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Electron energy distributions resulting from a continuous primary

- source at high energies in helium have been calculated.  Contributions
from both the primary electrons and subsequent secondaries are included.
In the cases analyzed, the primary electrons are taken to be produced
via the ionization of helium by heavy-charged particleé fromAthe
nuclear reaction On1 + SBIO+ 3Li7 + 2He4 which represents an important
means of using the neutron flux from a nuclear reactor to produce a
plasma. The calculation covers an energy range from zero to about 1 KeV,
.the highest energy of the primary electrons associated with such a source.
Electron-neutral collisions are assumed to be the dominate collision
process. While this limits the fractional ionization to 10-5, this region
is of interest for application in areas such as radiation-pumped lasers
and the buffer-gas region of the gaseous core nuclear reactor.

Balance equations for a finite system aré developed-for the slowing-
down region, and the appropriate collision kernels are evaluated. These
equatiohs are solved numerically for the electron-flux distributions for
primary source energies from 100 eV to 1 KeV, gas pressures, from 0.1 to 10
Torr and 3150 various plasma dimensions up to and including an infinite
medium. Calculations of the w-value‘from these distributions for electrons

in helium are found to be within 10% of experimecntal measurements. The

results are also generally consistent with previous Monte Carlo calculations.
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A Boltzmann equation with appropriate source and sink terms is con-
sidered for the low-energy range for cases both with and without a super-
imposed electric field (0 < E/p <10V -cm * - Torr }). Without the field,
major deviations from a Maxwellian distribution are only observed for low
gas pressures ( 2 0.4 torr),‘small systems (tﬁbe radius I 1 cm) and
moderately high neutron flux values (> 5 x 1013 cn7? -sec-l). For the
cases with an electric field, deviations from a Drﬁyvestyen-type distribu-

: 3 N -
tion are observed when the neutron flux density is high (> 5 x 10 4 cm 2

1 Torr_l). In

-sec-z) while the electric field is small (E/pﬁ 4V -cm
general, the shifts of ;he distribution due to leakage and recombinafion
depreciate the density in the low-energy region. This is attributed to
the leakage of clectrons during the slowing process.

It is suggested that the methods developed here can be used to aid
Monte Carlo calculations through the development of a combined anélytiéQ
Monte Carlo approach. The methods described can also be extended to

~applications involving different gases or gas mixtures, although the

derivation of new collision kernels is required.
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CHAPTER 1

DISCUSSION OF THE PROBLEM : _ .

A. Introduction

1. The Problem and Objectives

The present study is concerned with enefgy distribution of high
energy electrons as they slow down and thefmalize in a gaseous medium. The
energy distribution in the entire energy range from source energies down 1s
studied analytically. In particular, attention is given to a helium medium
in which primary electrons are created by the passage of heavy-charged
particlés from nuclear reactions. As discussed later, a radiation-induced
plasma of this sort is of interest in a variety of applicatioﬁs such as
radiation pumped lasers and gaseous core nuclear reactors.

A continuous source of high-energy electrons will establish a quasi-
steady-state in the energy distribution of the entire electron population.
The problem is complicated by the fact that this population not only includes
the primary electrons but also secondaries created by ionization collisions
during slowing down. This situation has been analysed not only for an
isolated system but also for the impqrtant case where én external electric

field is imposed upon the medium.

2. Previous Work Related to the Problem

Electron energy distributions in the absence of high-energy sources

(31

have been extensively analyzed[ll’[ 2], These studies all consider
the situation where the distribution is sustained by an electric field,

' such as in the case of a gaseous discharge tube. On the other hand, the

problem of electrons born at a high energy has only been studied in the case

(4] (5]

of B-irradit: H-ns or for electrons crcated by gamma irradiation




However, in these cases the energy range considered has been restricted to
quite high energies --- from MeV to the low keV region -—;.since the interest
has been mainly from the point of view of shielding calculations.

Lacking complete electron energy distributions, previous workers
interested in applications of radiation-induced plasmas have generally
estimated electron ionization and excitation rates assuming a thermalized

| (6,171

electron swarm with a characteristic temperature While it is true
that the slowing down time of electrons is frequently short so that‘a bulk
of the electron population approaches a Maxwellian shape (no electric field),
the tail of the distribution determines these reaction rates, and the assump-
tion of a Maxwellian ''tail" can lead to erroneous results. Stated another
way, we note that electrons born at high energies suffer inelastic collisions
during the slowing process, and the resulting ionization and excitation rates

are not adequately described by the Maxwellian tail associated with the ther-

malized electrons.

B. Physical Applications

Plasmas resulting from electrons slowing down after creation at high
energies are of interest in many recent applications. In a laser system
which utilizes nuclear energy input, the primary electrons are created in the

[8]

lasing gas through the passage of heavy-charged particles through the gas

(9]

In the nuclear light-bulb reactor concept , the primary electrons enter as
B-radiation or from the ionizations due to fission fragments passing through
ihe fuel region and through a buffer gas region. In the electron-beam

. fluorescence technique[lo]which is used to study basic parameters in gas

dynamics, primary electrons are introduced into the system in the form of a

beam from an electron accelerater or ''gun'.



The slowing down processes in these situations differ. In the laser,
electron-neutral gas atom processes generally dominate. For the nuclear
light-bulb reactor, the thermal temperature is high and the uranium is ther-
mally ionized. This leads to a high degree of ionization and.eiectron_inter—
actions with uranium ions play an important role. In the electron beam
fluorescence technique, the spatial geometry and tﬁe space charge of the beam
become imporéant. However, in all of these systems the problem of high energy
electron slowing doyn and the resultant total electron energy distribution is
of common concern.

The present study calculates the time and space independent electron
energy spectrum for electrons slowing down in Heliuﬁ. In particular, refer;
ences are made to a system in which electrons are created by the passage and
-slowing of nuclear radiatioﬁ as in a nuclear excited laser system. However,
with some modifications, the present study can be applied to other situations.
One situation of interest now at the University of Illinois is the electron- -
energy distribution in the region close to the fuel boundary and the buffer

gas région of a nuclear light-bulb reactor.

C. The Model
A variety of schemes have been suggested to use nuclear energy in
(8]

achieving laser excitation One method emplofed by the University of

Illinois group is to utilize the neutron flux from a reactor for the nuclear

117,12 . .
Li[ l [ ]-Thus a laser tube is coated with Boron-10

?eaction-n + 810 > o +
and inserted into a nuclear reactor. The resultant heavy-charged particles
traverse the laser gas and deposit their energy thch may enhance laser
excitation. Over half of t“he energy deposited is in the form of ionized

6-electrons. The resultant energy distribution of clectrons studied here is

therefore important to this concept.



A continuous &-electron source is assumed. Many of the actual
experiments at Illinois have employed a reactor pulse. However, the full-
width at half-maximum of the reactor pulse is of the order of ten milli-
seconds whereas the collision time of electrons in helium at one torr is the
order of micro—seéonds or less. Thus the electron energy distribution at
any time during the pulse can be viewed as a quasi steady-state distribution.

Whilé the present study primarily deals with the electron energy
spectrum in helium, other gases or gas mixtures can be Studied by the same
method. Helium was chosen here because it is a main ingredient in many laser
gas mixtures. Also it is representative of the noble gases such as neon that
have been considered for use in the fuel and the buffer gas regions of the
nuclear light-bulb reactor. Another reason for studying helium in this first
analysis is that an abundance of cross section data available for it. This
allows us to céncentrate on the analytic technique, although even for helium
great care is required in the development and selection of appropriate cross
sections.

fMaﬂy of the physical parameters employed in the present study such
as tube dimensions, the boron-coating thickness, and tﬁe neutrbﬁ flux magni-
tudes were selected to be consistent with radiation-induced plasma experiments
performed by J. C. Guyot et al.[lz]’[ls]ﬁOther assumptions involved include
uniform physical properties in the system and the approximation of the cylin-
drical geometry by a slab geometry when eﬁergy deposition rates are computed
{Figure -G-1 of Appendix G).

A Monte Carlo calculation has been performed using the same mode1[14;15]
Both the present study and the Monte Carlo simulation serve to i;lustrate
methods to obtain the solutions that can be applied to other situations of

interest in the future. These methods compliment each other and depending on



the particular feature of a given problem, it may be that one of these
methods is better from the point of view of efficiency and aécuracy. For
insiance, in the high energy interval, the present analytical approach
appears to be more ‘efficient. This suggests that one future application éf
the present analytic method might be to combine it with the Monte Carlo code
such that the high-energy fegion is‘treated analytically and this serves as

a source to the low-energy Monte Carlo simulation.




