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. FOREWORD

This report, Volume I .of 2 volumes, was prepared by the

Guidance and Controls Section, Martin Marietta Corporation, Denver

Division, under Contract NAS8-28482. It presents the historical

background, the philosophy, the mathematical basis and example

problems of the COEBRA program. The purpose of the contract was

to convert the COEBRA program from the CDC 6400/6500 digital com-

puter system to the UNIVAC 1108 at the George C. Marshall Space

Flight Center, and to provide a manual and instruction on the use of

the program. This contract was performed from March 1972 to Decem-

ber 1972, and was administered by the National Aeronautics and Space

Administration; George C. Marshall Space Flight Center, Huntsville,

Alabama, under the direction of Mr. D. K. Mowery, Dynamics and

Control Division, Aeroastr©dynamics Laboratory.
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ABSTRACT

This report, Volume I of 2 volumes, presents the historical

background, the philosophy, the mathematical basis and example

problems of the COEBRA program. The following is an abstract of

the COEBRA program's design algorithm.

A nonlinear programming technique has been developed by

Martin Marietta Corporation, Denver Division, for the automated

design and optimization of autopilots for large flexible launch vehicles.

This technique, which resulted in the COEBRA program, uses the
\

iterative application of linear programming, i. e. , iterating from

some starting point to the final solution by solving successive linear

programming problems. The method deals directly with the three

main requirements of booster autopilot design: to provide (1) good

response to guidan.ce commands; .(2) response to external disturbances

(e. g. wind) to minimize structural bending moment loads and trajectory

dispersions; and (3) stability with specified tolerances on the vehicle

and flight control system parameters.

The main design criteria are minimum gain/phase stability

margins. The approach is to expand each rigid and flexible-body

stability margin in a first order Taylor Series, to form a linear

inequality constraint for each margin. A choice of two linear cost

functions is also provided via Taylor Series expansions, in order to



XL1

(1) maximize all stability margins, and (2) minimize structural

bending moment loads. A linear programming problem results, i. e. ,

maximize margins or minimize loads, in the presence of constraints

on each stability margin. The solution of this linear problem yields

a new starting point for the next iteration.

Only practical control laws are considered, since this algorithm

optimizes a pre-selected autopilot configuration, i. e. , the number and

types of feedback loops, and the number of gains and filters are pre-

specified. This method finds the best values for the parameters within

this feedback structure, and is able to constrain the minimum and

maximum allowed values on each parameter.

The problem of handling several different flight conditions

with the same time invariant control law is solved by forming a single

linear programming problem in which the cost function and matrix of

constraint equations is comprised of stability margins and wind

responses from several flight conditions. By solving this single linear

problem, several flight conditions are optimized together using a sin-

gle time-invariant control law. A single control law can also be

designed that is, at the same time, optimum under nominal airframe

conditions and under malfunction conditions, e.g., actuator, sensor,

or even engine failures.

The method is applicable to very high order systems (30th and

greater per flight condition). Since it is a parameter optimization



Xlll

technique, the complexity of the autopilot does not necessarily increase

with an increase in the order of the fixed parts of the system.

Analog autopilots are designed in the S-plane, and digital auto-

pilots in the W-plane. The method can design a drift minimum auto-

pilot that meets stability margin requirements and has a maximum

amount of bending moment load relief capability.

The method contains step-size optimization routines that allow

convergence to local interior optima as well as to local exterior optima.

The initial condition on the controller parameters can be unfeasible.

Example problems are shown where the initial autopilot even yielded

an unstable system. The step-size optimization routines also permit

automatic self-termination of the design process.

Examples are given that demonstrate the successful application

of this algorithm to the design of autopilots for both single and multiple

flight conditions. The multiple flight condition problems range from

a system that is 28th order at each of three flight conditions and has

23 individual autopilot parameters, to a system that is 20th order at

each of three flight conditions with 28 individual autopilot parameters.

The examples demonstrate the design of two types of autopilots, one

•where the objective is to maximize stability margins, and the other

where the objective is to optimize structural bending moment load

relief capability.



CHAPTER 1

INTRODUCTION

The objective that motivated the development of this nonlinear

programming algorithm was to computerize an existing and flight-

proven (hence practical) conventional autopilot design method for

large highly flexible launch vehicles. Another objective was that the

automated technique provide some measure of -when the design is

optimum, something that the engineer with his present techniques

generally achieves only through experience.

Section 1. 1 of this chapter presents an overview and the histor-

ical background of the conventional or classical autopilot design method

that has been automated. Section 1. 2 contains a statement of the prob-

lem and defines the details of the design criteria of this conventional

autopilot design method. This chapter concludes with a section that

outlines the remaining text of this report.

1. 1 Historical Background

Historically, most booster control systems have been designed

using classical open-loop frequency response stability margins as the

principal design criteria. This linear design phase, which is the

topic of this report, is then followed by a nonlinear analysis which

includes trajectory simulations. Greensite [14] gives an excellent

description of the philosophy and major problem areas as well as the

equations involved in the linear analysis phase of launch vehicle auto-



pilot design.

In the linear design phase of this historically well-validated

approach, time-varying booster plant dynamics are examined at

selected "worst case" flight times along the trajectory. The linear-

ized time-invariant approximation to the dynamics of the airframe at

these times is used, and an autopilot feedback configuration is designed

that satisfies the specified rigid and flexible body gain and phase sta-

bility margins at these flight times. Gain and/or filter scheduling is

generally employed to achieve the required margins. The flight times

along the trajectory are chosen to correspond to critical flight times

at which stability margins are expected to be a minimum. The criti-

cal times most often used for a typical ascent stage are:

1. Liftoff

2. Max C . / C ^ (Cj = Aerodynamic moment coefficient and

C? = Control moment coefficient)

3. The point of maximum aerodynamic pressure (max q)

4. Gain and/or filter change times

5. Burnout

Experience has shown that an ability to demonstrate adequate control

system stability margins at these flight times produces satisfactory

performance during the complete flight.

1. 2 Statement of the Problem

The conventional computer-aided approach to booster control



3

system design as outlined above has been to use digital computer

generated frequency responses to determine the gain and phase mar-

gins of the airframe-plus-compensation for a given set of autopilot

gains and filters. The design engineer then uses such computer-

generated frequency responses to iteratively adjust the autopilot gains

and filters until the specified stability margins are achieved.

As stated earlier, the objective of this control system optimi-

zation technique was to automate this design procedure.

The details of the design criteria to be satisfied by this auto-

mated technique are as follows. The general requirements of an

elastic booster autopilot are to (1) provide good response to guidance

commands, (2) design the response to external disturbances (e. g. ,

wind) to minimize trajectory dispersions and to ensure that the struc-

tural integrity of the vehicle is not jeopardized, and (3) account for

tolerances on the vehicle and flight control system parameters.

For this design technique, these general requirements are

translated into particular requirements as follows:

1. The design specifications are:

a. In the frequency domain in the form of minimum gain/

phase stability margins, and in the form of so-called

dominant closed-loop root locations. Figure 1. 1 illus-

trates a typical gain/phase frequency response plot.

Table 1. 1 lists the requirements that might be placed
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on each margin. In addition to minimum require-

ments, note that Table 1. 1 also lists what might be

desired design objectives;

b. In the time domain in the form of maximum allowed

vehicle structural loads;

c. in the time domain, with the requirement to mini-

mize trajectory dispersions.

2. The technique must design with a user-selected autopilot

configuration. In other words, the number and types of

feedback loops and the number of gains and filters are

selected by the user in an effort to keep the autopilot

simple;

3. The technique must handle the problem of multiple time

point design. To allow autopilot gains and/or filters to

remain constant over intervals of flight while the airframe

properties continue to change, it is necessary to design

several vehicle states simultaneously;

4. The method must handle a very high order system (30th

and greater) with up to eight structural bending and fuel

slosh modes per time point;

5. The method must be able to design either a digital or an

analog autopilot.

As evidenced from the design criteria, a parameter optimi-



zation technique is required in order to automate this design method.

Also, the automated technique must come from the theory of con-

strained optimization. Finally, even though the system is represented

in the time domain with a set of linear equations, the autopilot design

problem is nonlinear in the frequency domain. That is, each stability

margin is a nonlinear function of the autopilot gains and filters. Hence,

the optimization technique must be able to take this into account.

1. 3 Outline of the Remaining Text

Chapter 2 contains a discussion of the literature search that

took place prior to and during the development of this nonlinear pro-

gramming algorithm. The chapter concludes with a discussion of why

the particular approach was taken that led to the development of the

design method.

Chapter 3 contains a discussion of the algorithm itself. It

concludes with the details of the step-size optimization routine that is

the key to the design method.

This nonlinear programming algorithm, when applied to the

booster autopilot design problem, led to the development of a digital

computer program titled COEBRA. COEBRA is an acronym for

Computerized Optimization of Elastic Booste£ Autopilots. Chapter 4

presents results of the COEBRA program. These results clearly

demonstrate that this algorithm solves the problem of automated

practical launch vehicle autopilot design. The results show that all
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the items of the design criteria that are listed in Section 1. 2 are

satisfied.

Chapter 5.presents conclusions and recommendations for

further development of the design method.



CHAPTER 2

THE LITERATURE SEARCH

The purpose of this chapter is to discuss the literature search
•9

that led to the development of the design algorithm. Three basic

approaches to feedback control system optimization were researched.

The first approach is often referred to as Optimal Control of

Linear Systems with Quadratic Criteria, or simply, the Regulator

Problem. This approach falls under the general theory of Variational

Calculus. This is an indirect method of optimization since it derives

a so-called "free configuration" control law from the necessary cond-

itions on derivatives of the cost function that must hold in order for

an optimum to exist. The term "free configuration" means that no

initial assumptions are made concerning the controller configuration.

The second and third approaches that were studied fall under

the general category of parameter optimization techniques. These

are referred to as direct methods of optimization that optimize the

numerical values of parameters within a "fixed configuration" control

law via various search procedures. The term "fixed configuration"

means that the basic feedback structure of the control law is estab-

lished as part of the initial assumptions, and optimization involves

finding the best numerical values for the gains and filters within this

feedback structure.
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The second approach is classified as Unconstrained Parameter

Optimization. Throughout this report, the use of the word "con-

straints" refers to the design criteria like minimum allowed gain and

phase margins, etc. , and does not refer to the set of linear equations

thr'. define the system. The term "unconstrained" is used to mean

that the search procedure only seeks to minimize a cost function, and

any constraints must be included in the cost function.

The third approach is classified as Constrained Parameter

Optimization, where the search procedure seeks to minimize a cost

function in the presence of constraints.

2. 1 Optimal Control of Linear Systems with Quadratic Criteria

This section discusses why this approach was not pursued.

Despite recent advances [Anderson and Moore, l], this approach does

not directly treat the problem of control system design with fixed con-

figuration control laws and stability margin design criteria. However,

the literature in this area was searched since so many attempts at

flight control system design using this method have been made, even

though these attempts have largely been unsuccessful.

Kalman [20] showed that the solution (feedback control law) of

the single-input time-invariant Regulator Problem, yields a return

difference with a magnitude that is greater than or equal to unity at all

frequencies. (This assumes that the weighting factors in the quadratic

cost function have been chosen so that the closed-loop solution is
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a asymptotically stable.) Kalman viewed this as resulting in reduced

sensitivity to plant variations.

