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FOREWORD

This document describes the results of a
study begun in 1968 for the NASA Electronics Re-
search Center. The underlying objective was to
help in choosing laboratory test equipment and pro-
cedures, especially in the light of the increasing
interest in strapdown technology,, This report is an
expanded version of Reference 10. New material
includes analysis of tests performed on pulse re-
balanced sensors, a new treatment of input-dependent
oscillations in ternary and binary pulse rebalance
loops (Appendix F) and some illustrative nomographs
relating desired test accuracy to required test
equipment performance.
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ABSTRACT

Some topics related to dynamic testing of
strapdown sensors are analyzed, with emphasis on
measuring parameters which give rise to motion-
induced error torques in single-degree-of-freedom
inertial sensors. The objective is to determine the
dynamic inputs, test equipment characteristics and
data processing procedures best suited for measuring
these parameterso Single-axis, low frequency vi-
bration tests and constant rate tests are studied in
detail. Methods for analyzing the effects of test
motion errors and measurement errors are develop-
ed and illustrated by examples. They are shown to
be useful in predicting achievable test accuracies
and required test times. Candidate test data proc-
essing methods are compared and recommendations
concerning test equipment and data processing are
made.
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1, INTRODUCTION

The potential advantages of strapdown or gimballess inertial
systems over conventional, gimballed systems have been recognized for
some time (Ref. 1). These include flexible packaging, low power con-
sumption, weight and volume, easy assembly and maintenance and con-
venient use of navigation sensors in autopilot functions. Continuing
advances in the development of smaller, faster and more compact digital
computers have led to increased interest in strapdown systems. It is
clear that these devices will perform acceptably for certain missions and
will be, in some cases, superior in overall cost and reliability.

With the advent of strapdown inertial systems, new problems in
achieving high sensor accuracies have arisen. Platform systems isolate
the inertial sensors from most rotational motion. However, when the
instruments are rigidly attached to the vehicle, they can be subjected to
a severe angular motion environment, resulting in errors which can be
rectified both in the instrument and in the attitude transformation calcu-
lation. For example, Ref. 2 shows that the magnitudes of vibration-
induced errors can be considerably greater than gyro drift rates which are
usually acceptable for navigation applications. Errors of this kind are not
observed during static tests. Thus, in order to measure their effects
accurately enough to assure adequate compensation during operation,
strapdown sensors must be subjected to dynamic testing.

Torque rebalance loops, which are a common feature of strap-
down sensors, lead to additional errors, as well as creating problems in
testing for motion-induced disturbance torques. While they provide data
in a form suitable for digital navigation computers, pulse rebalance loops
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in particular introduce essential nonlinearities which complicate the
dynamic testing problem.

1.1 OBJECTIVES OF STUDY

The objectives of this study are summarized briefly as follows:

• Determine the input dynamical forcing functions best
suited for testing for all significant error coefficients.

• Determine necessary test durations and the nature and
accuracies required of the essential test equipment.

• Compare alternative methods of test data processing,
considering the possibilities for both on-line and
off-line computation.

• Suggest alternative test procedures which may substitute
sophisticated test data processing for complex test
motion machinery.

• Devise test procedures which will establish an under-
standing of statistical predictability in the stability of
sensor parameters.

Substantial progress has been made regarding the first four
objectives in the above list.

The investigation concerns testing for certain parameters which
cause errors in single-degree-of-freedom sensors, especially those fac-
tors associated with angular motion, and therefore uniquely important for
strapdown sensors. These parameters correspond to a set of fixed
mechanical properties, such as products of inertia of various elements
of an instrument and the alignment of sensor components with respect to
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one another. Rebalance loop errors such as fixed scale factor error and
torquer nonlinearity are also considered. The study has not been con-
cerned with such items as torquer scale factor changes, friction, thermal
gradients and electromagnetic effects, all of which may combine with
angular motion to cause errors. Problems associated with rebalance loop
dynamics are not treated (except in the treatment of test errors due to
pulse rebalancing), but will be the subject of future work related to high
frequency testing.

The ultimate goal of this effort is to help formulate complete
test sequences, such as that pictured in Fig. 1.1-1. The illustrated
sequence begins with a set of physical measurements on the basic sensor
components, moves to a set of conventional static and low-rate tests which
produce estimates of the quantities normally sought for platform appli-
cations, and concludes with a set of dynamic tests designed to extract the
parameters uniquely important in strapdown applications. The require-
ments of a particular test sequence depend of course on the underlying
reasons for the test. Are they, for example, related to a research pro-
gram aimed at developing new sensors, or are they part of a mission-
oriented program involving a series of qualification and calibration tests?
The development presented herein is general enough to cover both
situations.

The report describes an analysis of dynamic testing of single-
degree-of-freedom sensors, emphasizing single-axis testing. This type
of testing involves the hardware elements pictured in Fig. 1.1-2, con-
nected together as indicated. The sensor outputs and test table outputs
feed data into a computer, either directly for real-time processing, or
by way of a data storage medium for subsequent processing. Elements
of the strapdown sensor test problem are illustrated in Fig. 1.1-3. The
main test objectives are to determine the magnitude and stability of
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PHYSICAL MEASUREMENTS

on Sensor Components

K-821

dimensions, mass, inertia, etc.

STATIC AND LOW RATE TESTING

for example:

Torque-to-Balance Tests

Servoed - Table

DYNAMIC TESTING

for example;
High Constant Rate Tests
Angular Vibration Tests
Linear Vibration Tests

DATA PROCESSING

Hand Calculations
Computer

mass unbalance

random drift

scale factor etc.

DATA PROCESSING

motion - induced
error coefficients

Figure 1.1-1 Test Sequence Flow Diagram
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R -820

Figure 1.1-2 Dynamic Testing and Data Processing
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Figure 1.1-3 The Strapdown Sensor Test Problem

parameters which cause error torques. Test errors are associated with
imperfections in the motion-supply ing equipment, the (optional) sensors
which may be used to measure the applied motion and those parts of the
strapdown sensor itself which are used as a measuring instrument (such
as torque rebalance electronics). The immediate goal of the study is to
recommend input motions and data processing procedures and.to analyze
the effects of test errors on overall test accuracy and duration.
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1.2 ORGANIZATION OF THE REPORT

In Chapter 2 the overall test objective is defined as the iden-
tification and measurement of the causes of sensor errors. These are
grouped into three categories: motion-induced errors (such as those
caused by angular motion about the spin and/or output axes of a gyro),
residual errors (such as those caused by thermal and friction effects)
and rebalance-loop errors. Models for certain important motion-induced
errors in single-degree-of-freedom (SDF) gyros and accelerometers are
presented, and specialized in a way which is valid for testing SDF sen-
sors in the closed-loop (rebalanced) configuration, using low-frequency
test motion inputs. (In this context "low frequency" means considerably
less than l/rf, where r. is the time constant associated with the sensor
float dynamics. For typical inertial sensors a low frequency is therefore
20 Hz or less.) This development leads to a two-stage testing concept:
A set of basic parameter groups is measured directly from a sequence of
applied test motions, and individual parameters are subsequently deter-
mined, algebraically, from the values of the basic parameter groups.
Chapter 2 concludes with a general discussion of possible test motions and
introduces some of the reasoning behind the decision to emphasize

single-axis testing.

In Chapter 3 single-axis, low-frequency testing is studied in
detail. A particular sequence of sensor orientations with respect to the
test motion axis is recommended. The observable quantities from each
vibration test are a set of Fourier coefficients which define a periodic
function representing the applied torque. A set of six angular vibration
tests and a set of six linear vibration tests provide an array of observable
quantities which theoretically permit determination of a complete set of
basic parameter groups. The observable quantities generated by constant
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rate tests and vibration tests, in which only the average torque is mea-

sured, are also presented. Three classes of test error sources are con-
sidered: test motion errors, measurement errors and changes in the
sensor parameters. Motion errors and measurement errors have bias,
cyclic and high-frequency noise components. Measurement errors also
include the effects of quantization. Methods for analyzing all of these
error sources are developed. The first phase of the data processing
problem, that of estimating the Fourier coefficients, is formulated as a
problem in linear estimation, for which the Kalman filter is an optimal
solution. This formulation is useful in studying the combined effect of
random high frequency fluctuations in test motion errors and measure-
ment errors and in determining the useful test duration. The analysis of
quantization effects also lends insight into the problems of choosing test
time and the number of data samples per cycle of test motion. Three
candidates for this data processing function — Fourier analysis, least
squares estimation and Kalman filtering -- are compared. Chapter 3
concludes by summarizing the results of example calculations for a
sequence of constant rate and vibration tests on a SDF gyro. Illustrative
values for the observable quantities as well as test error effects are

included.

Tentative conclusions and recommendations concerning the
choice of laboratory equipment are summarized in Chapter 4. Some
illustrative nomographs relating desired test accuracy to required test
equipment performance are included. Overall conclusions and a discussion
ofthe re commended continuation of effortare presented in Chapter 5. A signi-

ficant recommendation stemming from the study to date is that great stress
should be placed on the appropriate use of conventional single-axis test
devices, in a combined program of vibration testing and constant rate

8
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testing of strapdown inertial sensors. In order to obtain the maximum
usefulness from the test data, careful attention should be given to the
means for controlling and/or measuring the supplied motion and to tech-
niques for recording and/or processing the sensor output data produced
during the tests. These points are explored in the body of the report.

Appendices A through D and F contain detailed technical
material in support of the discussions contained in the main body of the
report. Appendix E summarizes a brief survey of contemporary strap-
down sensor testing and test equipment.
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2. ERROR MODELS AND BASIC PARAMETER GROUPS

This chapter provides a general discussion of single-degree -
of-freedom (SDF) sensors and sensor test objectives and develops a set
of equations for motion-induced error torques. Based on these relations
a set of basic parameter groups is defined. These groups in turn help
clarify the problem of selecting appropriate linear and angular motions
to be applied during tests. The possibilities for test motions are
examined at the end of the chapter.

2,1 SINGLE-DEGREE-OF-FREEDOM INERTIAL SENSORS

Gyroscopes are angular motion sensors. They are commonly
based on the use of a spinning member, the rotor, as the sensing element. *
All gyroscopes which use a spinning rotor can be classified under two major
groups: single-degree-of-freedom gyros and two-degree-of-freedom gyros.
The two-degree-of-freedom gyro senses angular motion directly, by
measuring the displacement of the rotor spin axis relative to the case.
The rotor may be mounted in mechanical gimbals, or may be supported
by electric or magnetic fields as in the electrostatically suspended
vacuum gyro and cryogenic gyro.

In the case of the single-degree-of-freedom (SDF) gyro the
spinning rotor is mounted in a gimbal which allows only one degree-of-
freedom relative to the case (see Fig. 2.1-1). The equation of motion
of an ideal single-degree-of-freedom gyro can be determined by equating
reaction torques about the output axis to the "applied" gyroscopic

*Notable exceptions are the laser gyro and tuning fork gyro.

11
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R-1227

Gimbal Angle, a0

Output Ax is (o)

Degree of

Freedom

Figure 2.1-1 Single Degree of Freedom Gyro

precession torque which results from case motion about the input axis,
viz:

where

(2.1-1)

Xoo

C

K

H

gimbal-to-case- angle about the output axis

rotor plus gimbal moment of inertia

= viscous damping coefficient
= spring constant
= rotor angular momentum
= angular rate of the case about input axis

12
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As indicated by Eq. (2.1-1), a constant value of to. results in the following
steady-state value of a :

Ha = K co.o is. i

Hence, this gyro is referred to as a rate gyro, as the gimbal angle is a
direct measure of case rate. In the situation where K = 0, we get a
steady-state gimbal angle rate,

. _ H
Of- - 7T CO.o C i

Thus, gimbal angle is related directly to the integral of the input rate,
and this gyro is therefore called a rate integrating gyro. By mounting
the gyro rotor in an enclosure which serves as the gimbal and floating
the whole assembly in a fluid of appropriate density, the gyro output axis
bearings are unloaded, reducing some unwanted torques. This con-
figuration, called the floated rate integrating gyro, is extensively used
for very high accuracy applications such as inertial navigation.

In gimballed platform applications, the gyro float angle, a , is
continuously nulled by platform gimbal servo action. In strapdown system
applications, the gyro float angle is nulled by the application of a torque
generated by passing an electric current through the windings of an output
axis torquer. The current, which may be continuous (analog) or a series
of pulses (digital), is derived from a measurement of the float angle. The
closed loop comprised of float dynamics, float angle pick-off, torquing

electronics and output axis torquer is called the rebalance loop. The

rebalance current is taken as a measure of input rate (for continuous

13
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torqued gyros) or incremental input angle (for pulse torqued gyros).
Figure 2. 1-3 shows a general schematic diagram of a strapdown gyro

rebalance loop, including the following three types of torquing electronics:
linear analog- rebalancing, binary pulse-rebalancing and ternary pulse-
rebalancing.

The single-degree-of-freedom pendulous accelerometer is
illustrated in Fig. 2.1-2. Two major differences between this repre-
sentation of the instrument and that presented for the SDF gyro are
obvious. The direction perpendicular to the output and input axes is
called the pendulum (p) axis rather than the spin(s) axis. Also, the

instrument is assumed to consist of only two basic parts: a case and a
combination gimbal and pendulum. The equation of motion of an "ideal"
single-degree-of-freedom accelerometer is:

roo % + Cdo + *•„ = -m 6P

where the quantities not previously defined are :

m = gimbal plus pendulum mass
6 = displacement of the center of mass
f. = specific force on the case, along

the input axis

Strapdown accelerometers use the same kinds of rebalance
torquing schemes as those illustrated above for strapdown gyros. The
rebalance current in this case is a measure of input specific force (for
continuous torqued accelerometers) or incremental changes in the integral
of the input specific force (for pulse torqued accelerometers).

14
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K -1228

(p)

Pendulum
Reference

Axis
Gimbal Angle,ao

Output Ax is ( o )

Degree of
Freedom

Figure 2.1-2 Single Degree of Freedom Pendulous Accelerometer

2.2 TEST OBJECTIVES

A block diagram representation of a general test of a SDF
floated sensor in the torque-rebalancing configuration is shown in
Fig. 2.2-1. The diagram illustrates the sensor's nature as a device
which sums torques acting on the floated member. The "applied" torque,
M , consisting of the input (gyroscopic or pendulous) torque and dis-a
turbance torque, M ,, is opposed by the torque-generator torque, M. .
The latter is fed back through the rebalance loop, in a manner which
tends to null the net torque about the gimbal output axis, M .

The controlled test environment includes all quantities (motion,
orientation, temperature, etc,) which cause input torques or disturbance

torques to be applied. By carefully controlling and/or measuring these

15
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Figure 2.1-3 Rebalance Loop Configurations
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Figure 2.2-1 General Test of a Single-
Degree-of-Freedom Sensor

quantities the test operator seeks to isolate and calibrate various sources
of disturbance torque. From the gyro itself the only quantities available
as inputs to the data processor are the voltages, e and er. The signal-
generator output, e , is a voltage which is proportional to the float angle
a . The output, e , of the block labeled "rebalance electronics" is an
analog or digital indication of the rebalance torque M. . In the analog-
rebalance case the function of the rebalance electronics is to generate a
continuous current, i. , which is proportional to the voltage, e . In this
case there is only one available output (ea = er) which is a measure of
both the float angle time history and the rebalance torque. In the pulse-
rebalance case e is the sampled output of a nonlinear element; it is used
to determine the sign of a fixed-magnitude torque applied to the sensor.

The overall test objective can be defined as the identification
and measurement of the causes of sensor errors; that is, all causes for
a discrepancy between the output of the sensor and the quantity which that

17
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output is supposed to represent. The output of a strapdown gyro is either

a continuous indication of the input-axis angular rate, co., or a digital
indication of incremental changes in the integral of w.. Similarly, the
output of an accelerometer is a continuous or digital indication of the
input-axis specific force, f., or incremental changes in the integral of f..

Sensor error sources may be grouped as follows:

• Motion-Induced Error Torques

Error torques are the various components of the
disturbance torque, M^, shown in Fig. 2.2-1.
Motion-induced error torques are those directly
associated with case motions, either angular or
linear. They are sometimes referred to as
"dynamic errors."

• Residual Error Torques

Residual error torques are all components of M^ not
associated with case motions. For example:

Torques due to temperature gradients or non-
standard temperatures.

Torques associated with the orientation of the
sensor. These could include mass unbalance
effects during an angular motion test. (The
same parameters lead to motion-induced
torques during a linear vibration test).

Undesired friction torques

Undesired elastic restraint torques

Undesired electromagnetic effects

Torques of unknown origin

Any of these may of course change with time. How-
ever, during the relatively short test durations
required for the dynamic tests proposed the above
torques are expected to exhibit very little variation.

18
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• Rebalance-Loop Errors

Two broad types of rebalance-loop errors exist,
as follows:

The causes of discrepancies between the
rebalance torque and the value indicated by the
sensor output. Examples are torquer scale-
factor error and torquer nonlinearity.

Errors associated with sensor loop dynamics
which are not fast enough to follow the input
motion. In such a case the rebalance torque
time history is not a perfect replica of the
applied torque time history.

The main emphasis in this report is on testing for
motion-induced errors, with some attention paid to torquer errors.
Residual errors are not treated, except in the recognition that a "bias"
error torque is always present during a test involving applied motions.
Errors associated with the dynamics of the rebalance loop are not treated,
but will be the subject of future work related to high-frequency testing.

One approach to testing for motion-induced errors is to assume
no prior knowledge of the physical causes of such errors and to design a
procedure which seeks to discover the functional relationship between
M, and various motions. Another approach is to start with a physically-
derived error model which defines such a functional relationship in terms
of unspecified parameters, and to design a testing procedure which seeks
to determine those parameters. The latter method is followed below.
However, if all the effects in the first technique are accounted for by one
or more parameters in the second approach, the two are equivalent and
the kind of testing described in Chapter 3 has considerable merit in either

case. (This point is discussed further in Section 2.4.)
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2.3 MOTION-INDUCED ERROR TORQUES

This section presents a set of physically-derived error

models for motion-induced error torques in SDF gyros and accelerom-

eters. These error models are taken from equations derived in Refs. 2

and 3. A general expression for the total "applied" output-axis

torque is:

M = M. . +M + M.. (2.3-1)a Tnas ane; lin v '

where

M.. = a random bias error torque not
s associated with motion

M = the torque induced by angularansr , . j < ^ >& motions

M.. = the torque induced by linear
n motions

The error models presented below are given as expressions for M and

M.. for the two types of sensors. The notation used is summarized

in Tables 2=3-1 and 2.3-2. For any particular test situation the

total applied torque as given in Eq<,(2.3-l) must be considered.
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TABLE 2.3-1

GYRO NOTATION

f , f . , f g = case linear specific force

iii. u., u, = case angular rates
O 1 S

(i ,u>.,u; = case angular accelerations

a ,a.,a = gimbal-to-case angular misalignments

8 , (I. = rotor-to-gimbal angular misalignments

I ,!..,! = float moments of inertia (including
gimbal and rotor components)

Ioor'
Iiir'

Issr
= rotor moments of inertia

= gimbal products of inertia

O = rotor spin rate relative to the gimbal
8

H = !.„ 0_

, 6 = float center of mass displacements

m = float mass

K..,K = direct compliances
11 SS

K. ,K .,K ,K. = cross compliances

The subscripts, o, i, s refer to output, input and spin
axes, respectively.

TABLE 2.3-2

ACCELEROMETER NOTATION

w0, ov

I .I...Ioo H pp

V6i

K...Ku ss
K.. , K .. K , K.

ip pi po 10

= case linear specific force resolved
into case-fixed axes

= case angular rates resolved into
case-fixed axes

= gimbal-to-case angular misalignments

= float moments of inertia

= float products of inertia

= float center of mass displacements
(in the absence of acceleration)

= float mass

= direct compliances

= cross compliances

The subscripts o, i, p refer to output, Input and pendulum
axes, respectively.
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2,3.1 Single-Degree-of-Freedom Gyros: Angular Motion

In Ref. 2 a comprehensive expression is derived for inertial
reaction torques associated with angular motion of the case of a SDF
gyro. One term, I 6? , of that expression combines with the float vis-

7 QQ Q7

cous damping torque, Ca , to provide the linear "float dynamics" block
appearing in Fig. 2.1-3 and 2.2-1. Transferring all other terms to the
applied torque side of the equation, we can write:

Mang

9 2i -i.. w -co +HWss u I s i s

(2.3-2)

where the term, Qco , has been added to account for the experimentally-
observed effect reported in Ref. 4. We regard the gyroscopic term,
-H to., as the desired input torque. Thus, terms other than - H co. on the
right hand side of Eq. (2.3-2) must be regarded as error torques. The
term Ioo coo is an error caused by the gimbal output axis inertia and can
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lead to significant "pseudo-coning" errors in systems applications. The

other term in the first line, (%- Iss) tos wi, is an anisoinertia error tor-
que which can lead to large rectification errors during angular vibrations.
The product-of-inertia terms in the second and third lines are probably
less important, but can also generate large constant torques. The terms
involving a are coupling error torques (since a is the float angle which
results from all applied torques, principally HOJJ) and can also lead to large
errors. The terms involving Og, c^, BQand /^represent the interaction of
various component misalignments with angular motions; the most significant
are the -a Hco.. and fi_.Hco_ terms which result when the sensitive axis of the

S O O S

gyro does not lie exactly parallel to the input axis fixed in the case.

2.3.2 Single-Degree-of-Freedom Gyros: Linear Motion

Ref o 2 provides an equation for torques about the output axis of
an SDF gyro generated by linear motion. Based on it we can write:

M.. = - < J m ( 6 f + 6 f. - 6.f + m2

l i n j \ o o s i i s IK f f. + K .f2
|_ SO O 1 SI 1

(2.3-3)

Since the only desired torque is the angular motion term, Hco., appearing
in Eq. (2.3-2), all of the terms in Eq. (2.3-3) must be considered error
torques. The terms multiplying m have the form of mass unbalance
torques, although the first one, m6 f , is thought to be due to thermal
convection effects. The terms multiplying m^ are linear compliance
effects.
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2.3.3 Single-Degree-of-Freedom Accelerometers:
Angular Motion

Ref. 3 provides an equation for torques about the output axis

of an SDF accelerometer generated by angular motion. Based on it we

can write:

Mang 'oo^o*11"-

[I -I..o V p p ii

+ 0,

o - to.

(2.3-4)

Since the ideal accelerometer is insensitive to angular

motion, all of the terms in Eq. (2.3-4) must be considered as error tor-
ques in the SDF pendulous accelerometer. The error terms can be
divided into several broad categories similar to many exhibited by the

gyro. Sensitivity to angular accelerations is present. The principal con-

tribution, that caused by angular acceleration about the sensor output axis,

is unavoidable because of the nature of the pendulous acceleration sensing

instrument. Several anisoinertia terms and product of inertia terms

also appear.
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2.3.4 Single-Degree-of-Freedom Accelerometers: Linear Motion

Ref. 3 provides an equation for torques about the output axis of an
SDF accelerometer generated by linear motion. Based on it we can write:

Mlin = *

2 / \ 2l
K .f +K f.f + K -K.. f.f -K. f f -K. f > (2.3-5)pi i po i o \ pp ii/ i p 10 o p ip p '' v '

The first term of Eq. (2.3-5), m6 f., measures linear
acceleration along the input axis. This is the only output axis torque in
the ideal pendulous accelerometer. The pendulosity m6 is designed into
the instrument with care. All the remaining terms in this equation con-
tribute errors to the accelerometer. The term m6 a f is basically ap o p
cross-coupling error arising from rotation about the single axis of

freedom and m6 a f results from gimbal-to-case misalignment. Sincep p o
accelerations along the input axis will cause considerable excursions of
the gimbal angle, a. , from null, sizeable rectification errors can be
produced in this instrument by properly phased linear vibrations with
components along the input and pendulum axes. The second term of
Eq. (2.3-5) illustrates error torque contributions from unwanted mass
unbalance and the last line expresses compliance error terms. It can be
seen that linear compliance effects can produce constant error torques.
The error in indicating linear accelerations along the case fixed input
axis of an SDF pendulous accelerometer is simply the sum of all error
torques, divided by the pendulosity, m6 .

r
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2.4 BASIC PARAMETER GROUPS

In this section the error models given above are specialized and
extended slightly. This development is based on approximations which are
valid for the closed-loop sensor configuration with low-frequency test
motion inputs. The motivation for this development is to obtain useful
relationships in which the disturbance torque is expressed as a function
of motion components and sensor parameters which remain essentially
constant over a given period of testing.

The motion-induced error models given above are general in
that they apply to both the open-loop and closed-loop configurations, but
they do not have the desired functional form because of the presence of
time-varying terms a , a , ft and H. The symbol a. represents floato o s o
angle which varies in response to all applied torques. The symbol fi

S

represents the rate of change of rotor speed with respect to the gimbal
which depends on the rate of change of case angular velocity about the
spin axis, w , and the rotor speed control loop dynamics.

S

When the gyro is torque rebalanced and can be viewed as a
closed loop system, we can write approximate expressions for a as a
function of certain motion quantities. These can then be substituted into
the above equations to provide the kind of useful functional relationships

mentioned above.

2.4.1 Analog Rebalancing

Consider, first, an analog-rebalanced SDF gyro experiencing
angular motion„ For the purpose of computing the float angle, the
dominant applied torques can be represented by:

Ma ~= - loo %
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The rebalance torque is given by

(2.4-2)

We restrict our attention to low frequency test motions, so that M is
kept very small at all times and M, remains an accurate replica of
M „ C on sequently ,a

Therefore,

Mo = Ma - Mtg £ - 'oo^o + HU. + K0o = 0 (2.4-3)

We substitute Eq, (2.4-4)into Eq. (2.3-2)and drop the term 0.1 fi which
is extremely small in practice. The result, after rearranging terms, is:

2
M =k < to .+koO! +k0co +k.u).+k.-uj +k_to +k,,u?.ang 1 i <s o 3s 4i 5o 6s 7 i

+k8wo-Vs+k9wiwo+k10wiW8+kllwoWB

3 9 9 9
+k19o5. - k19co.co

J.u 1 J.̂  J. i

where k. through k14 are defined in Table 2.4-l(a). We shall call these
coefficients basic parameter groups. Table 2.4-1 divides them into four
types, ji, X , y and p, according to whether they multiply functions
involving angular accelerations or functions which are linear, quadratic
or cubic in angular rate, respectively. These classifications are useful
in organizing both the analysis and the display of results concerning
observable quantities and testing errors (see Chapter 3).
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TABLE 2.4-1

BASIC PARAMETER GROUPS

Angular Motion

a) Gyro

kl = Voo * !oig

k2 = " !oo

V'Voo-'os
g

k4 = H

k5= "s"

k6 = - SoH

V V^VO

kg = -Q

Kg = IQS - «i(I
SS-I

ii)-Sj(lss -IQO \

^-"/^Oss-'ii)

k!2= («^) Oss - 'ii)

k!3= !ooH/K

k — IT /Vl /¥ T \- . ~ " 11 / I v l l l •" 1. . 1

b) Accelcromctcr

Woo'1,,!

k2 = • ^o

^^-"i^o-'op

k4= V

5 op ) \ pp ii/

6 \ pp ii/

,=-(..-)(,,,„)
Linear Motion

c) Gyro

kj = -m6s

k0 = -m6rt£ O

kg = m6.

k4 = -m2Ks.

k6 = -m2Kso

^ = m Kio

d) Accelerometer

k, = -m61 p

k 2=fl pm« p +or im6.

kg = m6j

k4 = -(m2/K)6p6.-m2Kp.

k6=-m2Kpo

2 PP

Type

M

X .

y

P

M

X

y
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Except for the fact that H appears in several of them, all of
the groups defined in Table 2.4-1 are functions of sensor parameters
which remain essentially constant* over a given period of testing. We
can write:

where A to represents the deviation of rotor speed with respect to the
S

gimbal due to a dynamic lag in the action of the rotor speed control loop.
The resulting variations in k,., kg, klfl, k12 and k..,, will cause extremely
small variations in the corresponding torque components appearing in
Eq. (2.4-5). These can also be dropped, permitting us to treat most of
the basic parameter groups as constants. The exception is the gyroscopic
term, Hw,, which becomes:

Hco. = H w.+1 AO w. (2.4-7)i nom i ss si v 'r

We have assumed here that float axis misalignments (ai, as and ap)
and rotor axis misalignments (0j and 0O) are constant. If future results
indicate that these quantities significantly vary due to case motions, the
only changes in this development which are likely to be significant
involve the kg and kg terms in Eq. (2.4-5) and the k£ term in Eq. (2.4-15).
The affects on kj, k3, k?, kg and k^ in Table 2.4-l(a) and on kj_, k3, kg
and k7 in Table 2.4-l(b) will be very small if the misalignments are of the
order of arc seconds.
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The second term in Eq, (2.4-7) is zero except when the applied test

motion involves both w. and a rapidly varying co . Therefore, most of
1 S

the time the parameter groups defined in Table 2.4-l(a) can be con-

sidered constants with H = H . For example, with a vibratory angularn o m ' j o
motion about the spin axes, if the frequency of vibration is low compared

to the wheel hunt frequency (typically a few cycles per second), Afi = 0
S

and Hco, = H o>.. If, on the other hand, the frequency of oscillation is

considerably above the wheel hunt frequency, the rotor speed variation

will become:

A Q0 = - co0 (2.4-8)
b S

That is, to is varying so rapidly that the speed control loop cannot follow
S

it at all (see the more extensive discussion in Ref. 2). Consequently,

= Hnom<"i -

and the "extra" term can be added to the k lnw. w term in Eq. (2.4-5).
JLU 1 S

In summary, all of the parameter groups defined in Table 2.4-l(a) can

be considered independent of test motion frequency except k.., which

varies from:
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for angular oscillations about the spin axis which are well below the
wheel hunt frequency, to:

k = \-~Z] + I -I -I.. (2.4-11)1Q 1 If i \ oe» do it / x /

for oscillations well above the wheel hunt frequency.

The expression of the applied torque in the form of Eq. (2.4-5)
leads to a testing concept in which the data processing portion of the test
procedure is divided into two parts. In the first part the gyro output data
from a sequence of tests is processed so as to determine values of the
basic parameter groups. The second part is a purely algebraic problem
in which the basic parameter groups are provided and the individual
parameters appearing in the expressions in Table 2.4-1 are to be extracted.

The first phase is crucial because it bears on the choice of test
motions and determines test accuracy and useful test duration. Note,
for example, that some basic parameter groups appearing in Eq. (2.4-5)
cannot possibly be found by applying a constant rotation rate since they
multiply angular acceleration terms (d^, wo, u>s). This indicates that if
all parameter groups are to be determined, the testing program must
include some motions more complex than constant rates.

In the second phase some of the parameters can be found
algebraically and some cannot, but there is no way in which unusual test
motions can be used to separate the effects of individual parameters which
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appear in a given group. For example, consider the single term from

Eq. (2.4-5) involving the product, to to .o s

lss

No matter what time history of u and co_ is applied to the gyro case, the
O ID

term involving IOj and the term involving a will both remain proportional

to the product, to to , and their separate effects cannot be distinguished.o s
However, if values for both kj and k^1 (see Table 2.4-l(a)) have been

determined, and if I and (IQC - L<) are considered known, then valuesoo °° Li

for IOi and a can be determined algebraically.
5

It should be noted that we could have started with an expression

like that of Eq. (2.4-5), without assuming any knowledge of the physical

causes of error torques, and simply set out to design a testing procedure

which would determine values of the coefficients of the various motion

functions. This corresponds to the first approach mentioned in

Section 2.2.

