interest. - -

7. Wake shift effects may be reduced or avoided by
testing with models whose tail heights can be
adjusted to match the energy and vortex wake
locations for particular regions of interest.

8. The numerical calculation presented converges
rapidly (in about three to four iterations),
but may develop instabilities if carried beyond
seven or eight such iterations.

9. The quality of the solution presented is as near
an exact solution as practical representation of
a lifting system will permit, and should serve
to guide the formation of approximations and as
a standard to evaluate them.
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Fig. 5 Flow geometry at the wing
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Y

Fig. 7 Velocity induced at a point by an arbitrarily oriented
vortex segment.
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••P(X,Y,Z)

Fig. 9 Definition of distances for a horseshoe vortex representing
a wing located with its midspan at the origin of coordinates.
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APPENDIX A

COMPARISON OF THE INDUCED VELOCITY OF A DISTRIBUTED

VORTEX SHEET WITH THAT DUE TO A SINGULAR VORTEX

Betz* has shown that the first moment (center of gravity
location) of a group of vortex filaments in a trailing vor-
tex sheet is constant as they move about in the process of
rolling up into a cylindrical arrangement. It is well known
that the spanwise location of the center of gravity of the
vortex sheet trailing from an elliptical wing is at rr/4
times the semispan, measured from the plane of symmetry of
the wing. It is also well known that the induced velocity
at some large distance from the vortex sheet may be computed
accurately by replacing the vortex sheet with a single vortex
of the same total strength located at the center of gravity
of the sheet it replaces. What is not widely known is the
variation close to the sheet when this substitution is made.
The following analysis is presented to show the ratio of the
induced velocity in the near field computed using the trail-
ing sheet, to that computed using a concentrated vortex loca-
ted at the center of gravity of the sheet.

Consider the Trefftz plane, but just behind an ellip-
tically loaded wing, as shown below.

w

*Betz, A., "Behavior of Vortex Systems," NACA T.M. 713,
June 1933.
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The circulation on the wing is given by

and the strength of the vortex trailing from the point y is

This element of the vortex sheet induces a downwash velocity
at a point y0

dT
dwyo 4n(y0 -y)

These equations are combined, and non-dimensionalized by

letting y = Tr and To = -%" • Tne integral is evaluated

only over 0 < y < 1 because we are only interested in the
effect of one half of the wing on the other half.

w .^is.. r1

»y 4nf J» (yo.

The integral can be put into a standard form by making the
trans forma tion

x = y0 - y

Then,
y = y0 - x

2 2 2
=y0 - 2 y 0 x + x

dy = - dx
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and the limits of integration become

when y = 0 , x = y0

when. y = l ,x = y 0 - l

Then

w _ FO ?y° ~ (yo - x) dx
y°y 4rr — y0 x*/(l - y0

2) +2y0x- x^

This is integrated for values of - 1 < y0 < 0 , using
integrals number 161 and 182 from Pierce, A Short Table of
Integrals. Ginn and Company, 1929. The result is

Now compare this solution with that of the simpler case, where
the total circulation, - T0 , is assumed to be concentrated
at y0 = TT/4 • b/2 , and find its effect on the other side of .
the wing. We have, then

- To

'v 4 T T!(b/2~4)

The ratio of the downwash due to the sheet to that due to the
single vortex is

w (sheet)
rr yo

Wy0y(single)

We are particularly interested in the value when y0 = rr/4 ,
and that value is

R = 1.02566
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The graph following shows the variation of this ratio over
a range of distances from the wing.

-1.25

-1.20

R

H.05

I I
-2 -I

5/2

DOWNWASH ALONG THE EXTENDED LIFTING LINE

R is the ratio of downwash due to a vortex sheet
trailing from one half of an elliptically loaded wing to
the downwash due to a single trailing vortex of the same
strength located at the center of gravity of the trailing
sheet.
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C APPENDIX B
C PROGRAM TO COMPUTE THE HAKE TRAJECTORY
C OF A VORTEX PAIR TRAILING FROM A FINITE MING
C

PROGRAM FRAIR (INPUT,OUTPUT,PUNCH,TAPE5=INPUT,TAP£6=OUTPUT, B 0
1TAPE7=PUNCH) 3 1

C 3 2
C THIS PROGRAM IS HRITTEN IN FORTRAN IV FOR THE COC-6«»00 COMPUTER. THE B 3
C APPROXIMATE STORAGE REQUIREMENT FOR THIS PROGRAM IS 14600 (OCTAL) . B «»
C EXECUTION TIME IS APPROXIMATELY 25 SECONDS PER CASE WITH 180 SURVEY 8 5
C POINTS, 30 TRAILING SEGMENTS, AND 8 ITERATIONS. NOTE THAT THIS PROGRAM 8 6
C YIELDS A PUNCHED CARD DECK OUTPUT. 3 7
C 3 8
C INPUT DATA SEQUENCE 8 9
C 3 10
C SPAN, GAMAH, SPE'EO, ASPECT, NH «»F10. 5,110) 8 11
C SPAN IS HING VORTEX SPAS, FEET . B 12
C GAMAM IS WING CIRCULATION, SQUARE FEET/SE'COND 8 13
C SPEED IS REMOTE HIN3 SPEED, FEET/SECOND B H»
c ASPECT is ASPECT RATIO 3F THE GEOMETRIC MING BEING REPRESENTED BY 8 is
C THE VORTEX SPAN. VORTEX SPAN IS PI/«t TIMES GEOMETRIC SPAN, 8 16
C NH IS THE NUMBER OF TRAILING SEGMENTS IN THE HAKE, LESS THAN 50 B 17
C 8 18
C OELTAX (F10.5) B 19

LENGTH OF TRAILING SEGM-NTS, FEET. USUALLY TAKEN SPAN/10 3 20
C B 21
C XH(1), YHtl) (3F10.5I B 22
C X AND Y COORDINATES OF 3ENTER OF BOUND VORTEK, USUALLY 0.0, 0*0 B 23
C X AXIS IS POSITIVE OOHNSTREAM, Y IS POSITIVE UPWARD, 7 TO RIGHT 8 2«»
C LOOKING OOHNSTREAM 8 25
C 3 26
C TLMN, TLMX, DELTX (3F10.5) B 27

MINIMUM ANO MAXIMUM TAIL LENGTHS, FRACTION OF SPAN, DEFINING 3 28
C LONGITUDINAL REGION TO 3E SURVEYED, ANO INCREMENT BETHEEN B 29
C SURVEY POINTS, FRACTION OF SPAN. 3 30
C 8 31
C THMN, THMX, DELTY (3F10.5) 8 32
C MINIMUM AND MAXIMUM TAIL HEIGHTS, FRACTION OF SPAN, DEFINING B 33
C VERTICAL REGION TO 3E SURVEYED, AND INCREMENT BETWEEN SURVEY B M
C POINTS, FRACTION OF SPAN. B 35
C 3 36
C THSP, DELTZ (2F10.5) B 37
C SEMISPAN OF TAIL, FRACTION OF SPAN, DEFINING LATERAL REGION TO 8 18
C BE SURVEYED, AND INCREMENT BETWEEN SURVEY POINTS, FRACTION OF B 39
C SPAN. B «»0
C _ . 8 l»l
C KK (ID 8 <»2
C INTEGER VARIABLE SET EQUAL TO ONE IF SURVEY REGION ABOVE IS 8 <»3
C REFERENCED TO MING, ANO TO ANY OTHER VALUE IF REFERENCED TO 8 W
C SPACE COORDINATES. B i»5
C B <»6
C ADDITIONAL CASES 8 k7
C REPEAT THE PiRECEDINS SET OF SEVEN DATA CARDS FOR AS MANY CASES B (»8
C AS DESIRED 3 . l»9
C > '• 8 50
C PUNCHED OUTPUT RESULTING FROM EACH CASE HILL BE A'S POLLOHS 3 51
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CARD 1-3. VORTEX SPAN, REMOTE VELOCITY, MING CIRCULATION, ASPECT
RATIO, LIFT, DRAG, TOTAL X-VELOCITT AT WING CENTER SPAN, TOTAL
Y-VELOCITY AT WING CENTER, MING GE01ETRIC ANGLE OF A T T A C K (4E2U.10)

CARD 4 AND FOLLOWING CARDS, COORDINATES OF SURVEY POINTS XCI, YCJ,
AND ZCJ (SPACE FIXED) AND TDTAL X, Y, AND Z VELOCITY COMPONENTS
AT EACH SURVEY POINT. (4E20..10)

C
C
C
C
C
C
C
C
C
C LAST CARO. THE NUMBER 10000 IS PUNCHED TO INDICATE THE END OF
C EACH CASE. THIS SPECIAL PUNCHING IS USED BY THE MING-IN-TUNNEL
C PROGRAM TO LOCATE THE END OF EACH D A T A OBCK. (40X, E20.10)
C
C
1
2
3

5
6
7
8
9
10
11
12
4100

4150

4160
4170
4175
4180

4190

4200

4250

FORMAT (4F10.5,I10)
FORMAT (F10.5)
FORMAT (18H ITERATION NUMBER ,12)
FORMAT (10F10.5)
FORMAT (3F10.5)
FORMAT (10F12.6)
FORMAT (2F10.5)i
FORMAT (13H CL/ASPECT = ,F8.5,15X,13HCOI/ASPECT = ,F8.5)
FORMAT (I3,5F10.5)
FORMAT (2110)
FORMAT (12)
FORMAT (7F15.5)
FORMAT (74H-NOTE - ALL DISTANCES MEASURED

IE POSITION AT XH(1) )
FORMAT (18H MAKE COORDINATES ,/,

<»260
4270
4280
4281
4285
4290
4295
4300
4310
432C
4330

13HDSM)
FORMAT (4F15.5)
FORMAT (1HO,8HGAMAM =
FORMAT ( IX, 12, 3F1 0.4, 2X, 3 F10. 4,2X ,3F10.4)
FORMAT (19H ANGLE OF A T T A C K = ,F6:.3,12H RADIANS OR ,F7.3,8H DEGREE

IS )
FORMAT (22H ANGLE OF ZERO LIFT = ,F6. 3,12H RADIANS OR ,F7.3,8H OEG

1REES )
FORMAT (23H TAIL SPAN (ABSOLUTE) =,F9.4,2X,21HTAIL SPAN/WING SPAN

1=,F9.4)
FORMAT ( 1H1,5X,7HSPAN = , F6. 3 ,21X ,16HREMOTE VELOCITY = ,F9.3,

17X,1*»HCIRCULATION = ,F9. 3 ,/,6X,15 HASPECT PATIO = ,F6. 3,13X,7HLIFT
1= ,F9.«»,18X,7HDRAG = , F9. 5 ,/ , 6X, 1 3HVX AT MING = ,F10.^,11X,
113HVY AT MING = , F10. «» ,11 X,18HGEO METRIC ALPHA = ,F6.2,8H DEGREES,
l/,/,/,8X,16HMING COORDINATES, 18X.17HEARTH COOROI NATES ,17X,
119HVELOCITY COMPONENTS )

FORMAT (1H , 3F10. *»,5X, 3F1 0.4, 5X,3 F1C. 4)
FORMAT (12H TAIL SPAN = , F8.4 ,4X,'23HT AIL SPAN/MING SPAN = ,F8.4)
FORMAT (4E20. 10)
FORMAT (40X,E20.10)
FORMAT (4F10.4)
FORMAT (1HO, 12H2-0 ALPH4 = ,F8.5,12H RADIANS OR ,F7.3,8H DEGREES)
FORMAT (1H ,16HINOUCEO ALPHA = , F!8. 5, 12H RADIANS OR ,F7.3,5H DEC.)
FORMAT (1H , 18HGE OMETRI3 ALPHA = ,F6.i5,9H RAD. OR ,F7.3,5H DEC.)
F O R M A T (1H1)'
FORMAT (1HO,44X,3HX s,F9.4)
FORMAT (1HO,44X,3HY =,F3.4)

8 52
B 53
3 54
B 55
8 56
3 57
3 58
3 59
3 60
9 61
B 62
B 63
B 64
B 65
8 66
B 67
9 68
B 69
B 70
8 71
B 72
B 73
B 74
B 75
8 76
B 77

FRO?M A S S U M E D LIFTING LIN B 78
3 79
8 80
B 81
8 82
9 83
8 84
8 85
8 86
B 87
3 88
9 89
B 90
8 91
3 92
B 93
3 94
3 95
3 96
3 97
8 98
9 99
9 100
9 101
B 102
B 103
B 104
8 105
3 106
8 107

9X,2HXM,13X,2HYM,13X,2HZM,13X,
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4340 FORMAT <1H , 4 1 X , 1 8 H R E F E R E N C E D TO! HING) 9 108
4350 FORMAT (1H , 4 0 X , 2 O H * E F E * E N C E D TO TUNNEL) 9 109

REAL LIFT 3 110
D I M E N S I O N V X m , V Y ( 7 ) , V Z ( 7 ) * 111
OIMENSI9N V M X ( 7 ) , V M f ( 7 ) , V M Z ( 7 ) 3 112
DIMENSION tft?X(7), V C Y ( 7 ) , V C Z ( 7 ) B 113
D I M E N S I O N X H ( 5 0 > , Y W ( 5 0 ) , Z W ( 5 0 ) , R H ( 2 , 2 ) , O S M ( 5 0 ) , V B A R ( 2 ) 3 114
D I M E N S I O N A L P H A ( 7 ) , BETA (71 . 8 115
RHO = .002378 3 116

30 CONTINUE 8 117
R E A D (5,1) SPAN,G A M A M , S'EEO, ASPECT, NH 8 118
IF (EOF,i5) 60,31 8 119

31 READ (5,2) OELTAX 8 120
R E A D (5,7) X W ( 1 ) , Y H ( 1 ) 8 121
IF (EOF,5) 60,80 8 122

C 8 123
C COMPUTE INITIAL COORDINATES, MING DIMENSIONS, ' T R A I L I N G SEGMENTS 8 124
80 CONTINUE 8 125

NH1 = NH 4- 1 -8 126
ZW(1) = SPAN/2. 9 127
CHORO = SPAN/(ASPECT*. 785398163**2) 8 128
ALFAA=ASIN(GAMAM»2. / (6 .2831853»CHORO»SPEEO)) 8 129
XCI = 0.75*CHORO»SQJU(1.-(.78539816»*2)» 3 130
X H ( 2 ) = X W ( 1 ) * X C I » C O S ( A L F A A ) 8 131
Y W ( 2 ) = Y W ( 1 ) - X C I * S I N ( A L F A A ) 9 132
Z W ( 2 ) = ZW(1) 8 133
XCI = OELTAX * X M ( 2 ) 3 13«»
YCJ = Y W ( 2 ) 8 135
ZCJ * ZW(1) 8 136
DO 90 N = 3 , N M 3 137
Z H C N ) = ZCJ 9 138
Y H ( N ) = YCJ 9 139
X H ( N ) = XCI 3 1<»0
XCI = XCI + OELTAX 9

90 CONTINUE 3
X M ( N H l ) = X H ( N H ) * 1000.0 9
Y M ( N W l ) = YCJ 8 !<»«»
Z H ( N W l ) = ZOJ 8 145
00 81 1=1,NM 8 146
J = IH 9 147

81 D S M ( I ) = S Q H T ( ( X H ( I ) - X W ( J ) ) » * 2 * ( Y H ( I ) - Y H ( J ) ) * * 2 * ( Z M ( I ) - Z M ( J ) ) » * 2 ) 8 148
C B 149
C CARRY OUT ITERATIVE SOLUTION 9 150

NUMIT = GAMA'M/19. * 3. 9 151
WRITE (6,4310) B 152
DO 100 N U M B E R = 1 ,NUMIT . 9 153
CALL HKIT ( X H , Y M , J H , D S M , G A « A M , S P E E D , S P A N , N H , N W 1 , 3 154

1 A L P H A O , A L P H A I , A L F A A , C H O R D ) 3 155
IF ( ( N U * I T - N U M B E R ) . G T . 3 ) GO TO 95 3 156
WRITE (6,3) NUM3ER 9 157
WRITE <S,4150) 9 156
WRITE (6,4160) ( X W ( L ) , YUC L) , 2 W ( L ) ,DSM (L) , L=l, NW1) 8 159
CALL L C O M P ( X U , V H , Z W , O S M , G A M A M , S P E E O , S P A N , N W , N W 1 , L I F T , R H O , 8 160

l V X W C , t f Y H C , D R A G ) 9 161
W R I T E (6,4170) G A M A H 8 162
A L P H A O = -ALPHAO 9 163
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ALFAA = -ALFAA 8 16*
DEG=ALPHAO»57«29578 B 165
WRITE (6,4390) ALPHAO,0£G 8 166
DEG=ALPHAI*57.29578 9 167
WRITE (6,4295) ALPHAI.OiG 8 168
DEC = ALFAA'57. 29 578 8 169
WRITE (&', 4300) ALFAA, OE3 B 170

95 XCI = XW(1) B 171
00 1000 L = *,NW1 B 172
IF (XH(L) .LT.XCI) GO TO 999 8 173

1000 CONTINUE 8 1 7 *
100 CONTINUE 8 175
C 8 176
C SET UP COORDINATES FOR VEL03ITY SURVEY B 177

REAO (5,5) TLMN,TLMX,0£LTX B 178
READ (5,51 THMN,THMX,OELTY B 179
REAO (5,7) THSP.OELTZ B 180
NTL=INT( (TLMX-TL1N)/OELrx+0.5)«-l 9 181
NTHsINT((TH*X-THHN)/OELrY+0.5)+i B 182
NTS=INT(THSP/OELTZ+0.;5)+1 B 183
COSA=COSCALFAA) 8 18*
SINA= SIN (-ALFAA) , B 185
WRITE (7,4280) Sf»AN,SPEED ,GAHAM, ASPECT, LIFT, DRAG, VXHC,VYWC, ALFAA 8 186
REAO (5,1*0) KK B 187

40 FORMAT (II) 9 188
00 400 1=1,MTH B 189
YC=(THWN*FLOAT(I-1>*OELTY)*SPAN 8 190
WRITE (6,4250) SPAN,SPEiO,GAMAM,ASPECT,LIFT,DRAG,VXWC,VYWC,OEG 8 191
WRITE (6,4330) YC B 192
IF (KK.EQ.l) WRITE (6,4340) 8 193
IF (KK.NE.l) WRITE (6,4350) 9 19*
00 400 J=1,NTL B 195
XC=(TLHf4*FLO'AT(J-l)*OELrx»*SPAN 8 196
WRITE (5,4320) XC 8 197
IF (KK.EQ.l) WRITE (6,4340) 8 198
IF (KK.NE.l) WRITE (6,4350) B 199
00 400 K=1,NTS 3 200
IF (KK.NE.l) GO TO 51 8 201
XCI=XC*DOSA*XW(1)-YC*SIHA B 202
YCJ=XC»SINA*YC»COSA*YW(1) B 203
ZCJ=FLOAT(K-i)*OELTZ»SPAN B 204
GO TO 52 B 205

51 CONTINUE 8 206
XCI=XC*XW(1)! B 207
YCJ=YC*YW(1) B 208
ZCJ=FLOAT(K-1)*OELTZ*SPAN B 209

52 CONTINUE 9 210
C B 211
C COMPUTE VELOCITY COMPONENTS AT SURVEY POINTS B 212

CALL VCOMP (XCI, YOJ,ZCJ, OSM,GAHAM,SPAN,SPEED, B 213
lVXMOO,VYMOO,VZMOO,VXTOT,VYTOT,VZrOT,XW,YW,ZW,NW,.FALSE.) B 21*

C 3 215
C REFERENCE S»ACE FIXED COORDINATES TO BOUND VORTEX 3 216

XCI=XCI-XW(1) B 217
YCJ=YOYW(1) 8 - 2 1 8
WRITE (7,*280) XCI,YCJ,ZCJ,VXTOT,VYTOT,VZTOT B 219
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WRITE <6,<*260) X C t Y C , Z C J , X C I i Y C J , Z C j , V X T O T t V Y : T O T , V Z T O T 8 220
«»30 CONTINUE . 3 221