CHAPTER 11

THE ELECTRON FLUX DISTRIBUTION AT ENERGIES ABOVE THE FIRST
EXCITATION POTENTIAL OF HELIUM

A. The Slowing-Down Flux Conservation Equations

"After creation via heavy charged-particle ionization or via direct
introduction as a high energy electron beam in a gaseous medium, electrons
lose their energy traversing the medium. The resulting distribuﬁion is
éescribed by the electron distribution function fe(;;v,t) d;ﬁvat, defined
as the number of electrons in the phase space element, dr dv dt, at posi-
tion T with velocity vV and ét time t. This function 1s governed by
the Boltzmann Equation:

-~

. .d ol —‘~ - ~ F ~) . _)_ <
S £, FVY + VT £ ) PRAAICAZO R (at‘c“"”t’)cou. (11-1)

where F is the externally imposed force. The collision term on the right
hand side describes the sources and'sinks of new particles into the phasé
Space due to collisions. These collisions include processes such as elastic
scattering, excitation, ionization and recombination.

To begin the problem at hand, we shall first consider a time and space.
independent case with no external force field imposed. In this limit, the
energy distribution of electrons while slowing down is simply described by
the collision term of the Boltzmann equation. The electrons are born at
6-ray energies and suffer large energy losses through a series of inelastic
-collisions. These include<ionization-collisions which produce secondary
electrons that in turn slow down. Roth primary and secondary electrons
eventually thermalize, but we will first concentrate on the slowing down

problem and therefore, we restrict the lowest energy to the first excita-

tion potential of the gas. In this range, the clectrons are at a much




"Page missing from available version"”
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included in the total flux calculation. Thus, instead of the approximation
of equation (II-2), we consider the exact balance equation for ccllisions
into and out of an energy interval dE at L due to the slowing down of

electrons originating from. a delta function source at Eo‘ This is:

T (E)B(E)E = S 8(e-ENde+ 3 ZJ,(E'—)E)@(E')dE'dE‘i- S(e)dE (11-3)

J

where, (E) = total collisional cross-section at energy E

z:1’.012
Zj(E'+E)dE= differential cross-section for the scattering of
electrons with energy E' into énergy dE at E thfough ‘the jth type
of colligion.
S(E)}dE = source of secondary electrons introduced in the
©energy Band dE at E.
In practice it‘is most convenient to use an integral form of equation (II-3).
This eliminates the delta function and in effect smooths the cross-sections
1eaéing to less fluctuations in numerical integrations.
| From appendix (B), the integral form of equation (II-3) takes the

form:

Eo ’ Eo .
ZSE ® (BB YK (ELE)UE = S+ g:— ® (&,,E")K (£, E)dE" (11-4)
A}

where j denotes various excitation and ionization processes.

Kj(E',E) = probability per track length that an electron suffers a
jth type collision and slows down past energy E from E'.
KS(E”,E) = probability per track length that a secondary electron is
born with energy larger than E due to a collision by a primary
electron with original energy E'.
The equivalence of this equation and equation (I1-3) is demonstrated in

appendix (B).



Equation (II-4) states that the number of electrons slowing down past

energy E must be equal to the introduction of electrons with energies larger

[16

than E. Spencer and Fano and other authors ] have worked with the same.

type of balance equation for high energy B-radiations (MeV slowing to keV).

[18]

They used the Moller relativistic collision cross-sections and included .
Bremsstrahlung energy losses. In the present case, Bremsstrahlung can be

neglected but energy losses from excitation collisions must be included.

[19,20]

Also Vrien's Binary Collision Model cross-section , which is more

appropriate for.the lower energy range, is employed.

As shown below, elastic scatterings between neutral gas atoms and
eléct?ons give only a small contribution to the slowing down of electrons.
[This effect, however, plays a role in the diffusion leakage of electrons

out of a finite system, and will be considered later.] This elastic

.. . : . 21
collision cross-section, as approximated by the Lenz relation[ ], is:

~

Q. 4 kvezys : . (I1-5)
Qe(. z 08.“an° -

whére, Qin = total inelastic collision cross-section,
Qel = total elastic collision cross-section,
ﬁ = Plank's constant,
Eo = ionization potential of gas atom,
a; = first Bohr radius,
and Ve = velocity of impinging electron.

For an electron with energy above tens of eV in helium, Qin and Qel are of
roughly the same order of magnitude. Since the mass ratio between electrons
and the neutral atom is about 1/7300, the energy loss due to elastic colli-

sions can be neglected. This fact has been further verified in Appendix (C),
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where the average fractional energy loss per track length due to elastic
collisions with neutral atoms is shown to be small compared to that for
inelastic colliéions with atomic electrons. This comparison is done for
the energy fange above the excitation poteﬁtial such that the Born approxi-
mation is applicable for elastic collisions and the MOller cross-section

is valid for electron-electron inelastic collisions.

B. The Slowing-Down Kernels

The binary encounter collision theory employed here follows the

: . s . .[22,2 .
classical theory of atomic collisions developed by M. Gry21nsk1[2 23] with

later corrections and discussions by various authors[24’25’26].bThis type
of cross-section was selected in preference to purely quantum mechanical
cross-sections because their relatively simple form permits analytic
integration. Another reason is their apparent good agreement with experi-
mental measurements, especially in the lower energy range.

In contrast to the Thomson cross-section, the Gryzinski cross-section
accounts for the motion of atomic electrons in the target atom. The orig-
inal Gryzinski model, however, is asymmetrical. for the two interacting
electrons. Thus, if bo;h the incident electron and the atomic electron are
at a distance r from the nucleus, one would have zero and the other would

[27] and Vriens[zg]

have —e2/r potential energy. To correct this, Burgess
introduced a binary encounter model with symmetrical treatment of the two
interacting electrons. Thus, the incident electron gains a kinctic energy W
and at the same time loses the same amount of potential energy as it inter-
acts with the atomic electron. The atomic electron is assumed to be bounded

with the same potential energy, W; thus the two electrons are symmetrical

and indistinguishable upon interchange.
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(

In a later refinement, Vriensfzo] developed a quantum mechanical formulae
for transfer of momentum and energy between a pair of free'collidingielec-
trons., He then applied these formulae to the electron-atom binary encounter
theory to obtain differential and total cross-sections. The symmetri;al
collision model was also incorporated and the influence of the nucleus was
included. The resultant differential cross-section contains the direct,
exchange, and interference contribﬁtions, and it is given by Appendix (D).

The differential cross-section for a loss of energy AE is given as:

' I+ 3 -
o = — + —
s T % %e Y5 C : . (11-6)
and
+ wet [ | 4 B, \
o, doE = — ] — + = + .
AL Eg AEZ 3 AE3 (E E _AF 2
372 )
E ! ’
4 2 22 ] '
+ — B
3 (E.-E AE)3 1 AE(Es—El—AE) dak; Es 2E,
3-E,-
(11-7)
‘ I
&t dap = & \ 4 & \
p3 2 3 3 2
3 4AE 4E (€5-F,-4F)
: E! ’ \ V2
4 3 23! E
*3 5 E ](‘3) AsE; Ey<Fs
Ce,-E,-a6)®  1ExEu-atlef JE,
(I1-8)
where E1 = energy of incident electron
E2 = average kinetic energy of atomic electron
E3 = E1 + E2 + U
U = ionization potential energy
P _ 7
b3 = E3 AE
R 1/2 §
T — e
and %' = cos E-E In F L.~ E
3 72 3 72

R = Ryberg's constunt.
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The total ionization cross-section derived from this differential

cross section has been compared with experimental results, and good agree-
ment is observed at low to moderate energies. However, in the present

work, we are more interesfed in a direct check of the differéntial Cross
sections [Equations (II1-7) and (II—S)] since they lead to the slowing down
kernels. Since direct measurements of the cross sections are not available,
it was. decided to comparé calculated and measured energy distributions for
secondary electrons produced by a primary beam of electrons of energy E on
a suitable thiﬁ target. Figures ( 1 to 5)  compare the calculated

probabilities using binary models with experimental measurements by C. B.

28 -
Opal et.al.[ ]. The experiments were performed at a pressure of 2 x 10 >

torr or less and multiple scatterings would be expected to be negligible.
Quite good agfeemeﬁt‘is observed, lending confidence to our use of these
cross-sections.

