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. FOREWORD

. This report, Volume I.of 2 volumes, was prepared by the
Guidance and Controls Section, Martin Marietta Corporati;)n, Denver
Div-isibn;',“uride.ar} Contract ﬁASS-28482. It presents the hisj:drical
baékgfound-, the philolsophy, fhe mathemaficai ba}sis and ekamplé
; prolsiems‘ pf the COEBRA ’pfég'fam.: 'I‘}.xe; purpoééof fhe contract was :
" to convert the COEBR.A. prograrh from thc.a‘CDC 6400/6500 digital com-
"puter system to the UNIVAC 1108 é.t_ the C‘veo'rg»eb C. Marshall Space
Fiight éenter, and to provide a manuél and instruction oh the use of
thé_program. This contract was performed from March 1972 to Decem-
ber ,1;72’ and was administered by the Nati‘ona;l Aeronautics and Space
Ad'mini'stratioﬁ; ‘George C. Marshall Space Flight Center, Huntsville,
Alabam_a,”‘ 'u;'nder the direEtioh of Mr. D. K Mowe'ry-, bDy‘namics and

Control Division, Aeroastrodynamics Labovratory.
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ABSTRACT

This report, Velume I of 2 volumes, presents the historical
background, the philosophy, the mathematical basis and example
problems of the COEBRA program. The following is an abstract of
| the COEBRA program's design algorithm.

A nonlineér programming technique has been developed by
Martin Marietta Corporation, Denver Division, for the automated
design and optimization of autopilots for large flexible laﬁnch vehicles.
This technique, Which resulted in the COEBRA program, uses the
iterative application of-linea_r programming, i.e,, iterating from
some starting point to the final.solution by solving successive linear
programming problems. The method‘deals directly with the three
main requirements of booster autopilot design: to provide (1) good
response to guidance commands; (2) response to external disfurbances
(e. g. wind) to minimize structural bending momenﬁ loads and trajectory
disper~sions; and (3) stability with specified tolerances on the vehicle
and flight control system parameters.

The main design criteria are minimum gain/phase stability
margins. The approach is to expand each rigid and flexible-body
stability margin in a first order Taylor Series, to form a linear

inequality constraint for each margin.‘ A choice of two linear cost

functions is also provided via Taylor Series expansions, in order to




(1) maximize all stability margins, and (2) minimize structural
bending moment loads. A linear programming problem results, i.e.,
maximize margins or minimize loads, in the presence of constraints
on each stability margin. The solution of this linear problem yields
a new starting point for the next iteration.

Only practical control laws are considered, since this algorithm
optimizes a pre-selected autopilot configuration, i.e., the number and
types of feedback loops, and the number of gains and filters are pre-
spécified. This rﬁethod finds the best values for the parameters within
this feedback structure, and is able to constrain the minimum and
maximum allowed values on each parameter.

The problem of handling several different flight conditions
with the same time invariant control law is solved by forming a single
linear programming problem in which the cost function and matrix of
constraint equations is comprised of staTbility margins and wind
responses from several flight conditions. By solving this single linear
problem, several flight conditions are optimized together using a sin-
gle time-invariant c.ontrol law. A single control law can also be
designed that is,. at the same time, optimum under nominal airframe
conditions and under malfunction conditions, e.g., actuator, sensor,
or even engine failures.

The method is applicable to very high order systems (30th and

greater per flight condition). Since it is a parameter optimization
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technique, the complexity of the autopilot does not necessarily increase
with an increase in the order of the fixed parts of the system.

Analog autopilofs are designed in the S-plane, and digital auto-
pilots ini the W-plane. The method can design a drift minimum auto-
pilot that meets stability margin requirements and has a maximum
amount of bending moment load relief capability.

The method contains step-size optimization routines that allow
convergence to local interior optima as well as to local exterior optifna..
The initial condition on the controller parameters can be unfeasible.
Example problems are shown where the initial autopilot even y.ielded
an unstable system. The step-size optimization routines also permit
automatic self-termi.nation'of the design process.

Examples are given that demonstrate the successful application _
of this algorithm to the design of autopilots for both single and multiple
flight conditions. ~The multiple flight condition problems range from
a system that is 28th order at each of three flight conditions and has
23 individual autopilot parameters, to a syst.em that is 20th order at
each of three flight éonditions with 28 individﬁal autopilot parameters.
The examples demonstr‘ate the design of two types of autopilots, one
\;vhere the objective is to maximize stability margins, and the other
where the objective is to optimize structural bending moment load

relief capability.



CHAPTER 1

INTRODUCTION

The objective that motivated the development of this nonlinear
programming algorithm was to computerize an existing and flight-
proven (hence practical) conventional autopilot design method for
large highly flexible launch vehicles. Another objective was that the
automated technique provide some measure of when the design is
optimum, something that the engineer with his present techniques
generally achieves only through experience.

Section 1.1 of this chapter presents an overview and the histor-
ical background of the conventional or classical autopilot design method
that has been automated. Section 1.2 contains a statemsznt of the prob-
lem and defines the details of the design criteria of this conventional
autopilot design method. This chapter concludes with a section that
outlines the remaining text of this report.

1.1 Historical Background

Historically, most booster control systems have been designed
using classical open-loop frequency response stability margins as the
principal design criteria. This linear design phase, which is the
topic of this report, is then follox.vved by a nonlinear analysis which
includes frajectory simulations. Greensite [14] gives an excellent
description of the philosophy and major problem areas as well as the

equations involved in the linear analysis phase of launch vehicle auto-



pilot design.

In the linear design phase of this historically well-validated
approach, time-varyiné booster plant dynamics are examined at
selected "worst case' flight times along the trajectory. The linear-
ized time-invariant approximation to the dynamics of the airframes at
these times is used, and an autopilot feedback configuration is designed
that satisfies the specified rigid and flexible body gain and phase sta-
bility margins at these flight times. Gain and/or filter scheduling is
generally employed to achieve the required margins. The flight times
along the trajectory are chosen to correspond to critical flight times
at which stability margins are expected to be a minimum. The criti-
cal times most often ﬁsed for a typical ascent stage are:

1. Liftoff

2. Max Cl/C2 (C; = Aerodynamic moment coefficient and

c, = ‘Control moment coefficient)
‘ 3. The point of maximum aerodynamic pressure (max E)

4. Gain and/or filter change times

5. Burnout
Experience has shown that an ability to demonstrate adequate control
sy;stem stability margins at these flight times produces satisfactory
perforrnaince during the complete flight.

1.2 Statement of the Problem

The conventional computer-aided approach to booster control



system design as outlined above has been to use digital computer
generated freqﬁency responses to determine the géin énd phase-mar-
giné of the airframe-plus-compensation for a given set of autopilot
gains and filters. The design engineer then uses such computer-
generated frequency responses to iteratively adjust the autopilot gains
énd filters until the specified stability margins are achieved.

As stated earlier, the objective of this control system optimi-
zation technique was to automate this design procedure.

The details of the design criteria to be satisfied by this auto-
mated technique are as follows. The general requirements of an
elastic booster autopilot are to (1) provide good response to guidance
commands, (2) design the response to external disturbances (e.g.,
wind) to minimize trajectory dispersions and to ensure that‘the struc-
tural integrity of the vehicle is not jeopardized, and (3) accbunt for
tolerances on the vehicle and flight control system paramsters.

For this design'technique, these general requirements are
translated into particular requirements as follows:

1. The design specifications are:

a, In the frequency domain in the form of minimum gain/
phase stability mafgihs, and in the form of so-called
dominant closed-loop root locations. Figure 1.1 illus-
trates a fypical gain/phase frequency response plot.

Table 1.1 lists the requirements that might be placed
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on each margin. In addition to minimum require-
ments, note that Table 1.1 also lists what might be
desiréd ‘deéign objectives;

b. In the time domain in the form of maximum allowed
vehicle structural loads;

¢c. In the time domain, with the requirement to mini-
mize trajectory dispersions.

2. The technique must design with a user-selected autopilot
configuration. In other wérds, the number and types of
feedback loops and the number of gains and filters are
selected by the user in an effort to keep the autopilot
éimple;

3. The technique must handle the problem of multiple time
point design. To allow autopilot gains and/or filters. to
remain constant over intervals of flight while the airframe
properties continue to change, it is necessary to design
several vehicle states simultaneously;

4. The method must handle a very high order system (30th
and greater) with up to eight structural bending and fuel
slosh modes per time point;

5. The mathod must be able to design eithér a digital or an
analog autgpilot.

As evidenced from the design criteria, a parameter optimi-
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zation technique is required invordAer to automate this design method.
Also, the automated technique must come from the theory of con-
stfained optimization. Finally, even though the system is represented
in the time domain with a set of linear equations, the autopilot design
problem is nonlinear in the frequency domain. That is, each stability
margin is a nonlinear function of the autopilot gains and filters. Hence,
the optimization techniqueAmust be able to take this into account.

1.3 Outline of the Remaining Text

Chapter 2 contains a discussion of the literature search that
took place prior to and during the development of this nonlinear pro-
gramming aigorithm. The chapter concludes with a discussion of why
the particular approach was taken that led to the developmeant of the
design method.

Chapter 3 contains a discussion of the algorithm itself. It
concludes with the détails of the step~size optimization routine that is
the key to the design method.

This nonlinea; programming algorithm,. when applied to the
booster autopilot design problem, led to the development of a digital
computer program titled COEBRA. COEBRA is an acronym for
Computerized Optimization of Elastic A_Booste_l_' Autopilots. Chapter 4
presents results of the COEBRA program. These results clearly
dembonstrate that this algorithm solves the problem of automated

practical launch vehicle autopilot design. The results show that all



the items of the design criteria that are listed in Section 1.2 are
satisfied.
Chapter 5 presents conclusions and recommendations for

further development of the design method.



CHAPTER 2

THE LITERATURE SEARCH

The purpose of this chapter is to discuss the literature search
v

that led to the development of the design algorithm. Three basic
approaches to feedback control system optimization wére researched,

The first approach is often referred to as Optimal Control of
Linear Systems with Quadratic Criteria, or simply, thé Regulator
Problem. This approach falls under the generai theory of Variational
Calculus. This is an indirect method of optimization since itvderives
a so-called "free configuration" control‘law from the necessary cond-
itions on derivatives of the cost function that must hold in order for
an optimum to exiét. The term ''free configuration' means that no
initial assumptions are made concerning the c.ontroller configuration.

The second and third approaches that were studied fall under
the general catégory of parameter optimization techniqueé. These
are referred to as direét methods of optimiiation that optimize the
numerical values of parameters within a "fixed configuration' control
law via various search procedurevs. The term ''fixed configuration" |
means that the basic feedback structure of the control law is estab-
lished as part of the initial assumptions, and optimization involves
finding the best numes=rical values for the gains and filters within this

3

feedback structure.
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The second approach is classified as Unconstrained Paramester
Optimization. ThroughoutAthis report, the use of the word '"con-
straints'' refers to the design criteria like minimum allowed gain and
phase margins, etc., and does not refer to the set of linear equations
thoo define the system. The term 'unconstrained' is used to m=an
that the search procedure only seeks to minimize a cost function, and
any constraints must be included in the cost function. .

The third approach is classified as Constrained Paramster
Optimization, where the search procedure seeks to minimize a cost
function in the presence of constraints.

2.1 Optimal C_ontr_ol of Linear Systems with Quadratic Criteria

This section discuss.es why this approach was not pursued.
Despite recent advances [Anderson and Moore, 1], this approach does
not directly treat the problem of control system design with fixéd con-
fig.uration control laws and Stability margin design criteria. However,
the literature in this area was searched since so many attempts at
flight control system'design using this method have been made, even
though these attempts have largely been unsuccessful.

Kalman [20] showed that the solution (feedback control law) of
the single-input time-invariant Regulator Problem, yields a return
differenc.e with a magnitude that is greater than or equal to unity at all
frequencies. (This assumes that the weighting factors in the quadratic

cost function have been chosen so that the closed-loop solution is
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assymptotically stable.) Kalman viewed this as resulting in reduced
se.nsitivity to plant variations.

Anderson and Moore [1, Chapter 5] extended this result to show
that the Regulator Problem results in a system that has the following
gain/phase stability margins, All gain margins that are greater than
unity have at least a 6 db margin of stability. All gain margins that
are less than unity have an infinite margin of stability. All phase mar-
gins are greater than or equal to 60 degrees. This is an astonishing
result, and answers the critics who for years discarded this theory
because i:hey thought it had no direct relationship to the classical design’
methods that use stability margin design criteria. However, though at
first this result may appear very attractive for the booster autopilot
design problem, it must be noted that this theory requires state feed-
back., For the booster autopilot design problem, state feedback is not
considered a viable candidate for two reasons. First, a requirement
of this design method is to let the user select the feedback configura-
tion. Second, a state estimator like a Kalman filter, is only as good
as the system muodel, and presently, structural bending mode para-
meters on a large flexible launch vehicle are not known with much pre-
cision. Hence, since state feedback is not considered viable, the
‘results of Anderson and Moore are not useful or applicable to the
l;ooster autopilot design problem.