ZCJsiOOOO. - 9 2 2 2
WRITE lf,<»281) ZCJ 9 223

C B 22*
C REf tO INPUT 3ATA FOR NEXT CASE 8 225

GO TO 3B 9 226
999 CONTINUE B 227
60 STOP 9 228

END 8 229
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SUBROUTINE HKIT (XW,YW,ZW,OSM,GAHAM,SPEED,SPAN,MM,NW1 8 330
1 .ALPHAO,ALPHAI,ALFAA,CHORD) 3 231

C 3 232
C SUBROUTINE TO ITERATE TRAILING W A K E POSITION 8 233
C 8 234

OIWENSI9N X W ( 5 0 > , Y W ( 5 0 ) , Z W ( 5 0 ) , O S M ( 5 0 ) , R W (2 ,2 ) ,YBAR(2 ) 3 235
LOGICAL SKP,WTEST 3 236
SKP = .FALSE. 3 237

C 3 238
C MAKE TWO PASSES, FIRST FOR X-Y MOVEMENT, SECOND FOR X-Z MOVEMENT 3 239

DO 20 N = 1,2 3 240
31 NNN = NM 3 241
l»0 00 47 M = 1, NNN 8 242

WTEST = .FALSE. 3 243
IF (M.EQ.1) WTEST = .TRUE. 8 244
IF ((M.EQ.ll .ANO.SKP) GO TO 47 3 245

C 3 246
C CHOOSE COORDINATES FOR VELOCITY COMPUTATION 8 247
41 XCI s XH(N) ' 8 248

YCJ = Y W ( M ) 8 249
IF (M.EQ.l) GO TO 42 8 250
ZCJ = Z W < M ) 3 251
GO TO 43 8 252

42 ZCJ'a 0.0 9 253
43 CONTINUE 3 254
C 8 255
C COMPUTE VELOCITY COMPONENTS AT CHOSEN COORDINATES 3 256

CALL VWKIT (XCI,YCJ,ZCJ, DSM,GAMAM,SPAN,SPEED, 3 257
l V X M O O , V Y M O O , V Z M O D , V X T O T , V Y T O T , V Z r O T , X W » Y W , Z W , i N W , W T E S T ) 3 258

VXM = tfXTOT 3 259
VYM = VYTOT 3 260
VZM = VZTOT 3 261
VEL = SQRT(VXTOT»»2 * tf»TOT*»2 * VZTOT**2) 3 262
J = M*l 3 263

C 3 264
C COMPUTE NEW ANGLE OF ATTACK OR SEGMENT ORIENTATION, AND SHIFT 3 265
C TO BE APPLIED TO FOLLOWING SEGMENTS 3 266

IF (M.NE. l l GO TO 45 8 267
ALPHAC=ASIN(-GAMAM*2./(6.2831853*CHORO»VEL» 3 268
ALPHAI = A T A N ( V Y H X V X M ) B 269
ALFAA = ALPHAO * ALPHAI 8 270
XSHFT = OSM(1)»COS(ALFAA) * XW(1) - X W ( 2 ) 3 271
YSHFT = DSM(1)»SIN(ALFAA) * YH(1) - YW(2 ) 8 272
ZSHFT = 0 . 0 3 273
GO TO 57 3 274

45 DCWX = VXM/VEL 8 275
XSHFT = OSM(M) *OCWX + X W ( M > 3 276
XSHFT = XSHFT - X W ( J ) 8 277
IF (SKP) GO TO 49 3 278
DCWY = VYM/YEL 8 279
YSHFT = DSM(M)»DCHY * YW(M) 8 280
YSHFT = YSHFT - Y W ( J » 8 281
GO TO 57 3 282

49 DCWZ = VZM/VEL 3 283
ZSHFT = OSM(M)*DCWZ *• ZH<M) 3 284
ZSHFT = ZSHFT - ZW(J) 3 285
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IF (J.EQ.NWi) ZSHFT = 0. 9 286
C 8 287
C COMPUTE NEW COORDINATES OF TRAILING SEGMENTS DOWNSTREAM OF B 288
C NEWLY ORIENTED SEGMENT B 289
57 DO <»8 L=J,NW1 B 290

XW(L) = X W { L > «• XSHFT B 291
IF (SKP) GO TO 59 B 292

59 Y W ( L ) = Y W ( L ) * VSHFT B 293
GO TO 50 . 3 29>f

59 ZW(L) = 2W(L) * ZSHFT B 295
50 K = L-i 3 296

OSM(K) = SQRTUXW (L ) -XWC K) ) »*2*(f W ( L I - Y W ( K) ) **2* (ZW (L ) -ZW <K» **2) B 297
<»8 CONTINUE 9 298
*»7 CONTINUE 9 299
C B 300
C RETURN FOR NEXT PASS B 301

SKP = .NOT.SKP B 302
20 CONTINUE 3 303

RETURN 9 3Q<»
END 3 305
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SUBROUTINE LCOMP (XH,YW,Z H,DSM,GAMAM,:SPEEO,SPAN, NH, NW1,LIFT,RHO, B
1 VXTOT,VYTOT,ORAGI 8

C 3
C SUBROUTINE TO COMPUTE LIFT 4NO INDUCED DRAG ON WING 3
C 3

DIMENSION XW<50) , YH(50) , Z W(50 ) ,DS M(50 ) ,RW (2,2) , V BAR (2) , ALPHA(7> , 9
1BETAC7) 9

REAL LIFT B
1 FORMAT (1HO,6HLIFT s,F13. i»,5X,6HDRAG =,F10.«O 3
2 FORMAT (1HO,17HCL/ASPECT RATIO =,-F10. *»5X ,17HCD/ ASPECT RATIO =, 3

1F10.**) 3
3 FORMAT (1HO,23HVX AT WING CENTERLINE = ,F10.5,/,!HO»23HVY AT MING C 3

1ENTERLINE =,F10.5) 3
KK = 1 3
XCI = XH(KK) 3
YCJ = YMCKK) 8
ZCJ = 0. 3
CALL VLCOHP <XCI,YCJ,ZCJ, OSM,GAMAM,SPAN,SPEED, 8

lVXMOO,VYMOO,VZHOO,VXTOT,VYTOT,VZTOT,XH fYH fZM,.NM,.FALSE.) 8
LIFT = RHO»VXTOT»SPAN*GAMAM 3
DRAG = -RHO*VYTOT*SPAN»3AMAM 8
COIAR = (3.1'»159/«».)**2^<.5*RHO»(SPEEO**2)»{SPAN»»an 9
CLAR = LI FT*COIAR 3
COIAR ~ ORAG»COIAR 8
HRITE (5,1) LIFT,DRAG 8
WRITE <6,2) CLAR, COIAR 8
HRITE CB,3) VXTOT,VYTOT 8

C 8
RETURN 8
END 8

306
307
308
339
310
311
312
313
31«f
315
316
317
318
319
320
321
322
323
3 2V
325
326
327
328
329
330
331
332
333
33>»
335
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SUBROUTINE VHKIT (XCI ,YREF,ZREF, DSM,GAMAM,SPAN,SPEED 3 336
1 ,VXMOO,VYMOD,VZMOO,VXTOT,VYTOT,VZTOT,XH,YH,ZW,NW,WTEST) 8 337

C 8 338
C SUBROUTINE TO COMPUTE VELOCITY COMPONENTS 3 339
C 8 340

DIMENSION X W < 5 0 ) t Y H ( 5 0 ) , 7 . W C 5 0 ) t O S M < 5 0 ) , R H < 2 , 2 ) , V B A R C 2 ) 8 341
LOGICAL HT£ST,LTEST 9 342
LTEST = .FALSE, B 343
GO TO 10 9 344
ENTRY VCOMP 3 345
LTEST = .FALSE. 8 346
GO TO IB 3 347
ENTRY VLCOMP- 3 348
LTEST = .TRUE. 3 349

10 V X M = 0 . 0 9 350
VYM = 0 . 0 3 351
VZM = 0.0 3 352
YCJ = YftEF 3 353
ZCJ = ZREF B 354
P = 6.2831853 B 355

C 8 356
C INITIALIZE VARIABLES TO CONFUTE VELOCITY INDUCED BY THE SEGMENT 8 357
C PAIR UNDER CONSIDERATION 8 358

XHK..=. XH<1> . - - . , . • ' 8 3 5 9
YHK = YHCl) 9 360
ZWK s ZMC11 8 361
RM12 = CXHK-XCI)»»2 + (YH K-YC J)*»:2 8 362
RH112 = RM12 * (ZHK-ZCJ)**2 8 353
RH122 = RM12 * (ZWK*ZCJ>»*2 9 364
RHli = SORTCRW112) 3 365
RH12 = SQRT(RW122) 3 366

43 00 46 K = 1,NH 8 367
J = K*l 3 368
XMJ = XH(J) 9 369
YMJ = YHtJ) 3 370
ZHJ = ZM(J) 8 371
RH22 = (XWJ-XCI)**2 * (YWJ-YCJ>»»2 8 372
RH212 = RH22 * <ZHJ-ZCJ»»»2 B 373
RM222 = RH22 + (ZMJ*ZCJ)»*2 3 374
RH21 = SQRT(RM212) 3 375
RH22 = SQRT(RW222) 9 376
OSMK = OSM«) 9 377
OSMK2 = DSMK*»2 3 378
H = 4.»RWH2*OSMK2 - (R«l 12-RW212 +OSHK2>»»2 8 379
IF (H.LT.l.E-10) GO TO 44 8 380
VBAR1 = -GAMAM»(DSMK2-(^H11-RM21) »*2l*fRHll4.RW21»/(P»RHll»RW21»H) 8 381
GO TO 45 9 382

44 VBAR1 = 0.0 3 383
45 H .= 4. •RH122*DSMK2-(RM122-RW222*DSMK2)»»2 8 384

IF (H.LT.l.E-10) GO TO 47 8 385
V8AR2 = -GAHAM»(DSM<2-(^M12-RW22)*»2)»CRH12+RH22)/(P»RM12»RW22»H) 9 386
GO TO 48 B 387

47 VBAR2 = 0 . 0 9 388
48 CONTINUE 3 389
C B 390
C COMPUTE VELOCITY COMPONENTS INDUCED 3Y EACH SEGMENT PAIR 9 391
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VXM = V8AR1*(CYHK-YCJ)MZWJ-7HK)- (ZWK-7CJ)* (YHJ-YHK)) 8 392
1 - V 3 A R 2 » « Y W K - Y C J ) * ( Z W K - Z W J ) - I < - Z H K - Z C J > » ( Y W J - Y W K ) ) + VXM 9 393

VYM = V3AR1M (ZWK-ZC J) *( X WJ-XWK) - (XWK-XCI ) * ( Z W J - Z W K ) ) 8 394
1 - V B A R 2 * ( ( - Z H K - Z C J ) M X W J - X W K ) - ( X H K - X C I ) » < Z W K - Z W J ) ) + VYM .9 395

IF (LTEST) GO TO 55 9 396
VZM = (V8AR1-VBAR2IM <XHK-XCI1* (YHJ-YWK)- (YWK-YC'J)* ( X W J - X W K ) ) *VZM 9 397

55 CONTINUE 9 398
RW11 = RWZ1 . 9 399
RW12 = RW22 9 400

. RW112 = RM212 8 401
RH122 = RH222 9 402
XWK = XHJ 3 403
YHK = YHJ 9 404
ZWK = ZHJ 8 405

45 CONTINUE 8 406
IF (WTEST) GO TO 60 9 407
XWK = XVUi) 8 408
YWK = YH<1) . B 409
ZWK = ZMfl) 9 410
HM2 = (XWK-XCI)»»2 * (Y<K-YCJ)**2 9 411
IF (HM2.LT..00001) GO TO 60 9 412
RH1 = S3RT(HM2 > (ZWK-Z3J) * *2 ) 8 413
RM2 = SQRT<HM2 * (ZWK*ZCJ)»»2) 8 414
P = 25.13274 8 415

C 9 416
C COMPUTE VELOCITY INDUCED BY BOUND VORTEX B 417

VXM = GftMAMMRMH-RM2)»(SPAN»*2 -< RM1-RM2) **2)-*(YC J-YWK) / ( P*SP AN» 8 418
1RM1*RM2*HM2) * VXM B 419

VYM = GftMAMMRHH-RM2>*(SPAN**2 -( RM1-RM2I **2) *(X WK-XCI)/(P»SPAN» B 420
2RMl*R«2»HM2) *• VYM 9 421

60 CONTINUE 3 422
95 VXMOD = VXM 9 423

VYMOD = VYM 8 424
VZMOO = VZM 9 425

C B 426
C STORE TOTAL VELOCITIES 9 427

VXTOT = VXM + SPEED 8 428
VYTOT = VYM 9 429
VZTOT = VZM 9 430
RETURN B 431
END B 432
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C APPENDIX C
C
C PROGRAM TO COMPUTE LINEARIZED WA'LL INTERFERENCE FACTORS
C FOR TUNNELS OF ARBITRARY CROSS SECTION
C

PROGRAM STWKWT(INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT) C 0
C C 1
C THIS PROGRAM COMPUTES LINEARIZED WIND TUNNEL WALL INTERFERENCE FACTORS C 2
C FOR WIND TUNNELS WITH VERTICAL AND LATERAL PLANES OF SYMMETRY IN THE C 3
C SPECIAL CASE OF THE MODEL LOCATED ON THE PLANE OF! VERTICAL SYMMETRY. C k
C THE MODEL IS A SIMPLE HORSESHOE VORTEX SYSTEM. C 5
C THE CROSS SECTION OF THE TUNNEL MUST REMftlN CONSTANT OVER THE FULL C 6
C LENGTH. C 7
C C 8
C THIS IS A FORTRAN IV PROGRAM WRITTEN FOR THE CDC 6VOO COMPUTER. C 9
C STORAGE REQUIREMENT FOR THIS PROGRAM IS APPROXIMATELY 46000 (OCTAL) C 10
C LOCATIONS ON THE COG 6«»00. ' C 11
C EXECUTION TIME ON THE CDC 6'+00 IS APPROXIMATELY 95 SECONDS FOR ONE C 12
C CASE INCLUDING THE MATRIX INVERSION.! C 13
C . • . . • C Ik
C INPUT DATA SEQUENCE. C 15
C C 16
C TITLE (8A10) C 17
C ANY TITLE MAY BE USED TD ACCOMPANY OUTPUT, C 18
C C 19
C MM, NN (212) C 20
C MM IS THE NUMBER OF COORDINATE PAIRS DEFINING THE COMPLETE CROSS- C 21
C SECTIONAL SHAPE OF THE TUNNEL. MM CANNOT EXCEED 20. C 22
C NN IS THE NUMBER OF VORTEX RECTANGLES MAKING UP THE LENGTH OF THE C 23
C TUNNEL. NN CANNOT EXCEED 25. C Zk
C C 25
C Y, Z (2F15.5) C 26
C Y AND Z ARE THE COORDINATES, IN FEET, OF THE POINTS DEFINING THE C 27
C SHAPE OF THE TUNNEL. MM CARDS ARE' REQUIRED. C 28
C THE ORIGIN OF THE COORDINATE SYSTEM IS TAKEN ON THE TUNNEL CENTER C 29
C LINE WITH X POSITIVE DOWNSTREAM, Y POSITIVE UPWARD, AND Z POSITIVE C 30
C TO THE RIGHT LOOKING DOWNSTREAM.. THE FIRST CARD IN THE SEQUENCE IS C 31
C THE FIRST COORDINATE TO THE RIGHT (POSITIVE Z) OF THE POSITIVE Y C 32
C AXIS, AND SUBSEQUENT POINTS ARE TAKEN CLOCKWISE AROUND THE TUNNEL. C 33
C SEGMENT LENGTHS BETWEEN ADJACENT POINTS SHOULD BE EQUAL. C 3V
C C 35
C OELTAX (F15.5) C 36
C LENGTH IN FE£T OF THE V3RTEX RECTANGLES IN THE STREAMHISE C 37
C DIRECTION. SHOULD BE EQ'JAL TO THE LENGTH OF SEGMENTS IN THE C 38
C CROSS-SECTION. C 39
C C kO
C SPAN (F15.5) C <»1
C VORTEX SPAN, IN FEET, OF THE WINS. C kZ
C C k3
C ADDITIONAL CASES C M»
C REPEAT THE LAST' CARD, SPAN (F15.5), FOR AS MANY CASES AS DESIRED. C V5
C C i>6
1 F O R M A T (212) C ^7
2 FORMAT (2F15.5) . C kd
3 FORMAT (F15.5) C *»9
*» FORMAT (VF15.5) C 50

79



5 FORMAT (1F10.5) C 51
7 FORMAT (3F15.51 C 52
9 FORMAT (8AID) C 53
210 FORMAT (1H1, 20X,8A10) C 5«»
211 FORMAT f1HO,50X,21H1 0 9 E L D A T A ,/,/,25X,7HSPAN = , C 55

1F6.3, 5X,4HXM = ,F6.,3, 5X, *HYN = ,F6.3,5X,13HCIRCULATION = , C 56
2F7.3 ) C 57

212 FORMAT (1HO, <*3X,23HT U * N E L D A T A ,/.,/ ,35X, 9HPOINT NO. C 58
l,7X,lHYt-9X,lHZ,8X,l(»HLEHGTH OF SIDE , /, ( / ,38X» I 2 ,7X, F8. «»,2X, F6. *»» C 59
39X,F7.W) C 60

213 FORMAT (1H1,5*X,13H* E S U L t S,/,/,5X,llHCOOROlNATES f5X, C 61
110HCORRECTION,6X,16HTOT4L VELOCITIES,13X,25HTUNNEL INDUCED VELOCIT C 62
aiES.lOXj^^HMiODEL INOUCEO VELOCITI ES ,/,«»X, 1HX, 5X, 1HY ,5X,1HZ,7X, C 63
33HOEL,6X,2HVX,9X f 2HVY,9X, 2HVZ ,9X, 3HVXC,8X ,3HVYC, 8X, 3H VZC, 8Xf 3HVXMt C f><*
<»8X,3HVYM,8X,3HVZM ) C 65

21 *» FORMAT (1HO, 3F6.2»F8.3,3Fll.l»,3Fll.«»,l3Fll.<t) C 66
215 FORMAT (/,/,'»8X,17HSECTION LENGTH = ,F7.«») C 67
216 FORMAT (-/ ,/,«»5X,22HC10SS SECTIONAL AREA = ,F10.^) C 68

INTEGER A,9,C,0,E C 69
LOGICAL OPT1, OPT2 - C 70
DIMENSION X(26 ) ,Y (20 ) , Z( 2 0) ,SINPHI(201 ,COSPHI (20) ,XCPT(25) t C 71

lYCPT(ll),ZCPT(11I,SIOEC20),CC(100,100),SC25),GAMAKC100)» C 72
1GAMA(25,11),ZMX2) C 73

DIMENSION R(26,20>,HL(2S» 20), HO(2C) »HYZ(20> C 7>»
DIMENSION GLCil), GOUi) C 75
OIMENSIBN TITLEC8) C 76
ID = 26 C 77
JO = 25 C 78
KD = 20 C 79
LO = 11 C 80
MD = 100 C 81

C C 82
C READ TUNNEL AND MODEL DESCRIPTION FROM CARDS C 83
3t READ C5,i9) (TITLE (I), 1=1*8) C 8<»

IF (EOF,5) 700,35 C 35
35 READ (5,1) MM,NN C 86

IF ((NM.GT.20).OR.(NN.GT*25)) GO! TO 700 C 87
Nl = NN + 1 C 88
READ (5,2) (Y(r>,Z(I) ,1=1,MM) C 89
READ (5,3) DEL-TAX C 90

C C 91
C C 92
C COM»UTE THE COORDINATES OF THE TUNNEL. C 93

CALL COORD (X, Y,Z ,XCPT,YCPT, ZCPT, S,SINPHI ,COSPHI» DELTAX, C 9«»
1SIOE,OPT1,0»T2,MM,NN,LL,KK,N1,NK,ID,JD,KD,LD,ARE A) C 95

C . C 96
C GENERATE THE MATRIX OF COEFFICIENTS.: C 97

CALL MATRIX (X,Y, Z,XCPT, YCPT,ZCPT,SINPHI,COSPHI, SIDE,S,CC, C 98
IMM,NN,LL,KK,N1,NK,OPT1,3PT2,R,HL,HD,HYZ,IO,JD,KD,LD,MD) C 99

