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]PREFACE

The objective of this project was to develop, fabricate, and deliver

two real time incoherent to coherent optical interface devices and associated

drive electronics. The devices were to be capable of converting incoherent

optical images into coherent light patterns which could undergo a subsequent

Fourier transform filtering operation and inverse transformation to produce

a filtered coherent image.

The design approach utilized the natural photoconductivity effect to

spatially modulate the electrical polarization in the single crystalline

electro-optic material, Bi12SiO2 0 . An optically absorbed write-in image

is stored as an image-wise polarization pattern in the device. Readout is

accomplished electro-optically by means of the subsequent phase retarda-

tion which a polarized beam of coherent light undergoes in passing through

the Bi12SiO20. An operating mode for achieving continuous image conver-

sion with high speed recylability is utilized. The scope of the work included

the growth of Bi12SiO20 along with the fabrication of devices from polished

crystal slices.

Two devices were delivered to NASA Goddard during the course of

this project and performed in accordance with the work statement. Meas-
2

urements indicated a write-in intensity of 300 microwatts/cm at 400 nm

would yield a contrast ratio of 50:1 after 40 milliseconds exposure. When

the converter was operated at a frame rate of 10 per second, a sampled

readout contrast ratio of greater than 1000:1 was achieved. Resolution in

excess of 80 lp/mm has been recorded and readout. Photographic results

achieved in using this device to Fourier transform images are presented

in Figures 6-6 through 6-12.

It is proposed that the current device be combined with an image

intensifier (utilizing fiber optic coupling) to produce an improved structure

in terms of spectral sensitivity and logical (parallel processing) flexibility.

iii



Preface - Continued

Although an improved structure is proposed existing devices should be

fully characterized as to photosensitivity, stability of operation, modula-

tion transfer function, and response time to guide further materials and

device improvement work.
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1. INTRODUCTION

This project was concerned with the development, fabrication, and

testing of a preliminary model of an optical-to-optical (noncoherent-to-

coherent) interface device for use in coherent optical parallel processing

systems. The developed device demonstrates a capability for accepting

as an input a scene illuminated by a noncoherent radiation source and pro-

viding as an output a coherent light beam spatially modulated to represent

the original noncoherent scene.

The converter device developed under this contract employs an Itek

Pockels readout optical modulator (PROM). This is a photosensitive

electro-optic element which can sense and electrostatically store optical

images. The stored images can be simultaneously or subsequently readout

optically by utilizing the electrostatic storage pattern to control an electro-

optic light modulating property of the PROM. The readout process is parallel

since no type of scanning mechanism is required.

The PROM unlike other light image controlled modulators provides the

functions of optical image sensing, modulation, and storage in a single

active material. During the course of this contract crystals of this

electro-optic material (bismuth silicon oxide) were grown, sliced and

polished and the finished slices were used to fabricate PROM devices.

Subsequently these devices were evaluated as noncoherent-to-coherent

converters by exposing them to image patterns of noncoherent radiation

and measuring the definition, contrast, and intensity of the imagewise

modulated coherent readout radiation in both the Fourier transform and

image planes of the readout optical system.

2. THEORY OF PROM OPERATION AND ITS APPLICATION AS AN
INCOHERENT TO COHERENT CONVERTER

2.1 History of PROM -

Itek has conducted an in-house research and development program

concerned with reusable optical image storage and processing devices

since 1967. The semiconductor material used in these devices photoconductively

1



converts and electrostatically stores optical images which can be optically

read out using the Pockels electro-optic effect generated in the material

by the electrostatic image. Write-in and readout can take place simultan-

eously and at different electromagnetic wavelengths, thus forming the basis

for a real-time noncoherent-to-coherent converter.

Initial public disclosures[l]-[2] were made on a long term storage

device using epitaxial films of ZnS as the photosensitive electro-optic

material. Subsequently PROM devices have been fabricated using bismuth

silicon oxide (Bi1 2 SiO2 0) [3] which is electro-optically superior to ZnS, having

a Pockels effect approaching that of DKDP. Furthermore, the material is

easily grown by the Czochralski method and crystals providing useful areas

over 1 cm 2 had been grown prior to this contract. The electrical and optical

properties and growth techniques for these photoconductive electro-optic ma-

terials have been reported in the literature [4]-[9].

2.2 PROM Device Structure -

Figure 2-1 shows the two basic device structures which have been fab-

ricated and tested. Figure 2-1(a) depicts the configuration used when the active

material is a single crystal of ZnSe or Bi1 2 SiO20. The Parylene insulating

layers and transparent Pt electrodes are evaporated films applied to the polished

crystal surfaces. The operation of this type of device as an optical memory

having image reversing (e.g. positive-to-negative) and selective update features

has been described in the literature [ 3 ] and its theory of operation is reviewed

below.

The device configuration shown in Figure 2-1(b) is employed when the

active material is an epitaxial layer of ZnS (or ZnSe) grown on a GaAs sub-

strate. This type of device has also been reported in the literature [1], [ 2 ]

as a high resolution (85 lp/mm) image sensing (100 ergs/cm
2

exposure) and

memory (100 hour dark storage) device capable of storing gray scale images

with high fidelity.

1. Class of p-xylylene polymers manufactured by the Union Carbide Corp.

2



ZnSe or
Bi 2 SiO02 Pt Pt ZnS GaAs

Transparent
insulating layers
I Parylene)

(a) (b)

Fig. 2-1 Photosensitive Pockels effect light valves

3



Both devices shown are read out in transmission. The ZnS/GaAs

device is read out in transmission by selectively etching a window into the

GaAs substrate to provide a thin transparent electrode at the ZnS/GaAs inter-

face. Reflective readout, which affords a double pass through the electro-optic

layer, has also been accomplished utilizing reflected light from the ZnS/GaAs

interface. The configuration shown in Fig. 2-1(a)can be made into a reflective

readout device by depositing a multilayer dichroic reflector onto one of the

electro-optic crystal surfaces prior to evaporating the Parylene layer. The

reflector is designed to transmit the short write-in wavelengths and reflect

the long readout wavelengths.

2.3 PROM Theory Of Operation -

The principle of readout operation in the PROM is the Pockel's effect

in the electro-optic crystal as illustrated in Figure2-2. A voltage applied

between the (100) faces of a cubic electro-optic crystal causes it to become

birefringent, i.e., light polarized along one axis (F) travels faster than

light polarized along a perpendicular axis (S). If the readout light is plane

polarized and oriented to bisect the birefringent axes, then the light leaving

the crystal will be elliptically polarized with major and minor axis intensity

components as shown. Thus, an analyzer crossed 90 degrees to the initial

polarization of the light will transmit an intensity component of magnitude

I.sin2KV; where V is the voltage drop across the crystal.

An image may be impressed on this readout light beam by spatially

varying the magnitude of voltage across the crystal in an imagewise pattern.

This is accomplished by utilizing the photoconductivity inherent in the crystal.

Once the crystal is charged to a given voltage, the voltage can be imagewise

decayed by a write-in light image that is absorbed by the crystal, generating

carriers in the light-struck areas. These photo generated carriers move

in the electric field in a direction to neutralize the external charges thereby

reducing the crystal voltage towards zero.