Several other important reasons why this approach was not
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pursued are as follows. This design method cannot handle multiple
time points and/or vehicle states with the same time-invariant con-
trol law. Also, with th-is design method, it is not possible to directly
constrain the values of the feedback gainé. This becomes important
wt .n considering such things as nonlinearities, offsets, and control
device deflections Finally, use of this theory is still an art. Since
the "intelligence" of the design method is in the cost function, there
is a skill or art involved in the selection of the proper weighting
factors. |

The references relating to the Regulator Problem are cate-
gorized according to two classifications. The first is the time domain
solution to the Regulator Prﬁblem which involves solution of the
Ricatti equafion. The second is the frequency domain solution to the
time invariant Regulator Problem which involves solution of thevWiener-
Hopf equation. This frequency do‘rn.ain method relates closed-loop roots
to the control law gains without finding or specifying the cost function
weighting factors. The references deal with Both booster and airplane
f_light control system design.

Many attempts [3, 4, 8, 12, 16, 24, 25, 26, 36, 37] have been.
made at designing flight control systems usiﬁg the time domain solu-
tion to thé Regulator Problem. Burris and Bender [4] are the authors
of the celebrated "LAMS'" effort. The works of Stein and Henke [36]

and Vandierendonck [37] are worth noting since they use a blended
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approach to the problem of multiple vehicle state design with the
same time-invariant control law, In th.ese works, the "Ricatti equa-
tion" approacﬁ is used first to derive an optimal control law for each
singlé flight condifion. These control laws then serve as t'he starting
point for the second phase of design which uses a gr#dient search
method with a quadratic cost function, to solve the multiple vehicle
state problem.

Several attempts [18, 31, 32, 38] at flight control system
design have been made using the frequency domain approach to solving
the Regulator Problem.

2.2 Unconstrained Parameter Optimization Methods

As stated earlier, these are direct optimization methods
wherg the search procedure seeks only to.minimize a cost function,
and any constraints must be included in the cost function. This sec-
tion discusses why these methods were not pursued.

2.2.1 The Algorithm of Stear and Lefkowitz

The work of Stear and Lefkowitz [35] contains a computerized
algorithm which the authors claim results in selection of gains and
filters within a give’n autopilot feedback structure that will stabilize
a booster by producing a gain/phase frequency response that will
satisfy a set of specified stability margins at critical flight times.
This algorithm is based on minimizing a nonlinear cost function

which is a function of the violations of the specified stability margins.
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Gradient search techniques are used to minimize this cost function.

The authors have made this algorithm work on a relatively
simple single-time-poinf problem with a fourth order filter in'a
single-loop feedback structure.

There are three reasons why it was felt that this technique,
which has all the intelligence in the cost function, was not direct
enough to handle the multiple time point problem of a highly flexible
launch vehicle with a very large number of stability margin constraints:
(1) It does not deal directly with each individual margin constraint;
(2) The objective is to not only meet stability margin requirements,
but also to optimize or maximize all margins, In other words, it is
desired to have minimum ma-rgin requirements plus desired margin
objectives; (3) An additional objective ié to optimize structurai load
relief capability during the periods of high aerodynamic loading on
the vehicle. Since optimizing load relief capability reduces stability
margins, this objective requires a cost function that behayes nearly
like the inverse of a cost function that only contains stability ﬁargin
information.

2.2.2 AUTO

Coffee [7] developed an automated booster autopilot design
algorithm called AUTO.' Coffee's approach is to choose a predeter-
mined open-loop frequency response by selecting and specifying the

loop gain and phase at various frequencies, i.e., by selecting points
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on a gain-phase diagram corresponding to a set of pre-selected fre-

. quencies. He then chooses an autopiiot configuration of prescribed
complexity, but with nonoptimum gain and filter values, and formu-
lates a cost function which is the mean-square difference of the pre-
determined fi'equency response curve and the actual frequency response
curve at the given frequencies. Gradient search techniques are used
‘to find the autopilot gain and filter values which minimize the cost
function.

The algorithm, which seeks to fit an actual frequency response -
to a desired frequency response in j:he least mean-squared-error
sense, is considered inadequate since it is impossible to select a pri-
ori the desired frequency response of a multiple time point problem
for a highly flexible launch vehicle. In other words, it is not possible
to select beforehand, the resonant location (gain and phase) of all bend-
ing and fuel slosh modes at all time points. Further, it is not clear
that a particular frequency response profile is even desirable. The
design problem is primarily concerned with stability margins which
correspond to selécted points on the frequency response profile such
—a8 crossover points and gain peaks, and not with achieving a particu-
lar desired frequency response.

| Even if the desired frequency response could be specified a pri-
ori, this method does not directly treat each individual margin and

hence is considered inadequate for the multiple time point problem.
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Finally, Coffee's algorithm does not provide for load relief optimi-
zation in the presence of constraints on the stability margins.

2.2.3 The Algorithm of Stapleford, et al

" The algorithm developed by Stapleford, et al [34], uses a ver-
sion of the parallel tangents method (partan) [Wilde and Beightler, 39,
Chapter 7] to mirimize a quadratic cost function. The cost function
includes pilot tracking errors and control device deflections., The
cost function, which is expressed in the time domain with infinite
terminal time, is evaluated using Parseval's theorem [Chang, 6,
Chapter 2]. The method of finite differences is used to calculate the
direction of steepest descent from the cost function. This method was
not selected primarily sincé all the "intelligence'' lies in the cost
function.
2,2.4 Others |

The classical works of Fietcher and Powell [13], Davidon [10],

Shah [33], and Hooke and Jeeves [19], are categorized as unconstrained
direct optimization methods. Since these methods contain all the
intelligence in the cost function, they were not considered adequate

for this problem which is really dominated by constraints.

2.3 .Constrained Parameter Optimization Methods (Nonlinear Pro-
gramming )
The methods classified under nonlinear programming are

direct optimization methods where the scarch procedure seeks to
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minimize a cost function in the presence of constraints. This section
contains a brief description of three of the nonlinear prograinming T
algorithms that were found in the literature. The first is Rosen's
Projected Gradient Method [29, 30]. The second is the Differential
Algorithm method of Wilde and Beightler [39, Chapter 3]. The third
is the Multiple-Gradient-Summation Technique developed by Klingman
and Himmelblau [21].

2.3.1 The Projected Gradient Algorithm (PGA)

Rosen's projected gradient algorithm [29, 30] is an iterative
technique designed to solve a general class of nonlinear programming
problems. PGA employs cost-function and constraint gradient infor-
mation to replace the multidimensional optimization problem by an
equivalent sequence of one-dimensional searches. In this manner,
PGA solves a difficult multidimensional problem by solving a sequence
of simpler problemsA. In general, at the initiati‘on of the iteration
éequence, PGA is primarily a constraint satisfaction algorithm. This
is because the initial séarch point generally does not fall within the
feasii)le region. As the iteration process proceeds, the emphasis
changes from constraint satisfaction to cost-function reduction.

The projected gradient method uses two Basic search directions.
For the purpose of this discussion, they'r will be termed the constraint
and optimization directions, respectively. PGA proceeds by taking

successive steps in one or the other of these two directions.
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The constraint direction is used when the present search
point is unfeasible. A step in this direction ignores the cost function,
and is taken so as to ''get feasible' in the shortest distance possible.
When a feasible point is reached, the optimization direction is used.
Obviously the steepest descent direction woul& be the best local
search direction for reducing the cost function. Such a direction,
however, would generally pfoduce unacceptable constraint violations.
To avoid this difficulty, PGA orthogonally projects the unconstrained
cost function gradient into a direction parallel to the local linearized
constraint boundary. By searching in this projected grédient "optimi -
zation' direction the algofithm attempfs to avoid further constraint
violations. For an "uncon'stra.ine‘d” optimum the algorithm will con-
verge to the local optimum directly via the cost function gradient.
For a "constrained" optimum, the algorithm will coﬁverge to the local
optimum where the projection of the cost function gradient onto a vector
parallel to the linearized constraint is zero.

2.3.2 The Differential Algorithm

This.technique, developed by Wilde and Beightler [39, Chapter
3], employs the concept of the constrained derivative. It seeks fhe
iocal '"constrained'' or "unconstrained" optimum at which point the
so-calléd positivity and complementary slackness condifions are satis-

fied. Wilde and Beightler point out that their algorithm is really the
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nonlinear version of the Simplex Algorithm [9]. They also point out
that if the constraints are equalities, their algorithm is really the

Method of Undetermined Lagrange Multipliers [39].

2.3.3 The Multiple-Gradient-Summation Technique

fois method, developed by Klingman a.mi Himmelblau [21], is
briefly defined as follows. Assuming that the initial point is feasible,
the technique, when optimizing the cost function, employs the method
of Pattern Search until a constraint is encountered. At the constraint
boundary, the search direction becomes the vector sum of the normal-
ized cost function gradient and the normalized gradient of the "encoun-
tered' constraint.

If the initial point is not feasible, the algorithm first ''gets
feasible' by ignoring the cost function and basically proceeding in the
direction perpendicular to the feasible region.

2.4 Conclusions of the Literature Search

This section contains a discussion of the three main factors
that led to the development of this new nonlinear programming algo-
rithm. These factors, which evolved from the literature search,
point out why a new method was developed and why the nonlinear pro-
gramming methods that were found iﬁ the literatgre were not used.
This section will conclude with a summary and overview of this new
procedure, and how it was applied to the problem of booster autopilot

design.
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The three factors are now itemized.

1. While it was felt that any of the three nonlinear program-
ming methods of Section 2. 3 could be made to work, the
high dimenéionality of the control vector (i.e., the large
number of autopilot gains and filters) and the large num-
ber of constraints in the booster autopilot design problem
pointed to the desirability of Linear Programming [Dantzig,
9]. The size of the control vector and constraint matrix
make the schemes in the literature very complicated,
and experience with them was limited to low dimensional
problems.

2. The autopilot design problem is highly nonlinear, but the
constraints on the stability margins cannot be expressed

~as explicit analytical functions of the autopilot gains and
filters. The Taylor Series expansion is the logical ex-
pression'té use in writing equations for the margins, but
anything higher than first order terms would be difficult
and expensive to obtain., The reason for this is becausé
the method of finite differences would have to be used in
obtaining any derivative.s, and the accuracy with which
second and higher order derivatives could be calculated
is questionable.

3. The nonlinear programming methods that were found in
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the literature linearize the problem at each step ar.1ywa.y
by treating only the gradients of the cost function and the
constraints, Nonlinear programming methods also usu-
ally linearize the constraint equati~ons in order to deter-
mine step sizes.

These three factors led to the concept that is the basis of this
" nonlinear programming algorithm, namely, itérating from some
starting point to the final solution by solving successive linear pro-
gramming problems.

The method of approach is to expana each stability margin in
a fifst order Taylor Series about its nominal value that results from
some initial autopilot. Note that the nomihal value for each margin
is found by searching the frequgncy response, and note that the first
derivatives of the stability margins with respect to the autépilot vari-
ables are calculatea by the method of finite differences. Via this
Taylor Series expans'ion, an inequality constraint is put on each mar-
gin, In order to maximize stability margins,..the cost function is
formed so that when it is maximized, the first order terms in the
Taylor Series are also maximized, thereby maximizing the margins
themselves., The constraint matrix é.lso inclides minimum and maxi-
mum allowed values on the autopilot variables, A linear program-
ming problem results from this linear cost function which is to be

maximized in the presence of linear constraints on each individual
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stability margin and autopilot variable. The solution to this linear-
programming problein is a new '""nominal' autopilot. TheAproblem

is relinearized about this new nominal via a '""new' Taylor Series
expansion. This yields a ''new'' linear programming problem, whose
solution is another new nominal autopilot, etc.

Using this approach, the cost function for optimizing load
relief can be different from the cost function that optimizes stability
margins. One idea for this cost function is to use a separate tran-
sient response routine to calculate angle of attack and control deflec-
tion response due to a specified wind profile. These responses would
be expanded in a first ordef Taylor Series, and the cost functicgn
would be formed from the first order terms, The linear program-
ming problem would adjust autopilot gains and filters so as to minimize
tixis cost function (which is a measure of structural bending moment
loads [Harris, 15]) in the presence of constraints on the stability
margins and autopilot variables.

From the outset, only practical controllers are considered,
since the designer specifies the basic feedback structure, and puts
constraints on each individual autopilot gain and filter.