C C 100
C C 101
C COMPUTE INVERSE OF THE CC MATRIX, ST3RE RESULT IN CC ARRAY. C 102
70 CALL XNtfR(CC,NK,ND) C 103
C C ID**
C C 195
C READ MODEL DATA FROM PUNCHE9 CARDS. C 106
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75 READ (5,31 SPAN C 13?
IF (EOF,5) 700,80 C 108

80 CONTINUE C 109
C C 110
C GENERATE THE RIGHT HAND SIDE OF THE MATRIX EQUATION. C 111

CALL RtHSCSPAN, XM,YM,ZM,GAMAM,XCPT,YCPT,ZCPTfSINPHI, C 112
1COSPHI,GAMAK,JD,KO,LO,MJ,NN,KK) . C 113

C C 11*
C C 115
C MULTIPLY RIGHT HAND SIDE BY MATRIX INVERSE, STORE RESULT IN GAMA ARRAY C 116

M = 0 C 117
00 150 I = 1,NN C 118
00 150 J = 1,KK C 119
N = M + 1 C 120
XCI = 0.0 C 121
00 130 K = I t N K C 122

130 XCI = XCI * CCCM,K)»GAMAK<K) C 123
GAMA(I,J) = XCI C 12<f
L = LL * 1 - J C 125
GAMAd.L) .= -XCI C 126
IP ((.NOT.OP72).AND. (J.EQ.KK)) GAMACI,JM.) = 0.0 C 127

150 CONTINUE C 128
C C 129
C C 130
C HRITE RESULTS OF COMPUTATIONS. C 131
500 FORMAT (30H1 CALCULATED VORTEX STRENGTHS > C 132

WRITE (6,500) C 133
DO 502 J = 1,NN C 13*
HRITE (6,501) (GAMA(J,K>, K=i,LL) C 135

501 FORMAT (/,11F11.6) C 136
502 CONTINUE C 137
250 FORMAT (81HOOPT1 = .TRUE. THIS IMPLIES VORTEX SINGULARITY AT TOP A C 138

1ND BOTTOM CENTER OF TUNNEL ) C 139
IF (OPT1) WRITE (6,250) • . ' C 1*0

251 FORMAT (85HOOPT1 = ,FALSE. THIS IMPLIES NO VORTEX SINGULARITY AT T C 1*1
10P AND BOTTOM CENTER OF TUNNEL ) C 1*2

IF C.NOT.OPT1) WRITE (6,251) C 1*3
252 FORMAT C76HOOPT2 = .TRUE. THIS IMPLIES VORTEX SINGULARITY ON PLANE C 1**

1 OF VERTICAL SYMMETRY I C 1*5
IF (OPT2) HRITE (6,252) C 1*6

253 FORMAT (80HOOPT2 = .FALSE. THIS IMPLIES NO VORTEX SINGULARITY ON P C 1*7
1LANE OF VERTICAL SYMMETRY ) C 1*8

IF ( .NOT.OPT2) WRITE (6*253) C 1*9
*000 FORMAT <27H1RESULTANT V3RTEX STRENGTHS ) C 150
*002 FORMAT (13HaRING NUMBER ,I2,8X,15HX COORDINATE = ,F10.*,8X,17HMOO C 151

1EL DISTANCE = ,F1C.,*, 8X, 22HMODEL DISTANCE/SPAN = ,Fll.*,(/, C 152
111F11.6)) C 153

*00* FORMAT (15HOSECTION NUMBER ,I3,< ,11F11.6) C 15*
*oio WRITE (6,*oaa> c tss
*015 00 *1*0 L=1,N1 C 156
*020 M=L-1 C 157
*025 DO *075 I=1,LL C 158
*030 IF (L-2) *050, *060, *0*3 C 159
*0*0 IF (L-N1) *060, *07fl, *1*0 C . 160
*050 GL(I) = GAMA(L,I) C 161
*055 GO TO *075 C 162
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4060 GL(I) = GAMA'(L,I) - 6AMA(M,I)
4365 GO TO 4075
4070 GLU) - -GAHA<M,I)
4075 C O N T I N U E
4077 XOR = XID-XM
4078 XCI a XOR/SP'AN
4080 W R I T E (5,4002) L, X (L) , X3R , XCI , (GL (I) , I=1,LL)
4100 IF (L-N1) 4110, 4140, 4140
4110 DO 4125 1=2,LL
4115 J=I-i
4120 GL(J) = GAMA(L,J) - GAMA(L, I )
4125 CONTINUE
4130 MMM = LL - 1
4135 WRITE C5.4004) L, (GL C J» , J = 1,MMM>
4140 CONTINUE

W R I T E (6,, 210) TITLE
WRITE (5,212) ( I , Y ( I ) , Z ( I ) , S I O E ( I ) , 1=1,MM)
WRITE (6,215) DEL TAX
WRITE (6,216) AREA
WRITE (6,211) SPAN,XN,Y1,GAMAM

C
C
C
C NOW BEGIN SURVEY OF TUNNEL FLOW FIELD.
C PERFORM SURREY IN THE PLANE OF THE MODEL.' SURVEY FR'OM APPROXIMATE
C GEOMETRIC WINGTIP TO CENTERLINE OF TUNNEL WITH FIXED X COORDINATE,
C THEN SURVEY ALONG CENTERLINE OF TUNNEL DOWNSTREAM FROM BOUND VORTEX.
C SURVEY INCREMENT IN 30TH DIRECTIONS IS (VORTEX SPAN)/20
C SURVEY BEGINS AT 90UNO VORTEX AND CONTINUES FOR THREE VORTEX SPANS
C DOWNSTREAM OF THE SOUND VORTEX.
C

WRITE (6,213)
DTP = SPAN/20.0

C SET XTP, YTP, ZTP TO INITIAL SURVEY COORDINATES.
XTP = X*
YTP = Y»
ZTP = S»AN»13./20.

600 CONTINUE
CALL SURVEY (XTP,YTP,ZTP,X,Y,Z,XM,YM,ZM,SINPHI,COSPHI,S,

1GAMA,SIOE,0»T1,SPAN,GAM*M,VXC,VYC,VZC,VXT,VYT,VZT,VXM,VYM,VZM,
1LL,MM,N!>J,N1,R,HL,HD,HYZ,IO,JO,KD,LD )

XOR = XTP-XM
DEL = VYC*AREA/SPAN/GAM*M/2.

C
C V»T ARE TOTAL VELOCITY COMPONENTS (SUM OF V*C AND V*M).
C V»C ARE VELOCITY COMPONENTS INDUCED 3Y TUNNEL WALLS.
C V*M ARE VELOCITY COMPONENTS INDUCED BY MODEL.
C XOR IS X COORDINATE OF SURVEY POINT RELATIVE TO BOUND VORTEX.

WRITE (6,214) X O R , Y T P , Z r p , O E L , V X T , V Y T , V Z T , V X C , V Y C , V Z C , V X M , V Y M , V Z M
IF (ZTP.GT.0.0) GO TO 601
XTP = XTP *• DTP
ZTP = 0 . 0
IF (XTP.LE.XM*3.0»SPAN) GO TO 600

C
C READ DATA FOR NEXT MODEL FRDM PUNCHES CARDS.

GO TO 75

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

C 178
C 179
C 180
C 131
C 182
C 183
C 134
C 185
C 186
C 187
C 188
C 189
C 190
C 191
C 192
C 193
C 194
C 195
C 196
C 197
C 198
C 199
C 200
C 201
C 202
C 203
C 204
C 205

206
207
208
209
210
211

C
C
C
C
C
C
C 212
C 213
C 214
C 215
C 216
C 217
C 218
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C C 219
601 ZIP = ZTP - DTP C 220

GO TO 600 C 221
633 C O N T I N U E C 222
700 STOP C 223

END C 224
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SUBROUTINE COORO (X,Y,Z, XCPT,YCPT,ZCPT,StSINPHI, COSPHI.OELTAX, C 225
1SIDE,OPT1,OP72,M?1,NM,LL,KK,N1,NK, IO,JO,KD,LO,AREA) C 226

C C 227
C THIS IS A SUBROUTINE TO COMPUTE THE TUNNEL COORDINATES. C 228
C C 229

LOGICAL OPT1,OPT2 C 230
DIMENSION X ( I O ) , Y ( K a > , Z ( K O ) , X C P T t JD),YCPT<LD),ZCPTCLO) ,S< JO), C 231

lSINPHItKD),<rOSPHI(KD) ,SIOE<KO) C 232
C C 233
C COMPUTE VORTEX RING X-COOROINATES. C 23*

XCI = 0.0 C 235
DO 20 1=1,NN C 236
X < I ) = XCI C 237

20 XCI = XCI * OELTAX C 238
XCN1) = 1000.0 * X(NN) C 239

C C 2*0
C TEST TUNNEL SHAPE COORDINATES AND DETERMINE TOTAL NUMBER OF C 2*1
C UNKNOWNS CNK). C 2*2

OPT1 = ZC MM). ECU 0.0 C 2*3
I = MM/* C 2**
J = (MM/*) » 1 C 2*5
OPT2 = (Y(I).EQ.O.O>.OR.,(Y(J).EQ. 0.0» C 2*6
IF (.NOT.OPT!) GO TO 10 C 2*7
LL = MH/2 C 2*8
KK = MM/* . C 2*9
GO TO 1* C 250

10 IF ( .NOT.OPT2) GO TO 12 C 251
KK = MM/* + 1 C 252
GO TO 13 C 253

12 KK = MM/* C 25*
13 LL = MM/2 +1 C 255
1* CONTINUE' C 256

NL = NN * LL C 257
NM = NN»MM C 258
NK = NN*KK C 259
IF (NK.LE.100) GO TO 17 C 260

C C 261
C IF NK IS GREATER) THAN 100, TERMINATE EXECUTION. C 262

WRITE (5,15) NK C 263
15 FORMAT (1HO,25HOIMENSIOHS EXCEEDED, NK =,I3,16H REDUCE MM OR NN ) C 26*

STOP C 265
C C 266
C GENERATE VORTEX RECTANGLE PARAMETERS.. C 267
17 00 21 I = 1»NN C 268
21 S<I ) = X(I»1) - X ( I ) . C 269

DO 23 1=2,MN C 270
22 SIOE(I) = S Q R T ( C Y U ) - Y(I-1))*»2 * ( Z ( I » - Z(I-1))»*2) C 271

SINPHKI) = ( (Y(I ) -Y(I - l ) ) / ( S I O E ( I ) ) > C 272
23 COSPHKI) = ((Z(I)-Z(I-l) )/(SIDECI))) C 273

SIDE(l) = SQRT((Y(1) - 1 ( MM)) »»2 * (Zdl - ZtMM) )»»2) C 27*
SINPHICl) = C{Y(1)-YCMH))/(SIDE(1))) C 275
COSPHKI) = ((Z(l)-Z(MH) )/(SIOE(l)» C 276

C C. 277
C GENERATE CONTROL POINT LOCATIONS. C 278-

DO 2* I = 2,LL C 279
YCPTCI) = (Y(I)*Y(I-l))/(2.) C 280
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Zk ZCPT(I ) = < Z < I ) + Z < I - 1 I > M 2 . V C 281
ZCPT(l) = (ZU)«-Z (Ml) ) /<2 . ) C 232
YCPTdl = <Y( l»>r<MM»>/ {2 .» C 283
MMM = NV • 1 C 28<»
00 25 I = 1,HMH C 285

25 XCPT(I» = (XCI+i l * X ( I ) » / ( 2 . ) C 296
XCPTtNN) = X(NN) * OELTftX/2.0 C 287

C C 288
C GENERATE TUNNEL CROSS SECTI3NAL AREA. C 289

AREA =0.0 C 290
J = MM C 291
00 30 I = 1, MM C 292
AREA = AREA * A3S (YCI)-r < J))*ABS( Z(I) +Z(J» C 293

30 J = I C 29«f
AREA - AREA/2. C 295

C C 296
C RETURN TO CALLING PROGRAM. C 297
C C 298

RETURN C 299
END C 300

85



SUBROUTINE MATRIX (X,Y,Z,XCPT ,YC"T,ZCPT,SINPHI.COSPHI,SIDE,S, CC, C 301
iMM,NN,LL,KK,Nl,NK,0?Tl,DPT2,R,HL,HO,HYZ,IO,JD,KO,LO,MD) C 302

C C 303
C THIS IS A SUBROUTINE TO GENERATE THE MATRIX OF COEFFICIENTS FOR TH«T C 30<»
C SPECIAL CASE OF VERTICAL SYMMETRY. C 305
C C 306

LOGICAL OPT1.0PT2 C 307
INTEGER A,B,C,0,E C 308
DIMENSION X(ID),f IKD» ,Z(K0),SINPHI(KD),COSPHI(K3) ,.XCPT(JO), C 309

lYCPT(LO) , ZCPT(LO» ,R(IO,<D1,SIOE(KD),CC(MD,MD),HL(ID,KD),HO(KD)» C 310
1S(JO»,HYZ(KO> C 311

P = £5.13271* C 312
C CYCLE THROUGH CONTROL POINTS. C 313

M = 0 C 31<»
00 50 1=1,NN C 315
DO l»9 J = 1,KK C 316
M = M + 1 C 317

C C 318
C SELECT VARIABLES FOR THIS CONTROL POINT. C 319

SINJ = SINPHICJ) C 320
COSJ = COSPHI(J) C 321
XCI = XCPT(I ) C 322
YCJ * YCPT(J) C 323
ZCJ * ZCPT(J) C 32*f

C C 325
C C 326
C GENERATE COORDINATES OF VORFEX RECTANGLES RELATIVE TO PRESENT CONTROL C 327
C POINT. ^ C 328

DO 26 JJ=1,HM C 329
HDIJJ) = SQRT((YCJ-YCJJ)1*»2 * (ZCJ-Z (JJ) )»*Z) C 330
HYZ<JJ) = SQRT( ( (ZCJ-Z(JJ )> *SIN-PHI(JJ> - CYCJ-Y (JJ> )»COSPHI (JJ) ) »*2) C 331
00 26 11=1,Ml C 332
R(II, JJ)=SQRT((XCI-X(II))»*2»(YCJ-Y(JJ))**2*IZCJ-Z(JJn*»2> C 333

25 HL<II,JJ»=SQRT«X(II)-XCI>**2 * HYZfJJJ)»*2> C 33*
C C 335
C CYCLE THROUGH VO'RTEX UNKNOWNS. C 336

N = 0 C 337
00 »»8 K=1,NN C 338
00 *7 L=1,KK C 339
N = N * 1 C 3<fO

C C 3V1
C C 3<»2
C SELECT VARIABLES' FOR THIS PARTICULAR RECTANGLE OR RECTANGLES. C 3«»3

B = L . C 3V»
E = K*l C 3«»5
MNIMIZ s 0 G 3»f6

101 IF (OPT1) GO TO 15 C 3^7
A = B-l C 3<f8
C = 2»LL-B C 3^9
0 = C-l C 350
IF (B-l) 50,29,27 C 351

2f IF (LL-3) 50,29,28 C 352
15 IF (B-l) 50,18,17 C 353
17 IF (LL-B) 50,19,11 C 35«»
11 As 9-1 C 355

C = MM-A C 356

86



D = MM-B C 357
GO TO 28 C 358

18 A = MM C 359
C = MM C 360
0 = MM-1 C 361
GO TO 28 C 362

19 A = LL-1 C 363
C = LL*1 C 364
0 = LL C 365
GO TO 28 C 366

28 RKA = R<K,A) C 367
RKC = RIK.C) C 368
REA = R(E,A) C 369
REC = RfE,C) C 370
HLKC = HL (K,C) C 371
HLEC = HL(E,C> C 372
HO A = H3(A) C 373
HOC = HO(C> C 37*
VA = Y t A ) C 375
ZA = Z<A) C 376
ZC = Z(G) C 377
HYZA = HYZ(A) C 378
HYZC = H Y Z ( C ) C 379

29 SINL = SINPHKB) C 380
COSL = COSPHKB) C 381
RKB = RCK.B) ' C 382
RKD = R<K,0) C 383
REB = R(E,8) C 38«»
RED = RCE,0) C 385
HLKB = HL (K,B) C 386
HLEB = HL (E,B) C 387
HOB = HO(3) C 388
HOO = H3(D) C 389
SIDES = SIDE(B) C 390
OK=S(K) C 391
Y3 = Y«31 C 392
ZB = ZC9) C 393
ZO •= Z<0) C 39«f
XK = X«) C 395
XE = XCE) C 396
HYZB = H Y Z C 9 ) C 397
HYZD = H Y Z ( O ) C 398

C C 399
C C MO
C COMPUTE VELOCITY COMPONENTS INDUCED =JY RECTANGLE OR RECTANGLES, C U01
C TAKE ANY SPECIAL CASES INTO ACCOUNT. C 402

IP (COSJ.EO.O.00000) GO TO 35 C
IF C9-1) 50,16,31 C

31 IF (LL-3) 50,16,32 C *»05
15 IF (.NOT.OPT1) GO TO 33 C
32 IF (COSL.EO. 0 .0390O GO TO 62 C

VY=(COSL/ (P*SIOE3)*(- ( C*K A*RKB)» ( SIDE9»*2-(R(CA-'?KB) *» 2) / ( ( C
2HLK3»»2> *RKA*RK9J * (RKO*RKC) MSI DEB*»2 - (RKC-RK D) *»2)/ ( (HLKC»»2> C «»09
2»RKC»RKD) )»(XK-XCI> » {( REA1-RE3) »:(SIOE3»* 2 -( REA-REB) »*2) / { t C
2HLE3*»2)»REA»RE9) * (RES* RED) MSI OEB»»2 - (REC-RE D> »*2)/ ( (HLEC**2) C
2*REC*REO))*(XE-XCIII * I . / (P*OK)*(C(RK3+REB)*<OK*»2 -< C 412
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2RKB-REB) »*2)/ ( CH98»»2> »*K B*REB» * (ZB-ZCJ) - (<RKD»-REO)» {DK*»2-< RKO- C 413
2RED)»»2) / < <HOD*»2)»RKO**E 0» * <ZO- ZCJ) + <(RKC+REC) *<DK»*2-<RKC-R£C) C 414
2»*2)/«HOC»»2)»RKC»^ECM» CZC-ZCJ* -«RKA+REA»» <DK»»2- <RKA-REA>»»2> C 415
2/«HDA**2)»RKA»REA))»<ZA-ZCJ>» C 416

GO TO 36 C 417
62 VY = <1./(P»DK)M«RKB+RE3)MOK**2 -C C 418

2RKB-REB)»*2)/((HQB»»2)»1KB*RE9M» (ZB-^ZCJI -( (RKD«-RED>» <DK»*2-tRKO- C 419
2R£D)»»2)/UHOO»»2) 'RKO**EO))*<ZO-ZCJ»+<<RKC+REC) MbK»*2-<RKC-REC> C 420
2»*2>/<f«OC»»2)*RKC**ECH * CZC- ZCJ) -( CRKA*R'EAI» <OK**2-(RKA-REA) »*2) C 421
2/UHOA»*2)*RKA*REA))MZH-ZCJ)» C 422

GO TO 36 C 423
33 IF (COSL.EQ. 0.00000) GO TO 63 C kZk

VY = ICOSL/<P*SIOEB)*(-( (RKO*RK9> »<SIOE9»*2-< RKO-RKB) »*2)/( ( C 425
2HLKB**21*RKD*RK9) )»(XK-XCI> * ((RED+R£B) * (SIOEB**2 -(REO-REBJ ** C 426
22)/((HLEB*»2)*RED»REB))» (XE-XCDI * l./(P*OK) *« (RK3f REB) »(OK*» C 427
22-JRKe-REB)**2>/(CHOB»»2)»RKB*REB))»(7B-ZCJ>-t(RKO*REO)»(OK*»2- C 428
2(RKO-RED)»*2»/{CHDO»»2)»RXO*REO)) *<ZD-ZCJ))1 C 429