4
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Fig. 2-2 Pockels effect in a cubic crystal
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In practice the write/read operations are carried out as shown in

Figure 2-3.Initially, there is an erase and prime operation as shown by

operations (a), (b), and (c). In operation (a), a bias voltage is applied across

the insulating layers and crystal. The heavy line through the structure

illustrates the relative voltage at each point in the structure. In operation

(b), uniform illumination by a xenon flash of a few microseconds duration

generates positive and negative charge carriers that move in the electric

field to the interfaces between the crystal and the blocking insulators, where

they are trapped. The field due to these trapped charges exactly cancels

the applied field from the battery voltage across the electrodes, so that the

voltage across the crystal becomes zero. The applied voltage thus appears

only across the insulating layers. Note that this operation also serves to

erase previously stored images. In operation (c), the applied voltage is

removed, and the electrodes are shorted together. As a result, the field in

the crystal due to the trapped charge is no longer compensated by the field

from the applied voltage. A uniform voltage now appears across the crystal

approximately equal to the original bias voltage.

The device is now ready for image write-in shown in operation (d).

The top half illustrates an exposed area of the crystal, and the bottom half

an unexposed area. The voltage remains high in the unexposed area. In

the exposed area, separation of the photogenerated carriers reduces the

electro-optical voltage in the crystal. In operation (e) reflective readout

is shown using polarized red light, to which the material is only slightly

photosensitive. Where the voltage is high, the electro-optical effect creates

elliptical polarization, increasing the readout light passed by the analyzer.

In the areas where the voltage is decayed, the readout remains linearly

polarized and does not pass through the analyzer. A negative of the write-

in image is thus produced.

At this point, if the battery voltage is reapplied, the field produced

will act in the opposite direction to the existing imagewise fields in the

6
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crystal. Thus, the high field regions will be reduced to zero and the low

field regions will be raised to the biasing field. The new voltage pattern

is therefore the reverse of the original imagewise pattern and the image

read out is thus electrically reversed from a negative to a positive image.

The strongly wavelength-dependent nature of the crystal's photo-

sensitivity plays an essential part in the operation of the device. The

spectral sensitivity of the materials used (see Figure 2-4) shows a pronounced

peak in the blue region of the visible spectrum and falls rapidly toward the

red and the near infrared. One indeed capitalizes on the large difference

in the input photosensitivities between blue and red by writing an image in

the blue and reading out in the red or infrared. A stored image can be

readout with an intensity gain, without an appreciable degradation of image

contrast. This permits the flexibility of two different readout modes:

many high intensity short pulses, or a low intensity continuous wave readout

over a long period of time. It should be noted that any combination of coherent

or incoherent light sources may be used for write-in and readout. This

makes the device usable in either incoherent or coherent processing systems

or as an incoherent to coherent optical converter.

In addition to optical to optical conversion accomplished by using the

photoconductive and electro-optical effects of the crystal, there is an image

storage effect that occurs after the write-in light image is turned off. This

storage occurs because the electro-optic crystal has extremely high dark

resistance so that any voltage pattern impressed on the crystal will not decay

for several hours. This allows the image to be readout at a later time.

2.4 Framing Mode Of Operation-

When considering the use of the PROM as a real time noncoherent-

to-coherent converter it must be remembered that the above mentioned

storage effect causes the device to act as an integrating photosensor

analogous to photographic film. Therefore, like photographic film

it is preferable to operate the device in a framing mode when

8
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Fig. 2-4 Spectral sensitivity of ZnS, ZnSe, and B132SiO20

9



the input imagery is changing with time. The erase and prime operation

described above is therefore repeated at a rate dictated by the desired

coherent image generation time. In this project the design objective was

to have the converter reach its steady state condition within 100 milli-

seconds after the introduction of a new image. Furthermore an output

image intensity contrast ratio of 50X was desired when the converter was

exposed to high contrast noncoherent input imagery.

Figure 2-5 shows the analyzer output light intensity as a function

of time when the PROM is continuously exposed to a high contrast input

image and a 5 millisecond erase/prime operation is repeated every 100

milliseconds. The top graph is the coherent output in a region where the

input light is a minimum and the bottom graph in a region where the input

light is a maximum. If the output light is viewed continuously then the

ratio of average intensities determines the contrast.

The average intensity of the top graph is given by:

0.05 (0) + 0.95 I, (1)

where I is the peak analyzer output intensity. The average intensity of

the bottom graph is given by:

I[o. 05 -

1

+ 1.95 exp [-t/]dt + 092 exp 2] dt(2)

Where t
1

and t2 are 5 and 95 milliseconds respectively.

Expression (2) reduces to:

0. 05I ' lt1 + 0. 95Ir2t2 ' (3)

if Tr and t2 are much smaller than t1 and t2 respectively. Therefore, the

average contrast becomes equal to the ratio of expression (1) to (3) or:

t2 2- (4)

again assuming that,1 is much smaller than tl
1 ~~~~~~~1

10
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It follows from (4) that the decay time constant, r72' must be 1. 9

milliseconds to yield an average contrast ratio of 50. Previous PROM

devices have shown that 100 ergs/cm2 is required to decay the readout

light to the e point. Using this sensitivity data it follows that a non-

coherent input intensity of 5 milliwatts/cm is required to produce a

coherent output contrast ratio of 50.

If the readout is not viewed continuously but sampled as for

example when snapshot photographs are made of the coherent output image

a much higher output contrast ratio can be obtained for a given noncoherent

input light intensity by sampling the readout near the end of a 100 milli-

second frame period.

2.5 Optimum Device Geometry For a Noncoherent-to-Coherent Converter -
In choosing a device geometry to meet the requirement for a real time

noncoherent-to-coherent converter it was felt that a configuration in

which the noncoherent write-in and coherent readout radiations were

directed through opposite faces of the device was most desirable.

Therefore, it was decided to use the configuration of Figure 2-1(a) in

which one face of the Bi12SiO20 crystal would be coated with a dichroic

reflector designed to transmit wavelengths in the blue and near UV and

to reflect wavelengths in the red (specifically 632. 8 nm).

The noncoherent radiation is introduced into the crystal after

passing through a transparent platinum electrode, a 3 micrometer

layer of Parylene, and the dichroic layer. Coherent readout radiation

enters through the opposite transparent platinum electrode and Parylene

layer, travels twice through the Bi12SiO20 crystal due to a reflection

off the dichroic layer, and exits back through platinum electrode. By

using this device design all of the coherent readout optics can be sep-

arated from the non-coherent write-in optics. Furthermore two passes

through the crystal doubles the electro-optic modulation introduced into

the readout beam.

12



3. GROWTH OF Bi SiO CRYSTALS12-20

3.1 Procedure -

Since Bi12SiO20 is congruently melting material, the Czochralski

technique can be employed effectively to grow large single crystals in

relatively short times with no variation in stoichiometry. The details

of this particular growth process are given in this section and shown

in Figure 3-1.

