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Electron energy distributions resulting from a continuous primary

' source at high energies in helium have been calculated. Contributions

from both the primary electrons and subsequent secondaries are included.

In the cases analyzed, the primary electrons are taken to be produced '

via the ionization of helium by heavy-charged particles from the

nuclear reaction ~n + _B ->• ,Li + .He which represents an important

means of using the neutron flux from a nuclear reactor to produce a
•«

plasma. The calculation covers an energy range from zero to about 1 KeV,

.the highest energy of the primary electrons associated with such a source.

Electron-neutral collisions are assumed to be the dominate collision

process. While this limits the fractional ionization to 10" , this region

is of interest for application in areas such as radiation-pumped lasers

and the buffer-gas region of the gaseous core nuclear reactor. '

Balance equations for a finite system are developed-for the'slowing-

down region, and the appropriate collision kernels are evaluated. These

equations are solved numerically for the electron-flux distributions for

primary source energies from 100 eV to 1 KeV, gas pressures.from 0.1 to 10

Torr and also various plasma dimensions up to and including an infinite

medium. Calculations of the W-value from these distributions for electrons

in helium are found to be within 10% of experimental measurements. The

results are also generally consistent with previous Monte Carlo calculation?.
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A Boltzmann equation with appropriate source and sink terms is con-

sidered for the low-energy range for cases both with and without a super-

imposed electric field (0 <_ E/p <_ 10 V -cnf - Torr'1). Without the field,

major deviations from a Maxwellian distribution are only observed for low

'Xi 'X/
gas pressures ( < 0.4 torr), small systems (tube radius < 1 cm) and

moderately high neutron flux values (> 5 x 10 cm -sec ). For the

cases with an electric field, deviations from a Druyvestyen-type distribu-

^ 14 -2tion are observed when the neutron flux density is high (> 5 x 10 cm

-sec ) while the electric field is small (E/p< 4 V -cm Torr ). In

general, the shifts of the distribution due to leakage and recombination

depreciate the density in the low-energy region. This is attributed to

the leakage of electrons during the slowing process.

It is suggested that the methods developed here can be used to aid

Monte Carlo calculations through the development of a combined analytic-

Monte Carlo approach. The methods described can also be extended to

applications involving different gases or gas mixtures, although the

derivation of new collision kernels is required.
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CHAPTER I

DISCUSSION OF THE PROBLEM

A. Introduction

1. The Problem and Objectives

The present study is concerned with energy distribution of high

energy electrons as they slow down and thermalize in a gaseous medium. The

energy distribution in the entire energy range from source energies down is

studied analytically. In particular, attention is given to a helium medium

in which primary electrons are created by the passage of heavy-charged

particles from nuclear reactions. As discussed later, a radiation-induced

plasma of this sort is of interest in a variety of applications such as

radiation pumped lasers and gaseous core nuclear reactors.

A continuous source of high-energy electrons will establish a quasi-

steady-state in the energy distribution of the entire electron population.

The problem is complicated by the fact that this population not only includes

the primary electrons but also secondaries created by ionization collisions

during slowing down. This situation has been analysed not only for an

isolated system but also for the important case where an external electric

field is imposed upon the medium.

2. Previous Work Related to the Problem

Electron energy distributions in the absence of high-energy sources

have been extensively analyzed*- -"' "• •* ' *• . These studies all consider

the situation where the distribution is sustained by an electric field,

such as in the case of a gaseous discharge tube. On the other hand, the

problem of electrons born at a high energy has only been studied in the case

of B-irradiv: ^ns or for electrons created by gamma irradiation"- *• .



However, in these cases the energy range considered has been restricted to

quite high energies from MeV to the low keV region — since the interest

has been mainly from the point of view of shielding calculations.

Lacking complete electron energy distributions, previous workers

interested in applications of radiation-induced plasmas have generally

estimated electron ionization and excitation rates assuming a thermalized

electron swarm with a characteristic temperature^ ^ * *• . While it is true

that the slowing down time of electrons is frequently short so that a bulk

of the electron population approaches a Maxwellian shape (no electric field),

the tail of the distribution determines these reaction rates, and the assump-

tion of a Maxwellian "tail" can lead to erroneous results. Stated another

way, we note that electrons born at high energies suffer inelastic collisions

during the slowing process, and the resulting ionization and excitation rates

are not adequately described by the Maxwellian tail associated with the ther-

malized electrons.

B. Physical Applications

Plasmas resulting from electrons slowing down after creation at high

energies are of interest in many recent applications. In a laser system

which utilizes nuclear energy input, the primary electrons are created in the

To]
lasing gas through the passage of heavy-charged particles through the gasLOJ.

[9lIn the nuclear light-bulb reactor concept , the primary electrons enter as

B-radiation or from the ionizations due to fission fragments passing through

the fuel region and through a buffer gas region. In the electron-beam
[10]

fluorescence technique which is used to study basic parameters in gas

dynamics, primary electrons are introduced into the system in the form of a

beam from an electron accelerator or "eun".



The slowing down processes in these situations differ. In the laser,

electron-neutral gas atom processes generally dominate. For the nuclear

light-bulb reactor, the thermal temperature is high and the uranium is ther-

mally ionized. This leads to a high degree of ionization and electron inter-

actions with uranium ions play an important role. In the electron beam

fluorescence technique, the spatial geometry and the space charge of the beam

become important. However, in all of these systems the problem of high energy

electron slowing down and the resultant total electron energy distribution is

of common concern.

The present study calculates the time and space independent electron

energy spectrum for electrons slowing down in Helium. In particular, refer-

ences are made to a system in which electrons are created by the passage and

slowing of nuclear radiation as in a nuclear excited laser system. However,

with some modifications, the present study can be applied to other situations.

One situation of interest now at the University of Illinois is the electron- -

energy distribution in the region close to the fuel boundary and the buffer

gas region of a nuclear light-bulb reactor.

C. The Mode.l

A variety of schemes have been suggested to use nuclear energy in

• [81achieving laser excitation1- . One method employed by the University of

Illinois group is to utilize the neutron flux from a reactor for the nuclear

reaction-n + 2 -»• a + Li .' -Thus a laser tube is coated with Boron-10

and inserted into a nuclear reactor. The resultant heavy-charged particles

traverse the laser gas and deposit their energy which may enhance laser

excitation. Over half of the energy deposited is in the form of ionized

6-electrons. The resultant energy distribution of electrons studied here is

therefore important to this concept.



A continuous 6-electron source is assumed. Many of the actual

experiments at Illinois have employed a reactor pulse. However, the full-

width at half-maximum of the reactor pulse is of the order of ten milli-

seconds whereas the collision time of electrons in helium at one torr is the

order of micro-seconds or less. Thus the electron energy distribution at

any time during the pulse can be viewed as a quasi steady-state distribution.

While the present study primarily deals with the electron energy

spectrum in helium, other gases or gas mixtures can be studied by the same

method. Helium was chosen here because it is a main ingredient in many laser

gas mixtures. Also it is representative of the noble gases such as neon that

have been considered for use in the fuel and the buffer gas regions of the

nuclear light-bulb reactor. Another reason for studying helium in this first

analysis is that an abundance of cross section data available for it. This

allows us to concentrate on the analytic technique, although even for helium

great care is required in the development and selection of appropriate cross

sections.

Many of the physical parameters employed in the present study such

as tube dimensions, the boron-coating thickness, and the neutron flux magni-

tudes were selected to be consistent with radiation-induced plasma experiments

performed by J. C. Guyot et al. •* ' *• .Other assumptions involved include

uniform physical properties in the system and the approximation of the cylin-

drical geometry by a slab geometry when energy deposition rates are computed

{Figure -G-l of Appendix G).

A Monte Carlo calculation has been performed using the same model » '

Both the present study and the Monte Carlo simulation serve to illustrate

methods to obtain the solutions that can be applied to other situations of

interest in the future. These methods compliment each other and depending on



the particular feature of a given problem, it may be that one of these

methods is better from the point of view of efficiency and accuracy. For

instance, in the high energy interval, the present analytical approach

appears to be more efficient. This suggests that one future application of

the present analytic method might be to combine it with the Monte Carlo code

such that the high-energy region is treated analytically and this serves as

a source to the low-energy Monte Carlo simulation.



CHAPTER II

THE ELECTRON FLUX DISTRIBUTION AT ENERGIES ABOVE THE FIRST

EXCITATION POTENTIAL OF HELIUM

A. The Slowing-Down Flux Conservation Equations

After creation via heavy charged-particle ionization or via direct

introduction as a high energy electron beam in a gaseous medium, electrons

lose their energy traversing the medium. The resulting distribution is

described by the electron distribution function f (r,v,t) drdvdt, defined

as the number of electrons in the phase space element, dr dv dt, at posi-

tion r with velocity v and at time t. This function is governed by

the Boltzmann Equation:

dt e ' ' T e me v >> v^t ' 'Coll. (II-l)

«h

where F is the externally imposed force. The collision term on the right

hand side describes the .sources and sinks of new particles into the phase

space due to collisions. These collisions include processes such as elastic

scattering, excitation, ionization and recombination.

To begin the problem at hand, we shall first consider a time and space

independent case with no external force field imposed. In this limit, the

energy distribution of electrons while slowing down is simply described by

the collision term of the Boltzmann equation. The electrons are born at

6-ray energies and suffer large energy losses through a series of inelastic

-collisions. These include ionization collisions which produce secondary

electrons that in turn slow down. Both primary and secondary electrons

eventually thermalize, but we will first concentrate on the slowing down

problem and therefore, we restrict the lowest energy to the first excita-

tion potential of the gas. In this range, the electrons arc at a much
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included in the total flux calculation. Thus, instead of the approximation

of equation (II-2), we consider the exact balance equation for collisions

into and out of an energy interval dE at E due to the slowing down of

electrons originating from, a delta function source at E . This is:

£ .(E)$(E)<ie — S S(E-E )dE + T\ j~.(£'-»£)§>(E')dt'c'e+ S(E)dE (U~3j
tO t P w™"^ ̂ "~i

\ *J

where, Z (E) = total collisional cross-section at energy E

I.. (E'-v£)dE= differential cross-section for the scattering of

electrons with energy E' into energy- dE at E through the jtn type

of collision.

S(E)dE = source of secondary electrons introduced in the

energy band dE at E.

In practice it is most convenient to use an integral form of equation (II-3)

This eliminates the delta function and in effect smooths the cross-sections

leading to less fluctuations in numerical integrations.

From appendix (B), the integral form of equation (II-3) takes the

form:

/Eo
E(>) K> CE 'E) dE1 = S -f \ 3> CEO,E")K f E1'E^E11 (n-4)^ • p )B s^ >

o ~~

where j denotes various excitation and ionization processes.

K.(E',E) = probability per track length that an electron suffers a

jtn type collision and slows down past energy E from E'.

K (E",E) •=. probability per track length that a secondary electron is
O

born with energy larger than E due to a collision by a primary

electron with original energy E".

The equivalence of this equation and equation (11-3) is demonstrated in

appendix (B).



Equation (II-4) states that the number of electrons slowing down past

energy £ must be equal to the introduction of electrons with energies larger

than E. Spencer and Fano and other authors ' have worked with the same.

type of balance equation for high energy g-radiations (MeV slowing to keV) .