The multiple time point problem is handled as follows., Stabil-
ity margin requirements from several time points can be used to form
a single cost function and a single constraint matrix. Autopilot gainé

and/or filters can be constrained to be shared between the several
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time points. By solving this single problem (that ing:ludes margin
and autopilot constraints and cost function objectives from several
time points) these éeveral time points are then optimized all at the
same time. Hence, the requirement of multiple time point deéign
with the same time-invariant control law is satisfieci..

Since this is a parameter optimization scheme, the complex-
ity of the autopilot does not necessarily increase with an increase in
the order of the fixed parts of the system, Inclusion of actuator and
sensor dynamics, etc., is straightfofward, and only increases the

computations required by the algorithm.



CHAPTER 3

THE DESIGN ALGORITHM

This chapter will outline the details of this nonlinear program-
ming algorithm as it is applied to the problem of booster autopilot
design. Simply stated, the basis of the optimization technique is the
iterative applicétion of linear programming. As stated in Chapter 2,
the constraint equations consist of stability margin design require-
ments and constraints on the values of the individual autopilot vari-
ables. The cost function is formed to either maximize stability
margins or maximize load relief capabilit&.

Section 3.1 will briefly discuss linear programming in general.
The remaining sections will define how the problem of booster auto-
pilot design is adapted to the iterative application of linear program-
ming. Section 3.2 illustrates thg stability margin and autopilot variable
constraint equations. Section 3. 3 illustrates the two type; of cost
functions that ‘are required in launci;l vehicle autopilot design (maxi-
mize stability margins and maximize load relief capability). Section
3.4 will discuss a general flow chart of the design algorithm.

Section 3.5 discusses the two design '""mechanisms'' that really
make the algorithm work. These two mechanisms have to do with
step-size optimization, and allow steady convergence to a local opti-

mum, particularly to an interior optimum. This chapter then concludes
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with a discussion of detailed flow charts of the design method.

3.1 Linear Programming

A linear programming algorithm solves the following problem:

maximize the linear cost function, y, where
n
y = Z aj XJ
j=1

subject to a matrix of linear constraint equations

n N
> binj<é c; (i

1, ..., m)

j=1
and X. 2 0 3=1, ..., n)

For the booster autopilot design problem, the variables (Xj) are the
autopilbt gains and filters.

Dantzig [9] is the author of the Simplex Method which is a
technique for solving the linear programming problem. Wilde and
Beightler [39, p. 138] show that the Simplex Method is a special case
of their Different.ial Algorithm which was discussed in Section 2. 3.2
of Chapter 2.

3,2 Constraint Equations

This section illustrates the stability margin and autopilot vari-

able constraint equations.
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3.2.1 Stability Margin Constraint Equations

The types of margins that are normally considered in launch
vehicle autopilot design are illustrated in Figure 1.1 of the first chap;
ter. Basicaﬂy, these margins can be categorized'as rigid-body, flex-
ibie-body, and fuel slosh margins.

A routine .can be used to search the frequency response and
identify each stability margin that is to be treated. Each stability mar-
gin, Mi(}_(-), is then expanded in a first order Taylor Series about its
nominal value, Mio(_}zo) . It is required that M1 (3_() be greater fhan or

equal to some specified value, M, Hence each margin constraint

18"’

equation can be written as follows:

n
- - = IM,
M;(X + 8X) = M (X)) + > i

1 \ 3X.

i= ]

This expression is now rewritten in the form of the constraint

equations of Section 3.1. Note that AXJ- = Xj - on, where on is the

value about which the Taylor Series if formed.

n n

aM‘A ::: o M- ot
T (2] xR M- Mo (Ko ¢ T () < X,
aXJ (o) j=1 Xj o

j=1

Since explicit expressions are not available for each margin.
1

¢
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as a function of the autopilot parameters, the method of finite differ-
ences must be used to calculate the partial derivatives. Computing
the derivatives this way allows more freedom of configuration With
both the airframe equations and with the autopilot equationsl. Obviously,
the matrix of stability margin constraint equations can be formed from
margins at several different vehicle states. fhis satisfies the require-
ment that the design algorithm must be able to handle the problem of
multiple vehicle sta"ce design with the same time-invariant control law.

3.2.2 Autopilot Variable Constraint Equations

A requirement of this automated design techniqﬁe is that the
user must be able to specify the autopilot configuration. In other
words, he must be able to specify the number and types of feedback
loops and the number of gains and filters within each loop. Further,
the user must be able to specify which autopilot parameters are to be
treated as constants and which are to be treated as variables. He
must then be able to individually constrain each variable. The algo-
rithm then optimizes each variable within the constraints.

Constraint equations on each autopilot variable can be written
as follows:

Xg < X< X G=1, ..., n)

Section 3.5 will define le and Xj, in more detail, but basically they

are functions of step-sizes, and minimum and maximum allowed values.
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As with the margin constraint equations, the autopilot vari-
able constraint equations can include variables from several different
vehicle states. Also, to handle the problem of multiple vehicle state
design, a single constraint equation can be used for a variable that is
to have the same value at several different vehicle states,

3.3 Coét Functions

This section will illustrate the two types of cost functions that
are required in launch vehicle autopilot design. The two types are:
(1) a cost function to maximize stability margins; and (2) a cost funct-
ion to maximize structural bending moment load relief capability.

3.3.1 Stability Margin Cost Function

When the objective is to maximize stability margins, the cost
function is formed so that when it ié increased, all the margins at all
the time points"will tend to increase together, and each structural_
bending mode will tend to resonat;a near zero degrees phase. To
accomplish this, the cost function is written so that when it is in-
creased, the first order terms in the Taylor Series expansion of each
margin about its nominal value, will also be increased.

The objective is to maximize the following expression, which
is a "'weighted' linear combination of the ''variable' portionbof the first
order terms in the Taylor Series expansion.

Y, =233 Wit t)x Wy (i, ) #S@) ¥ | IM (L] & x,
jot i axj J
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In the above expression:

(1)
(2)

(3)

(5)

j refers to the surmation over all the autopilot variables;
t refers to the summation over all the time points or-
vehicle states;

i refers to the summation over all the stability margins
at ail of the time points;

W, (i,t) refers to a weighting factor. For each margin,

it is simply a ratio of the desired margin over the actual

margin, Hence, if a margin is not met, Wl (i, t) will be

greater than unity. It becomes less than unity when a
margin exceeds its desired objective. It is noted at this
time that in the expression for Yl’ i also indexes the
phase angle at which each structural bending‘onde reson-
ates. For ;chese values of i, the pavrtial derivative indi-
cates the rate of change of each ‘mlodal peak phase with
respect t'.o each autopilot varia‘ble, and Wy (i, t) is written
so that the algorithm will attempt to force each mode to
resonate near zero degrees phase. W, (i,t) will be large
for modes that resonate near 180 degrees, and zero for
modes that resonate at zero degrees. For some arbitrary
angle like 90 degrées, Wy (i,t) can equal unity.

W, (i, t) refers to a weighting factor that might be sele;cted

by the user. This would give the user the capability to
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eliminate certain margins from the optimization process
or to emphasize other margins.

(6) S (i) refers to a scale factor. It serves to scale the mar-
gins and modal peak phases so that phase margins and
gain margins can be optimized together. For example,
it might be deéired to equate a five degree increase in
the rigid-body phase margin with a one decibel (12. 2%)
increase in the rigid body gain margin. S (i) would be
used to reflect this desired scaling.

In summary, Y, is a "weighted' linear corﬁbination of the
""positive' changes in each margin and modal peak phase. Note that
this linear combination can incorporate margins from all of the vehicle
states that are being designed together. The design algorithm will
maxirniz'e Y, (and hence seek to maximize all stability margins and
seek to force all modes to resona;ce near zero degrees phase) in the
presence of the constraint matrix which includes constraints on each
individual margin and each autopilot variable at each time point.

The following paragraph discusses an advantage of a design
alg_orithm that maxir.ﬁizes a cost function in the presence of constraints,
as opposed to one that includes the constraints in the cost function [7,

35]. With a separate cost function and constraint matrix, the con-

straint equations can specify the minimum requirements on each design

goal, while the cost function can seek to maximize each design goal.
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In other words, the cost function can reflect the desired objectives

(in the weighting factors) while the constraint matrix can reflect the

minimum requirements. -

3.3.2 Load Relief Cost Function

Structural bending moment loads on a launch vehicle are
largely due to axial acceleration, aerodynamic loading, and control
device deflections [Harris, 15]. Obviously, the booéter autopilot can
do little to affect axial é.cceleration, and therefore the main objective
of a so-called load relief autopilot is to reduce aerodynamic loading
due to angle of attack and to keep control device deflections to a mini- |
mum.

Hence, for this design algorithm, when the objective is to max-
" imize structural bending moment loaa relief capability, the cost func=~
tion is comprised of the response of the angle of attack (B) and the
control deflections (§ ) due to the wind forcing function (BQ)' When the
cost function is maxirriized, the .peak values of 8 and 6 are minimized.

A separate transient response routine is used to calculate the
éeak values of angle of attack (ﬁp) and control deflection (ap) due to Bw.
As with stability margins, the method of finite differences is used to
compute the first partial derivatives of Bp and 6p with respect to the
autopilot variableé. The cost function is then formed from the first
order terms of the Taylor Series expansions of [Jp and 6p about their

nominal values.
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As with the stability margin cost function, the load relief cost
function (Yz) is a weighted linear combination of the variable portion

of thé first order terms in the Taylor Series. Y, is given as follows:

Y, L (W% O ) 4 Wz(t).* 98y(t) * X
it axj o BXj o
In the above expression:

(1) j refers to the summation over all the autopilot variables;

(2) t refers to the summation over all the vehicle st;ates;

(3) W, (t) and WZ. (t) refe'r to weighting factors that are input

by the user.

When maximizing load relief capability, the design algorithm
will maximize the negative of Y, in the presence of the constraint
equations on the minimum allowed gain/phase stability margins and on
the allowed ranges of the individual autopilot variables. Note that mul-
tiple time point design is handled just as it is when maximizing stability
mafgins. Some final notes on the load relief cost function are now
listed.

Since the so-called ''rigid-body' (as opposed to flexible-body)
angie of attack (B) and control deflection (§) are the principal factors
in determining structural bending moment loads, it is felt that only the

rigid-body airframe equations of motion [Harris, 15] need to be used
14 .

in the transient response routine that is used to calculate angle of
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attack and control deflection. Note also thaf these rigid-body air-
frame equatfons can include planar coupling (e.g. between the yaw
and the roll planes), and hence the cost function can include control
deflections from several planes (e.g. the yaw plane control deflec-
tions (5‘[/) and the roll plane control deflections (34) ) ).

| The wind forcing func;tion can be a series of steps and/or
ramps that approximate the commonly used synthetic wind profile
[15]. The wind forcing function could also be stochastic, and the
design algorithm would then minimize the rms values of 8 and §. .
This would be done via Wiener's theorem and the filtering pfopefty'of
power spectral density functions [Chang, 6].

3.4 General Flow Chart

Figure 3.1 is a general flow chart summarizing the main steps
involved in the algorithm. It shows the general flow from the initial
autopilot for each iteration through the following routinesz '

(1) The routine that generates the frequency response and
finds the stability margins, and tl;e routine that gener-
ates the transient response and finds peak B and § ;

(2) The routine that computes sensitivities or partial deriv-
atives;

(3) The routines that set up the linear programming problem

and solve it; and

(4) The routines that determine whether the design is com-
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plete. These routines are discussed in the next section

(Section 3.5, Step-size Optimization).

If the design if not complete, another major iteration is begun

with the beét answer obtained in the pfevioﬁs iteration. In other words,

the problem is relinearized about the best answer of the previous major

loop, and another cycle through the major loop is performed. This

iterative process continues until the local optimum is found.

Note that this design process satisfies the five main elements

of the design criteria as outlined in Section 1.2 of Chapter 1.

(1)

(2)

(3)

(4)

The method directly treats stability margin requirements
and objectives, and structural bending moment load reduc-
tion.

The method directly handles the user-selected autopilot
configuration.

The method directly handles the multiple time point
design problem.

The method‘is not limited by the order of the system.
Note that since this is a parameter optimization routine,
the order of the autopilot does not necessarily increase
with an increase in the order of the fixed parts of the
system. .

The method can design either a digital autopilot (via the

W-plane) or an analog autopilot (via the S-plane).
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3.5 Step-size Optimization

This section discusses the details of the step-size optimiza-
tion routine that is the key to this dc;,sign algorithm. This step-size
optimization routine is divided into two parts: (1) the Minor loop
which is the autopilot variable step-size loop; and, (2) the Inner loop
which might be referred to as the stability margin step-size loop.

3.5.1 The Minor Loop

Section 3.2.2 presented the general expression for the con-
straint equation for each autopilot variable (XJ-). The following is the

. detailed expression for this constraint equation.