GO TO 36 C 430
63 VY = C1./(P*DK)*((tR<B+RE8)»(DK»* C 431

22-CRKB-REBl»*2)/(<HOB»»2)*RKB*REB)»»CZB-ZCJ)-((RKDfRED)*(OK»*2- C 432
2(RKO-REO»»*2) /C(HDD*»2)»RKO»RED)) MZD-ZCJ))) C 433

GO TO 36 C 434
35 VY = 0*30000 C 43?
36 IF (SINJ.EQ.0.00000) GO TO 42 . C 436

IF (8-1) 50,55,38 C 437
38 IF (LL-BI 53,55,39 C 438
55 IF (.NOT.OPT1) GO TO 40 C 439
39 IF (SINL.EQ.0.003UC) GO TO 64 C 440

VZ = <SINL/(P*SIOEB)»((IRKA+RKB)» (SIOEB»»2 -(RKA-RKB) **2) / ( ( C 441
3HLK3*»2)»RKA*RKB) - <RK5* RKO) » (SI OEB*»2 - (RKC-RKO)**2)/ ( (HLKC**2) C 442
3»RKC»RKO))»(XK-XCI) 4- ICREC*RED) » (SIOE9»» 2 -(REC'-RED) »*2)/U C 443,
3HLEC»»2)»REC»<?ED) - (RE4«- REB)* (SI DEB»*2 - (REA-REB>*»2)/ «HLEa*»2) C 444
3»REA»RE3))»(XE-XCI)) •* 1 . / (P *OKI» ( (CRKA+REA)» (OK»»2 - (RKA C 445
3-REA)**2) / ( (HOA»*2)*RKA»REA) - <*KC*REC)*(OK»*2 - (RKC-REC)*»2)/(( C 446
3HOC»»2)»RKC»REC))»(YA-Y3J) * { (RKO*REO)*(OK»»2 -(RKD-RED)**2)/ C 447
3t<HOD**2)»RKO*RED) - <R<B*REB)»(0K**2 -(RKB-REB)»»2)/((HDB**2)» C 448
3RKB*REB)) »CYB-VCJ») C 449

GO TO 43 C 450
64 VZ = (l./(P»DK-)» «(RKA+REA)»(OK»»2 -IRKA C 451

3-REAl**2l/(CHOA»*2)*RKA'REA) - (RKC*REC)»(OK**2 - (RKC-REC»*«2>/<< C 452
3HDC**2»»RKC»REC)) MYA-Y2J) * (( RKD*REO) »<DK*»2 -(RKO-RED) **2) / C 453
3«HDD»*2)*RKO*R£D> - ( RKB *REB) »(OK*»2 -{RKB-RE9) **2)/{ (HOB»*2» * C 454
3RK8*RE3) )»<Y3-YCJ) )> C 455

GO TO 43 C 456
43 VZ = fl./<P»OK)*( «^KO*?EO»»(OK*»2 -CRKO-REO) *»2>/«HOO»*2) *RKO* C 457

3RED) -«K9 * REB) *(OK»*2-(RKB-RE"J)*»2)/((HD3»*2) »RK8»REB) )* C 458
3(YB-YCJ) ) I C 459

GO TO 43 C 460
42 VZ = 0 . 0 0 0 0 0 C 461
43 IF {NNI1IZ) 50,105,106 C 462
105 B = LL*1-B C 463

H N I M I Z =1 C 464
C C 465
C STORE NORMAL VELOCITY IN CO A R R A Y , ACCOUNT FOR VERTICAL SYMMETRY. C 466

CC1 a VY»COSJ - VZ'SINJ C 467
GO TO 131 C 468
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106 CC(M,N) = CC1 - VY»COSJ * VZ'SINJ C 469
C C 470
47 CONTINUE C 471
48 CONTINUE C 472
« CONTINUE C C <»73
50 CONTINUE C
C C
C THE MATRIX IS COMPLETE, RETURN TO CALLING PROGRAM. C
C C If77

RETURN C 478
END C 479
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SUBROUTINE I N V R ( A ,N,ISIZE) C 480
C C 481
C THIS IS A SUBROUTINE TO I N V - R T THE M A T R I X A. C 482
C THE INPUT M A T R I X A IS D E S T R O Y E D AND R E P L A C E D BY ITS INVERSE. C 483
C A IS ASSUMED TO C O N T A I N N R O W S AND C O L U M N S OF DATA.1 C 484
C A IS ASSUMED TO BE DIMENSIONED ISIZE BY ISIZE. C 485
C C <*86
C C 487

DIMENSION I P I V O T ( 1 0 3 > , A ( I S I Z E , I S I Z E ) , ' I N O E X { 1 0 : 0 , 2 ) , P I V O T < 1 0 0 > C 468
E Q U I V A L E N C E ( IROM , J*OW) , ( ICOLUM, J C O L U M ) , ( A M A X ,T, S W A P ) C 489

C C 490
c c 491

15 00 20 J=1,N C 492
20 IP IVOT(J )=0 C 493
30 DO 550 1 = 1,N! C 494

C C 495
C SEARCH FOR PIVOT ELEMENT C 496
C C 497

40 A H A X = 0 . 0 C 498
45 DO 105 J = 1,N C 499
50 IF (IPIVOTU)-l) 60, 105, 60 C 500
60 DO 1UO K = i,N C 501
70 IF ( I P I V O T ( K ) - l ) 80, 100, 740 C 502
80 I F < A 3 S ( A M A X ) - A 9 S t A U , K M ) 85,100,100 C 503
85 IROW=J C 534
90 ICOLUM=K C 505
95 A * A X = A U , K ) C 506

10" C O N T I N U E C 507
105 CONTINUE C 506
110 I P I V O T ( I C O L U M ) = I P I V O T ( I C O L U M ) + 1 C 539

C C 510
C I N T E R C H A N G E ROWS TO PUT PIVOT ELEMENT ON DIAGONAL C 511
C C 512

130 IF ( I R O H - I C O L U M ) 143, 2SO, 140 C 513
140 CONTINUE C 514
150 DO 200 L=1,N C 515
160 S M A P = A ( I R O M , L) C 516
170 A ( I R O W , L ) = A C I C O L U M , L ) C 517
2CO A(ICOLU?1,L)=SMAP C 518
260 INOEXd, 1)=IROW C 519
270 I N D E X ( I , 2 ) = I C O L U N C 520
310 P I V O T ( I ) = A ( I C O L U H , I C O L U H » C 521

C C 522
C D I V I D E PIVOT ROM BY P I V O T ELEMENT C 523
C C 524

330 A ( I C O L U M , ICOLUM) = 1.0 C 525
340 00 350 L=1,N C 526
350 A ( I C O L U ' < , L ) = A{ICOLU«,L) / ' .P IVOT(I ) C 527

C C 528
C REDUCE NON-P-IVOT ROWS C 529
C C 530

380 DO 550 Ll = l, N C 531
390 IF (L l - ICOLUH) 400, 550, 400 C 532
400 T = A ( L 1 , I C O L U H ) C 533
420 A(L1,ICOLUM)=0.0 C 534
430 DO 450 L = 1,N C 535
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450 A(LlfL)=A<Ll tL)-ACICOLU1,L)*T C 536
550 CONTINUE c 537

C C 538
C INTERCHANGE COLUMNS C 539
C C 540

600 00 710 I=i,N C 5*1
610 L=N«-1-I C 542
620 IF <INDEX<L,1)-INOEX(L,2>» 630, 710, 630 C 543
630 JROH=INOEX(L,1> C 5*«»
6<»0 JCOLUM=INOEX(L,2) C 5«»5
650 00 705 K=1,N C 5<»6
660 SWAP=A<K,JRO'H) C 5«»7
670 A(K,JROW)=A<K,JCOLU*U C 548
700 A(K,JCOLUM)-SWAP C 549
705 CONTINUE c 55°
710 CONTINUE c 5S1

740 RETURN c 552

END c 553
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SUBROUTINE RHS (SPAN,XM,ITM ,ZM,GAMA M,XCPT,YCPT,ZCPT,SINPHI, C 55«»
1COSPHI,GAMAK,JO,KD fLOtM!)»NN,KK) C 555

C C 556
C THIS IS A SUBROUTINE TO COMPUTE THE ?IGHT HAND SIDE OF THE C 557
C MATRIX EQUATION FOR THE STRAIGHT WAKE IN HIND TUNNEL PROGRAM. C 558
C C 559
C C 560

DIMENSION XCPT(JO),YCPT{LO>,ZCPT(LO>,SINPHI(KO»,COSPHI(KO>, C 561
1ZM(2) ,GAMAKCMD»l C 562

C C 563
C GENERATE MODEL COORDINATES FOR USE IN GENERATING THE GAMAK MATRIX AND C 56«»
C FOR LATER USE IN THE SURVEY SUBROUTINE. C 565

GAMAM =1.0 C 566
I = NN/2 +1 C 567
XM = XCPT(I) C 568
YM = 0.0 C 569
ZMUI = SPAN/2.: C 570
ZMC2) = -ZM(1) C 571
ZM1 = Z^d) C 572
2M2 = ZH<2> C 573

C C 57*
C GENERATE THE RIGHT HAND SIDE OF THE MATRIX EQUATION. C 575

P = 25.1327** C 576
C C 577
C CYCLE THROUGH CONTROL POINTS. C 578

M = 0 C 579
00 60 I = 1,NN C 580
00 59 J = 1,KK C 531
M = M * 1 C 582

C C 583
C SELECT VARIABLES FOR THIS CONTROL POINT. C 58i»

SINJ = SINPHI(J) C 585
COSJ = COSPHKJI C 586
XCI = X C P T ( I ) C 587
YCJ = YCPT(J) C 588
ZCJ = ZCPT(J>> C 589

C C 590
C COMPUTE VELOCITY INDUCED AT CONTROL POINT BY MODEL. C 591

RM1 = SaRT((XM-XCI)»*2 * (YM - Y5J)*»2 + (ZM(1) - ZCJ)»»2) C 592
RM2 = SQRTC(XM-XCI)»»2 > (YM - YCJ)*»2 * (ZM(2)-ZCJ1**2) C 593
HM1 = S3RT(CYCJ-YMI»»2 ^ (ZCJ - Z«(ll»**2) C 59<>
HM2 = SaRT(( !YCJ - Yf1)*»2 * (XCI-XM)*»2) C 595
HM3 = SdRTC(YCJ-YM)»*2 *• (ZC J-ZM( 2) )»*2) C 596
IF (COSJ.EQ.0.00000) GO TO 51 C 597
VYM = GAMAM*((RMH-PH2) »CSPAN»»2 - (RM1-RM2)»*2)*CXM-XCI)/(P*SPAN* C 598

2RMl»RM2»(HM2**2»*2./P»((l.*(XCI-XM)/(Rf11))»(ZCJ-ZMl)/(HMl»*2)+ C 599
2(1. + (XCI -XM) / (RM2»*CZM2-ZCJ» / (HM3»*2 )> ) C 600

GO TO 52 C 601
51 VYM=G.00000 C 602
52 IF CSINJ.EQ. 0.000001 GO TO 53 C 603

VZM = GAMAM* ( (YCJ-YM) »2.!/P)» ( (1.: *( XOI-XM)/RM2> / (HM3»»2> - <1. +( C 60**
3XCI-XM)/(RM1))/(HM1»*2» C 695

GO TO 5<» C 606
53 VZM = 0..00000 C 607
C C 608
C STORE NORMAL VELOCITY COMPOMENT IN GAMAK ARRAY. C 609
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5!» GAMAK(H) = VZM«SINJ - VlfH*COSJ C 610
59 CONTINUE C 611
60 CONTINUE C 612
C C 613
C RIGHT HAND SIDE IS COMPLETE, RETURN T-0 CALLING PROGRAM. C 61^

RETURN C 615
END C 616
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SUBROUTINE SURVEY (XTP,YTP,ZTP,X, ;Y,Z, XM, Y M, ZM ,SI NPHI, COSPHI ,S, C 617
I G A M A . S I O E . O P T l ^ A N j G A M A M . V X C . V Y C j V Z C j V X T , V Y T , V Z T , V X M , V Y M , V Z M , C 613
1LL,MM,NN,N1,R,HL,HD,HYZ,IO,JO,KO,LO ) C 619

C C 620
C THIS IS A SUBROUTINE TO COMMUTE VELOCITY COMPONENTS AT COORDINATES C 621
C XTP, YTP,ZTP. C 622
C C 623

LOGICAL OPT1 C 62*
INTEGER A,3,C,0,E C 625
DIMENSION X( ID) ,Y (KB), Z(K0),SINPHI(KO), COSPHKKD) , C 626

1 R( IO,<0) ,SIOE(KO),HL( IO,KO),HO(KD),S(JD) , C 627
1 G A M A ( J O , L O ) , Z M C 2 > ,HM( 3) , H Y Z ( K D ) ,RM(2> C 628

C C 629
C DEFINE POSITION OF MODEL AND VORTEX RECTANGLES RELATIVE TO SURVEY C 630
C POINT. C 631

ZM1 = Z H < 1 ) C 632
ZM2 = Z1C2) C 633

601 RM(1) = SQRT(IXM-XTP)**2 * (YM - YTP)*»2 «• (ZMC1) - ZTP)»*2) C 63*
RM(2J = SORT( (XH-XTP)*»2 * < Y M - YTP)»*2 + (ZM(2) -ZTP)*»2> C 635
HM1 = SQRT( (YTP-YM>»»2 * (ZTP - ZM<1)>»*2) C 636
HM2 = S Q R T ( ( Y T P - YM)»*2 * (XTP-XM)»»2) C 637
HM3 = SQRT( (YTP-YM)* *2 * (ZTP-ZM(2))»*2) C 638
DO 127 J = 1 , M M C 639
HD(J) = SQRT«YTP-Y<J ) ) *»2 + (ZT" - Z<J) ) * *2) C 6*0
HYZ(J) = SQRT( ( (ZTP-Z (J ) )*SINFHI( J)-(YTP-Y(J))*COSPHI(J)I»»2) C 6*1
DO 127 I = 1,N1 C 6*2
Rd.Jl = SQRT«XTP-X( I )>»»2 * <YTP-Y( J)>» »2 * (ZTP-Z( J) I »*2) C 6*3

127 HL C1,J) = SORT I fX { I ) -XTP>»*2 * HYZ(J)**2) C 6**
VXC = 0.0 C 6*5
VYC = 0..0 C 6*6
VZC = 0. 0 C 6*7

C C 6*8
C CYCLE THROUGH VO'RTEX STRENGTHS. C 6*9

DO 150 K = 1 ,NN C 650
DO 150 L = 1,LL C 651

C C 652
C SELECT PARAMETERS FOR THIS PARTICULAR VORTEX STRENGTH. C 653

B = L C 65*
E = K*l C 655
IF (OPT1) GO TO 110 C 656
A = L-l C 657
C = LL*2-L C 658
0 = C-l C 659
IF (L-l) 150,129,125 C 660

125 IF (LL-L) 150,129,128 C 661
110 IF (L-l) 150,113,111 C 662
111 IF (LL-L) 150,11*, 112 C 663
112 A = L-l C 66*

C = MM-A C 665
D = MM-3 C 666
GO TO 128 C 667

113 A = MH C 668
C = MM C 669
0 = MM-1 C 670
GO TO 128 C 671

11* A = LL-1 C 672
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C = LL*1 C 673
0 = LL C 67<»
GO TO 128 C 675

128 RKA = R{K,A) C 676
RKC = R<K,C)! C 677
RE A = R(E,A) C 678
REC = fi<E,C) C 679
HLKC = HL(K,C> C 680
HLEC = HL(E, C) C 681
HOA = H O ( A ) C 682
HOC = HD(C> C 683
YA = YCA) C 68<»
ZA = Z ( A ) C 685
ZC = Z(C) C 686
HYZA = HYZ(A) C 687
HYZC = HYZ(C) C 688

129 SINL = SINPHI(L) C 689
COSL = COSPH-X(L) C 690
RK8 = RCK.B) C 691
RKO = R(K,0)' C 692
REB = RfE,8) C 693
RED = R<E,0) C 69<»
HLK9 = ML <K, 3) C 695
HLE8 = HLCE, 9) C 696
HOB = HO (B) C 697
HDD = HD(0) C 698
SIOEB = SIOE(B) C 699
OK = SCKI C 700
Y8 = Y(9) C 701
ZB = 2(B) C 702
ZO = Z tO) C 703
XK = X (K ) C 70<»
XE = X(E) C 705
HYZB = HYZ(8) C 706
HYZD = HYZ(D) C 707
P = 25.1327^ C 708

C C 709
C COMPUTE VELOCITY INOUCEO BY VORTEX RECTANGLE OR PJECTANGLESt TAKE ANY C 710
C SPECIAL CASES INTO ACCOUNT. C 711

IF <L-1) 150,115,131 C 712
131 IF (LL-L) 150,115,132 C 713
115 IF (OPT1) GO TO 132 C 71«»
130 VXPS = 0 . 0 C 715

VYPS = 0 . 0 C 716
VZPS = 0 . 0 C 717
IF (YTP.EQ.a.O) GO TO 230 C 718
VXPS = l . / (P-»SIOEB»*(HYZB»((RKO«- l?KB)»CSIOEB*»2-(RKO-RKB)»*2) /« C 719

1HLKB**2) *RKD»RK3) - (RE3*RE3) * CSI OEB»*2-< REO-RE9 ) ** 2) / ( (HLE 3»»2> C 720
I'RED'REJ)))»GAMA(K,L» C 721

230 IF (COSL.EO. 0.0) GO TO 66 C 722
VYPS = (COSL/(P»SIOEB)«(- ( (RKO«-R< B) * (SIOE S»*2-<RKD-RK8> **2)/( < C 723

2HLKB»*2) »RKO»RK3) ) » (XK-XTP) * ((RED+REB)» (SIOE3** 2 -(REO-REB)** C 72^
22) / ( (HLEB»»2)»REO*RE3) )» (XE-XTP)» * 1./(P»OK) * ( ( ( RKB«-RE9) •( OK*» C 725
22-<RKB-REB)»»2)/C (HD3»»2 ) »RKB*RE9 ) )* < Z9-ZTP)- «RKO*RED) * (DK»»2- C 726
2<RKO-REO)*»2»/«HOD»»2)»RKD'R£D)) »( ZD-ZTP') I) * GAM A (K , L ) C 727

GO TO 67 C 728
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65 VYPS = (l./(P»DK)»(l(RKB«-RE8IMDK»* C 729
22-<RKB-REB)*»2)/( (H33»*2) *RKB»RE3 )) MZ3-ZTP) - ((RKO«-REO) » (OK»»2- C 730
2(RKO-REO)»*2)/((HOD»»2)*RKO*RED)> »( ZD-ZTP) »»GAM A (K,U C 731

67 IF (YTP. EQ.3. 0) GO TO 231 C 732
IF (ZTP.EQ.0.0) GO TO 2D1 C 733
VZPS = (l./(P*OK) »( ( (RKa*RED)»(OK*»2 -(RKO-REO)»*2)/( (HOD*»2) *RKD* C 734

3RED) -(RKB «• REB)»(OK»»2-(RKB-RE8)»*2)/((HD8*»2)*RKB»REB))» C 735
3(YB-YTP) ) )»GAMA(K,L) C 736

201 VXC = VXC + VXPS C 737
VYC = VYC * VYPS C 738
VZC = VZC » VZPS C 739
GO TO 150 C 740

132 VX = 0.0 C 741
VY = 0.0 C 742
VZ = 0.0 C 743
IF (YTP. EQ.0.0) GO TO 232 C 744
VX = (1./(P*SIDE8)»((HYZ3M(RKA«-RKB)*(SIDEB»»2 -(RKA-RK3)*»2)/(( C 745

1HLK3»»2) »RKA»RK3) - (RE4+RE3) » (SI DE9»*2 - (REA-RE3)**2) / ( (HLE3»»2) C 7«»6
1*REA»RE9)» » CHYZC»«(RKO»RKC)»(SIDEB**2 - tRKO-RKC) »*2)/« C 7«»7
1HLKC**2) *RKC»RKO) - CRE3»REC)*<SIDEB**2 -<RED-REC>»*2)/((HLEO»*2) C 748
1*REC*REO))))I*GA1A(K,L) C 749