Appendix D gives the calculation of slowing-past kernels by
integrating the differential energy loss cross-sections over the appropriate
limits. The probability per unit track length that an electron will emerge
with energy less than E from energy E' due to an ionization collision, |
‘KI(E',E),.is given by:

for (E' + U)/2

I A

E'-E; K (E',E) = 0

(11-9)
for (E' + U)/2 > E'-E > U;
Nenet | \ 2 |
K_(E',E) = Ne {, - __El[_____
I ’ 53 E'~-& Es'Ez 3 (E'—Ez)z
(II-10)

9 " +
] e )]

and for (E'-E) < U:
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Figures 1, to 4. Comparison of Calculated and Heasured Secondary-
Electron Distributions for Primary Energies of

100, 300, 500 and 1000 eV
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4
' e
ko =R flob 2 [ -0

Es

§H EI -
T @@y (T)} , (11-11)

where we have used the same notations as in equations (II-7) and (II-8) with
the addition that No is the total number of &alance atomic electrons ﬁer.cms.
In the case of helium, Ne,= 2N where N is ;he density of helium atoms, and
one does not have to sum over the electrons in differgnt atomic shells as

in the case of more complex atoms discussed in Appendix D. Also ¢'" is
defined in Appendix D.

The probability per unit track length that an electron will emerge with
energy less than E from energy E' due to an excitation collision is
Kex(E'?E)' Within the one excitation levgl model discussed in Appendix D,
the incident electron loses an amount of-energy T which is larger than the
first excitation energy but less than the ionization energy of the atom.

The atomic electron does not gain sufficient énergy to be ionized, an exci-
tation is considered to have occurred, and the excitation slowing-past kernel
is given by:

for E'-E > U Kex(E',E) =0 (I1-12)

forUiE'E>U ;

N.re? | 1 1 2 =\
K,y (B',E) = =2 { e oY e " mau3E [———
ex ) E, E'-E U E E+V 3 "2 (E'-E)2
-_L _ \ _ | -— @“‘ Ln [U(Efu)
Uz B (et ] (E'+U) E' (E-E)
and for Ul > E'-E

oy Nete? (_t-_\_)_ IR )
Kex (515 E) = Es v, U (E‘ £'+U-Y, E[U uL E"’-

A U
(s'+:)-u.y} ‘I) Rl (E;UU.U)H (L1-14)

(I1-13)
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. . . . " . L
where U, is the first excitation level energy and %' is defined in

1
Appendix D.

The secondary production kernel is defined as the probability per unit
track length that an electron with energy E' wili produce, through an

ionization collision, two electrons with cnergies both larger than E.

This is given by Appendix D as:

for . E'g 284U ; Ke(E\E)=0 (1I-15)
for .
E' > 28 +0
' N97r€¢ i l . ( zEz['l
k (el E) =" - — + — —
s € ) Ea Bty E'-E > L(g+u)

| _ 3" (E'-E
(E'—E)"] E'+ U L'\LE + U -3} (11-16)

When equation (II-4) is rewritten with the three slowing down past

kernels considered above, we obtain: ’

E..
€44 : t+4 ' ' J ' ' |
J K, (€, €) (e de' +S L(EE) BendE =St Ks(Eie) B(E") de
BtV ‘ Efu. 4 2E Y .
(I1-17)

where <& = E+U for 2E+VL g E and A= E-E if
2e+VU 2F, |

The form of K?&ﬂe)can stand some improvement. When experimental
excitation cross-sections are available E&QQcan be expressed exactly
according to the experimental results. We shall let }<ijELE3 be the
probability that an electron will slow down past E from E' per unit track

length due to an excitation collision which leaves the atomic electron




17

: ) ‘
in the jth excited state. Then the relation between Kex (Y E) and
PJecrs(E') , the total excitation cross-section at energy E' for_the

jth excitation level, is:

K;’g E\E) =0 for E'g U& - (1I-18)
“e‘(E:E): Ne G"\(E') “:of (E‘—_E) < U.) N E' > U:\ (11_19)
KQBK (E:E)::O ‘?wr (E“E)ZU:\ 4 (11-20)

wherg \)i = ka level excitation energy.

We are able to define Kai(E:E) in this simple‘manner because
a definite amount of energy is lost in an excitation collision. No such
relation exists, however, for ionization collisions so the experimental
total ionization cross-section cannot be utilized in this manner. With the
notation of ¥<Qé (e E) | equation (11—17) takes the form:

Exa E+4d

S KyCE, E)BCENDE + }:S Ko (ELE)R(ENAE =

€ ' - 3 E -
€. B | |

Se + S K CE\E) BCENJE' (11-21)
2E4+U .

For the case of helium, we shall include the~excitation levels with the
largest cross-sections in our calculations. Althéugh the experimental
observations are incomplete, especially for n = 2, we shall approximate
them with analytic expressions. We shall demonstrate that this is superior

to the one-level Gryzinski-type excitation model.

C. W-Value and Leakager

. The production of secondary electrons and the excitation of atoms occur
at an energy above the first excitation potential in neutral ground state-

noble gases. Thus the energy f£lux spccirum obtained through equation (I1-4)
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or equation (II-21) can be used to calculate the primary input energy
necessary to produce one ion-pair. This is best done through §(E€=U,)
the slowing dcwn past density (total # slowing down past energy E/time
volume), which is-as shown in Appendix E:

153 " .
g (E=V) = SU F(e")kw (EY, U))dE (11-23)

where K, (EU.) is defined as the number of electrons that appear with
energy below Ul per unit track length at energy E'. With this, the energy

necessary to produce an ion-pair, W, can be calculated as:

W = S\’E"/%(E =U) (1I-24)

The W-value found in this manner provides a convenient check with experi-
mental data since a number of such measurements have been rebortedt

Another aspect of the present problem is that leakage must be considered
if the system is finite, i.e. especially when the system is small and/or pressure
low. The inclusion of leakage losses with a spatially dependent source is ;
complex problem. We sh#ll assumetcylindrical geometry with uniform electron

productioa throughout the gas volume. Then if leakage is approximated by the

[12,13]

first fundamental mode as postulated by J. C. Guvot in his atomic

metastable density calculations, the spatial flux d(v,2) is given by:

dCv,2) = AT.( %) s (.Efz) (11-25)

where R and L are the radius and length of tube and the origin of the
co-ordinate system is at the center of the tube, and A is an normalization
which depends on the source gtrength.

The diffusion approximation of the particle transport equation
(Appendix F) gives a diffusion coefficient in terms of collision cross-sectioﬁs.

For thc high energiecs involved in slowing down, this diffusion coefficient
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should be used instead of the ambipolar diffusion coefficient. Then the leakage

term is approximated by:

-~ D(e)V* @(E.,E) = D_%) & (Ea, E) (11-26)

where J/\ is a characteristic length of the system. For a cylindrical tube,

within the fundamental mode approximation, A\ is ‘given by
2 (2.405\% _“_)7— .
A= R+ (T | o (11-27)
With this leakage term included, equation (II-21) becomes :

e : Et4

° . E{A .
g P’(_El CI?(EQIE‘) de' &+ g 'K1<E(, E) @(EQ,E.') +ZS K%x(E‘, E_)§(E,ﬁ>d&‘
¢ N | L , ) E
= Sp + S za\s(E}EYQECEMEWaF-' | |
‘ E+U - (11-28)

‘where the first term on the L.H.S. accounts for rate of leakage out of the

system by electrons with energy larger than E.

D. Computation and Results

1. Infinite Medium

The case when leakage can be neglected is considered first.
Following Fano and S encer[lé] equation (II-17) was solved numerically. The
L P , '

integrals are expanded by summations and equation (II-17) becomes:

k' ‘ R
ZZ Kl( E;,'E-n\ @CEk ,E;) wi AEL = SF+ Vg*\:S(EﬂaEV\)@(EhuE’)\”&QEL (11_29)
J i=n =2n

where W; sy Wgq are weights of numerical integration, 1= U/aE gives the

number of intervals in the ionization potentiai, and the index j denotes the
. ‘ .

jth type of slowing dewn process. The quantity R is equal to 2n+1T

if 2n+l <k

, or ecqual to k if antlzk , I.EO being the maximum d-ray
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energy. For an+l 2% the last term on the right hand side of équation (I1-29)
vanishes. Equation (II-29) 1is solved step-wise on a computer from n = k
down. For a general n , &(E,Ed) is given by:

:

R K
L+ K.s(E ,En)§ E.,E W, aE, — K'(Ei E,\}@(E )E W; AE; |
$(e, k)= [ g‘;«: s (Bu,Eg)Wgafy 2‘_—'-?:—"_‘) J & !.)A ]

Z')_ K\\ (En, En)\)\],\AEn

(II-30)

The flux density distribution of equation (II.30) has been solved using
several different models of cross—seétioné in helium. These cross sections
are illustrated in %he following figures and table. Figure (6) comﬁéfes the
total ionization cross-section obtained through the integration of Vrien's
differential cross-section (binary collision theory) wiﬁh experimental
observation. A semi-empirical '"modified" Vriens-cross-section is aiso shown
which uses multiplicative fitting parameters to match the experimental
results.