MAX {(1+P lex. ,x. . } <X, &M { %3
) jo jminf = 75 T IN (1 +P) on’ Xj max
for (J = 1’ c o0y n)
where:
(1)‘ Xj min and Xj max refer to the minimum and maximum

values ever allowed for Xj'

(2) on refers to the initial value of Xj on eacﬂ iteration.
Note that on is the point about which the partial deriva-
tives are computed, and about which the Taylor Series
is expanded.

(3) P refers to the autopilot variable step-size for each

iteration.
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In words, if Xy min and Xj max &r€ not encountered on a

par_ticular iteration, the above constraint equation says that Xj is
allowed to vary no more than about + P% from xjo on any iteration.
Since it is desirable to maximize the step size on each ite-ration,
thereby getting the maximum "niileage" out of each set of partial
derivatives, it is desirable to have a Minor Loop that increases the
size of P until improvement in that '""search direcfion" is no longer
possible, In other words, the Minor Loop serves to maximize the
autopilot variable step-size. In maximizing P, the Minor Loop uses
two ''indicators': (1) a count.er that keeps track of the number of sta-
bility margins that are,already_met, and (2) a figure-of-merit that is
a linear combination of the actual margins. If the numbér of "met
margins' increases, obviously the value of P can be increased. If the
number of ""met margins' does not change,i ;:he figure-of-merit is used
to decide whether P can be furfher increased. In other words, the
margin counter is uéed to reward those steps that result in an increase
in the number of ''met margins'., Conversely, the counter prohibits
those steps that result in a loss in the number of "'met margins''. Fin-
ally, the figure-of-merit is used to break ties when the margin counter
does not change from one step to z;nother.

Section 3.5. 3 contains a graphical illustration of the Minor

Loop, but basically the Minor Loop serves to either keep the problem

_ linear on each major iteration, or to take advantage of the neglected
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nonlinearities when they might be helpful. In other words, the Minor
Loop serves to keep the nonlinearities from '"hurting' the steady con-
vergence to a local optimum.

A major benefit of the minor loop is that it allows the algorithm
to converge steadily to an "interior'" optimum. This is explained .as
follows. Since the solution to the linear programming problem always
lies at a vertex of the feasible region defined by the constraint equations,

it is the Minor Loop that allows the algorithm to converge to a local

optimum that is interior to the stability margin constraint equations.

As mentioned earlier, Section 3.5, 3 will graphically illustrate the

mechanics of the Minor l.oop, but first a brief discussion of the Inner
Loop is in order since the Minor and Inner Loops work togethcer., Sec-

tion 3. 5.3 will then illustrate this interaction.

3.5.2 The Inner Loop

The second part of the stép—size optimization routine can be
illustrated by the following detailed expansion of a particular margin

constraint equation.

n
3 [om, ), . o
M, (X)) +20 (i F(Xj - X)) 2 M (i=1, ..., m)
. =/,
j=1 oX;

In the above expression, there are two cases for Mis'

(1) If the particular margin is already met, then for the next

iteration,

SPEC(i)
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where SPEC(i) is the minimum allowed value for the ith

margin.
(2) If the particular margin is not yet met,
Mg = M, (X,) + STEP * [SPEC (i) - Mj, (3{0)]

Before defining the purpose of the equations for Mis' note that
in the second equation, (2) if STEP = 1, M,;_ = SPEC(i), and (b) if
STEP - 0, Mjg = M, (Xg) .

The purpose of these equations is now illustrated. For a given
valuc of P’ (autopilot variable gtep-size), there may not be a fecasible
solution to the'linear programming problem if the present autopilc;t
doecs not meet all of the stability margin constraints. In other words,
the feasible region defined by the margin constraint equations may not
overlap the feasible region defined by P. By automatically reducing
the value of STEP, the margin constraints are"'loosened”, until a feas-
ible solution is possible for a given .value of P. In this way, the value
of P can be increased in a steady and rational manner, and the algo-
rithm will be allowed to conve.rge to :;L solution in a progressively

improving manner.

3.5.3 Graphical Illustration of Step-size Optimization

Figures 3.2 through 3.7 graphically illustrate the mechanics
and the interaction of the two step-size optimization routines (the

Minor Loop and the Inner Loop).
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Figure 3.2 shows a hypothetical two dimensional condition
that might exist for a rigid-body autop'ilot design problem. Figure
3.2 is a plot of the attitude efror gain (Kp) versus the attitude rateA
gain (Kg). Plotted on the figure are three nonlinear stabiiity margin
constraint equations: (1) the aerodynamic gain margin; (2) the rigid-
body phase margin; and, (3) the rigid-body gain margin. Figure 3.2
also shows where the ''true' local optimum condition might be, where
the objective is to maximize stability margins, and where‘all three
stability margins .are equally weighted. Obviously, the 'true' opti-
mum for this hypothetical case lies inside the feasible region whe.re
all three margin requirements are satisfied. The figure also shows
what might be the "first guess' or initial condition on Kp and KR. |

Figure 3.3 shows what the constraints might look like when
they are linearized about the initial condition. The figure also shows
the linearized interior optimum, where again, all margins have been
equally weighted. Note that the linearized optimum is not the same
as the nonlinear or "true'' optimum for this initial condition. Finally,
Figure 3.3 shoWs the slope of the linearized cost function (Y) and the
direction in which it increases.

Figure 3.4 illustrates the feasible region defined by the auto-
pilot variable constraint equations on K and Kp for step-size #1
(denpted Pl)' This feasible region does not overlap the feasible

region defined by the stability margin constraint equations. With the
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initial condition, the rigid body phase and gain margin constraints
are satisfied, but the aerody;namic gain margin is not. Hence, the
design method enters the inner loop, and relaxes the aerodynamic
gain margin constraint until a feasible region exists for both the mar-
gin constraints and the autopilot variable constraints. This relaxa-
tion is accomplished by reducing the parameter denoted as STEP.

When STEP is unity, no relaxation exists. When STEP is
reduced to 0.8, the aerodynamic gain margin constraint is relaxed
A enough so that a feasible region exists. When STEP is 0.8, this
means that an "80% improvement' is required for the margin that is
not yet satisfied. This so-called ''required margin improvement"
becomes very important when the optimum is exterior to the fcasible
region. This is the case most of the time for launch vehicle auto-
pilot design.

As indicated on Figure 3.4, the optimum solution for the first
step of the minor loop exists at Yj. Comparing Y| with the nonlinear
cost f~unction and constraints shown on Figure 3.2, it is seen that
stability at Y is better than at the initial condition. This "impfoved
stability" is indicated by the figure-of-merit which, as discussed in
Section 3.5.1, is a linear combination of the stability margins. Note"
that the sé-called '"met-margin counter'' indicates that at Y|, there
are still only two margins that are satisfied. Note that the margin

counter and the figure-of-merit are formed from an actual evaluation
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of the frequency response. In other words, they are not computed
from the linearized cost function and the linearized constraint equa-
tions.

Hence, since Y; is better than the initial condition,. the design
process advances, using the same set of partial derivatives, and
hence the same linearized cost function and margin cohstraint equa-
tions that were calculated at the initial condition.

As shown in Figure 3.5, the design method now increases P
from P, to P,. Figure 3.5 shows the feasible region defined by the
autopilot variable constraint equatiohs for P;. An overlap exists
between the feasible regions defined by the margin and autopilot con-
straint equations, and hence the inner loop need not be used. For P,
~ the optimum solution exists at Y,. By comparing Y, with the non-
linear constraint equations of Figure 3, 2, the margin counter indicates
that there are noﬁv three margins that are satisfied. Since improved
stability has again beén achieved, P is further increased from the
original initial condition.

As shown in Figure 3.6, P is now increased to P3. For this
step, overlap also exists, and the optimum solution is at Y3. By com-
paring Y 3 to the nonlinear constraints of Figure 3.2, it is seen that
thre rigid-body phase margin requiremént is no longer satisfied. The
margin counter indicates that only two m;.rg'ms are satisfied at Y.

Hence, Y3 is not as good as Y2 and P must be reduced.
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Figure 3.7 shows the autopilot constraint equations for Py,
where P, { P4 { Pj3. Again, the inner loop is not needed, and the
- optimum solution exists at Y 4. By comparing Y4 to Figure 3.2, the
margin counter shows that there are three margins that are met. But,
the figure-;)f-merit shows that Y, is better than Y4. Postulating that
the difference between P, and Py is less than some con;\rergence cri-
terion, the algorithm stops this so-called major iteration at Y,. The
values of -KD and Kr atA Yo bec.ome the initial condition for the next
major iteration. At Y,, the problem is rélinearized. A new set of
partial derivatives is computed, and a néw cost function and new con-
straint equations are formed. As the design progresses, the linear-
ized optimum gets closer and closer to the nonlinear or 'true'' opti-
mum. As will be discussed in Section 3. 5.5, .convergencev criteria
can be used to terminate this iterative design process.

Table 3.1 summarizes the results of Figures 3.2 througlr; 3.7.
These figures have been used to demonstrate steady convergence to a
locai interior optimum. Section 3. 5.4 will ilblustrate convergence to
a local exterior optimum.

As a final note, Figures 3.2 through 3.7 demonstrate that this
algorithm does not require that the initial condition lie v&\rithin the feasi-
ble region.

3.5.4 Convergence to an Exterior Optimum

This section illustrates how the algorithm converges to an
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exterior or 'constrained' optimum. Figure 3.8 shows a case that
might exist when optimizing load relief capability since for this phase
of design, the optimum solution almost always is exterior to the feas-
ible region defined by the margin constraint equations. Figure 3.8 is
a hypothetical two-dimensional case where (1) the nonlinear margin
constraint might represent the so-called aerodynamic gain margin,
(2) X] might represent the attitude error gain, and (3) X, might
représent the so-called load relief loop gain. Figure 3.8 also shows
the nonlinear constrained optimum.

In Figure 3.8, the initial condition on Xy and X is‘ outside the
feasible region. Figure 3.9 shows what the margin constraint and the
nonlinear optimum might look like when the problem is linearized about
the initial condition. The first step of the algorithm is to ''get feasible'',
and Figure 3.9 will show that in so doing, the algorithm still attempts
to approach the optimum. |

Referring to Figure 3.9, after a series of iterations through
the rr;inor and the inner loops, the solﬁtion is shown to exist at Y.
With the linearized margin and cost function as shown; this is the best
solution this major iteration can achieve without violating the nonlinear
margin constraint.

At.Yl, the problem is relinearized as shown in Figure 3. 10.
Figure 3.10 shows that any step in the direction of the gradient to the

linearized optimum would yield an unfeasible solution. Referring to
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Figure 3.10, agéin after a sgries-of iterations through the minor and
the inner loops, the solution exists at YZ' 4With the linearized margin
and cost function as shown, this is the best solution this major itera-
tion can achieve without violating the nonlinéar margin constraint.
With each major iteration,b the linearized constrained optimum
approaches the nonlinear constrained optimurh.

This section illustrates how the algorithm first '"gets feasible',
and then moves along or parallel to a constraint for the case of a con-.
strained optimum. Example 6 of Chapter 4. will dramatically demon-.
strate this situation.

Because of the weighting factors in the cost function and figure-
of-merit, situations with an exterior optimum can also exist when
optimizing stability margins.

3.5.5 Termination

This section discusses the two ways in which the design pro-
cess can be te.rminatevd.

The first way might be referred to as self-termination, where
the algorithm finds a local optimum and can achieve no improvement
over the initial autopilot for a given iteration. The so-called margin
counter and the figure-of-merit define this ”imprdvemen‘c. ' Recall
that the countér "counts'' the number of ""met margins'", and the figure-
of-merit is a2 linear combination of the actual margins. The counter

never allows the algorithm to lose a margin, and an iteration is con-
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sidered better if the counter increases. The figure-of-merit is used
to break ties in the counter. An iteration is considered no good if the
figure-of-merit decreases. An iteration is considered better only if
the figure-of-merit increases by a certain percentage (as specified by
the user). The following discusses this.

The user may wish to "

reward'' a certain margin only up to a
certain desired value. In other words, up to a desired value, the
figure-of-merit will include the actual value of the margin. When the
margin exceeds this desired value, the figure-of-merit will onl.y
include this desired value. If this happens for all margins, the figure-
of -merit will not change at all from one iteration to the next, and the
algorithm will have found an optimum that not only meets the require-
ments, but also satisfies the desired objectives. Examples 1 and 2 of
Chapter 4 will illustrate cases where this happened.

‘The case most likely to be encountered is when not all margins
exceed their desired values, and the figure-of-mefi.t impro{res dnlly
slightly from one iteration to the next. The percent improvement is

less than that required by the user and the design process terminates.