Seed crystals can be obtained by spontaneous nucleation on a gold

rod. However, it is preferable to use seeds cut from previously grown

crystals. Crystals were first x-rayed by Laue reflection to determine

the (100) direction. They were then mounted and sliced so as to obtain

seeds from which subsequent crystals could be grown on the (100) axis.

The Laue pattern of the (100) direction is shown in Figure 3-2. In this

way, it was possible to control both the orientation and sign of the

optical activity since these properties are governed by the respective

properties of the seed. Seeds are attached to a gold pullrod for growth.

Stoichiometric quantities of Bi20 3 (6 moles) and SiO2 (1 mole) are

physically mixed and reacted at 1, 0000 C in a gold crucible to ensure

homogeneity of the melt. In cases where ultrapure material is

desired, Bi20 3 can be prepared in the laboratory, having less than

2 ppm total metallic impurities.

A two-zone growth furnace is used to reduce any temperature grad-

ients near the surface of the melt and to allow a long crystal to be

maintained at a uniform temperature during growth. This results in

a very slow, controlled cooling of the crystal and minimizes built-in

strain. The gold crucible and its contents are isolated from the furnace

windings by a 99.9 percent pure alumina tube which is gas impermeable.

This permits use of a controlled atmosphere, usually argon or oxygen,

and prevents atmospheric contamination.

13



Fig. 3-1 Apparatus for growing electro-optic material
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All temperature programming is accomplished by externally placed

chromel/alumel thermocouples located adjacent to the exterior of the

alumina tube. Furnace control is achieved by step-less SCR power

sources which maintain furnace temperatures to + 1. 0°C and melt

temperatures to + 0. 10 C. Melt temperatures are not monitored

during growth since Bi20 3 is an excellent solvent and contamination of

the melt would result. Actual furnace temperatures during growth are

approximately 950 0 C for the top zone and approximately 9750 C for the

bottom zone. Zone separation is achieved with a 0. 5-inch-thick fire-

brick baffle. Crucible gradients are controlled manually by laboratory

jacks that can either raise or lower the furnaces while keeping the

alumina tube and its contents stationary. The gradient is adjusted

such that the growing crystal emerges from the melt with completely

formed crystallographic faces. In addition, laboratory temperatures

are maintained to + 5. 0°C by oversized heaters and air conditioners

since room temperature fluctuations of + 100 C during growth induce

crystal strain.

Typical pulling parameters under these conditions are a pull rate

of 0.3 inch per hour with a rotation rate of 50 to 200 revolutions per

minute. When these parameters are used, crystals up to 3 centimeters

in diameter by 6 centimeters long can be grown. Figure (3-3) is a

photograph of a Bi12SiO20 ingot cut off at the seed end.
Seven Bi12SiO20 ingots were pulled from (100) oriented seeds during

the course of this work. The largest weighed about 100 grams and its

maximum diameter exceeded 1". Good crystal growth is characterized

by four fold symmetry consisting of the crystal sides in the form of

pronounced "flats". Visual examination of the as grown crystals reveals

a number of features. The color in room light can vary from a light

amber to a reddish brown. A number of voids, point defects which look

16





like particles of grit, and linear boundaries, generally running parallel

to the crystal axis, can be observed internally.

Table (3-1) tabulates the semi-quantitative spectrographic analysis

from two samples of Bi12SiO20. Sample amber (A) is from a pulled

crystal. Sample green (B) is one from the solidified melt left in the

gold crucible. The only significant differences are in the concentrations

of gold and iron. The gold concentration is understood in terms of gold

leaching in from the crucible. Iron probably has a distribution coefficient

greater than 1 in this system.

Pulled Ingot Amber (A) Green (B)
ppm ppm

Al 2 7
Ag 0.1 0.5
Au 10 40
Ca 1 1
Cu 6 6
Fe 90 10
Mg 1 5
Mn 0.5 0.2
Ui - 1

Bi and Si are the major constituents.

Table 3-1 Spectographic Analysis of Bi12SiO20

3.2 Crystal Strain -

One feature of the early crystal growth was the tendency for the ingot

to crack as it was being removed from the furnace or during cooldown as

it approached room temperature. Since Bi12SiO20 does not have a plane

of cleavage, the cracking was random; i.e., like glass.

Cracking of Bi12SiO20 has its origin in the lattice structure of the

crystal, specifically the large thermal expansion coefficient which is

of the order of six times that of germanium. Other factors contributing

to cracking are the large piezoelectric effect in Bi12SiO20 and the

necessity of adding the second oxide phase (SiO2 ) in order to stabilize the

B.C. cubic structure. This oxide is known to change the lattice constant [10].

18



This problem, to a large extent, was overcome by annealing the crystal,

in situ, during cooldown. This generally consisted of a uniform cooldown

from the growth temperature over a period of 72 hours. From this anneal-

ing procedure crystals were generally removed from the furnace intact.

Strains and stresses were further evaluated by observation of birefringence

in polished (100) oriented wafers and by chemical etching to reveal pits

and various other defects. Since Bi12 SiO 2 0 single crystal is optically iso-

tropic, no birefringence should occur in unstrained crystals when viewed

in transparent light between crossed polarizers. Such was not the case as

birefringence, caused by strain, is always observed, in varying amounts,

in polished wafers. It is convenient to avoid the effect of optical activity

in Bi12SiO20 when viewing wafers in monochromatic light between crossed

polarizers either for birefringence or PROM device operation. This is

the basic reason why the dichroic reflector was evaporated onto one surface

of the wafer. This makes it efficient to view the wafer by reflection. The

optical rotation is directionally dependent and the rotation during one pass

is reversed and cancelled in reflection. Birefringent strain is always more

pronounced in thicker wafers. An etch consisting of one part HC1 to ten

parts H20 for five to ten minutes was'found to be very effective in chemically

etching the (100) surface. This etch was used in two ways. It was used as

an etch to chemically remove surface damage caused by grinding and rough

polish. Such surface damage is known to result in surface stresses which

in seeds is detrimental to crystal nucleation and in thin wafers can cause

bending. Thus, seeds used in crystal growth and wafers before final

polish are etched in this solution.

This dilute HC1 etch was also found to be very effective in revealing

pits, the majority of which are believed to be due to dislocations.
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Figure (3-4) is a photograph of two polished (100) oriented wafers

which have been etched for ten minutes. The center of the wafer is

most heavily etched and there are four etched regions near the edge

oriented in the (100) radial directions. Usually etching has been

randomly distributed in the surface of the wafer. However, when

symmetrically etched patterns were observed, they always had the

4-fold symmetry as shown in the patterns. Closer examination of the

etching pattern reveals that it is made up of 4-fold symmetric pits plus

other shaped pits. The square etch pits are also characterized by

their occurrance in pairs, one on each surface of the wafer. A photo-

graph of this is seen in Figure (3-5) where each etch pit (A) has a

counterpart on the opposite surface, the smaller pit (B). This indicates

a line defect, probably an edge dislocation. The smaller etch pits having

the appearance of dark oval bands could be caused by point defects.

Figure (3-6) is a photograph of etch pits aligned in a straight line. The

parallel shadow is the line of pits in the opposite face. This defect

plane may be caused by a dislocation loop.