For excitation losses, since we can utilize the total experimental
cross—séctions, empirical formulas ére used to fit the experimental data.
.Table (II-1) and Figures (7-10) illustrate some of the excitation cross-
sectional values we used. We have only inciuded the six largest excitation
cross-sections as the others will give comparatively little contributipn.
_When experimental measurements are not available; we have resorted to a
Bethe-Born type approximation[so’Sl].

Figure (II-11) compares the electron flux density spectrum for a unit
primary electron source at 500 eV obtained by using a one excitation level
model with that obtained using the excitation cross-sections .of Table (II-;).
The general shape of distribution is similar to those obtained by Miller[17]

for A-radiation in water, und it 1s also in general agreement with Monte-
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Table II-1.

Fitted Pxcitation Cross-Section for Helium

Excited State
238

2°s

2°p

2°p

3°S

3°p

Cross-section (AO)2 Energy Range (eV)

0.0306(E-19.8)

75 +(E-19.8)Z+ 0.0086 Above 19.7
3.5 0.0317
E']‘g [0.0455 - ——“ET] Above 20.6
0'0114(5"20'8)2+ 0.0032 Above 21.2
0.25 +(E-20.8)
2.5 E 0.0376
ER O 0.085+0.177 an 7 E/R Above 21.5
[9.6E - 224] x 107% 22.6-35
[-4.66E + 273] x 10°% 35 - 65
[2 x 10'4] Above 65
[3.4E - 78] x 1074 - 22.8 - 37
[-0.45E + 64.8] x 1077 37 - 70
[-0.112E + 40.8] x 1074 70 - 207
[-0.0208E + 22.17] x 1074 207 - 1000
[6E - 100] x 107% 23.3 - 65
[1.1E + 200] x 107% 65 - 100

4 Above 100

[-0.433E + 373.3] x 10~

22

Reference for

Data Used

in Fit
[34],[35]
[30],[31]

[36]

[30],[31]

[33]

[33]

[33]
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Carlo calculation by B. Wang[ls]. The rise of the flux density after about

150 eV is entirely due to the creation and slowing down of the secondary

electrons, W-values have been calculated from these distributions using

the slowing-past kernel Kw(E;U) developed in Appendix E. The W-value

obtained from the distribution from the experimental excitation cross-section

is 43.5 eV per ion pair and the one obtained from the one excitation level

ﬁodel is 49.1 eV/ion pair. This compares with the experimental value of Jesse

and Sadanskis of 42.3 eV/ion. pair [ Sn. This demonstrates thaf the one

_ excitation.level model , which is admittedly crude, tends to overestimate

the amount of excitation. .
Figures 12 and 13 show the flux density distributions for a 1 Kev and

a 250 eV primary electron source. As indicated in table (II-2), the W-value

from 250 to 1000 eV varies less than 10%. This vérifics experimental indi-

cations that the W-values are essentially energy independent over this

[38}. Furthermore, since the ratio of excitation cross-section to

range
ionization cross-section is independent‘of pressure, the W-value will be
pressure independent in this model.

Figure 14 compares the Tresults obtained usiné the binary collision theory
cross-section (Vriens) with those for the modified Vriens or semi-empirical
fitted cross-section for a primary source energy of 1 keV. Figure 15
compares the above two cases together with a one excitation level model case
forAa source energy of 500 eV,

The curves for the two models shown in Figures 14 and 15 are reasonably
consistent, although some discrepancies are noted. Some further feeling for
the agreement of the two can be obtained by calculating W-values from these

distributions. The W-valucs are listed in Table II-2. Both results are

close to the cxperimental vulue and are essentially independent of energy.
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Table II-2. W-Values for Electrons in Helium®

Primary energy Calculated W-value, eV/ion pair Semi-empirical cross-

(eV) Vrien's cross section . section
T 1,000 41 @e.nPb 44

500 43.5 | s

250 “ 44.5 o . 45

%The average W-value over thls energy range as measured by
Jesse and Sadankis is 42.3 eV/pr [37]

" bW-value calculated with ;he one excitation level model.

Table II-3. W-Values for Various Noble Gas’esC

W-value, eV/ion pair

- Gas Ionization Energy '~ 1st Exc1tat10n7Eneray Calculated Experiment[37]
(eV) (eV) L .
He 24.47 19.7 49.1 42.3
Ne . 21 - 15.7 42.9 " 36.6
A 15 . 1.2 35.6 26.4
Kr 13.99 10.0 | 31.2 24.1
Xe 1213 9.0 ' 25.6 - 22

cPrimary-electron energy of 1 keV

done excitation level model
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el Thus it can be concluded that either cross section model can be used with
reasonable confidence. Iﬁ coﬁtrast, as observed earlief, W—values for the
sim?Ie-one~1¢ve1-mode1 are considerably higher thﬁn the experimenpal values,
Figure 16 shows the electron flux density distribution for threé initial
energies: 1‘k¢v,'o.5 keV, and 0.25 keV. These curves'wefe obtained by using
the six excitation cross-sections and semi-empirical form of the binary
-encounter ¢Qilision cross-section. As expected the shapes of tﬁe curves
are similar buﬁ shifted in proportion to the:soufée energieé,
As streésed earlier, we view the W-value as a means of checking the -
Vaiidity of the flux'distribution calculation. 'As a matter of interest,
this has been extended to noble gases othef than helium. Since excitation

'crossfsectiohs are incomplete, the one-excitation level model and the

: Cryzinski energy loss cross-secfion§'have been used in all cases. .Table
(I1I-3) compares the results with experimenfal measurements. Since, as
demonstrated earlier for hélid;,-fhekghéilevel"mddel is somewhat inaccurate,

’tﬁg results are only expected to diséiay trendg.' Indeed the calculated

- W-values ére consistently high, but thg rough agreement for this variety
of gases gives confidence to the present treatment.
| Figure 17 compares the present calculation for a 1000 eV primary elec-
tron distribution with séme normalized results from a Monte Carlo simula-

" tion [15].

The Monte Carlo technique may be regarded as a mathematical
experiment and the result is presented as points in Figure 17, The -general
agreement in shape is encouraging, and the discrepancies are thought to be

due to the rather simplified cross-sections employed in the Monte Carlo

[si, -

code
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2. Inclusion of ‘Leakage

For finite media where leakagé effects must be. included, equation
(I1-28) is employed rather than equation (II-i?). The numerical integrétion
is similar however. In this case the total elastic cross-section is re-

quired and it is estimated using the first Born Approximation. As derived

from Appendig C starting from the result presented by Mott and Massey[39]’
we obtain:
- agkd
Q. =  4eseTnEmget (X L g X 23kY)
° B
. 3}\47\1()\1_4_4{\1)3 (I'I-.Sl)

.where h=meue /% , 7\-_-' 22/6s ond O, = Bohr Radius. Values of this.
cross-section and some experimentél.meaéurements_are compared in Figure 18
for energies-above 10 eV. Thed for a.cylindrical system of radius 1.27 cm
and length 122 cm, /AN is estimated to be 3.6 cm-2 [13]. Forkthis dimen-
sion Fiéurg 19 compares the flux 'distributions obtained with leékage té that
for an infinite medium with a 500 év primary electron ana 2 torr pressure.
Figure 20 Shows the case fof a pressure of 4 torr. Comparing Figures 19
and 20 one sees that witﬁ ianeased pressure a finite system'approaches_one
. where leakage can bé neglected. This is because at higher pfessures electrons
suffer more collisions before they can leak out of the‘system.
Figure 21 shows results for a primary electron energy of 800 eV casc -
and a pressure of 2 torr. Comparison of Figures 19 and 21 shows that the
diffusioﬁ ioss is more significant for a higher energy.primary sour;el The
physical reason is that the higher energy electrons and their sécondaries
have a better chance of leaking ouf of the system. Thus for higher energy
primarieé one must be concerned about the leakage up to a higher pressﬁre.
Changing |/A* is equivalent to changing the size of the system.