For an SDF accelerometer basic parameter groups defined in

Table 2.4-l(b) correspond to the following expression for torque due to

an angular motion:

2 2
M = k. co. +kqco +k_w +k.co. -k.toa n g 1 i T J o 3 p 4 i 4 p

+ kcco.co +kcco-oo +k_u3 oo +k0ci5 co -k0co o>5 i o 6 i p 7 o p 8 0 1 S o p

(2.4-13)
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where we have made use of the approximation:

I

«0
 =" - -r. *„ (2-4-14>

which is analogous to Eq. (2.4-4) in the SDF gyro case. For the SDF

gyro undergoing linear motion:

Mlln

+ ViVk7fi£s+WS <2'4-

where the corresponding basic parameter groups are defined in Table

2.4-l(c). For the SDF accelerometer undergoing linear motion:

Mlln

+ Vifo+k7£iWof

where we have used:

= -m - f. (2.4-17)

and the corresponding basic parameter groups are defined in

Table2.4-l(d).
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2.4.2 Pulse-Rebalancing

The basic parameter groups defined in Table 2.4-1 may be

valid for some pulse-rebalanced sensors as well, even though Eq. (2.4-2)

is no longer true. In some cases the float angle, a , experiences a high-

frequency limit cycle* superimposed on a slowly changing "signal" value

which follows quite closely the applied test motion. According to dual-

input, describing-function theory (Ref. 5) the nonlinear torquing logic

operates on these low frequency signals, which occur in the presence of

the limit cycle, almost as though it were a linear gain. Therefore, we

can write:

M = - M, = -K N_ K. a (2.4-18)a tg sg B tg o v '

where:

K = the signal generator gain

K, = the torque generator gain

NR = the effective gain of the nonlinearity
as seen by the "signal".

and the overbars indicate time-averages taken over intervals which

are long compared to the limit cycle period but short compared to

*
This is usually true in the binary-torquing case and for gyros with

time-modulated torquing; it is usually not true in the ternary-torquing
case. See Ref. 2.
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test motion variations. It follows that, for the SDF gyro experiencing
angular motion:

OO . fn A -tr\\w (2-4-l9)
p

where K is the effective pulse-rebalance loop gain:

K = K ND K. (2.4-20)P sg B tg '

For the SDF accelerometer experiencing only angular motion:

<2-4-21'

For the SDF accelerometer undergoing linear motion alone:

m6

V-K^ f i
P

Equations (2.4-19), (2.4-21) and (2.4-22) can be substituted
into Eqs. (2. 3-3), (2. 3-4) and (2. 3-5)= When this is done we obtain the
same error torque equations and basic parameter groups as in
Section 2.4, 1. These equations ignore certain high frequency, zero-
average cross -coup ling torques associated with float angle motion caused
by the limit cycle.
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2. 5 TEST MOTION POSSIBILITIES

In order to determine values for all basic parameter groups

appearing in Eqs. (2.4-5), (2.4-13), (2.4-15) and (2.4-16) it is necessary

to choose a sequence of test motions which excite the various terms in

these equations in such a way that their individual effects can be separated

and measured. An important consideration in this choice is the desirability

of keeping the test motion equipment as simple and accurately controllable

as possible. For the angular motion-induced terms of Eqs. (2.4-5) and

(2.4-13) it is necessary to specify a set of time histories of angular

velocity components (u>j, coo, U3S). These cannot be confined to constant-
rate tests alone since there are a number of terms involving angular

accelerations (cbj, coo> tos ) which must be excited. For the linear motion-

induced torques of Eqs. (2.3-15) and (2. 3-16) it is necessary to specify a

sequence of specific force (fi? fo, fs) time histories.

Consider the following list of possible motion functions which

are discussed, in turn, below:

• Step functions (constant angular rates and constant
specific force components)

• Ramp functions (constant angular accelerations)

• Sinusoidal oscillations (angular and linear vibrations)

(a) motion about or along a single case-fixed axis

(b) oscillations about two axes with arbitrary phase

(c) oscillations about three axes with arbitrary phases

• Combinations and special functions

Note that two- and three-axis in-phase oscillations are actually single-

axis oscillations where the axis is chosen to produce a specified ratio

between principal axis components. (For example, angular oscillation
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about a line midway between the input and spin axes of a gyro with rate
W sin cot, produces the principal axis in-phase oscillations,
co. = co_ = (W/,/2~) sin cot.i s

Constant angular rates may be applied to inertial sensors by
conventional laboratory test tables. Special mounting fixtures are
required for various "combined-rate" tests. For example, if equal input-
axis and spin-axis rates (coj and cog) are desired simultaneously, the
gyro must be mounted with the line midway between these two axes coincident
with the test table axis. Constant specific force components may be obtained
simply by placing the sensor in a given orientation in the earth's gravi-
tational field. Alternatively, it may be centrifuge tested at a higher g-
level. (This produces a combination of constant angular rate about the
centrifuge axis and a constant specific force, somewhat complicating
matters.) These tests are all useful and are commonly performed in
testing inertial sensors. Their major limitation is that, in testing for
angular-motion-induced errors, they cannot excite all of the terms appearing
in the error model equations. It is clear, therefore, that some test motions
from the last three items in the above list should be included in a complete
testing program.

Angular-rate ramp functions, involving constant angular
accelerations, could be used to excite the terms which are not excited in
constant rate testing. Supplying such motions would require the operation
of standard test tables in an unconventional way, and it would be difficult
to maintain a significant acceleration level for a long period of time
because of the high rates which would be reached. There would also be
serious data processing problems because of the continuously increasing
torque levels associated with various parameter groups. For example, a
constant angular acceleration about a gyro output axis would cause a
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constant torque, luco- [See Eq. (204-5).], and a linearly increasing
torque, kgujQ, and a parabolically increasing torque,

Angular and linear single-axis sinusoidal oscillations are

standard test motions which may be obtained using conventional techniques.
Since first and higher derivatives automatically occur as sinusoids, all
terms in the error models can be excited by a sequence of sinusoidal
oscillations about various axes. As with ramp functions the torque levels
during sinusoidal motion are continuously changing. However, they are
cyclically repeating, affording the opportunity to average data over many
cycles. The data processing procedures required to separate and measure
the effects of various parameter groups during such testing are developed
in some detail in Chapter 3. (They represent a considerable increase over
those usually employed in test procedures which seek only to measure
average effects. ) It is demonstrated that a particular sequence of six
single-axis vibration tests, each using a different test motion axis fixed
in case coordinates can theoretically be used to isolate and measure all
terms which appear in the error models we have adopted. (Some effects,
such as torques associated with k12 and k..., are extremely small and
probably cannot be measured in practice in low frequency testing. But if
they are too small to be measured, they are also likely to produce insig-
nificant errors in operational systems. On the other hand these effects
should be reviewed in later considerations of high frequency testing. )

Because a program of single-axis testing which includes constant
angular rates and oscillatory motion has the capability mentioned above,
multi-axis out-of -phase testing and angular rate histories which are
combinations and special functions of time have not been studied in detail.
Multi-axis test tables capable of supplying out-of-phase angular motions
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are available and these should, of course, be used to check against
predictions based on single-axis testing. However, a major conclusion
of this study is that for strapdown inertial sensors considerable emphasis

should be given to single-axis low-frequency testing.

The ultimate simplicity and usefulness of single-axis low-

frequency testing will depend on the extent to which:

• all motion-affected error torques, including those
not covered in the error models presented here,
are frequency independent.

• It is valid to treat pulse rebalancing electronics as
linear components in the fashion outlined in
Section 204.2.

• it is possible to predict the significant system errors
from the results of single-axis low-frequency tests.

A combination of experimental evidence and further analysis is needed

in order to properly guage these matters.

Chapter Summary — Error equations for single-degree-of-
freedom (SDF) gyros and accelerometers are developed for the special
case of closed-loop low-frequency testing. The resulting expressions for
torques applied to the instrument output axes are linear in a set of "basic
parameter groups" defined herein. The expressions for angular-motion-
induced error torques include fourteen such parameter groups for SDF
gyros and eight groups for SDF accelerometers. The expressions for
linear-motion-induced error torques include eight groups for both SDF
gyros and accelerometers. The parameter groups are further divided
into four categories, according to whether they generate error torques
proportional to angular acceleration or linear, quadratic or cubic,
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respectively, in angular rate or specific force. These classifications
are useful in organizing both the analysis and the display of results

developed in the following chapter.

Potential test motions are reviewed and qualitatively compared
in light of the applied torque expressions mentioned above. A major con-
clusion is that theoretically the effects of all parameter groups can be
observed separately using test motions which involve angular accelerations;
it is not necessary to resort to multi-axis, out-of-phase test motions.
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3. SINGLE-AXIS, LOW-FREQUENCY TESTING

This chapter presents a detailed study of single-axis, low-
frequency testing, including sinusoidal vibration testing and constant
angular rate testing. A particular set of sensor orientations with respect
to the motion axis are recommended and the information which may be
extracted from each test is outlined for angular and linear vibration tests
as well as constant rate tests. Test accuracy, useful test duration and
test data processing are investigated, with emphasis on the angular motion
case. Example calculations are given at the end of the chapter.

3.1 OBSERVABLE QUANTITIES

This section identifies the quantities which may be observed as
a result of single axis tests and the basic parameter groups which may be
determined from the quantities observed during particular types of test
sequences and combinations thereof„ The following types of tests are

considered:

• Constant Rate Testing

• Sinusoidal Testing, Averaging

• Sinusoidal Testing, Harmonic Extraction

The last two involve the same test motions, but are distinguished by the data
processing performed. In sinusoidal averaging the only measurement is of
the average torque over many cycles, yielding information about constant
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torque only, part of which is due to rectification of dynamic effects. In

sinusoidal harmonic testing the time-varying output signal is processed

to yield additional information. Results are summarized in

Section 3.1.3.

3.1.1 Vibration Testing

A general single-axis angular vibration of amplitude W and

frequency co can be represented by the following three equations:

co. = c. Wsin cot (3.1-1)

03 = c Wsin cot (3.1-2)
o o

03 = c Wsin tot (3.1-3)s s

where c., c and c are the direction cosines relating the vibration axisr o s
to the input, output and spin axes of the gyro being tested. It is shown in

Appendix A that when Eqs. (3.1-1), (3.1-2) and (3.1-3) are substituted

into Eq. (2.3-5), the resulting expression for applied torque is a periodic

function represented by a 7-term trigonometric series of the form:

M = B + S. sin o)t + C, cos o>tang 1 1

+ S- sin 2o>t + C2 cos 2ojt

sin 3o)t + C cos 3o)t (3.1-4)
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When three similar equations representing accelerometer case motion
(involving u> and c rather than co and c ) are substituted into Eq. (2.3-5),P p s s
a similar periodic function of the form of Eq. (3.1-4) is found. This
result is also developed in Appendix A. In both cases, expressions for
the coefficients, B, S., CL, etc., in terms of the basic parameter groups
and the quantities defining the test motion have been derived.

Figure 3.1-1 illustrates the general situation for a single-axis
angular vibration test. The first block represents the motion-induced
torque model developed in Section 2.4; its output, M , can be viewed
as a 7-term periodic function of the form of Eq. (3.1-4). Added to this is
a constant torque, M , which exists in the absence of the applied angular
vibration. It consists of the terms, M,. and M,. , defined in Eq. (2.3-1)bias 1m ^
and a small additional torque due to the angular rotation rate of the earth.
Since the only applied test motion is an angular oscillation, the linear-
motion-induced torque is determined by the sensor's orientation in the
earth's gravitational field., This torque can be held constant by orienting
the vibration axis or "test axis" in the vertical direction. The complete
applied torque, M , is, therefore, also represented by a 7-term function

3.

of the form of Eq. (3.1-4) in which the bias coefficient, B, includes the
constant, Mc, as well as the average (rectification) torque resulting from
the applied sinusoidal angular motion. Since the test motion frequency has
been assumed to be low compared to gyro loop dynamics, the torque
generator output is represented by the same 7-term function. The gyro
output e is a scalar function which is proportional (ideally) to the torque
M, . Therefore, a harmonic analysis of the output data should produce the
seven Fourier coefficients which define the input periodic function M (t),

3-

For any given choice of sensor orientation with respect to the test axis
there is a set of seven such coefficients which are the observable quantities
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Figure 3.1-1

M,g= M0-B + S,sin wt + C, cos ait

+ S2sin2a>t+C2cos2<u

+ S3 sin3a)t +C3cos 3w

General Single-Axis Angular Vibration Test

for that particular test. Estimation of these seven quantities requires a
more sophisticated data processing procedure than the conventional one of
measuring average drift rate over a long period of time (which is simply
the measurement of B, the first of the seven coefficients).

Consider now the six test orientations pictured in Fig. 3.1-2.
In three cases the sensor is mounted with one of its principal axes coinci-
dent with the test motion axis. In the other three cases the sensor is
mounted with a line midway between two of its principal axes coincident
with the test axis. These pictures apply to a SDF gyro or SDF accelerom-
eter, depending on whether the third principal axis is labeled s or p.
Tables 3.1-1 and 3.1-2 present expressions for the seven trigonometric
coefficients which correspond to each of these six test axis choices for both
instruments. Each Fourier bias coefficient, B, includes a constant torque
term, M , which represents the disturbance torque which exists in the

\^

absence of the test motion. It is a function of orientation, temperature, etc.
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R-805

TEST MOTION AXIS

( tma) tma tma

s,P

f ma tma tma
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s,P

s,P

Figure 3.1-2 Six Candidate Test Orientations
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TABLE 3.1-1

FOURIER COEFFICIENTS: GYRO ANGULAR VIBRATION TESTS

Test Motion
l

(xw+|pw3)

S2

a " W sin u* - k W
2K8W

u = W sin wt

W sin wt

k w

-4 12

W
= -^sin ut

72

"I (-Vk8

872 14
o)W

W— sin wt
72

W3

W— sin at
72

- 2-

Otherwise, all of the coefficients are functions of the test motion quantities

and the basic parameter groups only. The bias term, B, is the "dc"
level of the output waveform and represents the conventional, average
torque measurement. The other coefficients are generated by a harmonic
analysis of the "ac" portion. These expressions were obtained by
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TABLE 3,1-2

FOURIER COEFFICIENTS: ACCELEROMETER

Test Motion

u> = Wsinuto

a) = Wsinwt
P

cu. = Wsinojt

w
= -5- sinwt

0). = U>Q

w
= — sin uit

0). = W
1 P

= — sin cut

ANGULAR VIBRATION TESTS

B

\

MCp-ik4W2

M^^W2

cop 4 7

%-.v^

•S,̂ -1

fe,.w?U.-)

Vw

"s-
k,.w

.~_ /'lr l lr ^ / 1^X7^ lr * tW

/~K" \ A O/ o /~n~ "

1 1 3

^ k l + k 2 W W + «^VW

^(kl+k3)«*W

C2

0

K*2

4^

te-^

i(k. -Ow2
4V 4 5/

-h^

C3

0

0

0

1 1

8/T 8

. . _.,. .., lr , A\?

8/T ^

0

specializing the general expressions derived in Appendix A. For example,

for a test motion axis midway between the input and output axes we have:

c4 = 1A/2

CQ = 1/72

Cg = 0 (3.1-5)
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Therefore, in the case of the gyro, the expression for the coefficient of
the sin 3 cct term [Eq. (A-5(f)] becomes

I k r - c
4 *12 W \Ci Cis

(3-1-6)

The output data from a sequence of six tests on a given instru-
ment can be processed to yield an array of 42 observable quantities. If
the six test axes are those pictured in Fig. 3.1-2, the 42 quantities cor-
respond to the expressions given in Table 3.1-1. Examination of this
array of expressions shows that, for a given test amplitude and frequency,
knowledge of these 42 quantities is more than enough to determine all of
the basic parameter groups, kj through k... All six tests are required,
but the complete set of 42 observables provides a considerable amount of
redundant information. The testing concept outlined in Section 2.4 can now
be made more definite as shown in Fig. 301-3. The gyro data may be
processed (stage la) on-line to produce the seven observable quantities
(Fourier coefficients) during each test or it may be recorded for sub-
sequent off-line processing. In either case, the next data processing
stage, Ib, is an off-line stage in which 42 linear algebraic equations are to
be solved for 20 unknowns; 14 basic parameter groups and 6 constant tor-
ques, M . Approaches to the solution of this over-specified problem are

\*>

discussed briefly in Section 3.4. The final data processing stage, II, is
the purely algebraic problem of solving for individual parameters, given
values for the basic parameter groups.
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Figure 3.1-3 Data Processing Phases: Single-Axis Vibration Testing

Table 3.1-3 presents expressions for the observable quantities
(Fourier coefficients) which correspond to linear vibration tests in which
the vibration axis has the same relationship to the sensor axes as in the
six angular vibration tests described above.* For these linear vibration
tests the test axis is chosen to be horizontal so that the specific force along
the test axis has a sinusoidal form with zero average. The constant tor-
que, M,., includes the usual bias term, M, . , a small term, M ,^ ' c' ' oias' ang'
associated with the constant earth rate and a term associated with the
constant gravitational field. The number of observable quantities for each
test is three, corresponding to three-term trigonometric functions which
are derived in Appendix A for single-axis linear vibration tests. In both
cases (gyro and accelerometer) the set of 18 observable quantities is more
than enough to determine all basic parameter groups.

Inspection of the expressions tabulated in Tables 3.1-1 through
3.1-3 reveals that, for both SDF gyros and SDF accelerometers, complete
sets of basic parameter groups may theoretically be extracted from a
sequence of six angular and six linear vibration tests. The angular

In the case of the gyro it will be extremely difficult in practice to
measure the mass unbalance terms (kj, k2, kg) because of the small
angular motions which must inevitably be present. Extraction of these
coefficients is performed quite satisfactorily during simple tumble tests.
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TABLE 3.1-3

FOURIER COEFFICIENTS: GYRO AND ACCELEROMETER

Test Motion

a = Asinwt

a = Asinwt

a. = A sin u't

= — sin tot

ai =ao

= sin (1.1 1

ai =as

= sin u»t

LINEAR VIBRATION TESTS

B

\

-..*»*•*'

V*"**"

cos

M _L _ _ f Ir -)- lr i AA \ A ^ I **
c . s 4^4 e;

%+Jh^^)A'

Sl

(XA)

V

v

k,A

-(v,)A

^^^*
$w

I c^2}
0

1, .2
'2k5A

1 2

-Jh^A"

-fr,",)*1

-Kvv^

vibration tests should be conducted with the vibration axis (about which the

sensor is rotated) in the vertical direction. The linear vibration tests
should be conducted with the vibration axis (along which the sensor is

accelerated) in the horizontal plane.
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3.1.2 Constant Angular Rate Testing

When a constant angular rate is applied about any axis fixed in
the sensor, the resulting applied torque is a constant. A general constant
rate of amplitude W can be represented by the equations:

ooj = ctW (3.1-7)

WQ = CQW (3.1-8)

WSD = c s i> W (3>1-9)&,p s,p

For any values of the direction cosines the resulting expression for the

applied torque (see Eqs. (2.4-5), (2.4-13) and (2.3-1)) takes the general
form:

M = M + XW + yW2 + pW3 (3.1-10)a c

Table 3.1-4 expresses the coefficients, X, y, and p, in terms of basic
parameter groups for the six test motion axes shown in Fig. 3.1-2. In
each case the M term represents the constant torque which exists in the
absence of an applied angular rate (i.e., when W = 0). For each test axis
it is necessary to measure torque for three non-zero values of W in order
to separate X, y and p terms.

Inspection of the left hand (gyro) side of Table 3.1-4 shows that
estimates of the X terms lead directly to estimates of the parameter groups,
k,, kg and kg, and estimates of the y terms lead to the groups, k^k^kg,^,,

and kt . For accelerometers the X terms do not appear while the y terms lead

to estimates of the groups, k4,k5,kg and k7. (These groups are defined in

Table 2.4-1.)
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TABLE 3.1-4

APPLIED TORQUE EXPRESSIONS: CONSTANT RATE TESTING

Test
Motion

»o = w

"s,P = W

w. = W

/ . - , i - w / /~5~
o s, p

r 1 — / * — W/ / 9

i o

_ _ w / ro~
1 Sj p

M

M +M
OS

Tk +k
4M , ^

cio L/2-

ci

M = M + XW + y W + pW
a c

Gyro

o

s

, + k4w + k?w
2 + k12w

3

\v + ^ ^ ^ w2

L VT J ' L 2 J "

1 ' k + U + k l f i r 1
7 fl Q 9 19 T

W I \V I W

i k4+kel\v i fkl°l\v2

s /T 2

Accelerometer

Mco

cp
M + k . W 2

c. 4

M I t ,,,&
Mc oop L ^

C. 0
1O "

kfi 9
M + b W*2

Cip 2

3.1.3 Summary: Angular Motion Test Observables

Table 3.1-5 identifies the gyro parameter groups which may be
determined as a result of each type of testing considered. A sequence of
constant rate tests is capable of determining all groups except the so-called
"/n terms" (k. jk^k^k..,, and k14), which are associated with angular
acceleration. A sequence of sinusoidal averaging tests is useful only in
determining the "y terms" (k7,kg,kg,k10 and k^). A sequence of sinus-
oidal harmonic tests is capable of determining the full set of parameter
groups, as previously discussed. Thus, a combination of constant rate
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TABLE 3.1-5

DETERMINABLE GYRO PARAMETER GROUPS:
ANGULAR MOTION TESTING

u terms

kl' k2' k3' k!3' k!4

X terms

k4' k5' k6

y terms

k7' k8' V k!0' kll

0 terms

k!2*

Number of runs required

Constant Rate
Testing

M -M = XW+yW2+pW3

a c

No

Yes

Yes

Yes

12, (15)

Sinusoidal
Testing,

Averaging
B = Mc+iyw2

No

No

Yes

No

6

Sinusoidal Testing,
Harmonic Extraction

S j = X W C 1 = ( *uW

S^j^W2 C^-JyW3

S^JpW3 C'^wW3

Yes

Yes

Yes

Yes

6

"Very small: probably unobservable In practice.

tests and sinusoidal averaging tests yields no more groups than those found
in constant rate tests alone, but does provide independent measures of the
y, or rectification, terms. Similarly, a combination of sinusoidal harmonic
testing with the other types yields no more groups than those found in
harmonic testing alone, but does offer the advantage of independent measure-
ments of X, y and p terms and, therefore, additional cross-checking
opportunities. The relative accuracies of the different testing methods are
compared in Section 3.2.1.
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As illustrated in the numerical examples of Section 3. 5, the
parameter groups k12 and k.. . are expected to be extremely small. It is,
therefore, likely that the cubic terms (pterms) in constant rate testing
and the third harmonic (83 and €3) in sinusoidal testing can be ignored in
practice. It is also worth noting that both k. and k^ are approximately
equal to IO4 and that both k_ and kQ are approximately equal to Ios .S «J y g
Consequently, there may be fewer significant quantities that cannot be
measured during constant rate testing than is suggested by Table 3.1-5.

Table 3.1-5 also shows the number of test runs required in each
sequence. The constant rate tests will probably require two non-zero rates
for each of the six test axes shown in Table 3,, 1-2 in order to separate the
X and y terms, making a total of 12 runs. Theoretically, a third rate is
required for the three test axes where a cubic (p) term appears, making a
total of 15 required runs. In practice the cubic terms will probably be
ignored. The number of runs listed in Table 3.1-5 under constant rate
testing is 24, rather than 12, because each set may be repeated with the
sensor re-mounted after a rotation of 180 degrees about the test axis. This
would be done in order to correct for a misalignment of the table axis.

Sinusoidal testing entails only one run for each of the six test
axes, making a total of six required runs. In practice, for sinusoidal
harmonic testing each test will probably be repeated with the sensor re-
mounted, as described above. Therefore, the number of required runs is
stated as 12. The number 6 is maintained for sinusoidal averaging since
table axis misalignment does not cause a constant error torque.

Under the assumptions of our error models (all parameter

groups independent of test motion, etc.) no new information is gained by
running a sinusoidal test at varying frequencies or amplitudes. In
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practice, of course, it would be desirable to vary these test motion
quantities in order to check the consistency of the results and to see if
and where the error model breaks down.

3.2 SINGLE-AXIS TEST ACCURACY

Procedures which involve sequences of single-axis tests were
outlined in the previous section. The objective of these test sequences is
to obtain measurements of a set of basic parameter groups which cause
motion-induced error torques. The measurements cannot be perfect for a
number of reasons. The sources of test errors are analyzed in this sec-
tion and relationships between error sources and test accuracy are

developed.

3.2.1 Overview and Comparison

Test error categories are listed in Table 3.2-1 and discussed
briefly below. More detailed discussions are given in following sections.
It should be noted that "measurement errors" are associated with the tor-
que rebalance path of the gyro itself, which is used to determine the nature
of the applied torque time history. "Motion errors" are associated with
imperfections in the motion supplying devices.

Table 3.2-1 indicates which tests are significantly affected by
various types of test error. A zero entry in the table implies that the
source in question is expected to contribute negligibly small errors to
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TABLE 3.2-1

TEST ERROR INFLUENCES

Test Error Categories

Test Motion Errors

Magnitude

1. Bias

2. Waveform Distortion

3. High -Frequency Noise

Misalignment

4. Bias -Fixed

5. Run-to -Run Shift

6. Table Wobble

Measurement Errors

7. Quantization

8. Torquer Scale Factor Error

9. Torquer Nonlinearity

10. High- Frequency Noise

Parameter Changes

11. Run-to-Run Shifts

Constant
Rate

Testing

0

NA*

0

X

x,y
x,y

x,y
x,y
x,y
x,y

x,y

Sinusoidal
Averaging

y
0

y

0

NA

0

y
y
y
y

NA

Sinusoidal
Harmonic
Testing

M,y
11 *V

f 1 3k *V

X

NA

M

If *i *V
^ J J '

II \ *V

If 1 *Vr"> ? '

• i Jk <y

NA

NA = Not Applicable.
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estimates of the parameters in question. An "NA" entry stands for "not
applicable." For example, distortion of the applied test motion waveform
is not a problem for constant rate tests. A Greek letter or letters
appearing at a particular location in the table indicates which types of
coefficients will suffer significant estimation errors due to the error
source in question. The following paragraphs provide brief discussions of
various test error source categories and references to detailed treat-
ments in succeeding sections.

Test motion bias errors are constant errors in the knowledge of
the applied test motion amplitude or of the orientation of the test axis.
Test motion bias errors change the values of the observable quantities
being measured. Since calculation of sensor parameters is based on
assumed test motions which are different, they are in some error. These
effects are discussed in detail in Section 3.2.2 and Appendix B. The
error in the knowledge of test motion amplitude, in constant rate testing,
is expected to be negligibly small because table rate is determined from a
measurement of the total time required for an integral number of test
table revolutions; this can be done very accurately. The effect of a fixed
test axis misalignment error on the JLI and y terms during sinusoidal
testing is negligible, as shown in Section 3.2.2. A shift in the misalign-
ment error between two constant rate tests, for a given test axis orientation,
affects both the A and y estimates, as shown in Section 3.2.2.

Cyclically repeating test motion errors, such as table wobble or
distortion of the applied sinusoidal motion, give rise to harmonics in the
applied torque time history. In constant rate testing the table-wobble
effects may rectify and change the average torque measurement. These
errors are discussed in Section 3.2.3. Other examples of cyclic test
motion errors are linear vibrations occurring during angular vibration
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tests (due to an off-center test axis) and angular vibrations occurring
during linear vibration tests (due to unwanted "rocking" motion). The
former might be significant when subjecting an accelerometer to angular
vibration testing; the latter will be very significant when subjecting a gyro

to linear vibration testing.

Errors due to quantization can arise in testing analog-rebalanced
sensors as well as pulse-rebalanced sensors. In the first case this will
happen whenever the continuously varying torquer input signal is converted

into digital form for data processing. As with a pulse-rebalanced sensor,
the test data becomes a sequence of integers (pulse counts) which represent
the integral of torque over particular time intervals. One count represents
the basic quantization interval or data resolution level in units of torque-
times-time (e.g. dyne cm sec). All parameter estimates are affected by this
quantization. This problem is discussedin detail in Sections 3.2.4 and 3. 2.5.

Random high-frequency fluctuations in the applied test motion can
be viewed as "process noise" affecting the entire test procedure. This
together with similar fluctuations in measurement errors or "measurement
noise" places a limit on the achievable parameter estimation accuracies.
In some cases the quantization process is effectively a contributor to mea-
surement noise. Besides that contribution there is the difference between
the actual physical torque generated (or its integral over an interval) and
its indicated value. All Fourier coefficient estimates are affected by these
errors. They are discussed in Section 3.2.6 and Appendix C. In the case
of constant rate testing, while the applied rate may fluctuate about its
average value, the average will be known with negligible error, as dis-
cussed above., The first order effect on the estimated parameters will
also be negligible since the integrated effect of positive deviations will
exactly counteract the integrated effect of negative deviations.
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Cyclically repeating measurement errors are the result of fixed
rebalance loop errors such as torquer nonlinearity or torquer scale-factor
error. The "odd-nonlinearities" affect constant rate testing and the
measurement of the \i terms in sinusoidal harmonic testing. The "even
nonlinearities" affect sinusoidal averaging and the measurement of the X
and y terms in sinusoidal harmonic testing. These effects are discussed
in Section 3.2.7.

The shift in sensor parameter values between two constant rate
tests with a given test axis orientation affects both the X and y estimates,
in much the same way as a shifted misalignment error affects them. These
effects are discussed in Section 3.2.8.