Surface etching has revealed a large concentration of point and

line defects in Bi1 2 SiO2 0 . Figure (3-4) indicates that the center of

the ingot is most highly strained and this observation is supported by

strain birefringence observations.
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4. DEVICE FABRICATION AND EVALUATION

Devices of the type pictured in operation in Figure 4-1 were fabricated

and evaluated. Device fabrication consisted of a number of steps beyond

the Bi12SiO20 single crystal growth described in the last section.

4.1 Slicing and Polishing -

Ingots were first oriented and mounted on blocks with the (100) axis

perpendicular to the direction of slicing. Wafers, approximately . 030"

were sliced with the inner diameter of a hollow ground cutting wheel.

The wafers were then ground and etched in dilute HC1. During etching,

care must be taken to avoid pitting the wafer to the point where it can't

be polished flat. The final polish was made with a silica gel. The wafer

is then removed from the block and re-cemented to expose and polish the

other side. Generally, the wafers could be polished with surfaces par-

allel to within a few waves. The silica gel always leaves a small residue

of grit on the surface which couldn't be cleaned away.

4.2 Electrical and Optical Evaluation of Wafers -

Current voltage characteristics were recorded using a Cary electro-

meter. Measurements were made between faces of typical polished

Bi12SiO20 wafers. Electrodes were of evaporated platinum. Typical

of insulators, when the voltage is first applied, in a step function, a

rather large current flows. The current gradually decreases and after

several minutes the sample reaches a steady state condition. After about

fifteen minutes, the d.c. is measured. Typical values of resistivity are

1014 ohm-cm at 100 volts and 5 x 1013 ohm-cm at 1000 volts applied.

Birefringent strain, interference fringes and surface defects as

they affected device operation were subsequently evaluated, after the

dichroic layer was evaporated, in reflected HeNe laser light.

4.3 Dichroic Reflector -

The multilayer dielectric coating consists of nine layers alternating

between MgF2 (n = 1.38) and ZnS (n = 2.35). The coating is evaporated
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directly onto one of the polished Bi12SiO20 surfaces. The coating is

designed to be 95% reflecting at a wavelength of 6328 i and about 95%

transmitting between 4200 R and 4700 R. The cutoff is at 5300 R.
4.4 Parylene Coatings -

The Parylene coating over the Bi12SiO20 provided the insulating

layer which served as the voltage divider between the low resistivity

write-in regions and the high resistivity non-write-in regions of the

device. Parylene, a generic name of a polymer developed by Union

Carbide Corporation, is produced by vapor-phase polymerization and

deposition of para-xylene. The deposition apparatus is shown in

Figure 4-2. The wafers to be coated are hung inside the deposition

chamber. The coating rate is about one micron per hour. The resist-

ivity of Parylene has been measured and is in excess of 1017 ohm-cm.

The dielectric constant is 2.6. These properties and the fact that it is

a plastic which can be deposited on Bi12SiO20 at room temperature

make it suitable to be used as the insulating film required for the

present mode of operation.

Figure 4-3 is a photograph of the electron diffraction pattern of

a three micron Parylene film on a Bi12SiO20 wafer.

4. 5 Completion of the Device -

The device was completed by evaporating a 60% transmitting film

of platinum on both faces to serve as electrodes. At this transmission

the surface resistivity is less than 1000 ohm/square. The device was

then mounted on a plastic disk which could be installed on a holder in

an optical bench.

4.6 Device Evaluation Techniques -

The experimental setup employed during much of this work is shown

in Figure 4-4.

The Kepco O. P.S. 2000, proved quite useful as the high voltage

pulser. It has a rise time of 1000 volts per millisecond.
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4.7 Contrast Ratio -

A contrast ratio measurement was made on a . 030" thick device with

a total Parylene thickness of six microns. The active area was around
2

3 cm . When the converter is operated in a real time mode, the con-

trast ratio (C. R. ) is defined as the ratio of the average intensity of

the read out image in the dark struck area to that in the light struck

area as seen by a photodetector in the plane of the read out image.

When recorded in real time on an oscilloscope, the C.R. becomes

approximately equal to ratio of the discharge times with and without

write-in light, as derived in section 2 and depicted in Figure 2-5.

The applied voltage was 1500 volts, the pulse was two milliseconds

in width at a frequency of 20 cycles per second. The device was xenon

flashed at the peak of the pulse and between pulses. The converter is

effectively shorted and in a state to accomplish optical conversion.

An "edge" target blanks off about half the active area of the device so

that blue incoherent write-in light, of 10 mw/cm
2

intensity, is incident

on the other half. Thus, the reconstructed image is half dark and half light

(the negative of the write-in). The photomultiplier, positioned in the

plane of the read out image is moved across the boundary and the

signals are compared on an oscilloscope to determine the contrast

as recorded in Figure 4-5. Notice the similarity of the experimental

trace to the predicted one of Figure 2-5.

4.8 Sensitivity -

The absorption coefficient and the wavelength dependence on

sensitivity were measured on a .013" thick device. Four mercury

lines were used. The results are graphed in Figure 4-6. The peak

sensitivity occurs around 400 nm which is reasonable when the absorption

coefficient is considered. At 400 nm, o(102 andc t; 3. Therefore, at

400 nm, practically all of the light has been absorbed exponentially

throughout the . 013" thick device. It is reasonable to expect a peak in

the sensitivity under these conditions. The quantum efficiency (i. e.,

the number of charges at the Bi12SiO20 -Parylene interface which are
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discharged per unit incident photon of write-in light) has been calculated

(see Appendix) using measurements made at 436 nm and found to be 22 %.

4.9 Additional Measurements -

Additional measurements were made of the electron transit time

and the electron mobility. These measurements were made by generating

carriers with a 5 /,s pulse of 366 nm light. The transit time was

measured by recording the electro-optic change of read out light from

the 6328 R laser with a photodetector (essentially the discharge time

of the device). The transit time of electrons measured by this method

was around 20/&s for a .015" thick device. The mobility as calculated

from the relationship = L /TV was .025 cm /volt-sec. Where L

is device thickness, T is transit time, and Vo is applied voltage.
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5. ELECTRONIC DRIVE EQUIPMENT

A block diagram of the electronic drive equipment required to operate

the converter is shown in Figure 5-1. It consists of three basic components:

a programmable power supply to provide the high voltage bias pulse for the

converter during the erase/prime phase of its operating cycle and to act as

an electrical short circuit during the write/read phase; a pulse generator to

provide the desired pulse waveform (width and amplitude) at a preset reprate

(10 pulses per second) for subsequent amplification by the programmable

power supply; and a xenon flash lamp with associated power supply to gener-

ate a high intensity, short duration pulse of light for erasing the converter

every 100 milliseconds. A detailed description of these components follows.

5.1 Programmable Power Supply -

A Kepco Model OPS2000 operational power supply was used as the

programmable source of high voltage. It contains a self-powered opera-

tional power amplifier and d-c power supply. It utilizes a high voltage

vacuum tube, together with a d-c coupled transistor amplifier. The output

voltage amplitude and waveform can be programmed by applying an appropriate

low voltage signal to the unit. The output slewing rate of 1000 volts/milli-

second is the limiting factor in determining the minimum period of the erase/

prime cycle. The full-scale output capability of the supply is 2000 volts and

10 milliamp.