Figure 22 shows results for thrce values of Y. for the case of Eo = 800 eV
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'at 4 torr. A decrease in physical dimensions increases the leakage and

shifts the flux to lower energies. The cases of YA = 0, 3.6 and 7.2 cm”?

correspond to the infinite medium, a tube radius of 1.27 cm and a tuBe
- radius of 0.8é cm, respectively. | |

These results are to be compared with that of Figure 23 for the case
of 250 eV primary electron energy. (The gas'pressurg iA<Figuré 23 is 2 torr
'.be;ause curves for higher préssures woqld overlap the infinite medium case.)
& cbmpariscn of Figures 22 and 23_shows'that the change of size of system
" has less effect on the energy spectrum in the casé of a lower primary elec-
tron energy. Another observation i§ that the'leakage term has.a cumulétive
effect and the percentage deviation between the infinite and fiﬂite media
éases becomes mee significént at lowér'energies. For ingtance, for the
250 eV primary electron case; at 125 eV the difference between V}f =0

) N o . _

and Y2 = 3.6 ci % is about 22% while at 50 eV the difference is about 30%.
_This is becauge the populatién{is progressively reduced as electrons leak

out of the system during the slowing process.
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‘CHAPTER III

THE ELECTRON ENERGY DISTRIBUTION BELOW THE FIRST

.. . . EXCITATION POTENTIAL ENERGY OF HELIUM

A. A Model for Thermalization in Helium

In a weakly ionized plasma, one can expect to neglect electron-electron
and electron-ion interactions during thermalization. The validity of this

assumption will be examined later in this chapter for the specific physical.

 situations of interest. In conventional gaseous discharges, electron-

electron interactions are thought to play an important.role in bringing the

energy distribution closer to a Maxwellian. Howevef, in the present case,

it will be shown that the absence of'an electric field allows the distribution
to collapse into a nearly Maxwellian form.

Due to the absepce of ionization and excitation collisions, below the

P e s < eem e n e

first excitation emergy, the electrons in an energy interval are populated

mainly by elastic collisions and dépopuléted by recombination with ions, -
leakage and scattering out of that energy interval. The steady state equation
taking into account of these processes is:

-DEYV &(R) + X (EYE(E) = SZs(a‘es)é(&').AE'—ZS(E@(E) (I11-1)

hhere D(E) = diffusion coefficient
'¢(E) = electron flux distribution
. 'Zr(E) =.macroscopic eiectron—ion recombpination in cross-séction
‘ ZS(E) = total macroscopic scattering cmoss-section
Zs(E' -+ E) = macroscop;c scattering cross-section of going into
interval at E from E'.
S(E) = direct electron source from higth energy inelastic

scattering.




In equation CIII;i), the diffusioﬁ.approximatioﬁ notation has been used
(seé'Appendi; Dj. - Because of the small amount of eneréy less per elastic
-collision it is difficult to solve equation (III-1) by numerical integration
‘techniques as was done in the high energy region. JInstead, one can make use

of the fact that energy loss per collision is small and expand -¢(E) in

moments of (E'-E). This procedure is similar to the "héavy'gas model”[43]

in neutron thermalization. It should be noted that the assumption of small
energy.léss per collision breaké down when'electron-électron'or electron-ion
collisions beCohe significant. This modeluis,.thérefqre; valid only in- a weak-
ly ionized plasma.

In the absence of leakage and recombination, the principle of detail

447 - : .
balance[ 1 shows that ¢(E) = M(E), where M(E) is a Maxwellian distribution.

Thus for the case where there is recombination and Jeakage, it is convenient
: . ) _ ’ '
= - ~—to define ¢(E) as M(E)y(E) and solve for the correction factor y(E). With

this substitution equation (III-1} becomes:

(I11-2)

DENW Y EM ) + LEWEME) = SZS(E'—v'E) WEIME)dE' - L@ EME)

Normalization is such ﬁhat | S”§<E)JE = he ’ where n, is the‘total primary
énd secondary eleétrqn density.° Electrons are assumed to be born at higher
ST eﬁergies so eiecfrdns enter the low enérgy region by slowing and an explicit
source is not included in (III-2).If a low enefgy source term were included,
e@uation (III-2) would be inhomdgéneous. However, the solution for the
inhomogeneous case can be obtained from the solutioms of the present homo-
‘geneousrequation by the method of variation of para@eters-as shown in
Appendix G. |

Applying the principle of detail balance to the Maxwellian factor of

the distribution, we obtain:
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E'e /sz( ey =EE /HZ,(E—aE') . a11-3)

The integral on the R.H.S. of equation (III-2) becomes:

(Z(C‘—vFW(E)M(EME M(E\{Z(E—aE)ME)AE' (I11-4)
vand substitution back into equatlon (I11-2) gives: -

r o3

SDEYPCE) + TABYY(E) = S:(Eez')\p(eme -2 ()Y (e) "(m-s)

Expandlng w(E') around E' = E in the integral of equation (III -5) by a

Taylor series, one obtains:

oAy
W = ,]..—‘,%\‘ %—g‘@ (e-gY (I11-6)

With this expansien, the integral on the R.H.S. of equation (III-5) becomes :

SFES(E"E‘)W(EU&EI = X'ZS(E—?E'E o+ z AER Z (E){\Eq’:‘(E) (n(‘.)

= (111-7)

3,(e)

where,  AE" = L gZ(E—aE')(E ~-EY" dE'

. The assumption next used is that the energy loss due to elastic scattering
between electrons and neutral atoms is small. This is reasonable despite a
"~ large scattering cross section due to the large mass difference. The

energy E' is therefore close to energy E.
m : .
For u = HS << 1, where M is the mass of gas atom and'me is the mass of

electron and assuming isotropic scattering, the maments of AE are given by

AE' = 2 (2T-E) +6(H‘)
A =4uKe  + OO
and }‘.T P

aer < OGN for 033 - (111-8)

[43

]Z




45

where T is the gas temperature.
In the case of elastic colliéions between electrons and neutral atoms, the
" terms with order lafger than‘uzhare not retained, and eqﬁation (I11-7)
becomgs: |

o

LZS(E-vE‘)“P(E')éE' = Z(EYY(E) +1‘5(_E)[z/u(sz‘—' BY] ‘}I—Eiy(e)

. |
o+ .ZS(E)[4)AE\°~\] %E;Pce). ' (111-9)

Also equation (III-5) becomes:

DETYE) = -3, EVE) + 5 56 [(ikT-E)%_: Pee) + E‘QT%—I-EI‘*’ &) (111-10)

Changing the notation back to ¢(E), where ¢(E) = ¢(E)M(E), Appendix H

shows that equation (III—lO)'can be written as:

-me)v"‘ﬁe) + L2 = Fzel 36 + & & 3C) J,tgq & 3]

(III-11)

To proceed in solving equation (III;ll), we must assign specific forms
to fhe cross-sections andfthe diffusion coefficient. 1In thg case of helium;
the elastic scattefing cross-section is reasonably constant in this low
energy range[4s]. If we assume a cons£ant recombination coefficient over the
thermal range, the recombination collision cross-section iS“=(1/V€10CitY), i.e.
i/u. Althbugh a weakly ionized gas is assumed throughout this development,
for thelloﬁ energy portion, it can be assumed that diffusion leakége is
governed by the ambipolar diffusion.coefficient.

One must be cautious fhat somelof these assﬁmptions may not be entirely
valid in certéin pressure ranges or if the model is applied to gases other

than helium. Also, as examined in detail in later sections, the degree of
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ionization must be below a certain critical value for equation (III-11) to
be valid. Howe&er, in general,.when electron'neutfal_atom'scattering
 dominates, and when the moments of averaged energy losslcan be cut-off at
n = 2, equation (III-11) is accﬁrate. This equation can be applied to gases
other than helium by use of approplate cross-sections and coefficients. - If
g an analytic solution cannot be found, equation (III 11) can still be solved
numerically. This is not necessafy for helium, however, since with some
simplifying assumptions, an analytic solution is possible. While the assump-
tien may lead to some inaccuracy,.this teehﬂidue is preferred since consider-

able physical insight is obtained.

