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A SOLUTION OF THE GEODETIC BOUNDARY

VALUE PROBLEM TO ORDER e 3

by

R. S. Mather*

Geodynamics Branch

SUMMARY

A solution is obtained for the geodetic boundary value problem which de-

fines height anomalies to ±5 cm, if the Earth were rigid. The solution takes into

account the existence of the Earth's topography, together with its ellipsoidal

shape and atmosphere.

A relation is also established between the commonly used solution of Stokes

and a development correct to order e3 . The data requirements call for a com-

plete definition of gravity anomalies at the surface of the Earth and a knowledge

of elevation characteristics at all points exterior to the geoid. In addition,

spherical harmonic representations must be based on geocentric rather than

geodetic latitudes.

No unique solution is possible in theory at the present time due to the nature

of the Earth's atmosphere and the limited knowledge of its structure. Practical

solutions which are only marginally in error with respect to the estimates of

*On leave of absence from the University of New South Wales, Sydney, Australia.

iii

I;PREL)EDiN4 PA;EG BLANK NOT FaIMED



3

accuracy given above, are possible if an adequate model were adopted for the

atmosphere.

A quick-look analysis based on statistical considerations of the Earth's

gravity field, indicates that a definition which would meet the requirements

given above for studies of sea surface topography, is afforded by a global grid

with a 10 km spacing in non-mountainous and undisturbed regions, provided such

information were

(a) controlled by a global gravity standardization network of ±50 /lgal

accuracy; and

(b) elevations were based on a correlation of all the major continental

datums with errors kept below +15 cm.

Any predictions that are necessary must be based only on the height corre-

lation characteristics over limited distances.

iv
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A SOLUTION OF THE GEODETIC BOUNDARY

VALUE PROBLEM TO ORDER e3

1. INTRODUCTION

1.1 Preamble

Until recently, it would have appeared rather inconsequential to spend time

formulating a solution of the geodetic boundary value problem to order e3 for a

variety of reasons. In the first instance, others have published developments

with this end in view (e.g., Zagrebin 1952; Molodenskii et al 1962, p. 53 et seq.;

Bjerhammar 1962). Secondly, it seemed highly unlikely that such determinations

could ever be put to any practical use. Further, the development of laser track-

ing systems which promise ranges to objects in near Earth orbit with an internal

precision of a few cm, tends to obviate any reason for carrying out the burden-

some task implicit in the very accurate solution of the boundary value problem,

on the basis of geodetic considerations on continents alone. The role of such

solutions is the definition of ellipsoidal elevations, through the height anomaly,

and hence geocentric position to a few cm. Accuracy of this type is called for

only when studying secular variations in geodetic position which, at the time of

writing, should be more conveniently obtained either from the ranges to satellites

from a truly global network of tracking stations when adequate systems are op-

erational, or from Very Long Baseline Interferometry (VLBI).

Interest in this problem has been revived by two recent developments. Firstly,

the definition of sea surface topography to optimum levels for oceanographic

1
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analysis requires a solution of the geodetic boundary value problem to two

orders of magnitude better than that afforded by Stokes' integral (e.g., Heiskanen

& Moritz 1967, p. 94) alone or one order of magnitude better than those solutions

which took into account the effect of the topography (e.g., Molodenskii et al 1962,

p. 118; Moritz 1966; Mather 1971b). Secondly recent developments in metrology

promise that greater precision may well be achieved in the definition of the

Earth's gravity field, enabling the establishment of a global gravity standardiza-

tion network with an absolute accuracy which is an order better than is possible

at present.

These proposed investigations of sea surface topography also have great

geodetic significance in view of the commonplace departures of "Mean Sea

Level" from an equipotential surface, as defined from the results of geodetic

levelling, among other factors. The magnitudes of the stationary departures of

sea surface topography, as measured at coastlines, from an equipotential sur-

face, appear to be as large as 2 m along the north-east coastline of Australia

(Roelse et al 1971), while discrepancies of a lesser though nevertheless signifi-

cant magnitude, have been reported in the United States (Sturges 1972). As will

be shown in section 4, a preliminary definition of the sea surface topography must

precede the evaluation of geopotential differences with respect to the geoid, at

points on the surface of the Earth, if an accurate solution of the boundary value

problem is to be obtained, free from serious systematic error.

2
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The goal of programs for the mapping of the sea surface topography from

space seek the resolution of those characteristics with wave lengths of 200 km

to ±10 cm (Weiffenbach 1972). This, in turn, calls for the definition of the

equipotential surface corresponding to "Mean Sea Level" to this same order of

accuracy over the oceans. The following development, along with all other

means for assessing the problem, indicates that the solution of the geodetic

boundary value problem is the most promising method available for tackling

this problem with the accuracy quoted in the title of this paper on the basis of

the technology available at the present time.

While several second order solutions are available, most of these efforts

have concentrated on amending the reference surface from a sphere to an

ellipsoid of revolution and defining the relevant correction terms. None of the

solutions consider the effect of the Earth's atmosphere. Also neglected are cer-

tain marginal conditions in the inter-relationship between the gravity anomaly

and the disturbing potential which are of significance in defining the height

anomaly to ±5 cm (i.e., o {e3 hd}). The equivalent precision required in the

definition of the gravity anomaly can be seen from equations 13 to be ±50 /,gal.

This figure is about four times smaller than the absolute accuracy of any of the

stations included in the International Gravity Standardization Net 1971 (Morelli

et al. 1971). This however does not imply that the individual values defining the

gravity field have to be established with this precision when solving the boundary

value problem by quadratures. This is discussed in greater detail in section 4.6.

3



7

A further important consideration is the preservation of geocentric char-

acteristics of the gravitational solution. If the solution is not referred directly

to the geocenter (Earth's center of mass), it must nevertheless be possible to

relate the origin of the coordinate system used, to the geocenter without ambi-

guity and to the desired accuracy.

The development presented in the following sections, endeavors to define a

solution of the geodetic boundary value problem with a resolution of :5 cm in

the height anomaly, taking into account, the effect of the atmosphere and, at the

same time, using spherical harmonic expansions only when the function con-

cerned satisfies Laplace's equation to the requisite precision. To emphasize

the point, spherical harmonic functions are not used as a convenient three

dimensional representation, but only when physically justified. Any exceptions

to this rule are carefully qualified. In addition, the development is biased

towards relating solutions obtained by the use of Stokes' integral alone, to that

which is correct to o { e3 } . This would imply that only correction terms need

be evaluated to completely define the solution if sufficient precision were

maintained in the calculation of Stokes' integral. These terms are formulated

on the assumption that the solution is iterative, requiring the Stokesian term

computation as a pre-requisite for evaluation. This procedure seems difficult

to avoid in any solution with pretensions to accuracy, except at the expense of

loss of definition in the context of Earth space. Section C of the Appendix shows

the equation which needs to be solved if an iterative process is to be avoided.

4
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The development also investigates techniques for optimizing the solution of

the integral and the representations required for the global gravity field.

1.2 Notation

The symbols adopted have been designed to minimize confusion. To achieve

this end, subscripts have been used to differentiate between quantities which

have similar characteristics. Thus the symbol V is used to represent a potential

whose magnitude is usually small. Vd is the disturbing potential, while Va is

the potential of the atmosphere. Similarly the symbol h is used to represent

ellipsoidal elevation, while hd is the height anomaly. The subscript d also

traces a common thread, namely, quantities which are a consequence of the

distortion of the Earth from an ellipsoidal reference model.

1.2.1 Symbols

A = constant associated with azimuth

An = surface harmonic of degree n in the spherical harmonic representation

of disturbing potential

a = equatorial radius of reference ellipsoid

Cnm = surface harmonic = Pm (sin 0,c) [Clnm COS mX + C2 sin mk]

CR =f (- sin2 +R {f2} (A-6)
R

Cr ) + CRp + CR + o {f2} .... . (A-14)

cos (1/2 - ) 1 (A-27)

1 +2IF
cA= + 1 - ..... (65)

r

5
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c = f + m - 3 fsin24c ...... (A-37)

dR = hmax
- h + f s in 2Ic + o { f2 R} ...... (56)

dS = element of surface area at the physical surface of the Earth

dS' = dS cos / = R2 do

dV = element of volume

do- = element of solid angle

E(Ag}n = error of representation of gravity anomalies for a n° x n° square

e = eccentricity of the meridian ellipse = 2f - f2

F(b) = f(b) sin P

f = flattening of the meridian ellipse

f (,) = Stokes' function = cosec 1/2 q' + 1 - 5 cos 4q - 6 sin 1/2 4 -

3 cos log [sin 1/2 q (l+sin 1/2 q)] ..... (82)

Gn = n-th degree surface harmonic in the representation of Ag' at the

surface of the Earth

g = observed gravity at the surface of the Earth

h = ellipsoidal elevation

hd = height anomaly

hn = normal height

h' = orthometric height

K = constant for evaluation of Stokes' integral by quadratures

= 1.58 x 10-2 cm mgal
-

1 (degrees) 2

k = gravitational constant

6
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M = mass of the Earth

M(X) = global mean value of X
ao 2

m = 

N = elevation of geoid above ellipsoid

R = distance from geocenter to a point at the Earth's surface

R= radius of minimum geocentered sphere which encloses the solid earth

Rm = mean radius of the Earth

r = distance from the element of surface area dS to the point of computa-

tion P at the Earth's surface

r 2R sin 1/2 .. .. (61)

r0 =2Rm sin 1/2b ....... (A-12)

U = spheropotential due to the reference system

UO = U on the surface of the reference ellipsoid, which is defined. as an

equipotential surface

V = potential due to the atmosphere

Vd = disturbing potential

Vd = Vd - V a

W = geopotential

WO = potential of the geoid

Xi = geocentric rectangular Cartesian coordinate system XX 2 X3

xi = local rectangular Cartesian coordinate system x1 x2 x3 with x3 axis

along local normal, the x1 x2 plane defining the local horizon and

completing the local Laplacian triad

7
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a = azimuth

f = ground slope

fi1 = term of order f in the formula

Yo = Te [1 + 31 sin2 dc + 32 s i 4S ]

for normal gravity

Y = normal gravity

Ag = gravity anomaly at the surface of the Earth

W0 -U Ag
Ag' =Ag - 2 R dR .... (83)

R DR

Vd Va ava 2 + + O~f2Agj
Age = Ag + 2 - [f + m - 3f sin2 q

c
] + 2 + g2 + dR + o{f2g}

R
m R h 2g-h

=Ag + 0o{10- 2 Ag}

h -h
AR = R [CRp - CR] = f(sin2 c - sin2 ¢cp) + P + o{f2 } .* - - - - (A-ll)

AW = difference in geopotential between the geoid and a point at the Earth's

surface

8 = f sin 2¢c cos a, + o{f2 } ...... (A-10)

= prime vertical component of the deflection of the vertical ( = 62 )

0 =2R cot + o{f2 } for > 10 ° ...... (A-26)

R= longitude, positive east

= meridian component of the deflection of the vertical ( = ~l )

= deflection of the vertical, positive if the vertical lies north, east of

the outward normal

p = density

2Rm (1 + cR)
D = [(1 + ) cos -(1 + C p) COS ( + 3)] - 1 ...... (A-17)

rO (1 + cr)

8
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bc = geocentric latitude, positive north

¢ = angle between geocentric radii to the element of surface area dS

and the point of computation P

c = angular velocity of rotation of the Earth

1.2.2 Conventions

a = b + o b2 } = terms whose order of magnitude are equivalent to or less than

b2 are neglected (b < 1)

Xaya = X1 Y1 + x 2 Y2

xi 2 3
x d

i
y = x dy + d2y +d

3
y 

+

........ i taking all possible
2! 3!

values

x
i

= aijb
j

- x
i

= ai, b, + ai2 b2 + ..... , there being as many equations

as possible values of i

a R c a has the same order of magnitude as c

a - c a is approximately equal to c

1.2.3 Subscripts

a = assumed values, usually either astronomical or with reference

to a regional geodetic datum

c = geocentric; correction to free air term

d = disturbance value between physical and reference systems

e = equatorial value

g = geodetic values referred to the geocentric ellipsoid

9
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m = global mean value

p = evaluated at the point of computation P

O- = evaluated at the element of surface area dS

= value of "x" on the surface of the minimum geocentered sphere

which encloses the Solid Earth.

2. BASIC DEFINITIONS

2.1 Gravitational Potential

Gravitational potential is defined as the scalar W such that the acceleration

vector g due to the gravitational field is defined by the relation

= -VW (1)

where

V:= 3 l (2)
-X.1x.

the Xi axis system being a geocentric Cartesian frame whose Earth space lo-

cation is defined by the unit vectors i along the Xi axes.

Along the equipotential surface W = Constant,

dW= 0 (3)
ds

if s is a linear displacement on the surface. If the latter is defined by the vector

rI given by

R = Xi ,

10
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equation 3 can be expressed as

dW_ W dxiw . dR
1W - O (4)

ds _Xi ds ds

As the vector dR, as shown in figure 1, lies entirely in the equipotential

surface, it follows that the vector VW which equals -g from equation 1, is normal

to the equipotential surface.

The significant conclusion is that the vector g is always normal to the re-

lated equipotential surface. The incremental normal displacement is called an

increment in orthometric elevation.

2.2 The disturbing potential

The disturbing potential Vdp at a point P in Earth space is defined by the

relation

Vdp = Wp - Up (5)

where W is the geopotential due to the rotating Earth and its atmosphere, and U

is the spheropotential due to the system of reference which arises from a gravi-

tating ellipsoid of revolution rotating with the same angular velocity as the Earth.

This definition implies a rigid Earth and deviations from this model are dis-

cussed in section 2.4. The subscript p refers to evaluation at the point P.

The definition of Vd at the Earth's surface is not achieved in circumstances

identical with those at satellite altitudes. In the latter case, Vd is determined

directly from observations. In such a case, the position of the point P at which

11



15

Vd has been defined is therefore known. This is not so at the Earth's surface

where the situation is more accurately described in figure 2. The observed

quantities specifying the Earth space location of a point P at the Earth's surface

are

(a) the assumed latitude ~( and longitude Xa; and

(b) the difference in geopotential AW between the geoid and P as determined

by geodetic levelling.

f and x can be either observed astronomically or else defined with

respect to some regional geodetic datum. The telluroid has been defined as the

locus of points Q($,i Xa, UO + AW) on the reference system where the first two

coordinates are astronomical values, U0 being the potential on the surface of the

reference ellipsoid (Mather 1968, p. 518). In the context of the geodesy of the

70's, it is more likely that Oa and k
a

are coordinates on the regional geodetic

system, which differ from the equivalent values (Og, X ) on a geocentric system

by up to 5 arcsec. More about this is section 2.3. The elevation h of P above

the ellipsoid is not known, but that of Q is. U which is therefore unknown, can
p

be related to the value UQ at both Q and P', situated at the intersection of the

normal through P and the equipotential surface U = UQ, by the Taylor series

UP = U + iU (6)

where hd is the height anomaly at P (= PP'), measured along the spherop

normal at P. The latter deviates from the ellipsoid normal by an angle whose

12
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magnitude is of order f 2 (Mather 1971b, p. 80). It follows that the effect of

curvature of the normals introduces linear errors into elevation whose maximum

order of magnitude is f4 x 10 km. The linear equivalent is 10-2 mm and of no

consequence in the present development.

As hd is therefore normal to the spherop U = UQ, it follows from equation 1

that

Th- 7(7)

where y is normal gravity at P'((g, kg, U0 + AW). It should be noted that

7 /= - (0a - stg) /e 81 sin 2c

(8)

-Q + Af /e i3 sin 2¢C + 0 {1 pgal}

ye and Al being the relevant terms in the formula for normal gravity (e.g.,

Heiskanen & Moritz 1967, p. 78), while Ad is the correction to the meridian

component of the deflection of the vertical due to the departure of the regional

geodetic datum from a geocentric location (e.g., Mather 1971a, p. 63). Equation

8 is of relevance only if a world geodetic system is not available. As the defini-

tion of y is only required to ±50 l gal, it would suffice if Ad were resolved to

approximately ±1 arcsec (as a prerequisite to a complete solution) in such a

case.