Anderson and Moore [1, Chapter 5] extended this result to show

that the Regulator Problem results in a system that has the following

gain/phase stability margins. All gain margins that are greater than

unity have at least a 6 db margin of stability. All gain margins that

are less than unity have an infinite margin of stability. All phase mar-

gins are greater than or equal to 60 degrees. This is an astonishing

result, and answers the critics who for years discarded this theory

because they thought it had no direct relationship to the classical design

methods that use stability margin design criteria. However, though at

first this result may appear very attractive for the booster autopilot

design problem, it must be noted that this theory requires state feed-

back.- For the booster autopilot design problem, state feedback is not

considered a viable candidate for two reasons. First, a requirement

of this design method is to let the user select the feedback configura-

tion. Second, a state estimator like a Kalman filter, is only as good

as the system model, and presently, structural bending mode para-

meters on a large flexible launch vehicle are not known with much pre-

cision. Hence, since state feedback is not considered viable, the

results of Anderson and Moore are not useful or applicable to the

booster autopilot design problem.

Several other important reasons why this approach was not
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pursued are as follows. This design method cannot handle multiple

time points and/or vehicle states with the same time-invariant con-

trol law. Also, with this design method, it is not possible to directly

constrain the values of the feedback gains. This becomes important

wh .ii considering such things as nonlinearities, offsets, and control

device deflections Finally, use of this theory is still an art. Since

the "intelligence" of the design method is in the cost function, there

is a skill or art involved in the selection of the proper -weighting

factors.

The references relating to the Regulator Problem are cate-

gorized according to two classifications. The first is the time domain

solution to the Regulator Problem which involves solution of the

Ricatti equation. The second is the frequency domain solution to the

time invariant Regulator Problem which involves solution of the Wiener-

Hopf equation. This frequency domain method relates closed-loop roots

to the control law gains without finding or specifying the cost function

weighting factors. The references deal with both booster and airplane

flight control system design.

Many attempts [3, 4, 8, 12, 16, 24, 25, 26, 36, 37] have been

made at designing flight control systems using the time domain solu-

tion to the Regulator Problem. Burris and Bender [4] are the authors

of the celebrated "LAMS" effort. The works of Stein and Henke [36]

and Vandierendonck [37] are worth noting since they use a blended
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approach to the problem of multiple vehicle state design with the

same time-invariant control law. In these works, the "Ricatti equa-

tion" approach is used first to derive an optimal control law for each

single flight condition. These control laws then serve as the starting

point for the second phase of design which uses a gradient search

method with a quadratic cost function, to solve the multiple vehicle

state problem.

Several attempts [18, 31, 32, 38] at flight control system

design have been made using the frequency domain approach to solving

the Regulator Problem.

2. 2 Unconstrained Parameter Optimization Methods

As stated earlier, these are direct optimization methods

where the search procedure seeks only to minimize a cost function,

and any constraints must be included in the cost function. This sec-

tion discusses why these methods were not pursued.

2. 2. 1 The Algorithm of Stear and Lefkowitz

The work of Stear and Lefkowitz [35] contains a computerized

algorithm which the authors claim results in selection of gains and

filters within a given autopilot feedback structure that will stabilize

a booster by producing a gain/phase frequency response that will

satisfy a set of specified stability margins at critical flight times.

This algorithm is based on minimizing a nonlinear cost function

which is a function of the violations of the specified stability margins.
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Gradient search techniques are used to minimize this cost function.

The authors have made this algorithm work on a relatively

simple single-time-point problem with a fourth order filter iri'a

single-loop feedback structure.

There are three reasons why it was felt that this technique,

which has all the intelligence in the cost function, was not direct

enough to handle the multiple time point problem of a highly flexible

launch vehicle with a very large number of stability margin constraints:

(1) It does not deal directly with each individual margin constraint;

(2) The objective is to not only meet stability margin requirements,

but also to optimize or maximize all margins. In other words, it is

desired to have minimum margin requirements plus desired margin

objectives; (3) An additional objective is to optimize structural load

relief capability during the periods of high aerodynamic loading on

the vehicle. Since optimizing load relief capability reduces stability

margins, this objective requires a cost function that behaves nearly

like the inverse of a cost function that only contains stability margin

information.

2. 2. 2 AUTO

Coffee [7] developed an automated booster autopilot design

algorithm called AUTO. Coffee's approach is to choose a predeter-

mined open-loop frequency response by selecting and specifying the

loop gain and phase at various frequencies, i. e. , by selecting points
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on a gain-phase diagram corresponding to a set of pre-selected fre-

quencies. He then chooses an autopilot configuration of prescribed

complexity, but with nonoptimum gain and filter values, and formu-

lates a cost function which is the mean-square difference of the pre-

determined frequency response curve and the actual frequency response

curve at the given frequencies. Gradient search techniques are used

to find the autopilot gain and filter values which minimize the cost

function.

The algorithm, which seeks to fit an actual frequency response

to a desired frequency response in the least mean-squared-error

sense, is considered inadequate since it is impossible to select a pri-

ori the desired frequency response of a multiple time point problem

for a highly flexible launch vehicle. In other words, it is not possible

to select beforehand, the resonant location (gain and phase) of all bend-

ing and fuel slosh modes at all time points. Further, it is not clear

that a particular frequency response profile is even desirable. The

design problem is primarily concerned with stability margins which

correspond to selected points on the frequency response profile such

—ars crossover points and gain peaks, and not with achieving a particu-

lar desired frequency response.

Even if the desired frequency response could be specified a pri-

ori, this method does not directly treat each individual margin and

hence is considered inadequate for the multiple time point problem.
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Finally, Coffee's algorithm does not provide for load relief optimi-

zation in the presence of constraints on the stability margins.

2. 2. 3 The Algorithm of Stapleford, et al

The algorithm developed by Stapleford, et al [34], uses a ver-

sion of the parallel tangents method (partan) [Wilde and Beightler, 39,

Chapter 7] to minimize a quadratic cost function. The cost function

includes pilot tracking errors and control device deflections. The

cost function, which is expressed in the time domain with infinite

terminal time, is evaluated using Parseval's theorem [Chang, 6,

Chapter 2]. The method of finite differences is used to calculate the

direction of steepest descent from the cost function. This method was

not selected primarily since all the "intelligence" lies in the cost

function.

2 0 2 .4 Others

The classical works of Fletcher and Powell [13], Davidon [10],

Shah [33], and Hooke and Jeeves [19], are categorized as unconstrained

direct optimization methods. Since these methods contain all the

intelligence in the cost function, they were not considered adequate

for this problem which is really dominated by constraints.

2« 3 Constrained Parameter Optimization Methods (Nonlinear Pro-

gramming )

The methods classified under nonlinear programming are

direct optimization methods where the search procedure seeks to
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minimize a cost function in the presence of constraints. This section

contains a brief description of three of the nonlinear programming

algorithms that were found in the literature. The first is Rosen's

Projected Gradient Method [29, 30]. The second is the Differential

Algorithm method of Wilde and Beightler [39, Chapter 3]. The third

is the Multiple-Gradient-Summation Technique developed by Klingman

and Himmelblau [21],

2. 3. 1 The Projected Gradient Algorithm (PGA)

Rosen's projected gradient algorithm [29, 30] is an iterative

technique designed to solve a general class of nonlinear programming

problems. PGA employs cost-function and constraint gradient infor-

mation to replace the multidimensional optimization problem by an

equivalent sequence of one-dimensional searches. In this manner,

PGA solves a difficult multidimensional problem by solving a sequence

of simpler problems. In general, at the initiation of the iteration

sequence, PGA is primarily a constraint satisfaction algorithm. This

is because the initial search point generally does not fall within the

feasible region. As the iteration process proceeds, the emphasis

changes from constraint satisfaction to cost-function reduction.

The projected gradient method uses two basic search directions.

For the purpose of this discussion, they will be termed the constraint

and optimization directions, respectively. PGA proceeds by taking

successive steps in one or the other of these two directions.
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The constraint direction is used when the present search

point is unfeasible. A step in this direction ignores the cost function,

and is taken so as to "get feasible" in the shortest distance possible.

When a feasible point is reached, the optimization direction is used.

Obviously the steepest descent direction would be the best local

search direction for reducing the cost function. Such a direction,

however, would generally produce unacceptable constraint violations.

To avoid this difficulty, PGA orthogonally projects the unconstrained

cost function gradient into a direction parallel to the local linearized

constraint boundary. By searching in this projected gradient "optimi-

zation11 direction the algorithm attempts to avoid further constraint

violations. For an "unconstrained" optimum the algorithm will con-

verge to the local optimum directly via the cost function gradient.

For a "constrained" optimum, the algorithm will converge to the local

optimum where the projection of the cost function gradient onto a vector

parallel to the linearized constraint is zero.

2. 3. 2 The Differential Algorithm

This technique, developed by Wilde and Beightler [39, Chapter

3], employs the concept of the constrained derivative. It seeks the

local "constrained" or "unconstrained" optimum at which point the

so-called positivity and complementary slackness conditions are satis-

fied. Wilde and Beightler point out that their algorithm is really the
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nonlinear version of the Simplex Algorithm [9]. They also point out

that if the constraints are equalities, their algorithm is really the

Method of Undetermined Lagrange Multipliers [39].

2. 3. 3 The Multiple-Gradient-Summation Technique

This method, developed by Klingman and Himmelblau [21], is

briefly defined as follows. Assuming that the initial point is feasible,

the technique, when optimizing the cost function, employs the method

of Pattern Search until a constraint is encountered,, At the constraint

boundary, the search direction becomes the vector sum of the normal-

ized cost function gradient and the normalized gradient of the "encoun-

tered" constraint.

If the initial point is not feasible, the algorithm first "gets

feasible" by ignoring the cost function and basically proceeding in the

direction perpendicular to the feasible region.

2. 4 Conclusions of the Literature Search

This section contains a discussion of the three main factors

that led to the development of this new nonlinear programming algo-

rithm. These factors, which evolved from the literature search,

point out why a new method was developed and why the nonlinear pro-

gramming methods that were found in the literature were not used.

This section will conclude with a summary and overview of this new

procedure, and how it was applied to the problem of booster autopilot

design.
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The three factors are now itemized.

1. While it was felt that any of the three nonlinear program-

ming methods of Section 2. 3 could be made to work, the

high dimensionality of the control vector (i. e. , the large

number of autopilot gains and filters) and the large num-

ber of constraints in the booster autopilot design problem

pointed to the desirability of Linear Programming [Dantzig,

9]. The size of the control vector and constraint matrix

make the schemes in the literature very complicated,

and experience with them was limited to low dimensional

problems.

2. The autopilot design problem is highly nonlinear, but the

constraints on the stability margins cannot be expressed

as explicit analytical functions of the autopilot gains and

filters. The Taylor Series expansion is the logical ex-

pression to use in writing equations for the margins, but

anything higher than first order terms would be difficult

and expensive to obtain. The reason for this is because

the method of finite differences would have to be used in

obtaining any derivatives, and the accuracy with which

second and higher order derivatives could be calculated

is questionable.