F181
They used the Holler relativistic collision cross-sections and included

Bremsstrahlung energy losses. In the present case, Bremsstrahlung can be

neglected but energy losses from excitation collisions must be included.

f!9 201
Also Vrien's Binary Collision Model cross -section L ' , which is more

appropriate for. the lower energy range, is employed.

As shown below, elastic scatterings between neutral gas atoms and

electrons give only a small contribution to the slowing down of electrons.

[This effect, however, plays a role in the diffusion leakage of electrons

out of a finite system, and will be considered later.] This elastic

collision cross-section, .as approximated by the Lenz relation , is:

4,~ tr Lo

where, Q. = total inelastic collision cross-section,

0 , = total elastic collision cross-section,el

h = Plank's constant, ' -

E = ionization potential of gas atom,

a = first Bohr radius,

and V = velocity of impinging electron.

For an electron with energy above tens of eV in helium, Q. and Q 1 are of

roughly the same order of magnitude. Since the mass ratio between electrons

and the neutral atom is about 1/7300, the energy loss due to elastic colli-

sions can be neglected. This fact has been further verified in Appendix (C) ,
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where the average fractional energy loss per track length due to elastic

collisions with neutral atoms is shown to be small compared to that for

inelastic collisions with atomic electrons. This comparison is done for

the energy range above the excitation potential such that the Born approxi-

mation is applicable for elastic collisions and the Moller cross-section

is valid for electron-electron inelastic collisions.

B. The Slowing-Down .Kernels

The binary encounter collision theory employed here follows the

classical theory of atomic collisions developed by M. Gryzinski *• ' with

later corrections and discussions by various authors^ ' ' . This type

of cross-section was selected in preference to purely quantum mechanical

cross-sections because their relatively simple form permits analytic

integration. Another reason is their apparent good agreement with experi-

mental measurements, especially in the lower energy range.

In contrast to the Thomson cross-section, the Gryzinski cross-section

accounts for the motion of atomic electrons in the target atom. The orig-

inal Gryzinski model, however, is asymmetrical, for the two interacting

electrons. Thus, if both the incident electron and the atomic electron are

at a distance r from the nucleus, one would have zero and the other would

have -e /r potential energy. To correct this, Burgess'- •* and Viviens'- •*

introduced a binary encounter model with symmetrical treatment of the two

interacting electrons. Thus, the incident electron gains a kinetic energy W

and at the same time loses the same amount of potential energy as it inter-

acts with the atomic electron. The atomic electron is assumed to be bounded

with the same potential energy, W; thus the two electrons are symmetrical

and indistinguishable upon interchange.
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In a later refinement, Vriens- •* developed a quantum mechanical formulae

for transfer of momentum and energy between a pair of free colliding elec-

trons. He then applied these formulae to the electron-atom binary encounter

theory to obtain differential and total cross-sections. Tne symmetrical

collision model was also incorporated and the influence of the nucleus was

included. The resultant differential cross-section contains the direct,

exchange, and interference contributions, and it is given by Appendix (D).

The differential cross-section for a loss of energy AE is given as:

«- ' + *. 3 ~O — — QT ~t* — 0^
AE. -̂ ŜE 4" Ac

and

I , 4 Ez , I

AE3 (E3-EZ-AE)
2

2$'

(II-7)

4 L3 , Z$'
3 T3

 ±
 IF _r= _ -'•-• 11 r=- J AAB ; t-i ̂  -l

(II-8)

where E = energy of incident electron

E- = average kinetic energy of atomic electron

U = ionization potential energy

El = E - AE
O J

D F
and *' = cos -—— - In

E, -E_ E , - E _ - E
o 2 o 2

K = Rybcrg 's cons tant .
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The total ionization cross-section derived from this differential

cross section has been compared with experimental results, and good agree-

ment is observed at low to moderate energies. However, in the present

work, we are more interested in a direct check of the differential cross

sections .[Equations (II-7) and (II-8)] since they lead to the slowing down

kernels. Since direct measurements of the cross sections are not available,

it was decided to compare calculated and measured energy distributions for

secondary electrons produced by a primary beam of electrons of energy E on

a suitable thin target. Figures ( 1 to 5) compare the calculated

probabilities using binary models with experimental measurements by C. B.

Opal et.al. . The'experiments were performed at a pressure of 2 x 10

torr or less and multiple scatterings would be expected to be negligible.

Quite good agreement 'is observed, lending confidence to our use of these

cross-sections.

Appendix D gives the calculation of slowing-past kernels by

integrating the differential energy loss cross-sections over the appropriate

limits. The probability per unit track length that an electron will emerge

with energy less than E from energy E' due to an ionization collision,

KjCE' ,E), .is given by:

for (£' + U)/2 <_ E'-E; KI(E',E)=0 (n_9) .

for (E1 + U)/2 > E'-E > U;

E'-E E3-Ei

(11-10)

+ I I *"
(E'HJ)

and for (E'-E) < U:

\}
IJ
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In -£•

where we have used the same notations as in equations (II-7) and (II-8) with

the addition that N is the total number of valance atomic electrons per cm .e r

In the case of helium, N = 2N where N is the density of helium atoms, and

one does not have to sum over the electrons in different atomic shells as

in the case of more complex atoms discussed in Appendix D. Also $" is

defined in Appendix D.

The probability per unit track length that an electron will emerge with

energy less than E from energy E' due to an excitation collision is

K (E',E). Within the one excitation level model discussed in Appendix D,
G j\

the incident electron loses an amount of energy T which is larger than the

first excitation energy but less than the ionization energy of the atom.

The atomic electron does not gain sufficient energy to be ionized, an exci-

tation is considered to have occurred, and the excitation slowing-past kernel

is given by:

for E'-E > U ; K (E',E) = 0 (H-12)
^™ C J\

for U > E'-E > IL ; .
"-̂  ~" J. i

(11-13)
I -i _ $'" , rU(etQ)(etQ) -i \

1 (E'-E) J /

and for U1 ̂  E'-E;

_
E3 U, U/ E1 E'+U-U,

* i $w « r̂ i!l±2î i]
E'+U-O,^ I FTu U L Fix; j (11-14)
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'where U.. is the first excitation level energy and $ is defined in

Appendix D.

The secondary production kernel is defined as the probability per unit

track length that an electron with energy E' will produce, through an

ionization collision,, two electrons with energies both larger than E.

This is given by Appendix D as :

vU -} KSCE,E) =
 u (II-15)

for

t' ̂  2.E H-0

C--E

fe'-E 1
L E + u JE1 + U

J.(11-16)

When equation (I1-4) is rewritten with the three slowing down past

kernels considered above, we obtain:

(11-17)

where ^ = e 4 U for 2.E *- U ̂  E0 and A = E»-E if

The form of K CE,e) can stand some improvement. When experimental

excitation cross-sections are available Kt.ecan be expressed exactly

according to the experimental results. We shall let K^Ct^E^ be the

probability that an electron will slow down past E from E' per unit track

length due to an excitation collision which leaves the atomic electron
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in the j excited state. Then the relation between K-ex ̂  E > & ' and.

(sle O-* C. E
1 "} , the total excitation cross-section at energy E' for the

jth excitation level, is:

KtE'E) = 0 for E'sU

CE'-E)SU^ , E' >, U^ (11-19)

.1
where U^ =• ^ level excitation energy.

We are able to define Kat C
E' E) in this simple manner because

a definite amount of energy is lost in an excitation collision. No such

relation exists, however, for ionization collisions so the experimental

total ionization cross-section cannot be utilized in this manner. With the

notation of VCex^
el'E) , equation (11-17) takes the form:

r &

P -*- \ K5CE',
• " -

(11-21)

For the case of helium, we shall include the excitation levels with the

largest cross-sections in our calculations. Although the experimental

observations are incomplete, especially for n = 2, we shall approximate

them with analytic expressions. We shall demonstrate that this is superior

to the one-level Gryzinski-type excitation model.

C. W- Value and Leakage

The production of secondary electrons and the excitation of atoms occur

at an energy above the first excitation potential in neutral ground state

noble gases. Thus the energy flux spectrum obtained through equation (II-4)
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or equation (11-21) can be used to calculate the primary input energy

necessary to produce one ion-pair. This is best done through % C e - U , " ) /

the slowing down past density (total # slowing down past energy E/time

volume), which is • as shown in Appendix E:

ftCE-0,} = (E SCONCE11, U , )dE ' 1
 (II.23)

•J u (

where KjN^.»^1) is defined as the number of electrons that appear with

energy below U per unit track length at energy E". With this, the energy

necessary to produce an ion-pair, W, can be calculated as :

E =0.) (H-24)

The W-value found in this manner provides a convenient check with experi-

mental data since a number of such measurements have been reported.

Another aspect of the present problem is that leakage must be considered

if the system is finite, i.e. especially when the system is small and/or pressure

low.. The inclusion of leakage losses with a spatially dependent source. is a

complex problem. We shall assume cylindrical geometry with uniform electron

production throughout the gas volume. Then if leakage is approximated by the

first fundamental mode as postulated by J. C. Guyot *• ' in his atomic

metastable density calculations, the spatial flux SĈ -.2) is given by:

where R and L are the radius and length of tube and the origin of the

co-ordinate system is at the center of the tube, and A is an normalization

which depends on the source strength.

The diffusion approximation of the particle transport equation

(Appendix F) gives a uJ ffusion coefficient in terms of collision cross-sections.

For the high energies involved in slowing down, this diffusion coefficient
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should be used instead of the ambipolar diffusion coefficient . yhen the leakage

term is approximated by:

o,E} (11-26)

where TV is a characteristic length of the system. For a cylindrical tube,

within the fundamental mode approximation, _/V is given by:

. (11-27)

With this leakage term included, equation (11-21) becomes:

-f-

(11-28)

where the first term on the L.H.S. accounts for rate of leakage out of the

system by electrons with energy larger than E.

D. Computation and Results

1. Infinite Medium

The case when leakage can be neglected is considered first.

Following Fano and Spencer'- •" }equation (11-17) was solved numerically. The

integrals are expanded by summations and equation (11-17) becomes:

k'

-.ft

where Wi,Wjj are weights of numerical integration, T= 'J/̂ E gives the

number of intervals in the ionization potential, and the index j denotes the

jth type of slowing down process. The quantity k. is equal to 2.n-*-T

if zn-tl^k ; or equal to k if a_n-t-T>R. t [•; being the maximum 6-ray



20

energy. For zo+T ~Z- &. the last term on tiie right hand side of equation (11-29)

vanishes. Equation (11-29) is solved step-wise on a computer from n = k

down. For a general W , $ CEb.jE,,') is given by:

r £ • *-< k' 1
I I-V 2 . KsCEjuEiOlKEt jEj^Wo 4En -^HZl ^i^tj^"^^^)^)^ 41; I

3>(e. EO^ - i=i«*i \ ; = «-( J -J
- tv-utj l-<>J — j •• ' —

The flux density distribution of equation (11-30) has been solved using

several different models of cross-sections in helium. These cross sections

are illustrated in the following figures and table. Figure (6) compares the

total ionization cross-section obtained through the integration of Vrien's

differential cross-section (binary collision theory) with experimental

observation. A semi-empirical "modified" Vriens cross-section is also shown

which uses multiplicative fitting parameters to match the experimental

results.

For excitation losses, since we can utilize the total experimental

cross-sections, empirical formulas are used to fit the experimental data.

