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ABSTRACT

This report presents a summary of theoretical calculations of the

ionization processes in mercury plasma. Various possible ionization pro-

cesses are analyzed and discussed. It is found that the ionization due to

excited-state interactions is dominant when the degree of ionization is small

and that the ionization due to multistep electron impact is significant when

the degree of ionization is high.
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I. INTRODUCTION

.In early studies of mercury discharge, it was believed that ionization

is due mainly to the direct impact of electrons on the ground-state atoms.

However, later studies have revealed that ionization can also be caused by

electron impact on the excited mercury atoms. More recent work on the

noble gas discharges shows that ionization due to excited state interactions

is quite possible. The purpose of this study is to investigate the ionization

processes in mercury plasma under various discharge conditions. The

investigation was carried out in connection with the studies of Ref. 1.

II. SINGLE IONIZATION PROCESSES

The ionization in mercury discharge is considered to be due mainly to:

(1) Direct electron ionization.

(2) Electron impact ionization of excited mercury atoms.

(3) Ionization due to excited atom-atom collisions.

The analyses that follow will assume the electron distribution to be

Maxwellian at temperature T .

A. Direct Electron Ionization

This process can be expressed as

+ e + e. (1)

Although the mean electron energy is usually far lower than the threshold

energy needed to ionize the mercury atom, the high- energy (or Maxwellian)

tail of the electron energy distribution function is sufficient to produce the
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ionization. The rate of ionization from the ground state due to electron

impact can be calculated by the equation

Z 1C = n e n s v ( 0 * f ( O Q ( 0 dc , (2 )

where n and n I S I are the electron and the ground-state densities,

respectively, f ( e ) is the electron energy distribution, e is the electron

energy, the subscript th stands for threshold, and Q I (-;(€) is the energy-

dependent ionization cross section. The electron energy distribution f ( e )

is subject to the normalization condition

e * ) d € = 1 . ( 3 )
0

The direct ionization cross section Q I ( - , ( € ) can be analytically approximated

using Gryzinski's formula (Refs. 2, 3):

=- 1 -^hn 2.7 (4)

o- = 2 X 6. 56 X 10" cm2 - ev ,

where e is the incident kinetic energy of the electron in electron volts, and

V. is the ionization threshold energy and is equal to 10.43 eV.

The cross section thus calculated from Eq. (4) is shown in Fig. 1,

which also presents the experimentally available ionization cross sections

for comparison. Curve (1) in the figure is calculated from Eq. (4), and

curves (2) and (3) were obtained from Ref. 4. Although it is seen that the

magnitude of the Gryzinski cross section is about half that of the experimental
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ones, it is considered that it is acceptable. Further comments on Gryzinski's

method have been made by Rudge (Ref. 5). In this report, we shall use

curve (1).

B. Electron Impact lonization of Excited Mercury Atoms

The term diagram of the first few states of mercury is shown in
3 3 3

Fig. 2a, where 6 P is the resonance state and 6 P_ and 6 P.. are metastable

states. If we assume that ionization can take place from all three of these

states, we may lump them into a single one and take the ionization potential

to be the center of gravity of the three as shown in Fig. 2b. If the Boltzmann

relation between the ground state (6 S,J and the first excited (6P) states is

assumed, the 6P-state population density would be populated according to the

relation

n(6P) . g(6P) -5.21/T
^ ' ^ '

where T is the electron temperature in electron volts and g is the statistical

weight of each state.

In writing Eq. (5), it is assumed that the LTE condition holds. How-

ever, in an active arc, this condition cannot be satisfied, since bound

electron temperatures, particularly in the lower excited states, deviate

considerably from those of free electrons. This relation has been investi-

gated in detail for a cesium plasma (Ref. 6).