3. The nonlinear programming methods that were found in
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the literature linearize the problem at each step anyway

by treating only the gradients of the cost function and the

constraints. Nonlinear programming methods also usu-

ally linearize the constraint equations in order to deter-

mine step sizes.

These three factors led to the concept that is the basis of this

nonlinear programming algorithm, namely, iterating from some

starting point to the final solution by solving successive linear pro-

gramming problems.

The method of approach is to expand each stability margin in

a first order Taylor Series about its nominal value that results from

some initial autopilot. Note that the nominal value for each margin

is found by searching the frequency response, and note that the first

derivatives of the stability margins with respect to the autopilot vari-

ables are calculated by the method of finite differences,. Via this

Taylor Series expansion, an inequality constraint is put on each mar-

gin. In order to maximize stability margins, the cost function is

formed so that when it is maximized, the first order terms in the

Taylor Series are also maximized, thereby maximizing the margins

themselves. The constraint matrix also includes minimum and maxi-

mum allowed values on the autopilot variables, A linear program-

ming problem results from this linear cost function which is to be

maximized in the presence of linear constraints on each individual
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stability margin and autopilot variable. The solution to this linear

programming problem is a new "nominal" autopilot. The problem

is relinearized about this new nominal via a "new" Taylor Series

expansion. This yields a "new" linear programming problem, whose

solution is another new nominal autopilot, etc.

Using this approach, the cost function for optimizing load

relief can be different from the cost function that optimizes stability

margins. One idea for this cost function is to use a separate tran-

sient response routine to calculate angle of attack and control deflec-

tion response due to a specified wind profile. These responses would

r

be expanded in a first order Taylor Series, and the cost function

would be formed from the first order terms. The linear program-

ming problem would adjust autopilot gains and filters so as to minimize

this cost function (which is a measure of structural bending moment

loads [Harris, 15] ) in the presence of constraints on the stability

margins and autopilot variables.

From the outset, only practical controllers are considered,

since the designer specifies the basic feedback structure, and puts

constraints on each individual autopilot gain and filter.

The multiple time point problem is handled as follows. Stabil-

ity margin requirements from several time points can be used to form

a single cost function and a single constraint matrix. Autopilot gains

and/or filters can be constrained to be shared between the several
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time points. By solving this single problem (that includes margin

and autopilot constraints and cost function objectives from several

time points) these several time points are then optimized all at the

same time. Hence, the requirement of multiple time point design

with the same time-invariant control law is satisfied.

Since this is a parameter optimization scheme, the complex-

ity of the autopilot does not necessarily increase with an increase in

the order of the fixed parts of the system. Inclusion of actuator and

sensor dynamics, etc. , is straightforward, and only increases the

computations required by the algorithm.



CHAPTER 3

THE DESIGN ALGORITHM

This chapter will outline the details of this nonlinear program-

ming algorithm as it is applied to the problem of booster autopilot

design. Simply stated, the basis of the optimization technique is the

iterative application of linear programming. As stated in Chapter 2,

the constraint equations consist of stability margin design require-

ments and constraints on the values of the individual autopilot vari-

ables. The cost function is formed to either maximize stability

margins or maximize load relief capability.

Section 3. 1 will briefly discuss linear programming in general.

The remaining sections will define how the problem of booster auto-

pilot design is adapted to the iterative application of linear program-

ming. Section 3. 2 illustrates the stability margin and autopilot variable

constraint equations. Section 3. 3 illustrates the two types of cost

functions that are required in launch vehicle autopilot design (maxi-

mize stability margins and maximize load relief capability). Section

3. 4 will discuss a general flow chart of the design algorithm. .

Section 3. 5 discusses the two design "mechanisms" that really

make the algorithm work. These two mechanisms have to do with

step-size optimization, and allow steady convergence to a local opti-

mum, particularly to "an interior optimum. This chapter then concludes
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with a discussion of detailed flow charts of the design method.

3. 1 Linear Programming

A linear programming algorithm solves the following problem:

maximize the linear cost function, y, where

n

y = E »j xj
j = 1

subject to a matrix of linear constraint equations

n / -^ \
£ bij Xj( ^ ) ci (i = 1, .. ., m)

j = 1

and X. A 0 (j = 1, . . . , n)

For the booster autopilot design problem, the variables (X- ) are the

autopilot gains and filters.

Dantzig [9] is the author of the Simplex Method which is a

technique for solving the linear programming problem. Wilde and

Beightler [39, p. 138] show that the Simplex Method is a special case

of their Differential Algorithm which was discussed in Section 2. 3. 2

of Chapter 2.

3. 2 Constraint Equations

This section illustrates the stability margin and autopilot vari-

able constraint equations.
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3. 2. 1 Stability Margin Constraint Equations

The types of margins that are normally considered in launch

vehicle autopilot design are illustrated in Figure 1. 1 of the first chap-

ter. Basically, these margins can be categorized as rigid-body, flex-

ible-body, and fuel slosh margins.

A routine can be used to search the frequency response and

identify each stability margin that is to be treated. Each stability mar-

gin, M.(X), is then expanded in a first order Taylor Series about its

nominal value, M. (X ) . It is required that M- (X) be greater than or

equal to some specified value, M- . Hence each margin constraint

equation can be -written as follows:

Mi(XQ + AX) = M io(XQ) + £ i AX. A Mis

(i = 1, . . . , m)

This expression is now rewritten in the form of the constraint

equations of Section 3. 1. Note that AX- = X- - X-, where X. is the
J J J J

value about which the Taylor Series if formed.

_ n
Mis - Mio <X0) +

j = 1 V"J /o

(i = 1, . . ., m)

Since explicit expressions are not available for each margin
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as a function of the autopilot parameters, the method of finite differ-

ences must be used to calculate the partial derivatives. Computing

the derivatives this way allows more freedom of configuration with

both the airframe equations and with the autopilot equations. Obviously,

the matrix of stability margin constraint equations can be formed from

margins at several different vehicle states. This satisfies the require-

ment that the design algorithm must be able to handle the problem of

multiple vehicle state design with the same time-invariant control law.

3 .2 .2 Autopilot Variable Constraint Equations

A requirement of this automated design technique is that the

user must be able to specify the autopilot configuration. In other

words, he must be able to specify the number and types of feedback

loops and the number of gains and filters within each loop. Further,

the user must be able to specify which autopilot parameters are to be

treated as constants and which are to be treated as variables. He

must then be able to individually constrain each variable. The algo-

rithm then optimizes each variable within the constraints.

Constraint equations on each autopilot variable can be written

as follows:

Xjj < Xj < Xju (j = 1, ..., n)

Section 3. 5 will define X,-j and Xju 'in more detail, but basically they

are functions of step-sizes, and minimum and maximum allowed values.
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As with the margin constraint equations, the autopilot vari-

able constraint equations can include variables from several different

vehicle states. Also, to handle the problem of multiple vehicle state

design, a single constraint equation can be used for a variable that is

to have the same value at several different vehicle states.

3. 3 Cost Functions

This section will illustrate the two types of cost functions that

are required in launch vehicle autopilot design. The two types are:

(1) a cost function to maximize stability margins; and (2) a cost funct-

ion to maximize structural bending moment load relief capability.

3. 3. 1 Stability Margin Cost Function

When the objective is to maximize stability margins, the cost

function is formed so that when it is increased, all the margins at all

the time points will tend to increase together, and each structural

bending mode will tend to resonate near zero degrees phase. To

accomplish this, the cost function is written so that when it is in-

creased, the first order terms in the Taylor Series expansion of each

margin about its nominal value, will also be increased.

The objective is to maximize the following expression, which

is a "weighted" linear combination of the "variable" portion of the first

order terms in the Taylor Series expansion.

Y i = L L E W j U , t ) * w z U , t ) * S ( i ) *
j t i



29

In the above expression:

(1) j refers to the summation over all the autopilot variables;

(2) t refers to the summation over all the time points or-

vehicle states;

(3) i refers to the summation over all the stability margins

at all of the time points;

(4) W, (i,t) refers to a weighting factor. For each margin,

it is simply a ratio of the desired margin over the actual

margin. Hence, if a margin is not met, Wj (i,t) will be

greater than unity. It becomes less than unity when a

margin exceeds its desired objective. It is noted at this

time that in the expression for Y,, i also indexes the

phase angle at which each structural bending mode reson-

ates. For these values of i, the partial derivative indi-

cates the rate of change of each modal peak phase with

respect to each autopilot variable, and Wj (i,t) is written

so that the algorithm will attempt to force each mode to

resonate near zero degrees phase. Wj (i, t) will be large

for modes that resonate near 180 degrees, and zero for

modes that resonate at zero degrees. For some arbitrary

angle like 90 degrees, W1 (i,t) can equal unity.

(5) W"2 (i, t) refers to a weighting factor that might be selected

by the user. This would give the user the capability to
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eliminate certain margins from the optimization process

or to emphasize other margins.
;

(6) S (i) refers to a scale factor. It serves to scale the mar-

gins and modal peak phases so that phase margins and

gain margins can be optimized together. For example,

it might be desired to equate a five degree increase in

the rigid-body phase margin with a one decibel (12. 2%)

increase in the rigid body gain margin. S (i) would be

used to reflect this desired scaling.

In summary, Yj is a "weighted" linear combination of the

"positive" changes in each margin and modal peak phase. Note that

this linear combination can incorporate margins from all of the vehicle

states that are being designed together. The design algorithm will

maximize Y, (and hence seek to maximize all stability margins and

seek to force all modes to resonate near zero degrees phase) in the

presence of the constraint matrix which includes constraints on each

individual margin and each autopilot variable at each time point.

The following paragraph discusses an advantage of a design

algorithm that maximizes a cost function in the presence of constraints,

as opposed to one that includes the constraints in the cost function [7,

35], With a separate cost function and constraint matrix, the con-

straint equations can specify the minimum requirements on each design

goal, while the cost function can seek to maximize each design goal.



31

In other words, the cost function can reflect the desired objectives

(in the weighting factors) while the constraint matrix can reflect the

minimum requirements. - -. • -

3. 3. 2 Load Relief Cost Function

Structural bending moment loads on a launch vehicle are

largely due to axial acceleration, aerodynamic loading, and control

device deflections [Harris, 15]. Obviously, the booster autopilot can

do little to affect axial acceleration, and therefore the main objective

of a so-called load relief autopilot is to reduce aerodynamic loading

due to angle of attack and to keep control device deflections to a mini-

mum.

Hence, for this design algorithm, when the objective is to max-

imize structural bending moment load relief capability, the cost func-

tion is comprised of the response of the angle of attack ( / ? ) and the

control deflections (6 ) due to the wind forcing function (/? ). When the

cost function is maximized, the peak values of /? and 5 are minimized.

A separate transient response routine is used to calculate the

peak values of angle of attack (ft ) and control deflection (5 ) due to ft .

As with stability margins, the method of finite differences is used to

compute the first partial derivatives of ft and 6 with respect to the

autopilot variables. The cost function is then formed from the first

order terms of the Taylor Series expansions of /3 and 5 about their

nominal values.