Table (II-l) and Figures (7-10) illustrate some of the excitation cross-

sectional values we used. We have only included the six largest excitation

cross-sections as the others will give comparatively little contribution.

When experimental measurements are not available, we have resorted to a

Bethe-Born type approximation u>-jJ-J p

Figure (11-11) compares the electron flux density spectrum for a unit

primary electron source at 500 eV obtained by using a one excitation level

model with that obtained using the excitation cross-sections .of Table (II-l).

The general shape of. distribution is similar to those obtained by Miller^ J

for S-ratliation in water, and i.t is also in general agreement with Monte-
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Table II-l. Fitted Excitation Cross-Section for Helium

Excited State Cross -section (A°)2

23 . 0 .0306(E-19.8)
0..25 + (E-19 .S )2 + U - U U 8 t )

91S 3.5 0.0317 ,
b E/R l°'0455 H/R J

23 0.0114CE-20.8) , 0 0(}70
*• * ^. • \J . \J\J+j£.

. 0 .25 + C E - 2 0 . 8 )

2 P " n ns^-i-n 177 pn +^ r P/^ U . U o O + U . J . / / X,I1 ̂  T

33S [9.6E - 224] x 10"4

[-4.66E + 273] x 10"4

[2 x 10"4]

- 3lS [3.4E - 78] x 10"4

[-0.45E + 64.8] x 10"4

[-0.112E + 40.8] x 10"4

[-0.0208E + 22.17] x 10"4

31? [6E - 100] x 10"4

[LIE + 200] x 10"4

[-0.433E + 373.3] x 10"4

Energy Range (eV)

Above 19.7

Above 20.6

Above 21.2

0-0376 . r
,., * n ADOVc £. 1 . D
t /K

22.6-35

35 - .65

Above 65

22.8 - 37

37 - 70

70 - 207

207 - 1000

23.3 - 65

65 - 100

Above 100

Reference
Data Used
in Fit

[34] ,[35]

[30], [31]

[36]

[30], [31]

[33]

[33]

[33]
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Figure 11. Electron Flux Distributions for 500-eV Primary

Source Calculated by a. One-Level Excitation Model

and by Experimental Excitatior. Cross Sections
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Carlo calculation by B. Wang'- . The rise of the flux density after about

150 eV is entirely due to the creation and slowing down of the secondary

electrons, W-values have been calculated from these distributions using

the slowing-past kernel Km(E>ui) developed in Appendix E. The W-value

. obtained from the distribution from the experimental excitation" cross-section

is 43.5 eV per ion pair and the one obtained from the one excitation level

model is 49.1 eV/ion pair. This compares with the experimental value of Jesse

and Sadanskis of 42.3 eV/ion. pair *• . This demonstrates that the one

excitation-level model } which is admittedly crude, tends to overestimate

the amount of excitation.

Figures 12 and 13 show the flux density distributions for a 1 Kev and

a 250 eV primary electron source. As indicated in table (II-2), the W-value

from 250 to 1000 eV varies less than 10%. This verifies experimental indi-

cations that the W-values are essentially energy independent over this

F38lrange1 . Furthermore, since the ratio of excitation cross-section to

ionization cross-section is independent of pressure, the W-value will be

pressure independent in this model.

Figure 14 compares the results obtained using the binary collision theory

cross-section (Vriens) with those for the modified Vriens or semi-empirical

fitted cross-section for a primary source energy of 1 keV. Figure 15

compares the above two cases together with a one excitation level model case

for a source energy of 500 eV.

The curves for the two models shown in Figures 14 and 15 are reasonably

consistent, although some discrepancies are noted. Some further feeling for

the agreement of the two can be obtained by calculating W-values from these

distributions. The W-values are listed in Table II-2. Both results are

close to the experimental value and are essentially independent of energy.
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Table 11-2. W-Values for Electrons in Helium

Primary energy
(eV)

Calculated W-value, eV/ion pair
Vrien's cross section

Semi-empirical cross-
section

x
1,000

500

250

V,
41 (49.1)°

43.5 ,

44.5

44

45

45

average W-value over this energy range as measured by
Jesse and Sadankis is 42.3 eV/pr [37]

^W-value calculated with the one excitation level model.

Table I1-3. W-Values for Various Noble Gases

Gas

He

Ne

A

Kr

Xe

lonization Energy
(eV)

24.47

21

15

13.99

12.13

1st Excitation ;Energy
(eV) . .

19.7

15.7

11.2

10.0

9.0

W-value , e'
Calculated'

49.1

42.9

35.6

31.2

25.6

42.3

36.6

26.4

24.1

22

Primary electron energy of 1 keV

excitation level model
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Thus it can be concluded that either cross section model can be used with

reasonable confidence. In contrast, as observed earlier, W-values for the

simple one-level model are considerably higher than the experimental values.

Figure 16 shows the electron flux density distribution for three initial

energies: 1 keV, 0.5 keV, and 0.25 keV. These curves were obtained by using

the six excitation cross-sections and semi-empirical- form of the binary

encounter collision cross-section. As expected the shapes of the curves

are similar but shifted in proportion to the source energies. .

As stressed earlier, we view the W-value as a means of checking the

validity of the flux distribution calculation. As a matter of interest,

this has been extended to noble gases other than helium. Since excitation

cross-sections are incomplete, the one-excitation level model and the

Gryzinski energy loss cross-sections" have been used in all cases. Table

(II-3) compares the results with experimental measurements. Since, as

demonstrated earlier for helium, the one--level model is somewhat inaccurate,

the results are only expected to display trend%. Indeed the calculated

W-values are consistently high, but the rough agreement for this variety

of gases gives confidence to the present treatment.

Figure 17 compares the present calculation for a 1000 eV primary elec-

tron distribution with some normalized results from a Monte Carlo simula-

tion *• . The Monte Carlo technique may be regarded as a mathematical

experiment and the result is presented as points in Figure 17^ The -general

agreement in shape is encouraging, and the discrepancies are thought to be

due to the rather simplified cross-sections employed in the Monte Carlo
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Figure 16. Electron Energy Distributions Calculated with

Experimental Excitation and Fitted Vriens Cross

Sections for 250, 500 and 1-KeV Primaries



33

i

0)

I

Q)
V)

o
>»

'«
c
o
X

I0
-I

o

—UJ

1C',-t

I I 1 i I

100

E0 = 1000 eV

O Monte Carlo

Present Calculation

I I 1 1 1 ( 1
IOOC 4ODO

Energy (eV)

Figure -17. Comparison of Electron Flux Distributions from a Monte Carlo

Calculation and the Present Calculation for 1-KeV Primary

Source



34

2. Inclusion of Leakage

For finite media where leakage effects must be. included, equation

(11-28) is employed rather than equation (11-17). The numerical integration

is similar however. In this case the total elastic cross-section is re-

quired and it is estimated using the first Born Approximation. As derived

[391from Appendix C starting from the result presented by Mott and Massey1 ,

we obtain:

where k= m,O€ A; 7 X= 2.̂ /O.0 o-«\d CX0 = Bohr Radius. Values of this

cross-section and some experimental measurements . are compared in Figure 18

for energies above 10 eV. Then for a cylindrical system of radius 1.27 cm

and length 122 cm, *//t is estimated to be 3.6 cm" *• . For this dimen-

sion Figure 19 compares the flux 'distributions obtained with leakage to that

for an infinite medium with a 500 eV primary electron and 2 torr pressure.

Figure 20 shows the case for a pressure of 4 torr. Comparing Figures 19

and 20 one sees that with increased pressure a finite system approaches one

where leakage can be neglected. This is because at higher pressures electrons

suffer more collisions before they can leak out of the system.

Figure 21 shows results for a primary electron energy of 800 eV case

and a pressure of 2 torr. Comparison of Figures 19 and 21 shows that the

diffusion loss is more significant for a higher energy primary source. The

physical reason is that the higher energy electrons and their secondaries

have a better chance of leaking out of the system. Thus for higher energy

primaries one must be concerned about the leakage up to a higher pressure.

Changing l//̂  is equivalent to changing the size of the system.

Figure 22 shows results for three values of V^- for the case of E = 800 eV
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at 4 torr. A decrease in physical dimensions increases the leakage and

shifts the flux to lower energies. The cases of Vft = 0, 3.6 and 7.2 cm"

correspond to the infinite medium, a tube radius of 1.27 cra and a tube

radius of 0.88 cm, respectively.

These results are to be compared with that of Figure 23 for the case

of 250 eV primary electron energy. (The gas pressure in Figure 23 is 2 torr

.because curves for higher pressures would overlap the infinite medium case.)

.A comparison of Figures 22 and 23 shows that the change of size of system

has less effect on the energy spectrum in the case of a lower primary elec-

tron energy. Another observation is that the leakage term has a cumulative

effect and the percentage deviation between the infinite and finite media

cases becomes more significant at lower energies. For instance, for the

250 eV primary electron case, at 125 eV the difference between '/A?1 = O
•\ •*?

and yfe = 3.6 cm is about 22% while at 50 eV the difference is about 30%.

This is because the population is progressively reduced as electrons leak

out of the system during the slowing process.
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CHAPTER III

THE ELECTRON ENERGY DISTRIBUTION BELOW THE FIRST

-— --_ • ' EXCITATION POTENTIAL ENERGY OF HELIUM

.A. A Model for Thermalization in Helium .

In a weakly ionized plasma, one can expect to neglect electron-electron

and electron-ion interactions during therraalization. The validity of this

assumption will be examined later in this chapter for the specific physical.

situations of interest. In conventional gaseous discharges, electron-

electron interactions are thought to play an important role in bringing the

energy distribution closer to a Maxwellian. However, in the present case,

it will be shown that the absence of an electric field allows the distribution

to collapse into a nearly Maxwellian form.

Due to the absence of ionization and excitation collisions, below the

first excitation energy, the electrons in an energy interval are populated

mainly by elastic collisions and depopulated by recombination with ions, .

leakage and scattering out of that energy interval. The steady state equation

taking into account of these processes is: •

where D(E) = diffusion coefficient

*(E) = electron flux distribution •

Z (E) = macroscopic electron-ion recomfoination in cross-section

X (E) = total macroscopic scattering conoss -section

I (E1 -»• E) = macroscopic scattering cross-section of going into

interval at E from E1 .

S(E) = direct electron source from high energy inelastic

scattering.
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In equation (III-l), the diffusion approximation notation has been used

(see Appendix D). Because of the small amount of energy less per elastic

collision it is difficult to solve equation (III-l) by numerical integration

techniques as was done in the high energy region. Instead, one can make use

of the fact that energy loss per collision is small and expand <J>(E) in
[43]

moments of (E'-E). This procedure is similar to the "heavy gas model"1

in neutron thermalization. It should be noted that the assumption of small

energy loss per collision breaks down when electron-electron or electron-ion

collisions become significant. This model is, therefore, valid only in a weak-

ly ionized plasma. •

In the absence of leakage and recombination, the principle of detail

F441
balance1 J shows that $(E) = M(E), where M(E) is a. Maxwellian distribution.

Thus for the case where there is recombination and leakage, it is convenient
\

to define $(E) as M(E)iKE) and solve for the correction factor <KE) • With

this substitution equation (III-l) becomes:

' c°° • •Normalization is such that \ ^QE^jE = He. where n is the total primary
o •

and secondary electron density. Electrons are assumed to be born at higher

energies so electrons enter the low energy region by slowing and an explicit

source is not included in (IH-2).if a low energy source term were included,

equation (III-2) would be inhomogeneous. However, the solution for the

inhomogeneous case can be obtained from the solutions of the present homo-

geneous equation by the method of variation of parameters as shown in

Appendix G.