5.2 Pulse Generator -

The pulse generator for driving the programmable power supply was

assembled using Motorola digital integrated circuits. The block on Figure

5-1 representing the pulse generator has been enlarged so that the electrical

schematic of the unit can be depicted.

The specific Motorola units employed are described in Table 5-1.

The MC832, MC858, and MC845 units utilize diode-transistor logic (DTL)

and the MC 7400 unit employs transistor-transistor logic (TTL).
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Module IC1 is used to form a 10 Hz oscillator which sets the reprate

of the converter. The IC2 module in conjunction with transistor Q1 and

module IC3 generates a variable width pulse of voltage which is dropped

across a 20K voltage divider. The output of the voltage divider feeds the

programmable power supply. After amplification by the power supply this

voltage waveform is applied to the converter through a 200K current limit-

ing resistor.

Module IC4 is used to generate a pulse delayed in time from the biasing

pulse. A 10K resistor is used to adjust the time delay and the resulting

waveform is used as a strobe signal for the flash lamp. Transistor Q2

is operated as a solid-state switch to simulate a contact closure to initiate

the flashing sequence.

5.3 Xenon Flashlamp and Power Supply -

A U.S. Scientific Instruments, Inc. Type 3019 Pulser and ICP-n

compact arc type, pulsed xenon flash lamp were used for the flash erase

system. The lamp was placed in a parabolic reflector and a mirrored

cover plate was placed over the reflector opening to confine the illumina-

tion. A Bendix (Mosaic Fabrications Division) flexible glass fiber light pipe was

used to couple the flash output to the converter (see Figure 6-1 and 6-2).

The Pulser was operated in the externally triggered mode with the Q2 output

from the pulse generator applied across the contact closure terminals.

Circuit Manuf. No.
I. D. No. (Motorola) Description

IC1 MC832 Dual 4-input buffer

IC2 MC858 Quad 2-input nand power gate

IC3 MC845 Clocked flip-flop

IC4 MC7400 Quad 2-input nand gate

Table 5-1 - Pulse Generator Logic Module Specs.

36



6. PERFORMANCE TESTS

6. 1 System Requirements -

The performance goals set for this basic optical-to-optical interface

device included the ability to accept as an input reflected (noncoherent)

light from a small object illuminated by standard photoflood lamps. The

coherent readout image was to be Fourier transformable so that a power

spectra could be generated using a suitable transforming lens. Further-

more, a coherent image of the input scene was to appear on a screen

located in the rear focal plane of a subsequent inverse transforming lens.

Furthermore it was required that the device have sufficient resolving

power to convert a 64 x 64 block checkerboard such that all squares could be

easily discernible and countable in the displayed coherent output image.

Additional design goals included an output contrast ratio of 50:1, an image

generation time of 100 milliseconds, and an optical readout transfer effi-

ciency of at least 5% (measured as the percent of the coherent light intensity

entering the device which appeared in the output display).

6.2 Optical Apparatus -

The optical systems used for evaluating the operation of the PROM

device as an optical-to-optical interface device (noncoherent-to-coherent

converter) are diagrammed in Figures 6-1 and 6-2. Figure 6-1 shows

the system for write-in of transmission targets while Figure 6-2

shows the system for testing write-in of reflective targets. Table 6-1

summarizes, and describes in detail, the key elements in the test systems.

The transmission write-in system (Figure 6-1) uses a 200 watt high

pressure mercury arc, with light collecting optics as the incoherent illumi-

nating source. The target is illuminated through an interference filter

having a passband centered at 436nm. The filter is used to minimize

chromatic aberration effects in the write-in image within the photosensitive

electro-optic crystal. The imaging lens which was set at F/4 to provide

adequate depth of focus, images the target onto the converter. In the trans-

mission mode, all targets were imaged onto the converter with unity magni-

fication. The lens was mounted in a holder sitting on a triangular optical

rail, which allowed coarse focusing of the input image. Fine focus adjust-

37



Mercury arc

Collimator

Interference
filter

device

Xenon flash
with light
pipe

Polarizer

Collimator

Beam expander

Fig. 6-1 Optical apparatus for performance testing OID (transparent targets)

38

Red filter,

lens -

Sp

Imaging
lens --

image



Reflecting
Target

K\'

Photofloods

'Ped

hr:ns . i. Llflls-

, Imagillng lellns

Electro-optic
so device

\ Polarizer

Colli mnitor

Sl'' j lIllI l

Xe1nonl fla;sh

with li!lit

pi)pe

I nlli ' n_

Lens 

BeJm exp; id,:r
\ /

"g

Laser.

Fig. 6-2 Optical apparatus for performance testing OID (reflective targets)

39

(C.'le rl;! i e:l{.9"

· ph[I'



ments were made using the focusing mechanism of the lens. Initial target

focusing was performed by maximizing the apparent sharpness of the image

on the rear surface of the converter. Final focus adjustments were made

while viewing either the readout image or the readout coherent power

spectrum.

The readout system was used for both the transmission and reflection

modes of write in. The 5mw helium-neon laser was expanded and collimated

to give a beam diameter of approximately 1.5 centimeters. This beam size

covered the useful converter width without overlap onto the edges or silver

paste electrodes. A polarizer was inserted between the laser and the con-

verter to improve the polarization of the readout beam. The beam also

passes through a circular diaphragm (not shown) to block stray laser light.

After exiting from the converter, the readout beam passes through an

analyzer whose plane of acceptance is rotated approximately 90 degrees

relative to the polarizer. The beam then passes through a wideband red

filter (Kodak Wratten #25) to block stray blue light coming either from the

write-in source or the xenon flash. The transform lens, which has a 380 mm

focal length, was set so that the converter was in its front focal plane. The

spectrum is observed in the back focal plane of the transforming lens with

a scale of 2.4 millimeters corresponding to an object frequency of 10 cycles/

millimeter. When photographs were made of the spectrum, a magnification

was obtained by properly inserting a lens to form an enlarged image in the

camera. Retransformation to obtain an intensity image is performed using

a second 380 mm lens immediately after the spectrum, with the image

appearing in its back focal plane. All photos were taken with a Graflex

Camera having a 4" x 5" Polaroid back. Contrast measurements were

made on the images by replacing the camera back with a photometer mounted

on a cross slide.

The xenon flash, which was used for erasing and priming the converter

before each new exposure, consisted of a flash lamp mounted in a semipara-

bolic reflector. A flat mirror with a 1/2 inch hole cut in its center was
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attached to the front of the reflector. A 1/2 inch diameter 12 inch long

fiber optic light pipe was inserted in the hole. Since the end of the light

pipe was located near the focus of the parabola, a large percentage of

the flash light is delivered down the light pipe, and directed towards the

converter, with the output end of the pipe placed approximately two inches

from the converter. This arrangement not only efficiently collects the

light, but also greatly restricts bothersome strong light from the flash.

The reflection mode of write-in (Figure 6-2) replaces the mercury

arc with two 650 watt photo flood lamps illuminating a reflecting target.