13
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The second derivative is well known to be

a2U -a 
=X -- · 0.3 mgal m- .

ah2 ah

Thus the term obtained in equation 6 when i = 2 has a magnitude of

o{10 -
3 kgal m} and can be neglected in the present study. Equation 6 can

therefore be expressed as

Up = UO + AW - yhd + o{10 - 3 kgal m} (9)

The geopotential W at P is unknown because the potential WO of the geoid

has not been established. Also

Wp = W +AW (10)

The use of equations 5, 9 and 10 give

Vdp = WO - UO + yhd + 0 {10
-

3 kgal m} (11)

In summary, the height anomaly hd is the linear displacement along the

spherop normal, of the geop W = Wp passing through P at the Earth's surface,

from the associated spherop U = UQ which has the same difference of potential

with respect to the reference ellipsoid U = U0 as W = W has in relation to the
P

geoid W = W0 . Thus

UQ-U = W - WO =AWUQ 0 p 0

14
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If WO = UO, Wp = UQ. This cannot however be assumed to be the case at this

stage.

Notes

(i) y is the value of normal gravity at a point on the associated spherop

U = UQ. Its relationship to the value of normal gravity at an equivalent

point on the reference ellipsoid is defined by equation 96, the required

precision being of e 3 yT) 

(ii) The term WO - UO is indeterminate from gravitational considerations

alone. It can be evaluated if a geometrical relation is established

independently between the geoid and the ellipsoid. Its magnitude has

been estimated at 2.7 kgal m (Mather 1971b, p. 98). Else it can be

assumed to be zero on the basis that kM has been determined to

o { 4 x 1012 cm3 sec- 2 . Present day determinations (e.g., Esposito

1972) claim an accuracy of 500 x 1012 cm3 sec-
2 and hence fall short

of the precision required for satisfying this condition at the time of

writing.

2.3 The gravity anomaly

The gravity anomaly at the surface of the Earth Ag is defined as the differ-

ence between observed gravity gp at P on the Earth's surface, and situated on

the spherop W = W, and normal gravity y at the point P' on the associated

spherop U = UQ, as shown in figure 2. Thus equation 8 gives

15
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Ag = gp - y = gp- yQ - A6 ye 31 sin 2¢'

or

Ag = Ag
a

- A ye 81 sin 2qe (12)

where Aga is the gravity anomaly calculated using geodetic coordinates referred

to the local geodetic datum. AG is given by (Mather 1971a, p. 63)

AG = 1 [Ao0 (Po + ho) [cos q% cos + sin q
o

sin c/cos 8X]
p+h

+ Ai10 (vo + ho) sin q sin SX -

- ANO [sin k0 cos q - cos 50 sin q cos SX]

where p, v are the radii of curvature of the reference ellipsoid in the meridian

and prime vertical directions, while A0o, A7r 0 and AN 0 are the corrections to the

deflections of the vertical and the ellipsoid elevation at the origin of the regional

geodetic datum, on conversion to geocentric values, the subscript 0 referring

to values at the origin, and 3 k = X - X
0

. As Vd is defined as

Vd= W - U,

differentiation along the spherop normal gives

aVd 6W aU
ah h h'

16
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all values referring to P at the Earth's surface. From equations 1 and 7,

'U
-_ = y,

while observed gravity

-Wg - Dh''

where differentiation in this case is along the local vertical. Small changes in

h' are quantities which can be observed, but h' itself, which is the orthometric

elevation, is unknown in the absence of knowledge of the stratification of matter

exterior to the geoid. Thus

)Vd
)h -d g co s + p,

where C is the deflection of the vertical. yp is not a known quantity while y,

as defined in equation 7, is. yp can be related to y by a Taylor's series

hi ! i

-2 y/)h 2 is given by (e.g., Heiskanen & Moritz 1967, p. 79)

32 IY 6y = o{2 x 10 - 14 cm 1 l sec- 2}.
2 a2

The term obtained when i = 2 will have a maximum magnitude for the largest

possible value of hd (= o {102 m}), given by

17
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h1 2 32 Y = { lgal}.
2 dah

Thus

ah gdh F_1.2 +1 +h h ah+o{1gal}

= -Ag + hd 
a

- g ;2 + o {1 gal} (13)
-h -2

as C = 0 {3 x 10- 4 rad} in mountainous country.

Notes

(i) In estimating magnitudes of quantities, Ag should be assigned

o {102 mgal}. Thus e3 Ag = o {5 x 10/1 gal}. The contribution of the

term 1/2 g52 holds the same sign at all locations with a maximum

magnitude of o {5 x 10 /ugal} and must therefore be treated as a

systematic effect. It will be retained in all formulae for the present.

2.4 The Boundary Value Condition

The formulation of the boundary value condition is freely available in the

literature (e.g., Moritz 1965; Mather 1968). Derivations stem from Green's

third identity (e.g., Heiskanen & Moritz 1967, p. 11). If r is the distance of the

relevant element of surface area dS or volume dVi interior to the bounding

surface S, from a point P on S, the scalar b satisfies the equation

ffT lVl 2v dVi - 27T + l lV .No - Nl} dS (14)
I
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where N is the unit vector defining the outward normal to S, V being defined by

equation 2. No approximations are involved in the formulation of equation 14

apart from assumptions implicit in qualifying the existence of the relevant inte-

grals. V · 1 is the derivative of the scalar as evaluated along the outward

normal and must exist exterior to and on the surface. The geopotential W is

given by

W = Ve + Va + Vr (15)

where V is the attractive potential due to the solid Earth and oceans, hereafter

referred to as that of the solid Earth, V2 is the attractive potential due to the

atmosphere, and Vr is the rotational potential. As Ve satisfies Laplace's equation

at all points exterior to the physical surface of the Earth S, while V does like-
a

wise at all points in V. within S. To simplify the application of equation 14 to V

with Vi exterior to S gives

27TV, P ff V N 'V dS (16)
27TVep ~- f v N Ve - Ve V N r dS (16)

Similar application to Vr with Vi interior to S gives

· r ir rp

where co is the angular velocity of rotation of the Earth, which is assumed con-

stant, implying a rigid Earth. It also follows that
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2 77(Vep V) if [r (Ve + Vr) - (Ve + Vr) V N 1 dS

(18)

+ 2w2 Jff 1 dV i

r

Similar application of equation 14 to the spheropotential U due to the gravitating

reference system which has the same rotation characteristics as the Earth,

and defined by

U = Ue + V (19)

gives

27T(Up -Vrp)=fff [1 VN(Ue+ Vr)(Ue+Vr)VNl ] dS

(20)

+ 2w 2 ff1 dV.
I r

As the integrations in both equations 18 and 20 are taken over the same sur-

face, it follows that appropriate differencing gives

27T(WP - UP - V.) = i [VN (Ve - Ue) - (Ve - Ue) dS (21)

on using equations 15 and 19. Further combination with equation 5 gives

27r(Vdp - Vap ) = - ['NV d. - Vdi dS (22)
dp ap 11~~~
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where

Vd = Vd - V (23)

Notes

(i) Vd is the disturbing potential due to the solid Earth and oceans. It is

of importance as it satisfies Laplace's equation at all points exterior

to the Earth's surface provided that the ellipsoid lies within the former

at all points (i.e., the ellipsoid is smaller than the geoid by at least the

maximum negative geoid undulation). This would require in theory, an

ellipsoid which is approximately 100 m smaller than that of best fit.

Under these conditions

V2 V, = ,

and hence Vd can be represented by a solution in spherical harmonics

of the form

at n

Vd = () Cm (24) 
n=O m=O

where

Cn = Pno(sin bc) [Cl
m

Cos mX + C2 nm sin mX] (25)

(ii) The harmonic of degree one can be excluded from equation 24. This

would imply that the reference ellipsoid were centered at the center of

mass of the solid Earth which will not coincide with the geocenter unless
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the mass distribution of the atmosphere has no first degree harmonic

on a geocentric coordinate system. Further, no unique solution of the

boundary value problem is possible unless the density distribution of

the atmosphere were known. As this is constantly varying, the definition

of a model for the atmosphere is called for.

Let G and G be the centers of mass of the solid Earth and

atmosphere respectively, as shown in figure 3. If the Xi axis system

is centered on the geocenter G, it is possible to define the coordinates

Xei of Ge in terms of those (Xi) of G,, on the assumption that the

model for the atmosphere is capable of formulation from direct

measurement more readily than that of the solid Earth.

If dV is an element of the volume Ve exterior to the solid Earth

which contains the atmosphere with density Pa , then

Ma Xi jfj Pa Xi dVe (26)
e

where M is the total mass of the atmosphere. A similar consideration

of the solid Earth, of total mass M
e
, contained within the volume V

i
,

gives

M ~i ~ Pi X1 dV (27)
being the density of matter contained in the element of volume dV 

Pe being the density of matter contained in the element of volume dV .
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As the Xi axis system has its origin at the geocenter,

M xf PaXide+JJJseXidVi Xai + Ma e Xei 

Ve

where M is the mass of the Earth. Thus

M,
Xei =_ Xai (28)

M ai

In summary, the boundary condition set out in equation 22, is built

around the disturbing potential for the solid Earth (Vs) which has the

advantage of satisfying Laplace's equation and hence being expressible

in spherical harmonics. This representation would not have any terms

of degree 1 if the atmospheric potential, referred to a geocentric co-

ordinate system, also had no first degree terms. If this is not -the case,

as seems likely, the spherical harmonic representation is referred to

a coordinate system based on the center of mass of the solid Earth, the

relationship to the geocenter being given by equations 26 and 28. This

problem will not be considered further.

(iii) The inclusion of equation 17 in equations 18 and 20 implies that w is a

constant independent of position within the surface of the Earth. This

is not so in practice due to departures of the Earth from a rigid body,

variations in the rate of rotation and polar motion. The first effect is

allowed for as the well known correction for Earth tides to observed
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gravity, with a magnitude o {102 L,gal}. The gravitational effect of the

rotation gr is given by

gr =pco 2

where

p = (X2 + x2)1/2

the X i being defined as in section 1.2.1. The change Sgr in gr due to

polar motion can be interpreted as a consequence of changes dXi in

X i and d co in w, the relevant relation being

X1 d X1 + X2 d X2 2 +

=[Xa1 d. + 2 gr
p2 co

As do/co = o {3 x 10- 7 } and dX/X = o {10- 6 -} at mid latitudes, the ef-

fect on g = o { 1/ gal }. The limited magnitude makes it possible for

this effect to be neglected for the present development, even though it

is dominated by a set of even zonal harmonics.

(iv) The validity for adopting spherical harmonic representations for func-

tions on S is discussed in section B3 of the Appendix.

24



28

3. SOLUTION OF THE BOUNDARY EQUATION

Equation 22 can be written as

Vd = V. + 1 d V 1 -. V d S (29)

the surface integral being taken over the physical surface of the Earth. The

latter can be represented by the telluroid without introducing errors in excess

of o( { f 2 } and hence smaller than the accuracy sought in the present study. On

adopting a local x i axis system at the element dS, with the x 3 axis oriented along

the local spherop normal and the x1 and x2 axes oriented north and east respec-

tively, it can be shown (Mather 1971b, p. 80) that

N = cos / [- tan/ Pa + 3 (30)

where 3 is the slope of the topography at dS while fi and )i2 are the components

of the ground slope in the north and east directions respectively. Thus

V. 1 _ =cos ' [x, tan8 p - x3]- (31)
r r3

and

VN Vd =co [stan + o 3 (32) f

On considering equations 11 and 23,

Vd = Vd - Va = (Wo - UO) - Va + hd + O {5 x 10 - 2 kgal m} (33)
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The use of equations 13 and 23 gives

a vd av d ad Ba 

xa h -h - h ah

hd T 1 2 Va
- - gh g'h + hd -o { ga (34)dh 2 ah

The last term in equation 34 is the attraction of the atmosphere. It follows

that observed gravity must be numerically increased for the attraction of the

atmosphere before computing the gravity anomaly. Assuming a density of 10-3

gm cm-3 for a 20 km thick layer, treated as a Bouguer plate, the magnitude of

this term is

aV
a = o {10- 3 gal}.

'h

If standard concepts of the nature of the lower atmosphere are accepted, (e.g.,

Smithsonian Meteorological Tables 1958, p. 267), this correction will be corre-

lated with elevation and is more than likely to have a first degree harmonic as

discussed earlier in note (ii) to section 2.4. For a treatment of the atmosphere

consisting of a series of nearly ellipsoidal shells, see IAG 1970, p. 62 et seq.

O The use of equations 31, 32 and 34 in equation 29 gives

1 F1 + ' Vd aVVd
p

= Va
p

+ (xa tan/,3 -a cos3 dS
r xa h/J (35)

(35)
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Cos f dS is the projection of the element of surface area dS from the

telluroid, onto the associated spherop (Mather 1971b, p. 81). The projected

surface area is related to the element of solid angle do- by the relations

d S cos = R2 d o = R2 cos 0c do 
c

d (36)

where (R, OC, ) are coordinates on a geocentric spherical system.

The basic equation at 35 can be written without approximation as

Vdp = Vap + IA + IB (37)

where

f -a Vd 3 r (38)
A 2 7T 'a h -d ) (38)

and

1.. ro(2 /X tan , VW
IB = 2I JS L4 r x2ed +a tanV 8) do (39)

The integral IA contains the standard Stokesian term, but masked by

(a) the ellipticity of the meridians;

(b) the undulations of the topography; and

(c) the gravitational effect of the Earth's atmosphere.

l/r can be expressed as the standard zonal harmonic series (e.g., Jeffreys

and Jeffreys 1962, p. 634)

-:r - E ( P o (cos ¢) (40)
n = O
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As Vd satisfies Laplace's equation at all points exterior to and, in the limit, on

the Earth's surface, as discussed in section B3 of the Appendix, Vd can be ex-

pressed by the series

= , n 1 (41)
R,'+ 1I

n-O

The exclusion of the first degree harmonic places the reference ellipsoid at the

center of mass of the solid Earth, which does not coincide with the geocenter.

The resulting consequences have been explained in section 2.4. It follows that

-a a- sec ( - «c)

= -' (n + 1) + o f2 Vd (42)" +- - -a2h

where $b and Sc are defined in figure Al. The expression for the gravity

anomaly A g in terms of spherical harmonics is obtained from equation 34, on

defining the vertical gradient of normal gravity at the surface of the Earth. This

can be related to the equivalent value ((-a y/h)o ) at the ellipsoid by the Taylor

series

'ah ) +h a + ....

The first term on the right is well known to be (e.g., Heiskanen and Moritz 1967,

p. 293)
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2 Y
(- ) - (1 + f + m - 2 f sin2 4c + {f2}),

0

where all quantities are as defined in section 1.2.1. As yT on the reference

ellipsoid is related to y at the surface of the Earth by the relation

To = 1 + 2h+ {f2})

and a is related to R through equations A3 and A4 as

a = Ro (1 + f sin2 c +o {f2}) =R (1 -h+ f sin2 'c + o {f2}),

it follows that

2= 1 + f +m-3-- 2 f s in2)= 2 (1 + f + m - 3 f s in
2

c + o {f
2
}) (43)

7h a a R

as 92 /a h2 is given in section 2.3 as 6y/a 2 .