In an active arc, the population density in the 6P-state is obtained by

solving the rate equation

n(6P)n K(6P, C) - n(6P)n £ K(6P, q)
6 e

- n(6P)A /6P, 1S\ - »mn2(6P) - D*V2n(6P)

+ n E n(q)K(q, 6P) + £ n(q)A(q, 6P)
q*6P q>6P

+ ne
2 [neK(C, 6 P ) + p ( 6 P ) ] j (6)
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where n(6P), n(q), and n are the densities of the 6P-state, q-state, and free
C

electrons; K(6P, q) is the collisional transition coefficient from the 6P-state

to the q-state; K(6P, C) is the collisional transition coefficient from the

6P-state to the continuum; A(6P, q) is the radiative transition probability

from the 6P-state to the q-state; |3(6P) is the two-body radiative recombina-
xi* o

tion to the 6P-state; D v n(6P) is the diffusion loss term to the wall, and a

is the ionization coefficient of the excited -state interactions. (The excited -

state interaction ionization will be considered in detail in the next section. )

Although the population density of the 6P-state is governed by the rate

equation (6), an estimate can be made using the Boltzmann relation. The

resonance radiation of the 6 P, -state is always trapped (Refs. 6, 7), so that
3the 6 P -state is always in equilibrium •with the ground state at a tempera-

ture not too far from the free electron temperature. However, if it is

assumed that the 6P state is in equilibrium with the ground state at the

free electron temperature, the density of the 6P-state will be overestimated

by use of the Boltzmann relation. In the case of cesium, the calculation has

been as high as 30% in the temperature range of 2000-4000 K.

The total rate of ionization from the 6P-state can be calculated by

= nen(6P)K(6P, C)

nen(6P)y*
£

C °v(e)e 1 / 2 f ( e )Q 2 C (6) de. (7)
£th

The ionization cross sections of 6P, calculated from Ref. 2, are shown in
3 3 3Fig. 3. Curves (1), (2), and (3) correspond to the P.,, P., and P~

states, respectively. Curve (4) in the figure is the ionization cross section

of the lumped state. A simplified model of the rate equation is described

below.

It is believed in plasma physics (Ref. 6) that the upper excited states

are always nearly in equilibrium with the free electrons. This means that

once the bound electron has been excited into the upper states from the

6P-state, it has a good chance of being ionized. In other words, the ioniza-

tion results mainly from the lower energy states, particularly the first

excited state (in mercury, the 6P-state). In this treatment, we assume that
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the levels beyond the 6P-state are in equilibrium with the continuum; and

hence the population density can be calculated by the Saha equation from the

known electron density and electron temperature. In this case, the rate

equation can be readily solved algebraically if we use the bulk plasma limit

(i. e. , volume V — co, total number of particles N —• co, and n = N/V < co ) and

the steady-state condition.

C. lonization Due to Excited-State Atom Collisions

It is possible for the atoms in the metastable or resonance states of

mercury to collide with each other and produce ionization. These processes

may be due to

+ (8)Hg(3P2) + Hg(3P2) - Hg^sJ + Hg

for atomic ions and

(8a)

for molecular ions. The last step is a collision between atoms in a metastable

and a resonance state. The collision cross section given by von Engel
-13 2(Ref. 8) is of the order of 10 cm . Although it is expected that pro-

cess (8a) occurs in preference to process (8) because the ionization potential

of molecular mercury is lower than that of atomic mercury, process (8) is

considered equally important in producing ionization. Processes analogous

to (8) and (8a) have been studied for inert gas discharges in connection with

the mechanism of ionization (Refs. 9, 10).

The ionization cross sections for the excited-state interactions are

not available. However, estimates have been made for inert gases

(Refs. 9, 11). For helium, the ionization cross section of the interaction
-14of two metastable states has been estimated to be of the order of 10

(Ref. 11); and, as mentioned above, the cross section of process (8a) as
- 1 3 2

given by von Engel is of the order of 10 cm . These values indicate

that the ionization cross section for processes (8) and (8a) is of the order
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-14 2
of 10 cm . Taking this value for the ionization cross section, the

ionization coefficient of processes (8) and (8a) can be calculated readily as

"mm = Q<6P' 6P> ^m ' <

where v is the mean velocity of the 6P-state atoms. The rate of ionizationm '
then is

Z = a n2(6P) (10)
mm mm

in. DOUBLE IONIZATION PROCESSES

Doubly ionized particles that have been detected in the thruster beam

analysis may be the result of (1) direct neutral ground-state ionization by

energetic electron impact, and (2) ionization of ions due to electron impact

(Ref. 12).