For convenience, a large reflecting object was imaged down onto the

converter with a 10 to 1 demagnification. The rest of the write-in and

readout system was identical to the transmission mode system.

6.3 Initial Filtering Experiments -

The general purpose of the optical-to-optical interface device is to

take an incoherently illuminated image and spatially modulate the intensity

of a coherent light beam in real time so that its intensity is proportional

to the original image. This coherent intensity distribution may then be

optically Fourier transformed and the resulting spectrum spatially

filtered to perform Fourier synthesis operations as in a conventional

coherent processor. A standard demonstration of the Fourier synthesis

properties of a coherent optical processor was carried out with the PROM

using a transmission write-in and readout ' system.

A crossed grating having a frequency of 10 lines/mm was used as

a target. When the grating was imaged onto the PROM, with the PROM

operating in the d-c mode (as described in section 2), the grating diffrac-

tion spectrum was observed in the transform plane. The exposure time

was adjusted, using a shutter in front of the arc lamp, for maximum

observable brightness in the spectral orders. The optimized spectrum

was then inverted to give an image, which was recorded on Polaroid

Type 57 Positive/Negative film. Figure 6-3 is an enlargement of the

grating image.

1. The PROM device tested had no internal dichroic reflector therefore
was not readout in reflex.
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The non-uniform brightness across the image is mostly due to the

Gaussian intensity profile of the readout beam. There are a considerable

number of dust and dirt spots causing ringing in the image. This effect

occurs in all optical systems using coherent illumination, with many of

the dirt specks on the various optical elements. The high frequency

low contrast fringe pattern running diagonally in the background is due

to interference between the main image wave and secondary reflected

wave.

The effect of the interference patterns would be reduced if a

lower reflectivity front electrode could be implemented (such as re-

placing the platinum electrode with a more transmissive coating such as

indium oxide), or by reducing the temporal coherence of the source.

Most spatial filtering operations require a source which is a spatially

coherent source with only minimal temporal coherence. Use of an inter-

ference filtered arc lamp or a GaAs laser would retain sufficient spatial

coherence while reducing the coherence lengths so that the first and

second order reflections would not interfere. Finally, if the Bi1 2 SiO2 0

crystal has sufficient wedge between front and back surfaces, the fringes

will become high enough frequency either to be ignored or to be eliminated

by blocking the second reflected order with an off-axis stop in the Fourier

plane.

Figure 6-4 is a magnified photograph of the Fraunhofer diffraction

spectrum of the PROM crossed grating image. The irregular shape of

the diffraction orders is due to a lack of flatness in the faces of the

Bi1 2 SiO2 0 crystals. The crystals were polished to a flatness of only

approximately 3 to 5 waves rms with coarse microstructure. Since com-

pletion of the NASA contract continued studies of crystal polishing tech-

niques have been supported by Itek. Recent polishing has produced Bi1 2

SiO2 0 chips having flatness to better than 1/2 wave rms, with a commen-

surate reduction in micro-roughness. Continued improvement is expected,
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with the eventual goal of producing chips having flatness of better than

1/5 wave rms.

When a slit filter is inserted in the Fourier plane which allows

only the central, vertical row of orders to pass, the reconstructed

image is shown in Figure 6-5. The vertical grid lines have been elim-

inated and only the horizontal lines are reconstructed. There is some

reduction in sharpness of the lines in the reconstruction. Due to their

irregularity, the slit has blocked some of the light from the diffraction

order which was passed, causing the image blurryness.

The importance of this experiment is that it demonstrates the

incoherent-to-coherent conversion capability of the optical-to-optical

interface device. An incoherent image was written on the device and

read out with coherent light. Fourier analysis was performed on the

image, or demonstrated by the Fraunhofer spectrum. Fourier synthesis

operations were also performed on the image demonstrated by the filter-

ing and reconstruction operations.

6.4 Converter Operational Characteristics -

In addition to the imaging and optical Fourier transformation of a

range of reflective and transmissive targets, the following characteris-

tics were demonstrated for the delivered noncoherent-to-coherent

converters.

1) Image generation time - The device was cyclically operated at

a rate of 10 Hz. Each complete cycle consisted of a priming step which

completely erased the old image and prepolarized (primed) the electro-

optic crystal for a new write-in; exposure into the converter of a new

noncoherently illuminated image; and readout of the image with red

coherent light (632. 8nm).

2) Noncoherent-to-coherent conversion - This was demonstrated by

writing in with noncoherent mercury light and reading out with coherent

laser light. The readout image was demonstrated to show optical

Fourier transformation and, after spatial filtering, Fourier synthesis in

a reconstructed image.
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3) Optical transfer efficiency (the inverse ratio of the intensity

of the readout light before entering the converter to the intensity output

from the device with 1/2 wave electro-optic voltage applied) - The

optical efficiency cf the delivered devices was greater than 8%. The

attenuation factors were the losses at the partially transparent front

Pt electrode (35% reflecting) and the losses at the dichroic reflector

(80% reflecting). Reflections at the other optical interfaces and crystal

absorption accounted for the other losses.

4) Readout contrast - Between the fully exposed and unexposed

regions of the converter the contrast ratio was demonstrated to be in

excess of 50 to 1 both for reflective and transmissive write-in. The

contributing factors in reducing image contrast were strain in the

crystal (which adds a background electro-optic bias level) and steady

state readout while the device is recycling (see explanation below).

The delivered devices which showed considerable strain bias

were 900 micrometers thick. Devices fabricated at Itek since the end

of the contract, which were made only 250 micrometers thick, have

shown dramatic reduction in strain and yielded contrast ratios approach-

ing 5000 to 1.

Since readout was monitored continuously including the erase/

prime period, the contrast was therefore averaged over a full cycle.

Sampling the readout between erase/prime/write-in periods (see

Fig. 2-5) yields nearly a factor of 2 increase in contrast.

5) Size - the useful working image areas of the two delivered devices
2 2

were 1 cm and 2 cm . These areas were shown to be sufficient for

writing and reading 64 x 64 element checkerboard images.

6.5 Photographic Results -

A large number of reflection and transmission targets were

imaged onto the converter with noncoherent light and read-out with

laser light using the optical systems described in a previous section.

Polaroid photographs were taken of the reconstructed images
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and Fraunhofer diffraction (Fourier transform) patterns from the

converter images for each target, along with photos of the diffraction

patterns obtained when the write-in image (photographic negative) was

used as the coherent light modulator in the system. The latter are

labeled "comparison Fourier transform". Magnifications and exposures

were adjusted as suitable for each image. Table 6-1 lists the photo-

graphs and targets included and summarizes the exposure and magnifi-

cation data. All transmission targets were imaged at a 1 to 1 magni-

fication using 436 nm filtered light. Reproductions of the photographs

described in Table 6-1 appear in Figures 6-6 through 6-12.
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Photo Description (Fig. No.)