32

As with the stability margin cost function, the load relief cost

function (Y2) is a weighted linear combination of the variable portion

of the first order terms in the Taylor Series. Y? is given as follows:

j t

(t) *
*

In the above expression:

(1) j refers to the summation over all the autopilot variables;

(2) t refers to the summation over all the vehicle states;

(3) Wj (t) and W2 (t) refer to weighting factors that are input

by the user.

When maximizing load relief capability, the design algorithm

will maximize the negative of Y2 in the presence of the constraint

equations on the minimum allowed gain/phase stability margins and on

the allowed ranges of the individual autopilot variables. Note that mul-

tiple time point design is handled just as it is when maximizing stability

margins. Some final notes on the load relief cost function are now

listed.

Since the so-called "rigid-body" (as opposed to flexible -body)

angle of attack ( /?) and control deflection (8) are the principal factors

in determining structural bending moment loads, it is felt that only the

rigid-body airframe equations of motion [Harris,. 15] need to be used

in the transient response routine that is used to calculate angle of
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attack and control deflection. Note also that these rigid-body air-

frame equations can include planar coupling (e. g. between the yaw

and the roll planes), and hence the cost function can include control

deflections from several planes (e. g. the yaw plane control deflec-

tions (5 r) and the roll plane control deflections (8 , ) ).

The wind forcing function can be a series of steps and/or

ramps that approximate the commonly used synthetic wind profile

[15]. The wind forcing function could also be stochastic, and the

design algorithm would then minimize the rms values of j3 and d .

This would be done via Wiener's theorem and the filtering property of

power spectral density functions [Chang, 6].

3. 4 General Flow Chart

Figure 3. 1 is a general flow chart summarizing the main steps

involved in the algorithm. It shows the general flow from the initial

autopilot for each iteration through the following routines:

(1) The routine that generates the frequency response and

finds the stability margins, and the routine that gener-

ates the transient response and finds peak /3 and 5 ;

(2) The routine that computes sensitivities or partial deriv-

atives;

(3) The routines that set up the linear programming problem

and solve it; and

(4) The routines that determine whether the design is com-
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plete. These routines are discussed in the next section

(Section 3. 5, Step-size Optimization).

If the design if not complete, another major iteration is begun

with the best answer obtained in the previous iteration. In other words,

the problem is relinearized about the best answer of the previous major

loop, and another cycle through the major loop is performed. This

iterative process continues until the local optimum is found.

Note that this design process satisfies the five main elements

of the design criteria as outlined in Section 1. 2 of Chapter 1.

(1) The method directly treats stability margin requirements

and objectives, and structural bending moment load reduc-

tion.

(2) The method directly handles the user-selected autopilot

c onf igu ration.

(3) The method directly handles the multiple time point

design problem.

(4) The method is not limited by the order of the system.

Note that since this is a parameter optimization routine,

the order of the autopilot does not necessarily increase

with an increase in the order of the fixed parts of the

system.

(5) The method can design either a digital autopilot (via the

W-plane) or an analog autopilot (via the S-plane).
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3. 5 Step- size Optimization

This section discusses the details of the step-size optimiza-

tion routine that is the key to this design algorithm. This step- size

optimization routine is divided into two parts: (1) the Minor loop

which is the autopilot variable step- size loop; and, (2) the Inner loop

which might be referred to as the stability margin step- size loop.

3. 5. 1 The Minor Loop

Section 3. 2. 2 presented the general expression for the con-

straint equation for each autopilot variable (X-). The following is the

detailed expression for this constraint equation.

MAX {(1+P)-1 * X. X. . 1 < X £ MIN / (1 +P) * X. , X. 1
1 J° j m m j j ^ j0» j max }

for (j = 1, . . . , n)

where:

(1) X- m£n and X- max refer to the minimum and maximum

values ever allowed for X-.
J

(2) X- refers to the initial value of X. on each iteration.

Note that X. is the point about which the partial deriva
J

tives are computed, and about which the Taylor Series

is expanded.

(3) P refers to the autopilot variable step- size f©r each

iteration.
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In words, if Xj min and X-max are not encountered on a

particular iteration, the above constraint equation says that X- is

allowed to vary no more than about + P% from X. on any iteration.
— J°

Since it is desirable to maximize the step size on each iteration,

thereby getting the maximum "mileage" out of each set of partial

derivatives, it is desirable to have a Minor Loop that increases the

size of P until improvement in that "search direction" is no longer

possible. In other words, the Minor Loop serves to maximize the

autopilot variable step-size. In maximizing P, the Minor Loop uses

tw'o "indicators": (1) a counter that keeps track of the number of sta-

bility margins that are already met, and (2) a figure-of-merit that is

a linear combination of the actual margins. If the number of "met

margins" increases, obviously the value of P can be increased. If the

number of "met margins" does not change, the figure-of-merit is used

to decide whether P can be further increased. In other words, the

margin counter is used to reward those steps that result in an increase

in the number of "met margins". Conversely, the counter prohibits

those steps that result in a loss in the number of "met margins". Fin-

ally, the figure-of-merit is used to break ties when the margin counter

does not change from one step to another.

Section 3. 5. 3 contains a graphical illustration of the Minor

Loop, but basically the Minor Loop serves to either keep the problem

linear on each major iteration, or to take advantage of the neglected
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nonlinearities when they might be helpful. In other words, the Minor

Loop serves to keep the nonlinearities from "hurting" the steady con-

vergence to a local optimum.

A major benefit of the minor loop is that it allows the algorithm

to converge steadily to an "interior" optimum. This is explained as

follows. Since the solution to the linear programming problem always

lies at a vertex of the feasible region defined by the constraint equations,

it is the Minor Loop that allows the algorithm to converge to a local

optimum that is interior to the stability margin constraint equations.

As mentioned earlier, Section 3. 5. 3 will graphically illustrate the

mechanics of the Minor Loop, but first a brief discussion of the Inner

Loop is in order since the Minor and Inner Loops work together. Sec-

tion 3. 5. 3 will then illustrate this interaction.

3 .5 .2 The Inner Loop

The second part of the step- size optimization routine can be

illustrated by the following detailed expansion of a particular margin

constraint equation.

.o (XQ) + * (Xj - X J Q) > Mis (i = 1, . . . , m)

In the above expression, there are two cases for M. .
1 S

(1) If the particular margin is already met, then for the next

iteration,

Mis = SPEC(i)
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where SPEC(i) is the minimum allowed value for the i^

margin.

(2) If the particular margin is not yet met,

Mis = Mio (X0) + STEP * [SPEC (i) - M i o ( X 0 ) ]

Before defining the purpose of the equations for M. , note that
1 S

in the second equation, (a) if STEP = 1, Mis = SPEC(i), and (b) if

STEP - 0, Mis = MiQ ( X 0 ) .

The purpose of these equations is now illustrated. For a given

value of P (autopilot variable step-size), there may not be a feasible

solution to the'linear programming problem if the present autopilot

docs not meet all of the stability margin constraints. In other words,

the feasible region defined by the margin constraint equations may not

overlap the feasible region defined by P. By automatically reducing

the value of STEP, the margin constraints are "loosened", until a feas-

ible solution is possible for a given value of P. In this way, the value

of P can be increased in a steady and rational manner, and the algo-

rithm will be allowed to converge to a solution in a progressively

improving manner.

3. 5, 3 Graphical Illustration of Step-size Optimization

Figures 3.2 through 3. 7 graphically illustrate the mechanics

and the interaction of the two step-size optimization routines (the

Minor Loop and the Inner Loop).
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Figure 3. 2 shows a hypothetical two dimensional condition

that might exist for a rigid-body autopilot design problem. Figure

3. 2 is a plot of the attitude error gain (K-p) versus the attitude rate

gain (Kj^). Plotted on the figure are three nonlinear stability margin

constraint equations: (1) the aerodynamic gain margin; (2) the rigid-

body phase margin; and, (3) the rigid-body gain margin. Figure 3. 2

also shows where the "true" local optimum condition might be, where

the objective is to maximize stability margins, and where all three

stability margins are equally weighted. Obviously, the "true" opti-

mum for this hypothetical case lies inside the feasible region where

all three margin requirements are satisfied. The figure also shows

what might be the "first guess" or initial condition on Kj} and KR.

Figure 3. 3 shows what the constraints might look like when

they,are linearized about the initial condition. The figure also shows

the linearized interior optimum, where again, all margins have been

equally weighted. Note that the linearized optimum is not the same

as the nonlinear or "true" optimum for this initial condition. Finally,

Figure 3. 3 shows the slope of the linearized cost function (Y) and the

direction in which it increases.

Figure 3. 4 illustrates the feasible region defined by the auto-

pilot variable constraint equations on K-p and K-^ for step-size #1

(denoted P, ). This feasible region does not overlap the feasible

region defined by the stability margin constraint equations. With the
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initial condition, the rigid body phase and gain margin constraints

are satisfied, but the aerodynamic gain margin is not. Hence, the

design method enters the inner loop, and relaxes the aerodynamic

gain margin constraint until a feasible region exists for both the mar-

gin constraints and the autopilot variable constraints. This relaxa-

tion is accomplished by reducing the parameter denoted as STEP.

When STEP is unity, no relaxation exists. When STEP is

reduced to 0. 8, the aerodynamic gain margin constraint is relaxed

enough so that a feasible region exists. When STEP is 0. 8, this

means that an "80% improvement" is required for the margin that is

not yet satisfied. This so-called "required margin improvement"

becomes very important when the optimum is exterior to the feasible

region. This is the case most of the time for launch vehicle auto-

pilot design.

As indicated on Figure 3.4, the optimum solution for the first

step of the minor loop exists at Y i. Comparing Yj with the nonlinear

cost function and constraints shown on Figure 3. 2, it is seen that

stability at Yj is better than at the initial condition. This "improved

stability" is indicated by the figure-of-merit which, as discussed in

Section 3. 5. 1, is a linear combination of the stability margins. Note

that the so-called "met-margin counter" indicates that at Y^, there

are still only two margins that are satisfied. Note that the margin

counter and the figure-of-merit are formed from an actual evaluation
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of the frequency response. In other words, they are not computed

from the linearized cost function and the linearized constraint equa-

tions.

Hence, since Yj is better than the initial condition, the design

process advances, using the same set of partial derivatives, and

hence the same linearized cost function and margin constraint equa-

tions that were calculated at the initial condition.

As shown in Figure 3. 5, the design method now increases P

from P, to P?. Figure 3. 5 shows the feasible region defined by the

autopilot variable constraint equations for P£. An overlap exists

between the feasible regions defined by the margin and autopilot con-

straint equations, and hence the inner loop need not be used. For ?£,

the optimum solution exists at Y£. By comparing ¥3 with the non-

linear constraint equations of Figure 3. 2, the margin counter indicates

that there are now three margins that are satisfied. Since improved

stability has again been achieved, P is further increased from the

original initial condition.

As shown in Figure 3. 6, P is now increased to P-^. For this

step, overlap also exists, and the optimum solution is at Y-j. By com-

paring Y3 to the nonlinear constraints of Figure 3. 2, it is seen that

the rigid-body phase margin requirement is no longer satisfied. The

margin counter indicates that only two margins are satisfied at Y-j.