The combination of equation 43 with equations 33 and 34 gives

Ag Vd 2 V' 2 V8Ag= h R V+ - (V + V3-(W ° -U ))(1 + f + m - 3 f s i n2 +c)+ g 2 B h
-h R d2R

( v 2 .2
= ( R (f +m-3fsin2)+-(W-U0

)(l+f+m-3fsin2 ¢c)

- + - + f A (44)~(+-i) +-Sg{2 +o(fAg} (4
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The contribution of the second set of terms is o {100/W gal} while that of the

third is o {1 mgal} if (W0 - U0 ) is o {10 kgal m}. The terms of o(f} in this set

can therefore be disregarded without introducing errors in excess of o{10 1/. gal} .

The use of equations 41 and 42 gives

A 2 V' WU (2 V a V \
A g =21 (n-1) R n +

2
R+R\R

n--

+ g2 + {f2 g n 1 (45)

where cp is given by equation A37.

On using equations A15, 41 and 42, the integral IA at 38 can be written as

IA = IA 1 + IA2 (46)

where

1 (n+ A 1 AA+
IAl 2 -( (n + 1) dn 2,R E d, n /

1 rrR n=O 2

1T iJJR2 ZE, 2 n + n , = 1 T ~"~ 2 -A d or, n (47)
nd0

and

IA2 = 4 7J rVdo (48)

The second integral deals with quantities which are due either the topo-

graphy or the ellipticity of the meridian. The contribution from this integral is

f times smaller than that from IAl for the same region, except when tb is small
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and in those instances when (hp - h) is large in comparison to r. Even in regions

of rugged topography situated very close to the point of computation P, the con-

tribution of IA2 is at least an order smaller than that of IA1 as can be seen from

the discussion linking equations A17, A18 and A19. Equation 47 contains the

major contribution to I, including that due to the well known integral of Stokes.

The spherical harmonic model adopted for Vd in equation 41 is a necessary

intermediate in the combination of the effects of the gravity anomaly and the

disturbing potential. This provides an effective technique for obtaining a first

approximation for Vd through Stokes' integral with adequate accuracy, hence

permitting the use of an iterative method of solution of the geodetic boundary

value problem. For further discussion on the possibility of using non-iterative

procedures,. see section C of the Appendix.

The conventional procedure due to Stokes cannot be followed when solving

equation 47 without introducing approximations due to the following reasons.

1. R varies with doa.

2. The spherical harmonic expansion

2 n + 1 An 
2 Rn+ 2

only holds at and exterior to the surface of the Earth and is defined at

all points on the latter. In this case, the values at the Earth's surface

are defined for limited ranges of R given by R = R + o {f }such that points

on it are completely defined by the set {4c, X}.
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The standard Stokesian practice calls for the replacement of the spherical

harmonic term by a set of surface harmonics Gn, implying the relation

A g E Gn =E n n (49)
Gn-CC··C =n - 1> Ann + 

n=O nuO R

This technique which is valid on the surface of a sphere, next equates individual

harmonics of degree n by the relation

Rn+2
A = G

n
n ; 1 (50)

The method breaks down at the physical surface of the Earth as the variations

of R from Rm, though of o {f}, are nevertheless functions of the set { Oc, }). In

this case, A g', defined at equation 49, is related to the gravity anomaly through

equation 45 as

Ag' =Ln - An 2 VdAg' =E (n- 1)_, n = g + (51)
(ORn- 1 Rn + 2 '

co being given by equation A37 and cAg by equation A44. Note that Ag' is not

defined for all {(
c
, A), given R, unless R > R. where R is the radius of the mini-

mum sphere which is exterior to the solid Earth, with its center at the center of

mass of the latter.

It can be concluded that the replacement defined in equation 50 is valid if

the surface harmonic expansion of Ag' (a) refers to the sphere of radius R, and
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not the physical surface of the Earth; and (b) does not exist in those regions

where R is less than the geocentric radius to the local topography.

Any other interpretation would result in a loss of definition, causing approxi-

mation errors of order fhd, which' is unacceptable in terms of the accuracy esti-

mates specified for this paper. As Vd can be expressed by equation 41 at all

points exterior to the physical surface of the Earth, it follows that A g' also

exists everywhere in this same region, being defined by the first equality at 51.

It also has the characteristic of taking values at the physical surface of the

Earth defined by the second equality at 51. These values can be deduced from

observations at this surface, where A g' differs from the gravity anomaly A g

by magnitudes which are of order 1 mgal.

Equation 47 can therefore be written as

IA= 2jr f Rn2 2 (n- 1) G n d a, n1 (52)

without approximation. It should also be noted that

Al i AthR (am g +T Sto do (53)

again without approximation. The Stokesian procedure calls for the expansion

of 1/r in a set of zonal harmonics, using equation 40 and the use of the ortho-

gonal properties of surface harmonics when IAl can be transformed to
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AI =R f Z Rn 2 n +1 ( P (cos ) Ag' d(54)
n -O

This manipulation is not possible in the case of equation 52, without introducing

errors of order fIAl for the following reasons.

(1) R does not remain constant as {(c, ) varies over the Earth's surface.

(2) While surface harmonics retain orthogonal properties on integration

over any closed surface as illustrated in section B2 of the Appendix,

this does not apply to G
n
, which may not exist for certain {(c, A) as

explained in the discussion following equation 51.

The conditions for the recovery of Stokes' integral Is, correct to o{(f 2 I),

can be obtained as follows. As A g' and V d exist in the domain exterior to the

physical surface of the Earth, satisfying equations 51 and 41 respectively, let

Ag' and Vd take values Ag' and Vd'- on R. where

R = a + hmax (55)

h max being any number marginally larger than the maximum ellipsoidal eleva-

tion possible. The displacement dR along the geocentric radius between a point

at the Earth's surface and the sphere of radius R is given by

d R = R - R = hma
x

- h + a f sin2 Ac + o {f2 R} = o {f R1 (56)

Vd and A g are related to V
d

and A g' at the surface of the Earth by the Taylor

series
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g = Ag + (d R)i d' g) = g' + c
A9g' =Ag' + =ad g

i ! dRF

(d R)
i

d' (V')Vd =Vd+ ,
Td =d i ! dR

vd + Cv

The use of equations 57 and 58 in 53 gives

IA =2 Ij (1 + CA)

where

3V_
+ - +

2RK

3 cv)

2R/

3vd

2R

o {f2})] dr

R2
cA = - 1

r . 2

1
T= 2Rsin2

Equation 59 can be further partitioned according to the relations

IA1 = IS + I C

1= R2 ,+
2Sj

3Vd
-2j d 
2R /

and

3 V'g' + v'
2 R ( +

3 cv 3V'd

2R 22 R

dR
Fk

{f2) do + o {f Ic)
(64)

On appreciating the analogy that exists between equations A12 and 61, cA can

be shown to be

35

and

38

(57)

(58)

and

(59)

(60)

(61)

where

(62)
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1 + 2d+ o {f2 }
cA = R 1 (65)

(1 + C_)1 / 2

where

R

on lines similar to those used in the derivations of equation A14.

The first set of terms on the right of equation 64 contribute o {fs } except

when I is small and A R is dominated by the magnitude of hp - h. In such a

case, considerations similar to those expressed in formulating equations A17

to A19 apply.

The second set of terms is also of order { f A g }. While this is obvious in

the case of the last of the terms in this set, it is also apparent in the case of the

other two. The largest contribution to c g is due to the term obtained in equation

57 when i = 1.

C = dR +o f(dR)2 2 (67)L 'a R2 J

where aAg'/aR is well known to be given by (e.g., Heiskanen and Moritz 1967,

p. 117)

Ag' a a tan 2 hd f A g} (68)
aR axR =R 2 Jx - R

a ~R 2+ ~R
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The magnitude of this term is o{10-9 gal cm - }, giving cg = o {1 mgal} if

a i/a x: = o {1 arcsec (102 km)l }. In disturbed areas, this could be one order

of magnitude larger. In all circumstances, terms involving cg need only be

evaluated to the order of the flattening, to meet the accuracy requirements called

for in the present development.

Similarly, cv is given- by

72
Cv =dR ah + o (d R)2 V (69)

(a Vd' /a h) is given by equation 34 and the effect of the term containing c is f

times smaller than the contribution of (a Vd '/h) in the Stokesian term. Equation

64 can therefore be written as

jC 1 (N g, (cA + 3 Id R + 3 Vd 3 dR
c2f7 'JJ( ( 2 R/) 2R( R ) 9R / )

(70)

The solution of equation 63 is well known but will be traced out here for

completeness. From equations 41 and 51, I
s

can be written as

S 22 n1 (71)

n0 rn+2
As

CD A C

g' = (g') = (n - G n 1 (72)
n=O n=O

the replacement
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n +2 _

is valid and Is can be written as

1 1
1, -- C, fi27r r 2sin 2 cos - dq d a coJJZ n+is - 2 ~2 2 2n+l

4-T 1 4+7T n -
2 sin n-2

R = O() jP0 (cos ) d o (74)R i0o R

on using equation 40, Rp being equal to R from the definition of r at equation 61.

As R, Rp and Gn exist over the range of integration at all points on the surface

of the sphere of radius R, the use of the orthogonal properties of surface har-

monics gives

I s = - R(M {A g'})R= + 4 |f () Ag' da (75)

where

ID\ 

f () = E n ( ) P, (cos q) (76)
n-= 2

Ag' is related to the gravity anomaly Ag through equations 51, 57 and 67 as

2 dAg
Ag' =Ag+ - C + d R - + o {f2 A g} (77)

= Ag+o{lmgal} in undisturbed regions
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The Stokesian manipulation is well known to be obtained as follows

(78)f (V) = tl + t 2

where

t, = 2

n= 2
Pno (cos J) = 2

1

R
(79)R 1

3
Pno (cos 1) = -

R

RRP)n

Pn0 (COS ~) d R

3 fR R r
os JdR

on using equation 40. As

f RdR d R- R cos /

R r r
d R + Rp cos q

r + R -RP Cos 
frF cVdR

R r(r+R-R cos4)

+ cos qb
RT

dR+ dT

T + R - Rp co s 

= [r + Rp cos b log ( + R - RP COS b)]R

3 r+ R - R COS Sr
- - R) + RP Cos log 

39

and

t 2 =3Z
n= 2

(n- (R )
1

(80)

= [CRR

R
- P cos

R2

CDJoo o

R n= 2

1 Rp

R jR2
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Further,

Lim (r - R) = Lim R1 + - 2 -- cos - = - R cos ,
R-M K -a R R

and

Lim og P = log 2.
R-Co R

Thus

3 rT lr +R-R Cos -(t2 =R -Rp cos - cos og Co log (81)

and f(4) is obtained from equations 78, 79 and 81 as

f 2 R r = 2o--- R cos q) + - R cos-log [r R ]
= (R iR 2 R P[ 2R

=cosec -Iq + 1 - 5 cos 6 - 6 sin -3cos log in + sin (822 2

as R p = R and r is given by equation 61. As W0 - U0 is unknown, it is preferable

to separate it from A g ' before computations. This is convenient as Stokes'

function is insensitive to zero degree effects. On defining Agc as

g = g' - 2 (83)

where Ag' is given by equation 77, Is can be written from equation 75 as
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I s = 2 (W0 - UO) - R M {( gc) + 7T f ( gc d (84)

without introducing any approximations in the surface integral term, where

Agc = g + d R +o (f2 A g} (85)
g i R R

from equation 77, c¢ being given by equation A37 while cAg is obtained from

equation A44 as

1 V -a vcA- g2-2a--- + o {f 2 A g} (86)
ca t _ ~2 R +°

Notes:

(1) A gc is approximately equal to the gravity anomaly Ag. The second and

third terms in equation 85 are both of order fAg and hence do not have

magnitudes in excess of 300 / gal. The magnitude of the final term de-

pends on the variability of the Earth's gravitational field in the locality.

On the average, its magnitude is of order 1 mgal, though it could be one

order larger in regions of rapid change. As this term cannot be evalu-

ated until the terms ( a D/axa) are known, the contribution of the

Stokesian term is therefore determined by iteration. The solution need

be iterated only once and a convenient set of formulae for this purpose

is given in section 4.1.
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(2) No difficulty should be encountered in computing the atmospheric cor-

rections whose magnitudes are controlled by the model adopted for the

Earth's atmosphere. This correction, which approaches 1 mgal (IAG

1970, p. 62) should be applied as part of the routine when computing the

gravity anomaly.

(3) It would not be adequate to use the free air reduction (e.g., 0.3086 mgal

m- 1) in computing the gravity anomaly. Instead, the relation

2% [l^fm2 yo hh 2 f +o2 (f2 (87)
° a [2R a c (87)

should be utilized when computing normal gravity at the associated

spherop. The quantity h,, called the normal height, is obtained from

the observed differences in geopotential A W using the equation (e.g.,

Heiskanen and Moritz 1967, p. 171)

A [ f 
2
') AW + A (88)

+ (1 + f + m - 2 f sin + (88)

A W having the same significance as in section 2.4.

(4) The first iteration for hd will be obtained from Stokes' integral as be-

fore. This contribution, equivalent in significance to that provided by the

free air geoid in present day solutions to the order of the flattening,

need be calculated only once if (a) the gravity anomaly A g, computed

to o e 3 A g } using equations 87 and 88, were corrected for the atmospheric
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effects prior to evaluation; and (b) the radius of the sphere were taken

as R and not Rm .

(5) The initial iteration should also include the evaluation of the components

of the deflection of the vertical, using the Vening Meinesz integrals

(e.g., ibid, p. 111). The second iteration need only be the correction

terms which are more conveniently included elsewhere, as shown in

section 4.1, as the order of magnitude does not exceed 0.3 kgal m.

(6) It is tempting to introduce a function of the type

An
VO(l - -, nl

n0O Rn+l

in an attempt to combine the effects of IA1 and IA2 to give an integral

of the form

IA m =4 f (f) Aga do,

where

Aga = Ag (1 - ).

This technique is not unfamiliar in the literature but is not used in the

present development for two reasons.

(1) There is no physical validity for defining Vd (1 - 3) as a spherical

harmonic series unless Vd (1 - 8) satisfies Laplace's equation.

This cannot however be proved to be the case at the physical surface
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of the Earth where the height anomalies are to be defined. Further

8 is a function of both the topography and the Earth's ellipticity.

It has no definition except at the surface of the Earth. Thus while

8 can be completely defined by a set of surface harmonics, it is

invalid to equate it to a set of spherical harmonics. The differenti-

ation between the two cases is important as the definition of the

gravity anomaly from the disturbing potential is implicitly based

on the existence of radial derivatives of the latter. This follows

only in circumstances where the spherical harmonic representation

has a physical basis.

(2) Difficulties are posed in interpreting the location of the center of

the reference ellipsoid as the harmonic n = 1 is inadmissible in

the solution. Also see section 4.2.

4. SOLUTION SUMMARY AND DISCUSSION

4.1 Equations for a Solution to Order e3

From the development in section 3, the height anomaly hd is obtained from

equations 11, 37, 38, 48, 70 and 84 as

hdp = Nfp + Ncp (89)

where

Nfp Wo UO _ M{Agc} R do (90)
P R () g der (90)
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and

P =-+2C tan /3a + V, (x + [3 (cA + 3 dRR) _ cj])Ncp = pp 21 Ta
r

L xa
tan a 

+ Vd
r2 +TR 

M + 3-dR3 Ag

- dR + Ag' A + 2 R + O{e3 Ag dcr (91)

Certain terms have been adjusted in equation 91 on the understanding that

Ncp = o {10
-

1 Nfp} , thereby ignoring effects of order fR in its formulation.

The constituent terms in equations 89 to 91 are defined by the following relations,

the equation numbers referring to their identification in the text.