Table 3.2-2 repeats the format of Table 3.2-1, but supplies
more detail in the form of error formulas. These formulas express the
errors in estimating the /j, X and y terms as functions of the error sources,
the test motion quantities, the sensor parameters and the test time. For a
given test motion axis X and y are defined as the coefficients of the W and

P
W terms, respectively, in the appropriate row of Table 3.1-4. Similarly,

2
\i is defined as the coefficient of the appropriate coW or coW term in the
C1 or S2 column of Table 3.1-1. (In some cases alternate expressions,

for 6tyCi^ and ^M/SoV are required.) Some errors are functions of the
parameters (^, X, y) themselves; for example, those due to test motion
magnitude error (6W) and torquer scale factor error (esc). Most of the
errors are functions of the test motion quantities (Wj and W2 for constant
rate tests, W and w for sinusoidal tests). Some errors are functions of the
direction cosines (cj and co) relating the test axis to the sensor axes; for
example, those due to distortion (A), table wobble (e) and torquer
nonlinearity
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TABLE 3.2-2

ERROR ANALYSIS SUMMARY

Error Source

1. Magnitude Bias

6W

2. Distortion

3. Magnitude Noise
(combined effect
with measure- »w
ment noise, CTV)

4. Misalignment Bias

5. Misalignment
Run-to-Run shift <SH

6. Table Wobble
'w

7. Quantization

8. Torquer Scale
Factor Error <sc

9. Torquer
Nonlinearity

f ,e , f

10. Measurement
Noise

v

11. Parameter Shifts,
Run-to-Run

X ,y ,McSH SH SH

Constant Rate Tests
(w, » w2)

M a-M c = X W t y W 2

negligible eW

not applicable

negligible effect

6X = J\ - c2 H <

or = o

6 x = yr^fH,SH
. r -^yr^H.^

fi X = J\ - cf H f w

6y = - J_^T72"H (W j 1 W

1 S. 1
x W2 75" T

•v'^TM
—

6X sx 'sc
'r = y fsc

w

1

M, * XW, . y W 2

ax = ̂ "v-/5?v'^T

V^v^^

t
 Mcsn

2

5r = -57- (ex )
1

Sinusoidal Averaging

B = MC ' 2yW

. r = > V w

6r = 0

'r-j'toW-fiv'u

6y = 0

not applicable

zero average effect

, 2. _a. 1

—
—

'"''"sc

t r.<
l«*L'±*c-L. t

= - <J 72? aj^

not applicable

Sinusoidal Harmonics

Cj = utoW, Sj ' XW, C2 = - jyW2

S2 = (ioiW2

.V l )-*.w : .^.-.^.w

6X =^5W

6y = 2 ^ «W

bu = 0

• h . - i c . H ^ ; 6,4 «„!„„*

0 = - — 7 2 0 0 u l ^ 7 2 ^ T : 0 = — ̂ 5/20 o 2(iuiW727r~U(Ci) u W v W v u U(s2) u w

•,-i^^^v-
y w2 v w v "

6« = 0

6\ = 7l - c2 H f

6y = 0

not applicable

6M(C ) = 0; 6,(S2) = | H ,w

6X« 0

6y= 0

. _> J ^ M / f : ..jL^yf
1 q ^h

°X W ye " •/ T

= _2--a. uy?ir
r w2 7T T

6, • „ cgc

6X = X ,sc

^ ' T 'sc

(I uc )2

"(C,) 3 , 'S 4 oo co U 3

(He I2

6X = | _ J _ w , 2 . ? - ( H C i l
3 W %

6r,|(
H_v^(i

= _!_„ /s „ /¥. „ =_i_0^r t .yi?
M,C,) «W v V T M,S2) ̂ .w2 v % T

"x 'W°v / 2 T v" ' / T
2 jjj- /5h~

not applicable
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The errors due to quantization and measurement noise are
functions of test time, T. Note that the errors due to quantization decline
faster (as 1/T) for constant rate testing and sinusoidal averaging than for
sinusoidal harmonic testing (as 1/,/T ). The quantization error formulas
are expressed in terms of q, which is normally the single-pulse quantiza-
tion leveL In certain cases of pulse rebalanced sensors, however, a
larger "effective" value must be used (see Section 3.2.5)0

The effects of measurement noise are actually taken into account
twice in Table 3.2-2, in the third and tenth rows. The third row formulas
show the combined effect of process noise and measurement noise,
assuming that the test has run long enough for a state of equilibrium to
have been reached. The tenth row formulas show the transient effect of
measurement noise alone, assuming that the equilibrium state has not yet
been reached. In performing a numerical error analysis, for a given test
time, etc., both sets of formulas should be computed and the larger result
used.

The constant rate test error formulas are influenced by the fact
that the X and y terms must be separated by making two test runs at well-
separated test rate magnitudes (Wj and W£). The direct result of each run
is a measurement of the excess torque above that which exists in the
absence of the applied motion. Thus, we have the two equations

1 = M -M = XWn +yW? (3.2-1)
J. 3.4 C . A JL

(3.2-2)
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which are linear in X and y. Solving Eqs. (3.2-1) and (3.2-2):

W W

W1
 Ml " W9

 M2

w -w (3-2'4)
wl W2

Considering errors in the two measurements, we can write for estimation
errors:

Wl W
2w: 6M2 - w7 6Mi

yf- SMj - y*- 6M,

67 = wp"^

If we take W- as the larger of the two rates and make it considerably larger
than W, we can write approximate expressions for 6X and 6y:

W2

6X = ~ 6M -- 6M I (3.2-7)

W2
wj 6M1 - 6M2
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In the cases where the two measurement errors are expected to be roughly

the same size, we can make the further approximation:

6X = w: 6M2 (3.2-9)

(3.2-10)

Note that various pairs of formulas for X and y errors in Table 3.2-2
occur in the same ratio as Eqs. (3.2-9) and (3.2-10).

TABLE 3.2-3

SUMMARY COMPARISON OF SINGLE-AXIS TEST METHODS

Completeness in
Finding Sensor
Parameters

Number of
Runs Required

Redundant Data,
Cross-checking
Opportunities

Data Processing
Difficulty

Quantization
Effect Decreases
As:

Estimation
Accuracy
Advantages

Constant Rate

X and y terms

24

Very Little

Simple
(Pulse Count)

1
T

Negligible 6 W
andow(»,y)

No AW

Sinusoidal Averaging

y terms only

6

None

Simple
(Pulse Count)

1
T

No effects due to
?SH, SSH' ySH- McSH(r)

Negligible A effect
Negligible ew effect

Constant Rate
+

Sinusoidal Averaging

X and y terms

30

Some (y terms)

Simple
(Pulse Count)

;j,(X ty terms)

Free to choose best
of two methods
(y terms)

Sinusoidal Averaging
+

Sinusoidal Harmonics

all terms (( i ,X,y)

12

Much (Xand y terms)

More Difficult
(Extract Harmonics)

;j,(y terms)

-J=- (« ,X,y terms)

No effects due to rou>on
XSH'>SH'McsH ( X 'y t e r m S )

Negligible «w effects
( X , y terms)

Constant Rate

Sinusoidal Averaging

Sinusoidal Harmonics

all terms (u. X,y)

42

Most (Xand y terms)

More Difficult
(Extract Harmonics)

^, (X,y terms)

—= (u, X,y terms)

Free to choose best
of all methods
(X, y terms)
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Table 3.2-3 summarizes a comparison of the various single-
axis test methods and meaningful combinations. The first four rows

review information already given in Table 3.1-5 and discussed in
Section 3.1.3. The last two rows summarize points of significant dif-
ference between testing methods shown in the error formulas given in
Table 3.2-2.

The major advantages of constant rate testing are:

• The data processing function is simply to count the
total number of pulses occurring during each test
run and, subsequently, to solve some linear
algebraic equations.

• The average applied test rate should be very
accurately known since it is given by an integral
number of revolutions divided by the total test time.
The estimation errors due to both bias (6W) and
random fluctuations (o\y) should both be negligible
as a result. This is an advantage in determining
both X and y terms.

• Distortion (A) of the waveform of the applied rate is
not a problem.

Errors due to quantization decrease with 1/T rather
than 1/A/T as in sinusoidal harmonic testing. This
is an accuracy advantage in estimating the X terms.

The major advantages of sinusoidal testing are:

• All parameter groups can be found, including the
[i terms.

• It is not necessary to make multiple runs for each
test axis in order to separate the X and y terms.
This results in fewer total runs and avoids extra
errors due to run-to-run shifts in test axis mis-
alignments (CSH) and parameters
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• There is no average effect of a test axis wobble
(e^y) and the effects on most harmonic terms are
small. This is an accuracy advantage in estimating
the X and y terms.

• There is more redundant information in the array
of observable quantities extracted from the test sequence
and, therefore, more chances for cross-checking results.

Of course by paying the price in time and effort required to perform both
types of testing we can achieve the advantages of both, as well as additional
cross-checking opportunities.

(Note: the remainder of Section 3.2 explains the origin of the
error formulas presented in Table 3.2-2. Those readers not concerned
with derivation details may wish to skip directly to Section 3.3. Those
interested primarily in quantitative results may wish to skip directly to
the numerical examples given in Section 3,5.)

3o2.2 Bias Test Motion Errors

This section summarizes the effects of bias test motion errors
on the values of gyro parameters derived from the test results. The test
motion errors considered are errors in the knowledge of amplitude and
frequency of the applied motions and misalignment of the test motion axes.

A complete set of sinusoidal tests involves the six cases sum-
marized in Table 3.1-1 „ The data from each test is processed to yield
seven Fourier coefficients. From the set of 42 coefficients, the values of
14 basic parameter groups are calculated and from the 14 groups the
values of certain individual parameters can be computed. Appendix B
presents a complete and detailed error analysis showing the effects of bias
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test motion errors on all 42 coefficient values. The 42 coefficients
contain much redundant information and many of them will be of relatively

little interest except in providing verification of results obtained from a
particular subset (discussed below). In practice all 42 values could be
used as inputs to a regression analysis in order to make optimal use of all
available data. For purposes of producing a straightforward look at the
effects on the estimates of individual parameters, however, we will con-
sider only the direct effect of test motion errors on particular Fourier
coefficients and the subsequent effects on the particular \i, X, y or p term
associated with each coefficient. In many cases one of these coefficients
is directly proportional to one basic parameter group which in turn is
equal or approximately equal to one individual parameter. Therefore, in
most cases a one percent error in the computed Fourier coefficient results
in a one percent error in the corresponding parameter or parameter group.
For example, for the test which employs angular vibration about the output
axis, the coefficients S^, C^ and C« lead directly to the parameter groups
k,., k«,andk8, respectively. Errors in amplitude, 6W, and frequency,
6co, lead to errors in the coefficients as follows:

- (k5)6W

= (k2oo) 6W

= -(k8W)6W (3.2-11)
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Since we have :

it follows that:

-5 W

5k5 = W 6S1

61^ = -4? 6C,

6kft = *8 W

67
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In general we can write:

R( } - f? / \ 6W „ / x uiw „ w /« 9 19\
CK J - ^-trA / ~TTT" + ^ V ̂  + C« - H - (O. £-1^

where the parenthesized term can be any ji, X, y or p and the ETT7, E
Vv CO

and E_ are normalized error coefficients. Inspection of the results

presented in Appendix B leads to the values tabulated in Table 3.2-4 for
these quantities. The ETT7 values show that a 1% error in the amplitude ofw
the applied test vibration results in an error in the estimated parameter
group of 1, 2, or 3%. The entries in the E column show that a given

percentile frequency error has a 1-to-l effect on \i terms and no influence
on other terms. Most entries in the misalignment error coefficient column,

E_, are "negligible." The expression in the X row of the right-hand column

is a function of c., the direction cosine between the test axis and the gyro
input axis; E_ varies between zero when c. = 1 and unity when c. = 0. The

latter is true when the test axis is the output or spin axis. The fact that
E- = 1 in these two cases represents the.fact that a one sec misalignment

of the test motion axis results in a one sec error in the derived measures

of a and 0 .s o

The test motion magnitude bias error formulas given in Table

3.2-2 represent the fact that ETT7 is unity for all X terms and two for allw
y terms, etc. The bias misalignment formulas represent the fact that the

only significant effect of a test axis misalignment occurs when the angular

momentum H is given an undesired component along the test axis. The

torque measurement error is, then:

6M = 71-c HW? (3.2-12a)
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TABLE 3.2-4

NORMALIZED ERROR COEFFICIENTS:
BIAS TEST MOTION ERRORS

( )
"cl
%

X

y

P

Ew

1

2

1

2

3

E
CO

1

1

0

0

0

%

negligible

negligible

/l-c2.

negligible

negligible

This error effects only the estimation of X terms (misalignments) in

sinusoidal testing. Therefore:

6X = -i 6M = /I - cf H e (3.2-12b)

In constant rate testing the torque measurement errors due to
a bias misalignment (?) and a run-to-run shift (A?) are:

= 7 1 - c H

6M2 = Jl - c^ H W2 (? + A c)

(3.2-13)

(3.2-14)
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Substituting Eqs. (3.2-13) and (3.2-14) into Eqs. (3.2-5) and (3.2-6) yields:

(3.2-15)6X = 71 - c7 H c + A?

= -Jl -C
2 ^6y = - l - C j ^ - A? (3.2-16)

Equations (3.2-11), (3.2-15) and (3.2-16) are the basis for the error
formulas appearing in the fourth and fifth rows of Table 3.2-2.

3.2.3 Cyclic Test Motion Errors

This section treats the effects of imperfections in the motion
supplying devices which cause cyclically repeating test motion errors.
These effects may»be studied by considering a single test motion cycle.
There is no advantage to be gained by averaging data taken over many
cycles since the resulting error torques also repeat in each cycle.
Table 3.2-5, which repeats the expressions given in Table 3.1-1, indicates
which observable quantities will be affected by various types of cyclic

errors.

Distortion of the nominally sinusoidal shape of the applied test
motion will seriously affect the harmonic terms (82, C%, 83 and €3) in
cases where there is a very large input torque, Hoo., at the fundamental
test motion frequency. This occurs when the test axis has a component
along the gyro input axis (cj = 1 or 1/72). Exaggerated examples of dis-
torted shapes are pictured in Fig» 3.2-1 with the corresponding errors in
Fourier coefficients [£(82), E(C2), etc.]. The affected observable
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TABLE 3.2-5

SIGNIFICANT CYCLIC ERRORS

Test
Sl

k5w
(NL) (NL,;

' o

Mcs " 2 k7
k w

(rw)
0

(NL) (DN)

ik w2
2 R 7 W

(ON!

o/s

(rw) iNL)

ww

I/O

72

(NL) (DN)

872
jw2

- k 1 4 u
872 14

i/s
i
72

©
"C./KO**

©
(k4+ke)w

(DN) NL) (DN)

W2- i k
4 10

(NL) (DN

0

(DN1

(NL) *orquer nonlinearity (rw) table wobble (ON) distortion

quantities are indicated by the symbol (DN) in Table 3.2-5. These quan-
tities will be difficult to measure in the presence of even small distortions
of the applied motion. The bias term, B, and the fundamental cosine term,
C,, should be unaffected for the following reasons. The average test
angular rate must remain zero or the test table angle would drift away from
its zero reference position. A fundamental cosine term error, E(CI),
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K-260

in wt* Asin 2wt

= c. W(sinu)t+Asin 3wt)

E ( S» j )=c ,HWA

Figure 3.2-1 Distorted Test Motion Sinusoids

would be equivalent to an error in the knowledge of the test motion phase

angle, but the phase of the test motion should be known extremely well

based on zero-crossings of the table reference position. An error in Sj
is quite possible, but this is completely equivalent to a bias error in the
test motion amplitude, W, treated in the previous section.
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The first error formula for 6y in the second row of Table 3. 2-2
is obtained by combining the £(€2) expression in Fig. 3.2-1 with the
relation:

6y = o-6C9 (3.2-17)
W2 2

The second error formula is obtained by noting that the dominant applied
torque in some tests is the output axis inertia term, c I toW cos cot.o oo

A table wobble or oscillation of the test axis about a cross axis
can significantly affect the term 82 in five of the six tests outlined in
Table 3.2-5. These are indicated by the symbol \TW . It can also affect
the torque measurement during constant rate testing due to the unwanted
constant angular rate components associated with the resulting conical
motion of the test axis . These effects may be significant whenever the
cross axis about which the wobbling takes place is coincident with the gyro
input axis, or whenever the direction cosine between the two is large. The
angular rate about the input axis includes an undesired (and unknown) com-
ponent, 6 co. , which is proportional to this direction cosine. Since the
magnitude of the expected wobbling is of the order of some seconds of arc,
the undesired component is extremely small compared to the nominal test
angular rate. However, when the motion has a component in the direction
of the gyro input axis, the resulting error torque, H6co., can be significant
in comparison with other torques associated with the desired test motion.
Undesired components of oo and co0, due to the wobbling motion, will alsoo s
cause unwanted torques, but these will be negligibly small since they are
small fractions of terms which are small nominally.
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Figure 3.2-2 pictures three Euler angles (0, 6,<p) relating a set
of base axes (X, Y, Z) to a set of table axes (x, y, z). Nominally x
remains coincident with X and the table motion is represented by the
angular rate, <p, which is oscillatory in sinusoidal testing and steady in
constant rate testingo That is:

<p = W sin cot

W
= COS COt

CO

sinusoidal tests (3.2-18a)

cp = W

<p = Wt
constant rate tests (3.2-18b)

Table wobble is represented by oscillatory small-angle histories for i/j
and 0.

The angular rates of the table can be expressed, in table
coordinates, in terms of the Euler angle rates by the following standard
set of equations:

0) = <p - jji sin 6
X

co = 9 cos <p + i/> cos 8 sin <p

co =8 sin cp + 4> cos 8 cos <pz

(3.2-19)
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R-822

NOMINAL
TEST
AXIS

ACTUAL TEST AXIS

\l/,d are small angles

<f> is nominal test motion

Figure 3.2-2 Euler Angles Relating Base
Axes to Table Axes

(See, for example, Ref. 6, p.475.) Since the gyro is rigidly attached to
the table, these equations also represent the gyro case angular rates in
some case-fixed coordinate frame. Based on small angle assumptions
(cos 0 - cos «J> - 1, etc.) and the elimination of higher order terms we can
write the following expressions.

For low frequency sinusoidal testing:

co =" W sin cot
/*/ •

C0y = 9 (3.2-19a)
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For constant rate testing:

^ W

co - 9 cos Wt + 0 sin Wty

oo - - 6 sin Wt + 0 cos Wtz Y

(3.2-19b)

In sinusoidal testing the expected form of table wobbling is a

second harmonic oscillation of the test axis due to an offset center of mass

of the table and equipment mounted on it. An offset in the y direction (dy),
2 2for example, causes a double frequency acceleration (d W sin cot), which

causes a bearing torque and angular displacement about the z axis. The

magnitude of the displacement depends upon the table unbalance and

geometry and the bearing stiffness, but its time history should closely

follow the forcing acceleration for low frequency test motions. Therefore:

2
sin cot

= -£ (1 - cos 2cot)

- c . cos 2cot

(3.2-20a)

where e is the amplitude of the wobble. Differentiating, we obtain:

0 =" 2co € sin 2cot

6 ^ 2co <r_ sin 2coto

(3.2-21a)
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(The 6 equation corresponds to a z axis center of mass offset.) Consideration

of Eqs. (3.2-21a) and (3.2-19a) shows that there will be a second harmonic
oscillation about some axis in the y -z plane. The resulting error torque
depends on the extent to which the gyro input axis coincides with this axis.

Assuming a worst-case situation (the wobble axis coincides with the gyro
input axis when c. = 0, or with the projection of the gyro input axis onto

the y-z plane when c. = lA/2) the appropriate error formula is:

E(S2) = - c7 H W (3.2-22a)

where c. is the direction cosine between the gyro input axis and the test

axis and c,T7 represents the combined effect of efl and e . The other Fourierw o ip
coefficients, B, Sj, Cj and C2, are unaffected. Therefore, the jj, X and

y terms are all unaffected, except for the \i term, -r k j_ , which is associated

with S« in the "o/s" test. In this case:

E(S2)

A H ,w w

(3.2-23)

In constant rate testing the expected form of wobble is a conical
motion of the test axis, again caused by the net mass unbalance about the

axis of rotation. In this case the Euler angles, 0and 8, oscillate at the
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test motion frequency, W, with 9 leading 0 by n/2 radians when the

direction of table rotation, <p, is as shown in Fig. 3.2-2. Therefore:

6 =

c., sin Wt + €„ cos Wt

e.. cos Wt - e« sin Wt

(3.2-20b)

Differentiation of Eq. (3.2-20b) and substitution into Eq. (3.2-19b) leads

to expressions for oo and co which contain constant and double frequency

terms. The latter cancel, leaving:

oy = - W c 2

= W

(3.2-21b)

The result is an undesired constant rate about some axis in the y -z plane,

leading to the worst-case error torque formula:

6M = WH (3.2-22b)

Combination of Eq. (3.2-22b) with Eqs. (3.2-7) and (3»2-8) yields the

error formulas for 6X and 67 given in Table 3.2-2.
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3.2.4 Errors Due to Quantization

When pulse rebalanced sensors are tested, the test data is a
sequence of integers which represent the integral of torque over particular
time intervals. The same is true in testing analog rebalanced sensors in
cases where the torque command signal is integrated and quantized to
provide an output pulse sequence. In constant rate testing and sinusoidal
average testing the data is simply the total pulse count which, when divided
by total test time, represents the average torque level over the duration
of the test. In sinusoidal harmonic testing the test time, T, is usually
divided into a sequence of equally spaced intervals of length, h. In the
limiting case for pulse rebalanced sensors h is a single pulse width,
making the test data a sequence of binary or ternary numbers representing
the time history of the rebalance torque. However, h can also be chosen
as any integral number of pulse widths.

Consider first the case of an analog rebalanced gyro where the
outputs appear at varying intervals, not generally occurring exactly at the
beginning and end of the counting intervals. The example time-line of
Fig. 3.2-3 shows a case where p pulses are counted within the interval
(tj, tj+h). The error due to quantization depends on the quantities, x^ and

The error in measuring the integrated torque over the interval is:

(3.2-24)

where q is the weight of a single pulse or count (measured in dyne cm sec).
If we assume Xj and x.+1 to be independent random variables uniformly dis-

tributed over the spacing intervals, L and &. .., in which they occur, then
the joint distribution of the normalized quantities, x./L and x./l -, will be
as shown at the left side of Fig. 3.2-4; the resulting density function,p(e),
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K-806

H h
p-1

-8-

Figure 3.2-3 Pulse Sequence

* -IS3I

JOINT DISTRIBUTION ERROR DISTRIBUTION

' /, lei
-

Figure 3.2-4 Distribution of Error Due to Quantization
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for the error is illustrated at the right. It has zero mean and
variance:

fq 2 P /e2

= \ e2 p(e) de = 2 (£- -
J- J 4

= q2 (3.2-25)

Therefore:

a = -= (3.2-26)
6

The resulting error in measuring the average torque during a constant

rate or sinusoidal test is:

- e - —q— (3.2-27)"to ~ T /6T

In sinusoidal harmonic testing, the objective is to estimate the

observable quantities, Sj, Cj, S2 and Cg, after removing the average

value, B, from the time varying torque. Thus:

M(t) - B = S sin tot + C cos wt + S sin 2cot + C cos 2wt (3.2-28)
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Each integer measurement is given by:

hi

z = J [ M ( t ) - B ] d t
1 h(i-l)

si r i ci r i= — -cos toh.+cos coh(i-l) + — sincoh.-sin coh(i-l)l
w L i J c o L 1 J

-if- |- cos 2coh.+cos 2ooh(i-l) + ~— sin 2toh. - sin2coh(i-l)
i J &u |_ l J

(3.2-29)

Defining a state vector of quantities to be estimated as:

x = (3.2-30)

and a j-dimensional vector, z, of measurements, taken over an interval
A

T = hj, we can form the least-squares estimate, x, as follows:

x = (HTH) HT z (3.2-31)
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where H is the j x 4 measurement matrix:

H - 1
60

P2 q2

f. PJ

(3,2-32)

where:

f. = - cos oohi + cos coh(i-l) (3.2-33)

etc. (see Eq. (3.2-29)). Therefore:

T 1
H H = -^

60

1 i

Elq.

(3.2-34)
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Summing over a full cycle of N points (N = 2-n/ooh), we find:

T
H H

1
O2

60

N/2

0

0

0

0

N/2

0

0

0

0

N/2

0

0

0

0

N/2

(3.2-34a)

Similarly, over an integral number (M) of cycles of N points each:

T _ 1
H H = ~2

60

MN/2 0 0 0

0 MN/2 0 0

0 0 MN/2 0

0 0 0 MN/2

T/2h 0 0 0

0 T/2h 0 0

0 0 T/2h 0

0 0 0 T/2h

(3.2-35)

Therefore:

(HTH)
-1

= 60

2h/T 0 0 0

0 2h/T 0 0

0 0 2h/T 0

0 0 0 2h/T

(3.2-36)

•j

For a sequence of independent measurement errors of variance q /6

[Eq. (3.2-26)], the estimation error covariance can be shown to be:

(x - x)(x - x)T = (HTH)
-1

(3.2-37)
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Therefore:

<r = a = o = a = -3L w (3.2-38)r q pSl Cl S2 C2

The error formulas in the seventh row of Table 3.2-2 are based on
Eqs. (3.2-27), (3.2-38), (3.2-9) and (3.2-10).

3o2.5 Errors Due to Pulse Rebalancing

In testing pulse rebalanced sensors we must consider additional

errors which are attributed to the pulse rebalance scheme itself — errors

which occur even though the rebalance path works in an ideal way — zero
scale factor error, perfectly controlled pulse width, etc. These errors

arise in the following two ways:

• Regardless of loop dynamics it is impossible for
the feedback torque to be a perfect replica of the
applied torque simply because it is quantized.
Some integral number of pulses is counted over
any given measurement interval, whereas the
integrated applied torque may take on a con-
tinuum of values.

• The dynamical behavior of the nonlinear loop
may lead to still larger errors associated with
limit cycles or forced oscillations. Thus, the
integral of the rebalance torque may alternately
"get ahead of" and "fall behind" the integral of
the input torque by an amount which can be much
larger than one pulse.

The first of the two effects mentioned above is an "error due to quantiza-

tion." The preceding analysis for analog rebalanced sensors with
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quantized output applies with little change in this case, and the associated

rms measurement error is again:

<r = q//6~ (3.2-39)
"

where the quantization level is:

q * M
tg

Ti (3.2-40)

where Tj is the sampling interval built into the rebalance electronics and
M, is the rebalance torque level.

For either of the two effects mentioned above that part of the
analysis which

a, also holds. That is:
preceding analysis which relates 0 to the resulting estimation errors,

"

(3.2-41)

for average torque measurements, and:

CTM = ae w ̂ 2h/T (3.2-42)

for harmonic component measurements. The latter equation, (3,, 2-42),
is based on the assumption that the sequence of measurement errors, e,
are uncorrelated. This assumption will be discussed subsequently.

In analyzing the effect of the loop dynamics, however, it is
necessary to develop new expressions for the individual measurement error
statistics. These statistics depend on the specific behavior of the rebal-
ance loop used — its characteristic modes in the presence of various inputs.
Thus, we find different results for binary, ternary and time -modulation
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rebalanced sensors and different results within these classifications as
well, depending on the choice of parameters.

The first step in deriving the desired expressions is a general
one which applies to most pulse rebalanced sensors. Consider the block
diagram shown at the top of Fig. 3. 2-5 representing a generalized re-
balance loop. The actual measurements obtained during a test are net
pulse counts over particular time intervals -- the number of positive
pulses minus the number of negative pulses occurring in the interval
(ti> ti)j for example. The net count, n.., multiplied by the individual3 i]
pulse weight, q, is a measure, ideally, of the integral of the rebalance
torque over that interval. In subsequent data processing this measure-
ment is used to represent the integral of the applied torque, M , over

2i

the same time interval. The measurement error is, therefore, the dif-
ference between these two integrals :

e.. =
r'j r'j r'j
\ M d t - \ M. dt = \ Mdt (3«2-43)Jt a J tg J ot. t. t.

Consider now the diagram at the bottom of Fig. 3. 2-5 in which the float
dynamics block has been broken into an equivalent cascade of three sepa-
rate linear elements with outputs e, a' and a. We can see by comparing
Eq. (3. 2-43) with the diagram that the change in the quantity e over a
measurement interval is equal to the measurement error. Thus:

e. -e. = e.. (3.2-44)

Similarly, the change in the quantity a' is proportional to the measure-

ment error. Thus:
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e.. = C (<*.'-«.') (3.2-45)

Further, the quantity a' is linearly related to the float angle, a, by a

simple first order lag with unity gain. We can now make the following

general statement: the measurement error for a particular time interval

is proportional to the change, over that interval, in a fictitious quantity,

a', which leads the float angle variation by an amount associated with the

float time constant, rf = I /C, where the factor of proportionality is the

float damping coefficient, C.

We assume that the time history of a' over any given measure-

ment interval can be described approximately as an oscillation of am-

plitude A / about an average value a', with quantities <p. and tp. as the

phase angles at the start and end of the interval. We can then write:

af = 0*"+A ( s m < p . (3.2-46)i a i

af = a' + A , sin <p. (3.2-47)

Therefore:

Aa' = a:' - a/ = A , sin <p. - sin <p. (3.2-48)

and

'2 = A2 , ( sinV - 2 sin <p. sin ^ + sin <p. j (3.2-49)

where overbars indicate ensemble averages.
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As will be shown subsequently, the characteristic frequency of

oscillation in binary and ternary rebalance loops depends on the dynamic

properties of the linear elements in the loop and on the applied torque

input. The phase angles at the start and end of the clock-controlled

measurement intervals will take on a variety of values distributed from

zero to 27T. For a large ensemble of measurement intervals we can

reasonably assume uniform distributions for both <p. and <p.; therefore:

Aa' = sin <p. = sin <p. = 0 (3.2-50)
J

and

sin2(p. = sin <p. = 1/2 (3.2-51)

On the other hand the phase angle differences, A<p - tp. - <p., over single
J

measurement intervals may exhibit considerable regularity for any given

test, just because of the coherent characteristic float oscillation asso-

ciated with a given loop and input magnitude. Some randomness may also

be present due to small fluctuations in input or loop parameters and

variations in delay due to sampling. So we are dealing with an unknown

mixture of regularity and randomness,, Consider the following two

extreme cases: 1) (p. and <p. are statistically independent, and 2) Acp is
J

fixed at a particular value„ In the first case:

and

sin <p. sin cp. = 0 (3.2-52)
J

= A2, (3.2-53)
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and therefore:

CTA , = A , (3.2-54)
ACT a

In the second case:

sin <p. sin (p. = sin up. + A<pJ sin <p.

= (sin <p. cos A<p + cos (p. sin A<p) sin <p. (3.2-55)

therefore:

2
sin <p. sin p. = sin <p. cos A<p + cos <p. sin <p. sin A<p

= | cos A<p (3.2-56)

Thus, in this case:

Aa'2 = A2, ( l -cosA(p) (3.2-57)

and

CT A / ' = A , / l - c o s A < p (3o2-58)Aoc a

Figure 3« 2-6 plots the normalized quantity a A / /A , versus all possible
Aa (x

values of A<p. We note for three fourths of all possible values of A<p this

normalized quantity ranges between 0. 54 and 1.414. Therefore, a reason-

able typical value is unity, which is identical with the value for the random

case, as given by Eq. (3.2-54). Thus, for error analysis purposes we

adopt Eq. (3.2-54) as a valid approximation without the need to determine
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R-2252

-IT -7T/2 0 7T/2

PHASE DIFFERENCE A cp

TT

Figure 3.2-6 RMS Change in a' with a Fixed
Phase Difference

whether A(p is mostly random or regular. This choice is a conservative

one since it neglects a substantial improvement which is possible in
cases where Acp is regular and happens to have a small magnitude (less

than ± 77/4).