A. Direct Neutral Ground-State Ionization by Electron Impact

Although the double ionization potential for mercury is quite high

(29.4 eV from 6 Sn), it is still possible to produce ionization by electron

bombardment. This process may be of the type

Hg /61SQj + e- Hg++ + e + e + e. (11)

Gryzinski (Ref. 2) has also developed a method for calculating the multiple

ionization cross section due to electron impact, which is expressed by the

equations

e sc x i_-2 Iy2

X [gQ(V, c; V.) - _ 4 g Q ( V f e; e - V..)]

XgQ(v, c - <AE s c>;V.. j (12)
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X g Q v , A E . ; V . (13)

eQt+o+tal = eQsc + eQe|,

where cr,. is equal to 6. 56 X 10" cm - eV , r is the mean distance between

two interacting electrons, V. is the ionization energy of first electron, V..

is the ionization energy of second electron, g^. is the functional dependence

of the cross section on the incident electron energy, e is the incident

electron energy, and V is the binding energy of the bound electron. The

terms ^E y and <^AE . \ are expressed as

<AE\ sc/ ~ V.
1 -

(15)

€ - V..
11

.V + V..

1 _-i—li

3/2

/ VA r / 6 - v V / 2
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Gryzinski also gave an estimate of the mean distance r by matching to the

value of the experimental cross section. This estimate can be expressed as

- « °0 /2 0.058\1 / 2

'i 11 \ Q /\ max /

where Q is the maximum value of the cross section for mercury as given

Qmax

by Bleakney (Ref. 4):

resulting in a value of

r = 0. 38 A. (20)

The double ionization cross section thus calculated is shown in Fig. 4.

Having obtained the cross section, the rate of double ionization due to

direct electron impact can be calculated as

Z+ = n nps } fm v ( € ) £ 1 / 2 f ( c ) Q + + (€ ) de.
V °/>/€th

(21)
/€th

B. Ionization From a Singly Ionized Ion

Another means of producing double ionization is by electron impact on

singly ionized ions. The processes are

e + Hg+— Hg++ + e + e
•tL.
*P

e + Hg+ -» Hg++ + e + e, (22)

+ *where Hg is the excited ion and can be produced by (Ref. 13)

*

- Hg+ + e (23)
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The cross sections of (22) and (23) as a function of electron energy are

unknown. Again, an estimate using available information on the double-to-

single ion current ratio (Ref. 12) must be made. Massey (Ref. 13) has given

the expression for the ionization cross section for an ion as

i , , h ev V ,
^+ _ ++ e + T-,

and

•h

/
i (z) dz/ i (z) dz

J

h

/

(25)

h z ) i ( z ) dz

where i , i , and i are the currents of the single ion, double ion, and
i "T"r G

electron beam; h is the height of the ion beam, v is the electron velocity,
G

and V , is the ion velocity. If we take F to be unity and v » V,, then
i" G "t~

Eq. (24) takes the form

+ e

ev+h

- - • < 2 6 >

Substituting the measured ratio i /i , = 0. 12 from Ref. 14, and

taking i = i = 500 mA, V, = 3 X 1 0 cm/s, and h = 0. 2 cm, we obtain

Qt = 2. 2 X 10"16 cm2 (27)

This is in good agreement with the earlier measured value of 4. 2 X 10 cm
4

(Ref. 15). Here we have taken the mean ion velocity to be 3 X 10 cm/s,

which corresponds to an ion temperature T = 1000 K. The effective ioniza-

tion coefficient of ions by electron impact is then

t = Q+v , (28)i i e

JPL Technical Memorandum 33-596



and the total production rate of doubly ionized ions can be calculated as

Zi = nk+ = ne°i

IV. RESULTS AND DISCUSSION

We have discussed various collisional ionization processes in mercury

discharges. Collisional cross sections are taken mostly from calculations

using Gryzinski's classical approximation. The collisional ionization coeffi-

cients of the various states are derived by integrating the product of the cross

section and electron energy distribution function over the whole energy space.