Vd = Vd - Va (33)

while

Agc = Agl + Ag2 (92)

where the use of equations 85 and 86 gives

aV Va va
Ag, = Ag + - + 2 (93)

-h R

and

Ag2 = -c _ g2 + dR ag+ o{e3 Ag} (94)

Also

-agEga 6, tan nc 2f Mg
h a=1 a RM R2 aha=

I
~x~ R 2~~~~
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and

c¢ = f +m - 3f sin2 4¢ + o{f 2}

m being defined in section 1.2.1. The angle p is obtained from

q = cos [sin <k sin cp + cos <, cos ¢cvp cos dX]

(A-37)

(A-8)

where

(A-7)dA = A - X

The geocentric distance R is related to the mean radius of the Earth Rm and

that of the minimum sphere enclosing all topography (radius R) by the.equations

R = Rm (1 + CR) (A-5)

where

h
CR h +f

m

(1- sin2 fc) + of
2

j

and

R = R + dR

where

dR = hm.
x

- h + ,f sin2 bc + o(f2 R}max

r = r
o

(1 + Cr)1 /2

r = 2R sin 1 

46

(A-6)

Also

(56)

where

(A-13)

(A-12)
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and

In addition,

Cr = (0-) + CR + CR + o{f 2 }

- I

r = 2R sin2
2

1 +2
R

cA= R. 1
(1 + c)/

while

c- I-IC7= A -
dR + dR

- P + o (f2}
Rm

AR = CRp - CR

The other quantities requiring definition are

= 2R - R cos (Ab + $)] - 1
r2 P

avd ,6 <f any
d tan = - y tan 8, + Nf -
xt

a
x ax

Xa R
- tan = 

tan 8l + o{e2 Ag}

(1 + cx) sin dh
dr

1 -
(2)

cos Ip- O
Cx = - 1

Cos (2 + +a0 + 8)
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(61)

(65)

and

(66)

(A-1l)

(A-17)

where

(A-32)

(A-29)

(A-27)
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= R cot - 8 + o {f2} if u > 5°

2R 2
m

8 = f sin 2q
c

cos a,

dh
dr cos a tan 31 + sin a tan 3 2

The quantity A g in equation 93 is given by the relations

Ag = g - y,

(A-26)

(A-10)

(95)

where g is the value of gravity observed at the surface of the Earth, while y is

defined by

T = TO + Ay,

where y0 is normal gravity on the reference ellipsoid and

Th = [1 + f + m 2 _ 2f sin2 + o {f2 (87)

the normal height hn being obtained from the difference AW in geopotential be-

tween the geoid and the point at the Earth's surface by the relation

n= + . + ( f +m +- 2f sin 2 +o{f3}n To ayT
°
aT° 0AWl Wl )]1+m A (88)
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Alternately,

O
-2AW + f + m-2 2f sin 2 c + o{f 2 (96)

a 2 aT0 .

Notes:

(i) A rigorous solution is obtained only if the reference ellipsoid always

lies within the physical surface of the Earth. Such a figure is smaller

than the figure of best fit by approximately 100 m. If the values of

normal gravity were then based on this figure plus an independently

determined value of kM, all gravity anomalies will be too small by

o (2 x 101 mgal}. The linear effect in Nfp is contained entirely in the

first two terms of equation 90 as Stokes' integral is insensitive to effects

of zero degree.

(ii) Ag' is defined by equation 51. In the context of the note to equation 91,

it would suffice if A g' were taken to be equal to the gravity anomaly A g

for purposes of evaluation to order e 3 hd.

4.2 Procedure for obtaining a numerical solution

The equations summarized in section 4.1 completely define the solution of

the geodetic boundary value problem to the order of the cube of the eccentricity.

The form of these equations and the discussion in section C of the Appendix

indicate that a non-iterative approach to the solution is not possible as the

evaluation of Nc at equation 91 requires a knowledge of Vd which is obtained

from hd using equation 33, and the components 5a of the deflection of the vertical i.
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It is well known that Nf contributes over 90% of the magnitude of hd (e.g.

Mather 1971b, p. 89). This is equivalent to the free air geoid in solutions to the

order of the flattening. In determinations to order e3 hd, the same contribution

is obtained by the use of A g , defined by equation 93, in Stokes' integral, as ex-

pressed at 90. Let the numerical value so obtained be Nf1 while the value de-

duced from equation 33 for VI be Vd .

The only other contributions with magnitude greater than fhd arise from

the terms at A17 and A32, the former being of significance only when large

topographical undulations occur near the point of computation (ibid, p. 86). As

Vd = Vdi + o(10-' Vd),

the use of Vdl in lieu of Vd when computing these topographical corrections will

result inavalueNc for N
c

which is correct to o {10- 1 Nc } (i.e., to +lm). Let

1
Vd2 = Vdl + Ncl = V

d
+ o {10 - 2 Vd}

The computation of Ag2, defined by equation 94, using Vd2 and the equivalent

values of o (ibid, p. 88) and its use in equation 90 will give the balance contri-

bution to hd from the expression for Nf, the magnitude being estimated at fhd,

though it could be as large as 10 -2 hd in mountainous regions. If this magnitude

is Nf2 define

3 = Vd2 + 7 Nf 2 = Vd + o (102 Vd).7
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The use of either Vd 2 or Vd3 or in lieu of V d ' when evaluating equation 91

will result in value Ne2 which is correct to o{10-2 Nc) (i.e., to +10 cm). Defining

1
Vd4 = Vd3 + -Nc2 = Vd + 0 {e3 Vd},

equation 91 should be iterated a third time using Vd4 for Vd to give the final

value of Nc3 for Nc. Hence

hd = Nfl + Nf 2 + NC3 + o {e3 hd} (97)

These evaluations must be completed on a global basis. No solutions of the

geodetic boundary value problem to order e 3 hd can therefore be obtained from

data restricted to a local region.

Notes:

(1) A complete solution requires the evaluation of Nc to be iterated three

times. As pointed out in section C of the Appendix, it is not possible

to avoid the iterative procedure. Considerable economy could be effected

if the number of iterations could be reduced by obtaining a more accurate

estimate of Vd after the first iteration. Unfortunately this cannot be

achieved by the analysis of the orbital perturbations of near Earth

satellites as results obtained to date indicate a lack of sensitivity to the

topographical effects.
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(2) As pointed out in the introduction, the principal need for an accurate

geoid solution is in the study of sea surface topography. A resolution

to -10 cm can be obtained by just 2 iterations of equation 91.

(3) It has been assumed that a2Ag /ah2 has a negligible magnitude. This

would be a reasonable assumption over oceanic areas, but may be a

limitation in mountainous and gravitationally disturbed regions. Such

an effect is of consequence only if it holds the same sign over consider-

able extents as discussed in section 4.3. It would not be unreasonable

to assume that the net effect is negligible for studies of the sea surface

topography.

(4) The magnitude of Da /ax, has been assumed to be of order ±1 arcsec

(102 km)- , when the contribution to A g2 is of order 5 x 10-' mgal.

This magnitude can be considered to be an average value (e.g., Mather,

Barlow & Fryer 1971, figs. 3.2 and 3.3) though it could be a factor of 10

greater. In such disturbed regions, which are characterized by short

wavelengths in sa , both positive and negative values are equally likely.

The overall effect is therefore small unless the disturbed regions lie

close to the point of computation. It should also be noted that such re-

gions invariably occur in areas of rugged topography. On the other

hand, the Australian data referred to above indicates a significant

number of these disturbed regions are not correlated with any topo-

graphical feature.
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(5) The evaluations of Nf and Nf2 should be based on algorithms seeking

a precision of 5 parts in 104 in the final values.

4.3 The Representation of the Gravity Field

It must be established that the global gravity field is capable of definition

with adequate precision to afford the determination of hd to o (e3 hd). There are,

in general, two techniques available for this purpose. The first is the determina-

tion of gravity anomalies at the surface of the Earth by direct determinations

of g. The second is the determination of the disturbing potential Vd from the

analysis of the orbital perturbations of near Earth satellites. Accuracies at-

tained at the present time in the determination of g are controlled by the global

gravity standardization network. It is expected that all gravity holdings will be

converted in the near future to values referred to the International Gravity

Standardization Network (IGSN 1971) whose absolute accuracy is estimated at

±0.2 mgal (Morelli et al 1971, p. 5). This figure is a factor of 4 inferior to the

+50 pu gal figure implicit in the formulae listed in section 4.1. Individual gravity

ties to stations in IGSN 1971 can be made to ±0.1 mgal. This fighre will be

shown to be acceptable if the density of stations in the gravity standardization net

is sufficiently high.

To investigate this further, it is necessary to analyze the computational

procedures adopted in evaluating the major contribution called Nf1 in section 4.2.

For simplicity, this will be called the Stokesian contribution even though this is

not strictly so in the case of a second order solution. On excluding the terms of
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zero degree and adopting the system of quadratures for the evaluation of the

Stokesian term, equation 90 can be written as

N~cm) = ( cm) 7T2 n2 p. fA/P\ j(mgaI

477y x 3.24 x 104 i j

=K E n2 E Lij f(ij) Ag,(mgal) (98)

i j

where Ag.i
j

is the value of the gravity anomaly representing an n
°

x n
°

square,

K ' 1.58 x 10-2 (99)

and / = cos X
c

or sin qb, depending on the system of coordinates adopted.

It is required that the errors eN in Nf due to the adoption of the quadratures

technique be kept to within the ±5 cm limit. The errors in each of the individual

products being summed, could be of two types. The first is of an accidental

nature, characterized by the subscript a and the second is systematic in

character, denoted by the subscript s. It is well know that the magnitude of the

latter per individual term in the summation, should be significantly smaller than

the former as it holds the same sign over a considerable number of terms.

In the case of the total accidental error e N in N obtained from Nt sum-

mations, the contribution eNta from a product of the form

t = ku f(i) g n 2 (100)
1
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should not exceed eNa /-Nt.' The total systematic error eNs in N f due to con-

tributions eNts from each of the terms at 100 bears the relation

eNt s <o {eNs/N t }

if the systematic error persists with the same magnitude and sign for all Nt

terms. If Nt = o (10 6}, then eNtS = o (10 - 3 eN . In practice, it is more likely

that eNt exhibits systematic error characteristics over some subset Nt of

Nt, behaving as an accidental error over the Ne larger subsets, where

Nt
o(N}) = o { .

The evaluation of a surface integral by quadratures calls for the sub-

division of the surface into infinitesimally small elements, the evaluation of the

kernel of the integral at each of these elements, and the summation of each of

these magnitudes. In evaluating equation 100, it is necessary to adopt values

for A, f(qb) and Ag to represent the n i x ni degree square mentioned in equation

98. If current practice were followed, the value of n i and hence Nt, would

depend on the following factors.

(1) The error of representation E {Ag}n of a n0 x n0 square, as defined in

section D to the Appendix. This is a measure of the variability of A g

within a square of a given size. Individual values of E {Ag}) are well

known to depend on topographical variations in the case of the gravity
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anomaly but the magnitude of E {Ag }n can in general be assumed to be

representative of a given value of n for purposes of statistical estimation.

(2) Stokes' function f(4) should vary linearly over the region. If a (¢, a )

system of coordinates were used, ,. = sin p and it is convenient to

define

F() = f () sin k (101)

which is more stable than f(¢) for small ¢.

(3) No correlation should exist between the variations in F(P) and Ag from

the value adopted for the representation of the square.

Consider in the first instance the representation of A g for the n x n square

as afforded by the mean value Tg for the square, situated at the square center

at which point the value of F(t) is F(b). If each n° x n° area were subdivided

into N m° x m° equal area sub-divisions, let the individual values of the gravity

anomaly and F(¢) be related to Ag and F(¢) by the relations

Ag i = Ag + cg
i

and F(bi) = F(qj) + c~i.

The total contribution to the final integral by the n° x n° area is given by

N

t =Km2 , (Ag + cgi) (F(q) + ci )

i=l

N N N

=Kn 2 AgF(Ti)+ m2 K F( E c +m2K g cCi + m2K E c i c,,,i (102)

il1 ii i(=l
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where

N = (n/m)2 (103)

The first term in equation 102 is the contribution due to the adoption of the

area mean at the center of the n° x n° square while the second and third are

zero by definition. The final term will tend to zero if there is no correlation

between Ag and F(8j) as mentioned above. This possibility can be lessened further

by restricting n so that variations in f(8) are linear over the area to the desired

precision. In the present case it is desired to keep eN down to o {e3 hd)= o {+5 cm).

Hence the departures of F(8) from linearity over the n° x n° should not exceed

e 3 F(8). The magnitude of variations in f(O) and F(O) are functions of p. Table 1

gives the relationship between the square size n and 8 which satisfy the linearity

relation.

The use of Stokes' function f( ) to evaluate equation 98 for all 8 would in-

volve approximately two million summations if the above limits were adhered to

and the effect of representation errors from Stokes' function were to be kept

below the requisite magnitudes. The function F(b) defined by equation 101 is

more stable for small q but less economical to use than f(8) for large p. Nt

can be reduced by a factor of 3 if F(hb) were used to evaluate equation 98 when

8 < 1° while f(p) were used for all other p. This calls for the use of data de-

fined on a local coordinate system (8, a) for small 8 instead of the more

universally applicable (kc, k) system. Consequently, the definition of the former
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data set from the latter must precede local computations which is why it is

preferable to restrict such conversions to as small a region as possible.

The effect of variations in Ag with position within the n° x n° square, on e N

and the consequent representation errors, are best studied by analyzing the

statistical characteristics of Ag. The gravity anomaly as determined at any

point on the Earth's surface is based on the following data.

1. Observed gravity.

2. Geocentric position of the gravity station.

3. The difference in potential AW with reference to the "geoid."

If Stokes' integral is to be solved by quadratures, it is relevant to investi-

gate the errors which arise in the computed value of Nf due to the representa-

tion of a finite element of surface area by a single gravity anomaly.

A useful function for the study of eN is the error of representation E {( g)n

for an n° x n° square (e.g., de Graaff Hunter 1935; Hirvonen 1956; Molodenskii

et al 1962). More details of this important function and numerical magnitudes

are given in section D of the Appendix. An empirical formula which describes

the behaviour of this function is

E{Ag}n = + C
1

v/N (104)

A value of C1 which fits most modern data in regions where the topographical

gradients are small is
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C1 - 12 for 1/4 0 < n < 5°

for n in degrees and E {Ag}
n

in mgal. For ~b < 1/4 ° , a better definition of

E {( g}n is obtained if the relation

E{Ag}j = + C2 n (105)

where C2 - 3 x 10 under the same set of conditions as before.

The first problem to be looked into is the effect of representation errors on

eN if E {A g}n is assumed to have random error characteristics. In such a case,

any other determinations of the gravity anomaly field in a specified n° x n ° area

which is represented for computation purposes by an adopted value Ago, would

deviate from Ag
o

exhibiting characteristics implicit in the normal distribution.

If square sizes in excess of n = 10 are excluded as these violate the prescribed

linearity requirements of Stokes' function, as illustrated in table 1, it is interesting

to verify whether variations in Ag over small squares are dominated by the

gravity anomaly gradients -A g/au,, ua forming an orthogonal and isometric

angular coordinate system in the local horizon.