For this case, the local optimum may yield a solution that satisfies

all the design requirements, in which case the problem is solved. How-
ever, if the local optimum does not satisfy the requirements, the user
must then either (1) try another initial condition for the autopilot vari-

ables, (2) add more complexity to the autopilot, and/or (3) relax some
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of the design requirements and/or alter some of the design objectives.

The second way that the design may be terminated is directly
by the user. He may specify termination after a certain number of
major iterations of after a certain amount of computer time.

3.6 Detailed Flow Charts

This section now presents two detailed versions of the General
Flow Chart that was given in Figure 3. 1.

3.6.1 Overall Flow Chart

Figure 3.11 is a detailed overall flow chart of this nonlinear
programming algorithm as it is applied to the problem of launch
vehicle autopilot design. It shows the flow of information from the
initial autopilot, all the way through the step-size optimization rou-
tines, through the termination routine, and back to the initial autopilot
for the next major iteration. Some of the details of Figure 3. 11 are
now discussed. |

In the block showing where the partial.derivatives are calcu-
lated, reference is made to closed-loop roots. This illustrates the
possibility of not only optimizing stability margins, but also of opti-
mizing locations of at least the‘ so-called dominant closed-loop roots.
This also illustrates the possibility of adding a routine that could put
some of the following requirements on the response‘ of the attit'ude of
the vehicle due to a guidance command:

(1) Attitude rise time;
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(2) Attitude overshoot;

(3) Attitude settling time;

(4) Steady-state attitude error; and

(5) Peak values of the control device deflections fequired to

follow the guidance command.

Also in the block for computing partial derivatives, reference
is made to '"modal peak phasés". As discussed in Section 3, 3.1, these
sensitivities are used in the cost function in an attempt to force all
bending modes to resonate near zero degrees phase.

In that same block, reference is made to so-called tolerance
constraints. This refers to a routine that is used to keep the individual
autopilot vectors (e.g., the attitude error vector, the rate vectors, the
accelerometer loop vector, etc.) from getting very much larger than
the total resultant vector at all frequencies. When the individual vec-
tors get much larger than the resultant, vectorl cancellation results,
and this can lead to pfoblems when tolerances on the airframe para-
meters are conside;’ed.

In the block showing where 'the constraint matrix is set up,
reference is made to the ""Drift Minimum'' condition. (Greensite [14]
and Hoelker [17] define this condition, which basically is a steady-
state relationship between the autopilot gains. This steady-state
relationship results in a mix between the forces due to gravity, aero-

dynamics, and control deflections, that yields a zero net force per-
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pendiéular fo the vehicle's yelocity’veétéi. )_ This illustrates that it
is possiblé n'ot.Aonly_‘ t.o'put éonstfaints Aon'lrn;arg-invs and root 'lg;catidf_l.s
and on mih-v'm"ax values of_the é#topilot.variables,: but also to é:qu-' :
strain the autéipiiot variables to satisfy> other condifiops like the_Dr:ift A
Minirpurh'. condition. -

Figure 3. 11 shows a block 1abé1‘ed:2'_'.Simp1e-_x Algorithm''. This
is in reference to I-Dantzig'vs nﬂleth'od"[9] for solving li.n.earr programming -
‘ problems,

| Fi..gur:eA 3.11 also shows a block labeled "Margin Objéc.ti.\-'es‘.'.

.Th-i‘ls re.fers'. té .the fa.:ct that:‘vaesign ije:cti;ie.s are used to fvo.vrm the cost .
fuﬁé;tioh; yyhiil‘e d.e\sign requiféments are used to form .the’const_i-’éint -
rr—l'a-t.ri.x.‘ | |

f‘irjéﬁy, Figurg '3..1‘1‘ shows a b'lo,ck ':cha-t_ réfers to 'the.e'.st_ep'-s-':léé
optim‘lizz-}t'io'n'__fodtiné.: 'Th‘e‘ d'efav.ils'witlr-livn\ Athi‘s b'lc.)-:iclk, are shé.wn in Flg-
Qre 3. 1:'2 which is discussed in the next sectig)ﬁ.‘ kFigur'e‘~3l. 11 also
x shc;ws a‘ 'bioék iabeled "Optimization Completed_? "',v'vhich iﬁé‘fers fovtvhe

termination routine.

3. 6.2 Step-éize bﬁmization Flo§v Chart

| Figure 3.‘12 ill#_strates the step-size optimization routines
(namely, the Minor Loop and the Inner Loop) and their relétﬁon_ship to
the <.)thc.r routines shown in Figure 3.11. As diécusééd in Scction 3. 5,
the ;nnerl Loop is used to relax‘ constraints in order to yield a feasible

solution to the linear progfamming problem. The Minor Loop is used
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to maximize the autopilot variable step-size in order to get the '""max-
imum mileage' out of each set of partial derivatives, and in order to

allow the algorithm to steadily converge to a local optimum, particu-

larly to an interior optimum.



CHAPTER 4

RESULTS

This nonlinear programming algorithm, when applied to thé
problem of launc.h vehicle autopilot design, led to the developmeht of
a digital computer program called COEBRA. COEBRA is an acronym
fér Computerized Optimization of Elastic Booster éutc;pilots.

This chapter presents soﬁe of the results obtained from the
COEBRA program. The first two e#amples are frequency domain
design problems that were found in textbooks. The last five examples"
demonstrate the application 'of COEBRA to the booster autopilot design
problem.

Each example also shows the computer time required. This is
the time required on a CDC 6400/6500 computer system.

Throughout this chapter, the following shorthand ﬁotation will
be used to represent compensator transfer functions (S-plane or W-

plane). The transfer function given by

2
K (1+7,8)(1+ 1 s+ 82 )
2
“1 “y
(1+7,8) (1+738) (1+ 28, 54+ s2)
W (A)Z
2

will be abbreviated as follows:

[K] (T1, ¢1, wl)
(T2, T3, ¢2, w2)
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4,1 Example #1

Example #1 illustrates the application of COEBRA to a prob-
lem found in B. C. Kuo's textbook on sampled-data control systems
[23, example 9-3, page 291]. This problem was selected in order to
demonstrate the COEBRA program to those readers who are not fam-
iliar with the details of and the solutions involved in the booster auto-
pilot design problem.

The overall problem that Kuo was illustrating was the design
of a digital compensator for a sampled-data control system. The
first step in Kuo's design was to compute the Z-transform of the plant
(the fixed parts of the system). He then selected the loop gain to yield
a certain desired velocity constant. The next stép was to transform
the problem to the W-plane, The block diagram of the system in the
W-plane is shown in Figure 4.1. Kuo's last step (before actually im-
plementing or realizing the final solution) was to adjust the two time
constants in the compensator to achieve a phase margin greafer than -
or eciual to 50 degrees. The problem given to the COEBRA program
was to adjust the compensator time constants (T1 and T2) until the
following results from Kuo's compeﬁsator were matched:

(1) Phase margin > 50 degrees

(2) Gain margin > 12 decibels

(3) Frequency at the phase margin (wc) > 0.2

Figure 4.2 compares Kuo's results with those obtained from
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the first COEBRA run. For this _COEBRA run, both Tl and T2 were
initialized with a value of 20, and hence the initial response shown in
Figure 4.2 is identical to the response of the plant only. Note that w_
was 0.542 for the initial response. Figure 4.2 shows the results of
the first and sixth (final) major iterations of COEBRA. The sixth iter-
ation was the final one since COEBRA was not '"rewarded' for doing
better than Kuo's result. In other words, recalling the discussion on
termination in Section 3. 5. 5 of Chapter 3, the figure-of-merit was not
allowed to increase once Kuo's results wére matched. The results of
the fifth and sixth iterations were identical, since it took COEBRA one |
iteration to decide that improvement was no longer possible or ''per-
mitted''.

Table 4.1 summarizes the initiai and final compensators, as
well as the final stability margins obtained from COEBRA run #1.
Note that as with Kuo, the final answer from Run 1 was a phase-la‘g
compensator. Due to the circumstances of the problem as pointed out
by Kuo, this minimum complexity (first order) compensator had to be
a phase-lag model. In other words, phase-lead com‘pensation would
be ineffective.

Additional COEBRA runs were made in an attempt to '"map the
hill'', or in other words, to see .what COEBRA would do with different
initial compensators. As shown in Table 4.1, Runs 2, 3 and 4 achieved

essentially the same results as did Run 1 and Kuo. With the initial
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compensator of Run 5, CdEBRA climbed a local optimum that did not
satisfy the design requirements. Run 5 automatically terminated
after 14 major iterations when the margin counter and the figure-of-
merit essentially ceased to increase. Note that the final a-nswer from
Run 5 was not a phase-lag compensator. Run 6 was made with the
denominator time constant (T2) of Run 5 changed to a value of 4., so
that the initial compensator was a phase-lag compensator. Table 4.1
shows that Run 6 achieved essentially the sarﬁe answer as did Kuo.

Since a first order phase-lag compensator is the minimum-
complexity compensator that can solve this problexﬁ, it is not difficult
vto understand why COEBRA could not converge to a final solution from
every initial condition. This points out that the difficulty of any prob-
lem is dictated more by the degrees of freedom in the compensator
than by the complexity or order of the plant.

Table 4.2 summarizes the computer time required to make

COEBRA runs 1 throﬁgh 6.

4,2 Example #2

Example #2 illustrates the application of COEBRA to a prob-

lem found in Schaum's Qutline Series on feedback control systems

[DiStefano, 11, problem 16-10, page 309]. This problem was selected
for the same reason as Example #1.
The system block diagram for Example #2 is shown in Figure

4.3. For this example, the design is performed in the S-plane. After
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DiStefano had selected the Bode gain to yield a certain velocity con-
stant, he then adjusted the four time constants in the compensator to
meet -the following design specifications:

(1) Phése margin > 45 degrees

(2) Gain margin > 10 decibels

(3) Frequency at the phase margin (v ) > 10 rad/sec
The problem given to the COEBRA program was to adjust the four com-
pens'ator time constants until the above tflree design requirements were
satisfied.

Table 4. 3 compares DiStefano's results with those obtained from
the first COEBRA run. With all the t;me constants in the compensator
initialized to unity, COEBRA, in six major iterations, climbed to a
local optimum that did not meet the design requirements. DiStefano
showed that the minimum-complexity compensator that is required to
solve this problem, is a lag-lead compensator, and the final answer
for the unsuccessful Run 1 is not a lag-lead compensator. COEBRA
terminated after six iterations when the margin counter and the figure-
of-merit ceased to improve.

COEBRA was reinitialized to the compensator shown for Run
2 in Table 4.3, As can be seen from the table, Runl 2 achieved all the
design objectives.. It did so with a lag-lead compensator.

Figure 4.4 compares DiStefano's results with those obtained

from Run 2. Since the numerator and denominator of the initial com-
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pensator for Run 2 are identical, the initial response shown in Figure
4.4 is identical to the response of the plant only, As can be seen, the
system with a unity compensator (COEBRA's initial compensator) is
‘unstable. Note that w_ for the initial response is 22, 4 rad/sec. Fig-
ure 4.4 shows the results of the fourth and sixth minor iterations in
the first major iteration of Run 2. The results of the sixth minor iter-
ation in the first major iteration satisfy all the .design requirements,
and these results were the best COEBRA was "'allowed' to achieve.
As with Example #1, the reason for this was that COEBRA was only
"rewarded'" up to the design requirements. In other words, recalling '
the discussion on Termination in Section 3. 5. 5 of Chapter 3, the fig-
ure-of-merit was not allowed to increase once DiStefano's results
were matched. Run 2 ran for two major iterations since it took COE-
BRA one iteration to decide that further improvement was not allowed.

Two more COEBRA runs were made on this problem. Their
initial compensators were chosen to '"'lie between'" the initial compen-
sators of Run 1 and Run 2. From Table 4. 3, it is seen that the initial
compensator for Run 3 was ''close' to that for Run 1. As with Run 1,
Run 3 climbed a local optimum that did not yield a feasible éolution.
Run 3 went four major iterations before the counter and figure-of-
merit indicated that no further improvement was possible. The final
answer from Run 3 was not a lag-lead compensator.

Run 4 was made with an initial comp‘ensator that was ""between"
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the initial compensators for Runs 2 and 3. As can be seen from
Table 4.3, Run 4 achieved satisfactor‘y results with a lag-lead com-
pensator.

Since a secohd order lag-lead compensator is the minimum-
< '~mp1exity compensator that can solve this problem, it is not diffi-
cult to understand why COEBRA could not cényerge to a final solution
from every initial condition. As with Example #1, this points out
again that the difficulty of any problem is dictated more by the order
of the compensator than by the order of the plant. In most cases, the
"optimum hill" broaciens and smoothes out als the order or complexity
of the compensator increases.