B. Series Solution of the Thermalization.Equation

With the aSsumptions that the total elastic scattering cross-section
is a constant and that the recombination cross-section is an inverse function

of the velocity, as shown in Appendix H, equation (III-11) becomes:

g ~0-291% @(‘5’* 4y g4 ﬂzﬁ@s\* G
where
Y= [
A= Zr(\‘tT) N
| 3%
and - = Do
. 3IZs

Here Da is the ambipolar diffusion coefficient, and A is the characteristic
first fundamental mode diffusion length defined in Appendix F. Equation

(III-12) is solved by expanding ¢(y) in polynomiéls of y, i.e.;-

B = \5‘ e s
where, ' N (111-13)

Sm) = Z Aglj
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The Maxwellian distribution is used as a multiplier because for g = A = 0,

4 -

i.e, no leakage and absorption, the solution of equation {(IIi-12) is a

" Maxwellian as expected. Appendix (H) gives the.coefficients of the series

S(y) to be:
o~ 4‘/l'ﬁ
A, = Ahe/3
and :
Q-2+ 3,_ A al\, :
| Ay = m L)[z( ) Ay + 8Ren ] (111-14)

Appendix (H)'gives the first four.coefficients to illustrate the form of Az.
It is noted that terﬁs with higher orders. of A and g apﬁears later in the
series. The assumpticn of weak absorption and leakage is not a necessary
one for the series to converge. However, for the physical cases considered,
g and A are much.less than one. In these cases, one can expand S(y) in &
and g and retain the terms of first few orders in g and A. .The series S(y)

for keeping terms up to second order in g and A is:

Stu) = A, |A(>+Au<) (W) + )+ 9aX
! Civapcy W+ gy EMHNH d1i1s)

- The series pl(y), PZ(Y)"ll(Y)’ qz(y) and X(y) rapidly converge for y < 5

and they have been derived in Appendix (H). The final form of ¢(y) is given

as:

= Tyt -y oo !!1".""
SU-S\ Aol& € [ _ L+ A Z:—; (‘Lhﬂ)r'(’\."s/‘-)*

n=y \

O o an ‘= .
» Y (kR+t) ! = u
4 nin+1) &go (zkﬂ)["(n«—s'/:.A N % [g L"‘("“‘\& ]+

lI‘N }]
ln-\

(I1I-16)

XZ [d,+ Gl w ™ + d4\5“\+zs3{%(§¢

nz

'\'ll
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‘ 1 _\ n-\
. where, ‘:o— /3 ’ bm -'.\)z(n-\\ nin4r)

zCan)

d4 = ‘/4'6-? 9 dl('\f\) = dl'\ .(lnfl)(ln+4) 5

C4 - \;4 /4% s .Cz(mn = Cz,\/(zn+7_)(2nf4) ,_'

2(zn-0)
e, =1 3 SN Cin-y Cznn)(2n+3)

C. Range of Validity

Electron self interactiéns éna electron;ioﬁ interactions have been
.neglected in ﬁhe present calculatiohs; This is valid for a weakly ionized
~ gas, and the purpose of the present calgulation is to examine the maximum
‘degree of ionization allowable. To do this relaxation times are considered
to obtain a first estimate of the limit. The ratio of the electron-=ion
relaxatiop time Tei and the électrgnQelectroﬁ relaxation time Tee for singly
- charged ions is approximately: Tée/rei %:1/2 /5'[46]. It is sufficient,
therefore, to cgmpare Tee with Te;’ the electron—neutral»relaxation timé.

" . The former is given by [47].

3
as3 [5 €2 md* (hT)_ 2

= ‘ o
Tee e4fe In N (I1II-17)
: 2T (€, RT/ Q)3
where A= - ‘ nYz
. e
and t__ is given by [(48]: . )
Ton =~ S R (II1I-18)

} UeNan ..
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- where Qm is the momentum transfer cross-section, Ue is the speed of electyon,

ay 2 - P P
N 1> tLilc
n

o
)—I
(a4
<
[
oL
Y
-t

- results, we obtain figure 24 which shows the fractional ionization when the

two relaxation times are equal. For this calculation, the momentum transfer

[45]

, and since ¢n A is insensitive
' [47]

cross sections were taken from 0'Malley

. to electron density or energy, approximate values for it from Spitzer
4 .

were used. Holt and Hasskel[ 8] have used a similar curve to define a

-4 for the fractional

Weakly ionized plasma. They show a critical value of 10
ionization of helium at one torr and'SOOOK. There, they considered only. the
directional relaxation. When the mass ratio is added to account for the
energy relaxation, figure (24) is found to be in good agreement.

It is noted from figure 24 that as the energy increases, the fractibnal
ionization limit is not quite so stringent. At low energies, the chargéd—
particle self-interaction tends to enhance thermalization into a Maxwellian
fqrm.. Therefore, if the distribution obtained without the inclusion df
charged-particle self-interaction is already close to a Maxwellian fofm in
an energy fegion below a few kT, the fractional ionization restriction need
ndf be‘extended to‘this region,- |

.For electrons above about 0.5 eV, comparison of the Tee = Tep CUTVE
with figure (G-4) of Appendix G shows that with a tube radius of 1.27 cm
‘and gas pressure of.one torf, charged-particle self-intéracti&n becomes
important for a neutron flux above ~ 5 x 1013 cm-2 sec'l. For gas pressures

higher than 20 torr, the fractional ionization limit decreases and the

neutron flux limit can be raised.

- l - -
D. Numerical Results and Discussion

The choice of some of the parameters requircd for evaluation of
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equation (III-16) is not definite, partly due to uncertainties in experi-

| R Neaee a1l
vservations, ol nciriut a

3

e e A

mental o um at low

ow encrgies,

- cient is taken as 4 x IOf9 cm 1 [49]

[50]

-sec , the ion diffusion coefficient

as D; p = 840 cmz-torr/sec

17.6 x.10-16 cn? [45].

and the elastic scattering‘cross-section as
'With tHese'parameters, Figufes,zsland’é6 show the
normalized electron distributién for threeApressures.”7The normalization
. : © : - € . .
is such that; l f(y) dy = 1, where y = jE; . Tﬁe.1on density for a
given neutron flux and pressure condition is first calculated through the
 procedure of Aﬁpendix G. The resultant leakage and recombination rates
. were then used as paraﬁetric inputs to equation (III-16).
A dewellian disfributioﬁ is included for reference. It is observed
that the distributions shift to a higﬁer eﬁergy tail at lower pressufes.
~This is because that at low pressures, electrons are mére likely to leak out
" “of the system before they can reach lower energies. .At higher pressures,
the eniergy deposition rate of the heavy-charged particlés‘increases, resulting
| in higher ion densities. However, the'neutral.atom density also increases
0_.causing more electron-neutral scattering which reduces leakagé. As a result
the distribution épproaches a Maxwellian férm."The shape of the distribution,
not much deviated from a Maxwellian, has also been confirmed‘by the Monte
Carlo simulation of B. Wang and G. Miley[ls].

Figures (27) aﬁd (28) show cases wheré the tube size has been increased
to a radius doubling Az. Then, for the same neutron flux, the distributions
for the three different pressures lie much closer togethef. This is attri-

_“wbhgéd to the fact that the energy deposition rate by heavy—cha;ged particles
is essentially independent of the tube size but leakage has been'greatly

teduced by the larger tube.size.

Figure (29) shows an extreme case of changing the tube size at a low
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pressure of 0.2 torr: In-this:;ase the. shift to a-ﬁigher energy'is signi-
ficant when the tube radius is cut in half. Again, this shift is due to
the féilure of electrons to reach lerr energies as leakage increases.

A more extreme caée of neutron flu* of 5 x 1014 cm~“2 sec-1 is shown
in Figure (30). In this case, charged-particle self—iﬁteraction neglected
in the present treatment, should be ‘included. However, this figure is
included to illustrate the dramatic shiftvin the distribution for a high
heavy -charged particle energy-deposition rate. The peak§ shift to about
1.4 to.2 kT. This is more pronounced in the case of low pressure of 0.2 torr
where the leakage rate is lafger. Reducing the pressure shifts the distri4
bution in a mahnef similar to that which 6ccurs as the tube diémeter is
reduced.' However, thé distribution’is‘not a unique function of dp (diameter
pressure). This is becaﬁse, although the leakage term has this form, the
other terms such as recombinations do not have such a dependency.