Applying the principle of detail balance to the Maxwellian factor of

the distribution, we obtain:
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The integral on the R.H.S. of equation (III-2) becomes:

(iii-4)

and substitution back into equation (III-2) gives:

f
= \

'•

CIH-5)

Expanding <KE') around E' = E in the integral of equation (III-5) by a

Taylor series, one obtains:

^ I*'»'-N

.&-E1) (III-6)

With this expansion, the integral on the R.H.S. of equation (III-5) becomes

(III-7)

The assumption next used is that the energy loss due to elastic scattering

between electrons and neutral atoms is small. This is reasonable despite a

large scattering cross section due to the large mass difference. The

energy E' is therefore close to energy E.
m

For y = — « 1, where M is the mass of gas atom and m is the mass of

T431electron and assuming isotropic scattering, the moiments of AE are given by1 J

5T- =*/x

and
^ercirt U Cni-8)
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where T is the gas temperature.

In the case of elastic collisions between electrons and neutral atoms, the

2terms with order larger than y are not retained, and equation (III-7)

becomes : , .

(m.9)
Also equation (III-5) becomes:

(111-10)

Changing the notation back to <J>(E) , where $(E) = ̂ (E)M(E), Appendix H

shows that equation (111-10) can be written as:

• - . . (in-ii)

To proceed in solving equation (III- l l) , we must assign specific forms

to the cross-sections and -the diffusion coefficient. In the case of helium,

the elastic scattering cross-section is reasonably constant in this low

[45 1
energy range1 ' . If we assume a constant recombination coefficient over the

thermal range, the recombination collision cross-section is ~ (I/ velocity') , i.e.

1/u. Although a weakly ionized gas is assumed throughout this development,

for the low energy portion, it can be assumed that diffusion leakage is

governed by the ambipolar diffusion coefficient. -

One must be cautious that some of these assumptions may not be entirely

valid in certain pressure ranges or if the model is applied to gases other

than helium. Also, as examined in detail in later sections, the degree of
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ionization must be below a certain critical value for equation (III-ll) to

be valid. However, in general, when electron neutral atom scattering

dominates, and when the moments of averaged energy loss can be cut-off at

n = 2, equation (III-ll) is accurate. This equation can be applied to gases

other than helium by use of appropiate cross-sections and coefficients. If

an analytic solution cannot be found, equation (III-ll) can still be solved

numerically. This is not necessary for helium, however, since with some

simplifying assumptions, an analytic solution is possible. While the assump-

tion may lead to some inaccuracy,.this technique is preferred since consider-

able physical insight is obtained.

B. Series Solution of the Thermalization Equation

With the assumptions that the total elastic scattering cross-section

is a constant and that the recombination cross-section is an inverse function

of the velocity, as shown in Appendix H, equation (III-ll) becomes:

where

311(1

Here D is the ambipolar diffusion coefficient, and A is the characteristic
cl

first fundamental mode diffusion length defined in Appendix F. Equation

(111-12) is solved by expanding $(y) in polynomials of y, i.e.;

(111-13)
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The Maxwellian distribution is used as a multiplier because for g = A = 0,

i.e. no leakage and absorption, the solution of equation (111-12) is a

Maxwellian as expected. Appendix (H) gives the. coefficients of the series

S(y) to be: . • .

md

Appendix (H) gives the first four coefficients' to illustrate the form of A .
it

It is noted that terms with higher orders, of A and g appears later in the

series. The assumption of weak absorption and leakage is not a necessary-

one for the series to converge. However, for the physical cases considered,

g and A are muchuless than one. In these cases , one can expand S(y) in A

and g and retain the terms of first few orders in g and A. The series S(y)

for keeping terms up to second order in g and A is :

(111-15)

The series p, (y), IU (y), rl, (y), ^^ and X(y) rapidly converge for y < 5

and they have been derived in Appendix (H). The final form of 0(y) is given

as:

(111-16)
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where, t. = V,

C. Range of Validity . •• .

Electron self interactions and electron-ion interactions have been

neglected in the present calculations. This is valid for a weakly ionized

gas, and the purpose of the present calculation is to examine the maximum

degree of ionization allowable. To do this relaxation times are considered

to obtain a first estimate of the limit. The ratio of the electron-ion

relaxation time T . and the electron-electron relaxation time T for singlyei ee 6 J

charged ions is approximately: T /T . «• 1/2 /2~ •• . It is sufficient,
GC 61

therefore, to compare T with T , the electron-neutral relaxation time.r ee en

The former is given by [47]_

?& • :

e4nex\vJS. (in-17)

where A =•
f\J

and T is given by [48]:

Ten *> .. '.. . (111-18)
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where 0 is the momentum transfer cross-section, U is the speed of electron,

N is the neutral atom density and £ the mass ratio 2ni/M. Using these

results, we obtain figure 24 which shows the fractional ionization when the

two relaxation times are equal. For this calculation, the momentum transfer

dtivf

.[47]

F451cross sections were taken from 0'Mai ley , and since Jin A is insensitive

to electron density or energy, approximate values for it from' Spitzer1

were used. Holt and Hasskel'- •* have used a similar curve to define a

•-4weakly ionized plasma. They show a critical va,lue of 10 for the fractional

ionization of helium at one torr and 300°K. There, they considered only, the

directional relaxation. When the mass ratio is added to account for the

energy relaxation, figure (24) is found to be in good agreement.

It is noted from figure 24 that as the energy increases, the fractional

ionization limit is not quite so stringent. At low energies, the charged-

particle self-interaction tends to enhance thermalization into a Maxwellian

form. Therefore, if the distribution obtained without the inclusion of

charged-particle self-interaction is already close to a Maxwellian form in

an energy region below a few kT, the fractional ionization restriction need

not be extended to this region. . "

For electrons above about 0.5 eV, comparison of the T = T curver ee en

with figure (G-4) of Appendix G shows that with a tube radius of 1.27 cm

and gas pressure of one torr, charged-particle self-interaction becomes

13 -2 -1important for a neutron flux above " 5 x 10 cm sec . For gas pressures

higher than 20 torr, the fractional ionization limit decreases and the

neutron flux limit can be raised.

D. Numerical Results and Discussion

The choice of some of the parameters required for evaluation of
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equation (111-16) is not definite, partly due to uncertainties in experi-

mental observations. For helium at low energies, the recombination coeffi-

cient is taken as 4 x 10" cm -sec" "• , the ion diffusion coefficient

as D* p = 840 cm -torr/sec*- / and the elastic scattering cross-section as

17.6 x 10~ cm I-45.1 ̂  with these parameters, Figures. 25 and 26 show the

.normalized electron distribution for three pressures. The normalization

(°° i—is such that; \ f(y) dy = 1, where y = J&- . The ion density for a
o

given neutron flux and pressure condition is first calculated through the

procedure of Appendix G. The resultant leakage and recombination rates

were then used as parametric inputs to equation (111-16).

A Maxwellian distribution is included for reference. It is observed

that the distributions shift to a higher energy tail at lower pressures.

This is because that at low pressures, electrons' are more likely to leak out

"of the system before they can reach lower energies. At higher pressures,

the energy deposition rate of the heavy-charged particles increases, resulting

in higher ion densities. However, the'neutral atom density also increases

causing more electron-neutral scattering which reduces leakage. As a result

the distribution approaches a Maxwellian form.'The shape of the distribution,

not much deviated from a Maxwellian, has also been confirmed by the Monte

Carlo simulation of B. Wang and G. Miley^ •".

Figures (27) and (28) show cases where the tube size has been increased

to a radius doubling A . Then, for the same neutron flux, the distributions

for the three different pressures lie much closer together. This is attri-

buted to the fact that the energy deposition rate by heavy-charged particles

is essentially independent of the tube size but leakage has been greatly

reduced by the larger tube size.

Figure (29) shows an extreme case of changing the tube size at a low
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pressure of 0.2 torr. In this case the shift to a higher energy is signi-

ficant when the tube radius is cut in half. Again, this shift is due to

the failure of electrons to reach lower energies as leakage increases.

14 -2 -1A more extreme case of neutron flux of 5 x 10 cm sec is shown

in Figure (30). In this case, charged-particle self-interaction neglected

in the present treatment, should be included. However, this figure is

included to illustrate the dramatic shift in the distribution for a high

heavy-charged particle energy-deposition rate. The peaks shift to about

1.4 to 2 kT. This is more pronounced in the case of low pressure of 0.2 torr

where the leakage rate is larger. Reducing the pressure shifts the distri-

bution in a manner similar to that which occurs as the tube diameter is

reduced. However, the distribution is not a unique function of dp (diameter

pressure). This is because, although the leakage term has this form, the

other terms such as recombinations do not have such a dependency.

Figure (31) shows the joining of the low energy portion of the distri-

bution with the high-energy portion developed in Chapter II. The flux

distribution in the higher energy region is an inverse function of pressure,

as can be observed from equation (11-10) or from the stopping-power approxi-

mation of Appendix A. For the energy range 5 kT to 20 eV, a recombination

cross section"- •* of E~ has been used. The collision density, Z(E)$(E)

cm sec , is a continuous function, but abrupt changes in cross section

can result in a discontinuity of $(E). Such an effect is observed at 20 eV

due to the abrupt charge in cross sections used in the two energy regions.
[ci]

Similar discontinuities also appear in other studies1 J and they can be

eliminated entirely by use of a finer energy division in the numerical

computation or by adopting smoothed cross sections.
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CHAPTER IV . .

ENERGY DISTRIBUTION IN THE PRESENCE OF AN ELECTRIC FIELD

A. The Model

The total energy distribution of electrons due to an external source

superimposed on a plasma with an applied direct current electri field will

be considered. A uniform field, E, is assumed and spatial effects due to

finite geometry and leakage are not included. The uniform field is often

good in the positive column of a discharge tube, but it will not be appli-

cable in other regions such as the cathode fall or the sheaths near the

electrodes while the field is changing rapidly. Nor will it be applicable

to some electrode configurations where the field strength varies rapdily

throughout the system, like the case where a center wire of a tube is used

as one of the electrodes.

In moderate to low E/p cases, which shall be assumed, the electrons

above the ionization energy of the gas atoms are not influenced by the field

as they slow down. In particular, Appendix I demonstrates that for E/p less

than 10 V-cm -mm , the energy gained from the field can be neglected com-

paring with the energy loss via inelastic collisions. This is the largest

field considered here and is a reasonable upper limit for other reasons also.

Most of the applications of interest (see Chapter I) involve smaller fields.

Also the assumption of a weakly ionized plasma places a similar limitation

on the field strength, since higher E/p values, like larger external source

strengths, would result in additional ionization and too large a fractional

ionization. Finally, leakage is neglected here, and as shown in previous

chapters, this is consistent with either large systems or high pressures,

and the latter implies smaller E/p values.
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With this restriction on E/p, .the electron distributions developed in

Chapter II, for high energy or slowing down region, is therefore applicable

here. In the lower energy region, i.e. below excitation potential of the

gas atoms, the energy gained from the field becomes comparable to the electron

energy. Thus a new treatment of the distribution is required for this region.