It should be mentioned that the calculations presented here have also been

made using the analytical approximation given by Goldstein (Ref. 3):

vi \ 1 3.84 X 10"6yte"y ,_ n .
K(p,q) = —J72 1/4/ 7 7.; T\ ' (30)

pq

where y = V /T and A = V /V , with V being the energy needed forpq e p pq pq •
the transition from the p-state to q-state (in eV), V the binding energy of

the p-th state (in eV), and

t = A + 30

5(2A + 5)

Figure 5 illustrates the collisional ionization coefficients by direct

electron impact. This calculation has also been made by Masek (Ref. 14).

The figure also shows the double ionization coefficient. It can be seen that

the ratio of the double- to the single-ionization rate ranges from 10 at low
-2

electron temperatures to about 10 at high electron temperatures. It is

therefore concluded that direct electron impact is less likely to produce

double ionization, and that electron-ion impact collisions are probably mostly

responsible for producing doubly ionized ions.

The collisional ionization coefficients from 6P-states by electron

impact are shown in Fig. 6, with solid lines representing the 6P-states and

open circles the lumped (6P) state.
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It may be worthwhile here to show the calculated excited-state mercury

density by solving the rate equation (6) using a simplified model, as dis-

cussed in Section II-B. Presuming a bulk plasma limit, we make the assump-

tion that the resonance radiation is completely trapped; i. e. , g = 0, where g

is the escape factor of the resonance radiation. The 6P-state population

density thus calculated as a function of electron density is shown in Fig. 7a,

with electron temperature as a parameter. It is seen that for a specific

electron temperature the true excited-state density is close to the Boltzmann

density only when the electron density is high. Therefore, high electron

density not only makes the distribution function Maxwellian, it also ensures

that the bound electrons will be Boltzmann and hence guarantees an L/TE con-

dition of the plasma. However, in the low electron density limit, the devia-

tion from the Boltzmann relation is considerable because there is a lack of

the electron-electron interaction needed to ensure an L/TE condition.
15 -3

Irregularities at T = 0. 5 eV and n = 10 cm are due to high electron

density and low electron temperature, which are the extreme limits of the

cases considered. Figure 7b is a counterplot of Fig. 7a, with electron den-

sity (ionization fraction a) as a parameter. Both Figs. 7a and 7b are fixed
16 -3

at a neutral density n = 10 cm
cL

Figures 8a through 8d show the ion production rates as a function of

electron temperature at a neutral atom density n =10 cm , with the
-1 -5 a

degree of ionization varying from 10 to 10 . For all these escape prob-

abilities g = 0. It is seen immediately that the two-step ionization domi-

nates over the other processes at intermediate and high electron tempera-

tures (T SI eV) except when the degree of ionization is very low (i. e. ,

for a < 0. 01). On the other hand, the ionization due to excited 6P-state

interactions is more significant than the other processes when the degree

of ionization is low (a < 10 ). It is easily seen that at a higher degree of

ionization the electron is important in all kinds of collision processes,

including ionization, since the electrons collide with heavy particles as well

as electrons themselves more frequently. Higher collision frequency

between-electrons and atoms produces higher ionization and excitation rates,

and higher interelectron interaction ensures that the electron will be

Maxwellian. In the limit of a low degree of ionization, the electron collision

rate is not sufficient to produce appreciable ionization, and heavy particle

collisions then dominate.
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It is also interesting to note that, although the direct process cannot

be a decisive factor in producing ionization, it is a competitive mechanism

for a low degree of ionization at high temperatures. This can be seen from

Figs. 8c and 8d. Figure 8d shows that the direct ionization is one order of

magnitude higher than the two-step ionization, because there is not suffi-

cient density for the ionization in the excited state when the degree of ioniza-

tion is low.