Hence, Y3 is not as good as Y£ and P must be reduced.
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Figure 3.7 shows the autopilot constraint equations for P4,

where P2 < ^4 < P3- Again, tne inner loop is not needed, and the

optimum solution exists at ¥4. By comparing Y4 to Figure 3. 2, the

margin counter shows that there are three margins that are met. But,

the figure-of-merit shows that ¥2 is better than ¥4. Postulating that

the difference between P£ and P4 is less than some convergence cri-

terion, the algorithm stops this so-called major iteration at ¥2- The

values of K-p and Kj^ at ¥2 become the initial condition for the next

major iteration. At ¥7. the problem is relinearized. A new set of

partial derivatives is computed, and a new cost function and new con-

straint equations are formed. As the design progresses, the linear-

ized optimum gets closer and closer to the nonlinear or "true" opti-

mum. As will be discussed in Section 3. 5. 5, convergence criteria

can be used to terminate this iterative design process.

Table 3. 1 summarizes the results of Figures 3. 2 through 3. 7.

These figures have been used to demonstrate steady convergence to a

local interior optimum. Section 3. 5.4 will illustrate convergence to

a local exterior optimum.

As a final note, Figures 3. 2 through 3. 7 demonstrate that this

algorithm does not require that the initial condition lie within the feasi-

ble region.

3. 5. 4 Convergence to an Exterior Optimum

This section illustrates how the algorithm converges to an
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exterior or "constrained" optimum. Figure 3.8 shows a case that

might exist when optimizing load relief capability since for this phase

of design, the optimum solution almost always is exterior to the feas-

ible region defined by the margin constraint equations. Figure 3. 8 is

a hypothetical two-dimensional case where (1) the nonlinear margin

constraint might represent the so-called aerodynamic gain margin,

(2) X} might represent the attitude error gain, and (3) ̂ 2 might

represent the so-called load relief loop gain. Figure 3.8 also shows

the nonlinear constrained optimum.

In Figure 3. 8, the initial condition on X^ and X2 is outside the

feasible region. Figure 3. 9 shows what the margin constraint and the

nonlinear optimum might look like when the problem is linearized about

the initial condition. The first step of the algorithm is to "get feasible",

and Figure 3. 9 will show that in so doing, the algorithm still attempts

to approach the optimum.

Referring to Figure 3. 9, after a series of iterations through

the minor and the inner loops, the solution is shown to exist at Yi.

With the linearized margin and cost function as shown, this is the best

solution this major iteration can achieve without violating the nonlinear

margin constraint.

At Yj, the problem is relinearized as shown in Figure 3. 10.

Figure 3.10 shows that any step in the direction of the gradient to the

linearized optimum would yield an unfeasible solution. Referring to
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Figure 3. 10, again after a series of iterations through the minor and

the inner loops, the solution exists at ^2' With the linearized margin

and cost function as shown, this is the best solution this major itera-

tion can achieve without violating the nonlinear margin constraint.

With each major iteration, the linearized constrained optimum

approaches the nonlinear constrained optimum.

This section illustrates how the algorithm first "gets feasible",

and then moves along or parallel to a constraint for the case of a con-

strained optimum. Example 6 of Chapter 4 -will dramatically demon-

strate this situation.

Because of the weighting factors in the cost function and figure-

of-merit, situations with an exterior optimum can also exist when

optimizing stability margins.

3. 5. 5 Termination

This section discusses the two ways in which the design pro-

cess can be terminated.

The first way might be referred to as self-termination, where

the algorithm finds a local optimum and can achieve no improvement

over the initial autopilot for a given iteration. The so-called margin

counter and the figure-of-merit define this "improvement. " Recall

that the counter "counts" the number of "met margins", and the figure-

of-merit is a linear combination of the actual margins. The counter

never allows the algorithm to lose a margin, and an iteration is con-
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sidered better if the counter increases. The figure-of-merit is used

to break ties in the counter. An iteration is considered no good if the

figure-of-merit decreases. An iteration is considered better only if

the figure-of-merit increases by a certain percentage (as specified by

the user). The following discusses this.

The user may wish to "reward" a certain margin only up to a

certain desired value. In other words, up to a desired value, the

figure-of-merit will include the actual value of the margin. When the

margin exceeds this desired value, the f igure-of-meri t will only

include this desired value. If this happens for all margins, the figure-

of-merit will not change at all from one iteration to the next, and the

algorithm will have found an optimum that not only meets the require-

ments, but also satisfies the desired objectives. Examples 1 and 2 of

Chapter 4 will illustrate cases where this happened.

The case most likely to be encountered is when not all margins

exceed their desired values, and the figure-of-merit improves only

slightly from one iteration to the next. The percent improvement is

less than that required by the user and the design process terminates.

For this case, the local optimum may yield a solution that satisfies

all the design requirements, in which case the problem is solved. How-

ever, if the local optimum does not satisfy the requirements, the user

must then either (1) try another initial condition for the autopilot vari-

ables, (2) add more complexity to the autopilot, and/or (3) relax some
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of the design requirements and/or alter some of the design objectives.

The second way that the design may be terminated is directly

by the user. He may specify termination after a certain number of

major iterations or after a certain amount of computer time.

3. 6 Detailed Flow Charts

This section now presents two detailed versions of the General

Flow Chart that was given in Figure 3.1.

3. 6. 1 Overall Flow Chart

Figure 3. 11 is a detailed overall flow chart of this nonlinear

programming algorithm as it is applied to the problem of launch

vehicle autopilot design. It shows the flow of information from the

initial autopilot, all the way through the step-size optimization rou-

tines, through the termination routine, and back to the initial autopilot

for the next major iteration. Some of the details of Figure 3. 11 are

now discussed.

In the block showing where the partial-derivatives are calcu-

lated, reference is made to closed-loop roots. This illustrates the

possibility of not only optimizing stability margins, but also of opti-

mizing locations of at least the so-called dominant closed-loop roots.

This also illustrates the possibility of adding a routine that could put

some of the following requirements on the response of the attitude of

the vehicle due to a guidance command:

(1) Attitude rise time;
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(2) Attitude overshoot;

(3) Attitude settling time;

(4) Steady-state attitude error; and

(5) Peak values of the control device deflections required to

follow the guidance command.

Also in the block for computing partial derivatives, reference

is made to "modal peak phases". As discussed in Section 3. 3. 1, these

sensitivities are used in the cost function in an attempt to force all

bending modes to resonate near zero degrees phase.

In that same block, reference is made to so-called tolerance

constraints. This refers to a routine that is used to keep the individual

autopilot vectors (e. g. , the attitude error vector, the rate vectors, the

accelerometer loop vector, etc. ) from getting very much larger than

the total resultant vector at all frequencies. When the individual vec-

tors get much larger than the resultant, vector cancellation results,

and this can lead to problems when tolerances on the airframe para-

meters are considered.

In the block showing where the constraint matrix is set up,

reference is made to the "Drift Minimum" condition. (Greensite [14]

and Hoelker [17] define this condition, which basically is a steady-

state relationship between the autopilot gains. This steady-state

relationship results in a mix between the forces due to gravity, aero-

dynamics, and control deflections, that yields a zero net force per-
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pendicular to the vehicle's velocity vector. ) This illustrates that it

is possible not only to put constraints on margins and root locations

and on min-max values of the autopilot variables, but also to con-

strain the autopilot variables to satisfy other conditions like the Drift

Minimum condition. ;

Figure 3. 11 shows a block labeled "Simplex Algorithm". This

is in reference to Dantzig's method [9] for solving linear programming

problems.

Figure 3. 11 also shows a block labeled "Margin Objectives".

This refers to the fact that design objectives are used to form the cost

function, while design requirements are used to form the constraint

matrix.

Finally, Figure 3. 11 shows a block that refers to the step-size

optimization routine. The details within this block are shown in Fig-

ure 3. 12 which is discussed in the next section. Figure 3. 11 also

shows a block labeled "Optimization Completed? " which refers to the

termination routine.
• -

3 .6 .2 Step-size Optimization Flow Chart

Figure 3.'12 illustrates the step-size optimization routines

(namely, the Minor Loop and the Inner L/oop) and their relationship to

the other routines shown in Figure 3. 11. As discussed in Section 3. 5,

the Inner Loop is used to relax constraints in order to yield a feasible

solution to the linear programming problem. The Minor Loop is used
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to maximize the autopilot variable step-size in order to get the "max-

imum mileage" out of each set of partial derivatives, and in order to

allow the algorithm to steadily converge to a local optimum, particu-

larly to an interior optimum.



CHAPTER 4

RESULTS

This nonlinear programming algorithm, when applied to the

problem of launch vehicle autopilot design, led to the development of

a digital computer program called COEBRA. COEBRA is an acronym

for Computerized Optimization of Elastic Booster Autopilots.

This chapter presents some of the results obtained from the

COEBRA program. The first two examples are frequency domain

design problems that were found in textbooks. The last five examples

demonstrate the application of COEBRA to the booster autopilot design

problem.

Each example also shows the computer time required. This is

the time required on a CDC 6400/6500 computer system.

Throughout this chapter, the following shorthand notation will

be used to represent compensator transfer functions (S-plane or W-

plane). The transfer function given by

K (1 + TJ S) (1 + 1 S + S2 )

(1 + T S) (1 + T S) (1 + l ^2 S + S2 )
co u,2

2 2

will be abbreviated as follows:

FK] (Tl. fl , a,l)
(T2, T3, f 2, w2)
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4. 1 Example ffl

Example #1 illustrates the application of COEBRA to a prob-

lem found in B. C. Kuo's textbook on sampled-data control systems

[23, example 9-3, page 291]. This problem was selected in order to

demonstrate the COEBRA program to those readers who are not fam-

iliar •with the details of and the solutions involved in the booster auto-

pilot design problem.

The overall problem that Kuo was illustrating was the design

of a digital compensator for a sampled-data control system. The

first step in Kuo's design was to compute the Z-transform of the plant

(the fixed parts of the system). He then selected the loop gain to yield

a certain desired velocity constant. The next step was to transform

the problem to the W-plane. The block diagram of the system in the

W-plane is shown in Figure 4. 1. Kuo's last step (before actually im-

plementing or realizing the final solution) was to adjust the two time

constants in the compensator to achieve a phase margin greater than

or equal to 50 degrees. The problem given to the COEBRA program

was to adjust the compensator time constants (Tl and T2) until the

following results from Kuo's compensator were matched:

(1) Phase margin > 50 degrees

(2) Gain margin > 12 decibels

(3) Frequency at the phase margin (w ) > 0. 2

Figure 4. 2 compares Kuo's results with those obtained from
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the first COEBRA run. For this COEBRA run, both Tl and T2 were

initialized with a value of 20, and hence the initial response shown in

Figure 4. 2 is identical to the response of the plant only. Note that o>c

was 0. 542 for the initial response. Figure 4. 2 shows the results of

the first and sixth (final) major iterations of COEBRA. The sixth iter-

ation was the final one since COEBRA was not "rewarded" for doing

better than Kuo's result. In other words, recalling the discussion on

termination in Section 3. 5. 5 of Chapter 3, the figure-of-merit was not

allowed to increase once Kuo's results were matched. The results of

the fifth and sixth iterations were identical, since it took COEBRA one

iteration to decide that improvement was no longer possible or "per-

mitted".

Table 4. 1 summarizes the initial and final compensators, as

well as the final stability margins obtained from COEBRA run #1.