Transmission Target 1:
Three-bar single-frequency @ three angles

1. Reconstructed Image (6-6a)

2. Fourier transform (6-6b)

3. Comparison Fourier transform (6-6c)

Transmission Target 2:
Multi-bar multi-frequency @ three angles

4. Reconstructed image (6-7a)

5. Fourier transform (6-7b)

6. Comparison Fourier transform (6-7c)

Transmission Target 3:
Triangle

7. Reconstructed image (6-8a)

8. Reconstructed image (6-8b)

9. Fourier transform (6-8c)

10. Comparison Fourier transform (6-8d)

Transmission Target 4:
Checkerboard

11. Reconstructed image (10 x 10 squares) (6-'

Exposure Conditions

1/2 sec. exposure thru a 1.2 neutral
density filter onto Polaroid P/N

4X enlargement

1/2 sec. exposure onto Polaroid P/N
8X enlargement

1 sec. exposure thru 1.2 neutral
density filter onto Polaroid P/N

8X enlargement

1/25 sec. exposure onto Polaroid P/N
4X enlargement

Same as 2 above

Same as 3 above

1/200 sec. exposure onto Polaroid P/N
4X enlargement

1/2 sec. exposure thru 1.2 neutral
density filter onto Polaroid P/N

4X enlargement

Same as 2 above

Same as 3 above

9a) Same as 1 above

Table 6-1 Description of Performance Test Targets
and Output Image Photographs
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12. Fourier transform (64 x 64 squares) (6-9b) Same as 2 above

13. Comparison Fourier transform
(64 x 64. squares) (6-9c) Same as 3 above

Transmission Target 5:
Airstrip

14. Reconstructed image (6-10a) 1/100 sec. exposure onto Polaroid P/N
4X enlargement

15. Fourier transform (6-10b) 1/10 sec. exposure onto Polaroid P/N
8X enlargement

16. Comparison Fourier transform (6-10c) Same as 3 above

Reflection Target 1:
Checkerboard

17. Reconstructed image (6-11a) Same as 7 above

18. Fourier transform (6-11b) 1/200 sec. exposure onto Polaroid P/N
8X enlargement

Reflection Target 2:
Half Plane

19. Reconstructed image (6-12a) Same as 7 above

Strain pattern (no voltage applied to device)

20. Output plane image (6-12b) Same as 7 above

No input light (voltage applied to device)

21. Output plane image (6-12c) Same as 7 above

Table 6-1 Continued
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7. PROBLEMS ENCOUNTERED

Many of the outstanding problems encountered during the course of

the program have already been mentioned in previous sections; however,

these problems and other problems encountered will be summarized here

for the purpose of indicating the direction that future work should take

(Section 9).

7.1 Crystal Cracking -

The tendency for cracking of large diameter Bi12SiO20 ingots

under normal device fabrication conditions has its origin in the lattice

structure of the crystal, specifically the large thermal expansion coefficient

which is of the order of six times that of germanium. Other factors contrib-

uting to cracking are the large piezo-electric effect in Bi1 2 SiO2 0 which

strains the crystal under pulse operation and the necessity of adding the

second oxide phase (SiO2 ) in order to stabilize the B. C. cubic structure.

This oxide is known to change the lattice constant.

7.2 Birefringent Strain -

The strains which in the limit produced cracking as discussed

above also induced birefringence into a normally isotropic crystal. When

viewed through crossed analyzers, as in the readout process, this bire-

fringence showed up as a background illumination in the readout display

(see Fig. 6-12b).

7.3 Contrast Ratio -

Loss of contrast is primarily due to unwanted light in the "dark"

regions of the display. One source of this illumination is birefringent

strain as mentioned above. A second is scattered light from various

interface surfaces in the device and on other optical components. Since this

scattered light is primarily unpolarized approximately one-half of it will

pass through the readout analyzer. Another contributor to loss of contrast

is the transient light pulse which occurs during the erase/prime step (see

Figure 2-5 and the first term of equation 2). The one remaining factor

which determines contrast is the intensity of write-in illumination and the
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sensitivity of the device to this radiation. The decay time constant, T2'

in equation 2 is inversely related to input illumination and device sensitivity

and an unwanted increase in r2 results in an increase in "dark" region

illumination.

The loss of contrast due to the transient light pulses mentioned above

is demonstrated clearly in Figures 6-8a and 6-8b. In Figure 6-8b a neutral

density filter was used to reduce the intensity of the readout light. This

allowed an increase in photographic exposure time to give a time averaging

over several converter cycles. In Figure 6-8a the photo was taken without

a neutral density filter at a 5 millisecond exposure time, which is consid-

erably less than the converter cycle time. The correct timing of the exposure

cycle was found by trial and error and considerable enhancement of the image

contrast is observed.

7.4 Sensitivity -

The coherent image contrast ratio for reflection targets (Figure

6-lla) was found to be considerably less than for transmission targets

(Figure 6-9a). This is believed to be due to the relative insensitivity of

the converter to tungsten illumination (3400 K).

7.5 Strain -

The effect of strain in reducing contrast is depicted in Figure 6-

12b. Since no voltage was applied to the device during this photograph a

dark field should have appeared in the coherent output image plane. Instead

a low frequency patch of illumination is present. This is believed to be due

to birefringence induced into the Bi12SiO20 crystal by strain.

7.6 Reflections and Coherent Interference Patterns -

A degrading effect on the coherent output image quality was the

"finger print'' effect clearly depicted in Figure 6-12c. This image ideally

should show a uniform bright field due to the absence of write-in light.

The pattern depicted in Figure 6-12c is believed due to an interference

pattern caused by reflections either internal or external to the device.
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The reflecting interfaces to be considered are the platinum electrodes and

the dichroic layer which have reflectivities of 35% and 80% respectively.

It is believed that the initial front surface reflection of readout light (35%)

would be blocked by the crossed analyzer. However, an internal reflection

occurs at this electrode interface when the transmitted beam exits the

converter after a roundtrip through the Bi12SiO20 crystal. This creates

a secondary beam which also undergoes electro-optic phase modulation

(twice) as a result of a second round trip through the Bi12SiO20 crystal.

The primary and secondary beams, differing in intensity by approximately

30% and having a relative phase relationship dictated by the birefringence

in the crystal could interfere to form the observed pattern of Figure 6-1c.
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8. PROJECT RESULTS

Two incoherent-to-coherent converters were designed, built,

tested, and delivered to NASA Goddard during the course of this work

as described in the previous sections. These converters performed in

accordance with the work statement and Figures 6-6 through 6-11 give

photographic evidence of the ability of these devices to perform an

incoherent-to-coherent conversion with an optical quality suitable for

Fourier transforming the converted image.
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9. RECOMMENDATIONS

A four year R & D effort in light sensitive electro-optic crystals at

Itek has resulted in the development of a device which has considerable

potential for many optical processing applications. With NASA's support

under NAS 5-11486 a feasibility model of an optical-to-optical interface

device was constructed. Although the device operation is generally within

our expectations and the design goals of the contract, we believe that the

possibility for improved performance as well as increased operational

versatility (the development of a universal optical processing element)

exists.

To achieve these aims it is proposed to combine our light sensitive

electro-optic element with an image intensifier. A unique optical processing

device results (Figure 9-1). The photocathode, of course, will provide

greatly enhanced sensitivity over the entire visible spectrum ( desirable

for the ultimate optical-to-optical converter). The structure itself is

basically an optical converter with built-in image storage. It can be

operated either in a READ while WRITE or WRITE, STORE, and READ mode.