We now combine Eq. (3.2-54) with Eq. (3.2-45) to obtain the

rms measurement error:

CT = C A ,e a (3.2-59)
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Thus, the standard deviation of the individual measurement error, e..,
ij

is proportional to the amplitude of the a' oscillation.* The amplitude
of the oscillation of the float angle itself is given by:

A ,
A = a (3.2-60)

2 2 ^ i•- v +1f a

where v is the oscillation frequency. This may be a limit cycle frequency,
as in a binary loop; an input-dependent forced oscillation frequency, as in a
ternary loop; or a clock-controlled forced oscillation frequency, as in a
time-modulation loop. Combining Eqs. (3.2-59) and (3.2-60) we can write:

a = CA /T? v2 + 1 (3.2-61)e a -/ f a

Finally, combining Eq. (3.2-62) with Eqs. (3.2-41) and (3. 2-42) we can
write:

CA \i § ~j -j

(3.2-62)

We note also that Eq. (3.2-42) is justified even though the assumption
of uncorrelated measurement errors is not strictly correct. When A(p
is regular, measurement errors in adjacent intervals are highly cor-
related; but the phase angles <p. for intervals occupying a particular
subdivision in a sequence of test motion cycles (low frequency) can be
taken as uncorrelated. Consequently the values of Aa' = Aft / (sin <&- sin
for this sequence of well-separated intervals are uncorrelated and
distributed in accordance with a uniform distribution for <p.
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for average torque measurements and:

CT., = C A rt v + 1 co 7 2h/T (3.2-63)M a. /y i a

for harmonic component measurements. This concludes the first step in

the development, which applies to binary and ternary pulse-rebalanced

sensors, and relates test accuracy to the amplitude and frequency, A

and v , of float angle oscillations. Of course these two quantities can

depend on the input and the specific pulse rebalance scheme under con-

sideration. (Equation (3.2-62) is also applied below to one version of
tests of time-modulation rebalanced sensors. In this version no attempt

is made to control the measurement interval to be an integral number of
rebalance pulse widths. In this case A<p is regular but we consider it a

"random constant" and again use Eq. (3.2-54) as a "typical value"
approximation to Eq. (3.2-58)).

Some approximate formulas for the characteristic frequency

and amplitude and the resulting rms measurement error are assembled
in Table 3.2-6. Results are given for binary, ternary and time-
modulation rebalancing schemes. In each case the expressions for vo.
and A in the first two rows are substituted into Eq. (3.2-61) to yield the

expressions for a in the third column.

In a binary rebalance loop the essential nonlinearity is a two-

level switch which causes the rebalance torque command to switch between

full positive and full negative values. The expressions for v and A are

based on describing function analysis and are derived in ReL 2. They
represent the limit cycle frequency and amplitude which exist even in the

absense of an input. The approximate formulas given for A and a are
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TABLE 3»2-6

CHARACTERISTIC FREQUENCY AND AMPLITUDE AND TEST
MEASUREMENT ERROR IN PULSE REBALANCE LOOPS

Binary Loop

Ternary Loop

Time-Modulation Loop

Frequency

"o

1

*

2ir
TP

Amplitude
Aft

4«W'fd\
" ct \VTd)

4 fA,tc
~ 17 C Td

2 Mte / Tf Td \
* C \Vrd/

-2 !^JT

VI T4 Mtg TP i i
ff V* <6 ff / A / n

H ^^18 » c . 54ir TJ

Individual Measurement Error

» c - C A 0 / r f ^ * l

- M [ - . . - . - ] / * t i
tr tg \T. *T . / / T j

'M ('-'d\ /^T

-Hi/w

. T ,
4M ,p , . J „.,.,fr tg 2 w //Z \ o/(^)-

Tj

See Fig. 3.2-7 for value of rj.
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based on the assumption that the float time constant, T., is much greater
than the torque delay time constant, r , (see later discussion of relation-
ship of rd to rtg).

In a ternary rebalance loop the essential nonlinearity is a
three-level switch with deadzone 268 Ref. 2 shows that the ternary loop
will not limit cycle in the absense of an input if 6 is chosen to satisfy the
following inequality:

(3.2.64)

When a non-zero input, M = H co., is applied to the loop it causes a tor-
ct 1

que generator on -time duty cycle which, on the average, balances the
input torque. Appendix F develops the characteristic frequency and am-
plitude of this input-dependent oscillation. This development is based
partly on the assumption that Eq. (3.2-64) is satisfied and, therefore,
when an input (say a positive value of M^ is applied, the torque level
switches alternately between zero and + M. . The variation of the fre-
quency of float oscillation (normalized by l/TrTrT ) with the input torque
level (normalized by M^g) is shown at the top of Fig. 3.2-7. The charac-
teristic frequency varies markedly with input in the vicinity of zero and
maximum input magnitudes, but is relatively insensitive to input over two
broad regions centered at M /M, = ± 1/2. In these mid-regions thea ig
frequency is the same as that already given for the binary case and is
equally well explained by describing function analysis. The parameter 77,
which is included in the expression in Table 3.2-6 for the ternary case, is
always less than or equal to one. This parameter represents the variation
of v from the no-input binary limit cycle frequency (as predicted by des-

cribing function theory) for small and large input magnitudes. Actually, a
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similar deviation occurs in the binary case for large inputs, as shown at
the bottom of Fig. 3.2-7. (The analysis given in Appendix F applies
equally well to the binary case.) It is also shown in Appendix F that the
amplitude of the float angle oscillations in the ternary case is one half
that in the binary case (if both have the same torque level, Mj.g)o Thus,
for small to medium inputs the resulting rms measurement error is less
in the ternary case by the factor rj/2, which is always less than or equal
to one half.

The development in Appendix F does not involve torque lag r ,
directly, but rather uses a fixed delay time, T_, which is meant to
account for the delay in switching from one torque level to another, due to
both the sampling of the float angle indication and the lag associated with
the torque generator itself. The resulting empirical formula for charac-
teristic frequency, involving T~, is then shown to be nearly identical to
the describing function formula, involving T. the time constant associated
with torque generator dynamics. (The derivation of the latter formula
ignored delays due to sampling.) We have constructed Table 3.2-6 using
the new parameter T,, which takes both effects into account. For samp-
ling interval T. the average delay due to sampling is T. /2. Therefore a
reasonable expression for the delay time constant is:

Td = Ttg + Tl/2 (3.2-65)

In a time -modulation rebalance loop the feedback torque is
forced to oscillate between +M, and - M. with a fixed, clock-controlledtg tg
period, T . The formula for the amplitude of the float angle oscillation
given in Table 3.2-6 is obtained by considering the square wave command
to the torque generator to be represented by the fundamental of amplitude
4M. /IT and computing the attenuation of that fundamental after passing it
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through an integrator, the two first order lags associated with the time
constants r, and r. , and the gain 1/C. The first formula for cr giveni tg e
in Table A corresponds to the situation where the test measurement
intervals are controlled by a different clock than that controlling the
timing of the rebalance pulses. In this case the phase angle differences,
A<p, between the start and end of each measurement interval are not mul-
tiples of 27r. The approximate formulas for A and a are based on the

Ot tJ

assumptions that T is much less than 27rrf and much greater than 2nr. .
(That is, the forced oscillation period is assumed to be small compared
to float lag but large compared to torquer lag.)

On the other hand, if the measurement intervals were carefully
controlled to contain an integral number of torque cycles (h = nTp), then
approximately the same phase angle would occur at the end of each mea-
surement interval. In this case the error given by Eq. (3.2-48), is for the
most part eliminated, and an appropriate expression for the rms measure-
ment error is the final one given in Table 3.2-6. This is the simple "error
due to quantization" formula discussed at the beginning of this section and
derived previously for the analog rebalance case with quantized output. In
this case the quantization level, q, is given by Eq. (3.2-40) where T. is
the spacing between possible switching times. (For example, T. = T /64
in the version of the time-modulation loop used in the Lunar Module Abort
Sensor Assembly — thus, q = M, T /64.)

Summary - We have shown how to relate test errors due to
quantization to test time and test motion frequency via Eqs. (3.2-41) and
(3.2-42) and to rebalance loop parameters by the expressions assembled
in Table 3.2-6 for three types of pulse rebalance loops. These formulas
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are used in some numerical examples in Section 3.3.2. Test errors

of this type in the ternary case are somewhat lower than in the binary

case because of a smaller amplitude and (for small inputs) a smaller

frequency of float angle oscillation. Two expressions have also been

derived for the time-modulation case, their appropriateness depending

on how the test measurement intervals are controlled.

3.206 Random High Frequency Errors

In Appendix C the first stage (see Fig. 3.1-3, stage la) of the

the data processing problem is formulated as a problem in linear

estimation, for which the Kalman filter is an optimal solution. The

"state variables" to be estimated for each single-axis test are the seven

Fourier coefficients. That is, the data processing function is to deter-

mine sets of Fourier coefficients, but not by Fourier analysis. This

formulation is particularly useful in illuminating the effects of random

high frequency measurement noise and process noise on the errors in

estimating the state variables and on the test durations required to

achieve given levels of accuracy.

The development of the first half of Appendix C is somewhat

similar to the development of quantization effects for sinusoidal har-

monic testing in Section 3.2.4, except that a continuous, rather than

discrete, linear estimation formulation is employed. In both cases

the estimation errors due to measurement noise decrease as

1//T.
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Measurement errors are differences between recorded or
processed measurements (gyro outputs, table angles, etc.) and the actual
quantities they are supposed to represent. In the case at hand the primary
measured quantity is torque produced by the torque generator in the
rebalance loop of a gyro. Measurement noise refers to random changes or
fluctuations in the error in this torque measurement, such that two values
of the error a short interval, r, apart are uncorrelated (or tending so as
T increases). The definition does not include a bias measurement error,
nor any cyclicly repeating error such as that due to torquer nonlinearity.
Process noise relates to random changes in the state variables (Fourier
coefficients) themselves. These can occur because the gyro parameters or
the test motion quantities appearing in the state variable definitions are not
stationary. In cases where table angle measurements are produced by the
test, the errors in these quantities can also be treated as a source of
process noise (see Appendix C).

The development of Appendix C leads to some approximate
formulas which are useful in predicting achievable estimation error
variances. The key parameters are the scalar r and the matrix Q
which characterize the measurement noise and process noise, respec-
tively. The random part of the measurement error v(t) is assumed to
be Gaussian white noise with zero mean and covariance r6(t -T) where 6
is the Dirac delta function:

v(t) = 0; v(t)v(r) = r6(t-r) (3.2-66)
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The process noise is a seven-dimensional vector quantity u(t) representing

the rates of change of the seven Fourier coefficients. It is also assumed to

be Gaussian white noise with:

u(t) = 0; u(t)u(r)T = Q 6(t-r) (3.2-67)

Choosing realistic values for these quantities requires the kind of know-
ledge expressed in the autocorrelation functions of the random processes

involved. Some useful formulas (See page 147 of Ref. 7 or Ref. 8.) are:

r = 2 a2 T (3.2-68)

q.. = 2 a2 T (3.2-69)ni u. u

where:

2
a = the measurement noise variance

a = the process noise variance of the i state variable
i

T = the correlation time of the measurement noise

r = the correlation time of the process noise

The values of the off-diagonal elements of the Q matrix depend on the cor-
relation between changes in the Fourier coefficients. If test motion

variations are the major cause of process noise, the several components
of the noise vector will be highly correlated. That is, the off-diagonal

102



THE ANALYTIC SCIENCES CORPORATION

elements of the Q matrix will be non-zero and significant. If, on the other
hand, gyro parameter changes are the major cause of process noise, we
would expect very little correlation between the components of u. (These
comments are discussed in some detail in Appendix C.)

Some time after the start of a test the estimation error variance,
n j.u

cr., of the i state variable (Fourier coefficient) reaches an equilibrium
condition, in which the information coming in by virtue of new measure-
ments is balanced by the information being lost due to process noise. A

conservative formula for the final (equilibrium) value is:

(3.2-70)

The error formulas given in the third row of Table 3.2-2 are based on
Eq. (3.2-70) and the assumption that process noise is caused by random
fluctuations in the test rate magnitude. Equation (3.2-70) is plotted
parametrically in Fig. 3.2-8, along with a companion formula for useful
test duration discussed in Section 3.3. A more accurate formula, including
the effect of correlated process noise components, is:

r? = /2 r a, (l - c2 ) (3.2-71)

where i ^ j. The coefficient c.. is a measure of correlation between the

i andj components of process noise:

c,, = (3.2-72)
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and the j component corresponds to the largest or dominant component of

process noise appearing in the test. High correlations between certain

process noise components, therefore, helps to reduce certain estimation

errors.

Equation (3.2-71) can be combined with Eqs. (3.2-68) and

(3.2-69) to yield an expression which is more complicated but which only

contains terms which have a physical interpretation. Thus:

?. = 2 a a J2r r (l - c2.) (3.2-73)
1 V U. V U \ I]/

The Kalman filter formulation developed in Appendix C is

potentially significant in two ways. First, it provides the above equations,

along with related equations presented in Section 3.3, which are useful in

predicting the achievable test accuracy and required test duration.

Second, it provides a set of optimal data processing equations which could

be used for reducing actual test data. A connection between this procedure

and Fourier analysis is also developed in Appendix C. The data processing

alternatives are discussed further in Section 3.4.

3.2.7 Rebalance Loop Errors

A torquer scale factor error is an error in our knowledge of the

linear gain of the rebalance loop. It is usually given as a dimensionless

ratio (^r = so many parts per million). The error formulas in the eighth

row of Table 3.2-2 simply express the fact that the resulting errors in all

parameter estimates will be equal to their actual values times this ratio.
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Torquer nonlinearity causes significant estimation errors for

both constant rate and sinusoidal testing in the three cases which involve

a large gyroscopic torque, Hco.(when c. = 1 or 1/72). Noticeable errors

may also occur in sinusoidal testing in the three cases which experience

a sizeable output axis inertia torque, I to (when c = 1 or 1/72).oo o o
Observable quantities which may experience significant errors due to

these effects are indicated by the symbol (NJJ in Table 3» 2-5.

Figure 3.2-9 shows two types of nonlinear elements acting on

input functions, x(t), and producing output functions, y(t). We consider a

nonlinear function, y(x), which combines the two types shown into one

equation as follows:

y = x + ex |x| - <r2 |x| x - e3 x
3 (3.2-74)

The first term in Eq. (3.2-74) represents the desired, linear character of

the torquer loop. The next term (e^ |x|) represents a torquer asymmetry

which is an example of an "even-valued" nonlinearity. This type of torquer

characteristic is most likely to be significant in the pulse rebalanced case.

The last two terms ( - C g l x j x and - ^x^) represents an "odd-valued" non-

linearity. This type is most likely to characterize an analog rebalance

torque loop.

For sinusoidal testing the input function is:

x(t) = A sin cot (3.2-75)
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and the output function, which must also be periodic, can be represented

by the trigonometric series:

y(t) = b + a1 sin tot + bt cos &ot + a0 sin 2o>t + b0 cos
O X 1 & &

(3.2-76)

Substitution of Eq. (3.2-75) into Eq. (3.2-74) and Fourier analysis of the

resulting expression for y(t) yields the Fourier coefficients given in

Table 3.2-7. Thus, the output is equal to the input plus a deviation

function, d(t):

y(t) = A sin cot + d(t) (3.2-77)

where:

d(t) =A ^ — e0+ -i A e, Isin cot - -o — cos 2cot
6 IT ft t 61 6 TT

¥=- e,+ £A2€Q)sin 3cot - 4 —cos 4cot
D 7 T ^ 4 6 1 O 7 T

(3.2-78)

Figure 3.2-10 shows a linear gyro loop in which the deviation

function, d(t), has been added in order to account for the effect of a slightly

nonlinear characteristic in the feedback path. The transfer function

relating the input M (t) to the output, e (t) is:
ci I*

er(s)

Ma(s)

K

(TIS + 1) (r2s + l) -f Kj
(3.2-79)
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TABLE 3.2-7

NONLINEARITY EFFECTS ON SINUSOID

x = A sin cot

y = x+ - €2|x| x-

= b + a- sin cot + b- cos coto 1 1

+ a2 sin 2 cot + b« cos 2cot

bo =

al =

bl =
a2 =

b2 =

"3 =

Nominal

0

A

0

0

0

0

0

€1 Effect

2A
IT €i

—

—

4 A
" 3 IT €1

€2 Effect

8 A2

" 2 TT €2

+ 15 "F €2

€„ Effect

3A3
4A €3

+ ?A 3 c3

109



THE ANALYTIC SCIENCES CORPORATION

R-261

M

s(rs
« >-

e r ( t )

^x*1r
d( t ]

Figure 3. 2-10 Linear Sensor Loop with
Disturbance Function
Added

for low frequencies this becomes:

r ~
M = 1 (3.2-80)

and, similarly:

Therefore:

(3.2-81)

e (t) = M (t) - d(t)
1 d

(3.2-82)

which simply states that the net torque Mo is kept close to zero by the action

of the loop.

110



THE ANALYTIC SCIENCES CORPORATION

For a sinusoidal test motion, W sin cot, the first approximation
to the output (neglecting the effect of the deviation function) is

e (t) = M (t) = HWc. sin cot +1 coW c cos cot (3.2-83)r a i oo o

and the deviation function is

d(t) = HWc.
2 € l / « HWc. 0 0 9 9
— - | e«+ | H2W2c2

ir \3 IT z 4 i
e J sin cot - —cos 2cot+...

« V 0 7 7

+ 1 coWc
00 O

2el /8W^O Jl2 2 W 2 2 ^,n, t
— ' 3 — <2 +4 loo" W co% C°S wt

^ —cos 2cot + ...
O IT

(3.2-84)

A better approximation to the output is, [using Eq. (3.2-82)]:

21 coW

7T i i TT 01

HWc. +i

/ \2

8 (HWcij 3
3 TT C2 4

/ \2

8 ('oo '̂o) + 3 /.
3 7T 24 \ oo (

. HWc. . I coWc4 i 4 oo o
3 TT el 3 n-

/ \3
(HWC.) e3

\3

^Wco) <3

El

sin cot

cos cot

cos 2 cot+ —

(3.2-85)

111



THE ANALYTIC SCIENCES CORPORATION

Since the nominal output is HWc. sin o>t, the expressions in the brackets
in Eq. (3.2-85) represent the errors in the Fourier coefficient estimates,

E(B), E(SI), E(CI) and E(C2), due to torquer nonlinearity„

The error formulas given in the ninth row of Table 3.2-2, for

sinusoidal testing, are obtained by substituting the above expressions

into the following relations:

\
ww

6X = ~
sinusoidal
harmonic
testing

(3.2-86)

sinusoidal
averaging

These formulas can also be used to correct the results of a vibration test
if the torquer nonlinearity is calibrated in advance by means of a series of

constant angular rate tests. In that case the final test errors are

proportional to the error in the knowledge of the nonlinearity, rather than

the nonlinearity itself.

The error formulas for constant rate testing are obtained

by observing that we are operating at two points on the same side

of the nonlinear gain curve. Since W2 is assumed to be much
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smaller than W., we take the significant torque measurement error

to be:

6M1 = * C
2

M1 " <3 Ml

/ o\2 f 2\3

(\W1 + yW^J - €g (XW t + yW^ J (3.2-87)

Substitution of Eq0 (3.2-59) into Eqs. (3.2-7) and (3.2-8) yields the
formulas given in the ninth row of Table 3.2-2 for constant rate testing.

3.2.8 Errors Due to Parameter Changes

Error formulas showing the effect of run-to-run shifts in

parameter values during constant rate testing are obtained by letting X

and y take on different values during the runs (Wj and W2) and using

Eqs. (3.2-3) and (3.2-4) to form estimates, Xandy. Thus:

X2 = Xj + XgH (3.2-88)

y2 = rl + ySH (3.2-89)

and

[M - M ) = M = X, W, +yiw; (3.2-90)
a. {,/* J.

M a - M c = M = X W + y w (3.2-91)
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Therefore:

\ w / \ w
9\ 1 / 9\ 9

L W + v \V ) — - I X W + v W I -12W2 72W2/ W0 V 1 1 yl I/ W,
X = s L

Wl - W2

Wl \ / W1W2 (3-2-92)

and

.W, +y.W?) ^-- (X«Wrt . ,«,,2

w

W2
(3.2-93)

With W. » W2, we can write the approximate formulas:

6 X = X - X = ^ + W ^ (3.2-94)

W2
(3'2"95)
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A shift, MCgjj, in the constant (zero input rate) torque between
runs has the same effect as a measurement error, 6M2. Thus we can use
Eqs. (3.2-9) and (3.2-10) to obtain:

6X = yj- McgH (3.2-96)

-1 " (3.2-97)

The error formulas in the last row of Table 3.2-2 are obtained by com-
bining Eqs. (3.2-94) and (3.2-95) with Eqs. (3.2-96) and (3.2-97),
respectively.

3.3 TEST DURATION

The determination of an appropriate test time, T, is governed
by the estimation error components which vary with T. These are
primarily the error due to quantization and the error due to measurement
noise (see the seventh and tenth rows of Table 3.2-2). We recall that
errors due to quantization decrease as 1/T for constant rate testing and
sinusoidal averaging, and as lA/T for sinusoidal harmonic testing; errors
due to measurement noise decrease, initially, as 1//T in all three cases.
For sinusoidal harmonic testing the quantization effect can be considered
as a component of measurement noise. The measurement noise effect
does not continue to decrease as 1/,/T without limit, but reaches a state
of equilibrium where measurement noise and process noise are in balance

(see the third row of Table 3.2-2).
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In general all errors can be grouped into three classes, as

illustrated in Fig. 3.3-1 where a is the one-sigma estimation error cor-

responding to the observable quantity in question. The constant term,

k,, represents the sum of all stationary components, such as the effects

of bias errors, cyclic errors and run-to-run shifts. The curve labeled

k /,/T represents the combined effect of measurement noise and process

noise. The curve labeled k /T represents the effect of quantization during
T.

constant rate testing and sinusoidal averaging; this curve is not present

for sinusoidal harmonic testing. A reasonable rule for selecting T is to

choose a large enough value so that either:

1) Both kinds of time-dependent esimation errors are

less than the stationary errors.

or:

2) The equilibrium level has been reached for estimation

errors due to measurement-noise/process-noise

and that level exceeds the remaining time-dependent

term (k /T) as well as the stationary term (k^).

If more than one observable quantity is to be estimated, as in

sinusoidal harmonic testing, the above rule should be applied to each of

them in turn, and the largest resulting value for T used as the test time.,
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R-257
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equilibrium state

Test Duration, T

Figure 3.3-1 Time-Dependent Test Errors

3«3.1 Choice of Sample Interval

The effect of the size of the sample interval, h, or number of

samples per cycle, N = 2^7coh, for sinusoidal harmonic testing is sug-

gested by the form of the quantization error formulas derived in Section

3.2.4. The standard deviation of the estimate of each observable quantity

is given by:

'M
_ q /2h— —— /.« / — (3.3-1)

117



THE ANALYTIC SCIENCES CORPORATION

Note that qA/lf is the rms error in each sample count and T/h is the

total number of data samples taken. Thus, the estimation error is
directly proportional to the single sample error and inversely propor-
tional to the square root of the number of samples. For a given test time,
T, the error is proportional to the square root of h, indicating that h
should be selected as small as possible in order to minimize errors due
to quantization. On the other hand, in order to ease the data processing
task, h should be selected as large as possible. However, it should not
be selected so large that it is impossible to extract the harmonics of the
signal. For example, if h = T, the total test time, the procedure is
reduced to sinusoidal averaging. In conclusion, the number of samples
per cycle should be at least enough to define the first two or three
harmonics. A larger number (smaller h) than that will decrease the
parameter estimation errors due to quantization but increase the data
processing requirements. In the numerical examples given in Section 3. 5
the values, N = 10 samples per cycle and T = 100 sec., are used. In
those examples the error due to quantization is the largest contributor in
only two cases (the estimation of the n terms when the test motion axis is
i and i/s).

3.3.2 Effects of Quantization: Examples

This section presents some illustrative numerical examples
relating the data resolution or quantization level to total test time and
parameter estimation errors. For a given gyro wheel momentum, H,
the quantization level, q(dyne cm sec), can be converted to an equivalent
gyro output quantization level, A6(sec). Similarly, the errors in
estimating average torque, CTM (dyne cm), can be converted to an
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equivalent gyro drift rate, CT (deg/hr)» The results are presented in
terms of both CTM and CTD, assuming a wheel angular momentum H, of
10 gmcm^/sec. The assumed test motions are, for constant rate tests:

W1 = 0.26 rad/sec (15 deg/sec)

W2 = 0.017 rad/sec (1 deg/sec)

and, for sinusoidal tests:

W = 0.26 rad/sec (15 deg/sec)

w = 2ff rad/sec (1 Hz)

Analog Rebalanced Sensors - Consider an analog loop in which
the output is quantized with resolution:

q = 4.85 dyne cm sec

This is equivalent to a 10 sec rotation about the gyro input axis. Table
3»3-l presents the results of computations based on the quantization
error formulas (see Table 3.2-2) for several values of test time. For
constant rate and sinusoidal average testing the one-sigma error in the

average torque measurement is:

<r-M = - dyne cm (3.3-2)
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TABLE 3.3-1

EXAMPLE ERRORS DUE TO QUANTIZATION: ANALOG REBALANCING

q = 4.85 dyne cm

A6 = q/H = 10 sec per pulse

T
(sec)

10

100

1000

cr,,M
(dyne cm)

0.198

0.0198

0.00198

aD
(deg/hr)

0.41

0.041

0.0041

Constant Rate
ax

(dy cm sec)

11.6

1.16
0.116

CTy ,
(dy cm sec2)

44.7

4.47

0.447

Sinusoidal
Averaging

a
y

(dy cm sec2)

5.86

0.586

0.0586

Sinusoidal Harmonic Testing

T
(sec)

10

100

1000

10000

CTM
(dyne cm)

1.76

0.556

0.176

0.0556

aD
(deg/hr)

3.60

1.14
0.36

0.114

°» 0(dy cm sec2)

1.08

0.70

0.108

0.07

ffx
(dy cm sec)

6.77

2.70

0.677

0.27

CTy
(dy cm sec2)

52.1

16.45

5.21

1.65

The equivalent gyro drift rate is:

<rM(57. 3X3600)M
'D H deg/hr (3.3-3)
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The corresponding parameter estimation errors are:

W2 M

CT M

constant rate tests

(3.3-4)

(3.3-5)

CT = —9" CTM ^ sinusoidal averaging tests (3.3-6)
W

For sinusoidal harmonic testing the rms errors in the Fourier coefficient
estimates are:

(3.3-7)j

The values given in the lower part of Table 3.3-1 are based on the
assumption that 10 samples per second are taken; that is, the sample
interval h is 0.1 sec. The equivalent drift rate is again given by
Eq. (3.3-3). The corresponding parameter estimation errors are:

a(jL coW °M
(3.3-8)

rX ~ W CTM
(3.3-9)

(3.3-10)
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R-1231

10

_ 0.1

01
0)

TJ

Q
. b 0.01

0.001

0.0001

10

0.1

0.01

0.001

10 100 1000 1QOOO 10 100 1000 10,000
Test Time,T(sec) Test Time,T(sec)

(a) Constant Rate and Sinusoidal
Average Testing

Figure 3.3-2

(b) Sinusoidal Harmonic Testing

Effective Drift Rate Due to Quantization

Figure 3.3-2(a) plots CTD versus test time for four values of

quantization level, A 6. The two middle values (1 sec and 10 sec) are

comparable to single-pulse quantization levels for pulse rebalanced sen-

sors. The extreme values (80 sec and 0.04 sec) represent a range of

quantization levels obtainable from an analog rebalanced gyro. For

example if a voltage-to-frequency device with a full scale output rate of
5000 counts/sec is used, the high quantization level would be necessary

for a maximum applied rate about the gyro input axis of 2 rad/sec,

which causes a torque of:

M = WH = 2
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Therefore, the device must be scaled to make:

_ 2 x 105
 An.

qmax ~ -5000- = 40 dyne cm sec

and

™a^ = §: 2.06 x 105 = 80 secmax ti

The low quantization level would be possible for a test involving small
torques only, such as an applied rate nominally about the gyro spin axis.
If the maximum torque expected in this case is 100 dyne cm (see example
values in Section 3.5), then the device can be scaled to make
A0 - s- 0.04 sec. This points up a possible advantage in testing analog
rebalanced sensors, as opposed to pulse rebalanced instruments. It may
be easier, in the analog case, to rescale the data processing electronic
equipment to take good advantage of situations involving only low levels of
applied output axis torque. By such a rescaling the quantization effect
may be reduced, with an attendant possibility of increased error due to
torquer nonlinearity and signal generator noise.

For sinusoidal harmonic testing the error in the measurement
of drift rate is proportional to the test motion frequency (co) and to the
square root of the sample interval (h). This dependence is shown in
Fig. 3.3-2(b) where results are plotted for two values of the parameter,
co //h, for each of the four quantization levels.
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Pulse Rebalanced Sensors - It is highly desirable to test entire

strapdown instruments, including their rebalance electronics,, Since most
accurate strapdown gyros and accelerometers are of the pulse rebalanced
type, the primary test output will be quantized,, The example calculations
and curves discussed above apply equally well to testing pulse rebalanced
sensors in so far as the "error due to quantization" is concerned. How-
ever, as discussed in Section 3.2.5, still larger errors associated with
the oscillatory behavior of nonlinear pulse rebalance loops may also occur.
Consider, for example, pulse rebalance sensors in which the loop param-
eters, test motion quantities and test time have the values given at the top
of Table 3.3-2. The tabulated values for the characteristic frequency and
amplitude of float angle oscillation and for the individual measurement
errors are obtained by application of the formulas given in Table 3»2r6.
The values for torque estimation errors are obtained via Eqs, (3.2-41)
and (3.2-42) for average torque and harmonic component estimates,
respectively. These may be related to errors in estimating the X, y and
/Literals via Eqs. (3.3-4, 5 and 6) and Eqs. (3.3-8, 9 and 10) just as in
the analog rebalanced case. The last column in Table 3. 3-2 is included
in order to relate the error due to loop dynamics to the error associated
with the single pulse quantization level. The tabulated quantity is called
the "effective loop quantization level" it is the quantization level which
would cause the rms measurement error, a , already computed for a

"

given set of loop parameters, if the two had the same relationship pre-
viously derived for the simple error due to quanitzation; namely:

CTG = q~«//6" . (3.3-11)
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TABLE 3.3-2

EXAMPLE ERRORS DUE TO QUANTIZATION:
PULSE REBALANCING

H = 10 dyne cm sec

C = 10 dyne cm sec
2

I = 100 gm cmoo

T. = 0.001 sec

T. = 0.0001 sec
tg

ii =1 rad/sec1max 5
M. = H to; =10 dyne cmtir "max '

T = 100 sec

h = 0.1 sec

uj = 2ir rad/sec

W = 0.26 rad/sec

Type of
Rebalance

Loop

Binary

Ternary

r = 0.26

T) = 0.85

Time - Modu lation

T = 0.001
P

T. = Tp/64

Frequency

(rad/sec)

3162

2688

6283

Amplitude

(mrad)

0.116

0.058

0.027

Individual
Measurement

Error

(dyne cm sec)

38.5

16.6

17.2

[h = nT p ]

0.64

Estimation Error
"M

(dyne cm)

Average
Torque

Estimate

0.385

0.166

0.172

0.0064

Harmonic
Component

Estimate

10.8

4.67

4.82

0.18

Effective Loop
Quantization

Level
Ajeff
(sec)

194

84

87

3.2

Thus, converting q .. to angular form:

A9eff 76/H (3.3-12)

This quantity allows us to use the formulas and plots (Fig. 3.3-2) already
developed for the analog torquing case. Note that for the binary and
ternary loops as well as the time-modulation loop, whenh ^ nT , the effec-
tive quantization level is considerably higher than a single pulse weight.
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The lowest effective quantization level, by far, occurs in this
example for the time-modulation rebalance case when the measurement
interval is controlled to be an integral number of pulse widths. Among
the other three cases the ternary loop has the lowest effective quantiza-
tion level, due to its low characteristic frequency of oscillation.