Note that as with Kuo, the final answer from Run 1 was a phase-lag

compensator. Due to the circumstances of the problem as pointed out

by Kuo, this minimum complexity (first order) compensator had to be

a phase-lag model. In other words, phase-lead compensation would

be ineffective.

Additional COEBRA runs were made in an attempt to "map the

hill", or in other words, to see what COEBRA would do with different

initial compensators. As shown in Table 4. 1, Runs 2, 3 and 4 achieved

essentially the same results as did Run 1 and Kuo. With the initial
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compensator of Run 5, COEBRA climbed a local optimum that did not

satisfy the design requirements. Run 5 automatically terminated

after 14 major iterations when the margin counter and the figure-of-

merit essentially ceased to increase. Note that the final answer from

Run 5 was not a phase-lag compensator. Run 6 was made with the

denominator time constant (T2) of Run 5 changed to a value of 4. , so

that the initial compensator was a phase-lag compensator. Table 4. 1

shows that Run 6 achieved essentially the same answer as did Kuo.

Since a first order phase-lag compensator is the minimum-

complexity compensator that can solve this problem, it is not difficult

to understand -why COEBRA could not converge to a final solution from

every initial condition. This points out that the difficulty of any prob-

lem is dictated more by the degrees of freedom in the compensator

than by the complexity or order of the plant.

Table 4. 2 summarizes the computer time required to make

COEBRA runs 1 through 6.

4. 2 Example #2

Example #2 illustrates the application of COEBRA to a prob-

lem found in Schaum's Outline Series on feedback control systems

[DiStefano, 11, problem 16-10, page 309]. This problem was selected

for the same reason as Example #1.

The system block diagram for Example #2 is shown in Figure

4. 3. For this example, the design is performed in the S-plane. After
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DiStefano had selected the Bode gain to yield a certain velocity con-

stant, he then adjusted the four time constants in the compensator to

meet the following design specifications:

(1) Phase margin > 45 degrees

(2) Gain margin > 10 decibels

(3) Frequency at the phase margin (o> c) > 10 rad/sec

The problem given to the COEBRA program was to adjust the four com-

pensator time constants until the above three design requirements were

satisfied.

Table 4. 3 compares DiStefano1 s results with those obtained from
>

the first COEBRA run. With all the time constants in the compensator

initialized to unity, COEBRA, in six major iterations, climbed to a

local optimum that did not meet the design requirements. DiStefano

showed that the minimum-complexity compensator that is required to

solve this problem, is a lag-lead compensator, and the final answer

for the unsuccessful Run 1 is not a lag-lead compensator. COEBRA

terminated after six iterations when the margin counter and the figure-

of-merit ceased to improve.

COEBRA was reinitialized to the compensator shown for Run

2 in Table 4. 3. As can be seen from the table, Run 2 achieved all the

design objectives. It did so with a lag-lead compensator.

Figure 4.4 compares DiStefano's results with those obtained

from Run 2. Since the numerator and denominator of the initial com-
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pensator for Run 2 are identical, the initial response shown in Figure

4. 4 is identical to the response of the plant only. As can be seen, the

system with a unity compensator (COEBRA's initial compensator) is

unstable. Note that a>c for the initial response is 22.4 rad/sec. Fig-

ure 4.4 shows the results of the fourth and sixth minor iterations in

the first major iteration of Run 2. The results of the sixth minor iter-

ation in the first major iteration satisfy all the design requirements,

and these results were the best COEBRA was "allowed" to achieve.

As with Example #1, the reason for this was that COEBRA was only

"rewarded" up to the design requirements. In other words, recalling

the discussion on Termination in Section 3. 5. 5 of Chapter 3, the fig-

ure-of-merit was not allowed to increase once DiStefano's results

were matched. Run 2 ran for two major iterations since it took COE-

BRA one iteration to decide that further improvement was not allowed.

Two more COEBRA runs were made on this problem. Their

initial compensators were chosen to "lie between" the initial compen-

sators of Run 1 and Run 2. From Table 4. 3, it is seen that the initial

compensator for Run 3 was "close" to that for Run 1. As with Run 1,

Run 3 climbed a local optimum that did not yield a feasible solution.

Run 3 went four major iterations before the counter and figure-of-

merit indicated that no further improvement was possible. The final

answer from Run 3 was not a lag-lead compensator.

Run 4 was made with an initial compensator that was "between"
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the initial compensators for Runs 2 and 3. As can be seen from

Table 4. 3, Run 4 achieved satisfactory results with a lag-lead com-

pensator.

Since a second order lag-lead compensator is the mlnimum-

c ~>mplexity compensator that can solve this problem, it is not diffi-

cult to understand why COEBRA could not converge to a final solution

from every initial condition. As with Example #1, this points out

again that the difficulty of any problem is dictated more by the order

of the compensator than by the order of the plant. In most cases, the

"optimum hill" broadens and smoothes out as the order or complexity

of the compensator increases.

Table 4. 4 summarizes the computer time required to make

COEBRA runs 1 through 4.

4. 3 Example #3

Example #3 illustrates the application of COEBRA to a single-

time-point autopilot design problem where the initial autopilot was so

poor that it resulted in a rigid-body instability. The objective of the

COEBRA run was not only to stabilize the system, but also to optimize

all stability margins.

The airframe (or system to be controlled) included rigid-body

dynamics and eight structural bending modes. The block diagram of

the airframe /autopilot system is shown in Figure 4. 5. Since this is a

so-called analog autopilot, the design is performed in the S-plane.
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Figure 4. 5 shows the attitude loop with a gain and two filters, and

two rate loops (for bending mode stability [Harris, 15] ), each with a

gain and two filters. The problem given to COEBRA was to adjust

these nine autopilot parameters until all stability margins were opti-

mized.

Figure 4. 6 shows the open-loop frequency response resulting

from the initial autopilot. This figure shows that the initial autopilot

did result in a rigid-body instability. The resonances of the eight

structural bending modes are indicated in Figure 4. 6, which also

shows that the rigid-body phase margin frequency (w c) was 4. 62 rad.

per second.

Arrows around the critical point in Figure 4. 6 illustrate the

required rigid-body and first mode stability margins. It was also

required that o> be greater than 2. rad/sec and that modes 2 through

8 be gain stabilized with their peaks resonating below "-10" decibels.

Figure 4. 7 shows the frequency response after the first major

iteration. The system is now stable, with ojc = 2. 07 rad/sec.

Figure 4. 8 shows the frequency response that resulted from

the third and final iteration. COEBRA self-terminated after all design

requirements were met, and after the margin counter and figure-of-

merit ceased to significantly improve following the second major iter-

ation. In other words, the results of the second and third iterations

were identical since it took COEBRA one iteration to determine that
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design improvement was no longer possible. Further improvement

would have been rewarded, but COEBRA was unable to achieve it.

The margins that prohibited further improvement were u»c and the

phase margin on the "backside11 of the first mode.

Table 4. 5 summarizes the results of this example. It shows

the values of all nine parameters for both the initial and the final

autopilots. Table 4. 5 shows that a satisfactory design was achieved

in 493 seconds of computer time.

The following is a discussion of how COEBRA presently treats

the requirement on the dominant rotational rigid-body closed-loop

roots. Up to the present, the time domain response due to guidance

commands of a large aerodynamically unstable flexible launch vehicle,

has not been too critical. The major concern has been with stability

under tolerances and with structural bending moment loads. The

main reasons for specifying dominant closed-loop root locations have

been to (1) keep the autopilot frequencies sufficiently separated from

the guidance loop frequencies for stability purposes, and (2) merely

provide "somewhat adequate" response to guidance commands. His-

torically, it has been found that if the rigid-body phase margin is

greater than a certain value, and the phase margin frequency is

greater than a certain value, then the rigid-body rotational closed-

loop roots will be sufficiently damped at a high enough frequency.

For example, on launch vehicles like the one represented in this
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example problem, if the phase margin is greater than 30 degrees,

with a frequency greater than 2. 0 radians per second, then it is

almost certain that the rotational closed-loop roots will have a fre-

quency greater than 1. 5 radians per second and a damping ratio

greater than 0.30. The M circles for unity feedback systems tend

to indicate why this has been. Hence, rather than finding the actual

roots, COEBRA treats the requirement on the rotational closed-loop

roots by putting minimum allowed values on the rigid-body phase

margin and its frequency (" c )« This approach was taken in order to

avoid the computer time required to find the actual closed-loop roots.

It is recognized that the rigid-body response of a launch

vehicle is comprised of a so-called first-order drift root as well as

the second-order rotational roots [Greensite, 14, and Harris, 15].

Hence, since the rigid-body response is third-order, the location of

the rotational roots alone is not sufficient to ensure adequate response

to guidance commands. However, since most launch vehicles are

aerodynamically unstable, the instability of the vehicle generally

serves to keep the attitude gain high enough, and the flexibility of the

vehicle generally serves to keep the rate gain low enough, so that the

rotational roots dominate the drift roots. In this way, the location

of the rotational roots themselves can be used to indicate response to

guidance commands. For this example problem, where the final auto-

pilot yielded a phase margin of 38. degrees at a frequency of 2. 03



82

radians per second, the closed-loop rotational roots had an effective

damping ratio of 0. 68 and an undamped natural frequency of 2. 9

radians per second. This satisfied the design requirements, and a

transient response showed that these roots dominated the drift root

which had a time constant of 11.5 seconds.

4. 4 Example #4

Example #4 illustrates the application of COEBRA to the

same airframe that was used in Example #3, but this time the initial

autopilot was so poor that it resulted in a first-mode instability. As

with Example #3, the objective of the COEBRA run was not only to

stabilize the system, but also to optimize all stability margins.

The block diagram of the airframe/autopilot system is the

same as that of Example #3, and is shown in Figure 4. 5. The prob-

lem given to COEBRA was to adjust the nine S-plane autopilot para-

meters until all stability margins were optimized.

Figure 4. 9 shows the open-loop frequency response resulting

from the initial autopilot. This figure shows that the initial autopilot

did result in a first-mode instability. The resonances of the eight

structural bending modes are indicated in Figure 4. 9, which also

shows that the rigid-body phase margin frequency (coc) was 1. 17 rad.

per second.
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As -with Example #3, the arrows around the critical point in

Figure 4. 9 illustrate the required rigid-body and first mode stability

margins. It was also required that u>c be greater than 2. 0 rad/sec,

and that modes 2 through 8 be gain stabilized with their peaks reson-

ating below "-10" decibels. Figure 4. 9 shows that with the initial

autopilot, the fourth and fifth modes exceed this requirement.

Figure 4. 10 shows the frequency response after the second

major iteration. The system is now stable, with wc = 1.3 rad/sec.

Figure 4. 11 shows the frequency response that resulted from

the fifth and final major iteration. COEBRA self-terminated after all

design requirements were met, and after the margin counter and fig-

ure-of-merit ceased to significantly improve following the fourth major

iteration. In other words, the results of the fourth and fifth iterations

•were identical since it took COEBRA one iteration to determine that

design improvement was no longer possible. Further improvement

would have been rewarded, but COEBRA was unable to achieve it. The

margins that prohibited further improvement were o>c, the phase mar-

gin on the "backside" of the first mode, and the modal peaks of the

third and fifth modes.