232 IF (COSL.EQ.0.0) GO TO 58 C 750
VY=(COSL/(P»SIOt9)*( -URKA*RKB)»(SID£9*»2-(RKA-RKB)**2) / ( ( C 751

2HLK9*»2)*RKA*RK3> + (RKD+RKC)»(SIOEB»*2 - (RKC-RKO)»»2) /<(HLKC»»2) C 752
2»RKC*RKO))»(XK-XTP) «• ((REA*REB) * (SIOE9»*2 -(REA-RE3) *»2> / ( ( C 753
2HL£8»*2)»REA»RE3) * (RE3*REO) * <SI DEB»*2 - <REC-REO)»*2)/ ((HLEC**2) C 754
2*REC»REO))»(XE-XTP)) * I./(P*0<)*((<RK9*REB)»(DK»»2 -< C 755
2RKB-RE3) *»2) / { (H3 0»*2) *^<3*RE 3) ) » ( ZB-ZT?) - URKO* RED) » (DK*»2-(RKO- C 756
2RED)**2) /«HOO**2)< rRKO»?EO))* (ZO-ZTP) + C (^KC*R'tC) * (DK»*2-(RKC-REC) C 757
2»*2)/«HOC»»2)»*KC»*EC))» (ZC-7TP)-( (RKA*REA) » (0<**2-(RKA-R£A) *»2) C 758
2 / ( ( H O A » * 2 ) * R K A » R £ A ) ) » { Z A - Z T P ) ) r * G A M A t K , L ) C 759

GO TO 69 C 760
69 VY = ( l . / (P*OK)»(((RK3+REB)*(OK*»2 -< , C 761

2RKB-RE3)*»2)/((HDB»*2)»RK8»RE9))» (ZB-ZT^) - ( (RKO«-REO) * (OK»»2-(RKO- C 762
2REO)**2)/<CHDO**2)»RKD»*ED»MZO-ZTP)+«RKC*REC) * (OK»*2-(RKC-REO C 763
2*»2)/ ((HOC»*2)»RKC»REO) *(ZC-ZTP1 -«RKA*REA)» (DK»»2-(RKA-REA) »»2) C 764
2/((HDA»*2)*RjKA*REA)»»(ZA-ZTP)))*GAMAtK,Ll C 765

69 IF (YTP.EQ.D.O) GO TO 71 C 766
IF (ZTP..EQ.O.O) GO TO 71 C 767
IF (SINL.EQ. 0.00000) GO TO 70 C 768
VZ = (SINL/(P»SIOE3)»(«RKA*RKB)» (SIOE9**2 -(PXA-RKB) »*2)/(( C 769

3HLKB*»2)»RKA»RK3» - (RK3+RKD) * tSI DEB»»2 - (RKC-RKD) »*2)/I ( HLKC»»2) C 770
3»RKC*RKO) ) » C X K - X T P ) «• ( (REC*RED) * (SIOEB»» 2 -(PES-REO) »»2) / (( C 771
3HLEC*»2)*RE5*REO) - (RE4«-RE3) » (SI DEB*»2 - (REA-RE8)»»2)/«HLEB»»2> C 772
3*REA»RE3))»(XE-XTP» + I./(P*OK)* ( (<RKA*RtA)»(OK»»2 - (RKA C 773
3-REA)»»2) / (C ;HDA"2)»RKA*REA> - (RKC*R£C) • (0<»»2 - <RKC-REC)»«2) / < ( C 774
3HDC**2)*RKC»REC)) MYA-YTP) + ( ( RKD4-RE9) »(OK»»2 - (RKO-REO) *»2)/ C 775
3<(HOO»*2)»R<0*REO) - (R<B»REB)*(0K**2 -(RKB-RE9)»»2)/((HD9*»2I* C 776
3RK8»REB) )»(Y8-YTP»)»GA1A (K,L) C 777

GO TO 71 C 778
78 VZ = (l./(P*OK>» «(RKA*REA)»(OK»*2 - (RKA C 779

3-REA) »»2) / ( (HOA»»2)»RKA*REA) - (RKC+REC)' (OK»»2 - (RKC-R£C)»»2)/ ( ( C 780
3HOC»»2)»RKC»REO) MYA-YTP) * ( ( RKD+RtO) »(OK»»2 -(RKO-REO) »»2) / C 781
3((HDO»»2)»RKO*R£D> - (RKB *RE8)*O K**2 -(RK8-RC9) »»2)/ ( (HOB»*2)» C 782
3RKB*RE8) ) * (Y8-YTP ))) *GAfA (K, L ) C 783

71 VXC = VXC + VX C 784
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VYC = VYC «• VY C 785
VZC = VZC + VZ C 786

150 CONTINUE C 787
C C 788
C COMPUTE VELOCITY INDUCED BY MODEL. C 789

RM1 = R1<1) C 790
RM2 = RH(2) C 791
VXM = 0.0 C 792
VYM = 0. 0 C 793
VZM = 0 . 0 C 79«»
IF (HM1.LT.1.E-10) GO T3 155 C 795
VYM = GAMAM»2./P*( l .*CXrP-XM)/RMl) /<HMl»*2) C 796
VZM = -VYM»(YTP-YM) C 797
VYM = VYMMZTP-ZNi) C 798

155 IF (HH3.LT.1.E-10) GO T3 160 C 799
VXM = GAMAM»2./P» <l.*(XrP-XM)/RM2)/<HM3»»2) C 800
VZM = VKMMVTP-YH) * VZ1 C 801
VYM = VXM*(ZM2-ZTP) * VfM C 802
VXM = 0.0 • C 803

ISO IF (HM2.LT.1.E-10) GO T3 165 C BO'*
VXM = GftMAM»(RMl»-RM2)»(5PAN**2-{RMl-RM2)»»2)^<P*SPftN*RMl»RM2* C 805

i(HM2»»2) ) - C 806
VYM = VYM * VXM»(XM-XFPI C 607
VXM = VXMMYTP-YM) C 808

C C 809
c COMPUTE TOTAL VELOCITY COMPJNENTS. c aio
155 VXT = VXC * VXM C 811

VYT = VYC * VYM C 812
VZT = VZC * VZM C 813
RETURN C 81<»
END . C 815
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C APPENDIX 0
C
C PROGRAM TO COMPUTE NON-LINEAR MIND TUNNEL HALL INTERFERENCE
C FACTORS FOR HIGHLY LOADED LIFTING SYSTEMS
C

PROGRAM HINGT (INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT) 0 0
C 0 1
C THIS PROGRAM IS WRITTEN IN FORTRAN IV FOR THE COO 6400 COMPUTER. 0 2
C APPROXIMATE STORAGE REQUIRE1ENT IS 5 2 0 0 0 C O C T A L ) . 0 3
C EXECUTION TIME IS APPROXIMATELY 230 SECONDS PER CASE WITH 29 TRAILING 0 4
C SEGMENTS, 7 ITERATIONS, AND 100 SURVEY POINTS. 0 5
C 0 6
C THE WIND TUNNEL CROSS-SECTIDN MUST HA'VE A PLANE OF LATERAL SYMMETRY 0 7
C AND MUST REMAIN CONSTANT OVER THE LENGTH OF THE TUNNEL 0 8
C 0 9
C INPUT DATA SEQUENCE 0 10
C D 11
C I (ID D 12
C AN INTEGER PARAMETER WHICH DETERMINES THE Z COORDINATE OF TOP D 13
C AND BOTTOM CENTER CONTROL POINTS.; IF I.NE.l THESE CONTROL POINTS 0 14
C WILL BE LOCATED ON THE CENTERPLANE OF THE TUNNEL (I.E. 7=0*0) • D 15
C IF I.£0.1 THESE CONTROL POINTS WILL BE LOCATED AT Z(l)/2 0 16
C 0 17
C MM, NN (212) D 18
C MM IS THE NUMBER OF COORDINATE PAIRS DEFINING THE COMPLETE CROSS- D 19
C SECTIONAL SHAPE OF THE TUNNEL. MM CANNOT EXCEED 20. D 20
C NN IS THE NUM9ER OF V O R T E X RECTANGLES MAKING UP THE LENGTH OF D 21
C THE TUNNEL. NN CANNOT EXCEED 14. 0 22
C 0 23
C Yd) , 7(1) (2F13.5) 0 24
C Y AND Z ARE THE COORDINATES, IN FEET, OF THE POINTS DEFINING THE 0 25
C CROSS-SECTION SHUPE OF THE TUNNEL. MM CARDS ARE REQUIRED. 0 26
C THE ORIGIN OF THE COORDINATE SYSTEM IS TAKEN ON THE TUNNEL CENTER 0 27
C LINE WITH X POSITIVE DOHNSTREAM, Y POSITIVE UPWARD, AND 2 POSITIVE D 28
C TO THE RIGHT LOOKING DOWNSTREAM. THE FIRST CARD IN THE StOUENCE IS D 29
C THE FIRST COORDINATE TO THE RIGHT (POSITI'VE Z) OF THE POSITIVE Y 0 30
C AXIS, AND SUBSEQUENT POINTS ARE T A K E N CLOCKWISE AROUND THE TUNNEL. 0 31
C SEGMENT LENGTHS BETWEEN ADJACENT POINTS SHOULD 3E EQUAL, EXCEPT 0 32
C THAT, IF CONVENIENT SPA3ING REQUIRES POINTS ON TOP AND BOTTOM 0 33
C CENTER LINE, THOSE POINTS ARE OMITTED AND THE FIRST DATA CARD D 34
C ABOVE, I, IS SET TO 1.0.; 0 35
C D 36
C DELTAX (F10.5) 0 37
C LENGTH IN FEET OF THE VDRTEX RECTANGLES IN THE STREAMWISE 0 38
C DIRECTION. SHOULD BE EQJAL TO THE LENGTH OF SEGMENTS IN THE 0 39
C CROSS-SECTION. 0 40
C D *i
C 8VOATA (F10.5) t> 42
C THE VORTEX SPAN OF THE WING IN FREE AIR WHICH PRODUCED THE PUNCHED D 43
C CARD DATA TO' BE USED IN THIS PROGRAM.) 0 44
C D 45
C BVOrw (F10.5) 0 46
C THE RATIO OF VORTEX SPAN TO MAXIMUM TUNNEL WIDTH TO 9E USED IN D 47
C THIS COMPUTATION. 0 48
C 0 49
C YW(l ) (F10.5) 0 50
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C THE VERTICAL LOCATION OF THE MOTEL BOUND VORTEX IN THE TUNNEL. 0 51
C 0 52
C OELTAX (F10.5) 0 53
C THE VORTEX S-EGMENT LENGTH TO BE USED IN CONSTRUCTING THE 0 5k
C TRAILING VORTEX PAIR IN THE TUNNEL. NEED NOT BE THE SAME D 55
C AS THAT USED IN THE FREE AIR PROSRAM, USUALLY SPAN/10 0 56
C D 57
C ZMAX, YHIN (2F10.5) 0 58
C MAXIMUM Z COORDINATE AND MINIMUM Y COORDINATE TO BE ALLOWED D 59
C IN SURVEY OF HALL INTERFERENCE VALUES. THESE PARAMETERS WILL 0 60
C BE USED TO DETERMINE IF A SURVEY POINT LIES TOO NEAR THE TUNNEL D 61
C FLOOR OR SIDE WALLS FOR ACCURATE INTERFERENCE COMPUTATION. 0 62
C 0 63
C SPAN, SPEED, GAMAM, ASPECT, FAL, VXWC , VYWC, ALFA'. («fE2U. 10) D 6«f
C THESE THREE CARDS DEFINE THE MODEL TO BE USED IN THIS COMPUTATION, 0 65
C AND ARE PART OF THE DECK PUNCHED BY THE WING-IN-FREt-AIR PROGRAM. 0 66
C SPAN IS WING VORTEX SPAN, FEET. D 67
C SPEED IS REMOTE WIND SPEED IN THE TUNNEL, FEET/SECOND 0 68
C GAMAM IS PODEL WING CIRCULATION, FEET SQUARED/SECOND. IF GAMAH IS 0 69
C LESS THAN OR: EQUAL TO ZERO, THE ZERO LIFT CASE IS PERFORMED. D 70
C ASPECT IS THE ASPECT RATIO OF THE WING. D 71
C FAL AND FAD ARE THE LIFT AND CRAG OF THE WING IN FREE AIR, POUNDS. D 72
C VXWC AND VYWC ARE VELOCITY COMPONENTS AT THE CENTER OF THE SOUND 0 73
C VORTEX IN FREE AIR. 0 7k
C ALFA IS THE WING ANGLE DF A T T A C K IN FREE AIR. D 75
C D 76
C XFA, YFA, ZFA, VXTOT, VYTOT, VZTOT. C.E20.10I D 77
C THESE ARE THE COORDINATES AND VELOCITIES SURVEYED SY THE 0 78
C WING-IN-FREE-AIR PROGRAM AND PUNCHED IN A. CARD DECK. THE 0 79
C COORDINATES ARE REFERENCED TO THE WING. D 80
C NOTE THAT ZFA AND YFA ARE ALSO PROGRAM BRANCHING PARAMETERS. 0 81
C IF (ZFA.EO.10000. ) THE P R O G R A M TRANSFERS TO NEW MODEL DATA. 0 82
C THEN IF (YFA.E0.10000.) THE PRESENT MODEL W A K E COORDINATES 0 83
C ARE USED FOR THE FIRST ITERATION OF THE NEW WING. THIS REDUCES 0 Sk
C THE NUMBER OIF ITERATIONS. D 85
C 0 86
1 FORMAT C2I2) 0 87
2 FORMAT (2F10.5) 0 88
3 FORMAT (F10.5) 0 89
k FORMAT UF10.5) 0 90
5 FORMAT C1F10.5)! 0 91
6 FORMAT (12) 0 92
7 FORMAT (2F10.5) 0 93
8 FORMAT (ID 0 9<*
9 FORMAT (I3,7F10.5) D 95
11 FORMAT (<*E20.1u) 0 96
12 FORMAT (3F10.5I . 0 97
13 FORMAT (5F1J.5) D 98
30 FORMAT ( 1H1,13X.19HTUNNEL COOROI NATES,/,/, 1«»X,1HY, 13X, 1HZ, 0 99

l(/,10X,Fig.5,<fX,F10.5M D 100
31 FORMAT (/,/,15X,10HX ST4TIONS,(S,4X,5F6.2) ) 0 101
32 FORMAT C1HO,22HCROSS SE3TIONAL AREA = ,F10.<»> D 102
5 D O O FORMAT ( 1HO,1VHTAIL LEN3TH = ,F7. 2,5X,1VHTAIL HEIGHT = ,F6.2,5X, D 103

119HSPANWISE STATION = ,-6.2» 0 13<»
5010 FORMAT (1H ,13H(F.A.) VX = ,F9. 3 ,6X ,5HVY = , F9. 3 ,6X,5HVZ = , 0 105

1F9.3,6X, 8HALPHA = ,F7. k, 6 X,7H3ETA = ,F7.<») D 106

99



5020 FORMAT (1H , 13H(TUN.) fX •= , F9. 3 ,6X,!5HVY = , F9. 3 ,6X, 5HVZ = ,
1F9.3,6X,8HALPHA = ,F7.*,6 X,7H6ETA' = ,F7.*)

5030 FORMAT (1H ,13H(COR.) VX = , F9.3 ,6X,.5HVY = , F9. 3,6X, 5HVZ = ,
1F9.3,6X, 6HALPHA = ,F7.*, 6 X.7HBETA = ,!F7.*>

50*0 FORMAT I1H ,3*HCORRECTIDN FACTORS DEL(ALPHA) = ,F8.3,10X,12HDEL(
1BETA) = ,F8.3,10X,540Q = ,F8.*)

5100 FORMAT (1H1, 12HWING SPAM = , F6.2, 1CX,;8HGAMAM = , F7. 2, 10X, 15HASPECT
1 RATIO = ,F8.2,10X,18HREMOTE VELOCITY = ,F8.2)

5110 FORMAT (1H ,23H(F.A. CENTER) LIFT = ,F8,3,10X, 7HORAG = ,F7.*,
110X,5HVX = ,F8.3,10X,5Hi/Y = F8.3)

5120 FORMAT (1H ,23H(TUN. CENTER) LIFT
110X,5H\/X = ,F8.3,10X,5H/Y = ,F8.3)

5130 FORMAT (1H ,23H(COR. CENTER) LIFT
110X,5HVX = ,F8,3,10X,5H\/Y = ,F8.3)

51*0 FORMAT (1H , 3*HCORRECTI3N FACTORS-
15HDQ = ,F8.*)

DIMENSI0N XM5),Y(20) ,Z( 2 0) ,SINPH 1(20) ,COSPHI (20 > ,XCPT(1*>,
l Y C P T ( l O ) ,ZCf»T(10) , R ( 1 5 , 2 0 ) , S I D E ( 2 C ) ,HL (15 ,20) ,HD ( 20) , S (1*) , ZM (2) ,
1HM(3) , H Y Z ( 2 0 ) , R M ( 2 ) , G L ( 1 0 )

D I M E N S I O N C C ! ( 1 C O , 1 0 0 ) , G < V M A ( 1 * , 1 Q ) , G A M A K ( 1 C O , 1 )
D I M E N S I O N X W ( * G ) , Y W ( * 0 ) , Z H ( * 0 ) , R * ( 2 , 2 ) , O S M ( 3 9 ) , V B A R ( 2 >
L O G I C A L STWK,OPT1
REAL LIFT
RHO * .002378
Y F A = 0 . 0
CONTINUE

= ,F8.3,10X,7HORAG = ,F

- ,F8.3,10X,7HORAG = ,F

OEL(ALPHA) = ,F8.3.10X,

1*
C
C READ OATA DESCRIBING

READ (5,3) I
I.EQ. 1

TUNNEL FROM PUNCHED CARDS.

OPT1
READ
READ
READ

(5,1) M M , N N
(5,7) ( Y ( I ) , Z ( I ) , 1 = 1 , M M )
(5,3) OELTAX

C
e.TEST DIMENSIONS

' ' IF ( ( M M . G T . 2 0 ) . O R . ( N N . G r . l * ) ) GO TO 906
C
C TEST SCALING OF TUNNEL, IF NECESSARY CHANGE SCALE SO
C SPAN OF MODEL IN TUNNEL CORRESPONDS TO THAT OF MODEL

XCI = Z(l)
C READ SCALING DATA FROM PUNCHED CARDS.

READ (5,3) 3V DAT A
READ (5,3) 3VOTM
DO 35 I = 2, MM
IF ( Z ( I ) ,GT. XCI) XCI = Z ( I )

35 C O N T I N U E
YCJ = BVDATA/BVOTH/2.
XCI = YCJ/XCI

C IF THE SCALING FACTOR IS UNITY DO NOT CHANGE TUNNEL SIZE.
IF (XCI.EQ.l.) GO TO 37
00 36 1=1, Ml
V ( I ) = Y ( I ) » X C I
Z ( I ) = Z ( I ) * X C I

35 CONTINUE
OELTAX = OELTAX*XCI

37 CONTINUE

THAT THE MING
IN FREE AIR.

0
0
D
0
0
0
D
0
0
0
D
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
D
D
0
0
D
0
0
0
0
D
0
0
0
0
D
0
0
0
D
D
0
0
D
D
0
D
D
0
D

107
108
109
110
111
112
113
11*
115
116
117
118
119
120
121
122
123
12*
125
126
127
128
129
130
131
132
133
13<*
135
136
137
138
139
1*0
1*1
1*2
1*3
1**
1*5
1*6
1*7
1*8
1*9
15C
151
152
153
15*
155
156
157
158
159
160
161
162
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33

COMPUTE THE CROSS SECTIONAL AREA OF THE TUNNEL.
AREA * 0.0
00 38 I = 2,MM
AREA = AREA * ABS(Y(I)-Y(1-1))»A3S (ZCI)+Z (1-1))
CONTINUE
AREA = AREA/2.

c
c
C NOW

20

21

22

23

2%

COMPUTE THE TUNNEL PARAMETERS
LL = MM/2 * 1
NL = NN » LL
IF (NL.GT.100) GO TO 906
NM = NN*MM
Nl = NN + 1
XCI = 0.0
DO 20 1=1, NN
X(I) s XCI
XCI = XCI * DELTA X
X(N1) = 1000.0 «• X(NN)
DO 21 I = 1,NN
S(I)=X(I*1) - X(I)
00 23 1=2, MM
SIDE(I) = SQRT((Y( I ) - f(I-l)
SINPHKI) = ((Y(I)-Y(I-l) ) / (S
COSPHKl) = ((Z(I)-Z(I-l) ) / (S
SIOE(l) = SQRTUY(l) - Y ( M M ) )
SINPHKI) = ( (Y ( l ) -Y (MM) ) /(SI
COSPHKl) = ( (Z(1) -Z(MM)) / (SI
DO 2<» I = 2,LL
YCPT(I) s (Y(I)*Y(I-l))/(2.)
ZCPT(I) = (Z(I)*Z(I-1M'(2.)
ZCPT(l) = (Z(l) + Z(MMM/<2. )
YCPT(i) = (Y( i )+Y <M1))/(2.)