3.3.3 Time to Reach Equilibrium

This section treats the question of how long it takes for
estimation errors to reach a state of equilibrium, defined largely by the
relative magnitudes of measurement noise and process noise; by filtering
data taken over many cycles it is possible to reduce the effects of
uncorrelated random errors. The formulation of the first stage of the
data processing problem as one of linear estimation (see Appendix C) is
useful in indicating the length of time over which it makes sense to filter
the data; the state variables to be estimated in each single-axis vibration
test are the seven Fourier coefficients.

Figure 3.3-3 is a conceptual plot showing how the estimation
o j.î

error variance a. of the i state variable might change during the course
i 2

of a test, assuming the use of optimal filtering. The initial value a. (0) is
a measure of the uncertainty regarding the variable prior to the start of

o
the test. The final value a.(°°) represents an equilibrium condition that is
reached after sufficient time, in which the information coming in by virtue
of new measurements is balanced by the information being lost due to
process noise; the final value is independent of the initial value. * The

2
major reduction in CT. takes place while the curve tends to follow the

*
This is only true if certain observability conditions are satisfied.

In the problem considered here these conditions are met.
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g-1229

• Measurement Noise Only :

<r2( t ) = f (r)

• Complete Problem :

P = Q- -J-PHTHP

Figure 3.3-3 Estimation Error Variance Time History

dashed line labeled "measurement noise only." This dashed line cor-
responds to a hypothetical, optimal filtering situation in which there is no
process noise and the initial uncertainty is infinite. The dashed curve,
therefore, depends on only one parameter, r, which characterizes the
measurement noise. It approaches zero asymptotically; by processing
noisy measurements of a deterministic quantity the estimation error is
made steadily smaller as time progresses.

A "solution time" or "settling time" t_ can be loosely defined
o

as the time it takes the estimation error variance to get "close" to its
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final valueo The significance of t is that a test should be allowed to con-s
tinue this long in order to get full benefit of the optimal filtering. A use-

ful measure of t can be taken as the time at which the dashed line crossess
the final value level (see Fig. 3.3-^3). This crossing point depends on
measurement noise and process noise, but is independent of initial errors.

It can be found for any assumed set of measurement noise and process

noise statistics by methods developed in Appendix C.

An approximate formula for the settling time in (see Appendix C):

tg = /2^- (3.3-13)

where r and q.. characterize measurement noise and process noise,

respectively, as described in Section 3.2.4. Equation (3.3-13) is a com-
panion to Eq. (3.2-70) which gives the final value of the estimation error.

Both are plotted parametrically in Fig. 3.2-8.

An alternate expression for the settling time, one which con-

siders the effect of correlated process noise components, is:

(3.3-14)

where c.. is a measure of correlation between two components of process
13 thnoise, the j component being the one which dominates the problem.

Equation (3.3-14) is a companion to Eq. (3.2-71). Together they imply

that a high correlation between process noise components sometimes

reduces the final estimation error variance, at the same time increasing

the time needed to reach the more accurate level.
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3.4 TEST DATA PROCESSING

The data processing function, for sinusoidal harmonic testing,
can be defined in terms of the procedure pictured in Fig. 3.1-3 which
shows three data processing phases: Phase la accepts as input the scalar,
periodically time-varying sensor output and generates the set of Fourier
coefficients for each single-axis test; in phase Ib the complete array of
estimated values of the Fourier coefficients for a sequence of six single-
axis tests is processed to yield estimates of a complete set of basic
parameter groups; in phase II the values of individual parameters are
computed.

Phase la, in which raw test data is processed, directly influences
the choice of laboratory data processing equipment (see Section 4.2). Three
candidate types of processing algorithms, Fourier analysis, least squares
estimation and Kalman filtering, are considered below. Phase Ib involves
the estimation of the basic parameter groups from an array of redundant
coefficients. As a practical matter this phase may become a very simple
computation based on a subset of "primary" coefficients, as discussed in
Section 3.2.2, leaving the redundant information to be used as a cross-check
on the operation of the test sequence or as a means to indicate the existence
of previously unsuspected error torques. Alternatively, some form of
regression analysis may be used to develop an optimum fit to the entire
array of redundant data. The possible gain from such a procedure has not
been investigated. Phase n, the simple algebraic calculation discussed in
Section 2.4, requires no further study. This section will consider in detail
the form of the equations to be mechanized in order to perform phase la via
the three candidate algorithms.
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3.4.1 Fourier Analysis

One obvious way to determine the coefficients of a trigonometric

series is by Fourier analysis. For two reasons the problem at hand may
differ from a classical Fourier analysis problem. These are:

• Because of errors in measurements and test motions
we would like to process many cycles of data rather
than just one.

• It may be necessary to deal with quantized rather than
continuous data. This will certainly be true for a
pulse-rebalanced sensor since the data comes naturally
in quantized form. It may also be true if data from an
analog-rebalanced sensor is to be processed on a digital
computer.

The following equations are appropriate for computing Fourier
coefficients from a continuous output function e (t), taken over a time
interval corresponding to m test motion cycles, where the test motion
frequency is co and the cycle period is T = 2ff/co:

The rebalance torque is assumed to be the continuous function:

Mtg(t) = Ktger(t) (3.4-1)

The applied torque is given by:

M = M. = B + S- sin cot + C., cos cota tg 1 1

+ S0 sin 2cot + C0 cos 2oot
£i ft

+ S3 sin Scot + C3 cos 3cot (3.4-2)
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The Fourier coefficient estimates are:

K,
j er(t)dt (3.4-3)

o

2K mT

n T r
S = ~ e ( t ) sin no* dt (3.4-4)

2K r
Cn = InT \ er(t) COS nwt * (3.4-5)

o

where n = 1, 2 and 3.

Equations (3.4-3), (3.4-4) and (3.4-5) reduce to the classical Fourier
analysis equations when m is unity. These equations can be mechanized
directly on an analog computer for a sensor which is analog-rebalanced, in

which case e (t) is produced as an analog signal.

For the pulse rebalanced case, two sets of exact equations which

generate the Fourier coefficients corresponding to the square-wave-type

torque generator output are developed in Appendix D. For the binary and
ternary^ pulse schemes the equations for the sine and cosine coefficients

are:

km-1

i=0
S = y] M. [(l-cos ncoh)cos nwhi + sin ncoh sin nwhi] (304-6)
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C = —— y M. [(l-cos ncoh)sin ncohi - sin ncoh cos ncohi] (3.4-7)n

km-1

i=0

where:

n = 1, 2 and 3

h = pulse width

w = test motion frequency

m = number of cycles processed

k = number of pulse widths per cycle (2ir/uih)

and M. defines the torque level of the i pulse according to:

M positive torque level
M. = 0 zero torque level

M negative torque level

The bias Fourier coefficient is proportional to the net pulse count,, That is:

km-1

£
i=0

B = £ Mi

For the time-modulated pulse torquing scheme the equations for
the sine and cosine coefficients are :
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km-1
M

n ream
- (2 cos nco4. - cos ncoh) cos ncohi

+ (2 sin nco L- sin ncoh) sin ncohi | (3.4-9)•1
km-1

Cn =
M 12 cos nco 4. - cos ncoh) sin ncohi

i=0

+ (2sin nco &.- sin ncoh) cos ncohi | (3.4-10)
j

where n, m and k are defined as above; M is the absolute value of the torque

level; H. is the width of the positive torque pulse in the i interval; each

interval has both positive and negative pulses and has the total width, h.

The bias Fourier coefficient is given by:

km-1

B = M
mk

i=0
h- (3.4-11)

Since h is very small compared to one test motion period, and since

L is less than h, we can employ the following small angle approximations:

cos ncoh = cos nco L = 1

sin ncoh = ncoh

cos nco L = nco L

(3.4-12)
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The equations given above reduce to the following set of unified, approximate

expressions:

km-1

£
i=0

Sn ~ In^r ^ bisin (n(ohi) (3.4-14)

km-1

i=0

km-1
r ~^.x Y** D- cos (ncohi) (3.4-15)

n ~ mT 2-, 1

i=0

where we have used T = 2ir/u and the definitions:

b. = sgn (Mj) (binary and ternary) (3.4-16)

a. - h/2
b. = 1

 /9—(pulse-width modulation) (3.4-17)i \\./ ft

Note that Eqs. (3.4-13), (3..4-14) and (3.4-15) look like discrete approxi-
mations to Eqs. (3.4-3), (3 = 4-4) and (3.4-5) for the analog-rebalanced case.

In both cases, the sensor output (the continuous signal, e , or the sequence,

is multiplied by the "weighting" functions (sin nojt or sin nwhi and

cos nojt or cos ncohi) and integrated or summed to produce the desired
Fourier coefficients (S^ and Cn).
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3.4.2 Least Squares Estimation

A least squares estimation procedure is outlined in Section 3.2.4.

This procedure applies to the case in which the data is a sequence of integers

(z1, z0,... z.), each representing the integral of torque over a specified1 z ]
interval of time. The least squares estimate of the vector:

x = (3.4-18)

of harmonic coefficients is given by:

-1
x = (HTH) HT (3.4-19)

where the measurement matrix, H, is:

H = -1
W

(3.4-20)

fi gi Pj 0)
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Where:

f. = - cos cohi + cos coh(i-l)

= sin tohi - sin coh(i-l)

p. = - TJ cos 2u>hi + T> cos 2coh(i-l)
1 Lt £l

CL. = sin 2whi - sin 2cjh(i-l) (3.4-21)

Processing data by means of Eq. (3.4-19) is essentially similar

to Fourier analysis, in that we are multiplying a sequence of measurements

by a set of periodically varying weighting functions (the elements of H^) to

obtain estimates of the various harmonic coefficients.

The computation can be simplified in practice if an integral

number (say k) of data intervals, h, occur in one test motion period. In

this case the elements of each column of H are cyclically repeating:

f = f = f
i i+k i+2k

gi " gi+k

etc. (3.4-22)

These sequences of repeating elements multiply the sequence of measure-

ments:

zi+k' zi+2k' ' ' *
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Therefore, we can add up the raw pulse count data in k sections. For
example, define the k sums:

m-1
Zi = E z ( i = 1>2 , . . .k) (3,4-23)

4=0

where m = j/k, the number of test cycles. Then:

H?" , z. = I? „ Z. (3.4-24)kmx4 —km kx4 k

~Twhere H, . is the single- cycle measurement matrix, which repeats itself
Tm times as a partition of H , as follows:

^n I rri I rp | rp I | ^^^^^ 1

H = H ;H |H i JH (3.4-25)
L i i i i J

When this simplified procedure is used, the on-line (real-time) data pro-
cessing function involves Eq. (3.4-23) only, generating the k outputs,
Z.. through Z,.

3.4.3 Kalman Filtering

In Appendix C the phase la data processing problem is formulated
as a problem in linear estimation for which the Kalman filter is an optimal
solution. This formulation is a useful analytical device for determining the
effects of random process noise and measurement noise on the test accuracy
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(Section 3.2-6) and the useful test duration (Section 3.3). This section

discusses the advisability of using a Kalman filtering algorithm in

processing real test data — the form of the equations to be mechanized and

the advantage there might be in using Kalman filtering in preference to

Fourier analysis.

The following Kalman filter equations are appropriate for the

continuous (analog rebalanced) case:

x(t) = K(t) [z(t) - H(t) x(t)] (3.4-26)

K(t) = ^P(t)HT(t) (3.4-27)

P(t) = Q-^P(t)HT(t)H(t)P(t) (3.4-28)

where x is the optimal estimate of the seven-state (five, if third harmonics

are ignored) state vector x composed of the set of Fourier coefficients, z

is the time-varying scalar measurement (the output of the sensor) and K is
the Kalman filter gain matrix which in this case is a 7 x 1 column vector.

H is the measurement matrix (in this case a 1 x 7 row vector) with

periodically time-varying elements:

H(t) = (1, sin cot, cos tot, sin 2tot, cos 2cot, sin 2cot, cos 3cot)
(3.4-29)

and P is the covariance matrix of the estimation error:

P = ( x - x ) (x-x)T (3.4-30)
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The constant scalar r and the constant matrix Q characterize the
measurement noise and process noise, respectively, as discussed in
Section 3.2-6. For any given test set-up, Eq. (3.4-28) could be integrated
in advance and the result could be substituted into Eq. (3.4-27) to produce
a gain matrix with time-varying elements. This function could then be used
in real time in Eq. (3.4-26) to process actual test data, z(t). If the actual
test is generated in digital form, an alternate expression, based on the
discrete form of the Kalman filter, may be used.

Appendix C demonstrates that after some time has elapsed from
the start of a test, the Kalman filtering equations above become approxi-
mately equivalent to the Fourier analysis procedure in which successive
cycles of processed data are averaged together. Therefore, the only
obvious difference in the Kalman filter procedure involves the way the data
from the first few cycles are processed. The filter estimates in these early
cycles should be superior because all available information, including prior
estimates, is being used in an optimal way. Since certain sensor parameters
should be known accurately prior to the test this advantage may be quite
significant, especially if the data processing equipment imposes severe
limits on the amount of data which can be handled from a given test.

There is another potential advantage of the Kalman filtering
approach which can be significant if some of the sensor parameters undergo
significant changes during the course of a particular vibration test. The
formulation of the problem can be expanded to take account of such changes
(with, for example, a random-walk model) and the changes can be "tracked"
during the test, with the result that the optimal estimates produced are
significantly more accurate than those generated by Fourier analysis or
simple least squares estimation. It is expected, however, that the
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parameters under consideration will not change fast enough to make this a
strong consideration in choosing a data processing scheme.

In summary, there are two potential advantages of the Kalman
filtering approach — the inclusion of prior estimates and the possibility of

tracking parameter changes, but more study is required before a definite
recommendation concerning its use can be made.

3. 5 EXAMPLE CALCULATIONS

This section presents the results of illustrative numerical cal-
culations corresponding to an analog rebalanced single-degree-of-freedom
gyro undergoing angular motion tests. The six recommended test motion
axes and all three types of testing are included. The calculations include
test errors, typical torque levels, and the variation of torque levels with
test motion quantities. The test errors are based on the formulas developed
in Section 3.2. The error calculations provide a quantitative accuracy
comparison of the three types of single axis testing, augmenting the dis-
cussion at the end of Section 3.2.1.

3.5.1 Torque Levels

Table 3.5-1 lists the values of the parameter groups used in the
example calculations. Table 3.5-2 lists the jj, X and y terms corresponding

to the given gyro parameters, the assumed test motion quantities W and
co (the same amplitude and frequency are used for all six test axes), and the
torque amplitudes (M .. M and M ) which occur during sinusoidal testing.
Note that M. is the same as the value, XW, corresponding to a constant rate

A.
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TABLE 3. 5-1

ASSUMED GYRO PARAMETER VALUES

kl=ttsIoo'Ioi
S

oo = -100 gm cm2

,2= gm cm
g

k. = H = 105 gm cm2/sec

kK = a H = 5 gm cm2/sec
D S

k« = -fl H = 5 gm cm2/sec'

(a a - 10 sec)
S

(S0 =-10 sec)

V
g

= 10 gm cm2

g

=-50 gm cm2

= 1 gm cm2

o

A14

= -H/K(I -i..^ -I..) =-0.05 gm cm2 sec
y ss ii/ /

0.1 gm cm2 sec2

5 x 10~5 gm cm2 sec2

oo ss - I . . ) =-ii/

K = 10° dyne cm/radian
(Iss-Iii) = 50 gm cm2
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TABLE 3. 5-2

ILLUSTRATIVE TORQUE LEVELS

Sinusoidal Test Motion: W = 1 rad/sec, w = 6.28 rad/sec (1 Hz)

Test

Axis

o

s

i

o/s

i/o

i/«

p

(dyne cm sec )

kj =-100

k3 = 1

k1 = l

^(VSH-5

k!3 ' 0'1

^(VaH-5

71(̂ 3) = '•««

M^nuW

(dyne cm)

-628.0

6.28

6.28

-449.0

0.16

-449.0

8.89

X

(dyne cm sec)

V 5

kg = 5

TflVeV7-07

^(V*B) "">-™>

7f(vk
6)-70-TOO

M X = X W
(dyne cm)

5.0

5.0

105

7.07

70,700

70,700

y

(dyne cm sec )

kg = 10

-k , - l

k7 = l

j(-k' + k8+kll)= *

Kk' + k8+k9) = 5

I kio =-25

M^lw2

(dyne cm)

5.0

0.5

0.5

3.0

2.5

-12.5

test at the rate, W, and M is one half the value, ^W , corresponding to a
constant rate test at the rate, W. The larger torque levels occur as M

A

when the test axis is i, i/o or i/s; these involve gyroscopic terms,
The medium-sized levels occur as M when the test axis is o, o/s or i/o;
these involve output axis inertia terms, I to . All other terms areoo o
relatively small. The M terms, which are not included in the table, are

P
extremely small. For example:

M =
8/2

= 0.013 dyne cm
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Similarly, the \i term involving k... is:

M = —J— k , ooW3 = 0.000028 dyne cm
8/2" 14

The variation of test torque levels with the magnitude of the applied
test motion quantities (W and co) is illustrated in Figs, 3. 5-1 and 3. 5-2. The
torque levels corresponding to each basic parameter group which contributes
torque in the o, s, and i axis tests are plotted versus W in Fig. 3.5-1 and the
left hand side of Fig. 3. 5-2. The right hand side of Fig. 3, 5-2 plots the
torques produced in the o/s, i/o and i/s axis tests by those parameter groups
(kq, k10, k... and k..-) which do not contribute in the first three tests. The
contributions of the parameters already covered in the previous plots are not
shown. For example, k. produces large torques in both the i/o and i/s
axis cases; their magnitudes are 1/^2 times the value shown (labeled
for the i axis test.

The M levels (M^.^. k«>) are linear in both W and to. The M
levels (Mfc. ^ ^ ) are linear in W and independent of to. The M levels

(Mk7,ka ka kin ki i ) are proprotional to W and independent of co. The
M term, Mi,1Q, is proportional to W2 and linear in to.

fJL lO

It is worth noting that for a fixed amplitude, A, of angular
excursions in a sinusoidal test, all of these quantities vary with frequency.
Thus, if:

9test = Asin "* (3.5-1)
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Then

"test = 9test = <°A COS °* (3.5-2)

Therefore:

W = coA (3.5-3)

and:

M = u, coW = uw A

= XW = XooA

1 ...2 1 2.2
M = VW = r<° A

(3.5-4)

3.5.2 Test Errors

Table 3.5-3 lists the assumed set of error source values used in
the example error calculations which are summarized in Tables 3. 5-4
through 3. 5-9. The calculations are based on the error formulas given in
Table 3.2-2, for the three types of single-axis testing and each of the six
test motion axes. For two of the eleven error sources listed in Table 3.5-3
alternate values are given, one for small signal cases (test axes o, s and
o/s) and one for large signal cases (test axes i, i/o and i/s). The quantization
level, q, is considerably smaller in the small signal cases because of the
opportunity for scaling the rebalance loop to take advantage of lower signal
levels. It is also assumed that the parameter shifts, X, are larger in
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R-1233

10

10

104

10

io
1)

0.1

0.01

MOTION ABOUT

OUTPUT AXIS

MOTION ABOUT

SPIN AXIS

0.01 0.1 1

W(rad/sec)

0.01 0.1 1
W( rod/sec)

Figure 3.5-1 Variation of Torque Levels With Test Motion
Amplitude and Frequency: o and s Test Axes

145



THE ANALYTIC SCIENCES CORPORATION

H-»34

10

10

104

io

u

0)
c

'0

10

O.I

0.01

MOTION ABOUT

INPUT AXIS

0.01 0.1

W( rod/sec)

"i/o" TEST:k,

"i/s" TEST: k,0

0.01 0.1 1

W (rod/sec)

Figure 3.5-2 Variation of Torque Levels With Test Motion
Amplitude and Frequency:!, o/s, i/o and i/s
Test Axes
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TABLE 3.5-3

ASSUMED ERROR SOURCE VALUES

T = 100 sec
h = 0.1 sec (N = 10/cycle)

Error Source Value

1. Magnitude Bias,
(sinusoidal)

2. Distortion,
(sinusoidal)

3. Magnitude Noise,
(sinusoidal)

4. Misalignment Bias,

5. Misalignment Shift,
(constant rate)

6. Table Wobble,

7. Quantization,

9. Torquer Nonlinearity,

10. Measurement Noise,

11. Parameter Shifts,
(constant rate)

6W

CTWTu

SH

w

qsm/qlg

8. Torquer Scale Factor, e n
oU

CNL <<2

CT , T
V V

ASH i

McSH

0.02 rad/sec

1 x 10"3

0.02 rad/sec, 1 sec

10.0 sec

5.0 sec

1.0 sec

0.4/40.0 dyne cm sec

-42x 10

2 x 10"4

-7 -12 x 10 (dyne cm)

1 x 10 ~ (dyne cm)~

2.0dyne cm, .01 sec

0.1/1.0 dyne cm sec
n

0.1/t).5dyne cm sec

0.01 dyne cm
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TABLE 3.5-4

EXAMPLE ERROR SUMMARY: o TEST AXIS

9 2= 100 dyne cm sec^ = 5 dyne cm sec = dyne cm sec

1. Magnitude Bias 6W

2. Distortion A

3. Magnitude Noise CTW

4. Misalignment Bias ?

5. Misalignment Shift ?_„on

6. Table Wobble, cw

7. Quantization q

8. Torquer Scale Factor *„_

9. Torquer Nonlinearity ej

CNL '2
e3

10. Measurement Noise a

11. Parameter Shifts X__
Oil

ySH
MCSH

Total (RSS) a
CTX
ay

Constant Rate

X

0

...

0

5.0

2.5

0.5

0.016

0.001

0.00001

0.79

0.142

5.67

y

0

—

0

0

1.25

0.25

0.008

0.002

0.0001

0.40

0.079

1.34

Sinusoidal
Averaging

y

0.2

0

0.67

0

—

0

0.003

0.002

0.002

0.16

—

0.72

Sinusoidal Harmonics

\i

2.0

0

0.42

0

—

0

0.007

0.02

0.104

0.013

—

2.05

X

0.1

0

0.24

5.0

—

0

0.046

0.001

0

0.079

—

5.01

V

0.2

1.26

0.67

0

—

0

0.092

0.002

0.001

0.16

...

1.45
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TABLE 3.5-5

EXAMPLE ERROR SUMMARY: s TEST AXIS

k X = k v = k
3 g 6 ' 2
1 dyne cm sec = 5 dyne cm sec = 1 dyne cm sec

1. Magnitude Bias 6W

2. Distortion A

3. Magnitude Noise <j

4. Misalignment Bias f

5. Misalignment Shift rgH

6. Table Wobble «w

7. Quantization q

8. Torquer Scale Factor egc

9. Torquer Nonlinearity f j

€NL e2
€3

10. Measurement Noise a

11. Parameter Shifts (XSH )

IvSH (

(MCSH)

Total (RSS) Olt

"A
CTy

Constant Bate

X

0

...

0

5.0

2.5

0.5

0.016

0.001

0.000001

0.79

0.142

5.67

7

0

...

0

0

1.25

0.25

0.008

0.0002

0.00001

0.40

0.079

1.34

Sinusoidal
Averaging

y

0.02

0

0.21

0

—

0

0.003

0.0002

0

0.16

...

0.21

Sinusoidal Harmonics

It

0.02

0

0.04

0

—

0

0.007

0.0002

0

0.013

—

0.045

X

0.1

0

0.24

5.0

—

0

0.046

0.001

0

0.079

...

5.01

y

0.02

0

0.21

0

—

0

0.092

0. 0002

0

0.16

—

0.23
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TABLE 3.5-6

EXAMPLE ERROR SUMMARY: i TEST AXIS

i = k X = k. y = k,
2 B 2= 1 dyne cm sec = 10D dyne cm sec = 1 dyne cm sec

1. Magnitude Bias 6W

2. Distortion A

3. Magnitude Noise aw

4. Misalignment Bias ~e

5. Misalignment Shift Tgjj

6. Table Wobble *w

7. Quantization q

8. Torquer Scale Factor fg£

9. Torquer Nonlinearity cj}
eNL e2/

es)
10. Measurement Noise ay

11. Parameter Shifts XSH

?SH
MCSH

Total (RSS) a

CTX
cry

Constant Rate

X

0

...

0

0

0

0

1.63

20.0

3.0

0.79

1.01

20.3

y

0

...

0

0

0

0

0.815

0.0002

30.0

0.40

0.50

30.0

Sinusoidal
Averaging

y

0.02

0

0.21

0

—

0

0.326

0.0002

25.5

0.16

...

25.5

Sinusoidal Harmonics

V-

0.02

0

0.04

0

—

0

0.728

0.0002

0

0.013

—

0.73

X

2000

0

33.5

0

...

0

4.58

20.0

16.0

0.079

...

2000

y

0.02

200

0.21

0

—

0

9.16

0.0002

17.0

0.16

...

201
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TABLE 3.5-7

EXAMPLE ERROR SUMMARY: o/s TEST AXIS

X = <k5+k6)/,/2 y = (-k7+k8+k11)/2

= 71.3 dyne cm sec = 7.07 dyne cm sec = 6 dyne cm sec2

= 1r =O1 /hmo r*m cor*''

1. Magnitude Bias 6W

2. Distortion A

3. Magnitude Noise CTW

4. Misalignment Bias e

5. Misalignment Shift ?gH

6. Table Wobble ew

7. Quantization q

8. Torquer Scale Factor e__,at*

9. Torquer Nonlinearity e-

eNL (2
e3

10. Measurement Noise a

11. Parameter Shifts X,,.,

XSH
MCSH

Total (RSS) a

"\

°y

Constant Rate

X

0

—

0

5.0

2.5

0.5

0.016

0.0014

0.00001

0.79

0.142

5.67

y

0

—

0

0

1.25

0.25

0.008

0.0012

0.0001

0.40

0.079

1.34

Sinusoidal
Averaging

y

0.12

0

0.52

0

...

0

0.003

0.0012

0.13

0.16

...

0.55

Sinusoidal Harmonics

tCi)/1?32)

1.53/0.004

0

0.36/0.084

0

...

0/1,0

0.007/0.007

0.015/0

0.001/0

0.013/0.013

—

1.57/1.00

X

0.14

0

0.28

5.0

...

0

0.046

0.0014

0

0.079

—

5.01

y

0.12

0.89

0.52

0

...

0

0.092

0.0012

0.001

0.16

—

1.04
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TABLE 3.5-8

EXAMPLE ERROR SUMMARY: i/o TEST AXIS

ft = (k!+k2)/,/2 X = (k4+k5)/,/2 y = (k7+k8+kg)/2

= 71. 5 dyne cm sec = 70,000 dyne cm sec = 5 dyne cm sec^

1. Magnitude Bias 6W

2. Distortion A

3. Magnitude Noise cr...w

4. Misalignment Bias f

5. Misalignment Shift ?gH

6. Table Wobble *w

7. Quantization q

8. Torquer Scale Factor c__oO

9. Torquer Nonlinearity f -

€NL £2
e3

10. Measurement Noise a

11. Parameter Shifts XOIIoil
ySH

MCSH

Total (RSS) a

°\

°7

Constant Rate

X

0

...

0

3.53

1.77

0.353

1.63

14.1

1.35

0.79

1.01

14.8

V

0

—

0

0

0.88

O!l77

0.815

0.001

13.53

0.40

0.50

13.6

Sinusoidal
Averaging

y

0.10

0

0.47

0

—

0

0.326

0.001

18.1

0.16

...

18.1

Sinusoidal Harmonics

M

1.53

0

0.36

0

- —

0

0.728

0.0153

0.0006

0.013

...

1.73

X

1414

0

28.2

3.53

— -

0

4.58

14.1

6.9

0.079

1414

y

0.10

142

0.47

0

0

9.16

0.001

12.1

0.16

.--
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TABLE 3.5-9

EXAMPLE ERROR SUMMARY: i/s TEST AXIS

H = (k1+k3)/y2 X = (k^kgJA/Z y = k10/2
2 ?= 1.414 dyne cm sec = 70, 7000 dyne cm sec = 25 dyne cm sec

1. Magnitude Bias 6W

2. Distortion A

3. Magnitude Noise CTW

4. Misalignment Bias e

5. Misalignment Shift Tgjj

6. Table Wobble « w

7. Quantization q

8. Torquer Scale Factor egg

9. Torquer Nonlinearity cj

^L C2
e3

10. Measurement Noise a

11. Parameter Shifts XgH

rSH
MCSH

Total (RSS) a

CTX
CTy

Constant Rate

X

0

—

0

3.53

1.77

0.353

1.63

14.1

1.35

0.79

1.01

14.9

V

0

—

0

0

0.88

0.177

0.815

0.005

13.53

0.40

0.50

13.6

Sinusoidal
Averaging

y

0.50

0

1.06

0

...

0

0.326

0.005

18.0

0.16

...

18.0

Sinusoidal Harmonics

M

0.028

0

0.05

0

0

0.728

0.0003

0

0.013

—

0.73

X

1414

0

28.2

3.53

—

0

4.58

14.1

6.9

0.079

...

1414

y

0.50

141

1.06

0

0

9.16

0.005

12.0

0.16

...

142
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in the large signal cases; these shifts represent very small percentage

changes in very large quantities (see Table 3. 5-2). The assumed test
motions are:

W = 2 rad/sec

W2 = 0.1 rad/sec
constant rate tests

W = 1 rad/sec

W = 2n rad/sec
sinusoidal tests

The calculation of the time-dependent errors is based on the test time:

T = 100 sec.

In each column of Tablse 3.5-4 through 3.5-9 the values in the third and
tenth rows have been compared, and the smaller of the two dropped, before
combining errors in RSS fashion to calculate the overall one-sigma
estimation errors, a , cr. or a , given at the bottom of the column. (See

H A *X
the discussion in Section 3.2.1.) In each column the one or two largest
contributions to the overall error are printed in red.

Table 3.5-10 summarizes selected results from the six preceding
tables. For each of the parameter groups, k^ through kj. and k^, the test
axis which appears best suited for determining that parameter group is
shown in Table 3.5-10, along with the corresponding one-sigma estimation
error. For example, k» = y for spin axis tests and input axis tests, but the
one-sigma estimation error, a , is much smaller in the former case
(compare Tables 3. 5-5 and 3.5-6), so the value for the spin axis test is
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TABLE 3.5-10

EXAMPLE ERRORS: SUMMARY COMPARISON

Basic
. . Parameter

Parameter(s) Group

'oi* " 1 - k!i
Xoo = " ^

ose / k_g ( "9

Isig
 S

H = k4

ru H — VOf n ~ KCs 5

V = -k6

Q = ^

H2

Tc-* ' = -kio

'"O H - k~TC H K13

Type

y

M

y

y

X

X

X

y

y

y

Best
Test
Axis

i

o/s

o

s

i/o

s

i

o

s

o

i/s

o/s

Nominal Value
of Parameter

2
1 dyne cm sec

100 dyne cm sec2

2
1 dyne cm sec

21 dyne cm sec

105 dyne cm sec

5 dyne cm sec

5 dyne cm sec

10 dyne cm sec^

50 dyne cm sec^

0

0. 1 dyne cm sec

1 o Error/Largest Contributor
Constant

Rate

3.28/c-SH

—

27'3/fNL2)3

1.34/fgH

20.3/esc

5.67/f

5.67/e

1.34/FSH

27. 2A
NL2,3

—

Sinusoidal
Average

1.3S/ffw

---

0̂.21/irw

---

„_

...

o.«/v

"•«V,

—

Sinusoidal
Harmonic

0.73/q

2.55/A

2.05/6W

0.045/aw

143/A

0.23/aw

2000/6W

5.01/r

5.01/c

1.45/A

284/A

'•"«.

included in Table 3. 5-10. With each numerical entry is a symbol
indicating which of the eleven error sources contributes the most to that
particular estimation error. For example the error in estimating kg

(which is best determined by one of the o axis tests) is dominated by
misalignment shift ( f ) , test motion magnitude noise (ayy) or distortion
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(A), depending on which of the three types of test is used (refer back to
Table 3. 5-4). The parameter groups, k.g and k. ., are not included in the

example error calculations because of their extremely small size, (see

Section 3.5-1).