Figure (31) shows the joining of the low energy portion of the distri-
bution with the high-energy bortion'developed in Chapter II. The flux
distribution in the higher éne;gy region is an inverse function of pressure,
as can be observed from‘equation (II-IO) or from the stopping-power approxi-
m;tion of Appendix A. For the energy range 5 kT to 20 eV, a recombination
cross sgction[SI] of E73/2 has beén used. The collision density, Z(E)%(E)
cm ~ sec ,‘iS a continuous function, but abrupt changes in cross section
can result in a discontinuity of @(E). Such an effect is observed at 20 eV
due to the abrupt charge in cross sections used in the two energy regions.

B ~
Similar discontinuities also appear in other studies[s‘]

and they can be
eliminated entirely by use of a finer energy division in the numerical

computation or by adopting smoothed cross sections.




N (VEZKT)
Ne

Normalized Distribution

JE/KT

0.9 7 E— O A A B T
& =5 x10" emisec’
Rad, of Tube = 1,27 ¢m
0.8'—- ’ -9
o7}l — - J
P =0.8 torr
0.6 p— ’ St ﬁ
-P=0.4 torr
P=0.2 torr
0.5— } -
0.4}— .
0.3}— -
0.2 -
O p— ]
) } il N
0.1 0.2 04 .06 08 i e 3

Figure 30. Coxparison of Electron Energy Distributions for Pressures of

0.2, 0.4 and 0.8 Torr With a Neutron Flux of Sx1014cm-

2

-S€C

-1

58




s ; :
0%~ : 7 I 7
" E4 =1000 eV, S, =5 x10¥em® -sec
‘ P = 10torr  Gas Temp. = 1000°K
oTl— ~————-Calculated Distritution  —
‘w=aemeNaxwellion Distribution
10°% —
Y
5 °
[+
A
‘o
(34
(2]
I
E 10—
&
>
x
(72}
[
o
03—
»
3
w
O
Q
N _
o 10—
E
| 3
(=]
2
10 p—
i =
102 10 ' -0 10?

Energy (eV)

Figure 31. Comparison of Maxwellian and Calculated Distributions f
a 1-KeV Source

108

or

59




60

CHAPTER IV

The total energy distribution of electrons due to an external source
superimpeséd on a plasma with an applied direct current electri field will
be considered. A uniform field, E, is assumed and spatial. effects due to
finite geometfy and ieakage are not included. The uniform field is often
géod in the positive column of a dischafge tube, but it will not be appli-
cable in other regions such a§ the cathode fall or the sheaths near the
electrodes while the field is changing rapidly. Nor will it be applicable
.to some electrode configurations where thé field strength varies fapdily
throughout the system, like.phe case where a center wire of a tube is used
as orie of the electrodes. |

In moderate to low E/p cases,'whiéh shali be assumed, the electrons
above the ionization energy of the gas atoms are not influenced by the field
as they slow down.' In particular, Appéndix‘I demonstrates that for E/p less
than 10 V—cm-l-mmfl; the energy gained from the field can be neglected com-
paring with the energy loss via inelastic collisions. This is the largest
field considered here and is a reasonable upper limit for other reasons also.
Most of the applications of interest (see Chapter I) involve smaller fields.
Aléo the assumption of a weakly ionized plasma'places a similar limitation
on the field strength, since higher E/p values, like larger external source
strengths, would result in additional ionization and too large a fractional
ionization. Finally, leakage is neglected here, and as shown in previous
chapters, this is consistent with either large systems or high pressures,

and the latter implies smaller E/p values.
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" With this restriction on E/p, the electron distributions deveioped in
Chapter II, for high energy or slowing down region, is therefofe applicable
here. In the lower energy region, i.e. below excitation potential of the

.gas atoms, the energy gained from thé field becomes comparable to the electron
energy. Thus:a new treatment of the distribution is required for this region.
In doing thié the electron source dﬁe to slowing down from the high energy

portion and the sink due to recombination will be included.

B. Balance Equation for the Low Energy Region

The steady-state Boltzmann Equation with a d.c. elastic field corres-

ponding to Equation (II-1) is:

R - Eovafeh = (), av-1)

53 '
Following Allls[ ], the dlstrlbutlon function is expanded in spherical

harmonics. Retaining the first two terms of the expansion, we obtain:

f(F,0) = £,(7,8) + FT(¥8)- 0/u (v-2)
where, 4-11{;(*,(1‘) = S{('ﬂﬁ\dg .
| HEE O = (sEa)dan
Substituting equation (IV-2) into equation (IV-1), one arrives at two
coupled equationslss]:
u v;' f @y - Q—%- %K'u‘f‘ Fu) = (sgi‘, Dy (1V-3)

(IV-4)

8f,

h A
where (%{ L\) (-? efadic (St mel.o‘dtc Y

350 _tme k\' 4 |
( _ﬁ)ebs‘hg T Mem, d(u‘) [U3 v (-F = d(u’-)ayl
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= the net rate of influx of electrons due to elastic collisions in

the velocity element d’u

%{o :
St)inelastic = the net rate of production (loss) due to inelastic

collisions in the veloci‘ty element dSI;

3 . . A . =
(a\i_‘ )C = rate of momentum influx into the velocity element d3u

T

gas temperature

and Ve momentum transfer collision frequency.
If the first-fundamental-mode diffusion approximation and uniform spatial
properties are assumed, f(?,a) becomes spatially independent. Then, combining

equations (IV-3) and (IV-4), we obtain a second 6rder differential equation

for fo ) :
: W o4 -
~s + (P + = Q :
-3 ( ~ 31\*%3{* * e o . (IV-5)
where S = total source rate from primary §-electrons and ionized secon-

daries into the velocity element dst_f.
v.= recombination frequency
characteristic length of the system from diffusion approximation
— & >y 1 d ¢ 3 m
32 C(}'Acmud“o“‘ M*mﬂg’o)

with u = eE)"__L |

c — 2
me / !

-
1

(3]
n

and

Omitting the source and neglecting spatial losses and recombination
z
while assuming ["‘/(wwM)] KT « (&%) /’1):' , NighamIS] 'solved equation

. . (5) numerically for N,, CO and C_O2 gases. However, for present purposes, a

2)
formal expression for fo can be. obtained from equation (IV-5), (see Appendix J),
as:

u

'F(\n = axp - B(w] [(,bn,c;f‘,. +$ 2P [aculs'(u) du'
) _ : . , A(uh)

(Iv-6)
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u
where B(u\ = g M)\(Q/ AC()‘l dc ,

ACy = ¥* CKCc) 4+ mhc3
MAC<) ’

)
S'(u') = Su (Vaf°cay —o(Cc)]c.’- dc
°
A(c) = C‘/\)ccq =~ mean free path
a(c) = electron production rate in'vélocity element dSG
and F2 - (g.s_)z |
m
.The assumptions of (m+M) = M and no leakage losses have-been made .,
Equation (IV-6) can be solved by a simple numerical integration provided
that an appfoximate form of fo(u) can be .obtained for the calculation of
S'(u'). The case without external eleétron sources or recombination hés

[55]’[56]. Their results

been solved by Druyvestyen[ 2], Smit[54] and others:
‘have been ‘used as -the -initial esfimate of fo(ﬁ),:and a corrected form of
£f%(u) is obtained for the present case of interest where a source and sink are
present.

This‘procedure was used in préference to the direct numérical solution
of equation (IV-5) for two reasons. First, a Monte Carlo simulation for the
case with an electric field shows that the distribution is rather close to
that of Smit[54]. Second, the nﬁmerical solution of equation (IV-5), such

as used by Nigham, is also a first order approximation since a two-term expan-

sion of f(r,u) was used but eventually only the first term was calculated.

C. Numerical Results and Discussion

The uncorrected f(u) for no source or recombination, similar to that
- 2
discussed by Deuyvesteyn[ “],was used to estimate the rate of recombination

o , . eV m
and rate of ionization. With the assumption that (5%;) N> > ,v\¥ff ’
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”

f(u) becomes a function of €E AC<) or E/p. Following the work of
o [54] N, |
Smit* . -, A{c) is assumed to be a constant
while from 5 to 19.8 eV,lk(c) ;shaésuqu“to be proportional to c¢. From 19.8
to 24.7 eV, Smit has obtained f(u) represehted in Bessel functions.
Druywesteyn ét al[ 2] show that these Bessel functions can be approximated by
an exponential function and this simpler form for f(u) has been used from 19.8
to 24.7 ev.

The total electron density N, is first estimated by substituting the uncor-

rected form of the distribution into the apprdpiate rate equation, namely:

o0
T _ R
pre - P/w negu;(E/P,a)cn(a)aa o (1V-7)
-where B = recombination coefficient

p = rate of energy deposition by heavy-charged particles

W = energy required to create an ion pair

f(E/p,e)de = normalized distribution in energy interval dE at ¢

oi(E) = ionization cross section from Vriens.