Table 4. 4 summarizes the computer time required to make
COEBRA runs 1 through 4,
4. 3 Example #3

Example #3 illustrates the application of COEBRA to a single-
time -point autopilot design problem where the initial autopilot was so
poor that it resulted in a rigid-body instability., The objective of the
COEBRA run was not only to stabilize the system, but also to optimize
all stability margins.

The airframe (or system to be controlled) included rigid-body
dynamics and eigh1; structural bending modes. The block diagram of
the airframe/autopilot system is shown in Figure 4. 5. Since this is a

so-called analog autopilot, the design is performed in the S-plane.
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Figure 4.5 shows the attitude loop with a gain and two filters, and
two rate loops (for bending mode stability [Harris, 15]), each with a
gain and two filters. The problem given to COEBRA was to adjust
these nine autopilot parameters until all stability margins were opti-
mized.

Figure 4. 6 shows the open-loop frequency response resulting
from the initial autopilot. This figure shows that the initial autopilot
did result in a rigid-body instability. The resonances of the eight
structural bending modes are indicated in Figuré 4.6, which also

shows that the rigid-body phase margin frequency (w_.) was 4, 62 rad.

c)
per second.

Arrows around the critical point in Figufe 4. 6 illustrate the

_required rigid-body and first mode stability margins, It was also
required that w_ be greater than 2. rad/sec and that modes 2 through
8 be gain stabilized with their peaks resonating below '-10" de;:ibels.

Figure 4.7 shows the frequency response after the first major
iteration. The system is now stable, with w. = 2.07 rad/sec.

Figure 4.8 shows the frequency response that resulted from
the third and final iteration. COEBRA self-terminated after all design
requirements were met, a.'nd after the margin counter and figure-of-
merit ceased to significantly improve following the second major iter-

ation. In other words, the results of the second and third iterations

were identical since it took COEBRA one itération to determine that
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design improvement was no longer possible; Further improvement
would have béen rewarded, but COEBRA was unable to achieve it.

The margins that prohibited further improvement were w_. and the

c
phase margin on the 'backside' of the first mode.

Table 4. 5 summarizes the results of this example. It shows
t}'le values of all nine parameters for both the initial and the final
autopilots. Table 4.5 shows that a satisfactory design was achieved
in 493 seconds of computer time.

The following is a discussion of how COEBRA presently treats
the requirement on the dominant rotational rigid-body closed-loop
roots. Up to the present, the time domain response due to‘guidance
commands of a large aerodynamically unstable flexible launch vehicie,
has not been too critical. The major concern has been with stability
under tolerances and with structural bending moment loads. The
main reasons for specifying dominant closed-loop root locations have
been to (1) keep the autopilot frequencies sufficiently separated from
the guidance loop frequencies for stability purposes, and (2) merely
provide "somewﬁat adequate'' response to guidance commands. His-

" torically, it has been found that if the rigid-body phase margin is
greater than-a certain value, and the phase margin frequency is

greater than a certain value, then the rigid-body rotational closed-

loop roots will be sufficiently damped at a high enough frequency.

For example, on launch vehicles like the one represented in this
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example problem, if the phase margin is greater than 30 degrees,
with a frequency greater than 2. 0 radians per second, then it is
almost certain that the rotational closed-loop roots will have a fre-
quency greater than 1.5 radians per second and a damping ratio
greater than 0.30, The M circles for unity feedback systems tend
to indicate why this has been. Hence, rather than finding the actual
roots, COEBRA treats the requirement on the rotational closed-loop
roots by putting minimum allowed values on the rigid-body phase
margin and its frequency (w.). This approach was taken in érder to
avoid the computer time required to find the actual closed-loop roots.

It is recognized that the rigid-body response of a launch -
vehicle is comprised of a so-called first-order drift root as well as
the second-order rotational roots [Greensite, 14, andv Harris, 15]
Hence, since the rigid-body response is third-order, the location of
the rotational roots alone is not sufficient to ensure adequate response
to guidance commands. However, since most launch vehicles are
aerodynamically unstable, the instability of the vehicle generally
serves fo keep the attitude gain high enough, and the flekibility of the
vehicle generally serves to keep the rate gain low enough, so that the
rotational roots dominate the drift roots. In this way, the location
of the rotational roots themselves can be used to indicate response to
guidance commands. For this example problem, where the final auto-

pilot yielded a phase margin of 38. degrees at a frequency of 2. 03
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radians per second, the closed-loop rotational roots had an effective
damping ratio of 0. 68 and an undamped natural frequency of 2.9
radians per second. This satisfied the design requirements, and a
transient response showed that these roots dominated the drift root
which had a time constant of 11. 5 seconds.

4.4 Example #4

Example #4 illustrates the appﬁcation of COEBRA to the
same airframe that was used in Example #3, but this time the initial
autopilot was so poor that it resulted in a first-mode instability. As
with Example #3, the objective of the COEBRA run was not only to
stabilize the system, but also to optimize all stability margins.

The block diagram of the airframe/autopilot system is the
same as that of Example #3, and is shown in Figure 4.5. The prob-
lem given to COEBRA was to adjust the nine S-plane autopilot para-
meters until all stability margins were optimized.

Figure 4.9 shows the open-loop frequency response resulting
from the initial autopilot. This figure show.s.that the initial autopilot
did result in a.. first-mode instability. The resonances of the eight
structural bending modes are indicated in Figure 4.9, which also
shows that the rigid-body phase margin frequency (w_) was 1.17 rad.

per second.
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As with Example #3, the arrows around the critical point in
Figure 4.9 illustrate the required rigid-body and first mode stability
margins. It was also required that w. be greater than 2.0 rad/sec,
and that modes 2 through 8 be gain stabilized with their peaks reson-
ating below '-10" decibels. Figure 4.9 shows that with the initial
autopilot, the fourth and fifth modes exceed this requirement.

Figure 4.10 shows the frequency response after the second
major iteration. The system is now stable, with w. = 1.3 rad/sec.

Figure 4.11 shows the frequency response that resulted from
the fifth and final major iteration. COEBRA self-terminated after all
design requirements were met, and after the margin counter and fig-
ure-of-merit ceased to significantly improve following the fourth major
iteration. In other words, the résults of the fourth and fifth iterations
were identical since it took COEBRA one iteration to determine that
design improvement was no longer possible. Further improvement
would have been rewarded, but COEBRA was unable to achieve it. The

margi:ns that prohibited further improvement were w_., the phase mar-

c?
gin on the "backside' of the first mode, and the modal peaks of the
third and fifth modes.

Table 4. 6 summarizes the results of this example. - It. shows
the values .of all nine parameters for both the initial and the final auto-

pilots. Comparing these values with those obtained from Example #3,

it is seen that COEBRA ''climbed' to a different local optimum than it
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.did for Example #3. Hc.)wever,‘Aso'rne features o:f the two results are
similar. For Eoth, .the attitude gain (KD) is _ab»o'ut 1. 5, the total rate
gain (KR1+KR2) is about ﬁnity, and KR1 is greater than KR2 in order
to "'centér” the first mode around zero degrees;
’I“ab-'le 4,6 shO\ivs that a satilsfactory de'sign was: ac;h_ievéd_ i‘n
975 se‘conds> of cdm_putér :ti.rne; ‘
4. 5. Examgle; #5
| Examplie #5 illustrates the appliéati;an of cOEBRA.ta a th.r‘e'e.-
'ti;ﬁefp‘oigt éﬁtdpilot de31gnprob1em, where the ébjeéti;ré };vlals'.tol 0pt1_
%niz'e structﬁral ‘t.jiendi.ng.:rvlflpn“xept load ;elié‘f c_a]lpabilit?. COEBRA v.vas.
.initié}ized_with. #n agtopilot 'that_-!ha.td‘llpre\_}iou:svlyj >b‘e"e..ri. ;:'lesi'gn.‘ed:;l-ayi éngii-‘-
_neex_"s. - "I.‘he'i'ea_son' flor‘ this COE.BRA fuhl.\';}as té d‘etefmihe if design
improvement could be aéhieved._ Design 1mprovementwas d.ef_inévd as
an éutqpildt that had mci)re- load‘ relié‘f capabiil'ii.:y,: but still m.et-_ satié-.
factory st‘ability.r margins, - |
. The example deals with the max-q portiénj of flight where aero- .
dynamic >lo'ads are ci-iti'cal. ‘The th‘ree vehicle stafeis that are devsignvefd
A_’coig.e_:the_r' a'r.e: (1) the éirn!el.a_t :\_avhich the_ 1o.a‘,d‘ relivef:fjlodé (the»lacceler-_; :
kpmete‘xf feedbé.;k_lodp) is switched in; >(2)' the.rn.gjlt_-a tirr;e point; and (3)
the time at wfxich the lpa}d ‘re'lief' 1.oo'p' 1s sv.vit‘ched_out. The _airframe )
consists of rig_idfbod'y dynamics pius three bending modes at 'ea_ch,'time

" point,

~Figure 4. 12 shows the block diagram of the airframe/autopilot
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system. In addition to the attitude loop and two rate loops, Figure
4,12 shows the so-called load relief loop. This is a feedback loop on
a lateral body-mounted accelerometer signal, and Harris [15] dis-
cusses how this loop is used to reduce the angle of attack and control
deflections (hence béndi.ng moment loads) in the presence of the wind.

COEBRA is allowed to vary the gains and filters shown in Fig-
ure 4.12. This is a digital autopilot design problem, a}nd hence,
these gains and filters are defined in the W-plane. Of course, when
the design is complete, these gains and filters will be transformed to
the Z-plane where they will be mechanized as coefficients in difference
equations.

Figure 4. 12 shows that, at each time point, 15 autopilot para-
meters can be varied. Since this is a digital autopilot, the four gains
(KD, KL, KR1 and KR2) can be different at each of the three time"
points. The 11 filter network values, though they may be varied,

"must have the same values at all three time points.

. Figure 4. 13 shows the open-loop freqliency response piot that
results at the max-g time point from the engineer's final autopilot
(initial autopilot for the COEBRA run). This figure, as well as the
fréque;ncy responses at the other two time points (not shown), show
that all mérgin requirements are satisfied. When a six-degree-of-
freedom (6 DOF) trajectory was run usi‘ng this "final'.' autopilot, the

1

1cad relief indicatar (which is a product of the dynamic pressure times
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the angle of attack and is indicated as qa ) was 4908 pounds per square
foot.

Figurg 4. 14 shows the frequency response plot that resulted at
the max-q time point from the third and final iteration of the COEBRA
run, Stability margin requirements are met at this time point, as
well as at the other two time points. For this final COEBRA autopilot,
a 6 DOF trajectory simulation showed that qa had been reduced to
4765 pounds per square foot.

Figure 4. 14 shows that the stability margins from COEBRA's
f.inal autopilot, though satisfactory, are less than those from the engi-
neer's final autopilot (Figﬁre 4,13). This demonstrates the tradeoff
that does exist between stability and load relief.

The conclusion of this example is that, starting from the engi-
neer's final autopilot, COEBRA was able to achieve an improved design
by adju.sting the values of gains and filters within an engineer's estab-
lished configuration. It is noted that the COEBRA improvement in
load i'elief did not result because the engineer was incapable, but
rather because he was not required to oBtain more load reduction.

Table 4.7 summarizes the results obtained from this example.
It shows that a satisfactory_résult was obtained after 21.3 minutes of
computer 'time, or 7.1 minutes per iteration.

One final note is mentioned at this time. Another COEBRA

run was made on this problem, beginning with the same initial auto-
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Table 4.7. Example #5 Summary of Results

Objective: Maximize Load Relief Capability

Aucopilot Stability Margins da

COEBRA Initial Satisfactory 4908
(Engineer's Final)

COEBRA Final Satisfactory 4765

System Order: e  28th Order at Each of the Three
Time Points.
° 15 Autopilot Variables at Each
Time Point (4 gains can have dif-
ferent values at each, 11 filters

must have same values at each).
3 Major Iterations

Computer Time: 21.3 Minutes or 7.1 Minutes per

Iteration.
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pi'lof,. but with the objective changed to maximizing sté.bility margins
instead of load reliéf‘ capability.. The result of this second run was a
-design wifh improved s‘taBility margins, but with reduced load relief
capability.A :Computer time for this run was 2.3 minutes per ite'ratiox.i.
4.6  Exémgle #6 . , | -
| ' E;S:ample #5 demonstrated the effectiveness of the structural
load félief'optimization phase of COEBB,A When the initial autopilot
g 'rrie1.:‘v'all of the margin requirements, Exaxfnpl‘e #6 was run to see how
the 1oad”relie'f pha'se performs when the initiai_ au‘_topilbt‘d',oes: n;>t meet
. t‘he.~r.na'rg'inV ré‘quiz"emen't.s.