In doing this the electron source due to slowing down from the high energy

portion and the sink due to recombination will be included.

B. Balance Equation for the Low Energy Region

The steady-state Boltzmann Equation with a d.c. elastic field corres-

ponding to Equation (II-l) is:

Coll..

Following Allis1 , the distribution function is expanded in spherical

harmonics. Retaining the first two terms of the expansion, we obtain:

where, 4Tl{.,CY, U } = Rr, v

Substituting equation (IV-2) into equation (IV-1), one arrives at two

P31coupled equations J :

-uv-3)

where f*Jo_tvu)\ = fS^.X + fS£
*• S^ Jc VTtJeJ^Vtc Vs-

• ™* - -L <i r , .*«) '
~ ^40Xe u *&) L *•
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= the net rate of influx of electrons due to elastic collisions in
T .

the velocity element d°u

inelastic = the net rate of production (loss) due to inelastic

2-»
collisions in the velocity element d u

\-g-£ Jc = rate of momentum influx into the velocity element d u

7 = gas temperature

and v = momentum transfer collision frequency.

If the first-fundamental-mode diffusion approximation and uniform spatial

properties are .assumed, f(r,u) becomes spatially independent. Then, combining

equations (IV-3) and (IV-4), we obtain a second order differential equation

for fo(v)i

where S = total source rate from primary 6-electrons and ionized secon-

daries into the velocity element d u.

y = recombination frequency

A = characteristic length of the system from diffusion approximation

and ' G = - - t S T ( , * 1 7 /
r
1 . J _ d r .3. U vc <JAC ̂ u g- vo -t-

with y =
c

Omitting the source and neglecting spatial losses and recombination

while assuming [m/(wv-vM\| k~[ <£ (̂-} /-\)J- , Nigham^ ^ solved equation

(5) numerically for N-, CO and CCL gases. However, for present purposes, a

formal expression for f can be obtained from equation (IV-5), (see Appendix J) ,

as:

r̂ (IV-6)
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where

CO = F*c A 00 ̂

S'(u') = J

X(c) = °/v)CO *=• mean free path
c

a(c) = electron production rate in velocity element d u

and F2 = fee f-
V, m /

The assumptions of (m+M) = M and no leakage losses have been made.

Equation (IV-6) can be solved by a simple numerical integration provided

that an approximate form of f°(u) can be obtained for the calculation of

S'(u'). The case without external electron sources or recombination has

been solved by Druyvestyen"- *, Smit *• ^ and others'- •"' •• •" . Their results

-have'been'used as -the Initial estimate of f°(u), and a corrected form of

(u) is obtained for the present case of interest where a source and sink are

present.

This procedure was used in preference to the direct numerical solution

of equation (IV-5) for two reasons. First, a Monte Carlo simulation for the

case with an electric field shows that the distribution is rather close to

F541that of Smit1 . Second, the numerical solution of equation (IV-5), such

as used by Nigham, is also a first order approximation since a two-term expan-

sion of f(r,u) was used but eventually only the first term was calculated.

C. Numerical Results and Discussion

The uncorrected f(u) for no source or recombination, similar to that

r 2 1
discussed by Deuyvesteyn1 J ,was used to estimate the rate of recombination

Cc E. \*" J— ~5> ffl WT~
"TS" ) ̂ " ^ '
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f(u) becomes a function of ^L X^O or E/p. Following the work of

[541 '
Smit- , -, A(c) is assumed to 'be. a constant for electron energies below 5 eV

while from 5 to 19.8 eV, X(c) is assumed to be proportional to c. From 19.8

to 24.7 eV, Smit has obtained f(u) represented in Bessel functions.

F 2 1Druywesteyn et al J show that these Bessel functions can be approximated by

an exponential function and this simpler form for f(u) has been used from 19.8

to 24.7 eV.

the total electron density n , is first estimated by substituting the uncor-
6

rected form of the distribution into the appropiate rate equation, namely:

e. = o v

where 0 = recombination coefficient

p = rate of energy deposition by heavy-charged particles

W = energy required to create an ion pair

f(E/p,e)de = normalized distribution in energy interval dE at e

o-(e) = ionization cross section from Vriens.

The first term of equation (IV-7) represents the total rate of recombination

sink S, , and the last two terms represent the total rate of electron pro-

duction S. To compute the differential source rate a(u)du, we use the

F251differential energy loss cross-section a(AE} of Stabler1 J such that:

(IV-8)

where x = AE-u, and the normalization is such that :

= S .

For computation of the differential recombination rate, the uncorrected

form of f(u) is again used. Equation (IV-6) has been evaluated with these

sink and source rates to obtain a first order correction to the distribution.
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Numerical values for the source were selected to represent typical ionization

rates due to heavy-charged particle energy deposition. Figure (32) illustrates

•the distributions for a neutron flux of 5 x 10J cm" sec in E/p =3, 4, 6 and

-1 -1 (*S8 V-cm -mm . The nomalization is such that \n(E)dE = 1. The population over
o

25 eV is considered to be negligible in this normalization. Figure (33) illus-

14trates the distributions for the same E/p values with a neutron flux of 5 x 10

- 2 - 1cm sec . The deviation from an uncorrected Druyvesteyn-type distribution is

largest when the neutron flux is high and E/p is low. Two such cases are compar-

ed with the unperturbed distributions in Figure (34). In general, the perturba-

tions are not too large and the use of unperturbed distributions in the source

and sink integrals is justifiable.. This is especially true in the case of the

smaller neutron flux with E/p larger than 4 V-cm -mm

The perturbation is examined more closely in Figure (34) which compares

the E/p = 3 and 4 V-cm -mm cases for no source or sink with the cases where
1/1 O 1

the neutron flux is 5 x 10 cm" sec" . It is seen that as E/p increases, the

deviation decreases. This is because in higher electric fields, the distribu-

tion is more dictated by the field than the electrons slowing down from higher

energies. The ratio of electric field strength and the source strength, then,

determines the importance of the inclusion of source and sink in the calculation.

The average velocity u can be computed from the distribution obtained.

This random velocity is also proportional to the drift velocity1 •*. The

average electron flux u n , therefore is proportional to the current density.

A plot of the average flux vs. E/p is shown in Figure (35).. This has the same

characteristics as the V-I measurements of Ganley'- '-"in the enhancement of CO,,

lasers by nuclear radiation experiment. Although an exact comparison cannot be

made due to the different gases involved, the trends in Figure (35) do agree

with the measurement in C0_.
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It is concluded that for neutron flnx of less than 5 x 10 cm -sec
1 A

(j equivalent to a primary source of about 5 x 10 1-keV electrons in

10-torr helium) the distribution is close to that arrived at by Druyvestyen

or Smit. This has also been demonstrated by a Monte Carlo calculation^ •"

where only moderate deviations are observed only for primary electron (1 keV)

source rates of 10 cm ,-sec or above. It should be noted, however, that

in the case of helium, excitation and ionization potentials are relatively

high. Larger perturbations can be expected in the cases such as molecular

gases, where lower energy levels are involved. For those cases where devia-

tions become severe, equation (IV-6) is not accurate unless a better estimate

of fo is available for the source and sink integrals. A numerical solution

of equation (IV-5) would then be necessary.
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CHAPTER V

CONCLUSIONS AND SUGGESTIONS FOR FUTURE EXTENSIONS

A. Summary of Present Work

1. General Remarks

The energy distribution of electrons in helium resulting from a

continuous high energy source has been analytically studied. The main

purpose of the study is to provide a method to analyse the problem. Within

the illustrated constrains, such as the degree of ionization, and with

appropriate changes in reaction rates, the method can be extended to cover

other gases or gas mixtures. A set of physical parameters, such as dimen-

sions of the system, gas pressures, and primary source rates were used to

illustrate numerical results of the analytic methods developed. These para-

[13]
meters were consistent with experiments of J. Guyot et al. in studying noble

gas plasmas created by nuclear irradiations. Again, within the specified

constrains, these parameters can be changed to suit new situations as they

arise.

If analytic results are not feasible when new parameters are intro-

duced, the basic equations of the present study are still valid and may be

tackled on a purely numerical basis. As shall be detailed later, the present

work complements the Monte Carlo simulation of the problem and it may be of

advantage to incorporate both methods in a single program. However, some

of the specific results of the present analysis shall be pointed out first.

2. The Analysis of the Distribution in the High Energy Region

For energies above the excitation potential of helium, the inelastic

collisions were found to bo the dominate process in the slowing down of elec-

trons. The balance equation has been set up for this region with the approp-

riate slowing-past kernels calculated (equation 11-28). These kernels were
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derived from energy-loss cross-sections. The solutions for the flux dis-

tributions were numerically obtained from the balance equation. They are

critically dependent on the slowing-past kernels and therefore accurate

cross-sections are necessary. The slowing-down past kernels and appropiate

limits developed here are uniquely suitable for this energy range accounting

•for the secondary electrons.

The W-values in helium were calculated to check the validity of the

flux calculation and to determine the appropiate cross-sections to use.

Vriens' energy-loss cross-sections were used. Emperical parameters were

introduced to force the integral of these cross-sections to agree with ex-

perimental total ionization cross-sections. The W-value calculations alone

do not clearly demonstrate the superiority of the fitted cross-sections but

they do indicate that when individual excitations were considered, the agree-

ment is better than the case when a one-excitation level model was used. W-

values calcuated for a 1-KeV primary source using the six largest excitation

cross-sections were 41 eV per ion pair using the fitted Vriens cross-sections

This is to be compared with the W-value of 42.3 eV per ion pair measured by

Jesse et. al.

The effect of leakage was included through a first-fundamental model,

diffusion-approximation-leakage term. The effect of change of pressure and

system size is observed, and the shift in the distribution also clearly

illustrates the effect of leakage (Figures 21-23). It is shown that the flux

depression due to leakage is more severe for higher energy primaries, for

smaller systems and for lower pressures. ,

These flux distributions cannot be obtained if only the therr.alized

swarm is considered. Fc-r a source rate of 10 '"'cm °-sec , 1-KeV primaries,
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the Maxwellian tail at 50 eV would underestimate the flux density presently

-4
calculated at that energy by a factor below 10 . If the approximation of

flux ~ const./L. -j- > were used, it would overestimate the flux density at

50 eV by a factor of more than. 7. The flux distribution presently calculated

would therefore provide a much more accurate electron reaction rate than

other crude approximations.

3. The_Distributions at the Lower Energy Region

For low energies, a model similar to the "heavy gas" model in neutron

physics was found to be applicable. This model is uniquely suitable for the

presence of a high energy electron source. The fraction of ionization or the

primary source rate beyond which charged-particle coulomb interaction"cannot

be ignored has been determined through an analysis of relaxation times. For

a 1.27-cm radius boron-coated tube at 1 torr, this limit corresponds to a

13 -2 -1
neutron flux of 5 x 10 cm -sec

For the cases without an electric field, the distribution is found

to be close to a Maxwellian with deviations due to leakage and recombination.

A shift to a. higher average energy due to the inability of higher energy

electrons to thermalize is noted. For the cases with an externally imposed

direct current electric field, it is found that the high-energy electrons

are not appreciably influenced by a moderate field of E/p 4 10. The low

energy distributions are close to the results of Druyvestyen when no external

sources are present. However, for a large primary electron source rate,

corresponding to a neutron flux of 5 x 10 cm -sec , deviations from the

Druyvestyen results can be observed. Finally, the enhancement of current

densities in the presence of a primary electron source are noted.