Let the smallest sub-division of relevance be an m° x m° square whose

error of representation satisfies the relation

E{Ag}
m
: o{e3 Ag} = o{50 ~zgal} (106)
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If equation 105 were true for very small n, m - 0.002° . The number of such

regions in a larger n° x n° area would be N defined in equation 103. The gravity

anomaly Ag and F(Ob) in the larger n ° x n° square could be represented by Taylor's

series of the form

uj
Ang Ag + u - ( (107)

and

F(f) = F(f0 ) F+ ()4a (108)

where the origin of the ua coordinate system is at the center of the n ° x n°

square, the subscript o referring to values at this same point. On restricting

the value of n to those square sizes where

F(k)< o{e3 F(P)} for allj > 2 (i.e., n < 0.5°),
a

it is required to verify whether

b' Ag < o{e3 Ag} for all j > 2 (109)
buJa

when n < 0.5 ° . From equation A49 and 107

E{Ag}n =±- 1 
u

a
i /

N N [ /2

g2 aAg aAEg 1(110)
~bUl / i--1 2i=lNa1 a
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If the m° x m° grid were symmetrically distributed about the n° x n° square,

it is easy to show that

N l/2 ri i n2(1 1
N ai na a 12

i1 lI 2 n
and

N

-N Uli U2 i = 0

i--1

Hence equation 110 reduces to a relation of the form

E {Ag}
n

= C n

which agrees with the observed characteristics of E{Ag } as described by

equation 105 for small n. Practical experience however indicates that sub-

stantial deviations occur from this simplistic model especially in regions of

rugged topography when the square size has to be reduced to an unacceptably

small area to meet these specifications of linearity. It can be concluded that

gravity anomaly variations are linear for square sizes under 0.3 ° , for purposes

of statistical estimation, all departures having the characteristics of local noise.

The contribution t of an n° x n° square to Nf and hence hd, as obtained by the

evaluation of Stokes' integral by quadratures, using N m° x m° squares on the

basis of equations 98 and 100 is

N

t = K m2 E A gi F (b i )
i= I
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The use of equations 107 and 108 gives

N

t = K m2 NA go F (I'o) + F (qo ) g u i
U:1

N _ (_ N
F) cos A' + cos A' u + ( A

t+ a gsin A' u i + F ( 2 + {e 3 t}

-a UI 2 2 - i
i--1 i-- i

uli u 2 ai

+ o {e3 t} (112)

on using the results at 111, K being defined by equation 99, while A' has the same

significance as at A 21. The magnitude of the contribution of the third term is

governed by that of a F(¢)/3 4 which is two orders of magnitude smaller than the

first for n > 0.10, as can be seen from table 1. As the square mean A g n is given

by

N N

i=1A in I

on using equation 107, it can be seen that the second term in equation 112 is also

taken into consideration if Ag. were adopted instead of Ag
o

when representing

an n° x n° square for the evaluation of Stokes' integral by quadratures. The terms
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involving products of the type (3 F(qb)/au,) x ( Ag/au ) can be considered to have

the characteristics of accidental errors only if no correlation existed on a large

scale between variations in F('q) and Ag. While such terms will make contribu-

tions of significance when t in equation 112 is computed from a single n° x n°

square represented by Ag. instead of N m° x m° squares, the error is unlikely to

have a regionality in excess of 1°. The use of typical values for the case when

n = 0.10 indicates that the total contribution of this product term is less than

0.1 mgal. The figures in column 2 of table 2 show that such errors will not

affect the final results to +1 cm even if the signs of aF(lo)/a q, and -Ag/ u

were to hold the same sign over a 10 x 10 area.

The above discussion may be summarized as follows: (a) The use of the

mean value based on an evenly distributed sample gives a better representation

than a single value when evaluating equation 112, the improvement being a func-

tion of the number of the sample and the moment of the distribution of gravity

stations about the square center. (b) The nature of the gravity field is such that

any residual error due to the use of a tenth degree grid instead of smaller sub-

divisions in non-mountainous regions has an effect less than 1 cm on the final

value of Nf. Also see section D of the Appendix.

On adopting the basic square sizes specified in table 1, the remaining error

characteristics can in the first instance be treated as random. The error e t a

in t due to the error of representation E (Ag )m of the N constituent m° x m°

areas is given by the addition law as
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eta =Km2 ( [F ('1) E {A g}m
]

1/2

{ (om~i- )}I

Over a limited n° x n° region F(q) can be represented by the first two terms of

a Taylor's series when

N

i=l

F (q)2 = N F (oP) 2 + F (¢)+2F(tk°) -

NI d 'i + O
i=1

{(¢¢P) /2
f( aQ qJ

= N F ( 0 )2 [1 + 0 {10-3}]

as

N

'd d i - 0.

i= 1

On using equation 103 and noting that IF(q) I < 2.5,

eta = -+ {K' m n E {A g}m (1 + o {10-3})}

where

K' = 4 x 10-2

The accumulated accidental error eNa in Nf is given by

180)"2
nJ

eN ± 36{(0 et} = -+o {K" m E {A g}m}

where

K" = 10.
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Column 3 of table 2 gives estimates of eNa for various values of m in

column 1 which represent the basic grid on which gravity stations are located to

define the global gravity field for the evaluation of Stokes' integral by quadratures.

It is also necessary to estimate the effect of an error e t in evaluating t

which retains its sign over an to x { o area. For purposes of estimation,

assume et, to retain its numerical magnitude and sign over the larger area.

The error et s in the larger block is obtained from equation 112 as

+o (~·~ts
where

ets + K' n2 eg,

eAg being the systematic error in the gravity anomaly representing the n ° x n

square, K' having the same definition as in equation 116. The total contribution

eNs to Nf is estimated as in the case of equation 117 to be

eNs = + o {K" eAg} (118)

Column 2 of table 2 gives estimates of eAg for various values of X, specified in

column 1, which ensure that eNs = O e3 hd).

The following conclusions can be drawn concerning the evaluation of Stokes'

integral by quadratures.
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1. The most critical factor is the departures from linearity of F(/), defined

by equation 101. The use of F(qb) in practice is expensive as the (qp, a)

system of coordinates and not the ( Xb, X) is used in computations, re-

quiring the utilization of ring techniques which are less economic for

computer use than the geographical square system. This is true even

when use is restricted to those regions where q < 30 and f(qp) is unstable.

Computations with Stokes' function in such regions calls for a finer

sub-division in representing the inner zone gravity field on the lines

described in table 1 as f(b) = o 10 for ) = o for 0.1 ° } while it is of

order 102 for b = o {1°).

If this were not done, the terms ignored in equation 115 could be

as large as the magnitude of those considered. Further, K' in equation

116 could in such a case be 2 - 3 orders of magnitude larger. Thus the

four tenth degree squares within 0.1° of the point of computation would

contribute + o {0.3 cm} toward e N while the 100 tenth degree squares

within 0.5 degrees would give rise to a further ± o { 1 cm } due to

departures from linearity (of order e 2f(qj)).

2. In view of the limited errors introduced into the result, it can be con-

cluded that a global gravity field based on definition at corners of a

0.1 x 0.1 may be adequate for the evaluation of Stokes' integral by

quadratures to order e 3 hd (+ 5 cm) if correct computing procedures

were adopted and the gravity anomalies were free from systematic

errors over large extents as specified in column 2 of table 2.
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3. It is desirable that a procedure similar to Rice's circular ring method

(Rice 1952) be used to compute the inner zones when F(lk) should be

used instead of f(l ) to circumvent the instability of the latter when

V< 10. This instability is not a consequence of variations in Ag and

an adequate gravity field could be interpolated from the 0.1° x 0.1 

grid without introducing significant error in the final result for studies

of sea surface topography where effects of very short wave lengths are

of no concern.

4. The observation that interpolated values are not necessarily inferior to

measured gravity anomalies was also made by Soviet geodesists

(Molodenskii et al 1962, p. 172). The writer's own experience is that

the extension of the gravity anomaly field represented by values on a

uniform grid, to smaller subdivision in undisturbed regions, is stable

without significant loss of accuracy (Mather 1967, p. 134). Thus if a

0.050 x 0.05° grid were obtained by interpolation from a uniform 0.10

x 0.1 ° grid on which EAg ) 0 1° = I 2.5 mgal, then E{Ag} 0 05 is held

at this same value for the interpolated values, instead of the ±1.5 mgal

estimated from equation 105. Thus the use of a 0.20 x 0.2° grid in lieu

of the tenth degree grid as the fundamental basis of observations would

result in eN = ± o 6 cm).

5. While considerable laxity can be tolerated in the accuracy with which a

reading represents a basic (i.e., tenth degree) square, the effect of
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systematic error which retain the same sign over considerable extents

has to be carefully watched. Table 2 shows that errors of 0.1 mgal

which hold their magnitude and sign over 500 km can affect the com-

puted value in excess of the specified limits of error. This type of

error can be due to one of three causes.

(a) Errors in the global gravity network controlling the gravity values

used in the computations.

(b) Loss of accuracy in unifying the elevation datums in relation to a

globally acceptable "geoid."

(c) Lack of precision in the geodetic coordinates used to compute the

gravity anomaly as a consequence of regional datums not being re-

lated to the geocenter as described in section 2.2.

Thus IGSN 1971 can only be considered adequate in controlling the gravity

fields in solutions to order e3 if errors in defining individual station values in

the net were uncorrelated and the interval between stations was not in excess of

200 km. Neither of these criteria are likely to be met. On the other hand there

are no limitations to present day meteorology which would inhibit the establish-

ment of a global net with sufficient precision. Absolute station accuracies could

be held at ±50 A gal as discussed earlier in this section using techniques similar

to those used by Sakuma (1971).

The unification of the elevation datums is equivalent to defining the geoid

to a degree which has not been achieved as yet if the order of accuracy implicit
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in this study is to be realized. The first stage in such a definition would be the

adoption of a common epoch to which all so called "Mean Sea Level" datums are

reduced. The principles underlying the establishment of such datums for a re-

stricted region are well known and will not be discussed. The second stage calls

for the definition of the sea surface topography and its departures with respect

to a level surface which are stationary over long periods of time. The solution

of the boundary value problem to order e 3 requires that errors of long wave-

length in the definition of geopotential be kept to o {0.15 kgal m}. This could be

achieved without difficulty if the ocean surface were an equipotential, on allow-

ing for tidal and meteorological variations. Unfortunately, the comparison of

tide gauge readings with the results of geodetic levelling have indicated the

existence of stationary departures of the sea surface from an equipotential as

reported in section 1, both in the United States and Australia. As current prac-

tice refers differences of geopotential to the sea surface instead of the equipo-

tential, it becomes necessary to look into the effect such a procedure has on the

computation of geoid heights with an accuracy of ±10 cm, which in turn calls for

errors of less than ±15 cm in the definition of the geoid as a datum for elevations.

4.4 The Role of Satellite Solutions for the Gravity Field in Solutions of the

Boundary Value Problem to Order e 3

The characteristics of the Earth's gravity field can be established by two

different techniques.

(a) The measurement of gravity at discrete points at or near the Earths surface.
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(b) The determination of the disturbing potential from the analysis of the

orbital perturbations of near Earth satellites.

Solutions at (b) are interpreted in terms of spherical harmonic coefficients

which can then be downward continued to the surface of the Earth with minimum

mathematical complications. As Laplace's equation is satisfied at finite eleva-

tions exterior to the Earth's surface, the disturbing potential Vd of the solidd

Earth satisfies equation 41 which can be written as

IZ A nl (41)Vd = An n
/0 R n + i

where it is customary to express A in the form

n

An - k M an E Cnm (119)
m= 0

Cnm being defined by equation 25. The absence of the first degree harmonic

places the center of the reference ellipsoid at the center of mass of the solid

Earth.

The disturbing potential Vds as used in the analysis of orbital perturbations,

is defined as that which causes the geopotential to deviate from that of a sphere

with the same mass as the Earth. A symmetrical mass distribution is also im-

plied when referring perturbations to the model adopted for central force motion.

It is this potential whose derivatives define Lagrange's equation of planetary
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motion (e.g., Kaula 1966, p. 29). As the gravitational effect of the atmosphere

is estimated at less than 10/ gal at 30 km elevation, with the effect falling off

rapidly with increase of elevation (IAG 1970, p. 72), it can be assumed that

Vd = Vd + o {e 3 Vd}

at orbital elevations. The term of zero degree Vd0 in Vd
' has no effect on orbi-

tal perturbations though its numerical magnitude could have a scaling effect on

the orbital parameters used in the evaluation of the coefficients at 119. A further

difference between Vd, and Vd is due to the ellipsoidal reference model used in

defining the latter as described in section 2.2 in contrast to the spherical model

used in obtaining Vds . If the effect on the gravitational potential is Vd, , then

Vds = V VdO + Vde (120)

On taking these factors into account when evaluating the coefficients C a nm in

equation 119, the height anomaly h d at the surface of the Earth is given from

equation 33, 41 and 119 as

hd = M E ( Cnm_ -_ a + o {e3 hd}, n/1 (121)
n =O m=Y 0
n=O m=O

where R, Va and y refer to values at the relevant point at the surface of the

Earth. The infinite series must by definition converge to the limit specified by
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equation 121. The evaluation of the coefficients C, nm defined in equation 25, by

the analysis of orbital perturbations, is dominated by two effects.

(1) The damping effect of the term (a/R)n as R > a (e.g., see Mather 1971c,

p. 67). Consequently the coefficients of degree n less than some limit-

ing value n s are well determined, n s being a function of the orbital

elevation of the satellite.

(2) The effect of resonance between the values of the set (n, m} and the

orbital period. This causes certain coefficients which by themselves,

make no contribution of significance towards the representation of the

Earth's gravitational field, to have marked effects on the perturbations

of those orbits with sympathetic parameters. As a consequence, all

orbits are sensitive to certain resonant harmonics whose identity can

be predicted from the orbital elements (e.g. Wagner 1967).

At first glance it would appear that a very large number of satellites in a

variety of orbits would afford a means for the complete determination of the

Earth's gravitational field. The costs involved make such evaluation unlikely due

to masking effects which make it difficult to separate some of the resonant terms

unless adequate variations were available in the orbital inclination. Serious

thought should be given to the role concepts of resonance should play in solutions

of high resolution for the Earth's gravitational field at the surface of the Earth

as it is most likely that only a limited number of satellites will be available for

the task. These accurate determinations will suffer from a loss of resolution if
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not restricted to a limited interval of time. If such is the case, it may be

preferable to treat higher degree resonant effects as sources of orbital pertur-

bations rather than signals from the gravity field which could be meaningfully

translated into representations at the surface of the Earth.

The gravity anomaly at the surface of the Earth is obtained from equations

41, 45 and 119 as

co n

kM~ 1, /a\" W 0-UQ(V av\ 1
g = (n - 1 - 2 c4,) (- E .Cnm + gW2+g + o { g}, (122)

2 k R aR Dh/ 2
n=O m=O0

n 1

The comparison of the values of A g computed from the Ca nm determined from

the analysis of orbital perturbations with those established from surface gravity

measurement on allowing for equation 120, provide an index of the success with

which a truncated spherical harmonic series (i.e., n < n ) can represent the

gravity anomaly at the surface of the Earth. This could be extended further by

incorporating those harmonics in the range ns < n < nt from surface gravity to

enhance the representation provided by the spherical harmonic series, thereby

increasing the range of the power spectrum and reducing the residuals on com-

parison of deduced and observed values of the gravity anomaly at the surface of

the Earth. Such concepts assume that those C for n < n as determined from

orbital perturbations were free from error as were the values of Ag at the sur-

face of the Earth. It also has the advantage that errors in the framework con-

trolling the gravity datum at the Earth's surface, which is established with

73



77

difficulty, can be eliminated or at least minimized in the representation of the

global field.

This procedure is not always strictly followed in common practice when

general adjustment techniques are used to minimize residuals without holding

any of the quantities fixed.