".I'hle i'i'r‘lvitial éutopiiot for this C'QEBRA run was obi;ained”a‘s
foll@)w's.. . In _several bpoStéf autopilots, there is a f.eedback ‘loop that
‘is“u:.sed solély fof.hig-h frequency stabilization. Tﬁié loop is ""washed’
out" at frequencies below the rigid-bédy phase rr;argin, and serv‘esb to
compens.at.e fo'r't‘he load relief loop gain at high f‘requeﬁcies so that the'-
load relief' loolp gam can be increased. So‘-'f‘o'x" Example #6, a pre-
viously éiesighed autopilot case was chosen, and ‘this "high freq_uency"
loop was zeroed oﬁt. This .fesu_lted in unacceptgble_stability margins.
Thé ld'e‘sig'n o}:;jec;ti_ve for the COEBRA run was to not only return to the
condit;ioh where all mafgins are met, but also to achieve at least the
same améun’c_of lo_ad relief that was a.c_}.ﬁeved with ;:he enginee‘r's orig-
" ijnal éutopilot that used this high freque_ﬁcy feedback loop.

For Example {6, thrce flight conditions were designed together:
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s

(1) load relief loop ‘switc-h-in; (2) max-q; and (3) load relicf loop
switch-og't.' The airframe included four bending modes at two of the
time points, and three modes at the third.

| Figure 4. 15 is a block diagram of the‘airfrarn_e/autopilot
system. This is an analog‘autopilot ciesign i)foblem, and therefore

the design is perfprmed' in the S-piane. There are 14 autopilot lvari-

: , .

: ab'les,‘ _bﬁt since this is an analog autopilot, each of.'thes_e variabies
:r.nu.ét have the same value at all three time points.

B 'Figqre '4'. 16 is ':the Qper;floop frequency :esvpons‘e‘ i)lot% that
i'esxilted from _C_OEB.RAls in_itial autopii_ot- la.t th@a fnabe fll-ig:ht.c';)vndit‘ion.
It shq\'vs' that not ‘all.rnarg‘in requirements are met. , Thié s‘ame Vs'i.t'u— -
‘ation exi'sts_a‘tt.lthév other two flight conditions (not.éhown).'._ -

o -Thé'_loac.l' feliief indicator for the 'engine'é'r's'oi"i_,g‘ir_x.él_ a_utopiiot
" that us_e;dft'hé.s‘g-call‘ed- lugh frequencyvfeedba_c.k loop 'wa'.s’.‘ 4490"'.p0Ll1ndsv '
per Asquaire foot. 'This‘ re‘sulf was obtained frqm a 6 DOF trajectory
_simulation. éOEBRA's first step was to "gét feasible", but in so
doi;ig‘, it had to give up load relief capability. COEBRA met all mar-
g1ins aftef fh_re_e iterations, but qa (frc?m a;_6 DOF s'ir'nulagt_ion)
i_ncr'eased to 4580 pounds per square f‘o'ovt. Howlvever‘,:_ferm the 4th to
the 8th iteration, all fnargin requiréments remained”satisﬁedé ‘and qa
began d'écre_asing, until on the 8th and ﬁﬁal iteration, it had decreased
fo_39;75 pox;nds pef square foot. ‘Aga.lin, this was ébtainéd from a 6.‘,DOF

simulation, and this qa w'as 12% less than that of the 6“rigina1 autopilot
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with the high frequency:feedback loop. Figure 4. 17_. does show tﬁat |
all rﬁafgins éré met at 1;he max-a time pbi;nt"‘w»it-h -th:e r.esult's of the
81V:hA éﬁd fina'.l. COEBRA iteration. The same situation existed at the -
.o.t.he'r two flight times.

The following discussion feférs to Section 3. 5.4 of Chaptéf 3
- on C'o'nver.gell'.xéé to é.‘n Extérior‘optimum. This exa_rﬁple has drarﬁati-
| c'ail_ly démonétr»avted Ho;\y the COEBRA aigo_rithﬁ_i converges,io"é con-
strained optimum f‘for_n'an unfeasibl_é initial point. The first"t.hree .
| iteratic.Jlns"'»We‘re; requi'rgd' in‘or‘d.er t.o reac:h a‘t‘feasiblé s';)‘luti'on‘,' I.n ‘
."g'gt.tivng feasible", _io,éa'r‘eiigef c'apab.iii't-y‘\;v;as reduced. Tﬁis_dia not
‘ heCessél'r:i‘lyu'HaVe tov“'h:,appén,' since the .aﬁlg"orithr'n;i-ibé‘s 't'i'y to'.‘opti'n.liié
v whlle “g_g';tfil;x'g_‘i.fea.sible"‘;  Once the lfgé-'sib'le "revg'ibnA‘vfz.é's reached, ‘the
. 'a‘iéé'rifch_m fndf;red aioﬁg or‘i);ral-‘iell?'t‘b 'fh_élcv_%)';}'sf‘z'aint bounda ries .ﬁ'nlt':.vil
: the c'.iz;z'.x's";,riai'ned ;optin.li:lm.wa.s; ",rea.c;hel’cli; - The '.fa'c’c'-'th}a'.f‘_ fﬁis a;étuaﬁlly
:.c’)ccu‘lrre'd'i‘s. i1'<nc>'\5:vri'"t):i.e-c';':«.{'\;s'e'‘l'o“éxd "reli.e‘f. cé.pé.bility st'ea'di;l'y in'c'reé‘sed‘
‘ 'fr:c;r'n_-, ﬁhe 4t'il‘q't"o the 8th ite"xv'ati'onl, "whné[sgvgrai’st'a,tbn',ity margins Te-.
mamed "tlght a_iga'msf?_‘ t_hei_r feéui#e_rﬁeﬁts.' vbTw.o of fﬁese A'_f‘ti,g“h’t' mér-
E g'iné”_c'a‘n. be s-‘eenv"in' Fig\;rle;‘i.‘ 17, Thésé two margins are calléd’ the
rigid_-i_bog_iy phase margin, and .1':he p'ha-s'e rrié-rgin 6n the "Béckside" of
the firéf :st;uc't\.‘x‘.rall.‘t.)éhding' rrio_d{e.y Thé.é'c_; margins are ’indic‘;.ate"d' by
‘ arrowsm fiéure 4. 17 ‘ T.he.sAelrn“_a:r'é.insl.'.We.'.i'é_,’t.iigvht éftef:threei' iteré-
‘tions, an'd‘ 'remai'ne‘d‘tigh‘c. from the 4th to the Bth and_-.las-t iteration,

-'_I‘lab;lé, 4.8 éur_nrnérize“s_thg resulfs 'Qf',,Examplgz #6. This table.
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Table 4.8. Example #6 Summary of Results
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Objective: Maximize Load Relief Capabiﬁty

Autopilot Stability Margins da
Engineer's Final | Satisfactory 4490
COEBRA Initial Unsatisfactory 4490
Third Iteration Satisfactory | 4580
Eighth (Final) Iter- Satisfactory 3975

ation

System Order: . 25th Order at 2 Time Points
° 23rd Order at 1 Time Point
° 14 Autopilot Variables Which
Must Have Same Value at Each

Time Point

8 Major Iterations

Computer Time: 59.2 Minutes or 7.4 Minutes per

Iteration.




102

shows that the computer tirﬁe for this example was 59. 2 minutes, or
7. 4 minutes per iteration.
4.7 Example #7

Example #7 illustrates using COEBRA fo design a load relief
autopilot in two phases: (1) the initial phase being to first meet all
margin requirements; (2) the second phase being to optimize load
relief capability. For this example, this approach -was considered
essential because the "first guess' or initial autopilot was very poor.

This example is taken from a recent effort to design an auto-
pilot for a space shuttle booster configuration. COEBRA was used to.
design the autopilot for all three channels (pitch, yaw, and roll) at all
the critical flight conditions during the first two minutes of ascent.
At all the flight times, the airframe included from seven to eight
structural bending modes.

The flight condition for this example is the yaw channel during
the r;qax-ﬁ' portion of flight. Three time points were designed together:
(1) loaci relief switch-in; (2) max--cI ;' and (3) load relief switch-out.
The airframe included seven modes at each of the time points. While
all the results obtained from this design effort are worth noting, this
example was selected since it illustrates the two phased approach to
load relief autopilot design.

Figure 4.18 is the airframe/autopilot block diagram for this

example. It shows the attitude loop, a rate loop, and the load relief
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loop. In addition, it shows an attitude; acce_'le-ration loop. . This is the
so-called high frequency loop that was referred to in Example #6.
Figure 4.18 shows that there are 20 autopilot variables at each time
poinf. Ib The fb-ur. gains .can h:aLvé differe_rl!‘t- value.s at :eaqh time _'poivnt.,.
but the 16 filter i)ara.rnetér's'must have the samgvalu,e for all the
time péin’;s.' |

'Figurés 4. lé, 4.20 ah&'4. 2‘-1 .sh'dx';v th.e‘i"'fr‘eCiuency' I;es‘po-n_sev"pAlots

for the initial autopilot. The system is stable, but the initial aut‘:opilot

is very poor. The basic margin requirement-is that modes 3 through

7 be gain stabilized with a peak amplitude below '-10'" .decibels. ) Only
the first and second modes can be phase stabilized, but if they are

gain stabilized, their so-called "élosest approach" distanée:t‘o‘the_

".1" point must be equivalent to 10. decibéls. o ‘

' The first COEBRA run was made to opti’miv:‘ze stability margihs.'

Aftei;‘ onvve it_evraltti:oryl, '-§.11 r;ia rgins were met. The next COEBRAr\ms
Were made to._optimilze load relief. Aff.;_er.s.ix more_;l!:ehrations,“ an
aut;o'pilétlresx;ll’c.e{d thatvyiel.de.d -fhe ploté o."f. Figure-:s; 4,22, 4. 23, and
4.24. Al margih requiremenf:s are mg'(;: A 6 DOF tr.ajegtory simu-
latlion. was not made,’ but estimates baseci-uon.linea.r transient re'sponse-
regﬁlts indicate that blending mornent loads weré 1:edu.ced ZS% from the.
initialAtO‘t‘he final autopilot. Compute; tirﬁe reqﬁired'to do this _]Ob . -,
“was 98 minu.tes, or _14 minutes per iter;a;tic)?n;

This example points to another way in which the COEBRA
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algorithm can be used. By observing the progress it is aBle to make
from iteration to iteration, it can be used to design a minimum-com-
plexity autopilot. For this example, the fact that COEBRA was able
to satisfy all margin requirements in only one iterétion, tends to
indicate that some of the degrees of freedom in the autopilot could
probably be eliminated. |
4.8 Conclusions

The results presented in this chapter clearly demonstrate
COEBRA's ability to successfully design autopilots for large flexible
launch vehicles. Experience with the program shows that while it
generally does not save computer. time, it does save manpower and

the time required to design an autopilot.



CHAPTER 5

SUMMARY, CONCLUSIONS AND
SUGGESTIONS FOR FURTHER STUDY

5.1 Summary and Conclusions

As shown in Chapter 4, results from the COEBRA program
clearly demonstrate that this algorithm successfully solves the prob-
lem of automating practical launch vehicle autopilot design and opti-
mization. Perhaps the primary reason for the sucée ss of this
algorithm is that its approach to design is much the same as the.
engineer's approach.

Via this algorithm, the COEBRA program satisfies the five
basic design requirements that were given in Chapter 1. Referring
to these requirements as they were listed in Chapter 1:

’,(l-a) The COEBRA program deals directly with stability
margin requirements in the frequency domain. Referring to the dis-
cussion in Section 4.3 of Chapter 4, COEBRA is able to constrain the
location of the so-called dominant rotational rigid-body roots.
COEBRA puts an inequality constraint equation on each individual
stability margin and each pair of dominant closed loop roots at each
of the time points being designed together. With the ""optimize mar-
gins" cost function, COEBRA not only meets the minimum margin
requirements, but also seeks to optimize all stability margins, With

a cost function separate from the constraint matrix, the cost function
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in COEBRA can be formed from the margin objectives, while the

constraint matrix can be formed from the margin requirements;

(1-b) With the ""optimize load reduction'' cost function
(formed via a time domain transient response routine), COEBR_A
seeks to minimize structural bending moment loads (8, 6‘[/ , and P
due to winds) while meeting the minimum margin requirements;

(1-c) COEBRA can constrain the autopilot parame{:ers to the
so-called Drift Minimum condition [14, 17], thereby minimizing tra-
jéctory dispersions. In fact, COEBRA can design a Drift Minimum
autopilot that has the maximum arﬁoun’c of load relief capability and
that meets the minimum stability margin requirements;

(2) COEBRA designs with a user-selected autopilot config-
uration. From the outset, only practical controllers are considered
since the user selects the number and types of feedback loops and the
number of gains and filters. COEBRA optimizes the values of the
parameters withinA’chis feedback structure and constrains the mini-
mum and maximum allowed values on each parameter;

(3) COEBRA handles the problem of multiple time point
design by forming the cost function and matrix of constraint equations
from margins and wind responses at several time points or vehicle
states. In this manner, all vehicle states are optimized simultan-
eously. Autopilot parameters can be shared between the vehicle states.