For cases both with and without the field, the model results in a

second order differential equation. Solutions were obtained by a series
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expansion and a perturbation approximation. Numerical solution of these

equations may be more appropriate in cases (for instance, in the presence

of molecular gases) where the algebra becomes too involved or when the

deviation from a Maxwellian or Druyvestyen distribution becomes too large.

Many of the results obtained in the present study agree with a Monte

C^rlo simulation reported by B. Wang, and these are pointed out more specifically

below.

4'. Comparison With Monte Carlo Results

The Monte Carlo simulation •* and the present work show the same

general shapes in the high energy region. In the presence of an electric

field, the Monte Carlo result show that for the case of E/p = 10 V-cm" -mm" ,

the distribution in the high energy region is not influenced by the field.

For the low energy region, the distributions can be approximated by a

Maxwellian or for the cases with fields, by a Druyvestyen distribution.

Deviations from those were observed when the source rates are extremely high.

(>10 cm" -sec" , 1-keV electrons). These deviations have the same trend

as the deviations of the present calculations relative to source rates, pressures.

5. Concluding Remarks on the Methods

Numerical results under various specific parametric conditions were

calculated from the equations developed for the entire energy range below

the source energy. W-value comparisons and comparisons with a Monte Carlo

simulation show these specific results to be in good agreement. Comparisons

with temperature measurements by micro-wave techniques' >•> J are not made

because in the presence of a high energy source, the thermalized condition

is not assumed. As indicated, the important high energy region is indeed

found to be highly non-Maxwellian. The agreement of current enhancement in

the presence of a high energy source with Ganley's observations has been
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noted although no numerical comparisons were made because of the differences

in gases and reactions involved.

The basic equations are generally valid for other gases and physical

parameters; however, the accuracy of results depends heavily on the cross-

sections and kernels. For the high-energy region, equation (11-28) can be

used provided slowing-past kernels are derived accordingly from accurate

cross-sections. For the low-energy region, equations (IV-5) and (III-ll)

account for the presence of source and sink for the cases with and without

an electric field superimposed respectively. These equations can be numerical-

ly solved without any of the approximations used in the present analysis, i.e.

the series expansion used in solving equation (III-ll) and the perturbation

method used in solving equation (IV-5). In fact, these techniques were success-

ful in the present case partly due to the specific circumstances involved, such

as cross-sections in helium, pressure ranges, electric field strengths and

system sizes.

B. Future Extensions

It is suggested that future work should concentrate on applying the

methods developed here nad in the direct confirmation of their validity

through experimental observations. Some examples are:

1. The electron energy distributions can be calculated by the methods

developed for the appropiate gas or gas mixtures. These distributions can

then be used to find electron reaction rates for a set of rate equations

describing the plasma kinetics. The emission spectrum from a certain excited

state, for instance, could then be measured to varify the calculated excited

state density. This provides an accurate check of the calculated electron

energy distribution.
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2. The energy distributions also provide a starting point in several

applied calculations in a radiation-induced laser application. The electron

.energy distributions can be used to determine possible inversion of excited

states by solving the rate equations described above. In a nuclear light-

bulb reactor, the appropriate distribution can be used to calculate the

radiative emission spectrum from the fuel region and from the buffer-gas

region. This sets up a criterion for the addition of seeded gases to prevent

harmful radiations from reaching the wall structure. However, for a compli-

cated situation such as the gaseous core reactor, Monte Carlo calculations

may be a valuable supplement to the present methods.

3. The present method can be used to complement a Monte Carlo calculation.

Because of the small electron population in the high-energy region, in a Monte

Carlo simulation, a proper treatment of this region results in a relatively

large number of sample particles in the lower energy region. Weighting

factors may help, but the calculation may still be prohibitively expensive.

The present analytic method handles the high-energy region with good efficiency,

but involves complicated expansions and approximations in the low-energy

region. Thus there is a strong motivation to combine the methods. The

present method would be used to generate a distribution in the high energy

region while a Monte Carlo calculation would provide more accurate results

in the lower energy region.

.The present calculational technique might also aid the Monte Carlo

calculation by providing an initial input. The convergence of a Monte Carlo

code depends on an estimated initial input. A good initial input can be

obtained through the present calculation to assure a rapid convergence of

the code.
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APPENDIX A -

Approximate Flux Using a Continuous Slowing Down Model
With No Secondaries

U. Fano • , using transform techniques on the flux conservation

equation, demonstrated that to a first approximation, the flux is related

to the inverse of the stopping power. This can also be shown by expanding

the flux in the. particle balance equation. In the absence of secondaries,

the balance equation becomes;

where £.(£.') is the total collisional loss cross-section, kCE -*•!., T.)

is the probability of a particle of energy 0='+"O losing an energy of

amount T from energy, and SpSCE-Fo)* t^ie primary electron source, is taken

as a delta function at E with source strength Sp

If I>(E) and ̂ E,T.') are slowly varying functions of energy, the first

two terms of a Taylor expansion give:

U) (A2)
) ' r

o o

In the absence of absorption,

•^— r i \

(A3)

Multiplication of equation A2 by dE1 and integration yields:

E &Of i

^^ i ^ ^^ ^" i ^^ — _ ^r v*- / PvvC C. ) * -i_^p
I J£ ^E'

and since

(A5)

we obtain:
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[4 "I
Equation (A-6) agrees with the result U. FanoL J obtained by Laplace

transforming equation (A-l).
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APPENDIX B

Derivation of an Integral Form of the Collision Density Balance Equation

After an ionization collision, two identical electrons will emerge. To

have an accounting system we shall label the one with larger energy as the

"primary" electron and the one with the smaller energy of the two, the

"secondary". The collision density balance equation for a 6-function source

of electrons at energy E is :

S SCE-E^ (B-i)
E4U,

where H(E'-*E ) is the differential cross-section of scattering

into energy E from energy E1.

U, = first excitation potential of the gas atoms

A = E + U i f 2 E + U S E , a n d A = E - E if 2E + U > E .
o o o

The "secondary" source term takes the form:

CB-2)

where X< (£'->£.) ^-s tne probability per electron track length that the

"secondary" electron emerges with an energy in dE at E.

We shall divide the energy range into two cases: .

Case 1. If 2E + U E , then S (E) = 0 and A = E - E.

Integrating equation (B-l) from E to E , we obtain,

(B-3)

Now consider the double integral on the R.H.S. of equation (B-5) . Since

for E" in the range of E - U. to E , £ (E1 — > E") = 0, we have
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f. O .- „

J dE" S^CE'-E^Ce^dE,' ^ cit" rcCE.'-E">$(e')aE'
E JEVU, L l,E ->E"-t-U,

(B-4)

where we have interchanged the order of integration. Combining equations

(B-3) and (B-4), we obtain

""N EtU,

where E . is the minimum energy above which electrons with energy E' can

slow down. Note that we have changed the notation of dummy variables

inside the integrals. Breaking up the LHS of equation (B-5) gives:

LUS = .
e ^HMH r+(j -p

CT<-'t C PBI»J

so equation (B-5) becomes .

E+O, '- t E"U', - ,
\ $CE')de' • Z^
J J

(B-7)

" FtU, Fmi»

Consider the L.H.S. of equation (B-7). The flux 4>(C') in the first integral

lies in the range from E to E + U, and any inelastic collision will slow the

electron down past energy E; as for the remaining integrals,E. is in energy

ranee E . to E and E (E1 -* E.) account? for all collisions that slow the6 nun c 1

electron down past energy E. Therefore, the LHS of equation (B-7) represents
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the total rate of slowing down past energy E.

Case 2 . If (2E + U) < E ; in this case A = E + U and

Integration of equation (B-l) from E to E gives:

(B-9)

Consider the RHS of (B-9). The first two integrals cover the areas (1)

and (2) in the sketch of Fig. B-l. This is equal to areas [ (1) + (2)

"•" (3) ] - (3), i.e. the first two integrals become:

E

But, for the second integral, Z (E1 ->• E") is equal to zero for the region

of E" since no "primary" electron can slow down past (E' - U )/2. The

integral therefore vanishes in area (5). Then equation (B-9) becomes:

= f

'

Equation (B-ll) is identical to equation (B-5) except for the "secondary"

production rate term. Using equation (B-7), equation (B-ll) can be

written 'as :

rE0 rl=j-E-t-u, fE-U,
J §(e')4El) Zc

5f
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Figure E-l Sketch of Area Covered in the Collision Integral



Here the LHS is equal to the total rate of slowing down past energy E while

the RHS equals the total rate of production above energy E. This is the

same as:

where K.(E',E) = probability per track length of slowing down past energy E

through a jtn type collision.

This shows that in both cases the differential form of the balance equation

(Equation (B-l)) and the integral form of the balance equation are equiv-

alent.
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APPENDIX C

Comparison of Average Energy Loss Due to Elastic and Inelastic Collisions

For High Energy Electrons in He

For elastic collisions, we consider the first Born approximation

[59.60]cross-sections L ' J :

°°1o

Where k =
v\

For helium, Hylleraas has employed a variational method to obtain the

following wave function:

/=3 / > -̂ r'*Y*Va0
Hi -C* /™?)e CC-2)

with the potential:

where z = 1.69, and a is the Bohr radius. From this, the differential

scattering cross-section becomes

(C-4)

where A = 2 z/a , A = atomic weight.

The fractional energy loss due to elastic collisions is related to

the angle of scattering b\- *

(c.5)

where m/M is the mass ratio between the colliding particle. From equations

(C-4) and (C-5) the average fractional loss per track length becomes:
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.
'

L& bl

(C-6)

where a = A ,

" v *

After rearranging the constants, we obtain:

(C.7)

where R = ̂  and IR. =R =

and we have used the fact, that X" ** (^£ ) -37 I )

For inelastic collisions , we consider the Mo'ller cross-section •"

where H and z are the incident energy and energy loss for the collision

9
respectively, in units of M C~ . The average fractional loss per track length



86

becomes:

"E- 1 + 1. \
-r J 0+E^ } (C-9)

2 2
where r = e /me", and Q is a constant determined from stopping power

theory. For U « C, Q equals Bethe's'- •* Q . *• z->^ . The upper limitmm 2 m^

is arrived at from the consideration of indistinguishability of electrons.

Changing the energy units to electron volts and integrating (C-9) , we find

N r 2 __ E_ ^ £
EL L E-Q J

n

ZQ J E-Q

Comparison of equations (C-7) and (C-10) demonstrates that in the energy

range where Born approximation and Roller's cross-section are valid, the

average energy losses due to inelastic and elastic scattering differ by a

factor of magnitude about m/M. This justifies the neglect of elastic

collisional losses in that energy range.
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Slowing Down Kernels from Binary Encounter Collision Theory

The binary collision theory neglects the influence of the atomic

nucleus and treats inelastic collisions as an interaction between two

electrons alone. When two interacting particles obey the inverse square

law, the problem is exactly soluble in wave mechanics, and the solution

F391
yields the same scattering law as the classical theory1 . If, however,

the two interacting particles are identical, as in the case for electrons,

symmetrical and antisymmetrical wave functions in the space-coordinates of

the electrons must be used. Therefore, if the corresponding cross sections

are & and CT and 0 is the angle between the spin directions of the electrons,

[39]
the total cross section isL J

CD-I)
If one assumes unpolarized electrons, this reduces to

G"" - Lrr-f 1 ~_-0 - 4^ * ̂ rr (D.2)
L. Vriens' model of two interacting electrons with exchange and

interference gives :

__ Tfe4 r r \ , 4- E, \ . C _J- -^ LC^i- -* TZi-̂ ) ̂  I cv

_H__— 1
^CE-EAE J

(D-3)
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.4 r- / i * t1 x

E l I A T"~ ~*- f ~ " ' 1 ~ ' -^ L vAH S 4 gi J

~1 / E3 ^-] v'î ) AA& ES ̂  ̂  (D-4)

where the terms are defined in the text. The value of $' is ~ 1 for

EI » R. In the following integrations, we shall approximate $' by a

constant. This is consistent with the assumption that Vriens made in

arriving at his total ionization and excitation cross-sections.