Furthermore if two images are stored in the device in sequence the resulting

output image will be an inverted OR (i.e. NOR) relationship between the two

input images. Several of these universal logic elements can be combined

to perform desired AND, OR logic comparisons between optical images in

parallel.
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In addition to the performance advantages afforded by the intensifier/

electro-optic crystal combination in terms of spectral sensitivity and

logical flexibility the structure should have improved optical quality

afforded by sandwiching the crystal between optical flats with the aid of

index matching fluid. Furthermore the low reflection losses of semi-

conductor electrodes should minimize unwanted interference patterns

caused by interface reflections.

Although an improved converter structure is proposed above work

with existing devices should be performed so that they may be fully

characterized as to photosensitivity, undesirable optical effects (such

as fringing, birefringent strain and multiple internal reflections),

stability of operation, contrast ratio, response time, storage time,

and resolution. Then guides for directing further materials and device

improvement investigations can be formulated.
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Fig. 9-1 Proposed incoherent to coherent image converter tube
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10. NEW TECHNOLOGY

No new technology was developed during the course of this

contract.
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11. APPENDIX

11.1 Diffraction Efficiency Calculations

Analysis of the operation of the PROM for the coherent readout mode

after exposure with a sinusoidal intensity demonstrates that the operation

of the modulator is similar to a phase grating.

When the polarized light making a 45-degree angle with the crystal's

birefringent axes passes through the modulator, the local ordinary and

extraordinary disturbances are advanced or retarded respectively by a

phase shaft, Z . If the exposing intensity pattern is sinusoidal, varying

only in the x direction, then the problem need only be treated in one dimen-

sion. If the phase shift is proportional to the exposing intensity distribution,

then V can be written in the form

)A
b = I(l + m cos w0X)

Here c A is the device's maximum phase shift at the half-wave voltage,

m is the modulation, and wo is the spatial frequency of the sinusoidal

exposure pattern.

The complex amplitude distribution after modulation by the device has two

components, A and B where

E E [ .DA 1
A = +t- exp (- i$) f exp -il-7-m(1 + m X)

B = exp (+i4) = exp +i + m cos oX)

where E is the amplitude of the incident wave.
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A and B are in spatial quadrature, so their intensities not their complex

amplitudes add. The intensity spectrum is obtained by expanding A and B

in a Bessel series, Fourier transforming, and adding the square moduli of

their resulting complex amplitudes. Therefore, the zero and positive or /

negative first orders of the intensity spectrum, IS , with no analyzer intro-

duced in the readout beam, has the form

IS = E2J0(1 )6 (o) + E2J mA

where J0 and J1 are the zero- and the first-order Bessel functions of the

first kind and 6 is the Dirac delta function.

When an analyzer is inserter between the PROM and the frequency plane

with its axis of polarization rotated 90 degrees with respect to the polarization

of the incident readout beam, the complex amplitude, C, immediately after

the analyzer is

C =- {exp 1 *m(1+ m cos oX) - exp[ 1-1 + mcos WOX)}

Again rearranging terms, expanding in a Bessel series, Fourier trans-

forming, and calculating the intensity spectrum, IC, gives

IC = E sin2 (1 am)Jl+)6(o) + E2 cos2 1 +M J 6(+x)

And, finally, if the analyzer is parallel to the direction of polarization, the

amplitude after the analyzer, P, is

(P = exPlm1 + m cos (X)]+ exp- 1 + m co s (wOX)]

The intensity spectrum, Ip, is calculated as

Ip = E S2 cos2 (1 )J20( m )6(o) + E2 sin2 (1 +- Jl_- +6(±oox)
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Figs. A-i through A-5 are examples of the percent diffraction efficiency

of the first-order intensity spectra plotted against effective modulation on

the device, after the effect of the MTF, for likely values of cA' E is taken

as 1. 0 and losses due to reflections from the optical surfaces and absorp-

tion are assumed to be negligible. Figure A-i shows results from the

crossed analyzer for values of 'PA ranging from r/2 to 7r/6. Figs. A-2,

A-3 and A-4 compare results for operation with no analyzer, parallel

analyzer, and crossed analyzer for typical values of (A ( r/2, r/3, and

r/4, respectively). These results demonstrate that unless the device

operates near the practical maximum phase shift of ,r/2, the crossed

analyzer mode is more efficient than the parallel analyzer. While the

"no analyzer" mode is always more efficient than the crossed analyzer

mode, the crossed polarizer reduces the background noise, front surface

reflections, and zero-order components, so the small gain in diffraction

efficienty is traded for considerable improvement in signal to noise ratio.

Fig. A-5, which plots diffraction efficiency against (A (m=l. 0), shows

that efficiencies of over 30 percent are possible if ~A is close to r*. This

will require voltage of over 4, 000 volts across the crystal.
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11.2 Quantum Efficiency Calculation

A 0. 013 inch thick PROM having total Parylene thickness (sum of

two layers) of 5 micrometers was evaluated for sensitivity to 4358 R rad-

iation. The device was primed by applying 1200 volts and uniform illumination.

This charged the Parylene layers up to 1200 volts (600 volts across each

layer) in the manner depicted in Figure 2-3a and 2-3b. The device was then

shorted (see Fig. 2-3c) and the 4358 R write-in radiation was applied (see

Fig. 2-3d). It was observed that an exposing write-in intensity of 275 micro-

watts/cm2 caused the readout light (observed through a crossed analyzer) to
-1drop to the e point in 10 milliseconds.

Since the readout light intensity is roughly proportional to the square

of the voltage across the Bi1 2 SiO2 0 which is in turn proportional to the

stored charge it follows that when the readout light intensity has been re-

duced to the e- 1
point the device has roughly discharged to the e 5 point.

-0.5Therefore the change in stored charge is 1 - e = 0.39 of the original

stored charge. This change in charge can be computed by first calculating

the charge stored across the Parylene layers as follows:

Q = (E EoV)/t,

where 6 = Parylene dielectric constant = 2.6

E = dielectric constant of air = 8. 85 x 10 farad/cm
0

V = applied voltage = 1200 volts

t = parylene thickness = 5 micrometers

substituting,
-14 -4 1 -7 coul/c2Q = 1200 x 2.6 x 8.85 x 10 x (5 x 10 =5.5 x 10 coul/cm

Therefore the change in charge due to write-in exposure is
-7 2 12 20.39 Q = 2.2 x 10- 7 coul/cm = 1.3 x 10 electrons/cm .

The exposing radiation which produced this discharge was 275 micro-

watts/cm for 10 milliseconds or 2.75 microjoule/cm . This can be con-

verted to photons/cm2 by remembering that each photon of radiation at 4358 R
contains 2. 9 ev of energy. Therefore

2.752 1.72 x 013 2 112 2.75 microjoule/cm = 1.72 x 10 ev/cm = 6 x 10 photons/cm
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Therefore, the quantum efficiency, defined as the ratio of electrons

discharged per incident photon becomes:

Q. E.= 100 x (1.3/6) = 22%
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