With three exceptions (kg,kjo an(* ^ll) *ne one-sigma estimation
errors given in Table 3. 5-10 are simply the appropriate RSS values
(a ,CT ,cr ) given at the bottom of Tables 3. 5-4 through 3. 5-9. For
example, the value 0. 73 for the k.. estimation error comes from the value
for a given at the bottom of Table 3. 5-6. However, kQ and k1 n appear only

LJL */ J. A

in combination with k- and k0 in the definition of y in the o/s and i/o test
I O

axis cases, respectively. Therefore, k_ and k~ must be estimated first
(using s and o axis tests) and subtracted from the current estimate of yas
follows :

k9 = 2Vs
A A

A A

= 2y / -y -y (3.5-7)'o/s ' s o

and

A A

= 2Vo + k7 - k8

A A A

= 2y. i +y - y (3.5-8)'i/o s o
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The values shown in Table 3.5-10 for cri, and a\. are computed from

(3.5-9)

and

°k11
A

 2 u. 2
+ CT + CT

o J

1/2
(3.5-10)

In a similar manner:

cr,
1/2

(3.5-11)

Table 3. 5-10 is arranged to illustrate the relative difficulty in
determining the various individual parameters (I . , I , etc) using the

Olnr OO

several types of single axis testing. For the error source values assumed
here, it may be observed that:

The cross product of inertia, Ioig, may be determined as
kj by sinusoidal harmonic testing about the input axis or
as k;Q by any of the three types of testing about the o/s
axis. The smallest of the estimation errors shown cor-
responds to the first method (even though it is a large
signal case — the /n term is not affected by distortion,
nonlinearity and magnitude bias the way the X and y terms
are). However, all four values are of the same order of
magnitude and each has a different largest contributor, so
the relative estimation errors are very sensitive to the
error sources.
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The cross product of inertia, IOSK> may also be determined
in any one of four ways, as k3 (one way) or as kg (three
ways). In this case there is a clear preference for finding
k3 using sinusoidal harmonic testing (about the s axis),
since nonlinearity and distortion have major effects on the
determination of kg, which requires the large signal test
axis i/o.

The cross product of inertia, Isiff>
 maY be measured in any

one of three ways, with angular motion about the spin axis.
Sinusoidal testing (averaging or harmonic) appears
significantly more accurate than constant rate testing,
although this conclusion depends on the values of the dominant
error sources, which are different for the two types of testing.

The output axis inertia, Ioo, appears as a \i term only, and
measuring its effect requires the use of sinusoidal harmonic
testing about the output axis. The dominant error source
appears to be uncertainty in the knowledge of the applied
test motion amplitude.

Measuring the wheel momentum, H, involves rotation about
the input axis, using a constant rate on a sinusoidal oscillation.
The former is much preferred because the applied constant
rate magnitude will be known more accurately than the
amplitude of the oscillation.

The misalignments, as and 0O, of the sensitive axis of the
gyro may be determined using constant rate or sinusoidal
harmonic testing about the output and spin axes, respectively.
The two types of tests appear to be approximately equal in
accuracy since both are dominated by the bias misalignment,
c, of the test axis. However, if the procedure of reversing
the sensor on the table top and repeating each run is used,
the bias misalignment effect may be largely eliminated. In
that case different error sources become dominant in the
two cases: misalignment shift for constant rate testing, and
test motion magnitude noise for sinusoidal harmonic testing.

The experimentally observed error term, Q, may be
measured in any of the three ways, rotating about the output
axis. The smallest estimation error shown in that cor-
responding to sinusoidal averaging, although all three are
roughly equal and each has a different largest contributor.

158



THE ANALYTIC SCIENCES CORPORATION

• The kjQ parameter group, H2/K-(Iss-Iii), may be measured
in any of three ways, rotating about the i/s axis (a large
signal case). Sinusoidal harmonic testing appears useless
due to the large distortion effect. The estimation errors in
constant rate testing and sinusoidal averaging are dominated
by torquer nonlinearity, the odd nonlinearities, €2 and €3,
in the former case and the even nonlinearity, ej_, in the
latter case. In actual practice since kjo is made up of
"desired" or nominal gyro parameters, its value should be
known a priori more accurately than it can be determined by
either of these i/s axis tests. This suggests that the reason
for running such tests may be to compare the indicated and a
priori values of kjo an^ to employ the differences as
measures of the two types of torquer nonlinearity. The
resulting measures of the nonlinear terms can then be used
to correct the estimates of kg as obtained in the i/o axis
tests. A set of input axis tests can also be run to obtain
another measure of the nonlinearities.

• The ki3 parameter group, IOOH/K, appears only as a \JL
term and only in the o/s axis sinusoidal harmonic test.
Based on the assumed error source values and parameter
values the one-sigma estimation error is considerably
larger than the nominal value of ki3. The dominant error
source is table wobble, %. Removal of its contribution
reduces the overall error to 0.085 dyne cm sec^. Since
the value of kis is well known a priori, an attempt to
measure it in this way might be useful in verifying the
accuracy of a sinusoidal harmonic testing set-up.

In summary, the reasons for considering the use of sinusoidal
harmonic testing are that it provides the only way to measure the effect of
I , the best way to estimate Ios and reasonably good redundant estimates
of several other gyro parameters in the small signal cases (test motion
axes o, s, and o/s). Sinusoidal averaging does not yield anything that is not
provided by constant rate testing, but appears to have better accuracy in

several cases.
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The example calculations summarized above are based on the

error formulas developed in Section 3.2 and tabulated in Table 3.2-2.
In this case the formulas are used to compute parameter estimation
accuracies for an assumed set of error source values and test motion
quantities. The same formulas can also be used, in a less straight-
forward fashion, to generate test equipment performance specifications for

given desired estimation accuracies (see examples in Chapter 4).

Chapter Summary — The information which may be extracted
from single-axis vibration tests and constant motion tests is identified.
The effects of various test error sources, such as test machinery errors
and measurement errors, on the accuracy of estimating various observable
quantities are analyzed. The different types of tests are compared on the
basis of observable quantities, data redundancy, number of test runs

required, data processing difficulty and accuracy.

All basic parameter groups can theoretically be computed from
the observable quantities obtained in a sequence of six angular and six linear
single-axis vibration tests if the harmonic content of the periodic applied
torque function is extracted. The six test vibration axes should be oriented
parallel to the three principal sensor axes--input, output and spin (or
pendulum)--and to the three axes lying midway between pairs of principal
axes. The full array of observable quantities from a complete test sequence
provides a considerable amount of redundant data which "overspecifies" the

basic parameter groups„
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A sequence of sinusoidal vibration tests in which only average
torque measurements are made yields only the parameter groups which give
torques proportional to the square of angular rate or acceleration, and no
redundant data. However, the data processing requirements for determining
average torque are considerably simpler than for extracting harmonic terms.
Extraction of certain harmonic terms provides redundant measurements of
these parameter groups but they are generally less accurate than the
measurements based on average torque.

All of the parameter groups except those which generate torques
proportional to angular accelerations can theoretically be computed from
the data produced in a sequence of constant motion tests. More test runs are
required since two or more different magnitudes must be used for each test
axis in order to separate the effects of various parameter groups. The data
processing function is the same as in sinusoidal averaging, and therefore
simple. Parameter estimation errors are more affected by some test error
sources and less affected by others, as compared to sinusoidal testing.

The data processing function for sinusoidal harmonic testing con-
sists of three phases. The first phase, in which harmonics are extracted
from the sensor output data for each run, directly influences the choice of
laboratory data processing equipment. Three candidate types of processing
algorithm, Fourier analysis, least squares estimation and Kalman filtering,
are considered and developed in some detail. The second phase is the com-
putation of the basic parameter groups from the redundant array of Fourier
coefficients. The third phase is the solution for individual sensor
parameters.
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The choice of test duration, for constant rate tests as well as
sinusoidal tests, is governed by the need to reduce the effects of quantiza-
tion and uncorrelated measurement noise. The Kalman filtering formula-
tion of the data processing problem is useful in deriving relationships

between test duration and test accuracy. Similarly the least squares esti-
mation formulation is used to show the effects of total test time and the
sample interval size on overall test accuracy.

Detailed numerical results of a set of example calculations,
corresponding to a typical SDF gyro undergoing a sequence of six constant
rate and six sinusoidal angular motion tests, are presented. These results
include the torque levels associated with each basic parameter group and
the variation of those levels with test motion quantities. Also illustrated is
the application of the entire set of test error formulas (given in Table 3.2-2)
for each of the three types of single-axis tests considered and each of the
six recommended test axes. A summary comparison of the predicted errors
in estimating ten potentially significant quantities is given in Table 3.5-10.
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4. IMPLICATIONS FOR TEST LABORATORY EQUIPMENT

The investigations described in the previous two chapters lead
to some rather important conclusions and recommendations concerning
the choice of laboratory equipment,, These recommendations must be
considered tentative at the present time since the investigations are .
incomplete. They are included, however, in the hope of stimulating fur-
ther discussion and interchange of ideas.

4.1 TEST MOTION MACHINERY

A significant overall recommendation stemming from the study
to date is that great stress should be placed on the appropriate use of
conventional single-axis devices, together with vibratory and constant
motion, for testing strapdown inertial sensors. In order to obtain the
maximum usefulness from the test data, careful attention should be given
to techniques for controlling and/or measuring the supplied motion and to
the means for processing the sensor output data produced during the tests.

The following conclusions pertain specifically to single-axis
testing of single-degree-of-freedom sensors, on which the study has
thus-far focused attention:

• Since it is essential, in sinusoidal harmonic testing,
to time-synchronize the sensor output data with the
test motion history (see Section 4.2), the test device
must include a means to provide accurate timing
signals indicating the time of passing through a zero-
reference position. These signals must be merged
with the recorded sensor outputs or, in the case of
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real-time processing, used to control the computation
itself. Of course, other measurements leading to a
more accurate knowledge of the applied motion history
are highly desirable.

It is more important to keep the form of the applied
motion close to that of a pure sinusoidal oscillation
than to accurately control (or know) the amplitude of
the oscillation. The example calculations suggest
that a bias error on the order of one percent in the
applied amplitude does not generate unacceptable test
errors, while a distortion of the shape of the applied
motion that causes second harmonic terms on the
order of one-tenth of one percent of the fundamental
motion amplitude leads to very large errors in some
cases (when the sensor input axis is along or 45
degrees away from the test axis). In some "small
signal" cases (when the gyro input axis is perpendicular
to the test motion axis) distortion is also a dominant
error source. Table 3.5-10 shows that if distortion
were significantly reduced from the assumed value, the
estimates of parameter groups kg and kn via sinusoidal
harmonic testing could be greatly improved.

The example calculations indicate that a bias misalign-
ment of the table axis is the dominant error is estimating
component misalignments. (A 10 sec table axis mis-
alignment results in a 10 sec error in measuring as or
|3O, depending on the test axis.) However, this bias
effect can be largely removed by repeating the appro-
priate tests after a 180 degree rotation of the sensor
with respect to the table. If the sensor is rotated as
described, the effects of run-to-run shifts in the table
axis misalignment and of table wobble become more
important than the bias for constant motion tests. The
example calculations suggest that values on the order of
several arc seconds will be acceptable for both of these
error sources.
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• As a result of satisfying the timing requirement
discussed in the first item above, the frequency of the
applied test motion will be known very precisely.
Therefore, uncertainties in the derived Fourier
coefficients caused by errors in knowledge of the applied
frequency will be insignificant (for the example calcula-
tions show that frequency errors on the order of one
percent are acceptable).

Nomographs relating test equipment performance, specifically
distortion of sinusoidal test motion and quantization, to test accuracy are
presented in Figs. 4. 1-1 through 4.1-3. They serve to illustrate prac-
tical use of the analytical results developed in Chapter 3. Since many of
the error formulas given in Table 3.2-2 involve five or six quantities, it
is difficult to represent them in the form of parametric curves which dis-
play the effects of changes in all variables of interest. Nomographs,
however, provide a convenient method for relating all relevant sensor
parameters, test motion quantities and geometry, test time, test equip-
ment performance and test accuracy.

The nomograph of Fig. 4. 1-1 is based on the following formula
for the effect of distortion of an applied sinusoidal test motion on the
estimate of a y term.

2 w c I A
- O OO /* 1 i\6y = - - (4.1-1)

This formula applies in small signal cases, where the test motion axis is
perpendicular to the gyro input axis (cj = 0). If W, to, c and I are
fixed and a desired (minimum) test accuracy level, 6y, is chosen, then
the allowable (maximum) distortion becomes:

_ W6y . }
A ( ]
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W w
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Figure 4.1-1 Nomograph for Distortion Effect -
Small Signal Cases
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T

(sec) (dyne cm sec2)

H AS

(dyne cm sec) (sTc)
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Figure 4.1-2 Nomograph for Quantization Effect
Constant Rate Testing
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W T

[deg/sec) (sec]

100 --

(dyne cm sec2)

H

(dyne cm sec)

A0

(sTc)

R-2558

TEST PERFORMANCE

0.16 dyne cm sec

EQUIPMENT REQUIREMENT

31 sec

Figure 4.1-3 Nomograph for Quantization Effect -
Sinusoidal Averaging

Eq. (4.1-2) is dimensionally correct if, for example, both Wand co are
2 2given in rad/sec, 6y in dyne cm sec and I in gm cm . For the units

\J\J

indicated at the top of Fig. 4.1-1 the following version applies:

1

O 00
2(180/ff)

(4.1-3)

where the terms in the brackets can be evaluated:

2(180/ir) 2ir = 0.00139
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The following formulas, using intermediate variables x, y and z, were

used in constructing the nomograph:

x = W/to (4.1-4)

y = X/CQ (4.1-5)

z = y 6y 0.00139 (4.1-6)

A = z/Ioo (4.1-7)

The sequence of line segments with right-pointing arrows illustrate how

the nomograph may be used to determine the equipment performance

requirement. In this case the given values:

W = 60 deg/sec

co = 1 Hz

co = 1

2
6y = 0.1 dyne cm sec

o
I = 100 gm cmoo &

lead to the maximum allowable distortion level:

A ^ 0.000083

Also illustrated is an alternate procedure in which a given distortion level

(A = 0.001) is assumed, along with the same values for W, co, CQ and I

given above. In this case the resulting test error (6 ^1.0 dyne cm sec'2)

is determined by working from both edges of the graph toward a crossing-

point on the 6 scale.y
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Figures 4.1-2 and 4.1-3 present nomographs which are based
on the following formulas for error due to quantization in constant rate
testing and sinusoidal averaging, respectively:

H A 9

2 1 HA6

(4.1-8)

(4.1-9)

Construction of the nomograph for the constant rate case with the units
given at the top of Fig. 4.1-2 is based on the following formulas:

3600(180Ar),/6

(180/Tr)2

1
H

x =

y = xT

z = y a 154

A6 = z/H

where the term in brackets can be evaluated:

(4.1-10)

(4.1-11)

(4.1-12)

(4.1-13)

(4.1-14)

3600 on
= 20

1(:,
* 154

Construction of the nomograph for the sinusoidal averaging case
with the units given at the top of Fig. 4.1-3 is based on the following

formulas:
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A 6 = W2 Ta 3600(180Ar)

2(180/Tr)2

x = W T (4.1-16)

(4.1-17)

(4.1-18)

y = xa 77.0

A6 = y/H

where the term in brackets can be evaluated:

3600/6" _
2(l80/ir) ~

Figures 4.1-2 and 4.1-3 illustrate the same two procedures
displayed in Fig. 4.1-1 — working from left to right to determine the
required quantization level* -- and working from both edges toward the
middle to determine the y term estimation accuracy resulting from a
given set of test and sensor parameters.

The type of nomograph and procedures illustrated in Figs. 4. 1-1
through 4.1-3 can be developed and employed for all of the test error
formulas appearing in Table 3.2-2. In each case all but one variable can
be fixed and a simple graphical procedure used to determine the unspeci-
fied quantity.

For binary and ternary rebalance loops the "effective quantization
level" is determined rather than the single pulse weight, as
explained in Section 3.2.5.

170



THE ANALYTIC SCIENCES CORPORATION

4.2 DATA PROCESSING EQUIPMENT

Constant Motion and Sinusoidal Averaging — If testing is
confined to constant motion and averaging measurements made during
vibratory motion, the data processing requirements are relatively
simple. For each test run the net number of pulses, representing the
integrated torque, and the total test time must be recorded. Following
a sequence of test runs some linear algebraic equations must be solved
to yield estimates of the parameter groups and sensor parameters (see
Eqs. (3.2-3) and (3.2-4)).

Sinusoidal Harmonic Testing — For sinusoidal harmonic testing
the data processing equipment required in the test laboratory is deter-
mined mainly by the data processing phase la (see Fig. 3.1-3). The
other phases must await the completion of a sequence of single-axis tests
and, therefore, will be performed off-line. (To the extent that some of
this subsequent processing can lead to a quick determination if a test is
successful, there could be a significant operational advantage in having
a limited amount of off-line capability readily accessible at the time the
tests are being performed.)

From the point of view of laboratory equipment choices there
are basically two ways to perform data processing phase la:

• Record the sensor output data (and measurements
of test motion if desired) for later off-line
processing.

• Process the data on-line as it emerges from the
test, producing immediately a set of filtered
estimates of the observable quantities (Fourier
coefficients).
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In either case the leading candidates for a processing algorithm are the
Fourier analysis, the least squares estimation, and the Kalman filtering
procedures outlined in Section 3.4.

If the first method is used, the crucial equipment specifications
are those required of the recording equipment. They result chiefly from
the high output data rate. For an analog rebalanced sensor feeding an
analog recorder, the recorder bandwidth must be higher than the first
few harmonics of the maximum applied test motion frequency. It is not
possible at the present time to establish a quantitative requirements
since high frequency testing has not been investigated. For a pulse
rebalanced sensor feeding a digital recorder, it would be desirable to be
able to record the complete sequence of pulses in order to make full
use of the test data. In this case the required data recording rate is
simply the maximum pulse rate used by the strapdown sensors under test.
Consider the following numerical example: a maximum test time of 200
seconds and a binary pulsed gyro with a pulse repetition rate of 5000
pulses per second. The recorder must, therefore, have the capacity to
store a sequence of one million binary digits at the rate of one every 0.2
milliseconds. Simultaneously it must record "timing marks" in a
parallel channel, indicating the zero-reference points in the test motion

history.

If on-line processing is used the computer must be able to
accept data at the sensor output data rate and simultaneously, process
equations like those of Section 3.4 at this same rate. This implies very
short operation times for the computer used. The various sets of
equations for the sinusoidal coefficients [for example, Eqs. (3.4-4) and
(3.4-5)] point up the need for careful time-synchronization between the
output data and the applied motion. The "weighting factors," sin ncot and

172



THE ANALYTIC SCIENCES CORPORATION

cos ncot, must be cycled through 2im radians for each period of the test

motion, without drifting out of phase. Otherwise, the computation will

not be one of averaging m sets of properly computed Fourier coefficients.

Also, if either the least squares estimation or Kalman filtering equations

are used, the time-varying elements of the H matrix [see Eq. (3.4-29)]

must be kept in phase with the actual applied motion history.

Chapter Summary — Test motion machinery specifications may

be derived from an understanding of the manner in which test motion

errors propagate into parameter estimation errors and from the overall

test accuracy requirements,, The propagation of test motion errors for

constant rate testing, sinusoidal averaging and sinusoidal harmonic test-

ing are treated in detail in Section 3.2 Nomographs provide a convenient

way to make use of the error formulas summarized in Table 3.2-2. The

overall test accuracy requirements depend on the underlying reasons for

conducting a specific set of tests —whether they are research oriented or

mission oriented, etc. - as discussed in Section 1.1. The data process-

ing functions for constant rate testing and sinusoidal averaging are quite

simple. For sinusoidal harmonic testing the data processing equipment

specifications depend on whether off-line or on-line processing is used.

In the former case the recorder characteristics, which depend on data

rate and test time, are crucial. In the latter case the on-line computer

characteristics, which are dictated by the data rate and the detailed nature

of the estimation equations outlined in Section 3.4, are crucial.
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5. CONCLUSION

5.1 SUMMARY OF FINDINGS

The starting point of this effort is a set of equations (derived in

Refs. 2 and 3) for motion-induced error torque in single-degree-of-freedom

(SDF) sensors. These error models have been manipulated in a way which

is valid for closed-loop, low-frequency testing, yielding error torque

expressions which are linear functions of a set of "basic parameter groups"

defined in Table 2.4-1. All of these basic parameter groups can theoretically

be identified and measured by means of a sequence of single-axis vibration

tests, including six angular vibration tests, and six linear vibration

tests. All but one of them are independent of test motion frequency

and magnitude. *

The following three types of single-axis angular-motion tests have

been studied in detail:

• Constant Rate Testing

• Sinusoidal Testing, Averaging

• Sinusoidal Testing, Harmonic Extraction

The bases for comparing the three types include the observable quantities

(measurable parameter groups), the amount of redundant data provided,

the number of test runs required, the degree of difficulty of data processing

*
See the discussion in Section 2.4.1 of the effect of rotor speed control

loop dynamics on kjQ.
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required and the accuracy with which various parameters can be estimated.

(A comparison summary is given in Table 3.2-3.) Constant rate testing is
the simplest to perform but does not produce the complete set of basic
parameter groups. Sinusoidal averaging is simpler than sinusoidal har-
monic testing but yields an even smaller subset of the complete list. Only
sinusoidal harmonic testing provides a measure of all the parameter groups.

The principal data processing function for both constant rate
testing and sinusoidal averaging is to compute average torque by generating
a net pulse count and dividing by the total time of a test run. For a sequence
of sinusoidal harmonic tests there are three data processing stages: the
computation of Fourier coefficients defining the periodic applied torque
function for each test run; the processing of the entire array of coefficients
from a complete sequence to produce the basic parameter groups; and the
computation of individual sensor parameters. The first stage may be
performed by means of Fourier analysis, least squares estimation or
Kalman filtering (detailed equations for all three candidates are given in
Section 3.4). The second stage is an "overspecified" algebraic problem
involving redundant information. The extra data can be used as a cross-
check on the operation of the test sequence or as a means to indicate the
existence of error torques not included in the model. The third stage is a
simple algebraic problem.

Methods have been developed for analyzing the effects of various
test error sources and of test duration on the achievable accuracy in
estimating sensor parameters. Three classes of test error sources are
considered: test motion errors, measurement errors and changes in the
sensor parameters. Motion errors and measurement errors have bias,
cyclic and high-frequency noise components, including the effects of
quantization. The resulting error formulas (summarized in Table 3.2-2)
have been used in a set of illustrative numerical calculations based on an
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assumed set of typical SDF gyro parameters. In these examples the
nominal magnitudes of the coefficients of the third harmonic terms are
extremely small, leading to the conclusion that the significant data from
each vibration test will be contained in five Fourier coefficients (the bias
term, the coefficients of the sine and cosine terms at the fundamental test
motion frequency and the coefficients of the second harmonic sine and
cosine terms). Constant rate testing or sinusoidal averaging appear to be
more accurate than sinusoidal harmonic testing in a number of cases.
Sinusoidal harmonic testing provides good redundant measurements in the
cases where the sensor input axis is nominally perpendicular to the test
motion axis. It also provides good measurements of parameters and
parameter groups which cannot be determined by the other types of testing.
In two situations sinusoidal harmonic testing appears to yield the most
accurate estimates of parameters which can also be measured using one of
the other techniques.

5.2 RECOMMENDATIONS

The apparent effectiveness of a combination of vibration testing
and constant rate testing leads to a major recommendation of this study—
that conventional single-axis devices should be given strong consideration
when developing test procedures for strapdown inertial sensors. Some
indications of quantitative test equipment specifications can be drawn from

the example test error calculations presented (these are summarized in
Section 4.1).
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While constant rate testing is by far the simplest to perform, it

is important that some cross-checking by sinusoidal averaging and probably

by harmonic testing as well, be performed. It may be desirable, for

example, to develop an operational calibration procedure using constant rate

testing to generate coefficients which will compensate for the effects of

system vibrations. The appropriateness of compensation so derived should

be verified by means of vibration testing, which more closely resembles

the dynamic environment to which strapdown sensors will be subjected.

If maximum benefit is to be obtained from harmonic testing,

either high speed recording equipment or high speed on-line, real-time

data processing equipment will be required in the test laboratory. These

would be needed to extract the harmonic content of the rebalance torque,

averaging data taken over many test motion cycles. A trade-off between

the sophistication of laboratory data processing equipment and the complexity

of motion-supplying devices is apparent. For example, a sequence of

single-axis vibration tests combined with data processing which extracts

harmonics, can substitute for multi-axis tests employing out-of-phase

vibrations.

An overall conclusion may be stated as follows: It appears

that useful information can be obtained from a sequence of practically

achievable single-axis vibration tests. However, the test error

analysis is only as good as the assumptions on which it is based, and it is

possible that some test error sources will be much larger than those

assumed in the example calculations, or that there are other important

error sources not included in the analysis. It is therefore recommended

that a set of feasibility tests be conducted as soon as possible. These tests

would apply low-frequency single-axis angular vibrations to an
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analog-rebalanced SDF gyro and use available signal-processing equipment
to determine the harmonic content of the gyro output signal. The test
results should be used to answer the following questions:

• Do the magnitudes of the output harmonics
agree generally with predictions ?

• What are the most significant sources of
test error?

• What can be done, via test hardware modi-
fications, to reduce these errors?

• After appropriate hardware modifications have
been made, what is the "real" data processing
problem remaining? That is, what noise sources
must be filtered; or what cyclic or bias errors
should be calibrated?

Besides verifying the practicality of the proposed type of testing, a series of
feasibility tests would provide information which would be useful in guiding
the continuing analytic studies discussed below. These, in turn, would
become more useful in producing realistic test laboratory equipment
specifications and in developing appropriate data processing procedures.

Continuing studies related to low-frequency, single-axis test-
ing of SDF sensors should be broadened in some respects and deepened
in others. The test error analyses should be developed into a parametric
study, covering a range of sensor parameters and test motion quantities,
with the goal of providing approximate indications of the test duration and
equipment precision required to extract sensor parameters to specified
accuracies. Particular test situations with particular sensors should be
analyzed in detail, with the goal of making specific recommendations as
to test procedures and data reduction techniques. A generalized simulation
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capability would be useful in verifying analyses already performed and

in evaluating alternative data processing schemes.

A better understanding of motion-affected errors which are

mentioned in Section 1.1 but not included in the present error models, such

as those caused by scale factor changes and friction torques, should be

developed. These additional error terms will also be considered in devising

test procedures.

The potential advantages and difficulties of employing high-

frequency, single-axis vibration tests on inertial sensors should be

evaluated. An attempt should be made to re-formulate the data process-

ing problem discussed in Section 3.4 in a convenient way which does not

depend on the low-frequency assumption. A high-frequency test motion

error analysis should, if needed, also be developed. The goal of this

investigation would be to indicate if information concerning dynamic

instrument errors that is not revealed by well-designed low-frequency

tests can be extracted by high frequency tests, and if so, to provide

error analyses which can be interpreted in terms of test equipment

specifications.

The importance of stability of strapdown sensor parameters

suggests that the recommended tests be employed in a sequential fashion,

aimed at measuring stability. Strapdown sensors may only be calibrated

before installation in a vehicle (since they cannot be isolated from inci-

dental vehicle motions and reoriented relative to gravity and earth rate)

and a means must be available to predict, with known confidence limits,

the stability of the measured parameters. Stability will be a prime objec-

tive of the instrument designer, and tests which relate sensor design

features to coefficient stability will be of great value. Prior theoretical

work related to this subject should be reviewed and experiments for

evaluating mathematical models of parameter variation should be designed.
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APPENDIX A

DERIVATION OF TRIGONOMETRIC SERIES COEFFICIENTS:

VIBRATION TESTING OF SINGLE-DEGREE-OF-FREEDOM SENSORS

This appendix derives expressions for the Fourier coefficients

which are the observable quantities in single-axis angular and linear

vibration tests of single-degree-of-freedom (SDF) gyros and

accelerometers.

SDF Gyro: Angular Vibration — The general expression for

angular motion-induced torque in a SDF gyro is given as Eq. (2.4-5)

and is repeated here:

Mang = kl*L

Vs

7i 8~o 7~s

k14d)ocoi

where k.. through k-. are the basic parameter groups defined in Table 2.4-la.
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A general single -axis angular vibration of amplitude W and

frequency to can be represented by:

to. = CjWsintot = WA sin cot (A-2a)

wo = c
0

Wsin wt = W
0

sin wt (A-2b)

to_ = c Wsin cot = W sin tot (A-2c)s s s

where c. , c and c are direction cosines relating the vibration axis toi o s
the gyro principal axes and W. is defined as c.W, etc.

The derivation consists of substituting Eqs. (A-2a), (A-2b) and
(A-2c) into Eq. (A-l), term by term, and applying well known trigono-

metric identities, as shown by the following examples:

. cos tot (A-3a)

wio>0 = kgW.Wosin2 cot = ̂ kgW. WQ(1 - cos 2 tot) (A-3b)

0 O *3 1 9
k12to.to = k12W.W sin tot = ^kjoW.W: (3sin tot - sin3 cot) (A-3c)

k14ioW8 = |k14Wo^wr°8a>

= | k14WoW?aj 1 cos tot (1 - cos2cot)

= rk14WoW
2tol[cos cot - cos3wt 1

= |k14WoWia}liCOSa3t -^Cos3a5t " 3 cos cot) 1

= k W W 2 c o (cos tot - cos 3 cut) (A- 3d)
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After treating all terms in Eq. (A-l) in the above fashion and grouping
similar terms, we obtain:

M = B + St sin cot + C. cosang 1 1

+ S0sin2cot + C0 cos 2cot& ft

+ S0sin3a)t +
0

(A-4)

where the seven trigonometric coefficients (Fourier coefficients) are:

B =

, = k.W. + k_W + kcW + |k10 (w3 - W.W2)1 4i 5o 6 s 4 12 \ i is /

(A-5a)

(A-5b)

Cl = k2Wo + k3Ws + ?k!4Wo
(A'5C)

(A-5d)

*9wiwo + k W W + k W W! 0 i s l l o s ]
(A-5e)

(A-5f)

(A-5g)
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SDF Accelerometer: Angular Motion —The general expression

for angular motion-induced torque in a SDF accelerometer is given in
Eq. (2.4-13) and is repeated here:

(A-6)

where k.. through kR are the basic parameter groups defined in Table 2.4-lb.