For the case of ionization collisions, consider E to be the incident

energy and E - AE and AE - U to be the exit energies after ionization,

U being the ionization potential (Fig. D-l)

Fig. '(D-l) Electron Energies in
~u an Ionization Colli-

sion

The two emerging electrons are indistinguishable and the maximum energy

loss possible is' (E + U)/2. The minimum energy loss that an incident elec-

tron can suffer and still slow down past energy E from energy E' is E' - E.

The slowing-past kernel due to ionization collisions is then obtained by

integrating Vriens1 differential c-ross-section through these limits. Thus,

for (E1 + U)/2 > E1 - E > U;

e'-e

-VM^4 (__\
** I E'>E
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where _u c fo~ «\ r- . , , ~\
CD-5)

and N is the total number of valance electrons in helium. For more compli-

cated atoms, one has to sum over each different electrons in the shells with

their appropriate ionization potentials and averaged kinetic energies. An

approximate method suggested by V'riens is to simply multiply by the number

of electrons in the outer valance shells.

If, however, E1 - E <_ U, any ionization collision will show the electron

from energy E1 past energy E. Therefore, for (E ' - E) <_ U;

,

= \

(D_6)

This is, as one would expect, identical to the total ionization cross-section

and is consistent with the ionization cross -section given by Vriens and

others. The two slowing-down kernels (D-5) and (D-6) are continuous at

E1 - E = U. For E1 - E >_ (E1 + l}/2 or E' <_ U, the slowing down kernel

Kj (£',£) = 0.

The binary collision model assumed that an excitation to level n

takes place when the energy loss AE is such that, U <_ AE <_ U .. , where. U

and U are excitation potentials of levels n and n+1 respectively. In the

case of helium where the final state depends on the spin orientation, we

will apply the following approximation. Mott and Massey give the excitation

cross-section for an arbitrary angle 6 between spin directions of interacting

electrons to be*-^ .

(D-7)
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where de, ee and int denote contributions due to direct, exchange, and

interference. For parallel spins, 0 (0) -=. 0. +0 + 2 0. . and forr r ' xev J xde xee xint

antiparallel spins, Q (ir) = Q, + Q . However, direct excitation only

occurs in the singlet mode while exchange excitation can be either singlet

or triplet. If one assumes one half of electrons have opposite spins and

the other have parallel spins; then

Qe = \ Q

From this we deduce that,

Qsin [\ ~ Qd ~* <^?e a/*^ $4 - + ~ ^^e (D-9)

In general the excitation to the ntn cross-section is calculated according

to:

Q»W = \^ <%****• (D-10)

Since- only AE, the loss of energy is considered, there is no distinction

between levels when one considers the kernel of slowing down past a certain

energy. One can therefore group all the excitations into one level and

consider an excitation range, i.e. one considers excitation to have occurred

if U, <_ AE _<_ U. where U, is the first excitation potential energy and U. , the

ionization potential. We refer to the slowing down past kernel due to exci-

tation derived through this model as the one level excitation model.

For E' - E >_ U,, no excitation collision can bring an electron from

energy E1 down past energy E and the slowing down past kernel K (E',E) = 0.

For E' >_ U and IL >_ E1 - E >_ Uj
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',^- \ "
^ ct r

E'-E

r_L__ _L + _L _
LtE'-E)1 I/.* E1" UVU(>T tE'-E)E'

where .
<i ^ c^ ) f ^ yin E'-OC-U. I (b-ii)

l_^ e.-t-u,; x* U( ]

For E1 >_ U. and U, >_ E' - E, any excitation collision will bring the elec-

tron down past energy E from energy E', and

o.

i-JL.w-L __L_u_i!% ra-ce'*u;-ifln
U- U> E(t CE'+u.-u.fj E1 "̂! E.gt

 L JJ
(D-12)

This agrees with Vriens' one-level total excitation cross-section.

The secondary production kernel is defined as the probability per track

length that an electron with energy E1 is going to produce two electrons

with energies both larger than E. This (Fig. D-l) imposes the requirement

that AE - U > E or E' > 2E + U. For energy E' >_ 2E + U, after an ionization

collision, at least one of the electrons will emerge with energy larger than

E. For both to emerge with energies larger than E, the minimum energy loss

of the ". -:ident electron nu:st be E +• iJ. The ;:.axi:?.u~. .loss of energy due to

the in^.jtinguishibility of electrons, cannot exceed — (E1 + U). The kernel



for secondary production K (£',£) is; for E1 > 2E * U;

92

«- r
0

1" f F E'-E
E'-tO VW L £ + U

(D-13)

and K (E',E) = 0 for £' < 2E + U.
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APPENDIX E .

Determination of the Number of Secondary Electrons Produced Per 5-ray

First, we shall show explicitly that in an energy range below the first

excitation potential but above an energy where recombination is significant,

i; e, between 19.5 and say 2 eV in helium, the slowing down past density q(E)

is a constant. In this region, the recombination is considered to be negli-

gibly small and in the case of helium, processes like dissociative ioniz-

ation (e + A0 ->• A + A + e) can be neglected *• . Consider the collision
£,

density F(E) defined as the total number of collisions at energy E per unit

energy interval;

where

and ST(E)dE gives the rate of electrons arriving in dE at E from inelastic

scatterings above energy U . I (E) and E (E) are macroscopic elastic and
- I S 3 .

recombination cross-sections and PfE' -*• EjdE is the probability that an

electron scattering at energy E1 will arrive in energy interval dE at E.

Integration of equation (E-l) from 0 to E where E is below U gives

fe

| CS
(E-2)

The shaded area in sketch is the area of integration for the double integral

Figure E-l Sketch of Area Covcro:

in a Collisional Inte.

U, E1
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on the R.H.S. of equation (E-2) . Changing the order of integration, we

write the double integral as a sum of integrations over the two shaded

areas (1) and (2); i.e.;

.1 E E1 ' '
'

r°'
+ \ dEv

e
-iBut re

1.
(E-4)

and \

where K(E',E) is the probability that an electron slows down past energy E

after collision at E1. From equations (E-2), (E-3) and (E-4);

c E c
( KE")dE" - ( de'FC^-v f s^CE
« ^ ,-\ J .

, o,
f V

(E-5)

or * E

But the L.H.S. of equation (E-6) is exactly the definition of q(E); i.e. the

rate that electrons slow down past energy E or appear at energies below E.

From this;

However, above a certain energy E, , recombination is not significant, so

we obtain

' ' (E.8)
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and q(E) is not a function of E in this range. This value of q(E) represents

the total number of electrons slowing down per unit volume and time and can

be used to calculate the W-value of a gas. From equation (E-6)

•t,,

H»

de" $ U") K
CE-9)

where o

H number of electrons produced with energies

below IL per unit $(E") at E" around dE".

Using the previous notation for slowing-past kernels due to excitation and

ionization, we can illustrate some of the K. (E",U,) in different energy

ranges :

For E" >_ U. + 2LL , after .an ionization collision only one electron

could have energy less than IL. No excitation collision is going to result

in slowing down an electron past energy tL . In this case:

where U. = U, the ionization potential.

Using similar lines of argument, we obtain

Ui + 2U1 - E" - Ui

. CE.U)
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Ul + Ui 1 E" i 2Ui' :

2U1 i E" 1 Ui :

LI >_ E" >_ U. :

U. > E" :
_̂  •—•

KiE''U'̂  = ° - ' (E-15)

The above notation follows from the one level excitation model defined

in Appendix D.
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APPENDIX F

Diffusion Approximation for Electron Leakage

_A _i
Instead of f(r,u,t) in equation (II^-l), consider an equivalent form

— J. A — A A _» 7 _ X

f (r,fi,E,t) where f (r,Q,E,t) d dEdft is the number of electrons at r in d r

•* A

whose flight direction fi is in the differential solid angle dfi around fi

and whose energy is between E and E + dE. With the differential electron

flux defined as :

. (F-l)

The Boltzmann equation [Equation (II-l)], in the absence of an external

force field, becomes

-L

(F-2)

where we have replaced the collision term by the last three terms. In

equation (F-2) I (E) is the total collision cross-section at energy E and

A A
L (£'-»• E, it1 ~ Q) is the cross-section for a process in which an electron

with energy E' and the direction Q1 is scattered into the element of solid

rx
angle dQ around 0 and the energy interval dE at E. The term S(r,fi,E,t)

accounts for other primary or secondary electron sources. We assume rota-

tional symmetry around a distribution axis arbitrarily defined as the x-axis,

Then the steady state form of equation (F-2) becomes:
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We expand the angular dependence in Legendre polynomials, i.e.;

(F-4)

u (F.5)

and

(F-6)

where Ge>s ©0 = XI • J~iL

By the addition theorem for Legendre polynomials, f^, ( u> * 60") can be

expressed in terms of P^CCBS©^ and p^ CtDs©1) where the P^ are the

associated Legendre Polynomials. Performing the angular integral of

equation (F-3) and using conventional orthogonal relations one arrives at

the PN approximation t44'42]:

'' ..... CF-7)

Truncating the equations with n = 1, we obtain the P approximation or the

diffusion equation. For a homogeneous medium, this becomes'-- ^ :

where

>,e^ = f
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and

2> C2It(E) -ZsCffa©*) (F-9)

In the calculation, we have made the simplying assumption of isotropic

scattering so the averaged cosine of the scattering angle vanishes. This

form for the diffusion coefficient is only valid when the electron motion

is not influenced by electric field forces. This restricts it to large

electron kinetic energies and a small degree ionization. Furthermore, the

diffusion equation (F-5) carries the usual restrictions for the validity of

\62]Pick's Law1 , one being that the size of the system be large relative to

the mean free path of the electrons. For a 1-cm radius tube, this restricts

the gas pressure to be, roughly, above one torr.
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APPENDIX G

Energy Deposition Rate and Primary 5-Ray Energy Distribution

by a Two Region Model in the Plasmas Created by Nuclear Radiation

Using a two-region model, J. Guyot -"and G. Mi ley ^have derived

expression for the rate of energy deposition by heavy-charged particles in

gaseous media. In the experiments performed by J. Guyot -"and T. Ganley ,

laser tubes coated with B-10 were placed in the University of Illinois • TRIGA

Reactor. The pulsed neutron flux falls upon the boron coating inducing the

nuclear reaction n+- B -» Li-t-<x . The heavy-charged particles traverse the

and deposite their energy as they slow down.