The variance of gravity anomalies at the surface of the Earth is approxi-

mately 1200 mgal2 . Solutions to (20, 20) absorb over 90% of the power inherent

in the representation (Lerch et al 1972, p. A12). Thus

M {(A go - A gs)2
) = 100 mgal2 , (123)

where the subscripts o and s refer to terrestrial and satellite determined values

respectively. The absorption of this balance 10% of the power spectrum is

likely to require a great increase in the number of terms though some of this

residual is due to deficiencies in the surface gravity data. From a study of the

error of representation, given in section D of the appendix, a (20, 20) solution

can be considered to be equivalent to a representation on an 0.5 degree grid only

if the comparisons represented at 123 were with individual gravity values. This

is not the case, as the surface gravity values were in the form of five degree

area means. The conclusion which can be drawn is that the (20, 20) representa-

tion is equivalent to a global 50 x 5° coverage with 5 - 6 readings per square and

zero moment of distribution about the square center.
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The use of spherical harmonic representations of the gravity field to achieve

the definition of the gravity field required in conclusion 2 to section 4.3 (i.e., a

tenth degree grid) would require that the former absorbs all but 9 mgal2 of the

power spectrum on comparison with individual values. This will be equivalent

to absorbing all but 0.1 mgal2 of the power spectrum on comparison with ade-

quately computed one degree area means, each based on 100 evenly spaced values

with zero moment of distribution about the square center. The latter would in-

volve analysis up to degree 180 (over 3 x 10 4 coefficients). It has yet to be

established whether such refined determinations of the gravity field are possible

by satellite to satellite tracking of low altitude satellites.

The requirements for a complete solution of the geodetic boundary value

problem to order e3 (i.e., ±5 cm in hd) is a gravity field representation based

on at least a tenth degree grid. This is equivalent to a spherical

harmonic representation where n = 1800, involving o { 3 x 106 )Yterms, which is

not significantly different from N t in table 1. The use of such functions can

therefore be justified in-this case only if the amount of surface gravity informa-

tion on the tenth degree grid were significantly low. It is unlikely that any

favorable claim can be made at the present time regarding the achievement of

this degree of resolution from the study of orbital perturbations. It would there-

fore appear that satellite determinations of the gravity field could well be inferior

for the complete solution of the geodetic boundary value problem to ±5 cm if

(a) surface gravity data were available globally on a tenth degree grid; and

75



79

(b) systematic errors in the gravity anomalies were held to below ±50/t gal.

The low degree harmonics from orbital perturbations could however play a

significant role in such solutions when (a) is true but not (b). The three major

sources of systematic error in gravity anomalies which have long wavelength

are given in note 5 to section 4.3. While (c) is likely to be resolved with minimal

difficulty, systematic errors at (b) are complex primarily as a consequence of

possible stationary departures of the sea surface from an equipotential. If the

gravity anomalies have been corrected for effects at (b) and (c), any residual

long wave discrepancies between surface gravity data based on adequate samples

and the low degree harmonics obtained from the analysis of orbital perturbations

and with the required precision, should provide an effective check on the

systematic error propagation of the type at (a) in the note mentioned above.

The results obtained from the analysis of the orbital perturbations of satel-

lites in near Earth orbits are unlikely therefore to provide the representation of

the gravity field which is required for a complete solution of the geodetic boundary

value problem to order e3 . The determination of the low degree harmonics in

this representation with adequate precision will however be invaluable in resolv-

ing the systematic errors in the global gravity standardization network described

in note 5 to section 4.3.

4.5 Departures of the Sea Surface Topography from an Equipotential Surface

Until recently, no attempt has been made to study the departure of the sur-

face of the oceans from a level surface. The existence of such departures has
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been established on comparing the results of geodetic levelling with tide gauge

readings. These departures which will be called stationary, in order that they

could be differentiated from short term effects due to winds, other meteorological

factors as well as the short period distortions on the geops due to tidal effects.

The use of satellite altimeters provides a means of determining the instantaneous

geocentric position of those features of the sea surface with wavelengths in ex-

cess of e km. { = 200 for the proposed GEOS-C mission (Weiffenbach 1972,

p. 1-1). The stationary departures can be obtained by allowing for the effect of

tides and meteorological conditions, on differencing equivalent position vectors

to the sea surface and the geoid.

As only features with wavelengths in excess of i' km are being studied, it

is possible to use a truncated version of equation 121 to obtain the required

definition of the geoid even to order e3 hd. Over oceanic regions, the telluroid

coincides with the geoid and the elevation N of the latter above the ellipsoid is

given by

N = ,, if L = 0 (124)

If the gravity field were represented by a global set of gravity anomalies, N

could be obtained from the set of equations summarized in Section 4.1. Alter-

nately, these anomalies could be analyzed for the equivalent harmonic coefficients

using equation 122 and the values of N in oceanic areas obtained from equation

121. Fromn the discussion in section 4.4, the representation should absorb all
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but 0.1 mgal2 of the power spectrum on comparison with one degree square means

compiled from 100 values spaced on a tenth degree grid, if wavelengths in excess

of t km in N is to be defined to e3 N. This should give an accuracy of ±10 cm in

N on the basis of the results in table 2, which is a desirable goal in the definition

of the sea topography (Williamstown Report 1969, 3-2).

Consider the use of equation 121. The harmonic coefficients could be ob-

tained from surface gravity on controlling gravity standardization network

errors with low degree harmonics determined from orbital perturbation analysis

of adequate precision. In practice it is likely that the distribution of surface

gravity information will continue to be non-uniform. It is therefore relevant to

designate a desirable form in which the gravity data should be used in the

analysis for harmonic coefficients. A global representation on a tenth degree

(10 km) grid has an error of representation of approximately ±3 mgal, resulting

in an accuracy of ±10 cm in N if the data is free from large scale systematic

errors. A study of equation 116 indicates that if m = 0.1°, the precision required

in the mean value for a n° x n° area to maintain the specified accuracy eN in N

is not E{Ag}n but (E {Ag}m x m/n), all other things being equal. Thus the

equivalent precision required from a 10 x 10 square mean is approximately

±0.3 mgal. Such a mean can be computed only if

(1) 100 values spaced on a tenth degree grid are used in its evaluation; and

(2) the moment of distribution of the gravity stations about the square

center tends to zero.
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This does not mean that each one degree square should contain 100 gravity

readings on a tenth degree grid. It is well known that gravity anomaly values

can be predicted under carefully controlled conditions such that the prediction

error did not exceed the error of representation (e.g., Molodenskii et al 1962,

p. 172; Mather 1967, p. 134). The exact technique to be used for this purpose is

a matter for debate. In practice, the writer has found that practical and not

theoretical considerations predominate in the choice of a particular method.

Any commonly used interpolation routine will give the desired accuracy

provided

(a) sufficient data were available to avoid predictions based on readings

which were not in the immediate vicinity of the point; and

(b) the correlation of gravity anomalies with elevation over limited regions

were allowed for.

For example, an evenly space 50% coverage of a 10 x 1° square (i.e., 50

readings) should give the required accuracy in the area mean if the latter were

computed from 100 evenly spaced values with zero moment of distribution about

the square center and the above requirements were met. Tests carried out for

non-mountainous regions in Australia with considerable gravity variation, indi-

cated that a 20% representation, again evenly spaced, could provide interpolated

values whose error would be double that for E {Ag)0 1 (ibid, p. 133). In such a

case, E{Ag }l = o0 {0.5 mgal}. This figure falls off markedly if the moment of

distribution about the square center did not approach zero.
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The following conclusions can be drawn about the preparation of area means

prior to harmonic analysis in regions which are incompletely represented by

surface gravity data.

1. Values should be predicted from available observations represented on

a tenth degree (10 km) grid using any reasonable interpolation routine

or collocation techniques, and allowing for height correlation as well as

the deviation of gravity station elevation from the mean elevation of the

region it is intended to represent.

2. If a network of gravity stations were being planned, the stations should

be cited such that the distance over which interpolations are made

should be as small as practicable to avoid systematic effects.

3. The quality of the area mean is more dependent on the nature of dis-

tribution of the gravity stations about the square center, rather than

the number of readings available. This is characterized by the moments

Ma of the gravity station distribution defined by

N

Ma d uai (125)

i=1

where du ai are the coordinate displacements of the i-th gravity station

from the square center. More research is necessary into the role Ma

should play in setting up observation equations for the determination of

the harmonic coefficients.
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The error eAgn in A g as computed from equation 122 due to an error eCn

in C
n

is given by

eAg = + o{(n - 1) ecn},

where ecn is the r.m.s. of the sum of the variances of the 2n + 1 coefficients of

degree n. The analysis of harmonic solutions of this type indicate that the mag-

nitude of the average variance of coefficients of degree n are essentially constant

-2(say c2 ) for solutions up to degree 12 (Lerch et al. 1972, p. 21) while de-

partures of individual variances from this mean, fall within a maximum amplitude

cmax . On assuming sinusoidal characteristics for the deviation i of individual

standard standard deviations from cr, the total variance of terms of degree n is

r2n+1 2n+

c ( + E) 2 o2n + 1) o2+ 2 

= 2n + 1) (o -
2 + K2ax) o {(2n + 1) e (126)

where ec is a constant whose magnitude is approximately 2 x 10-8 for solutions

obtained at the present time. The extension of these observations seem to indi-

cate that eAgn is a function of n2 . On the other hand, the results in column 2 of

table 2 indicate that larger errors could be tolerated in the higher degree har-

monics without significantly worsening the results if equation 90 were used in

the computation. The required accuracy for those of low degree is about 5 parts
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in 10 4 if each is treated as an isolated error source. It is difficult to estimate

composite effects in solutions to very high degree in the absence of solution

characteristics. It could be assumed that an adequate algorithm will result in

the harmonic representation having error accumulation patterns similar to those

of the original data, provided the latter were free from systematic error.

If surface gravity data were used to determine the geoidal slopes with

wavelengths longer than 200 km, it would therefore be necessary to compute

1° x 1° (100 km) area means from 100 evenly spaced values on a 0.1° x 0.1 °

(10 km) grid in non-mountainous areas, such that the error of representation of

the area mean is ±0.3 mgal. This would ensure ±10 cm accuracy in the com-

puted result. The analysis of such a data set for the appropriate coefficients

using equation 122, followed by the evaluation of hd from equation 121, should

give the required result. The existence of such a data set could also be used to

give the same result through equations at section 4.1. In both cases it is ex-

tremely desirable to verify the correctness of the low degree harmonics against

satellite determined values of adequate precision, to ensure that the results are

free from systematic errors in the compilation of the global elevation and gravity

datums.

Notes:

(1) It should be pointed out that it is quite valid to use the truncated spherical

harmonic series in equation 121 for the evaluation of the characteristics

of the geoid with wavelengths in excess of a certain minimum value,
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provided such values in themselves are capable of meaningful interpre-

tation. As this information is to be used in conjunction with altimeter

data which can only evaluate similar characteristics of the sea surface,

it is relevant to attempt the definitions of the long wave characteristics

of geoid to ±10 cm, noting that such evaluations could deviate from the

true stationary geoid over oceans by up to ±5 m.

(2) The development given above has only dealt with the techniques for the

solution of the sea surface topography using determinations of the gravity

field at the surface of the Earth. Satellite techniques which have been

proposed for reaching similar goals (Williamstown Report 1969, 2-20 -

2-24) have not been considered as they fall beyond the scope of the

present development. The equations in section 4.4 are of relevance

however when formulating a solution to the problem in this case as

well.

4.6 A Note on the Determination of Gravity Anomalies at the Surface of the Earth

The establishment of the gravity field at the surface of the Earth for de-

terminations of sea surface topography with a resolution at the ±5 cm level does

not require that individual gravity determinations are consequences of techniques

achieving accuracies of better than ±50 /Lgal and equivalent station elevations to

+15 cm at each point. Instead what is required is the control of the propagation

of systematic error due to those sources with long wavelength, to values below
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these exacting limits, on the basis of equation 118, as illustrated in column 2 of

table 2.

The factors which influence such errors are the establishment of latitude on

a geocentric datum, elevation and gravity such that these systematic error limits

are not exceeded. The error e in latitude is discussed in section 2.2. It is

current practice to compute normal gravity from the value of f referred to the

local geodetic datum. If e. = 2 arcsec at b = 450, the resulting systematic error

in A g = ± 0 { 50 /L gal 1. It follows that the application of orientation vector cor-

rections from any of the more recent satellite solutions for geocentric position

prior to the computation of normal gravity, will ensure that this source of

systematic error is eliminated.

The effect of elevation errors eh in the gravity station elevations used in the

computation of the gravity anomaly is not straightforward. Errors approaching

±50 A/gal are obtained in Ag if eh = + o {15 cm). Such a specification is at the

noise level of internal errors in large first order regional geodetic level net-

works. As pointed out in section 4.3, the essential requirement is the control of

systematic errors with long wavelength when establishing the global datum for

elevations. This would call for a consideration of

(a) the time dependent variations in "Mean Sea Level"; and

(b) the stationary departures of the sea surface from the equipotential

surface adopted as the geoid.
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Techniques for the estimation of the former constitute areas of regular re-

search in oceanography. The effects at (b) need evaluation only at those points

on the coast which have been used to define the sea level datum for elevations.

The geocentric position of a tide gauge on each of these reference datums could

be established in the future by means of a connection to a suitable laser ranging

station which forms part of a global network. The elevation of the sea surface

can only be determined if the geoid height at this point were known. There is

little choice but to iterate between improvements in the elevation datum and the

determination of the geoid to obtain a solution of adequate accuracy, a procedure

which could be quite expensive as there may be difficulties in making the solu-

tions converge, as illustrated below.

Elevation errors of considerably larger magnitude can be tolerated in sta-

tion elevations provided they are purely local in character. It should be noted

that an error of 1 m in the elevation is approximately equivalent to 0.3 mgal in

the gravity anomaly, which in turn can have an error of representation of ±3

mgal in the context of the global grid discussed earlier.

The use of accurately determined low degree harmonics of the Earth's

gravitational field from the analysis of orbital perturbations for the verification

of the global gravity standardization net will be successful only if the errors in

the establishment of the global elevation datum have been satisfactorily resolved.

The sea level datums in current use cannot be considered to be compatible for

the purpose of solving the geodetic boundary value problem to order e3 , as no
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serious attempt has been made to define the term "geoid" on a global basis to

415 cm. Elevations with respect to local determinations of the sea surface can

be considered to be elevations above geoid only if

(1) corrections were applied for the epoch of determination; and

(2) the stationary departures of the sea surface from the equipotential were

allowed for.

The latter is difficult to accomplish in advance of a geoid determination to ±15

cm unless all the tide gauges are linked by a single network of geodetic levelling.

While such connections would be feasible for the American continents as a unit

or Africa, Asia and Europe as a second entity, a global connection cannot be ef-

fected to achieve this end. If errors on this count averaged at ±1 m, causing

effects in the gravity anomaly of approximately +0.3 mgal with wavelengths of

1000 km, the accuracy of the computed value of N is estimated at ±15 cm. In

such a case, the error in the determination of stationary departures of the sea

surface from an equipotential can also be determined to ±15 cm, assuming that

the geocentric positions of the tide gauges defining the elevation datum are es-

tablished with this same order of accuracy either from laser ranging techniques

or from satellite altimetry. The systematic errors in the gravity anomalies due

to the revised height datum are almost an order of magnitude smaller and hence

fall within the required limits of precision for a solution of the boundary value

problem to order e3 .
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If, on the other hand, the dominant stationary characteristics of the sea sur-

face topography had twice the wavelength and magnitude as in the above case, the

error in the computed value of N is estimated at ±60 cm in the initial iteration.

Consequently two iterations are necessary to ensure the definition of the geoid

to order e3 h .
d

The use of collocation techniques in defining the unsurveyed portions of the

Earth's gravity field is outside the scope of the present development. The ac-_

curacy of any predicted values are most likely to meet the criteria given in note

4 to section 4.3 if based on a minimum of four equidistant values, each pair of

which subtends nearly equal angles at the point of prediction, and in regions

where topographic variations are smooth. As pointed out in section 4.3, a net-

work pre-planned in such a manner could be used to increase the gravity anomaly

representation by a factor of 4: 1 in undisturbed regions without introducing

significant error provided the gravity values at those points used to control the

prediction, are substantially free from the sources of systematic error described

above. Other criteria of significance are the following.