Equations just like Eqs. (A-2a), (A2-b) and (A-2c), except that
oj , c and W are used instead of co0, c and W , are substituted intop p p s s s
Eq. (A-6). After applying the same trigonometric identities, illustrated
in Eqs. (A-3a) through (A-3d), and grouping similar terms, we obtain:

M = B + C, cos ostang 1

+ C0 cos2tot
Cl

+ C<jCos3wt (A-7)
o

where the four Fourier coefficients are:
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B = £ I k, (W" - W" ) + kcW.W + kcW.W + k-W W 12 | _ 4 \ i p / 5 i o 6 i p 7 o p J

Cl = co | kjW. + k«W + k«W + ik«W. (W2 -
2 o 3 p **8Wo ( W f

C0
 = - ^ I k. fw2.- W2} + k_W.W + k.W.W + k^W W 1 (A2 2 | _ 4 \ i p / 5 i o 6 i p 7 o p J v

1 / 2 2\CQ = - TkoOsW WT - W (A-8d)3 4 8 o V i p/

SDF Gyro: Linear Vibration — The general expression for
linear motion-induced torque in a SDF gyro is given in Eq. (2.4-15)
and is repeated here:

M = k.f. +k0f +k0flin 1 i 2 o 3 s

+ k.f2 + k,f2

4 i 5s

+ Wo + Vi's + VO'B <A-9)

where k. through kft are the basic parameter groups defined in Table 2.4-lc.

A general single-axis linear vibration of amplitude A and frequency

a? can be represented by:

f. = c. A sin cot = A. sin cot (A-lOa)

f = c A sin cot = A sin cot (A-lOb)

f = c Asincot = A sincot (A-lOc)s s s
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Substituting Eqs. (A-lOa), (A-lOb) and (A-lOc) into Eq. (A-9) and regrouping,

we get:

_. = B + S1 sino)t + C0cos2o?t (A-ll)iin A &

where the Fourier coefficients are:

5As
2 + k6A. Ao + k^. Ag + kgA^] (A- 12a)

S, = k,A. -f k-A,. + k,A (A-12b)
1 11 fi O «3 S

= 1 [k4A
2

C2 = - \ ? + k5As + k6AiAo + VlA. + k8AoAs] (A' 12c>

SDF Accelerometer: Linear Vibration - The general expression
for linear motion-induced torque in a SDF accelerometer is given in

Eq. (204-16), which is identical in form to that of Eqs. (2.4-15) and (A-9),

except that f is used in place of f. The basic parameter groups k.p s i
through kg are defined in Table 2.4-ld. Equations just like Eqs. (A-lOa),

(A-lOb) and (A-lOc) can be substituted into Eq. (A-9) to yield Eq. (A-ll),

exactly. The three Fourier coefficients, B, S1 and C2, are defined

exactly as in Eqs. (A-12a), (A-12b) and (A-12c), except that A appears

in place of A . Therefore:s

B = \ k4A
2 + kgA2. + k6A. Ao + k^. Ap + kjA^J (A- 13a)

Sl = klAi + k2Ao + k3Ap (A-13b)

C2 • - I [k4Af + k5Ap + ViAo + k AAp + k8AoAp] 'A
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APPENDIX B

TEST MOTION BIAS ERROR ANALYSIS:

ANGULAR VIBRATION TESTING OF

SINGLE-DEGREE-OF-FREEDOM GYRO

This appendix describes the effects of bias test motion errors
on the Fourier coefficients defining the applied torque function during
single-axis angular vibration tests. The test motion errors considered
are errors in the knowledge of amplitude and frequency of the applied
motions and misalignments of the test motion axes.

Derivation Overview - The derivation begins with Eqs.(A-5a)
through (A-5g) of Appendix A. These equations relate the 7 Fourier
coefficients to the gyro parameters and the test motion quantities for
the general in-phase case:

(B, sr cv s2, c2, ss, c3) = f (kr..k14, w., wo, ws, w) (B-D

where ̂  represents the seven given functions.

The derivation proceeds in three major steps as follows.

First, partial derivatives are taken with respect to the motion quantities
to yield 7 perturbation equations which can be expressed in one vector
matrix equation:
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6W.i

6W
= M

6W

6B

«!
f>cl

6C2

6C3

where the elements of M1 are expressions involving the k's, W., W , Wi i o s

(B-2)

and co.

Second, Eq. (B-2) is transformed into the form:

6W

(B-3)

s

6 to

which relates the Fourier coefficient errors to test motion magnitude and
angle errors, rather than component errors.

Finally, Eq. (B-3) is specialized for the six test axis orientations
of interest and reduced to the form:
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6W

(B-4)

The test axis misalignment angles, e., and €«, have different meanings in
each case. If the test axis is one of the principle axes (say i), then c.. and
e« are simply the misalignments about the other two (o and s). If the test
axis lies midway between two principle axes (say i and o), then e1 is the
misalignment about the third (s) and €„ is the misalignment about the axis
perpendicular to both the test axis and the c« axis.

These three steps are followed in detail below, concluding with
six equations (B-8a) through (B-8f) giving the expressions for the elements
of the matrix M« for each of the six test motion axes of interest.

Derivation Details — Equations (B-5a) through (B-5g) give the
seven perturbation equations obtained by taking partial derivatives of
the seven equations, (A-5a) through (A-5g). Equations (B-6a) through
(B-6e) develop the relationship of component errors (SWj, 6WO, 6WS)
to magnitude and angle errors (6W, q, eo, cs). The three relations
of Eq. (B-6e) were substituted into the perturbation equations to obtain
new perturbation equations, as shown in Eqs. (B-7a) through (B-7g).
Table B-l summarizes facts needed to specialize the perturbation
equations to the six tests of interest. Finally, Eqs. (B-8a) through
(B-8g) present the seven perturbation equations in vector-matrix form
for the six cases.
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6B =

[k8Wo-ik9Wl+ikllW.]SWo

[-k7Ws+2k10Wi+5kllWo]6Ws

[0] 6w (B-5a)

,2 3 6W.

+ Viki2w
iWs] 6W

(B-5b)

[klWi + k2Wo + k3Ws + ?k!4Wo (B-5c)

6S0 • = k13Ws 6Wo
[0]6W.+[|k13Ws]

+ [lk13Wo]6Ws+[lk13WoWs]6»
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[0] 6to (B-5e)

|"-£k1A w 2 -w 2 l|_ 4 14 i s J

[fk14WoWs]6Ws

ewo

6W

191

W = W.l. +W1 +W1 (B-6a)

W = W !„ = W (c.I. + c 1 + c I ^ (B-6b)W V i i o o s s /\ /

6W = W 61W + 6W lw = 6W.I + 6Wlo + 6Wgls
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K -2618

Figure B-l Test Axis Misalignment Angles

The direction cosine errors are, from Fig. B-l:

6ci = Vo - Vs

6c = c. e - c e.o i s s i

6cs = Vi - Vo (B-6d)

Therefore:

6W. = c.6W - Wcoes

6W = c 6W +Wc.e - We e.
O O IS 81

6W = c 6W + We e. - We. e
S S O 1 1 O

(B-6e)
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6B = W (k7c. - ik9CQ + ik10cg) (c. 6W

+ W ("I Vi + Vo + f kll°s) (co6W - WVi + Wi

+ W(lk10ci + lkllco - k7cs) (cs6W + WVi - WVo)

+ (0) 6W

= W k7c + kgc - k7c - k9c.co + k10c.cs + kncocs 6W

+ ̂ [^l^o + Ik10cs - 2kllcico + 2Vics - (k7 - k8)cocs] fi

+ W2[fk10cl + Ik10cs - 5kllVo + 2Vics - lVoc.] fo

+ w2 [-K6,2 + I V2 ' (k7 + ke) cico + 5kllcics - 5k10cocs] fs
(B-7a)

' [k4 +(?k!2Ci - ̂ IB0')^] (CiW + Wcsfo - WVs)

+ l"k,l (c 6W - We <r. + Wc.c }|_ 5j \ o si is/

+ Fkc - Ik10c.c W2 1 (c 6W + We c. - Wc.e }[6 2 12 i s J \ s 01 107

+ [0] 6o>

" [k4Ci + k5Co + Vs +(!k!2Cf - ?k!2ci cs W 6W

[(k4cs - k6cl) W + (I k!2c
1
2cs - I k!2cs)

k4co + k5ci) W + (-!k12cfco + f k12V

6W (B-7b)
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6C. - to c - We .s o o s)

co6W - W»[*a + (?k14cf - ?k!4

">[k3 ' 2k14Cocsw

[(Vl + k2co + k3cs)W +(?k14coc2 - I^

. + Wc.e \i i sj

Cs8w + wVi - WVo

— * • I lr r> 4- lr f* - 1 - T r P
tO ft-* Vx. ~ t\.~\^ T l^n^

1 1 1 Z o 3s k!4cf co - !k!4 Vs

-ik14ej
2cs + J^cJ - i^cjc,) W3]

,c - koC.W -ik-.c-c c W3]e1 s 3 i/ 4 14 i o s Jo

K \ / 1 9 1 ^ 1 9 \ ^ 1

-klco + k2Ci) W + (-Ik14cico + 5k14Ci - ?k!4cics) W J

) w +(?k14^co - Ik14coci + Vo + k3cs

6S2 = (0) 6W.

' "[k!3cocsW]

k!3<=2^-

W2"
k r rK13cics 2

k c2
K13Cs

*s +

w2]
2

k!3

Cj + CO

cc Wo s 2

2"

k cc W2
XV^ A \^. ^ **13 i o 2

6 co (B-7d)
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6C, = [(Vi + k9Co - k!0Cs) W] [Ci5W + WVo - WVs]

+ [('Vo + k9ci - kllCo)W] [Co6W - WVi + WVs]

+ K-k_c - k,nc. - k--c W] I c 6W + We e. - Wc.cL\ 7 s 10 i 11 oj J [ s 01 i oj

[0]

= W [k7Cf - Vo * Vs + k9cico - k!0cics - kllcocs] 6W

+ w2

+ W2

w

-KlCo + ̂ kllCs - KoCiCo - ^k9CiCs + (k8 * k?) Vs] ei
J

-4-^k n^ —Ic r' + —k rr + 9k r r + — k r r
L 2K10Ci " 2K10Cs 2K11 Ci o ^K7 Cis 2K9 o sj

1, 2 1. 2 /. ^,
"2kQCi ' 2kQCn " Vk7 +l

£1 a 1 & o \J \ I
Cico - Ikllcics +

[0]6o!

5S3 = - [•,6W

-3k c
3

 + 3]
4K12Ci 4 J LCsl6W

+ W ^1

[•*+ w3 [4k12c
3 -

(B-7e)

[0] (B-7f)
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e - We €so o s

+ to V
.k C

4K14Ci
c 6W - We e. + Wc.eo si is.

+ (B-7g)
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TABLE B-l

SPECIALIZATION TO SIX CASES OF INTEREST

^€i ' €o' *s' ~ '€1' €2'

'2

c.

w. = w

wo = w

w. =

w. = w =
1 S

w = w =o s

1

0

0

1

0

1
0

1

V*"

0

0

1

0

1

cl
f
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Angular Vibration about the Output Axis

(W0 = W, c0 = 1)

6B

8Si
6C,

6S,

«C2

«s3

A

=

kgW

k5

«*2

0

-k8w

0

0

Ik W2

2K11

k6w

o*3w

w^

-Ik W2

2 11

0

0

iv*
-k4w

-^w

0

-h*2

0

0

0

0

V

0

0

0

0

6W

603

(B-8a)

Angular Vibration about the Spin Axis

(Wg = W, cs = 1)

6B

5Sl

«Cl

«s2

6C2

6S3

_«c3_

=

-k?W

k6

Wk3

0

+k?W

0

0

-Ikllw2

kgw

-(k2W + lk!4w3)

-cok ^

+lknw2

0

-4k!4w3

\\y
k* W - -k WK4W 4K12W

wklw

0

-KcX
Ik W3

4k12W

0

0

0

k3w

0

0

0

0

6W

€i

eo

6u)

Dominant Term.

*B-8b)
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Angular Vibration about the Input Axis

(Wi = W, Ci = 1)

6B

6S1

6C

6S2

6C2

6S3

!c*.

-

^
^KX

tok,1

0

-k?W

3 J2
-4k12^

0

-ik W2

2K10W

-k6w

-a* W3

0

^K/

0

0

-K-2

kcW0

w(k*w + lk W3)
2 4 14

0

-K"2

0

0

0

0

k W1

0

0

0

6W

eo

€
s

6.

(
Angular Vibration about Output and Spin Axes

(W0 = Ws = W/yi, C0 = cs = 1//2)

6B

6S

6C

ac

W

5 6

co (k!+k3)-7=-|i
[ 2 3 A^ 8 -

w
wk!3T

W2

(k +k )-
5 6

w2

W3

2 1 0

V* W - _k Wk4W 8k12W

(B-8c)

- - . , -
A/2 8 14A/2

W3

8W

(B-8d)

Dominant Term.
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Angular Vibration about Input and Output Axes

= c0=l//2)

SB

fiS,

6S.

ec.

6C,

W

3k W3

1, W3

10
.

> /£

»w

W2

2 l l

4*14^

Angular Vibration about Input and Spin Axes
= Ws = WA/2, ci = cs = 1/-/2)

Dominant Term.

6W

6(0

(B-8e)

6B

6Sj

eCj

2

6C2

6S3

3

— k W
2K10W

(k*+kg)-^-|k12^

1
uKkj+kj)— -=.

0

-IV

0

0

j_ if \X/> JVM "

4 6V2

/, , > Ww(kl'k3)~7=1 3Vz

0

-^

0

0

X,-v^
0

0

2Wk13V2

-2(kirk9}^|

1 W3
"8K12W

4k14w
3

0

0

0

0

0

0

6W

€o

€P

((B-8f)
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APPENDIX C

KALMAN FILTERING FORMULATION

For the single-axis vibration tests described in Chapter 3, the
first data processing stage (see phase la in Fig. 3.1-3) is one which ac-
cepts as input the scalar, periodically time-varying gyro output and pro-
duces as output the set of Fourier coefficients defining the applied torque
function. This appendix formulates this data processing function as a
problem in linear estimation for which the Kalman filter is an optimal
solution. The filter equations, which could be used for processing actual
test data, are presented. A hypothetical situation in which there is no
process noise is used to demonstrate the trade-off between test accuracy
and test duration, and to show a connection between this type of processing
and classical Fourier analysis. Finally, the full problem, with both
measurement noise and process noise is treated and some approximate
equations, which are useful in predicting the achievable test accuracy and

required test duration, are developed.
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C.I FILTER EQUATIONS

In this section the estimation problem is formulated in mathe-
matical terms and the optimal solution is stated in the form of a set of
differential equations, the Kalman filter equations, which can be mechanized
to process data. No proof is given here for the optimality of this solution
since it is well documented. (See, for example, Ref. 8.)

The problem formulation requires three things: a linear meas-
urement equation, a linear state differential equation and a description of
the statistics of the random variables defined in these two equations. A
scalar time-varying signal (torquer current) is measured which, except for
errors in the measurement process, is proportional to the output of the
torque generator. Therefore, the measurement equation is (See App. A.):

z = M + erroro

= B + S.. sin tot H-C

+ S2 sin2 cot + C, cos2 tot

+ S, sin3 tot + Cg cos 3 tot

+ error (C.l-1)

which can be rewritten:
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z =

x4h4(t) + x5h5(t)

+ v(t)

. = Hx + v (C.l-2)

The components of the state vector x are the 7 Fourier coefficients. The
elements of the measurement matrix H (in this case a row vector) are the
set of time -varying functions (1, sin cot, cos cot, sin 2 cot, . . . ). We assume
the measurement noise v to be Gaussian white noise with zero mean and
covariance r6 (t - T), where 6 is the Dirac delta function:

v(t) = 0j v(t)v(T) = r6( t - r ) (C. 1-3)

Before discussing the state differential equation and process
noise we distinguish between the following two test situations. In case a
the only data produced by the test is that representing the time history
of the gyro torquer output, and it is natural to define measurement noise
as above. No measurements of test table angle are generated, and it is
also natural to regard fluctuations in the applied test motions as one source
of process noise. In case b both gyro rebalance torque and test table angle
measurements are generated. In formulating the estimation problem
below, however, we continue to treat gyro torque measurement errors as
the only source of measurement noise and we regard table angle encoder
errors as a source of process noise. This point of view avoids more
complex calculations which would arise if we expanded the measurement
equation to include table angle measurements.
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Case a

The state equation is the seven-dimensional vector differential
equation expressing the rates of change of the seven Fourier coefficients.
The state equation is:

where the process noise vector u is also assumed to be Gaussian white
noise with:

u(t) = 0; u(t)u(r) = Q 6 ( t - r ) (C.l-5)

There are two ways in which process noise can occur. Consider the fol-
lowing specific example of a single-axis angular vibration test. The test
motion axis is midway between the gyro output and spin axes; the applied
angular rate is given by:

W

Based on the expressions given in Table 3.1-1 we can write for the
measurement equation:
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Z =

W

•Tz (Vke) sin cot

-Kj cos tot

13 sin 2 cot

cos 2 cot

+ [0]sin3 cot

l4
8

v(t)

cos 3 co t

(C.l-7)

The terms in the brackets are the seven state variables in this example.
They can vary either because the basic parameter groups (the k.'s) vary
during the test or because the test motion amplitude and frequency (Wandco)
vary during the test. If test motion variations are the major cause of
process noise, the various components of the noise vector will be highly
correlated since W appears in all six non-zero state variable definitions
and co appears in three of them. That is, the off-diagonal elements of the
Q matrix will be non-zero and significant. If, on the other hand, gyro
parameter changes are the major cause of process noise, we would expect
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very little correlation between process noise components; the only exception
being a strong correlation between the first and fifth components because
both depend on parameter groups k-, kg and k.....

Since both the state equation and the measurement equation are
linear (with time-varying coefficients in the latter), and since the process
and measurement noises are assumed to be Gaussian, the Kalman filter is
the optimal way (minimum variance estimation error) to process the meas-
urement data. The applicable form of these equations may be written:

x = K [z - Hx ]

1 T= -PHr

= Q--PHTHP

(C.l-8)

(C.l-9)

. (C.l-10)

where x is the optimal estimate of the state vector x, K Is the Kalman
filter gain matrix (7x1) and P is the covariance matrix of the estimation
error:

= ( x - x ) ( x - x ) J (C.l-11)

The integration of Eq. (C. 1-10) yields curves like that illustrated in Fig. 3.3-3.
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Case b

We now consider the situation in which table angle measurements
are generated. In the following formulation Eq. (C. 1-10) still applies, but
with a modified interpretation for the process noise matrix Q. Consider the
third state variable in the above example:

Differentiating:

o .

We will consider the test motion changes, W and to , as control functions
which change the values of the state variables (Fourier coefficients). The
indicated values of these control functions, which are derived from test
table measurements, enter into the filter equations as a control vector.
Following the development in Ref. 7, Section 2.2, "State Estimation
Without Measurements, " we can write for the state equation:

x = u= Fx + Guk+ Lp_

[See Eq. (2. 2-6) in Ref. 7.]

where, in this case:
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F = 0

u. represents random "system disturbances," or changes
~~ in the values of the parameter groups (fcp ... fc^)-

p represents the "control function, " or test motion changes
(W, co).

G is a 7 x 14 matrix whose elements are terms like wW/V~2"

L is a 7 x 2 matrix whose elements are terms like

Following Eq. (2.2-8) in Ref. 7, we can write:

0 0
P = / P + P /T + GQ,GT + LSLT (C.I

/ ' K

where:

uk(t)uk(T)T = Qk6(t-T) (C.l-16)

and:

[P(t) - Pind(t)] [p(t) - Pind(r)]
T = S 6( t -T ) (C. 1-17)

We define the effective, overall process noise matrix as:

GT + LSLT (C.l-18)

where GQ,G represents the contribution of random changes in the gyro

parameters and LSL represents the contribution of "errors in the applied

control, " i.e., errors in the indicated test motion. We have adopted

the following point of view. The indicated history of test motion, de-
rived from the table angle measurements, is regarded as the "desired"

control function. The difference between the actual and indicated motion
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changes can then be regarded as the error in the applied control. This

error is effectively a process noise in this formulation.

Together with the modified interpretation of the process noise

matrix Q, Eq. (C. 1-10) must be modified to account for the effect of the
indicated, or "desired," control:

x = K[z - Hx] + Lp (Co 1-19)

C.2 TEST TIME VS ACCURACY

For the hypothetical situation in which there is no process noise

(Q = 0) Eq. (C. 1-10) reduces to:

P = - l p H T H P (C.2-1)r

Since the derivative of the inverse matrix can be written:

• -1 -1 • -1
P = -P PP x (C.2-2)

we can write:

P"1 =-P"1PHTHPP"1

r

= ^H A H (c.2-3)

Based on the definition of H we have:
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HTH =

sin2t,-t

sinu-tcosu-t sine,-tsia 2t j<l sinu-tcos 2u.'t

sin3u-t

' tsin2£i ' t cosa't cos2a-t cos a- 1 sin 3u.-t

symmetric

sin2a:tcos2a;t

2
cos 2a- t

2
sin 3tt-t

cos3a-t -

inu-t cos 3a-t

cos 3u:t

t cos 3o*t

o
cos 3 a- t

(C.2-4)

Notice that the off-diagonal elements are products of two time functions which

are orthogonal over one test motion period, T = 27r/cc (the integral of the
Tproduct is zero). The integral of the matrix H H over exactly one period

is, therefore, the diagonal matrix:

I
t = (n + l)T

HTHdt =

t = nT

I
2 1

2 1
2 1

2

O

2 1
2

(C.2-5)

Therefore, the change in the inverse covariance matrix over one cycle cf
the test motion is:
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i
2 1 o

o
1
2 1

2 1.
2 1

2

(C.2-6)

and

P"1(nT) =

1
2 1

2 I
2 1

2

O

2 1 .
2

(C.2-7)

where n is the number of cycles since the start of the test. After sufficient
time has elapsed the second term of Eq. (C. 2-7) dominates the first term,

P" (0), allowing us to write the approximate expression:

t -»large

Oj.
2 j.

2 1.
2 1

2 1
2 1

2
O

(C.2-8)

The covariance matrix then becomes (taking the inverse of the inverse):
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P(t) « f
t -» large

"l
2

2

O

o"
2

2
2

2

(C.2-9)

Thus, for the no-process-noise case, the simultaneous estimation of the
seven state variables, x1 through x^, separates into seven scalar problems
for which the rms estimation errors are:

11
r
t (C.2-10)

and

P..11
2r
t (1 = 2 ,3, . . .7) (C.2-11)

Equation (C. 2-11) illustrates the trade-off between test time and test accuracy
as a function of the measurement noise.
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C. 3 CONNECTION WITH FOURIER ANALYSIS

The analysis of the preceding section can be extended slightly to

demonstrate an interesting connection between optimal filtering and Fourier

analysis techniques.

The combination of Eqs. (C. 1-9) and (C.2-9) yields the following ap-

proximate expression for the filter gain matrix:

K
t •* large

1 T= -PHr
1f-t

2 sin co t

2 cos cot
2 sin2 cot

2 cos 2 cot

2 sin 3 co t

2 cos 3 cot

Substituting Eq. (C.3-1) into Eq. (C. 1-8) yields:

1
2 sin cot

2 cos cot

2 sin 2 cot

•
e
0

Z -

1

2 sin cot

2 cos cot

2 sin 3 co t

•
•
0

(C.3-1)

-i [1 sin cot cos cot ...]

(C.3-2)
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Integrating Eq. (C.3-2) over one cycle, and treating -^ and x as constant over

this time yields:

nT

1

2 sin cot

2 cos tot
zdt - IxT

In Fourier analysis the coefficients are determined by:

T

zdt

o
T

. dt
o

T
2 /•

Cn = T I zcos(n"t) dt
•o

See, for example Ref.9. Also t^ nT. Therefore:

= ̂  |

n = T f zsin(nw

/\ JL.Ax ^ = —-n+1 n

Fourier estimate of x
based on (n+ l)st cycle
of data.

- x-n

and:

(C.3-3)

(C.3-4)

(C.3-5)

(C.3-6)

(C.3-7)

x,i = x + Ax -—n +1 —n —n +1
(C.3-8)
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Thus, after sufficient time has elapsed, the optimal filtering equation be-

comes approximately Eq. (C, 3-8), in which the state vector estimate x
based on n cycles of data is adjusted by a weighted (1/n) difference between

the Fourier estimate based on the n + 1s* cycle of data and the previous

estimate o

C.4 STEADY STATE SOLUTIONS WITH PROCESS NOISE

We now consider the effects of process noise, represented by the
matrix Q in Eq. (C. 1-10). The elements of the Q matrix along with the meas-
urement noise r determine the final value of the elements of the P matrix
as well as the settling time, t . Note that the rms estimation error of thes
i^1 state variable is the square root of the i*h diagonal element of the co-
variance matrix:

(C.4-1)

Equation (C.l-10) represents n (n + l)/2 simultaneous first-order
ordinary differential equations which are nonlinear (since P appears twice

in one term) and which contain time varying coefficients (the elements of
•

H). The elements of P cannot reach constant values (with P = 0) since the
elements of H change continuously. They can, however, reach a steady-

state solution in the form of an oscillation about average values.

The most evident way of investigating these steady-state solutions

is to numerically integrate Eq. (C. 1-10) via computer, starting from various
initial values. Some examples of such integrations for one- and two-

dimensional versions of the problem are illustrated in Figs. C-l and C-2 and

discussed below. We can achieve an analytic indication of the final average

values by making some simplifying assumptions as follows.
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(D

(r =&(D<
Iq =

f r =

(q =

100

10

10

100

44.7 = V2rq

Figure C-l Numerical Integration Results

Consider, first a one-dimensional version of Eq. (C. 1-10) where
we are trying to estimate a single variable, the magnitude of a sinusoidal
oscillation:

p (t) = q - V(t)p2(t) (C.4-2)

where

h(t) = sin (C.4-3)

The scalar p is the variance of the estimation error and the scalar q charac-
2

terizes the process noise. We set h equal to its average value (1/2) and let
p = 0 to obtain the steady-state equation:

0 = * - 27Pss (C.4-4.)
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r = 10

- 100

"22 =

P22ss
from E(1-(C:. 4-ieJ

1.414
0.617

C12

0
0.9

) Exact
f Solutions

t (sec)

Figure C-2 Improvement in Small Term Estimate Due to Correlation

Therefore:

(C.4-5)

The validity of this solution is demonstrated in Fig. C-l where integrations
of the exact equation, Eq. (C.4-2), are plotted for four combinations of r, q

and p (0). Note that while the steady-state value is apparently the same in

all cases, it is approached much faster with the smaller measurement noise,

r. Also note that the true steady-state solution is more oscillatory with

the higher ratio of q/r. (Oscillations are also present in cases (T) and (2)

but are too small to be seen in the figure.)
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Consider next the two-dimensional problem in which a large
variable (Fourier coefficient), x.,, is multiplying sin tot and a small variable,
x« is multiplying sin 2 cot. We refer to x. as the "dominant term" and x2 as
the "nondominant term." In the following development the process noise
q^j associated with x.. is assumed to be much larger than the process noise
q22 associated with x«. [This would be true whenever test motion amplitude
variations are the major cause of process noise; see Eq. (C. 1-7).] The
off-diagonal element q12 of the process noise matrix can take values between
zero (no correlation between process noise components) and
(perfect correlation). Equation (C. 1-10) now becomes:

12

'12 P22 22

1
r

pll
P12

sin tot sinco t sin 2 co t

. 2sintotsin2tot sin 2tot

'11

(C.4-6)

We let the time varying elements of H H take their average values:

2 2 1
sin tot = sin 2cot =• -s (C.4-7)

and

sinaitsin2cot = 0 (C.4-8)
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We also assume:

11 22ss ss
(0.4-9)

which is borne out by the results below if q11 » q09. Therefore:
1 1 fli

pn +p22 « pn (C.4-10)

with the assumptions of Eqs. (0.4-7), (0.4-8) and (C.4-10), Eq. (0.4-6)
becomes equivalent to the three scalar equations:

1 2

• = _L 2 2
P22 q22 " 2r P12 P22

Setting the three left-hand-sides equal to zero yields the steady-state

solution:

ss
(0.4-12)

'12ss

2r (0.4-13)

22ss
2r q22 " q11

(0.4-14)
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Equation (C.4-12), giving the steady-state variance of the dominant term, is

the same as Eq. (C.4-5) for the one-dimensional case. Equation (C.4-16)

giving the steady-state variance of the small term, reduces to Eq. (C.4-5)

when the cross-correlation term, q12, is zero. Thus, we can write:

(C.4-15)

where A. accounts for an improvement due to correlation between the

various components of process noise. A conservative formula for the

final value of the estimation error for the i^1 state variable is, therefore:

(C.4-16)

The settling time (defined in Section 3.3 and illustrated in Fig. 3.3-3) associated
with this level of accuracy may be found by setting Eq. (C.2-11) equal to

Eq. (C.4-16) and solving for t, yielding

(C.4-17)

Equations (C.4-16) and (C.4-17) are plotted parametrically in Fig. 3.2-5.
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An alternate form of Eq. (C. 4-14) is:

02 = ss

where c.g is a measure of the correlation between the two components of
process noise:

— (C.4-19)

V °l

The corresponding expression for a useful test time is:

(C.4-20)

The validity of Eq. (C.4-18) is demonstrated in Fig. C-2 where integrations

of the exact Eq. (C.4-6) are plotted for two values of the correlation

measure (zero and 0.9).

In summary, through the use of simplifying assumptions we

have developed a set of formulas which provide useful indications of the

final steady-state estimation accuracies, Eqs. (C.4-16) and (C.4-18), and

the corresponding settling times, Eqs. (C.4-2) and (C.4-6), for one- and

two-dimensional versions of the estimation problem. Comparison of

Eqs. (C.4-18) and (C.4-20) with Eqs. (C.4-16) and (C.4-17), respectively,
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shows that a strong correlation between process noise components reduces
the final estimation error of the nondominant term but increases the time
needed to reach the more accurate level. The validity of the above formulas
has not been checked for the n-variable case where n > 2. It is felt, how-
ever, that the formulas will remain valid since the two-dimensional case
contains the essential ingredients of the problem.
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APPENDIX D

FOURIER ANALYSIS EQUATIONS FOR

PULSE REBALANCED TESTING

This appendix derives two sets of exact equations which produce
the Fourier coefficients of the torque generator output produced during vi-
bration testing of a pulse rebalanced sensor. The first set corresponds to
the binary or ternary pulse-torquing scheme; the second set corresponds
to the time modulation scheme. The torque produced by the rebalance
loop opposes the total "applied" torque, which is the sum of the desired
gyroscopic or pendulous torque and all disturbance torques. Since the
applied test motion is periodic and the residual (non-motion-induced)
torque is assumed to be constant over the time of the test, the total applied
torque is assumed to be a periodic function of time.

D. 1 BINARY AND TERNARY PULSE-TORQUING

Figure D-l pictures typical waveforms of the applied torque,
M , and the torque generator output, M. , as well as their integrals, for

a. ig
the binary pulse rebalanced case. The two integral functions are forced,
by the action of the closed loop, to have the same low-frequency harmonic
content (both consist of the ramp, Bt, plus a periodic function). The two
torque functions, M and M. , must also have the same low-frequency

a. Lg

description, even though they appear quite different in form. The de-
•

rivative of the torque generator output, M. , consists of a sequence of
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- 1230

= M fg^ B-t-S,sin<i>t +C ]coso)t+...