The geometry of the system and the heavy-charged particle reactions are

shown in figure (G-l) where a slab geometry is used to approximate the cylinder.

For O^x^x , the rate of energy deposition R. (x.T ) at x for the i type of

heavy-charged particle with initial energy T is:

<Hl r. fl-tlx Ĉ -̂

" ^ '~ YM'

(G-l)

and for x * x s A(T ) .
cut ~ g o '

(G-2)

where in (G-l), (G-2); S(T ) = source rate of heavy-charged particle

x = distance from the surface of coating
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Neutron Flux

B-IO GAS

8- Electrons

a, Li

Figure G-l. Slab Geometry of the Source and Gijeous Medium

Equivalent to the Actual Cylindrical Geometry
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A(T ) = range of heavy charged particle at T in the Boron Coating

Ag(T ) = range of heavy charged particle at T in the gas

T = thickness of Boron region

J(u,v) =

n = a fitting parameter for the slowing down and energy degradation.

"For n--0 , 3(û  =

The following parameters are used in the calculation:

TQ(MeV) Ag(T0)cm A(To)cm n

a 1.459 2738. 7/p 3.7 x 10"4 0

Li 0.855 1240/p 10"4 -0.25

3 - 2 - 1
and S(T ) = 450 R $/cm sec, where $ is the neutron flux (cm -sec ),

R is the fraction of the type of heavy charged particles. For the production

of 1.459 MeV a and 0.855 MeV Li, R = 92%. The coating thickness is 0.4 ng/cm2.

Figure (G-2) shows the rate of energy deposition versus gas pressure at

the center of the tube. The tube diameter is 2.54 cm and the neutron flux

13 -2 -1
used is $ = 5 x 10 cm sec . The rise in energy deposition rate as

pressure increases is because of the increased slowing down efficiency as

gas pressure is increased. This reaches a maximum at ̂  550 torr because

fewer heavy-charged particles can reach at the centerline as pressure goes

higher.

The heavy-charged particle flux spectrum F. (x,T,T. ) for the i*-™ type

heavy charged particle with initial kinetic energy T at x with kinetic

energy T is given by: (133 ff. ref [64])
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(G-3)

where e = T/TQ, z = x/AgOy, S =

•crit • Ci-s-.
2crit = Cl-S)

The primary 6-ray electrons are .created by the passage of this flux

through the gas. The spatial and energy distribution of these primary

6-electrons is related to the i type heavy charged particle flux by:

T.

where T , . is the minimum kinetic energy for the itn type heavy-

charged particle to ionize and E.(E,T) is the probability per unit flux

that a particle with energy between T and T + dT will lose an amount of

kinetic energy between E and E + dE through ionization. Finally, U is the

ionization potential of the gas atoms. Employing the formulation derived

by M. Gryzinski for £.(T,E) and T , . (equations (6) and (8) of reference

[23]), n. (x,E) has been solved for x = centerline of the tube at 1.27 cm and

for 1.495 MeV a and 0.855 MeV Li ions which account for 92% of the heavy

charged particles produced in the neutron irradiation of boron. Figure (G-3)

shows the primary 6-electron production rate, per unit neutron flux, as a

function of energy in 10 torr helium.
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The total electron density is determined by a balance of the source

due to the heavy-charged particles and the losses due to recombination and

leakage. The main body of electrons is assumed to be thermalized and the

losses are mainly due to the recombination and diffusion leakage of thermal

electrons. With this assumption, the thermal diffusion coefficient is taken

to be the ambipolar diffusion coefficient. For a 1/U recombination cross-

section, with only one species of ions present, the steady state electron

density, n , is simply:

(G.5)

where D = ambipolar diffusion coefficient

R = rate of energy deposition by heavy charged particle slowing down

~̂--a~~= "recombination coefficient
K

w = energy deposition for each ion-pair production

A = first fundamental mode characteristic length of system

However, if molecular ion formation by three body collision is included,

electron recombination is predominantly with the molecular ion. Then the

electron density becomes:

T-O. ztfcXft L v- atxfc "*" /^-Avx a,(yR

(G-6)

where a = —=- + n
A

S = R/w = rate of electron production/volume [cm -sec ]

D , D- - ambipolar diffusion coefficients for the atomic ions

molecular ions, respectively [cm"/sec]

and

n = coefficient of molecular ion formation through three body

collisions [I/sec]
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tquation (G-6) has been evaluated using the coefficient's given in references

[49]* [so] and [53] and the resulting electron density vs. pressure for

several tube sizes and neutron flux densities is illustrated in Figures

(G-4 ) - (G-g)- The densities shown are for the centerline of the tube. The

cross-over of the curves at about 30 torr is due to the balance between

leakage and energy deposition rate. The peak electron density occurs at

about 550 torr because higher pressures reduce the number of heavy-charged

particles reaching the centerline.

The addition of a distributed primary source S(E) in the low energy

region makes equation (ITI-10) inhomogeneous; namely:

(G-7)

A series solution <Ky) for equation (111-10) was given earlier in equation

(111-15). [A second independent homogeneous solution 7 $2(y) > gi
yen by

De Sabre (equation (8) of Ref. 65) was discarded by Horwitz et al.43-1 because

it gives negative slowing down density at y = 0.] A particular solution to

equation (G-7) can be found by the method of variation of parameters from

the two homogeneous solutions. This method gives:

S.GO, S

Equation (G-8) has been evaluated numerically, the particular solution

added to the homogeneous solution, $-,(>'), and the entire distribution nor

malized. Notice that as y ->• 0, 0 (y) = 0 and Q-Cy) again has a zero

coefficient. Results are presented in figures fc-y) and fc-g) along with

a plot of the distribution for the homogeneous case. It is seen that for
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lew energies where the electron population is high, the deviation is

insignificant. For higher energies, where the population is already

small,-the difference is about a factor of three.
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APPENDIX H

Series Solution of the Thermalization Equation With

Recombination and Leakage

-With the notation of Chapter III, the thermalization equation, including

the second moment of AE, becomes:

with

n +
E. J •

(H-2)

-vaE

CH-3)

From equations (H-l), (H-2) and (H-3) , we obtain

[H-4]

To change this result into the variable y, where y = bT , we

note that :

. . . . (H-S)

and with these relations, equation (H-4) may be written as:

where g and A are defined in the text. The solution for the special case of
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no leakage or recombination, with the .boundary condition <S>(y) = 0 at y = 0

2 -y2is e y e ' ; i.e. a Maxwellian distribution. We can use this to find a

correction factor S(y) applicable to the general case. If one lets $(y) =

2 -v2
ye7 S(y), the differentials of $ (y) with respect to. y are:

(H-7)

(H-8)
4-/ 4- S"</)y*-3

The differential equation for the series S(y) from equations (H-6) to (H-8)

is:

(H_9)

Writing out equation (H-9) in terms of the series S(y) =

we obtain:

n ' (H-10)

The coefficients of (H-10) are seen to be:

Ax = •

of A o are :

With the normalization such that /^ <l>(y) dy = 1 , the first five coefficients

o

and

9 7
Collecting terms of order 1, A, g, A", g~ and Ag; for A, g « 1; we

can write S(y) as :
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+ f >̂ OJ) v 4^) +(^

The series with first order in g appears only with even powers of y;

i.e.

4-1,-y lo (H-13)

The series with second order in g appears only after y and appears only in

even powers of y:

where , _
n

and ol4 ̂  1/4-6-2

This gives dlt= >/t.»r̂ /4..t-U + 1/6-&1 , d^= 1A-^ t'A»

The series with first and second order in A have been developed by

Cohen "• . and they are given as :

,ZfI-tl

(H-16)

The series with terms in order of Ag starts with y and appears only for

odd powers of y. The coefficients of this series are:

where • *111 (H"17)
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The first few terms of ^zn-ci are; ?3 •= i. C~% * ̂  ) C

-, a- 3 -.y

These series converge rather rapidly for y <_ 5. For larger values of

y, the series is given as an inverse power polynomial of y. As it converges

rapidly for large y, the series need not be broken into orders of g and A.

[63]
De Sabrino et al give two independent asymptotic series for large y:

-^iwith
<:„-

C ̂
* T-r\ 2.H "'2

(H-18)

a n d H - - " "

with

,
-f

The series 4>(y) is damped by the Maxwellian factor; <JCy)— yZ^ ' ̂

and it becomes negligibly small because of the exponential factor. The

asymptotic solution for equation (H-6) is, therefore:

W-20)
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Effect of Electric Field on High Energy Electrons

During Slowing Down

Consider an electron above the ionization energy of helium in an electric

field E eV/cm. The drift velocity uo, due to the field is (pg. 122 of ref. ''•')

t (I-D
v» v. i - •«

where T is the mean collision time. The electrons drift distance in the

direction of the field in this time is g-^ "E , and they acquire an energy

AT given by:

«% «V^Zli (I_2)

where E. is the macroscopic inelastic cross-section and c the random speed

of the electron. Consider two extreme cases of 1 Kev and 30 eV electrons in

helium at 1 Torr with an electric field of'10 V-cm~ . For 1-Kev, £ - 0.5 cm

(pg. 63 of ref.^ ^) and AT - 0.2 eV. For a 30 eV electron, I - 3 cm'1 and

AT = 0.3 eV. The loss of energy due to an inelastic collision, however, is

larger than 20 eV. For higher pressures, the gain in energy due to the drift

2 2in electric field is even less because AT ~ l/l ~ 1/p . After an inelastic

collision, the electron emerges in random directions. The drift in the elec-

tric field has to be started anew. As illustrated above, the gain in energy

from the field between two inelastic collisions, for both of those extreme

energies, are less than 1 eV. It is concluded that the energy gain in the

field can be neglected compared to the energy losses for electrons with

energies above the ionization energy. This, however, is limited to moderate

electric fields of 10 V-crrT or less.
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APPENDIX J

Discussion of the Equation for the Distrubtion^ Function

in an Electric Field

Various authors 1 •> » > • 2 J » I 3J ̂ ave used different forms of the equations

for the two term expansion f0(u) and f,(u) of the distribution function in

an electric field. Chapman and Cowling -* give the coupled equation for

f and f, in velocity space as:

" f" ~̂ l|̂ C^ (J-l)

(J-2)

with

where ?6C?) Cc*) A and 1.Cc) are defined in chapter IV and the

leakage term has been neglected. Without recombination Equation (J-l)

becomes : _^

-e4<M^= -Vcco^o
CJ-3)

and the LHS of equation (J-2) is:

CJ.4)

With v (c) expressed as Z N.cQ. (c) where j denotes the type of molecules,
\ r 3iN. the density and Q. the momentum transfer cross section; Nigham arrives

at a set of coupled equations:
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(J-5)

J

Combining (J-5) and (J-6) and changing the variable u to LU - ̂ —^ , with

, Nigham obtains the following working equation:

^eU (J-7)

However, if recombination is included, equation (J-l) becomes

- - j\_̂ 5—-̂  ]—;:_ (J_8)

and equation (J-2) is given by Chapman as:

1I1P4
-v

(J-9)

where unlike in Nigham's case, ionization sources, recombination and the kT

tenn have now been included. Combining equations (J-8) and (J-9) and

assuming 6 i (c) « c, ive find:

r c
^c^ = \ u-/2?jĉ a.c fj_91

-^ '
Then, after a formal integration, equation (IV-6) of chapter IV is obtained.
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