(i) Predictions should be restricted to regions where the behavior of the

gravity field is sufficiently well known so that the error of prediction is

no greater than E {Ag}, as discussed in section 4.3.

(ii) The prediction interval is small enough to permit the adequate repre-

sentation of the correlation of gravity anomalies with elevation.
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5. CONCLUSIONS

The above development has defined formulae for the height anomalies hd at

the surface of the Earth to order e3 hd (±5 cm). hd is equivalent to the elevation

N of the geoid above the ellipsoid of reference in ocean regions. The solution

obtained for the boundary value problem in geodesy includes Stokes' integral in

circumstances where spherical harmonic expansions are resorted to only when

physical validity exists for their use. The boundary value condition has been

built around the potential of the solid Earth and oceans, excluding the atmosphere,

to ensure the mathematical validity for the expression of the solution in terms of

spherical harmonic expansions. Such a representation is desirable as it permits

the ready incorporation of information regarding the Earth's gravitational field,

as obtained from the analysis of the orbital perturbations of near Earth satellites,

in representations at the surface of the Earth.

The solution referred to above exists only if the stratification of the

atmosphere, assumed invariant with respect to the epoch in which the gravity

field is determined, were known. A model has therefore to be defined for the

Earth's atmosphere prior to effecting the solution, which is referred to the center

of mass of the solid Earth. The latter can be related without difficulty to the

geocenter if the mass distribution of the atmospheric model were known. This

could be defined as a series of ellipsoidal shells (e.g., IAG 1970, p. 62). More

correctly, the atmosphere can be considered to consist of such shells at alti-

tudes greater than the maximum topographical elevation. At lower altitudes,
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the shells are not complete, the excluded portions being related to the topography

of the Earth.

Contributions to the height anomaly hd, as computed using the formulae

listed in section 4.1, have three distinct orders of magnitude to o { e3 hd}. The

major term is obtained by the use of gravity anomalies at the surface of the Earth

in Stokes' integral which gives over 90% of the total magnitude. The second is

due to departures of the topography in the local area from a plane, contributing

less than 10% of the total magnitude in regions of rugged terrain. The third set

of terms is of order e 2hd (±30 cm) and arise as a consequence of the ellipticity

of the Earth, topographical gradients at the surface of the Earth and the conse-

quences of the Stokesian assumptions.

No direct solution is possible, as pointed out in section C of the Appendix

and an iterative procedure, described in section 4.2, has to be resorted to. The

representation of the gravity field which would ensure adequate accuracy in the

evaluation of Stokes' integral by quadratures can be estimated from those char-

acteristics of gravity anomalies embodied in the error of representation E {Ag).

It is estimated that the definition of this field at the surface of the Earth by values

on a tenth degree (10 km) grid in non-mountainous regions (97% of the globe) would

ensure that the accuracy of the value computed for the Stokesian terms was of

order e3 hd, provided no systematic errors with long wavelength existed in the

data. Regions of rugged topography and disturbed areas close to the point of

computation should be represented by square sizes whose error of representation
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remains at ±3 mgal, if the accuracy of the final result is not to deteriorate by

as much as a factor of 2.

It is therefore essential that the following criteria are met in defining the

global gravity anomaly field.

(1) Stations comprising the global gravity standardization network should

be established with absolute accuracies of ±50 /gal, and at intervals

which are not much in excess of 1000 km

(2) The datum to which measurements of geopotential are referred (i.e.,

the "geoid") should be defined with an accuracy of ±15 cm. All "Mean

Sea Level" datums should be reduced to the common epoch of the gravity

measurements and the stationary departures of the sea surface from

the equipotential corrected for prior to the computation of gravity

anomalies.

(3) All values of normal gravity should be computed using the equivalent

latitude on a geocentered ellipsoid, correct to ±2 arcsec, rather than

values on a regional geodetic datum.

(4) Individual gravity stations should reflect the mean elevation of the

region. It should be noted that comparatively large errors can be

tolerated in individual gravity anomalies on the tenth degree grid

provided they are random in character (i.e., purely local).

Gravity observations need not be made at every point on the tenth degree

(10 km) grid in non-mountainous areas. It is common experience that

90



94

interpolation techniques can give predicted values without increasing the error

of representation under carefully controlled conditions. This factor should be

taken into consideration when planning any large scale sampling of the global

gravity field.

It is unlikely that numerical solutions aiming for an accuracy of ±10 cm in

hd can be achieved without significant roles being played by techniques from

satellite geodesy. The first is in the establishment of geocentric position at

tide gauges monitoring the sea surface and hence the datum for geopotential

differences, and therefore gravity station elevations. This information would

provide the link between the results of geodetic levelling and the geoid on a global

basis, on using the iterative procedure described in section 4.5 if necessary.

The method so described could prove ineffectual if the stationary departures of

the sea surface from the geoid are characterized by very long wavelengths and

amplitudes in excess of 2m.

The second role that could be played by techniques in satellite geodesy is

the determination of the low degree harmonics of the gravity field from the

analysis of orbital perturbations for the control of systematic errors with long

wavelength in the gravity anomalies at the surface of the Earth. If the sources

of error at (2) and (3) above are allowed for, such coefficients of adequate pre-

cision could control systematic effects in observed gravity due to .standardization

network errors, especially in ocean areas, where stations in such a network

may be widely spaced. Consequently, the absolute error in the gravity control
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station, which should be less than ±50 /gal, could be repeated in all gravity

anomalies over a very large area.

The determination of features of the geoid with wavelength in excess of

200 km calls for the evaluation of equation 121 using a truncated harmonic series

including all terms up to n = 180 (i.e., over 3 x 10 4 coefficients). Such de-

terminations are meaningful in the context of quantifying the stationary de-

partures of the sea surface from the geoid, as only wavelengths in excess of the

figure given above can be resolved by altimetric techniques. The minimum surface

gravity anomaly field necessary to obtain the resolution of such features to ±10 cm

is estimated to be a 10 x 1° (100 km) grid which is represented by the area mean

value computed from at least 100 equally spaced values with zero moment of

distribution about the square center. The harmonic representation should be

capable of absorbing all but 0.1 mgal2 of the power spectrum of the gravity

anomalies at the surface of the Earth as represented by correctly computed

area mean values on the one degree grid.

Satellite geodesy, as distinct from satellite altimetry, still has an important

role to play in defining stationary departures of the sea surface from the geoid,

even if satellite-to-satellite tracking and drag-free satellites do not play a major

role in the definition of the global gravity field. A world-wide system of tracking

stations for laser ranging to satellites could provide both the resolution of the

datum for the measurement of geopotential, as well as an accurate determination

of the low degree harmonics of the Earth's gravity field.
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There appear to be no long range obstacles that are likely to inhibit the

definition of those characteristics of the geoid in ocean areas with wave lengths

in excess of 200 km with a ±10 cm resolution. An evenly spaced sampling of

the global gravity field on the lines described in section 4.3, and based on

levelling and gravity control networks with suitably small systematic error

characteristics, remains a necessary pre-requisite for a successful determina-

tion from surface gravity data. Information controlled in this manner and located

on a grid where the station spacing could be as large as 20 km in non-mountainous

and undisturbed regions, and when used in conjunction with prediction methods

which took elevation correlations into account, is likely to provide the desired

resolution.
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Preceding page blank 10
APPENDIX

A. Relations on the Ellipsoid

The relation between geocentric and geodetic coordinates are readily avail-

able in many texts on geometrical geodesy. These expressions do not, as a rule,

consider the effects of the topography. Given an ellipsoid of revolution of equa-

torial radius a and flattening f, the geocentric latitude o,, of a point PO on the

reference ellipsoid, is related to its geodetic latitude by the formula

F tan q - tan Oco
FSq = ~- ~co 1 tantan 

+

tan co

As tan co = (1 - f)2 tan q, 8b = tan 8$ +o{f3}.

Thus

= (1 f)-2 _ 1 sin Or cos 
c

1 + 2f sin2 c C

f sin 2fc [1 + f - 2f sin2 c
+ o{f2 (A-1)

Further, if the elevation of the point P at the surface of the Earth, above PO

is h, as illustrated in figure A-1 and if PGPo = 3¢c, where G is the geocenter,

assumed coincident with the center of the ellipsoid, it follows that

sin 8 c sin b_

h R

PRECEDING PAGE BLANK NOT FILMED
A-1
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where R is the spherical coordinate of P on a geocentric spherical system of

coordinates (R, c, k). On using equation A-i,

S = h f sin 2 _ + o{f3 }
i.

(A-2)

Also,

R = Ro Cos 3q c + h cos (b5 - 83qc)

=Ro + h + o{f3 R} (A-3)

where R0 is the distance to P0 from the geocenter G. For most practical

purposes,

RO = a [1 - f sin2 q¢ + o{f2 }],

and the mean radius Rm of the Earth ellipsoid is given by

Rm= a [1 1 f + {f2]

The combination of the above three relations gives

R = Rm [ + f ( - sin2 c)+ o{f2}] (A-4)

and

R = Rm (1 + CR)

A-2

(A-5)
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where

(A-6)c R-- + f !- sin2 ¢c + °(f 2}
R R 3

m

The distance r between the surface element dS at Q(R, ¢c, ) and the point

of computation at P(Rp, Ocp, Ap) can be related to the angle subtended by the

geocentric radii GP (= R = R + AR) and GQ (= R) at G, as illustrated in figure

A-2. As GP and GQ lie in the plane of the meridians through P and Q respectively,

the angle dX between the meridian planes is given by

(A-7)dX = X - A

Thus

¢ = cos- ' [sin Ocp sin ¢ c + cos ¢bcp cos «c cos dX1 (A-8)

without approximation.

The Term x3 /r 2

The term x3 /r 2 in equation 38 is obtained from figure A-3 as

x
3

R cos - Rp cos (¢ + a)

r2 r 2r r

where

3 = (8 - S0C) cos %

(A-10) -= f sin 2kc cos a% + o{f2 }

A-3

(A-9)
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ac being the azimuth of P from the element of surface dS at Q. The distance r

is given by

r2 = R2 R 2 - 2R R cos 4 = (Rp - R)2 + 4R R sin2 12

(AR) 2 + 4R2 sin2 '1 (1 + CR + CRp),

where c R is defined by equation A-6 and AR is given by

AR = Rm (CRp - CR) = Rm f(sin2 c -ksin2 'cp) + hp - h+ o{f2 R} (A-ll)

On defining r
o

by the relation

r
o

= 2R sin 1
mS l 2 (A-12)

the expression for r 2 can be written as

r2 = r2 (1 + Cr)

r CRp + CR + 
+

Of2

(A-13)

(A-14)

The expression for x3 /r 2 should be put in the form

3 1r2 2 (1 + ~)
r2 2R

(A-15)

A-4

where
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to facilitate the recovery of Stokes' integral from equation 38. The structure of

' for purposes of numerical computations is dependent on the magnitude of A R

and p. The third term in equation A14 could exceed unity when h >> h for limit-

ing values of ¢. To avoid loss of generality, it is preferable to retain closed

expressions at this stage of the development. Equation 15 could be rewritten as

2R x3R = - 1 (A-16)
r 2

The use of equations A-6, A-9 and A-13 in equation A-16 gives

2R2 (1 + cR)
2M(1 + CR) [(1 + CR) cos - (1 + CRp) COS ( + 8)] - 1

r (1 + cr)

2R2 2
- 2 (1 + Cr) 1 [2 sin2 2 + 2CR + 8 sin'p-cRp cos ' +o- -1 (A-17)

as 8 = o(f}.

Simplified working expressions for D are obtained by fixing maximum mag-

nitudes for (AR/r0 )2 . For example, if [(hp = h)/r o] 2 = o{f}, for small ro,

cr = o{f}. Hence, equation A-17 can be written. as

'F = 2 [2c R + 8 sin 4 - CRp COS 2Cr sin o{f2 (A-18a)
r o 2

Alternately, if cr = o {10- 1 }

2R2

'F m -- Cr + C 2 + Of) (2C R + 8 sin b - cR COS + o{f2})

0 _ 0

+ 2 sin2 / (-1)' c
i

+ o{f 2 (A-18b)

i=l

A-5
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It would be advisable to use equation A-17 for the evaluation of 4 when cr

takes larger values. In conclusion, D is usually a small quantity, except under

limiting conditions when qb and hence r is small, together with the elevation of

P differing considerably from that of the surrounding topography. If terms of

the order of the flattening were neglected, the contribution of this term arises

only from elements with small tp and great differences in (h - hp), when equation

A-17 can be written as (Mather 1971b, p. 81)

R
= =m [h - h - R (cr - c 2 + o{f}) + ofh}] (A-19)

20

The expressions for D given at equations A-17 to A-19 can be programmed

without problems to the required order of accuracy.

The Terms xa/r2

Let the angle between the line QP and the x1 x2 plane be X, as illustrated

in figure A-3. Then PQG = 1/27T- (x- 8) and QPG = 1/277- ('P - x + 3). The

application of sine formula to triangle PQG gives

r R (1 + cR) Rm (1 + cRp)

sin n cos (- X +) cos (X -)

Thus

cos (' - x + 5) (1 + CRp ) = COS (X - 3 ) (1 + CR) (A-20)

It follows from the use of equation A-20 on referral to figure A-3, that

A-6



Xa r cos X cos Aa' R_x R sin_

r 2 r 2 r 2

cos X

cos (P - X - 6)

A = a
1

and A' = 77 -22

a, being the azimuth of P from dS at Q. Equation A-20 also indicates that

cos (X - 6 )

cos(0 (- X + 6)
1 AR o(f2}

m

On ignoring terms of order f in equation A-22,

cos X = cos (b - x) + o{f}

or

1
x = 2 + of,2

provided ~b is not of the same order of magnitude as 6. Let

cos X = 1

cos (¢ - X + 6)
(A-23)

where c is usually a small quantity of order f except when ¢ = o {6} . Also

define x by the equation

1
X = I - 0 (A-24)2

A-7

where
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The use of equations A-22 and A-23 gives

(2v~ - 8 - a) (Cos + 8 + d) L1 +R + o{f2}jcoS (~, _: ( 2 R ~ ~) o 1m

The expansion and rearrangement of terms gives

2 sin 3 sin 2 AR cS (- + +
2 R 2_ tan - 1 sim+ o{f2 (A-25)

si sin v + R .
2 cos 8 sin 2 ~ ++R sin ( R +)

If 1 is not a small angle, 0 can be expressed as

AR 1 1
R cos - - 28 sin + f2

(R2~ 2
d= tan1 

2 sin (I+ + °{f2})

or

_ _ 1AR cot + (A-26)
2 2

The use of equations A-23 and A-24 gives

cos -a) 
c = / - 1 (A-27)

A-8
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For large ¢ when 0 = o f f},

cos 1- ++ sin 2 /
2 2

C =
x 1 1
cos -4 - (0 + 3) sin-

2 2

-1

= 1 + tan-/+(0t+8) tan -1+o{f2} _ 1
2 2

1
= (28 + 3) tan-t/ + o{f2}

2
(A-28)

In conclusion, the use of these results in equation A-21 gives

xxa RR sin ~R sin (1 + Cx) cos A,
r 2 2

C =
x

(A-29)

- 1,

and, for most practical purposes,

lAnR 18 =A--Rcos -'b- _8 +o{f2}
2R 2m

(A-30)

The Horizontal Gradients of Potential

The horizontal gradients of potential are obtained as follows. As Va is

given by equation 33,

Vd = W - U - V
a

+ hd,

A-9

where
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differentiation with respect to x gives

aV' d ~V a, ah d
dtan/ , tan Pia + h ta n tan +ia + an n p (A-31)

on expressing the differential as it appears in equation 39. As changes with

respect to x relate to the spherop U = UQ, it follows that (e.g., Heiskanen and

Moritz, 1967, p. 313)

ahd

where '5a are the components of the surface deflection of the vertical in the

directions x

The horizontal gradient of normal gravity is zero in the direction of the x2

axis. The gradient along the xi axis is obtained from the formula for normal

gravity (see entry against 8l in section 1.2.1) as

x
I

= Ye /3 sin 2bc/R = o{105
-

mgal cm'1}.

thus the term

hd y t a n /31 = o{10-1 tan il mgal}

and cannot be ignored in either mountainous regions or areas where the height

anomalies have significant magnitude.