Table 4. 6 summarizes the results of this example. It shows

the values of all nine parameters for both the initial and the final auto-

pilots. Comparing these values with those obtained from Example #3,

it is seen that COEBRA "climbed" to a different local optimum than it



85

440

+20

220 260 300 340 20 60 100 140 180

Phase (Degrees)

220 260

Figure 4. 10. Example #4, Gain-Phase Frequency Response Plot
Resulting From Second Major Iteration (u>c = 1.3 rps)



86

+40

+20

a
o
<u
£
o

.1-13
ri

<U

1
-20

220 260 300 340 20 60 100

Phase (Degrees)

140 180 220 260

Figure 4. 11. Example #4, Gain-Phase Frequency Response Plot
Resulting From Fifth (Final) Major Iteration
(wc = 2.0 rps)



87

Ctf
H

vO

H

in
H

oo
On1

V
!-£<

•̂
H

CO

H

*—l

ti
W

oo
H

i— 1

H

Q

&

CO
CO
CO
o

•

CO
CO
CO
o

in

. CO
CO
CO
0

CO
CO
CO
O

*

CO

CO
CO
CO
o

CO
CO
CO
o

*

vO

-t->
0

r— 1

'el
O

4-»
3

<£^S
i— 1

R)
-t->
• i— 1

Pii— i

f— (
<M
0

(T*
CO
O

oo
CO

CO
in
O

'

CO
m
0

r-

,1—1
vO
o

•

ro
O
O

•

CO
CO

r-H

2•H
A-
O

3
<
i — i
rt
Pi

• tH

h

CO
=tt=

<U PI

P, .2a -s ^
R) fl .H

x « ^H a 
r̂rt

0) *H JS

ni o M
• i — » ^

a -5 A
o> w ,§ a)

"w o h 'o
>s -S 0) ^
w 8 a ^
H M 0 *»•
a; <U <U m

•g a • .S
0 S Si Sm ja § ^ 7,d i-s-t *-» (i)

^ i! d ^ -S•rH [v̂ . ^H ^1 W

g» N * ° ' •«

^ 2 ^ g >:
^ S T> M -P
« w « ^ -5N J nl t- HH
'2 ^ (^C -fJ M

 o

.5 « s .. +»

1 2 1 g ^
> ™ -S ^H

<u £ H rf
S OJ "̂  .H

« M S

> H , 5 ^
£ „, ° 3
0 .2 ^ On
® 1J£> JS fJ ^••-> 2r 5 C +»XI g •< 0 0
O M « U 2

• • • • #



88

did for Example #3. However/ some features of the two results are

similar. For both, the attitude gain (KD) is about 1. 5, the total rate

gain (KR1+KR2) is about unity, and KR1 is greater than KR2 in order

to "center" the first mode around zero degrees.

Table 4. 6 shows that a satisfactory de'sign was-achieved in

975 seconds of computer time.

4.5 Example #5 :

Example #5 illustrates the application of COEBRA to a three-
• ' •. • . i .. • • i

time-point autopilot design problem, where the objective was to opti-

mize structural bending moment load relief capability. COEBRA was

initialized with an autopilot that had previously been designed by engi-

neers. The reason for this COEBRA run was to determine if design

improvement could be achieved. Design improvement -was defined as

an autopilot that had more load relief capability, but still met satis- ,

factory stability margins.

, The example deals with the max-q" portion of flight where aero-

dynamic loads are critical. The three vehicle states that are designed

together are: (1) the time at which the load relief loop (the acceler- :

ometer feedback loop) is switched in; (2) the max-q time point; and (3)

the time at which the load relief loop is switched out. The airframe

consists of rigid-body dynamics plus three bending modes' at each time

point.

Figure 4. 12 shows the block diagram of the airframe /autopilot
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system. In addition to the attitude loop and two rate loops, Figure

4. 12 shows the so-called load relief loop. This is a feedback loop on

a lateral body-mounted accelerometer signal, and Harris [15] dis-

cusses how this loop is used to reduce the angle of attack and control

deflections (hence bending moment loads) in the presence of the wind.

COEBRA is allowed to vary the gains and filters shown in Fig-

ure 4. 12. This is a digital autopilot design problem, and hence,

these gains and filters are defined in the W-plane. Of course, when

the design is complete, these gains and filters will be transformed to

the Z-plane where they will be mechanized as coefficients in difference

equations.

Figure 4. 12 shows that, at each time point, 15 autopilot para-

meters can be varied. Since this is a digital autopilot, the four gains

(KD, KJL, KR1 and KR2) can be different at each of the three time

points. The 11 filter network values, though they may be varied,

must have the same values at all three time points.

Figure 4. 13 shows the open-loop frequency response plot that

results at the max-q" time point from the engineer's final autopilot

(initial autopilot for the COEBRA run). This figure, as well as the

frequency responses at the other two time points (not shown), show

that all margin requirements are satisfied. When a six-degree-of-

freedom (6 DOF) trajectory was run using this "final" autopilot, the

load rslief indicator (which is a product of the dynamic pressure times
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the angle of attack and is indicated as q« ) was 4908 pounds per square

foot.

Figure 4. 14 shows the frequency response plot that resulted at

the max-q~ time point from the third and final iteration of the COEBRA

run. Stability margin requirements are met at this time point, as

well as at the other two time points. For this final COEBRA autopilot,

a 6 DOF trajectory simulation showed that qa had been reduced to

4765 pounds per square foot.

Figure 4. 14 shows that the stability margins from COEBRA1 s

final autopilot, though satisfactory, are less than those from the engi-

neer 's final autopilot (Figure 4. 13). This demonstrates the tradeoff

that does exist between stability and load relief.

The conclusion of this example is that, starting from the engi-

neer's final autopilot, COEBRA was able to achieve an improved design

by adjusting the values of gains and filters within an engineer 's estab-

lished configuration. It is noted that the COEBRA improvement in

load relief did not result because the engineer was incapable, but

rather because he was not required to obtain more load reduction.

Table 4. 7 summarizes the results obtained from this example.

It shows that a satisfactory result was obtained after 21. 3 minutes of

computer time, or 7. 1 minutes per iteration.

One final note is mentioned at this time. Another COEBRA

run was made on this problem, beginning with the same initial auto-
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Objective: Maximize Load Relief Capability

Au copilot

COEBRA Initial
(Engineer's Final)

COEBRA Final

Stability Margins

Satisfactory

Satisfactory

qo

4908

4765

System Order: • 28th Order at Each of the Three

Time Points.

• 15 Autopilot Variables at Each

Time Point (4 gains can have dif-

ferent values at each, 11 filters

must have same values at each).

3 Major Iterations

Computer Time: 21.3 Minutes or 7. 1 Minutes per

Iteration.
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pilot, but with the objective changed to maximizing stability margins

instead of load relief capability. The result of this second run was a

design with improved stability margins, but with reduced load relief

capability. Computer time for this run was 2. 3 minutes per iteration.

4. 6 Example #6

Example #5 demonstrated the effectiveness of the structural

load relief optimization phase of COEBRA when the initial autopilot

met all of the margin requirements. Example #6 was run to see how

the load relief phase performs when the initial autopilot does not meet

the margin requirements.

The initial autopilot for this COEBRA run was obtained as

follows. In several booster autopilots, there is a feedback loop that

is used solely for high frequency stabilization. This loop is "washed

out" at frequencies below the rigid-body phase margin, and serves to

compensate for the load relief loop gain at high frequencies so that the

load relief loop gain can be increased. So for Example #6, a pre-

viously designed autopilot case was chosen, and this "high frequency"

loop was zeroed ovit. This resulted in unacceptable stability margins.

The design objective for the COEBRA run was to not only return to the

condition where all margins are met, but also to achieve at least the

same amount of load relief that was achieved with the engineer's orig-

inal autopilot that used this high frequency feedback loop.

For Example //6, throe flight conditions were designed together:
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(1) load relief loop switch-in; (2) max-q ; and (3) load relief loop

switch-out. The airframe included four bending modes at two of the

time points, and three modes at the third.

Figure 4. 15 is a block diagram of the airframe/autopilot

system. This is an analog autopilot design problem, and therefore

the design is performed in the S-plane. There are 14 autopilot vari-
i

ables, but since this is an analog autopilot, each of these variables

must have the same value at all three time points.

Figure 4. 16 is the open-loop frequency response plot that

resulted from COEBRA's initial autopilot at the max-q flight condition.

It shows that not all margin requirements are met. This same situ-

ation exists at the other two flight conditions (hot shown). '
' • " !

The load relief indicator for the engineer's original autopilot

that used the so-called high frequency feedback loop was 4490 pounds

per square foot. This result was obtained from a 6 DOF trajectory

simulation. COEBRA's first step was to "get feasible", but in so

doing, it had to give up load relief capability. COEBRA met all mar-

gins after three iterations, but qa (from a 6 DOF simulation)

increased to 4580 pounds per square foot. However, from the 4th to

the 8th iteration, all margin requirements remained satisfied, and q«

began decreasing, until on the 8th and final iteration, it had decreased

to 3975 pounds per square foot. Again, this was obtained from a 6 DOF

simulation, arid this qa was 12% less than that of the original autopilot
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Figure 4. 16. Example #6, Gain-Phase Frequency Response
Plot Resulting From Initial Autopilot at Max-q
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with the high frequency feedback loop. Figure 4. 17 does show that

all margins are met at the max-q time point with the results of the

8th and final COEBRA iteration. The same situation existed at the

other two flight times.

The following discussion refers to Section 3. 5.4 of Chapter 3

on Convergence to an Exterior Optimum. This example has dramati-

cally demonstrated how the COEBRA algorithm converges.to a con-

strained optimum from an unfeasible initial point. The first three

iterations were required in order to reach a feasible solution, In :

"getting feasible", load relief capability was reduced. This did not

necessarily have to happen, since the algorithm does try to optimize

while "getting feasible". Once the feasible region was reached, the

algorithm moved along or parallel to the constraint boundaries until

the constrained optimum was reached. The fact that this actually

occurred is known because load relief capability steadily increased

from the 4th to the .8th iteration, while several stability margins re-

mained "tight against" their requirements. Two of these "tight mar-

gins" can be seen in Figure 4. 17. These two margins are called the

rigid-body phase margin, and the phase margin on the "backside" of

the first structural bending mode. These margins are indicated by

arrows in Figure 4. 17. These margins were tight after three itera-

tions, and remained tight from the 4th to the 8th and;last iteration.

Table 4. 8 summarizes the results of .Example #6. This table.
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Figure 4. 17. Example #6, Gain-Phase Frequency Response
Plot Resulting From Eighth (Final) Iteration
at Max-ci
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Table 4. 8. Example #6 Summary of Results

Objective: Maximize Load Relief Capability

Autopilot

Engineer's Final

COEBRA Initial

Third Iteration

Eighth (Final) Iter-
. ation

Stability Margins

Satisfactory

Unsatisfactory

Satisfactory

Satisfactory

qa

4490

4490

4580

3975

System Order: • 25th Order at 2 Time Points

• 23rd Order at 1 Time Point

• 14 Autopilot Variables Which

Must Have Same Value at Each

Time Point

8 Major Iterations

Computer Time: 59. 2 Minutes or 7. 4 Minutes per

Iteration.
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shows that the computer time for this example was 59- 2 minutes, or

7. 4 minutes per iteration.