TO

)•*

**2

BE USED IN THE COMPUTATION.

•* (7(1) - Z(I-1))*»2)

* (Z(l) - Z ( M M ) ) * * 2 )

91

25

C
C
C
C

ALL

IF ( .NOT. OPT 1) GO TO 91
ZCPT( l ) = Z(l)/2.
ZCPT(LL)=Z(LL- l ) /2 .
MMM=NN-1
00 25 I = 1 ,MMM
X C P T ( I ) = (X(I*1) * X ( I ) ) / ( 2 . )
XCPT(NN) = X(NN) » OELTAX/2.0
TUNNEL PARAMETERS HAVE 3EEN COMPUTED.:

C
c

c
c

G E N E R A T E THE M A T R I X OF COEFFICIENTS.
C A L L M A T R I X ( H M , NS , LL ,N1 ,X, IY , Z, SINPHI,COSPHI, SI OE , S, XCPT,

1YCPT,ZCPT,CC)

INVERT THE M A T R I X OF COEFFICIENTS.
CALL INI /R(CC,NL, 100,100)

WRITE A DESCRIPTION OF T U N N E L .
WRITE (5,30) < Y ( I ) , Z ( I > , 1=1,MM)
WRITE (6,31) ( X ( I ) , I=1,N1)
WRITE (5,32) AREA

D 163
0 16<»
D 165
0 166
0 167
0 168
D 169
0 170
0 171
0 172
D 173
D 17«>
D 175
0 176
D 177
0 178
0 179
0 180
D 181
0 182
0 183
0 18t
0 185
D 186
D 187
D 188
D 189
D 190
0 191
0 192
0 193
D 19<»
0 195
0 196
D 197
D 198
D 199
D 200
0 291
0 232
0 203
D 20<»
D 205
D 206
D 207
0 2i}8
D 209
D 210
D 211
D 212
0 213
D 21<»
0 215
D 216
D 217
D 218
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C READ MODEL INFORMATION FROM PUNCHED SARDS. 0 219
READ (5,3) YW(1) 0 220
READ (5,3) OELTAX D 221
READ (5,7) ZMAX,YMIN D 222

15 CONTINUE . 0 223
READ (5,11) SPAN, SPEED, SAMAM,ASPtCT,FAL, FAD, V X M C , V Y W C , ALFA 0 224
IF (EOF, 5) 907,16 . . . 0 225

15 CONTINUE 0 226
IF (YFA.EQ.10000. ) GO T3 40 0 227

C D 228
C NOW GENERATE MODEL PARAMETERS. D 229

IF (GAMAM.GT.O. :Q) NH=30 0 230
I = NN/2 D 231
XH(1) = X(I) D 232
XH(2 ) = XW(1) D 233
Y W ( 2 ) = YW(1) 0 234
ZM(1) = 0 . 0 0 235
Z W ( 2 ) = SPAN/2.' D 236
Z W ( 3 ) = Z W ( 2 ) 0 237
STMK=(GAMAM.LE.O. 0) D 238
IF (STWK) GO TO 18 0 239
NW1 = NH 4- 1 D
CHORD = SPAN/(ASPECT*. 785398163**2) 0
ALFAA = ASIN(GAMAM/(3 . 1415927»CHORO*SPEEO)) D 242
XCI = C.75*CHORD»SQRT(1.- (.78539916*»2M D 243
X W ( 3 ) = X M ( 2 ) + X C I » C O S ( A L F A A ) 0 244
YM(3) = Y M ( 2 ) - XCI*SIN(ALFAA) 0 245
XCI = OELTAX * XH (3) 0 246
YCJ = Y W ( 3 » 0 247
ZCJ = Z W ( 3 ) D 248
DO 90 N = 4, NM 0 249
ZW(N) = ZCJ 0 250
YW(N) = YCJ D 251
XVHN) = XCI D 252
XCI = XCI * DELTAX 0 253

93 CONTINUE D 254
XM(NMl) = XH(NX) + 1000.0 D 255
YM(NMl) = YCJ 0 256
ZW(NMl) = ZCJ 0 257
GO TO 19 D 258

C D 259
C IF THE STRAIGHT MAKE (ZERO LIFT COEFFICIENT! SOLUTION IS REQUIRED 0 260
C SET UP A HORSESHOE VORTEX MODEL. SET SPEED TO 1000., GAMAM TO 1.0. D 261
19 X W ( 3 ) = X W ( 2 ) * 1000. D 262

YM(3) = YH(2) 0 263
S»EEO = 1000. D 264
GAMAM = 1.0 0 265

C 0 266
C COMPUTE THE LIFT AND INDUCED DRAG OF THE MING IN FREE AIR. 0 267

FAL = RHO*SP'EEO*SPAM»GA1AM D 268
FAD = RMO*(GAMAM**2)/3.14159 0 269
NM = 2 D 270
NM1 = NM + 1 D 271

19 00 81 I = 1 ,NM 0 272
J = 1*1 D 273

81 OSM(I) = SORT( (XM( I ) -XM(J ) ) *»2* (YW( I ) -YM( J ) )»»2»(ZM( I ) -ZW(J) )»*2) 0 274
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0 = .5»RHO»SPEEO*»2
C
C BEGIN ITERATIVE PROCEDURE. NUMIT IS THE NUMBER OF ITERATIONS TO BE
C USEO. IF THIS CASE REPRESENTS A SMALL CHANGE FRO'M A PREVIOUS
C EQUILIBRIUM STATE, REDUCE NJMIT.

NUMIT = GAMAM/19. «• 2.
40 CONTINUE

IF (YFA.'EQ.IOOOO.,) NUMIT = GAMAMf30. «• 2.
900 00 901 NUMBER = 1,NUMIT
C
C COMPUTE THE RIGHT HAND SIDE OF THE MATRIX EQUATION.

CALL RHS {XCPT,YCPT,ZCPT,XM,YW f iZW,DSM,GAMAM,SPAN,SPEED,
1GAMAK,NN,LL,NH,SINPHI,COSPHI)

C
C COMPUTE THE VORTEX STRENGTHS.
1001 00 101 1 = 1, NL

J = (I-D/LL * 1
K = (i-J)*LL «• I
XCI = 0. 0
00 100 L=1,NL

100 XCI = XCI+CC(I,L)»GAMAK(L,1)
GAMA(J ,K) = XCI

131 CONTINUE
C :
C IF THIS IS WITHIN THREE ITERATIONS OF THE LAST WRITE COMPUTED VORTEX
C STRENGTHS.

IF <(NimT-NUM9£R).GE.3)

D
0

GO TO 110
3999 FORMAT ( 19H1 ITERATION NJM3ER ,12)

WRITE (6,3999) NUMBER
500 FORMAT (3CH3 CALCULATED V O R T E X STRENGTHS )

WRITE (5 ,503)
00 502 J = 1,NN
WRITE (6,5Q1) (GAMA(J .K ) , K=1,LL»

531 FORMAT (/,11F11.5)
502 CONTINUE
4000 FORMAT <27H1RESULTANT V3RTEX STRENGTHS )
4002 FORMAT (13H3RING NUM3ER , I2,/,ll F11..5)
4004 FORMAT (15H3SECTION NUM3ER ,13 ,/, llFll.5)
4010 WRITE (6,4000)
4315 00 4140 L=1,N1
4J20 M=L-1
4325 DO 4375 I=1,LL
4030 IF (L-2) 4C50, 4060, 40l»0
(f3<»0 IF (L-N1) <*360, 4070, 4140
4350 GL(I) = GAMAKL,!)
4<355 GO TO 4075
4360 GL(I) = GAMA(L, I ) - GA»«(M,I)
4165 GO TO 4075
4J70 GL(I) = -GAMA(M, I»
4075 CONTINUE
4080 WRITE (6,4002) L, (GLCI), 1=1,LL)
4100 IF (L-N1) 4110, 4140, 4140
4110 00 4125 1 = 2,LL
4115 J=I-1
4120 GL (J) = GAMA(L,J) - GAM4(L,I)
4125 CONTINUE

275
276

0 277
0 278
0 279
0 230
D 281
0 282
0 283
D 234
0 235
0 286
D 287
0 288
0 289
0 290

291
292
293
294
295
296

D
D
0
D
D
D
D 297
D 298
0 299
D 300
0 301
D 302
0 303
D 304
0 305
0 306
0 397
D 308
0 309
0 310
D 311
D 312
0 313
D 314
D 315
0 316
D 317
0 318
0 319
0 320
0 321
0 322
D 323
0 324
D 325
D 326
0 327
0 328
D 329
D 330

103



4130 MUM = LI - 1 0 331
4135 WRITE 16,4004) L, (GL(J), J=1,M*MT 0 332
4140 CONTINUE 0 333
C 0 334
C 0 335
C PERFORM WAKE ITERATION PROCESS. 0 336
110 CONTINUE 0 337

CALL HKIT (XW,YW,ZW,X,Y,Z,SINPHI,COSPHI,SIOE,S,GAMA,OSM, 0 338
1GAMAM,SPEED,SPAN,NW,NN,HM,N1,LL,NW1,RHO,Q,FAL,FAD,CHORD,LIFT,DRAG, 0 339
1STWK,VXTC,VYTC,ALPHAO,ALPHAI ,ALFA'A,VXMC,VYMC> 0 340

C 0 341
C IF THIS IS THE LINEAR CASE (ZERO LIFT COEFFICIENT) GO DIRECTLY TO D 342
C WALL CORRECTION SURVEY, DO NOT PERFORM ANY ITERATIONS. 0 343

IF (STWK) GO TO 810 0 344
901 CONTINUE 0 345

GO TO 811 0 346
C D 347
C COMPUTE VXWS AND VYWC FDR S'ECIAL CAS£ OF ZERO LIFT COEFFICIENT. 0 348
810 VXWC = VXMC + SPEED D 349

VYWC=VYNC 0 350
C . 0 351
C WRITE A DESCRIPTION OF MODEL ANO TUNNEL OPERATING CONDITIONS. 0 352
811 WRITE (B',4240) GAMAM D 353
4240 FORMAT <1HO,19HMOOEL CIRCULATION =,F1Q.5) 0 354

WRITE (5,4195) SPAN 0 355
4195 FORMAT (14HOVORTEX SPAN = ,F10.5> 0 356

WRITE (6,4230) Q D 357
4200 FORMAT (11HOTUNNEL Q = ,F10.5) D 358

WRITE (6,4185) SPEED D 359
4185 FORMAT (26H3TUNNEL NOMINAL VELOCITY = ,F10.5) 0 360

WRITE (6,5100) SPAN,GAMAM,ASPECT*SPEED 0 361
C D 362
C WRITE FREE AIR RESULTS. 0 363

WRITE 16,5110) F A L , F A D , V X W C , V Y W C 0 364
C 0 365
C WRITE TUNNEL RESULTS. D 366

WRITE (5,5120) LIFT,DRA3,VXTC,VYFC 0 367
FAL=FAL-LIFT D 368
FAO=FAO-DRAG ' D 369
DA=VXWC-VXTC D 370
OB=VYWC-VYTC D 371

C D 372
C WRITE CHANGES DUE TO TUNNEL.' 0 373

WRITE (6,5130) FAL,FAD,0A,08 0 374
OA=(ATAN( -VYHC/VXWC) -ATAN( -VYTC/VXTC) ) *AREA»Q/L IFT 0 375
DQ=(VXHC*»2»VYWC»»2-VXT3»*2-VYTC»»2) / (SPE£0»»2) D 376

C D 377
C WRITE ANGLE OF A T T A C K CORRE3TION FACTOR A'NO DYNAMIC PRESSURE RATIO. 0 378

WRITE (6,5140) OA.OQ 0 379
801 CONTINUE D 380

READ (5,11) XFA,YFA ,ZFA ,VXTOT,VYrOT ,VZTOT 0 381
IF (EOF, 5) 907,802 D 382

602 CONTINUE 0 393
IF (ZFA.£0.10QOQ.) GO TO 15 0 384
IF (ZFA. GT.ZHAX) GO TO 301 0 385
DA=ATAN(YFA/XFA) 0 386
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DB=ALFA*OA 0 387
TL=SQRTCYFA»*2+XFA»»2) 0 388
TH=TL»SIN(OB) 0 389
TL=TL»COS(D3) 0 390
XCI=XH(1)*TL*COS(ALFAA)>TH*SIN{AIFAA> D 391
YCJ=YW(1)-TL*SIN(ALFAA)*TH»COS(ALFAA) 0 392
ZCJaZFA 0 393
IF (YCJ. LT.YMIN) 60 TO 801 0 394
CALL XY7VEL (XCI, YCJ, ZCJ,XH ,YW,ZH,X ,Y,Z,SINPHI,COSPHI , SIDE, S 0 395

1,GAMA,OSM,GAMAM,SPEE9,SPAN,NH,NN, MM,N1,LL, t fXT,VYT,VZT,VXR,VYR, D 396
1VZR,VXM,VYM,VZM) 0 397

IF (.NOT.STHK) GO TO 853 0 398
VXTOT=tfXM*SPEEO 0 399
VYTOT=VYM 0
VZTOT=VZM o

650 HRITE «6 ,5COO) TL tTH,ZCJ 0
ALPHA=ATAN(-VYTOT/VXTOT) D
8£TA=ATAN(VZTOT/VXTOT) 0
HRITE (6,5010) VXTOT,VYrOT ,VZTOT, ALPHA,3ETA 0 «»05
OA=ATAN( -VYT/VXT) 0 A36
08=ATAN(VZVVXT) D *»07
HRITE (5,5020) VXT.7YT ,t fZT,OA ,09 0 «i08
DQ=VXTOT**2<-VYTOT»»2*VZTOT*»2 0
VXTOT= \JXTOT-VXT 0
VYTOT=VYTOT-VYT . 0
VZTOT = V7TOT-VZT 0
OA=ALPHA-DA 0 413
OB=BET/»-OB . 0 ttik
HRITE (5,5030) VXTOT, V Y F O T ,VZTOT, OA,9<3 0 <f!5
OA=DA»A!?EA»Q/LIFT D
09=D3»A*EA*0/LIFT 0
OQ=(OQ-(VXT»*2*VYT»»2*VZT*»2)) / (SPEEO»»2) 0
HRITE (6,50<*0) OA,03,OQ 0 419
GO TO 801 0 420

906 CONTINUE D 421
HRITE t6 ,9U2» 0 422

932 FORMAT (52HO OIMENSIONE!) STORAGE EXCEEOEO - EXECUTION TERMINATED ) 0 423
907 CONTINUE 0 424

STOP 0 425
END 0 426
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SUBROUTINE HATRIX (MM,N^ ,LL,N1,X,;Y,Z,SINPHI,COSPHI,SIOE,S,XCPT, 0 427
1YCPT,ZCPT,CC:) 0 428

C 0 429
C THIS IS A SUBROUTINE TO COMMUTE THE HATRIX OF COEFFICIENTS. 0 430
C 0 431

DIMENSION X(15),Y (29) ,Z(20),SIN»HI(20),COSPHI(20),XCPT<14), D 432
lYCPT(iO) ,ZC»;T(13) ,R(15,20) ,SIDE(20) ,HL(15,20) ,HO(20) ,S<14>,ZM(2) , 0 433
1HM(3) ,HYZ(20) ,RM(2),GLUO) 0 434

DIMENSION CC(109,100) 0 435
INTEGER A,9,C,D,E 0 436
M = 0 D 437

C D 438
C CYCLE THROUGH CONTROL POINTS (I.E. RO HS OF COEFFICIENT MATRIX). D 439

DO 50 I = 1,NN 0 440
00 49 J = 1,LL D 441
M = M * 1 0 442

C 0 443
C D 444
C RECALL PARAMETERS FOR THIS CONTROL POINT,! GENERATE PARAMETERS FOR 0 445
C VORTEX NET WITH RESPECT TO THIS CONTROL POINT. D 446

P = 25.13274 D 447
SINJ = SINPHI(J) D 448
COSJ = COSPHKJ) 0 449
XCI = XCPT(I) 0 450
YCJ = YCPT(J) D 451
2CJ = ZGPTU) 0 452

37 DO 26 JJ = 1,*M ' 0 453
HO(JJ) = SQRT«YCJ-Y(JJ)>»»2 + (ZCJ-Z (JJ) I *»2) 0 454
HYZ(JJ) = SQRr(((ZCJ-Z(JJ» *SINPHK JJ) - <YC J-Y (JJ M *COSPHI < J J) ) **2) D 455
00 26 11=1,Nl 0 456
R(II,JJ)=SORT{(XCI-X(II))»»2*(YCJ-Y(JJ))»*2*(ZCJ-?(JJ))*»2> D 457

25 HL<II,JJ)=SQRT((X(II)-XCD»»2 * HYZUJ»»»2) 0 456
N = 0 D 459

C D 460
C CYCLE THROUGH VORTEX RECTANGLES (I.E. COMPUTE ELEMENTS IN THIS ROM D 461
C OF THE COEFFICIENT MATRIX). D 462

DO 48 K=1,NN D 463
DO 47 L=1,LL 0 464
N = N * 1 0 465

C D 466
C RECALL VARIABLES FOR THIS PARTICULAR VORTEX RECTANGLE PAIR. 0 467

A = (L-l) D 468
B = L 0 469
C = 2*LL-L D 470
D = C-l 0 471
E = K*l . 0 472

C 0 473
C IF THIS IS A SINGLE VORTEX 3N THE TOP OR BOTTOM OF THE TUNNEL, NOT 0 474
C ALL PARAMETERS ARE NEEDED. D 475

IF (L-l) 50,29,27 D 476
27 IF (LL-L) 50, 29, 28 D 477
28 RKA = R(K,A)' 0 478

RKC = R(K,C) 0 479
REA - R(E,A) D 480
REC = R(E,C) 0 481
HLKC = HL(K,CI 0 482
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HLEC = HL(E,C)
HOA = H9(A)
HOC = HO(C>
YA =
ZA =
ZC =
HYZA
HYZC
SINL
COSL
RKB =

Y < A )
Z ( A )
Z(C1
= HYZ<A ' )
= H Y Z ( C )
= SINPHKL)
= COSPHI(L)

R(K,B)

COMPONENTS INDUCED BY V O R T E X RECTANGLE

RKO = R(K,D)
REB = R ( E , B ) '
RED = R(E,0)
HLKB = HL(K,3)
HLEB = HL(E,3)
HOB = HO(B)
HOO = H3(0>
SIDES = S I O E C B )
O K = S ( K )
YB = Y (3 )
ZB = Z(8)
ZD = Z(0)
XK = X (K»
XE = X(E)
HYZB = HYZ(9 )
HYZD = HYZ<0)
IF ( C O S J . E O . 0 . 0 0 0 0 0 ) GO TO 35

C
C
C COHPUTE THE Y, Z VELOCITY
C OR RECTANGLE PAIR.
C USE EQUATIONS APPLYING TO VARIOUS SPECIAL CASES.