A-10
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The term aV. /ax, is purely a function of the topographical gradient, the

change being approximately 20 /zgal for a 250 m change in elevation (IAG 1970,

p. 72), This is three orders of magnitude smaller than the change in A g and is

not of significance in the context of the other terms involved. Thus for the

present development

a~d ay tan p, (A-32)d Htan ytanB3a +hd tan (A-32)

the second term being two orders of magnitude smaller than the first.

B. Spherical Harmonic Expansions and the Geodetic Boundary Value Problem

B.1 The Product of Two Surface Harmonics

Let

Snm = P m (sin Oc) (Cln cos mX + C2 nm sin mk)

and

Sk = Ptk (sin Oc) (Cltk COs k + C k sin kk)

be two surface harmonics. The product

Snm Sk = Pnm (in c) Pik (sinfqc) [C 1nm,;k cos mXsk+ cos cosmXsinkk

+ C2nmC;k sin m cos k +C2C2k sin mn in kX]

A-11
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= Pm (sin[ (sin c) Pk (sin ) cC' cos (m k ) 2n Ptk 2 ~Cnm ( k 2nm 2k k) 

C1 1
+ ( C2 + C 2 sin (m + k) X + C(n

m
C C k+ C

2
nm 2k) cos (m-k)X

+(C; Cn2 - C 2 )sin (m - k) ]2- ( k n m -n m tk)

Further (e.g., Mather 1971c, p. 47), if sin qc = ,

k'

Pnm ) =(1 2) 1/ 2 m ( )r (2 n - 2 r) ! n-m-2rP 1 21/2m_ _ _ _ _ /- _ _2r_ _ _
2 r=~ o r ! (n m - 2r)!(n- r) ! 

r 0

where k' = 1/2 (n - m) if (n - m) is even or 1/2 (n - m - 1) if (n - m) is odd.

Hence

P

Pnm ( kL) P'k (/) = As F ,
s=O

where p = n + . It should therefore be possible to represent the above product

by a relation of the form

P i

Pnm (/) PtPk -() Bi j Pij (/L).
i=o j=O

It would suffice for the purposes of the present study to draw the conclusion that

the product Snm S~k can be fully represented by the set of surface harmonics

A-12
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Snm Sk' -= ISt,
p=O

where

P

Sp z-E Ppq (s in c) [Apq cos qk + Bpq sin qk].

q =

B.2 The Orthogonal Property of Surface Harmonics over a Closed Surface

It is well known that two surface harmonics of different degrees satisfy the

relation

ff S d S = if n

This orthogonal property is usually derived in the case when S is a sphere, the

derivation being a consequence of the surface harmonic constituting a spherical

harmonic term (e.g., Jeffreys and Jeffreys 1962, p. 636). This property could be

extended to cover any continuous closed surface, e.g., the physical surface of the

Earth. It must be assumed that the surface harmonic expansion exists and pro-

vides unique definition at all points on the surface, the integration being taken

over the element of solid angle between the appropriate limits defining the entire

surface. This would imply that any set {Xc, A} would define a unique point on

the surface. If sin ¢c = A'

Snm= Pnm (/) [Cm cos m + C2nm sin mX ]

A-13
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and

}k = Pk (/ L) [Cl;, COS k k + C2 sin k A,S~~ k = Pt k (U) [Clt k24 k

the surface integral

nm S' da = _ I Pnnm(A)Ptk (A) [CI C' cosmkcos k+C
1

C2' cosmA sink

C' s nos+ C m
24 sinmsnt 

dd

+ C2nm l sin mX cos k C2 sin mX sin k ] d t d X

= O if m k, as

7 cos m cos k k dX = sin m X sin k d = f cos mX sinkkdk= O.

If m = k, two terms remain, as

cos 2 m X dk =
27r

0
2

27T

:=1 - cos 2 mX d X =7T.
2

Therefore

nm Skd [Clnm Cl + C2 C2e] ' Pnm (L) Pem (I) d 
f1f" I n. .

A-14

2ir

•0 sin2 mX d k
27T

fo
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The integral can be evaluated by using the relation (e.g., Hobson 1965,

p. 99)

Pnm (/u) = (- 1)m (n + m) ! P (n)
(n - m) ! P(-m)

and assuming that n> X, when

im m )d (-l)m(n + m) ! (l_2 mm)/2 dnm d [M

2n+t(n-m) n!! t 1 d- ' m d4+m

On integrating the above equation (n - m) times by parts,

1

P nm (mu) Pt:m () d Ft =
(-_ l) (n + m) ! d(+ ( -2 l)n d [(In 2 - 11]-d4

2n + n! n ! (n -m)! J1 dI t+ n
0 as n>l,

and the non-integrated product being zero on evaluation at the limits of integra-

tion, due to always having a factor (/L2_ 1) (e.g., Mather 1971c, p. 51).

If n < , then replace P m (mL) by Pt (-n) (/ L) and proceed as before.

It can therefore be concluded that in all circumstances of integration over

a closed surface on which a set of surface harmonics provide unique definition,

ff Sn Si do = 0, n l t.

A-15
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Thus the orthogonal properties of surface harmonics apply on integration

over any closed surface which is single valued in the set ({c, ).

B.3 Laplace's Equation at the Surface of the Earth

Attention has been drawn in note (i) to section 2.4, to the fact that the dis-

turbing potential Vd, as defined by equation 5, does not satisfy Laplace's equation,

but the function Va, given by

V d = Vd - Va,'

where V is the potential due to the Earth's atmosphere, does so at all points

exterior to the Earth's surface. S in equation 29 is the physical surface of the

Earth, in the strictest sense.

The development in section 3 requires that V' be capable of representation
d

by a set of spherical harmonics at all points on S. This cannot be claimed to be

the case if S is the exact physical surface of the Earth. On the other hand, V 

satisfies Laplace's equation at all points exterior to the Earth and right down

to it. Thus Vd can be expressed by a set of spherical harmonics at all points in

space exterior to the Earth's surface and right down to but not on it, provided

the reference ellipsoid is everywhere within the physical surface of the Earth.

Another important point is that physical manifestations of V ' are not meas-
d

ured at the physical surface of the Earth but slightly exterior to it. Thus the

surface S being defined in equation 29 is not the physical surface of the Earth

itself, as a consequence of the nature of the observational data used to solve the
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problem, the former being measured slightly exterior to the physical surface

of the Earth.

It can be concluded that physical validity exists for the representation of the

scalar characteristics of the Earth's gravitational field by a spherical harmonic

series), if based on the observations made "at" and exterior to the physical

surface of the Earth. In the context of the present study which seeks resolution

at the +5 cm level, no significant errors occur if S is taken as a surface which

is always slightly exterior to the physical surface of the Earth. Such a surface

has the advantage that V
a

satisfies Laplace's equation at all points on it and

therefore physical validity exists for adopting the representation

nVZd = t2_+o { f2}, nj 1.
= R n + 1n 0

No common convention has been adopted for the definition of a "surface of

measurement" for gravity determinations vis-a-vis the physical surface of the

Earth. The accuracy requirements defined in section 4.3 for resolution of the

geodetic boundary value problem at the ±5 cm level, call for the representation

of the global gravity anomaly field so that systematic errors over large extents

held to below ±50/ gal. This in turn requires the establishment of the global

gravity control network with individual station accuracy at this same level. The

surface of measurement, which is only relevant when defining the global control

net, can be deviated from by individual observation stations by ±10 cm without

affecting solutions of the boundary value problem to order e3 .
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C. A Non-Iterative Procedure for Evaluating the Gravitational Terms in the

Solution of the Geodetic Boundary Value Problem

Section 4.2 shows that iterative techniques are necessary for solving the

boundary value problem to order e3 . This is not an economic procedure and it

is compelling to search for a non-iterative solution. The basic boundary

condition is

Vdp - Vap TT jL r + -tana3
1/ x tan xa

dP = 2 TrJ ap Cd a a + a t an /3 h ) Vd a (A-35)

The first set of terms is obtained from equation A-29, while the second can

be obtained from A-9 as

-r+(1 c) (A-33)

where

c3 8 sin Ri - (1 + c - R) + f2 (A-34)

The third term, defined by equation A-32, cannot be satisfactorily included

in the major gravitational term, even though it has significant magnitude. The

last term is given by equation 34, the quantity hd from equations 11 and 25 as

V (WOUo)] (A-35)h = 7-V - (W -)]
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and equation 43 can be written as

ay 2R

where

c, = f + m - 3 f sin2 ¢' + o {f2}

The combination of these relations gives

VdP = Va + IA + IB

where

I = 2 F (q, h) - -a d=1 fdr ' hA~hTT[F(' h yJ d]

F = F (q, h) =
( r

and

tan 'a + h
d a tan fl d a

On adopting a spherical harmonic representation for V d, the validity of which

has been established in section B3,

Rn+l

n=0

n/ 1
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(A-36)

(A-37)

(A-38)

(A-39)

(A-40)

(A-41)

+ Cx) d r + Cx
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equation A-39 can be written as

I^ = 2 E (n + 1 + F) - do- n 1 (A-42)
A r jj Rrn I

The gravity anomaly is related to the disturbing potential through equations

13, A-35 and A-36 as

-3 V 2 V
= - - (1 + c ) + CAg (A-43)

where

C g = 2 g 2 W+ -- 2V a f2 A gR (A-44)
2 R R -h

Equation A-43 can be expressed in spherical harmonics as

A
A g= (n - 2 C n + CAg

'
nX 1 (A-45)

(n 1 2 C qSRn + 2

The spherical harmonic function as evaluated at the surface of the Earth,

can be expressed a set of surface harmonics for the reasons given in section 3.

Let

n'O n=o

If conventional practice is to be followed, it will be necessary to prove that

the replacement
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Rn+ 1 Gn

An = n 1 (A-47)

is valid, in which case IA can be written as

co

IA 2r L n - 1 2c G doa, n/i (A-48)

R2 /r can be expressed as a set of surface harmonics for the reasons given

in section B.1 of the Appendix as

- =R Sn.
r Tm n

n = 0

A non-iterative solution for the gravitational terms could only be obtained

if IA can be transformed into an expression of the type

RA E n 1 -2 Sn A ge d, n 1.
2n / n- 1n - 2 c 

n0=

This would be possible only if F and c , were unchanged on surface integra-

tion. As this is not the case, it would appear that it is not possible to solve the

geodetic boundary value problem without resorting to iteration when evaluating

the expressions containing the gravitational terms.
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D. The Error of Representation of Gravity Anomalies at the Surface of the Earth

The error of representation E {A g m for an n° x m° area at the surface of

the Earth is given by

N (A Ag
(E{Ag}nm)2 = (g i - g)2 (A-49)=g)2 (A-49)

i=l

where the A gi are individual determinations of the gravity anomaly at N points

within the area, and A g is given by

N

A 1 Agi (A-50)
i=0

For a meaningful estimation, E {Ag }nm must be the mean of several such

evaluations. Further, the gravity stations must be evenly distributed about the

region center with N being very large. Estimates of the error of representation

for various square sizes by several researchers are given in table A-1. Linear

units have been converted to equivalent angular values using 10 km = 0.09 degrees.

The figures given in table A-1 are heavily, if not totally biased toward continental

areas and with two exceptions, to regions where topographical gradients are

small. It should be noted that no correlation is implied between the value of

E {Ag} and elevation. Thus E {Ag} for an elevated plateau should have a mag-

nitude similar to that for a coastal plain. In rugged mountainous terrain, E {A g }

can be 3 to 10 times as great, especially for smaller regions. This should not
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however preclude the use of E{Ag } to represent the statistical characteristics

of the global gravity anomaly field for error estimation purposes. For example,

in such cases, E {Ag} 0 1 can be as much as 10 times greater than the value

(±3 mgal) in flat areas, the effect being confined to 3% of the Earth's surface

area where rugged topography occurs. This would increase eta in equation

116 by a factor of 10 while eNA in equation 117 will be twice as large.
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Table A-1

Error of Representation for Free Air Anomalies

Square Size Latitude E (A gI)
Source n = m Region

(degrees) (degrees) mgal(degrees)

0.0

0

0

0

30(')

0

0

0

0

30 ( l)

30*

0

30(')

45

30*

0

0

30 ( l )

45

30*

0

30(l)

45

30(')

45

1.5

2.8

2.8

5.4

4.4

7.0

10

25

9.0

10.1

10.1

12.7

12.4

13.5

13.3

16.0

17.6

20.8

17.7

16.3

23.1

27.6

26.6

29.3

USSR

Finland

USSR

Global

USSR

USSR (Plains)

Urals

Caucasus

Global

Australia

USSR

Global

Mountains, USSR

Australia

USSR

USSR

Global

Australia

USSR

Global

Global
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MO

H

MO

H

MO

MO

MO

MO

H

M

MO

H

H&M

M

MO

MO

H

H&M

M

MO

H

H&M

H

H&M

0

0.05

0.1

0.1

0.2

0.2

0.3

0.3

0.3

0.5

0.5

0.6

1

1

1

1.1

1.6

2

2

2

2.2

5

5

10

10
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Key: -1. Source H = Hirvonen 1956, p. 3.-
M = Mather 1967, p. 131

H&M= Heiskanen & Moritz 1967, p. 279
MO = Molodenskii et al 1962, p. 172

Col. 3: (1) = based on global sample
* = mean latitude for region of studies
0 = converted from data for squares with equidistant sides
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Table 1

Range of . for Linear Variations in f(qj) and F(o) to Order e3

N = Number of contributions t as. at equation 100 to the quadratures evaluation

of Nf

f(~) F(,)Square size

(in degrees) Range of qi N Range of ip N
(in degrees) (x 10 5 ) (in degrees) (x 10 5 )

0.001 i > 0.07 10.0 p > 0.0 -

0.005 > 0.5 0.6 b > 0.0 -

0.01 > 0.8 3.2 > 0.0 0.0

0.05 > 3 0.4 b> 0.2 0.0

0.1 p > 6 0.1 9 > 0.4 0.2

0.2 q >13 3.4 ~ > 2 16.2

0.5 b > 60 2.3 -

Nt 20.0 16.4
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Table 2

Estimates of Systematic and Random Error Effects on the

Computation of Stokes' Integral

Maximum tolerable
n Systematic Error

(in degrees) in A g Over Range n E {Ag}
degrees) (+ mgal) (- cm)

0.01 50 0.03

0.1 5 3

0.5 1 50

1.0 0.5 120

5.0 0.1 1400
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FIGURE CAPTIONS

Figure 1. Gravity and Its Potential

Figure 2. The Disturbing Potential at the Surface of the Earth

Figure 3. The first Order Inertia Tensor of the Solid Earth

Figure A-1. The Meridian Ellipse and the Topography

Figure A-2. The Spherical and Ellipsoidal Coordinates

Figure A-3. The x i
Cartesian System in the Local Laplacian Triad and Geo-

centric Spherical Coordinates
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Figure A-1. The Meridian Ellipse and the Topography.
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Figure A-2. The Spherical and Ellipsoidal Co-ordinates.
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Figure A-3. The x i Cartesian System in the Local Laplacian Triad and
Geocentric Spherical Co-ordinates.

A-28

e U. S. GOVERNMENT PRINTING OFFICE: 1972-7354167/548