M

(a) Torque Waveform

/Mdt

S, C,
/ M tgdt =/ Mad t S Bt + j3-(1 -cos a)t) + -jj- sinwt

Time

(b) Integral of Torque

M, Mtg = CjCOSwt + S^sin

an n tot- w C S i n o>t.+ ,

(c) Derivative of Torque

Figure D-l Binary Pulse Rebalancing Waveforms

224



THE ANALYTIC SCIENCES CORPORATION

impulse functions, as shown at the bottom of the figure. It must also be a

periodic function since it is the derivative of a periodic function. Its trigo-
nometric coefficients (§j, Cj, etc.) are related to the torque function co-

efficients as shown. That is,

C = tonS (D.l-2)n n

We can conveniently apply classical Fourier analysis to the

derivative function. Thus, looking at one test motion cycle, lasting time,

T = 2 IT/CO , we can write:

T
S =i j r f M(t)sinnwtdt = M(t)sinnootdt (D. 1-3)

*o

~ 2 rT - , , rT-C =£ I M(t)cosncotdt = ̂  / M(t)sinnwtdt
n L *o Jo

A single square pulse, starting at time t., lasting one pulse

width, h, and of magnitude M. has the form sketched below.
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M
tg

M.

t t. +h
i i

t. = hi

M
tg

M. 6(t- t . )

-M. 6 (t -1. - h)

The derivative function consists of equal magnitude positive and negative

impulse functions spaced h seconds apart. The contribution of these two

impulses to the integral of Eq. (D. 1-3) is:

AS = — sinntot. - sinnwfc +h)
n. ir [ i x J

= — sinntoh. - sinno)h(i + l)
TT 1

(D.l-5)

Note that M. can take on either of two levels for binary torquing and any

of three levels for ternary torquing, according to:

M. =

M for a positive pulse

0 for zero torque

-M for a negative pulse
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Adding up contributions like that of Eq. (D. 1-5) over one full

cycle of k pulse eidths, where k = T/h, we obtain:

k- 1

8 =^n TT
i =0

M. [sinncohi - sinntoh (i + 1)1 (D. 1-6)i [_ J

Now, using the identity:

sin (a + B) = sina cos 0 + cos a sin£ (D. 1-7)

we obtain:

k - 1

S = — f ^ M. (1 - cos n ton) sinn oo hi - sinncoh cosncohi

i = 0
(D.l-8)

Averaging over m full cycles, or km pulse widths, we obtain:

mk-1

S = s M. (1 - cosntoh) sinnojhi - sinnwh cosncohin m IT £^ i |_ J
i = 0

(D.l-9)
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Similarly:

C =— - f M(t)cosncot dtn m IT JQ

km-1

= — — 7
m TT f *

i = 0

M. cos ncohi - cos nwh (i + 1)
i |_ J

km-1

= — — 7 M. (1 - cosncch) cosnwhi + sinncoh sinncohi
m 77 / j i |_ J

(D.l-10)

where we have used the identity:

cos (a + j3) = cos a cos 0 - sin a sin 0 (D. 1-11)

Substituting Eqs0 (D. 1-9) and (D. 1-10) into Eqs. (D. 1-1) and

(D. 1-2) we obtain, finally:

km-1

S = > M. (1 - cosncoh) cosnoshi + sinnooh sinncohi——n mnTT / J
i = 0

(D.l-12)

Km-i
C = —— \ M. (1 - cosnojh) sinn^hi - sinnosh cosnoshi

n mnTT / * i x J
• _ n *•

(D.l-13)
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Equations (D. 1-12) and (D. 1-13) are exact expressions for the
Fourier coefficients defining the periodic function, M. (t). These ex-
pressions are summations, rather than integrals, because we have chosen
to work with the derivative signal, M, (t), which is a sequence of Dirac
delta functions. The "input" data consist of the sequence of binary or
ternary number;
balance pulses.
ternary numbers, M., which represent the time history of the sensor re-

D. 2 TIME MODULATION TORQUING

In the time modulation scheme (Ref. 2) the torque level switches
between +M and -M, just as in the binary scheme, but the pulse widths
are varied, as shown in the sketch below.

M,tg
M

hi

h(i + l)

-M

M
tg

M 6(t-h.) M 6 (t - hi - h)

2 M 6(t-hi-
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Each time interval of width h is divided between a positive pulse and a

following negative pulse. The switch from positive to negative takes place

at one of a number of discrete points in the interval. In the i increment

[between t = ih and t = (i + l)h] the switching time is t = ih + Z.. The net

torque is positive if Z. > h/2.

The contribution of the combined positive and negative pulses

during the i interval to the integral of Eq. (D. 1-3) is:

AS = — M sinncohi - 2sin(ncohi + nco^i) + sin(ncohi + ncoh)
n 77 L J

(D.2-1)

Adding up contributions like that of Eq. (D. 2-1) over m full cycles, or

km intervals of width h, we obtain:

mk-1

S = — — M 7 sinncohi - 2sin(ncohi + ncoA.) + sin(ncohi+ncoh)
n m 77 ' -* \_ i J

i = 0
(D.2-2)

Using the identity given as Eq. (D. 1-7) and the fact that, over an integral

number of cycles, m:

mk-1

sinncohi = 0 (D.2-3)

i = 0

we obtain:

mk-1

S =— — M 7 -2sinncohi cosncoj?i - 2 cosncohi sinncoJ^n m 77 £^4 |_ x

i = 0

+ sinncohi cos ncoh + cosncohi sin ncoh

(D.2-4)
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Similarly,

km-1

C = My cosncohi - 2 cos (ncohi + ncoA.)n m TT / j [_ i
i = 0

+ cos (ncohi + ncoh

km-1

[-... . , -2 cos ncohi cos ncoj?. + 2 sin ncohi sinncoh.m 77 / j I i i

+ cosncoh. cosncoh - sinncohi sinncoh

(D.2-5)

where we have used the identity given as Eq. (D. 1-11).

Substituting Eqs. (D.2-4) and (D.2-5) into Eqs. (D. 1-1) and

(D. 1 - 2) we obtain, finally:

km-1

S = / -(2cosnco&• - cosncoh) cosncohi
n mnT7 ' •* (_ i

i = 0
+ (2 sinncoh- - sinncoh) sinncohi (D.2-6)

km-1

C = - / (2 cosncoh. - cosncoh) sinncohin mn77 / * [_ i
i = 0 -,

(2sinnco^ - sinncoh) cosncohi (D.2-7)

Equations (D.2-6) and (D. 2-7) are exact expressions for the

Fourier coefficients defining the periodic rebalance torque when time

modulation torquing is used. The input data in this case is the sequence

of values, &., which represent the widths of successive positive pulses.
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APPENDIX E

SURVEY OF STRAPDOWN SENSOR TEST METHODS, 1968

At the commencement of the study reported in this document a
survey of contemporary strapdown sensor testing and test equipment was
performed. The survey was limited to procedures for determining motion-
induced errors in inertial instruments with emphasis on those produced by
the angular vibration environment peculiar to strapdown inertial systems.
Six facilities - The M.I.T. Instrumentation Laboratory, Cambridge,
Massachusetts; TRW Systems, Redondo Beach, California; The Central
Inertial Guidance Test Facility, Holloman AFB, New Mexico; The Naval
Weapons Center, China Lake, California; Hamilton Standard Systems
Center, Farmington, Connecticut; and Honeywell, Inc., Minneapolis,
Minnesota - were visited. In addition, Army Missile Command, Hunts-
ville, Alabama and Honeywell, Inc., St. Petersburg, Florida were con-
tacted but visits were not made because no dynamic strapdown test work
was being conducted at either of these facilities.

During each visit information was obtained concerning the test
equipment available, the error models and data processing employed and
tests performed at that particular facility. Attention was also given to
the manner in which the actual motion experienced by the test items was
determined. No attempt is made here to list the detailed capabilities of
each laboratory. Rather, a set of general observations and highlights of
the combined test capability of the installations visited are provided.
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Angular Vibration Test Equipment — Machinery for subjecting
instruments to angular vibrations was available at each of the facilities
visited. However, there was a wide variation in the capabilities of dif-
ferent laboratories. The Central Inertial Guidance Test Facility (CIGTF)
and the Instrumentation Laboratory were the only two installations capable
of providing accurate out-of-phase angular vibrations about a pair of
essentially orthogonal axes. The machinery used in both laboratories is
essentially identical. The two-axis vibrators are limited to frequencies
below about 100 Hz and neither appears capable of testing entire sensor
packages of contemporary size and weight.

Both CIGTF and the Hamilton Standard Systems Center (HSSC)
had single axis angular vibration machinery capable of applying sinusoidal
angular oscillations up to about 1000 Hz to individual sensors. Again,
essentially the same device - a torsion table driven by a linear shaker -
was found in both locations. The CIGTF, which had been using this device
for high frequency testing claimed to have observed bad resonances in the
table structure at frequencies above 600 Hz. HSSC had made use of this
equipment to study sensor dynamic errors under random angular vibration
conditions. TRW Systems' test laboratory has a large angular vibration
machine capable of producing single axis oscillations at frequencies up to
2000 Hz with a 500 Ib test specimen. However, this device is not capable
of the precision inherent in most inertial test machinery.

Most facilities surveyed contained single axis rate tables which
could be driven by oscillatory signals to provide a single axis angular
vibration testing capability in the frequency range of 100 Hz or less.
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Linear Vibration Test Equipment — The best linear vibration
capabilities belonged to Honeywell and M.I.T. Both have precision slip
tables capable of oscillations in the frequency range of up to 3000 Hz with
maximum force of 8,000 - 10,000 Ib and displacements up to 1 inch double
amplitude. No capability for providing out-of-phase linear vibration along
two axes existed in any of the facilities visited.

Test Data Processing — HSSC has a capability for recording the
output of a sensor undergoing dynamic testing. About 100 sec of data
could be taken this way. In view of the emphasis on recovering harmonic
signals during vibration testing which exists in this report, no facility
had a satisfactory ability to recover all error parameters from single-axis
angular vibration tests.

Both CIGTF and HSSC had a capability for performing spectral
density analyses on the applied test motions. In the case of the former
facility this was used in conjunction with sinusoidal motion tests on the
two-axis angular vibrator while Hamilton Standard performed density
analyses to confirm the distribution of random angular rates applied by
the single-axis rotary table.

With the exception noted above, all closed loop sensor tests are
performed by feeding the instrument output into an up-down counter and
only the net pulse count for the duration of the test is available.

235



THE ANALYTIC SCIENCES CORPORATION

Summary — None of the installations visited had either a two-
axis vibrator capable of oscillations in the frequency range up to 500 Hz
or a capability of recording sensor loop outputs directly while conducting
single-axis vibration tests. For this reason, the testing of strapdown
sensors for dynamic errors, including those introduced by the rebalance
electronics, appears to be in a state of flux. Consequently, the conclusions
and recommendations of the study described in part by this document will
have a particular impact on the makeup of future inertial sensor test
laboratories.
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APPENDIX F

ANALYSIS OF OSCILLATIONS IN TERNARY
AND BINARY REBALANCE LOOPS

This appendix develops an analysis of the oscillatory behavior
of ternary (the nonlinear element is a three-level switch) and binary (the
nonlinear element is a two-level switch) rebalance loops. Both are shown
to exhibit characteristic frequencies and amplitudes of float angle oscil-
lations which are input-dependent. In the ternary case the frequency of
oscillation varies considerably for input rates which are either small
(near zero) or large (near UK ), while it is relatively insensitive for\ max/
two ranges of input rate centered at ± 0.5 u>i„,_„,. In the binary case the

IllciX

frequency varies considerably for large inputs, while there is a broad
insensitive region centered at zero. The characteristic behavior in the
insensitive regions is accurately predicted by describing function anal-
ysis. The usefulness of the analysis presented below is that it describes
the variations in the regions where describing function theory does not'

apply.

Strictly speaking the following development predicts the re-
sponse to constant inputs only. The results are felt to be valid, however,
for low frequency inputs (when the test motion frequency is low compared
to the float angle oscillatory frequency) as well. In fact, the previously
published simulation result, which exhibits good agreement with predic-
tion based on this analysis (see Fig. F. 1-5), corresponds to a low fre-

quency sinusoidal input.
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F. 1 ANALYSIS OF OSCILLATIONS IN THE TERNARY LOOP

F.I.I Problem Formulation

The ternary rebalance loop is represented in block diagram
form in Fig. F. 1-1. The analysis described below is based on an
approximate mathematical model of this loop which includes the following
three elements:

• The float dynamics are modeled by a differential
equation which corresponds exactly to the transfer
function shown in the figure.

• The nonlinear element is modeled exactly as the
three-level switch shown; this is a "static non-
linearity" which does not shift the phase of
oscillatory signals passing through it.

• The effects of the sampler and the torque generator
dynamics are mode led approximately by introducing
a fixed "torque switching delay," Tj> That is, for
each time the nonlinearity output switches from one
level to another, TD seconds later the torquer output
undergoes a corresponding step change.

For a constant, positive input torque, M , the resulting dynamic
cl

behavior of the loop is described by a sequence of float angle trajectory
segments, as illustrated in Fig. F. 1-2. These segments are produced by

a sequence of alternating constant forcing functions, Mo^, M^, Mo ,

> MQ.., etc. where:

M = M (F.l-1)
°1 a

M = - M. + M (F.l-2)
°2 * a
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Figure F. 1-1 Ternary Rebalance Loop
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Figure F. 1-2 Float Angle Time History Segments

is a positive torque level, rM, , and MQ , is a negative torque level,
1 tg £i

-(1-r) M. where r is the ratio of input torque to torquer capacity:

r =
M

tg
0 (F.l-3)

(For a negative value of M , r lies between zero and minus one and the
a,

resulting trajectory segments are a mirror image of those illustrated in

Fig. F 0 l -2 .)
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The major dynamic element in the loop, the float, is described

by the following differential equation:

i

which can be written:

M

a =
oo oo

or, equivalently :

a + — a = m. G (F.l-6)
Tf 1

where :

rf = I00/C (F.l-7)

G = M. /I = Hw. /I (F.l-8)
0 W/ 00

m1 = r (F.l-9)

m2 = - (1-r) (F.l-10)

The shape of the trajectory segments shown in Fig. F. 1-2 are determined

by solutions to Eq. (F.l-6) for constant values of the forcing functions,

m., G and m_G.
1 «

Another assumption not explicitly mentioned above is that no

"wrong-way" pulses occur. That is, when the input torque is positive,
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the rebalance torque level switches between zero and + M, ; when the

input torque is negative, the rebalance torque switches between zero
and - M. .

tg

F.I.2 General Solution and Normalization

The general solution to Eq. (F. 1-6) clearly has the following

form:

-t/rf
o(t) = a + b t + ce (F.l-11)

c - t /Vfo(t) = b -— e (F.l-12)
rf

c 't/Tfa(t) = -| e (F.I-13)
Tf

f

The initial conditions must satisfy:

a(o) = a0 = a +c (F.I-14)

d = b -— (F.l-15)o rf

5Q = \ (F.l-16)
Ti

Substitution of these ejcpressions into Eq. (F.l-6) yields:

4 +- --% = m. G (F.l-17)
2 Tf * 1

T£ f Tf
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Therefore:

b = m. GT-

= rf (b -

m.Gr f
2

(Fol-18)

(F.l-19)

a =

(F.l-20)

and the general solutions for a. and a become:

a = [m.GrJ - f m.GTf - d )e
-t/7

(F.l-22)

An alternative pair of expressions, which display separately the contri-
bution of each initial condition and the forcing function, are:

rf U-e
-tA

+ m.G
-t/i

1- e (F.l-23)

a =
-tA

+ m.G - e
-t/7

(F.l-24)
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We now convert these solutions to a normalized form which

will be used in the following sections by defining

A /s = t/rf, normalized time

A 9
x = a/Grf, normalized float angle

x ' = dx/ds, normalized float angle rate

Therefore, we can write:

t = rfs (F.l-25)

a = G T ^ X (F.l-26)

a = GTJ x = G r f x ' (F.l-27)

Substitution of Eqs. (F.l-25), (F.l-26) and (F.l-27) into Eqs. (F.l-23)
2

and (Fo 1-24) and division by Grf and Grf, respectively, yields:

x - x +xo o

x7 = x e"S +m

Eqs. (F.l-28) and (F.l-29) are the normalized general solutions describ-

ing non-dimensional trajectory segments, x(s), caused by non-dimensional

forcing functions, m..

•O'-.H'-'I
i (> - °-s)

(F.l-28)

(F.l-29)
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F.,1.3 Characteristic Frequency and Amplitude

Derivation of Characteristic Frequency - We begin by deriving

a relationship between the normalized input level, r, and the normalized
period of oscillation, s , which is satisfied by a sequence of trajectory

segments which periodically repeat themselves. We first define the
following non-dimensional quantities:

6 = -L—S-g^ normalized switch level
Grf

2

A = Tn /rf, normalized time delay

s- = T1 /rf, normalized positive torque interval

S0 = T0 /T., normalized negative torque interval
fi £i f 1

8 = 8 - + s_, normalized period of oscillationp 1 &

The periodicity conditions on which the analysis is based are

indicated graphically by the three examples sketched in Fig. F. 1-3. The

main idea is that the magnitude and slope, x- and x' at time t- recur at

time t«. The essential conditions are:

(F.l-30)

X3 = 6 +x3 'A = xx (F.l-32)

X' = x' (F.l-33)
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The three cases pictured in Fig. F. 1-3 illustrate some general features
of the periodic solutions which are worth noting at this point in the
development „ In the example pictured at the top of the figure --a small
input case (r = 0.1) -- the positive-torque interval is longer than is the
negative-torque interval. This makes sense physically since the mag-
nitude of the net negative level, m,,, is larger than the positive level,
m1. (We recall that the positive net torque segment corresponds to zero
rebalance torque; the negative net torque segment corresponds to full
rebalance torque, +M .) Just the opposite is true in the large input
case (r = 0.9) pictured at the bottom of the figure. In the case shown in
the middle (r = 0. 5) the positive-torque and negative-torque intervals
are equal and the total period is shorter than for the small and large input
cases. These example trajectories are discussed again later when
analytic results are compared with predictions based on describing func-
tion analysis.

Combining the general solutions given in Eqs. (F.l-28) and
(F. 1-29) with the periodicity conditions of Eqs. (F. 1-30) through (F. 1-33)
the following four equations which characterize periodic solutions are
obtained

X2"X1

X1'X2

= 6 , - 6 - xx' A

-s_\ -s.

• Xi X-e

X 3 ' X 2

= 6 + Xj'A - 6 - x,j A

l-e

-s.
1 1-e sn-

-s.

(F.l-34a)

(F.l-34b)

246



THE ANALYTIC SCIENCES CORPORATION

• / — •„ I= x/e +m1 1-e (F.l-35a)

x7 = x'Xl X3

"S2 / "S2\= x 'e + m 9 l - e *} (F.l-35b)

The above four equations, along with Eqs. (F. 1-9) and(F. 1-10)
are manipulated until x., x2, x' and x' are eliminated and the desired
relationship between r and s is produced. We start by rewriting Eqs.
(F.l-34a)and(F0l-34b):

m s - A (x^ -x; = m1 - x' (1-e (F.l-36a)
11 \ 4 I / \1 l / \ /

/ \ / \ / ~S2\
m9s - A x' -x' = m9 - x' 1-e *) (F.l-36b)

&L \ i */ \ * z/\ /

Next, Eqs. (F. l-35a) and (F0 l-35b) are rewritten:

/ \ / "sl\
x ' - x / = (m 1 -x 1

/ 1 - e (F.l-37a)z i \ i i/ \ /

x^-x^ f m 0 - x ' W l - e 2) (F.l-37b)

Comparison of Eqs. (F. 1-36) and (F.l-37) yields:

/ ^
v ' v1 = m a A /v ' v' ) /TT 1 QQo^Ao Ai nii&i ** lAo Ai / ^roi-aod./

- A x / - x ' (F.l-38b)
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Therefore:

mlslX2 = X1 + TTA- (F.l-39a)

m2S2
Xl = X2/+1TA (F.l-39b)

When Eqs. (F. l-29a) and (F»l-39b) are added:

0 = nijSj +m2s2 (F.l-40)

Substituting Eqs. (F,1-9) and (F. 1-10):

rsj - (1 - r) S2 = 0 (F.l-41)

This result agrees with physical reasoning -- the average torque applied
to the float over each period should be zero. It also follows that:

sl " 1F1S2 •

(F-1-43>

From Eq0 (F. l-39a) and (F0 l-39b):

/ / — ^"vl ~ T) c (IT 1 AA\X2'X1 " ~TT^rSp (F.l-44)
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Substituting Eq, (F. 1-44) into Eqs. (F.l-36):

- e

- r) s.
-m.

-s.
V l - e (F.l-45a)

x ' ( l - e L] = A
- r)s

1 + A

-s.
- 1-e (Fol-45b)

If we define:

"EI 1 - e

", *

Eqs. (F. 1-45) can be written

x7 = —Xl E.

r(l-r)s

^TTA^-riVEl (F.l-46a)

(F.l-46b)

Substituting Eqs. (F. 1-46) into Eq. (F. 1-44):

-r(l-r)s

r(l-r)s
(F.l-47)
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and

r(l-r)s t

1 +A
+

E2 E
+ r

te -E.
1TT

(F.l-48)

Dividing Eq. (F. 1-48) by r and using Eqs. (F. 1-42) and (F. 1-43):

"1
1 + A E 2 E l J E 2 r E l

(F.l-49)

giving

= s,r 1

which simplifies to:

E 1 + E 2

1 2
1+ A

(F.l-50)

1.
r

s.

1 + A l 2
(F.l-51)

Eq. (F. 1-51) is easily shown to be equivalent to:

I = l
r 1+ A

E

'1&2
(F.l-52)
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where:

Sl = ( 1 ' r ) sp

S2 = r Sp

E = 1 - e

~S2E2 = 1-e

-s
E = 1-e p

Eqs. (F. 1-51) and (F. 1-52) are equivalent forms of the desired relation

between the normalized input r and the normalized period s . Solutions

may be found by fixing r and A (normalized delay time), then trying

values of s until the right hand side is made equal to 1/r.

Proof of Uniqueness of Solution - We now consider the right

hand side of Eq. (F. 1-51) and show that the quantity s. [l/E^ + 1/E2 - 1]

is a monotonically increasing function of s with value 1/r at s =0.

Therefore, the introduction of the factor 1/1 +A provides a unique

solution at s = s , as illustrated in Fig. F. 1-4.

Define:

A S1 S

2
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which is the right hand side of Eq. (F. 1-51) when A = 0. Clearly, the
limit of:

equals one (using L'Hospital's Rule) as s1 tends to zero. Similarly, the
limit of:

'1 _
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equals (1 -r)/r as s tends to zero. Therefore:

lim Q = 1 + —- - 0 = -
r r

This concludes the first part of the proof.

To prove that Q increases monotonically consider its

derivative :

j/-\/ _ dQ _- -
1 -e

(F.l-53)

Q' is clearly positive for any s. if:

1^ "X
0

e 2 I (for any x) (F.l-54)
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Let:

-X -X

., -X -X1 - e - xe
., o -x -2x1 -2e + e

., -x -x1 - e - xe

2 - 2e"x - 2xe"X - 1 + 2xe~x + e~2x

a
2 a -

where:

We note that = 0 when x = 0. Furthermore:

(F.l-55)

- 2xe"X- e"2x (F.l-56)

dx

= [2e"X] [x- 1 -e"X] (F.l-57)

Both factors on the right hand side of Eq. (F. 1-57) are positive. Therefore:

( 3 ^ 0

R s 1/2

Q' s 0
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and Q is monotonically increasing. This concludes the proof that
Eq. (F. 1-51) or (F. 1-52) has a unique non-trivial solution for any non-
zero values of r and A. Thus, there is one and only one oscillation
period which satisfies the periodicity conditions for a given input level
and switching delay.

Comparison with Describing Function Analysis - A family of
solutions to Eq. (F. 1-52) are plotted in Fig. F. 1-5. Note that the curves
are symmetrical about the mid-line, r = 0.5, and also exhibit minima
(maximum frequencies of oscillation) at this point. This behavior was
illustrated in the example float angle histories pictured in Fig. F. 1-3.
Note also that the curves are quite flat across a relatively wide mid-
region, and that the period of oscillation appears to be proportional to
the square root of A. Inspection of the family of curves leads to the
following empirical formula, which is approximately correct in this
mid-region:

* 7.0 /T = 7.0 J TD/r f ' (F.l-58)

Therefore:

P ^ 7.0 J r T (F.l-59)

We now compare Eq« (F0 1-59) with a result obtained using describing
function analysis. The following formula for a limit cycle frequency of
oscillation in a binary or ternary rebalance loop was derived in Ref. 2.

TfTtg (F.l-60)
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Figure F. 1-5 Normalized Period Versus Normalized Input

This is the frequency at which the two linear loop elements cause a
combined phase lag of TT radians. The corresponding period of oscillation
is:

(Fol-61)

Eqs. (F. 1-59) and (F. 1-61) are nearly identical if the torque switching
delay of the present model is equated with the torque generator time
constant, r. . Note the point corresponding to A = 0.05 and r = 0.1
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circled in Fig. F. 1-5. This point agrees very well with a simulated

response time history previously published in Ref. 3. The analysis

developed in this Appendix involves considerably more effort than des-

cribing function analysis, but it provides the ability to predict the varia-

tion in the oscillation period with input magnitude. Describing function

analysis cannot predict this type of result accurately because the input

to the nonlinearity is not very well represented by its fundamental com-

ponent alone in the case of small or large inputs to a ternary loop.

Derivation of Characteristic Amplitude - The previous analysis

can be extended in order to derive an expression for the peak-to-peak

amplitude of oscillation in the float angle. This amplitude is the difference

between the minimum float angle which occurs during the positive-torque

segment, and the maximum float angle, which occurs during the negative

torque segment. (Recall the assumption that the float angle does not go

too far in the "wrong" direction; there are no "wrong-way pulses.")

The minimum float angle occurs at normalized time, s . , whenmin
the normalized rate of change, as given by Eq. (F01-29), equals zero.

Thus:

x' = x1'e"Smill
+m1 (l-e"Smin) = 0 (F.l-62)

Therefore

-s
6

257



THE ANALYTIC SCIENCES CORPORATION

and

s . =min (l - x ' /m. )\ 1 I/ (F.l-64)

Substitution of Eqs. (F. 1-63), (F01-64) and (F. 1-30) into Eq. (F. 1-28)

yields:

x . = 6 + x'min 1 A + 1 -

+ (F.l-65)

Similarly

max (F.l-66)

and:

x = 6 + x'max 2

+ m.

/x

- X (F.l-67)

Recalling that r = m. and -(1 -r) = m0, we can rewrite Eqs. (F.l-46) ini &
the form:

X 'xl 1ml E
*!

El "Sl
( A \
V 1+A/

= 1 - (F.l-68a)
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Therefore:

where:

Also:

_
E,

= 1 -

A
1+A

E2(1+A)

Xl = ml

X2 =

S

w« =2 E2(1+A)

(F.l-68b)

(F.l-69a)

(F.l-69b)

1 / /— ~-
~ A^ / J-H-f

1 - x2' /m2

1 TV1 /V '™ XXI ̂  / •*»>^

1 - m2 /x2'

= 1 - (

= 1 - (

_ i
~ X " l

1
1 1

1 - W j

^
1

-w l

1
- w0

L J = W 1

j ) = W 2
1i

1 - 1/Wj

1
1 - l/w0

(F.,l-70a)

(F.l-70b)

(F.l-71a)

(F.l-71b)
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Now, using the above relations in Eqs. (F.l-65) and (F. 1-67) we can

write for the peak-to-peak amplitude:

A x = x -x .pp max min

= 6 - (1 - r) (l - w2) FA + I - 1/wJ - (1 - r) fin wg- (l - l/w2)]

- 1/Wj)-6 - r l - W j A + l - l w - r

(F.l-72)

Simplifying, we obtain:

= r wr

(F.l-73)

Solutions to Eq. (F. 1-73) are plotted in Fig. F»l-6. These are

based on combinations of r, A and s. (normalized input, time delay and

positive torque interval) which were previously found to satisfy the

periodicity condition, Eq. (F. 1-52). The amplitude of oscillation appears

to be insensitive to input magnitude, even in the small and large input

regions where the frequency decreases markedly. Inspection of the

curves leads to the following empirical formula:

— s. 1.45 A = 1.45 — ' (F.l-74)
> ^ T

260



THE ANALYTIC SCIENCES CORPORATION

zo
5
id

X
0
h—
<
O
_l
u_

Q
LU
M

1

<

5
Q£
O

Q20

c

J««. °-15

' ^
o 0

Q

a 0.1 0
Q.

X

<
LU
0

g 0.05
— l
ex.
5
<

0

a -2 tso

_^_ A=T 0 / r f = 0.1 ^

-

A = 0.05

A = 0.025

A = 0.0125

i i i
0 0.25 0.5 0.75 1.0

RATIO OF INPUT TORQUE TO TORQUER CAPACITY.r = MQ/Mtg

Figure F. 1-6 Normalized Amplitude Versus
Normalized Input

Therefore, the half amplitude is:
M

A =
a.

^ .725
oo

M

= .725
T

f
(F0l-75)

The result predicted by describing function analysis, for a

ternary loop switching between zero and + Mj._> is:

2 Mtg TfTtg
IT (rf+rtg) (F.l-76)

The similarity between Eqs. (F. 1-75) and (F. 1-76) should be noted.
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Summary - A convenient summary of all results for the

ternary rebalance loop is given in Fig. F. 1-7. In constructing this figure

we have accepted the describing function results in the vicinity of

r = ± 0.5 and used the preceding analysis to treat inputs of large and
small magnitudes.
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Figure F.1-7 Summary of Results - Ternary Loop
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F.2 ANALYSIS OF OSCILLATIONS IN THE BINARY LOOP

The analysis of ternary loop oscillations presented in the
preceding section may be applied directly to the binary loop» In this
case the rebalance torque switches between + M, and - M. rather thantg tg
+M. and zero. Therefore, the positive and negative net torque values,

respectively, are:

M = M - M. (F.2-2)02 a tg

After defining:

r = 0.5 + r/2

G = 2G = 2M, /Itg oo

we can write:

ml = M0 /!oo

= Mo /loo = -(1-?)6 (F-2'4'

The entire analysis then proceeds identically, except that r and G appear

in place of r and G. The non-dimensional results plotted in Figs. F. 1-5

and F. 1-6 are also correct if the abscissa is labeled r and the float angle
** 9

excursion normalized by G rf .

263



THE ANALYTIC SCIENCES CORPORATION

The describing function results for the binary gyro with no
input (see Ref. 2) are:

ri Ttg (F'2"5)

These, again, agree with the plotted results in the mid-region, centered
around r =0.5. However, the value r = 0. 5 corresponds to r = 0.
Therefore, describing function theory accurately predicts binary loop
behavior in the region where the normalized input r is small. A con-
venient summary of all results for the binary rebalance loop is given in
Fig. F.2-1. Comparison of Figs» F. 1-7 and F.2-1 shows that the des-
cribing function technique is a good predictor of characteristic loop
behavior for half-maximum inputs (r == ± 0. 5) for ternary loops and for
small inputs (r a« 0) for binary loops. Also, the factor-of-two difference
in the amplitude normalizing quantities shows that, for the cases treated
by this analysis, the float angle oscillation amplitude is twice as large
for binary loops as for ternary loops.
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Figure F.2-1 Summary of Results - Binary Loop
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