IF(L-1> 5C,53,31
31 IF (LL-L) 50,33,32
32 IF (COSL.EQ. 0 . 0 0 0 0 0 ) GO TO 62

V Y = { C O S L / ( P * S I O £ 3 ) » ( - ( ( * K A « - R K B ) » ( S I O E B » » 2 - ( R K A - R K B ) » » 2 > / U
2HLKB**2) *RKA»RK9) 4- (RK3tRKC)*(SIOEB*»2 - <RKC-RKD)**2 )/ «HLKC»»2)
2*RKC»RKO) ) *<XK-XCI) * (( REA+REB) * (SIOE<?»» 2 -( P.EA-REB) **2) / ( (
2HLEB»*2I *REA*RE3) * (RE2 + RED) * (SI OEB**2 - (REC-RED)»*2)/«HLEC*»2)
2*REC»RE9) )»(!XE-XCD) «• I./(P»0< )» ( ( (RK9 *RE3) «( OK»*2 -(
2RKB-REB)**2) / ( (HOB**2)*RKB»RE6)) »(ZB-ZCJ)- ( (RKO* RED)» (OK*»2-(RKD-
2RED)**2)/ ( (HOD**2 ) *RKD»REO)) * (ZO- ZCJ) «• ( UKC»R!£C) » (OK»»2-(RKC-REC )
2»*2) /<(HOC**2)»RKC»^EC))» (ZC-ZCJ) -( (RKAfREA) » (OK*»2- ( RKA-RE A) *»2)
2 / ( (HOA»»2>»*KA»REA) )» (ZA-ZCJ ) ) )

GO TO 36
62 VY = (1,/(P»|JK)*(( (RKB+REB)»(OK»»2 -(

2RKe-REe)**2) / ( (H08*»2)»RKB*RE9)> * (ZB-ZCJ) - ( (RKO*-RED) » (OK*»2-(RKD-
2REO)**2)/ ((HDD*»2)* ;?KD»REDn» (ZO- ZCJ) * ((RKC+RtC) * (r)K»»2-(RKC-REC)
2»*2)/CWDC*»2)*RKC»REC))» (ZC-ZCJ) -( (RKAfREA)* (DK**2- ( RKA-RE A) *»2)
2/< (HOA*»2)»RKA*REA) )» (ZA-ZCJ) ) )

GO TO 36
33 IF (COSL.EO. 0 .00000) GO TO 63

VY = (COSL/(P*SI3£B)»(- ( (RKO«-RK3) * (SIOE13»*2-CRKD-RKB) »»2)/( (
2HLKB**2) *RKO'RK8) )»CXK-XCI ) * ((REO*R£B) »(SIOEq**2 - (RED-RE 8) •»
22)/«HU£8»*2)»REO»REB))»(XE-XCI)) + I./ (P »DK) »(( (RKB*RE9) • ( OK»»

0
0
0
0
0
0
D 489
0
0
0 <»92
D 493
0 49V
0 495
0 496
D
D
0
0 500
0 501
0 532
0 503
0 504
0 505
0 506
0 507
0 536
0 509
0 510
0 511
0 512
0 513
0
0
0
0
0
0

515
516
517
518
519

0 520
D 521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
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22-<RKB-R£B)»*2)/( <Ha3»*Z) *RKB*R£»))*< Z8-ZCJ>*<(RKO«-REO)»{OK»»2- D 539
2<RKD-R£0)»*2)/«HOO»*2)*RKO»REO)) MZO-ZCJ))) 0 5*0

GO TO 36 0 541
63 VY = <1./<P»OK)*<(I(RKB«-REB)*<OK*» 0 5*2

22-CRKB-REB)*»2)/C(HD3»»a> *RKB»RE8))*!Z8-ZCJ)-((RKDfRED)*CDK»»2- 0 5*3
2<RKO-REO)»*2)/«HDO»*2)*RKO*REO)>*<ZO-ZCjn) 0 5**

GO TO 36 0 5*5
35 VY = 0.d 0000 D 5*6
36 IF (SINJ.EQ.0.00000) GO TO *2 0 5*7

IML-i) 5C,*0,38 D 5*8
33 IF(LL-L) 50,*0,39 0 5*9
39 IF (S INL.EG.0 .00000) GO TO 6* 0 550

VZ = <SINL/(P»SIOE8)»<((RKA+RKB)» <SIOEB»*2 -<RKft-RKB)**2)/« 0 551
3HLK3»*2> *RKA»RK3) - (RKC + RKD) MSI DEB»*2 - (RKC-RK D)*»2)/ ( { HLKC*» 2> D 552
3»RKC»RKOMM'XK-XCI) + «REC*REO)»<SIOEB»»2 - fPEC-RED)»*2)/<( 0 553
3HLEC**2)»REC*Reo) - (REA «-REB) MSI OE8»*2 - (REA-RE B) »*2)/ ( (HLEB**2) 0 55*
3»REA*RE3MMXE-XCI)) + 1* / (P*DK) » C (<RKA«-REA)» (DK»»2 - (RKA 0 555
3-REA)**2l / ( (HOA**2)*RKA*REA) - (RKOREC) * (OK**2 - (RKC-REC) **2) / ( ( 0 556
3HOC»*2)»RKC»REC))»(YA-Y3J) * ((RKO+REOI *(OK»*2 -(RKD-REO)»»2)/ D 557
3<CHOO»»2)»RKD*RED) - (RKB + REB )*(OK**2 - (RK8-RE8) **2>/ «HOB»*2I * 0 558
3RKB*RE9) )»(YB-YCJ)» D 559

GO TO *3 0 560
6* VZ = (l./(P»DK)» ( ( (RKA*REA)»(OK*»2 - (RKA 0 561

3-REA)*»2)/r(!HOA»»2)»RKA*REA) - (RKOREO » (OK**2 - (RKC-REC)*»2)/( ( 0 562
3HDC»*2)*RKC»REC)) ' (YA-Y3J) » ((RKD+REO)«(DK**2 -IRKO-REO)**2)/ 0 563
3 «HDD»*2)*RKD*REO) - (RK3*RE9)*(OK**2 - (RKB-RE3) »»2)/( (HDS»»2) » 0 56*
3RKB»RE3) )»(YB-YCJ)» 0 565

GO TO *3 0 556
*3 VZ = t l . yCP»OK)* f ( (R<0*^EO)»(OK**2 -(RKO-RE01 »»Z) /<(HDO»»2) 'RKO* 0 567

3RED) -(RK8 * REB) »OK**2- (RK9-RE3)**2)/«!HOB»*2) *RKB»RE3) 1» D 568
3(YB-YCJ)» 0 569

GO TO *3 D 570
*2 VZ = 0.00000 D 571
C 0 572
C 0 573
C THE VELOCITY COMPONENTS HAVE BEEN COMPUTED, STORE THE NORMAL VELOCITY D 57*
C AT THIS CONTROL POINT IN CC ARRAY ELEMENT M,N. 0 575
*3 CC(M,N> = VY'COSJ - VZ»SINJ 0 576
C 0 577
*7 CONTINUE D 578
*8 CONTINUE 0 579
*9 CONTINUE 0 580
50 CONTINUE D 581
C 0 582
C THE .MATRIX HAS SEEN GENERATED, RETURN TO CALLING PROGRAM. 0 533
C 0 58*

RETURN 0 585
E N D . 0 5 8 6
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c
c
c
c
c
c
c
c
c

c
c

SUBROUTINE INVR(A,N,ISIZE,JSIZE)

SUBROUTINE TO COMPUTE THE INVERSE OF A MATRIX OF SIZE LESS THAN
OR EQUAK TO 100

THE MATRIX A IS REPLACED BY ITS INVERSE.
THE MATRIX IS ASSUMED TO CONTAIN N ROWS ANO COLUMNS.
ISIZE ANO JSIZE ARE THE DIMENSIONS OF A.
NOTE THAT THIS SUBROUTINE D3ES NOT TEST THE SINGULARITY OF A*

DIMENSION IPTVOT(lGO),A<ISIZE,vJSIZE),-INOEX<10:0,2> ,PItfOT<100)
EQUIVALENCE (IROH,JROW), ( ICOLUM,JCOLUM), (AMAX,T,SWAP)

C
C
C

c
c
c

c
c
c

c
c
c

15 DO 20 J=1,N
20 I P I V O T C J ) = 0
30 00 550 1=1,N

SEARCH FOR PIVOT ELEMENF

40 AMAX=0.0
45 DO 105 J = 1,N
50 IF ( IPIVOT(J ) - l ) 60, 105, 60
60 DO 100 K = 1,N
70 IF ( IPH/OT(K)-1) 80, 100, 740
60 I F < A 3 S ( A M A X ) - A 8 S ( A < J , K M ) 85,100,100
85 IROW=J
90 ICOLUM=K
95 AMAX=A(J ,K )

100 CONTINUE
105 CONTINUE
110 IPIVOT<ICOLUM)=IPIVOT< ICOLUM)*!

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

130 IF (I RON-ICOLUM) 140, 250 , 140
140 CONTINUE
150 00 2GO L-1,N
160 SWAP=A( IROW,L>
170 A(IROW,L)=A(ICOLUM,L>
200 ACICOLUfl.DsSMAP
260 I N O E X < I , 1 ) = I R O H
270 I N D E X ( I , ; 2 ) = I C O L U M
310 P I V O T ( I ) = A ( I C O L U M , I O O L U 1 )

DIVIDE PIVOT ROM BY P I V O T ELEMENF

330 A (ICOLUM, ICOLUM) =1.0
340 DO 350 L = 1,N!
350 A(ICOLU*,L)=A(ICOLUM,L)'PIVOT(I>

REDUCE NON-PIVOT ROMS

380 00 550 L1=1,N
390 IF(Ll - ICOLUM) 400, 550, 400
400 T=A(L1,ICOLUM)

0 587
D 588
0 589
0 590
0 591
0 592
0 593
0 594
0 595
0 596
D 597
D 598
0 599
D 600
D 601
D 602
D 603
0 634
0 605
D 606
D 607
0 608
0 609
D 610
0 611
D 612
0 613
D 614
0 615
0 616

617
618

0
D
0 619
0 620

621
622

0
0
0 623
0 624

625
626

0
0
0 627
D 628
0 629
0 630
0 631

632
633

D
D
D 634
D 635

636
637
633
639

0
D
0
D
0 640
0 641
0 642
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420 A(L1,ICOLUM)=0.0 0 643
430 DO 450 L = 1,N 0 644
450 A(Ll,L!=Aai ' iL>-A(XCOLUff L)*T 0 645
550 CONTINUE D 646

C D 647
C INTERCHANGE COLUMNS 0 648
C 0 649

600 DO 710 1 = 1,N 0 650
610 L=N+1-I D 651
620 IF (INC£X<L,1)-INOEX(L,2> ) 630, 710, 630 0 652
630 JROW=INDEX(L,1) 0 653
640 JCOLUM=INDEXi(|_,:2» 0 654
650 DO 705 K=1,N 0 655
660 SWAP=A«, JROM) 0 656
670 A<K,JROW)=A(K,JCOLU1) D 657
700 A(K,JCOLUM)=SHAP 0 658
705 CONTINUE 0 659
710 CONTINUE 0 660
740 RETURN 0 661

END D 662
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SUBROUTINE *HS (XCPT,YC'T,ZC°T,XH,YH,ZW,DSM,GAMAM,SPAN,SPEED, 0 663
1GAMAK,NN,LL,NW,SINPHI,COSPHI) 0 66«f

C 0 665
C THIS IS ft SUBROUTINE TO COMPUTE THE RIGHT HAND SIDE OF THE MATRIX D 666
C EQUATION DEFINING THE VORTEX STRENGTHS. 0 667
C 0 668

DIMENSION Xlf(<»0), Y W ( < » 0 ) , Z W < t » 0 > , R H ( 2 , 2 ) , O S M ( 3 9 > , V B A R < 2 > D 669
DIMENSION GA'MAKdOO,!) 0 670
DIMENSION SINPHK20) .COSPHI <2C) ,X CPT< 1M , YCPT (10 ) ,ZCPTtlO) 0 671
P = 6.2831853 0 672
M = 0 0 673

C D 6T«i
C CYCLE THROUGH CONTROL POINTS. 0 675
900 00 50 1=1,NN D 676

DO V3 J=1,LL 0 677
M = M «• 1 D 678

C 0 679
VYM = 0.0 0 680
VZM = 0. 0 D 631
SINJ = SINPHKJ) 0. 682
COSJ = COSPHKJ) 0 633
XCI = XCPT(I) D 63<»
VCJ = Y3PTU) 0 685
ZCJ = ZCPT<v*> 0 636

C 0 687
C COMPUTE VELOCITY INDUCED BY MODEL. D 688

00 <i& K=1 ,NW 0 689
JJ = K D 690
00 45 L=1,2 D 691
RW<L,1) = SqRTC(XW(JJ) -XCI»*»2«- (YM(JJ»-YCJ)*»2 f (ZM(JJ) -ZCJ>»»2) 0 692
RM(L,2) = SQRT( {XW(JJ ) -<C I ) * *2 * (YW(JJ ) -YCJ )»»2K7W(JJ ) fZCJ ) »»2) 0 693
JJ = ««•! 0 69«»

*»5 CONTINUE ' 0 695
00 <ft» L=l,2 D 696

Vf VBAR(L) = -GAMAM*(DS^(K)»»2- (RW{ l ,L ) -RW(2 ,L ) )»»2) * (RH<1,L)*RW(2,D> 0 697
l / (P*RW(l ,L)*RW(2,L)M<t .O* (RH(1,L) **2) » (OSM(K) **2 )-< RM (1, L)**2-RW( 2 0 698
2,L)**2«-3SM(K)**2>**2M 0 699

L = K*l 0 700
IF (COSJ.EQ.0.0) GO TO i»l D 701
VYM = V 3 A R ( 1 ) » « Z W < K ) - Z C J ) * { X H < L ) - X W T K ) ) - (XW( K) - XCI) * ( Z W ( L ) - Z H (K» D 702

1 ) - V B A R < 2 > » « - Z W < K ) - Z C J ) » < X W ( L ) - X M (K) I - (XM (K)-XCI ) » < ZW (K ) -ZM(L) ) ) 0 703
2* VYM D 70«*

kl IF (SINJ.EO.O.C) GO TO ^6 0 705
VZM = ( V B A R ( D - V B A R ( 2 ) ) » { ( XW( K)-X CD » (YH( L ) - Y W ( K ) ) - (YH(K)-YCJI * D 706

1 ( X W ( L ) - X H ( K ) )) * VZH D 707
AS CONTINUE D 708
C 0 709
C STORE NORMAL VELOCITY H GA1AK A R R A Y ELEMENT M. D 710
&t» GAMAKd, 1) = VZM»SINJ • VYM»COSJ 0 711
49 CONTINUE 0 712
50 CONTINUE 0 713
C 0 71«»
C THE RIGHT HAND SIDE HAS BEEH GENERATED, RETURN TO CALLING PROGRAM. D 715
C D 716

RETURN D 717
END D 718
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SUBROUTINE WKIT ( X W , Y W , 2 W ,X,Y ,Z,S-INPHI,COS«»HI ,SIDE,S, GAMA ,OSM, 0 719
1GAMAH, SPEED, SPAN, NH,NN,MM fNljLL,-* Hi ,RHO, a, FAL, FAD, CHO RD, LIFT,ORAG, 0 720
1STWK,VXTC,VYTC,ALPHAO,ALPHAI ,ALFAA,VXMC,VYMC) 0 721

C 0 722
C THIS IS A SUBROUTINE TO ITERATE THE TRAILING VORTEX PAIR POSITION 0 723
C AND TO COMPUTE LIFT A NO INDUCED DRAG VALUES BASED UPON THE VELOCITY D 724
C AT THE CENTER OF THE BOUND VORTEX. 0 725
C 0 726

DIMENSION X<l5) ,Y{2a>»Z<20) ,SINPHIt20) ,COSPHI<20) ,SIOE<2Ci),S<14) 0 727
DIMENSION GAMA<14,10) D 726
DIMENSION X W ( 4 0 ) , Y W ( 4 0 ) , Z W ( 4 0 ) , R W (2 ,2 )»DSM(39 ) ,VBAR(2> 0 729
INTEGER A,B,C,0,E D 733
LOGICAL STWK 0 731
REAL LIFT 0 732
ALPHAI = 0 . 0 o 733
ALFAA = 0.0 o 734
ALPHAO = 0 . 0 o 735

C 0 736
C IF THIS IS TO BE THE.LINEARIZED CASE, 00 NOT ITERATE THE TRAILING 0 737
C PAIR. GO DIRECTLY TO COMPUTE THE LIFT AND DRAG. 0 738

IF (STHKJ GO TO 704 0 739
MMMH = NW-1 0 740

C D 741
C CYCLE THROUGH VERTICAL AND LATERAL SHIFT OPERATIONS. 0 742

00 701 LSHFT =1,2 D 743
C 0 744
C CYCLE THROUGH WAKE SEGMENTS. 0 745

00 700 M = 2,MMMH D 746
IF UH.EQ. 2). AND. (LSHFT. £0.2)) GO TO 700 0 747

C 0 748
C SELECT COOROINATES FOR VEL03ITY COMPUTATION. NOTE ZCJ = 0.0 FOR CASE 0 749
C OF FIRST TRAILING VORTEX SEGMENT. 0 750

XCI = XVMK) 0 751
YCJ * YK(M) D 752
IF <M.Ed .2 ) GO TO 20 ; 0 753
ZCJ = ZHCM) D 754
GO TO 30 0 755

23 ZCJ = 0 . 0 0 756
30 CONTINUE 0 757
C D 758
C COMPUTE VELOCITY AT THIS POINT. D 759

CALL XYZVEL (XCI,YCJ,ZCJ,X* ,YW,ZH,X,Y,Z,SINPHI,COSPHI,SIDE,S 0 760
l ,GAMA,OSM,GAMAM,SPEEO,S>AN f NW f NN,MM,N1,LL,VXT,VYT,VZT,VXR,VYR, 0 761
1VZR,VXM, VYM, VZM) 0 762

VEL = SQRT(VXT»*2 * VYT»*2 * VZT»*2) 0 763
J = M*l 0 764
IF (M.NE.2) GO TO 743 0 765

C D 766
C IF THIS IS THE PIRST SEGMENT, COMMUTE NEH ANGLE OF A T T A C K . 0 767

ALPHAO = ASINt-GAMAM*2.( '<6.283i853*CHORO»VEL>) 0 768
ALPHAI = A T A N C V Y T / V X T ) 0 769
ALFAA = ALPHAO * ALPHAI 0 770

C 0 771
C COMMUTE COORDINATE SHIFT. 0 772

XSHFT = OSM(1)*COS(ALFAA) * XW(1) - XM(2) . 0 773
YSHFT = DSM(l)»SINCftLFAA) * YW(1) - YH(2) 0 774
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ZSHFT = 0.0
60 TO 57

7*3 CONTINUED
OCWX = YXT/VEL
DCWY = VYT/VEL
OCWZ = V7T/VEL
XSHFT = OSM(M)*OCWX «• XH(M)
XSHFT = XSHF1T - X W ( J )
IF (LSHFT.EQ.2) GO TO 1*9
YSHFT = DSM(M)»OCWY * Y*(M)
YSHFT = YSHFT - YH(J)
GO TO 57
ZSHFT = OSMCM)*DCWZ * 7HCM)
ZSHFT = ZSHFT - ZHU)

C
C
57

SHIFT ALL COORDINATES
L=J,NW1

DOWNSTREAM OF VELOCITY COMPUTATION POINT.
00
K=L-1
X W ( L ) = X W ( L ) * XSHFT
IF (LSHPT.E1.2) GO TO 59

53 Y W ( L » = YWCL) * YSHFT
GO TO 1*8

59 ZW(L) = Z W ( L ) * ZSHFT
C
C COMPUTE NEW SEGMENT LENGTH.

OSMCK) = S Q R T C C X W < L ) - X H < K » » » » 2 * < Y W ( L ) - Y W < I O ) » * 2 » ( Z W C L ) - Z W < K ) ) * » 2 )
CONTINUE
CONTINUE

7*8
730
701 CONTINUE
*150 FORMAT (18HOWAKE COORDINATES
C
C

,/, 9X,<2HXH ,13X,2HYH,13X,2HZM)

WRITE RESULT OF ITERATION PROCESS.
WRITE <6,*150)
FORMAT (3F15.5)
XCI = XWdl
DO 703 I = 1,NW
YCJ = XW(I) - XCI
WRITE (6,*160> YCJ,YW(I» ,ZW(I)