Temperature effects on the ion production rates are significant.

However, the functional form of the rate dependence on the temperature is

essentially the same as that of the collisional transition coefficients. At

lower electron temperature limits, we see that both Z, and Z_ drop faster

than Z . This is the case because both K. and K_ drop fast at low elec-mm Ic 2c ^
tron temperatures, while K is essentially constant, depending on atom

temperature only.

It should be noted here that, although the above conclusions are drawn

only for the single neutral density at n =10 cm , the relative magni-
ct

tudes of Z. , Z_ , and Z remain the same over other neutral densitiesIc 2c mm
for the same degree of ionization.

Figure 9 presents the double ion production rates for single-step and

two-step (from singly ionized ions) processes. It is seen that the ionization

fron ions is more important than that from neutrals. This is due to the fact

that ionization from ions (or excited ions) has a larger ionization cross sec-

tion and lower ionization potential than that of the neutral ground state. The

double ionizations, other than the two mentioned in this study, are considered

to be unimportant. There may be processes such as

Hg+ + Hg+-* Hg++ + Hg S + e. (32)

However, there is not enough information available to support consideration

of this process.

In drawing the above conclusions, we have assumed that (1) electrons

are Maxwellian at T (where T is the free electron temperature), and (2)
6 C

the excited 6P-state is calculated from the rate equation, assuming a specific

value for the escape factor g. Assumption (1) can be justified at high

12 JPL Technical Memorandum 33-596



13 -3electron density (n > 10 cm ), where the electron-electron Coulomb

interaction is very effective in making the electron energy transfer Max-

wellian. However, when the degree of ionization is low, the electron collides

primarily with neutral atoms, so that a Maxwellian electron may not be

obtainable. In that case, the distribution function f ( e ) in the integration in

Eqs. ( 2 ) , (3), (7), and (21) should be replaced by a true distribution function.

Electric field effects on the ion production rate can be examined through the

calculation of electron distribution function in the electric field by the kinetic

theory.

The non-Maxwellian effects on the ionization have been investigated in

Ref. 10. In general, first, the non-Maxwellian electron reduces the colli-

sional transition (ionization and excitation) coefficients because of the deple-

tion of the electron distribution function in the high-energy part due to inelas-

tic collision. Secondly, the non-Maxwellian distribution also affects the n(6P)

density calculation because of changes in transition coefficients. These

points will be left for further investigation.

It is noted here that a group of high monoenergetic. electrons has been

detected (Ref. 16) in ion thrusters. This group of electrons, known as the

"primary electrons, " has an energy up to about 30 eV. The portion of pri-

mary electrons (given in Ref. 16) can be up to 10% of the total electron

density. Assuming that this group of electrons is distributed by a delta

function, the ion production rate can be integrated readily and expressed as

Zlc =

where n , e , and v are the primary electron density, energy, and velocity,

respectively.

The rate coefficients decay slowly and are relatively constant at higher

electron temperatures. Because Q « in E/E and v ec E , Z*^ cc in E/E

is a relatively constant value over the high electron temperature of interest.

The evaluation of Z then strongly depends on the primary electron density.

An estimate of the ionization rate due to the primary electrons indicates that

Z j is of the same order as Z , the direct ionization rate by thermal elec-

trons. The ionization due to primary and thermal electrons is about equal

JPL Technical Memorandum 33-596 13



when the ratio n /n is high (y = n /n > 0.01). In this case, the primaryp e p e
electrons will play an important role in the ionization within ion thrusters.

In dealing with the rate equation (6), we have assumed a bulk plasma

model in which we neglect the diffusion loss and take the resonance radiation

to be completely imprisoned. However, in an actual discharge case, this

cannot be true, and the g-value should come from solving the radiative trans-

fer equation by specifying a discharge geometry (a cylinder in a hollow cath-

ode). Figure 10 shows how different values of the escape factor g will affect

the excited-state density. It can be seen that the excited-state population is

lower for a higher degree of escape probability. Evidently, the g-value is

the controlling factor for excited-state density.
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