4. 7 Example #7

Example #7 illustrates using COEBRA to design a load relief

autopilot in two phases: (1) the initial phase being to first meet all

margin requirements; (2) the second phase being to optimize load

relief capability. For this example, this approach was considered

essential because the "first guess" or initial autopilot was very poor.

This example is taken from a recent effort to design an auto-

pilot for a space shuttle booster configuration. COEBRA was used to

design the autopilot for all three channels (pitch, yaw, and roll) at all

the critical flight conditions during the first two minutes of ascent.

At all the flight times, the airframe included from seven to eight

structural bending modes. .

The flight condition for this example is the yaw channel during

the max-q" portion of flight. Three time points were designed together:

(1) load relief switch-in; (2) max-q; and (3) load relief switch-out.

The airframe included seven modes at each of the time points. While

all the results obtained from this design effort are worth noting, this

example was selected since it illustrates the two phased approach to

load relief autopilot design.

Figure 4. 18 is the airframe/autopilot block diagram for this

example. It shows the attitude loop, a rate loop, and the load relief
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loop. In addition, it shows an attitude acceleration loop. This is the

so-called high frequency loop that was referred to in Example #6.

Figure 4. 18 shows that there are 20 autopilot variables at each time

point. The four gains ;can have different values at each time point,

but:the 16 filter parameters must have the same value for all the

time points. .

Figures 4.19, 4 .20 and 4. 21 sho-w the frequency response plots

for the initial autopilot. The systern is stable, but the initial autopilot

: is very poor. The basic margin requirement is that modes 3 through

7 be gain stabilized with a peak amplitude below "-10" .decibels. Only
i . -

the first and second modes can be phase stabilized, but if they are

i . • . • ' ' • •
gain stabilized, their so-called "closest approach" distance to'the

"-1" point must be equivalent to 10 decibels. .

The first COEBRA run was made to optimize stability margins.

After one iteration, all margins were met. The next COEBRA runs

were made to optimize load relief. After six more iterations, an

autopilot resulted that yielded the plots of Figures, 4. 22, 4. 23, and

4. 24. All margin requirements are met. A 6 DOF trajectory simu-

lation was not made, but estimates based on linear transient response

. results indicate that bending morpent loads were reduced 25% from the

initial to the final autopilot. Computer time required to do this job

was 98 minutes, or 14 minutes per iteration.

This >example points to another way in which the COEBRA
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Figure 4. 22. Example #7, Gain-Phase Frequency Response
Plot Resulting From Seventh (Final) Iteration
at Load Relief Switch-in
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Figure 4. 24. Example #7, Gain-Phase Frequency Response
Plot Resulting From Seventh (Final) Iteration
at Load Relief Switch-out
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algorithm can be used. By observing the progress it is able to make

from iteration to iteration, it can be used to design a minimum-com-

plexity autopilot. For this example, the fact that COEBRA was able

to satisfy all margin requirements in only one iteration, tends to

indicate that some of the degrees of freedom in the autopilot could

probably be eliminated.

4. 8 Conclusions

The results presented in this chapter clearly demonstrate

COEBRA1 s ability to successfully design autopilots for large flexible

launch vehicles. Experience with the program shows that while it

generally does not save computer time, it does save manpower and

the time required to design an autopilot.



CHAPTER 5

SUMMARY, CONCLUSIONS AND
SUGGESTIONS FOR FURTHER STUDY

5. 1 Summary and Conclusions

As shown in Chapter 4, results from the COEBRA program

clearly demonstrate that this algorithm successfully solves the prob-

lem of automating practical launch vehicle autopilot design and opti-

mization. Perhaps the primary reason for the success of this

algorithm is that its approach to design is much the same as the

engineer's approach.

Via this algorithm, the COEBRA program satisfies the five

basic design requirements that were given in Chapter 1. Referring

to these requirements as they were listed in Chapter 1:

(1-a) The COEBRA program deals directly with stability

margin requirements in the frequency domain. Referring to the dis-

cussion in Section 4. 3 of Chapter 4, COEBRA is able to constrain the

location of the so-called dominant rotational rigid-body roots.

COEBRA puts an inequality constraint equation on each individual

stability margin and each pair of dominant closed loop roots at each

of the time points being designed together. With the "optimize mar-

gins" cost function, COEBRA not only meets the minimum margin

requirements, but also seeks to optimize all stability margins. With

a cost function separate from the constraint matrix, the cost function
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in COEBRA can be formed from the margin objectives, while the

constraint matrix can be formed from the margin requirements;

(1-b) With the "optimize load reduction" cost function

(formed via a time domain transient response routine), COEBRA

seeks to minimize structural bending moment loads (j8 , 6j, , and 6^

due to winds) while meeting the minimum margin requirements;

(1-c) COEBRA can constrain the autopilot parameters to the

so-called Drift Minimum condition [14, 17], thereby minimizing tra-

jectory dispersions. In fact, COEBRA can design a Drift Minimum

autopilot that has the maximum amount of load relief capability and

that meets the minimum stability margin requirements;

(2) COEBRA designs -with a user-selected autopilot config-

uration. From the outset, only practical controllers are considered

since the user selects the number and types of feedback loops and the

number of gains and filters. COEBRA optimizes the values of the

parameters within this feedback structure and constrains the mini-

mum and maximum allowed values on each parameter;

(3) COEBRA handles the problem of multiple time point

design by forming the cost function and matrix of constraint equations

from margins and wind responses at several time points or vehicle

states. In this manner, all vehicle states are optimized simultan-

eously. Autopilot parameters can be shared between the vehicle states.

A novel feature of the COEBRA program and this design algo-
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rithm is that multiple time points are handled by considering a sep-

arate airframe for each time point. It is obvious that these "separate

airframes" can come from the same flight time. For example, the

"first airframe" can be the nominal airframe at time tj while the

"second airframe" can be the airframe at time t^ with a tolerance

on one or more of the vehicle parameters. In this way, COEBRA

can treat both the nominal and the toleranced airframe together to

yield a single autopilot that will handle both conditions;

(4) COEBRA can handle a very high order system (30th and

greater with up to eight bending and slosh modes per time point).

With a user selected feedback configuration, the complexity of the

autopilot does not necessarily increase with an increase in the order

of the fixed parts of the system. Things like sensor and actuator

dynamics are included in a very straightforward manner and their

inclusion only increases the required computations;

(5) COEBRA designs analog autopilots via the S-plane fre-

quency response, and digital autopilots via the W-plane frequency

response.

Examples in Chapter 4 show that this algorithm can handle

both interior and exterior optima. The examples also show that the

initial conditions on the controller parameters need not yield feasible

solutions, i.e., solutions that meet the constraint requirements. In

fact, the examples in Chapter 4 demonstrate that the initial condition
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on the autopilot parameters need not even yield a stable system.

5. 2 Projected Applications

Even though the class of problems this algorithm can handle

has not been established, it would appear that it can handle a large

variety of engineering-type problems.

For example, it would appear it can handle the problem of

designing an airplane flight control system with the so-called flying

qualities design criteria [2]. These criteria include: (1) the longi-

tudinal plane requirements on phugoid stability, flight path stability,

and short period response; (2) the lateral-directional flying qualities

criteria on the responses of the dutch-roll mode, the spiral mode

and the roll mode; and (3) miscellaneous requirements on capability

to perform crosswind landings, coordinated turns, etc. These

criteria could simply be added to the flexible-body stability margin

design requirements that are already included in COEBRA.

Another problem that this algorithm could probably handle is

the design of a reaction control system. This type of control system

uses discrete control. This algorithm could be used to optimize

phase plane switching logic like the so-called "near-minimum-fuel"

switching logic developed by Carney and Conover [5]. Their phase

plane logic was developed for a digital attitude control system that

requires no rate gyros.

Another problem that this algorithm can surely handle would
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be designing the autopilot for an interplanetary spacecraft like the

Mariner [Kopf, 22], In order to handle the Mariner autopilot design

problem, COEBRA needs a transient response routine that could put

requirements like rise time, overshoot, settling time and steady

state error on the vehicle's attitude response due to guidance

commands. In fact, without this transient response routine, the

COEBRA program has difficulty in designing an autopilot for an aero-

dynamically stable launch vehicle like the present proposed Space

Shuttle configuration. The reason for this is that since the vehicle is

stable, COEBRA can reduce the attitude gain and as it does so, even

though the closed loop rigid-body rotational roots meet a certain

requirement, these rotational roots no longer dominate the drift root.

To conclude this discussion, a paper written by Robinson [28]

is noted. In this paper, Robinson states that the COEBRA algorithm

should prove fruitful in the optimal control of distributed parameter

systems.

5. 3 Suggestions for Further Study

An advantage of this algorithm is that additional design criteria

can easily be added. For example, it is planned to include in the

present COEBRA program, a routine for load relief optimization in

the presence of stochastic winds. It is planned to augment the present

approach that uses a deterministic load relief cost function, with an

approach using a cost function that is formed via Wiener's Theorem
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and the filtering property of power spectral density functions [Chang,

6], Two other types of routines that could easily be added have

already been discussed, namely, a transient response routine speci-

fying the vehicle's attitude response, and a routine that would incor-

porate design criteria on airplane flying qualities.

This chapter concludes with a discussion of two additional

extensions of this design algorithm (and the COEBRA program) that

warrant further work.

The first is the extension of this algorithm to handle multiple

input systems. An example would be the lateral-directional control

system of an airplane where the two inputs are the rudder and the

aileron. The present algorithm must design this type system in a

series manner, by first optimizing one channel (e. g. , yaw) with the

other closed (e. g. , roll), and then closing yaw and optimizing roll,

etc. , until the optimum "mixed" system is achieved. Extension to

multiple input capability could be achieved using the concept of the

Transfer Matrix [Ogata, 27] where all channels could be designed at

the same time.

The second extension involves the blended use of this algorithm

with linear quadratic-cost optimal control theory (i. e. , the Regulator

Problem). In other words, this algorithm and linear optimal control

theory could be used together to design launch vehicle autopilots. The

time invariant Matrix Ricatti equation could be solved to yield optimum
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rigid-body or low frequency performance. The algorithm presented

in this report (via the COEBRA program^ could then be used to

solve the flexible-body problem via filters and sensor locations.

This would require judicious modelling of the rigid-body problem so

that the system states would be viable feedback states (e. g. , acceler-

ometer feedback rather than angle of attack feedback, etc. ). This

blended approach to autopilot design could be used to take advantage

of the desirable features of each design method while circumventing

the disadvantages involved when using each design method separately.

For quadatic-cost optimal control theory, the advantages referred to

include its ability to directly treat (1) the multiple-input problem,

(2) the time domain tradeoff between bending moment loads, tra-

jectory dispersions, control deflections, etc. , and (3) stochastic as

well as deterministic forcing functions. The advantages to the

COEBRA algorithm of course, include its ability to directly treat (1)

frequency domain design criteria which is essential for the flexible-

body problem, (2) a user-selected autopilot configuration, and (3) the

multiple vehicle state problem.
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