A novel feature of the COEBRA program and this design algo-
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rithm is that multiple time points are handled by considering a sep-
arate airframe for each time point. It is obvious that these ''separate
agirframes".can come from the same flight time. For example, the
"first airframe' can be the nomina.l airframe at time t_i while the
"second airframe'' can be the airframe at time t; with a tolerance

on one Or more o.f the vehicle parameters. In this way, COEBRA

can treat both the nominal and the tolerancea airframe together to
yield a single autopilot that will handle both conditions;

(4) COEBRA can handle a very high order system (30th and
greater with up to eight bending and slos‘h modes per time point).
With a user selected feedback configuration, the complexity of thé
autopilot does not necessarily increase with. an increase in the order
of the fixed parts of the system. Things like sensor and actuator
dynamics are included in a very straightforward manner and their
inclusion only increases the required computations;

(5) COEBRA designs analog autopilots via the S-plane fre-
quency response, and digital autopilots via the W-plane frequency
response.

Examples in Chaptgr 4 show that this algorithm can handle
both interior and exterior optima. The examples also show that the
initial conaitions on the controller parameters need not yield feasible
solutions, i.e., solutions that meet the constraint requirements.. In

fact, the examples in Chapter 4 demonstrate that the initial condition
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on the autopilot parameters need not even yield a stable system.

5.2 Projected Applications

Even though the class of problems this algorithm can handle
has not been established, it would appear that it can handle a large
‘variety of engiheering-type problems.

For example, it would appear it can handle the problem of
designing an airplane flight control system with the so-called flying
qualities design criteria [2]. These criteria inclﬁde: (1) the longi-
tudinal plane requirements on phugoid stability, flight path stability,
and short period response; (2) the lateral-directional flying qualifies
criteria on the responses of the dutch-roll mode, the spiral mode
and the roll mode; and (3) miscellaneous requirements on capabilitsr
to perform crosswind landings, coofdinated turns, etc. These
criteria could simply be added to the flexible-body stability margin
design requirements that are already included in COEBRA.

Another problem that this algorithm could probably handle is
the design of a reaction control system. This type of control system
uses discrete control. This algorithm could be used to optimize
phase plane switching logic like the so-called ''mear-minimum-fuel"
switching logic developed by Carney and Conover [5]. Their phase
plané logic was developed for a digital attitude control system that
requires no rate gyros.

Another problem that this algorithm can surely handle would
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be designing the autopilot for an interplanetary spacecraft like the
Mariner [Kopf, 22]. In order to handle the Mariner autopilot design
problem, COEBRA needs a transient response routine that could put
requirements like rise time, overshoot, settling time and steady
state error on the vehicle's attitude regponse due to guidance
commands. In fact, without this transient response routine, the
COEBRA program has difficulty in designing an autopilot for an aero-
dynamically' stable launch vehicle like the present proposed Space
Shuttle configuration. The reason for this is that since the vehicle is
stable, COEBRA can reduce the attitude gain and as it does so, even
though the closed loop rigid-body rotational roots meet a certain
requirement, these rotational roots no 1ongei' dominate the drift root.

To conclude this discussion, a paper written by Robinson [28]
is noted. In this‘ paper, Robinson states that the COEBRA algorithm
should prove fruitful in the optimal control of distributed parametef
systems.

5.3 Suggestions for Further Study

An advantage of this algorithm is that additional design criteria
can easily be added. For example, it is planned to include in the
present COEBRA program, a routine for load relief optimization in
the presen<.:e of stochastic winds., It is planned to augment the present
approach that uses a deterministic load relief cost function, with an

approach using a cost function that is formed via Wiener's Theorem
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and the filtering property of power spectral density functions [Chang,
6]. Two other types of routines that could easily be added have
already been discussed, namely, a transient response routine speci-
fying the vehicle's attitude response, and a routine that wéuld incor-
porate design criteria on airplane flying qualities.

This chapter concludes with a discussion of two additional
extensions of this design algorithm (and the COEBRA program) that
warrant further work.

The first is the extension of this algorithm to handle multiple
input systems. An example would be the lateral-directional control
system of an airplane where the two inputs are the rudder and the
aileron. The present algorithm must design this type system in a
series manner, by first optimizing one channel (e.g., yaw) with the
other closed (e.g., roll), and then closing yaw and optimizing roll,
etc., until the optimum "'mixed' system is achieved. Extension to
multiple input capability could be achieved using the concept of the
Transfer Matrix [Ogata, 27] where all channels could be designed at
the same time. -

The second extension involves the blended use of this algorithm
with linear quadratic-cost optimal control theory (i.e., the Regulator
Proglem). In other words, this algorithm and linear optimal control
theory could be used together to design launch vehicle autopilots. The

time invariant Matrix Ricatti equation could be solved to yield optimum
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rigid-body or low frequency performance. The algorithm .presented
in this report (via the COEBRA program) could then be used to
solvé the flexible-body problem via filters and sensor locations.

This would require judicious modelling of the rigid-body problem so
that the system states would be viable feedback states (e.g., acceler-
ometer feedback rather than angle of attack feedback, etc.). This
blended approach to autopilot design could be used to take advantage
of the desirable features of each design method while circumventing
the disadvantages involved when using each design method separately.
For quadatic-cost optimal control theory, the advantages referred to
include its ability to directly treat (1) the multiple-input problem,

(2) the time domain tradeoff between bending moment loads, tra-
jectory dispersions, control deflections, etc., and (3) stochastic as
well as deterministic forcing functions. The advantages to the'
COEBRA algorithm of course, include its ability to directly treat (1)
frequency domain design criteria v‘{hich is essential for the flexible-
body ‘problem, (2) a user-selected autopilot configuration, and (3) the

multiple vehicle state problem.



(1]

(2]

[3]

(4]

(5]

(7]

(8]

[9]

[10]

[11]

119
BIBLIOGRAPHY

Anderson, B. and J. Moore, Linear Optimal Control, Engle-~
wood Cliffs, New Jersey, Prentice-Hall, 1971.

Anonymous, Military Speciﬁcaﬁon - Flying Qualities of
Piloted Airplanes, MIL-F-8785B(ASG), August 1969.

Blackburn, T. R. and D. R. Vaughan, '""Application of Linear
Optimal Control and Filtering Theory to the Saturn V Launch
Vehicle, " Proceedings of the 19th Congress of the International
Astronautical Federation, October 1968,

Burris, P. M. and M. A, Bendef, '"Aircraft Load Alleviation
and Mode Stabilization (LAMS),'" AFFDL-TR-68-161, Novem-
ber 1969,

Carney, R. and T. Conover, ''Digital Attitude Control System, "
Trans. IEEE on Aerospace and Navigational Electronics,
March 1963. '

Chang, S. S. L., Synthesis of Optimum Control Systems, New
York, N. Y., McGraw-Hill, 1961.

Coffee, T. C., '"The Automatic Frequency-Domain Synthesis
of Multiloop Control Systems, '' Proceedings AIAA Aerospace
Computer System Conference, September 1969..

Currie, M. G., "Experience With Modern Control Theory on
Flight Control -Design, ' McDonnell Douglas Astronautics Com-
pany, Western Division, WDI1315, February 1970,

Dantzig, G. B., '"Maximization of a Linear Function of Vari-
ables Subject to Linear Inequalities, " Activity Analysis of
Production and Allocation, New York, N. Y., Wiley, 1951,

Davidon, W. C., "Variable Metric Method for Minimization, "
A.E.C. Research and Development, ANL-5990, December
1959,

DiStefano, J. J., et al., "Schaum's Qutline of Theory and
Problems of Feedback and Control Systems, '"' Schaum's Out-
line Series, New York, N. Y., McGraw-Hill, 1967.




120

[12] Edinger, L. D., et al., '"Design of a Load Relief Control
System, ' NASA CR-61169, April 1967.

[13] Fletcher, R. and M. Powell, "A Rapidly Convergent Descent
Method for Minimization, ' Computer Journal, 6, 2 (1963).

[14] Greensite, A. L., '"Analysis and Design of Space Vehicle
Flight Control Systems, Vol. VII, Attitude Control During
Launch,'" NASA CR-826, July 1967,

{15] Harris, R. D., "Analysis and Design of Space Vehicle Flight
Control Systems, Vol. XIV, Load Relief, " NASA CR-833,
August 1967.

[16] Hendricks, T. and H. D'Angelo, "An Optimal Fixed Control
Structure Design with Minimal Sensitivity for a Large Elastic
Booster, ' Proceedings 5th Annual Allerton Conference on
Circuit and Systems Theory, Urbana, Iilinois, October 1967.

[17] Hoelker, R. F., "Theory of Artificial Stabilization of Missiles
‘ and Space Vehicles with Exposition of Four Control Principles, "
George C. Marshall Space Flight Center, NASA TN D-555, June
1961.

[18] Hofmann, L. G., "Topics on Practical Application of Optimal
Control to Single and Multiple Control-Point Flight Control
Problems,'"" AFFDL-TR-70-52, February 1971.

[19] Hooke, R. and T. Jeeves, "Direct Search Solution of Numer-
ical and Statistical Problems,'" JACM, Vol. 8, No. 2, April
1961.

[20] ‘Kalman, R. E., "When is a Linear Control System Optimal?,"

Journal of Basic Engineering, March 1964.

[21] Klingman, W. R. and D. M. Himmelblau, '"Nonlinear Pro-
gramming with the Aid of a Multiple-Gradient Summation Tech-
nique, ' JACM, Vol. 11, No. 4 (October 1964).

[22] Kopf, E. H., "A Mariner Orbiter Autopilot Design,' Jet Pro-
pulsion Laboratory, Pasadena, California, NASA Report No.
32-1349, January 1969.

[23] Kuo, B. C., Analysis and Synthesis of Sampled-Data Control
Systems, Englewood Cliffs, New Jersey, Prentice-Hall, 1963.




[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

121

Lorenzetti, R. C. and G. L. Nelson, ''Direct Lift Control For
the LAMS B-52," AFFDL-TR-68-134, October 1968.

, "Computerized Design of Optimal Direct Lift Con-
troller," J. Aircraft, Vol. 6, No. 2, March-April 1969.

, "Direct Lift Control for Approach and Landing, "
J. Aircraft, Vol. 6, No. 3, May-June 1969.

Ogata, K., State Space Analysis of Control Systems, Engle-
wood Cliffs, New Jersey, Prentice-Hall, 1967,

Robinson, A, C., "A Survey of Optimal Control of Distributed~
Parameter Systems, " Wright-Patterson Air Force Base, ARL
69-0177, November 1969,

Rosen, J. B., "The Gradient Projection Method for Nonlinear
Programming. Part I. Linear Constraints, " J. Soc. Indust.
Appl. Math, Vol. 8, No. 1, March 1960.

» ""The Gradient Projection Method for Nonlinear
Programming. Part II. Nonlinear Constraints,'" J. Soc.
Indust. Appl. Math, Vol. 9, No. 4, December 1961.

Rynaski, E. G., et al., '"Optimal Control of a Flexible Launch
Vehicle, ' Cornell Aeronautical Laboratory, NASA CR-80772,
July 1966.

, ""Sensitivity Considerations in the Optimal Control
of a Flexible Launch Vehicle, " Cornell Aeronautical Labora-
tory, NASA CR-89568, June 1967.

Shah, B. V., et al., "The Method of Parallel Tangents (PAR-
TAN) For Finding an Optimum, !" Office of Naval Research, NR-
042-207 (No.- 2), 1961.

Stapleford, R. L., et al., "A Practical Optimization Design
Procedure for Stability Augmentation Systems, ' AFFDL-TR-
70-11, October 1970.

' Stear, E. B. and C. P. Lefkowitz, "Automated Design of

Space Booster Control Systems, ' Proceedings Joint Conference
on Mathematical and Computer Aids to Design, Anaheim, Cali-
fornia, 1969,




[36]

[37]

[38]

[39]

122

Stein, G. and A. H. Henke, '""A Design Procedure and Hand-
ling-Quality Criteria for Lateral-Directional Flight Control
Systems, " AFFDL-TR-70-152, May 1971. '

Vandierendonck, A. J., '""Design Method for Fully Augmented
Systems for Variable Flight Conditions,'" AFFDL-TR-71-152,
January.1972.

Whitbeck, R. F., "A Frequency Domain Approach to Linear
Optimal Control, " J. Aircraft, Vol. 5, No. 4, July-August
1968.

Wilde, D. J. and C. S. Beightler, Foundations of Optimiza-
tion, Englewood Cliffs, New Jersey, Prentice-Hall, 1967.