703 CONTINUE
70* CONTINUE
C
C COMPUTE LIFT AND INDUCED DRAG OF WING, COMPARE WITH FREE AIR RESULT.

XCI = XW (1)
YCJ = YW(1)
ZCJ =0.
CALL XYVEL (XCI,YCJ,ZCJ,XW,YW,ZW,X,Y,Z,SINPHI,COSPHI,SIDE, S

1,GAMA,DSM,GA-MAM,S PEED, SPA N,NW,NN, MM,N1,LL , W,7YT, VZT , VXR, tfYR,
1VZR,VXM,VYM,VZM)

VXTC=VXT •
WYTC=WYT

702
VYMC
LIFT
DRAG
LIFT
CLAR

VYN
= RHO'SPAN'GAMAM
= -LIFT»VYT
= WXT'LIFT
= ( C3.1*159/*.»*»2I/(Q»CSPA»I»*2»)

0
0
0
0
0
0
0
0
D
0
D
D
D
0
0
D
0
0
D
0
0
D
D
0
D
0
0
D
D
D
D
D
D
D
0
0
0
0
0
D
0
D
0
0
0
D
D
D
D
D
0
0
0
0
D
D

775
776
777
778
779
730
781
782
783
78*
785
786
787
788
789
790
791
792
793
79*
795
796
797
798
799
830
801
802
833
80*
805
806
807
808
809
810
811
812
813
81*
815
816
817
818
819
820
821
822
823
82*
825
826
827
828
829
830

113



COIAR = DRAG'CLAR 0 831
CLAR = LIFT'CLAR 0 832
DELTAL =: LIFT - FAL 0 833
DELTAO = DRAG-FAD 0 83<»
IF (STWK) ALFAA=0.0 0 835
ALFAA=-ALFAA 0 836
ALPHA 0=-ALPHAO 0 837

C 0 838
C WRITE RESULTS OF COMPUTATIONS. 0 839

WRITE (6,«»176) ALFAA, ALPHAO, AL°HAI D 8<tC
<f!76 FORMAT t 2X,7HALFA A =, F7.}** , 3X, 8HAL PHAO =,F7.'»,'3X, 8HALPHAI =,F7.«*) 0 8<»1

WRITE (5,«fl75) LIFT.DELTAL 0 8<*2
i»175 FORMAT C12H3WING LIFT =,F 10. 5 ,W,,22HCHANGE DUE TO TUNNEL = ,F10.5) 0 8«f3

0 84<f
0 8«»5
0 8W
0 8<^7
0 8«»8
0 8«»9
0 850
0 851
0 852
0 853
0 85<»
0 855
0 856

WRITE C6,^177) ORAG,OELTAO
M77 FORMAT (12HOWING DRAG =, F 10. 5,«, 22HCHANGE DUE TO TUNNEL =,F10.5)

WRITE (6 ,<»200) V X T , V Y T
4200 FORMAT ( 1HO, 39HTOTAL VELOCITIES AT WING CENTER VX = ,F10.<»,5X,

15HVY = ,;F10.«f)
WRITE <6,<»210) C L A R , C O I A R

U210 F O R M A T ( 1HO, 29HME A S U R E D IN T U N N E L CL/AR = ,F10 . 5,5X ,9HCOI/AR = ,
1F10.5)

C
C RETURN TO CALLING PROGRAM.
C

RETURN
END
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SUBROUTINE XYZVEL CXCI,YCJ,ZCJ,XM,YW,ZM,X,Y,Z,SINPHI,COSPHI,SIOE,S 0 857
l ,GAMA,DSM,GAMAM,SPE£0,S»AN,NW,NN,MM,N l ,LL ,VXr ,VYT,VZT,VXR,VYR, 0 858
1VZR,VXN, VYM, VZM) 0 859

C 0 860
C THIS IS A SUBROUTINE TO COMPUTE VELOCITY COMPONENTS INDUCED BY 0 861
C TUNNEL AND LIFTING SYSTEM. 0 862

C 0 863
DIMENSION X(15 ) ,Y (20) ,Z<20) ,S INPHIC20) ,C9 SPHI (20 ) ,SIOE<20 ) , S( !<»> » 0 86<f

1R(15,2G) ,HL(15,20) ,HO(20) ,HYZ(2Q) , X W C « » 0 > , YW (I»C> , ZWUO ) , RW (2,2) , D 865
1DSMC39), V8AR(2 ) ,GAMA( l iM lO) D 866

INTEGER A,8 ,C,DtE D 867
LOGICAL XONLY,XNY ,YNZ 0 868

C D 869
C SET LOGICAL VARIABLES TO COMPUTE ONLY VELOCITY COMPONENTS REQUIRED. D 870

IF (ZCJ.EQ.O.) GO TO 10 0 871
XONLY = .FALSE. D 872
XNY = .FALSE. 0 873
YNZ = .FALSE. 0 87l»
GO TO 6*3 0 875
ENTRY XVEL 0 876
XONLY = .TRUE. D 877
XNY = .FALSE". 0 878
YNZ = .FALSE. 0 879
GO TO 6<»3 0 830
ENTRY XYVEL 0 881

10 CONTINUE 0 882
XNY = .TRUE. D 883
XONLY = .FALSE. 0 69k
YNZ = .FALSE. 0 885
GO TO 6«»3 0 836
ENTRY YZVEL D 837
YNZ = .TRUE. 0 888
XONLY = .FALSE.' D 889
XNY = .FALSE. D 890

6<»3 XTP = XCI 0 891
YTP = YCJ 0 892
ZTP = ZCJ 0 893

C D 89^
C COMPUTE LOCATION OF VORTEX 1ET WITH RESPECT TO POINT OF VELOCITY 0 895
C COMPUTATION. D 896

DO 127 J = 1,MM . 0 897
HDU) = SQRr«YTP-YCJ))»*2 * (ZTP - Z(J))»*2) D 898
HYZ(J ) = SQRT«(ZTP-Z(J ) ) »SINPHI( J)- (YTP-Y(JI ) »COSPHI (JM *»2) 0 899
DO 127 I = 1,N1 0 900
R(I,J) = SCIRT(CXTP-«in»*2 * < Y T P - Y C J » ) * » 2 * <ZTP-Z( Jl I »»21 0 901

127 HL( I , J )=SORT( (X( I ) -XTP)*»2 * HYZ(J)»»2) D 932
VXR = O . G C C a O D 903
VYR = 0. Q C C 3 0 0 90<f
VZR = 0 .00000 D 905

C 0 906
C CYCLE THROUGH VORTEX RECTANGLES. 0 907

DO 150 K = 1,NN . 0 908
00 150 L = 1,LL 0 909

C 0 910
C SELECT VARIABLES- FOR THIS PARTICULAR VORTEX RECTANGLE OR RECTANGLES. 0 911

A = L - 1 0 912

115



B = L 0 913
C = LL*2 - L 0 91V
0 = C - 1 0 915
E = K * 1 D 916
IF (L - 1) 150, 129, 125 0 917

125 IF (LL-L) 150,129,126 D 918
128 RKA = R(K,A) 0 919

RKC = R(K,C>> 0 920
REA = R(E,A) 0 921
REG = RCE,C) D 922
HLKC = HL(K, C) 0 923
HLEC = HL(E,C> 0 92V
HOA = HO(A) 0 925
HOC = HD<C> 0 926
YA = Y (A ) 0 927
ZA = Z f A ) 0 928
ZC = Z (3» 0 929
HYZA = H Y Z ( A ) 0 930
HVZC = HYZCCI 0 931

129 SINL = SINPHI(L) D 932
COSL = COSPHI(L) 0 933
RK8 = RCK,B) 0 93V
RKD = R(K,0> 0 935
REB = RCE.e) 0 936
RED = R(E,0> D 937
HLKB = HL (K, B) 0 938
HLE3 = HLIE,3) 0 939
HOB = HD(B) 0 9<»0
HOD = H3(0» 0 9V1
SIDE9 - SIDt<8) 0 9<>2
OK = S(K) 0 9V3
YB = Y(B) D 9W
ZB - Z(3) 0 9<»5
ZO = Z(0) 0 9V6
XK = X C K ) 0 9V7
XE = X(E) 0 9V8
HYZB = HYZ(B) 0 9V9
HYZO = HYZID) 0 950
P = 25.1327V 0 951

C 0 952
C DETERMINE WHETHER OR NOT VORTEX RECTANGLE LIES ON PLANE OF SYMMETRY. 0 953

IF (L-l) 153, 130, 131 0 95V
131 IF (LL-C) 132,130,150 0 955
130 CONTINUE 0 956
C 0 957
C VORTEX RECTANGLE LIES OH PLANE OF SYMMETRY, USE FOLLOWING EQUATION TO 0 958
C COMPUTE VELDCITY COMPONENTS TAKING SPECIAL CASES INTO ACCOUNT. 0 959

VXPS = 0 . 0 D 960
VYPS = 0 . 0 0 961
VZPS - 0.0 D 962
IF (YN7> GO TO 135 0 963
VXPS = l./CP*SIDEB)MHYZBM<RKD*1KB)*(SIDFB»»2-CRKO-RK3>»»2)/< C 0 96V

1HLKB»*2)»PKO»RK9) - (RE3*RE3) »(SI OEB»»2-< REO-RE3 ) »"2> /.( (HLEB»*2) 0 965
1»RED*RE9)»»GAHACK,L» 0 966

IF ( X O N L Y ) GO TO 72 0 967
135 IF (COSL.EQ. O.CI GO TO &6 0 968
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65

f>T

72

VYPS = <COSL/(P»SIO£3)*(- ( (RKD+RKB)*(SIDEB»»2-(*KD-RKB)*»2)/(C
2HLKB*»2)*RIO»RK3) ) » { X K - X T P ) «• ((»EO+R£9) » (SIOE3* * 2 -(RED-RE*) *»
22)/( (HLE8»»2)»REO»RE3) )» (XE-XTP) ) * 1./(P'»OK) * (( (RK3+REB) MOK»»
22-<RKB-RE8)»*2>/ ( (H03**2)*RK9*RE3))»{ZB-ZTP)- ( (RKO*Rt0)»(OK»»2-
2IRKD-REO)»»2)/ ( (HOO»»2)*RKO»REO)) » C Z O - Z T P ) ) ) * G A H A ( K , L )

IF CXNY) GO TO 72
GO TO 67
VYPS = ( l . / (P»OK)»(((RK9*REB)»(OK*»

22-(RKB-RE8>*»2)/<(H03**2> »PKB»RE3 ) )«(ZB-ZTP)- ( (RKO+REO)*(OK»»2-
2 (RKO-REO)*»2 ) / ( (HOO**2 )»RKD*REO) ) * (ZO-ZTP) ) ) *GAMA(K,L )

IF (XNY) GO TO 72
VZPS = ( l . / (P»OK)»(((RO*REO)»(OK»*2 -(RKD-RED) **2) I «HOO»*2) »RKO*

3RED) -RKB * RE9) »OK»*2- (RKB-RE3)**2)/{(H09»»2) »RKB»REB) )»
3(YB-YTP) ) ) » G A M A C K , L )

VZR = VZR * VZPS
VXR = tfXR * VXPS
VYR = VYR «• VYPS
GO TO 150

C
C VORTEX RECTANGLES DO
C EQUATIONS TO COMPUTE
C INTO ACCOUNT.
132 CONTINUE

NOT LIE ON PLANE OF SYMMETRY, USE FOLLOWING
VELOCITY COMPONENTS TAKING VARIOUS SPECIAL CASES

69

69

VX
VY
VZ
IF
VX

= 0.0
= 0*0
= 0.0
(YNZI GO TO H»0
= (1./(P*SIOE3> M(HYZ3M(RKA+RKB)«(SIOE -e»*2 - ( PKA-RK3) **2) / ( (

1HLK8**2) *RKA*RK3) - (REA+REB)*(SIOEB»*2 -(REA-REB)»»2)/((HLE3**2)
1*REA*RE8))) * (HYZC»((RKD«-R<C)»(SIDE8*»2 -CRKO-RKCI »» 2 > / C (
1HLKC*»2>»RKC*RKQ) - (RE3 + REC) *(SI OEB»*2 - (RED-REC) **2)/UHLEC*»2)
1»REC»REO)))) )»GAMA(K,L)

IF (XONLY) GO TO 73
IF (COSL.EO.0.0) GO TO 58
VY = (COSL/(P*SIDE3)»(-«RKA*RKe>»CSIDE9**2-<RKA-RKB»**2)/t <

2HLKB**2) *RK*»RK3I * (RKD+ RKC) » (SI DEB»*2 - (RKC-R<0)**2)/( (HLKC*»2)
2»RKC»RKO)>*(XK-XTP) * ((REA+RE9J»(SIOEB»*2 -(RcA-RcB)»»2)/(C
2HLEB»»2)*REA*RE9) * (REC+REO) »(SI OEB»:*2 - (REC-REO)»»2) /< (HLEC»»2»
2*REC»R£0) )*CXE-XTP)> * I./(P*OO* (((RKB*RE3) *( DK**2 -(
2RKB-REB>*»2)/<{HD9*»2)»*KB»REBH» {ZB-ZTP) -I (RKO«-REO)» <OK*»2-(RKD-
2REO)»*2) / ( (H00**2 )*RKO*RE 01 )'* (ZO- ZTP) + ((RKC*REC) » <0<»»2-(RKC-REC)
2»*2)/ C(HOC*»2) *RKC**EO) » (ZC-ZTP) '-< (RKA+RtA) »:(0<»»2-(RKA-RE A) *»2)
2/( (HOA*»2)*RKA*REA)»MZA-ZTP> )»*GAMAIK,L)
IF (XNY) GO TO 73
GO TO 69
VY a • (l./(P»OK)*(C(RKB+R£B)»tOK»»2 -(

2RKB-RE9)**2)/((HOB*»2)*^KB»REB))» (ZB-ZTP)-«RXO«-REO)» (OK**2-( RKO-
2REO)*»2)/({HOO**2)*-lKO»^ED))»(ZO-ZTP)*{(RKC*RtC)»{0<**2-{RKC-REC)
2**2)/f (HOC»*2»*RKC*REC))» (ZC-ZTP) -{ (RKA+RFA) » (0<»»2-(RKA-f>EA) »»2)
2/<(HOA»»2)»«KA^REA»»(ZA-ZTP»1»GAMACK,L»
IF (XNY) GO TO 73
IF (SINL.EQ..0.00000) GO TO 70
VZ = CSINL/(P»SIOEB)*(((RKA»RKB)» (SIOE9*»2 -CRKA-RKB) »»2) / ( (

3HLKB»»2)»RKft*RK9) - (RlO + RKD) *<SI OEB»*2 - (RKC-RKQ)»»2) / «HLKC**2 )
3*RKC»RKD))*CXK-XTP) + ((REC+REO)»(SIOE3»»2 -<REC-RED)*»2)/((
3HLEC**2I *REC*REO) - (R£A«-REB) »(SI OEB»»2 - (REA-RE B)*»2)/«HLE9»»2)

0 969
0 970
0 971
0 972
0 973
0 97*»
0 975
0 976
D 977
0 978
D 979
0 930
0 931
0 982
0 933
0 98<»
0 935

986
987
988
939

0
0
0
0
0 990
0 991
0 992
0 993
0 99<*
0 995
0 996
0 997
0 998
0 999
0 1030
0 1001
D 1032
0 1003
0 100<t
0 1C 05
D 1006
0 1C 07
0 1008
0 1009
0 1010
0 1011
0 1012
0 1013
0 101^
0 1015
0 1016
0 1C 17
0 1016
0 1019
0 1020
0 1C21
0 1022
0 1023
0 102<»
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70

71
73

C
C NOW
150

7*5

730

7**

750

7*6
C

3»REA*RE3M*(XE-XTP» • *• 1. / CP*OIO » ( ( (RKA+REA) * (9K**2 -<RKA
3-REA)**2) /«HDA»*2)*RKA»R£A) - CR KOREC) * (DK»*2 - (RKC-REC)**2) / ( (
3HDC*»2)»RKC»REC» MYA-Y fP ) * ( ( RKO*REO) * (0!C**2 -(RKD-RED) »» 211
3((HDO**2)*RKD*REO> - CRKB+REB)*(0K»*2 - (RKB-REB) »*2)/«HDB*»2> *
3RK6*REB> ) * ( Y B - Y T P ) l > * G A N A ( K , L )

GO TO 71
VZ = (l./(P*DK)» ( ( ( R K A * R E A ) » ( Q K * * 2 - <RKA

3-REA)**2)/«!HOA**2)*RKA»REA) - (RKC+REO* (OK»*2 - (RKC-REC ) **2)/( (
3HOC*»2)*RKC*REO) MYA-YfP) + C { RKO+REO> » (OK**2 -(RKD-REO) »* 2)/
3( (HDO»*2)*RKO*REO) - (RKB*R£B)*(DK»*2 -(RKB-Rt3)**2)/(<HDB**2)*
3RKB*REfi) ) *<Y3-YTPm*GAMA (K (L)

tfZR = V?R + VZ
VXR = VXR * VX
VYR s VYR + VY

COMPUTE VELOCITY INDUCEU BY MODEL.
CONTINUE
P = 6.2831853
VXM = 0. 0
V Y M = 0 . 0
VZM = 0. 0
00 7*6 K=1,NW
J = K
00 7*5 L=l ,2
RW(L,1) = SQRT( (XW(J ) -X5 I )»»2 + (YW(J) -YCJ)
RW(L ,2 ) = SqRT«(XW(J ) -XC I ) * *2 * (YW (J)-YCJl
J = K * 1
CONTINUE
DO 7** L*l,i

H a *.* (RW(1,L»*»2)*{DSH(KI*»2)-!(RH{1,L)**2-RH<2,L)**2*DSM(KJ*»2)
1»*2

IF (H.LT.(Cl.E-6)»*.»OS^(K)»»2)» GO TO 730
VBAR(L) =-GAMAM*(OSH<K)»*2-<RH{ l ,LJ-RWI2, L)»»*2) *(RH(1,L)*RW{2,L))

1/(P*RM(1,L)*RW(2,L)*H)
GO TO 7**
V3AR(L) = 0*0
CONTINUE
L = K*l
IF (YNZ) GO TO 750
VXM = V3AR(1»* ( (YW(K) -Y3J»»(ZH<L) -ZHC K) ) - (ZH( K) -ZCJ) » (YM(L) -YH (K) )

1) - VBAR{2)»( (YM(K) -YCJ1» (ZM(K)-Z M(L»-(-ZM(K)-ZC J) * C Y W ( L ) - Y W (K) ) )
2 «• VXM

IF CXONLY) GO TO 7*6
CONTINUE
VYM = V 3 A R ( 1 ) * ( ( Z M ( K ) - Z C J ) » ( X W ( L ) - X M C K ) > - (XH(K) - XCI) * (ZM (L) -ZW ( K > )

1 ) - V B A R ( 2 ) * ( ( ' - Z W ( K ) - Z C J ) » ( X W ( L ) - X M (K) ) - {XH (K)-XCI ) * ( ZM {<) -ZW (L) ) )
2* VYM

IF ( X N Y ) GO TO 7*6
VZM = fVBAR( l ) -V3AR(2 ) )M (XW(K)-XCI ) » (YM(L)-YH(K> ) -<Y W(K) -YCJ> *

1(XW(LI-XM(K) ) ) » VZH
CONTINUE

VXT = VXM*VXR*SPEEO
VYT * VYM+VYR
VZT = VZM*VZR

D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D
D
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D
0
D
0
D
0
D
D
0
0
0
0
0
0
0
D
0
0
D

1025
1026
1327
1028
1029
1030
1031
1032
1033
103*
1035
1036
1037
1038
1039
10*0
10*1
10*2
10*3
10**
10*5
10*6
10*7
1C <f 8
10*9
1050
1051
1G52
1053
105*
1055
1056
1057
1053
1059
10SO
1061
1062
1063
1061*
1065
1066
1067
1068
1069
1070
1071
1072
1073
107*
1075
1076
1077
1078
1079
1080
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0
0 1082
0 1083
0 1084
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