Thelfirst term of equation (IV-7) represents the total rate of recombination
sink Sk’ aﬁd the last two terms represent the tétal rate of electron pro--
duction S. To compute the differential source rate a(u)du, we use the

-differential energy loss cross-section o(AE) of Stabler[zs] such that:

4T U = o (E)dE = SS00dX O ves)
where x = AE-u, and the normalization is such that :
S SO =S | (1V-9)
) ’ '

For computation of the differential recombination rate, the uncorrected

form of f(u) is again used. Equation (IV-6) has been evaluated with these

sink and source rates to obtain a first order correction to the distribution,
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. Numerical values for the source were selected to represent typical ionization

rates due to heavy-charged particle energy deposition. Figure (32)'i11ustrates

.the distriputions for a neutron flux of 5 x lolscm-lsec-1 in E/p = .3, 4, 6 and

’ . 25 .

8 V-cn l-nm™l. ‘The nomalization is such that Sn(E)dE = 1. The population over
A .

25 eV is_considered to be negligible in this normalization. Figure (33) illus-
trates the distributions fér'the éémehE/p values with a neutron flux of 5 x 1614
cm_zsec-l. The,deviation from an uncorrected Druyvesteyn-type distributioﬁ is
largest when the neutron flux is high and E/p is low. Two such cases are compar-
ed with the unperturbed distributions in Figure (34).  In general, the perturba-
tibné are not too large .and the use of unperturbed distributions in the source
and sink integrals is.justifiable.. This is especially true in the case of the
smalier neutron flux with E/p larger than 4 V—cmfl-mm-l.

The perturbation is examined more closely in Figure t34) whiéh compares
the.E/p = 3 and 4 V-—cm'l--mm-1 cases for no source or sink with the cases where
the neutron flux is 5 x 1014cm—25ec_1. It is seen that as E/p increases, the
deviation decreases. This is because in higher electric fields, the distribu-
tion is more dictated by the field than the electrons slowing'dbwn from highér
.energies. The ratio of electric field strength and the“sourcevstrength, then,
~determines the importance of the inclusion of sourcé and sink in the calculation.

fhe average velobity u can be computed fromvthe distribution obtained.
This random velocity is also proportional to the drift velocity[SI]. The
average electron flux'ﬁ'ne, therefore is proportional to the curfent dénsity.

A plot of the average flux vs. E/p is shown in Figure (35).. This has the same
characteristics as the V-I measurcments of Ganley[57]in the enhancement of CO2
lasers by nuclear radiati&hrexperiﬁent. Although an exact comparison cannot be

made due to the different gases involved; the trends in Figure-(SS) do agree

with the measurement in C02.
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13 1

It is concluded that for neutron flux of less than 5 x 10°° cm >-sec
| (- equivalent to a primary source of about 5 x 1014'1-keV electrons in
10-torr heiium) the distribution is close to fhat arrived at by Druyvestyen
or Smit. This has also been demonstrated by a Monte Carlo calculation[lsl
where only moderate deviations are observed only for primary electron (i keV)
source rates of 10%° cm-%—sec_; or above. It éhould bé noted, however, that
in the case of helium, excitation and ionization potentials are relatively
high. Larger perturbations can be expected in the cases such as molecular
gases, where lower energy levels are involved. For those cases where devia-
tions become severe, equation (IV-6) is not accurate unless a better estimate

of fp is available for the source and sink integrals. A numerical solution

of equation (IV-5) would then be necessary.
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CHAPTER V

CONCLUSIONS AND SUGGESTIONS FOR FUTURE EXTENSIONS

A. Summary of Present Work

1. General Remarks

The energy distribution of electrons in helium resulting from a
céntinuous high energy source has been analftically studied. The main
purpose of the study is to provide a method to analyse the problem. Within
éhe illustrated constrains, such as the degree of ionization; and with
appropriate changes in féaction rates, the method can be extended to cover
other gases or gas mixtures. A set of physical parameters, such as dimen-
sions of the system, gas pressures, and primary source rates were used to
illustrate numerical results of the analytic methods developed. These para-
meters were consistent with experiments of J. Guyot et a1P1%% studying noble
gas plasmas created by nuclear irradiations. Again, within the specified
constrains,rthese parameters can be changed to suit new situations as they
arise.

If analytic results are not feasible when neQ'parameters are infro-
duced, the basic equations of the present study are still valid and may be »
tackled on a purely numerical basis. As shall be detailed later, fhe present
work complements the Monte Carlo simulation of the problem and it may be of

advantage to incorporate both methods in a single program. However, some

of the specific results of the present analysis shall be pointed out first.

2. The Analysis of the Distribution in the High Energy Region

For energies above the excitation potential of helium, the inelastic
collisions were found to bt the dominate process in the slowing down of elec-
trons. The balance equation has bheen set up for this region with the approp-

riate slowing-past kernels calculated (equation II-28). These kernels were
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derived from energy-loss cross-sections. The solutions for the flux Ais-
tributions were numerically obtained from the balance equation. They are
critically dependent on the slowing-past kernels and therefqre accurate
cross-sections are necessary. The slowing-down past kernels and appropiate
limits déveloped here are uniquely suitable for this energy range accounting
for the secondary electrons.
The W-values in helium were calculated to check the validity of the
- fiux calculation and to determine the appropiate cross-sections to use;
Vriens' energy-loss cross-sections weré used. Emperical parameters were
intreduced to force the integral of these cross-sections to agree with ex-
perimental total ionization cross-sections. The W-value calculaticns alone
do not clearly.demonstrate the superiority of the fitted cross-sections but
they do indicate that when individual excitations were considered, the agree-
meat is better than the case when a one—eﬁ;itation level model was used. W-
values cal;uated for a 1-KeV primary source using the six largest excitation
cross-sections were 41 eV per ion pair using-fhe fittea Vriens cross-sections
This is to be compared with the W-value of 42.3 ev per ion pair measured by
Jesse et. al.[37]
The effect of leakage was included through a first-fundamental mcdel,
diffusion-approximation-leakage term. The effect of change of pressure and
system size is observed, and the shift in the distribution also cleaflﬂ
illustrates the effect of leakage (Figures 21—23). It is shown that the flux
depression due to leakage is more severe for higher energy primaries, for
smaller systeﬁs and for lcwer preésures. 7 )
These flux distributions cannot be obtained if only the thermalized

- -

. . 13 -3 -1 , . .
swarm is considered. For a source rate of 10 “cm “-sec ~, 1-KeV primzriess,
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the Maxwellian tail at 50 eV would underestimate the flux density presently
calculated at that energy by a factor below 10_4. If the approximation of

-

flux :fconst./4.§§-> were used, it would overestimate the flux density at
50 eV by a factor of more than 7. The flux distribution presently calculated

would therefore provide a much more accurate electron reaction rate than

other crude approximations.

3. The Distributions at the Lower Energy Region

For low energies, a model similar to the ”heavyvgas” model in ﬁeutron
physics was found to be applicabie. This model is uniquely suitable for the
presence of a high energy electron source. The fraction of ionization or the
primary source rate beyond which charged-particie coulomb interaction”cannot
be ignored has been determined through an aﬁalysis of relaxation times. For
é 1.27-cm radius boron-coated tube at 1 torr, this limit corresponds to a
neutron flux of 5 x 10 Scm “-sec!.

For the cases without an electric field, the distribution is found
to be close to a Maxwellian with deviations due to leakage aﬁd recombination.
A shift toAa higher average energy due_td the inability of higher energy
electrons to thermalize is noted. For the cases with an externally imposed
direct current electric field, it is found that the high-energy electrons
are not appreciably influenced by a moderate field of E/p £ 10. The low
energy distributions are close to the results of Druyvestyen when no external
sources are present. However, for a large primary electron source rate,

-2 - C .
-sec 1, deviations from the

. 14
corresponding to a neutron flux of 5 x 107" cm
Druyvestyen results can be observed. Finally, the enhancement of current
densities in the presence of a primary electron source are noted.

For cases both with and without the field, the model results in a

second order differential equation. Solutions were obtained by a series
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expansion and a perturbation approximation. Numerical solution of these
equations may be more appropriate in cases (for instance, in the presence
of molecular gases) where the algebra becomes too involved or when the
deviation from a Maxweliian or Druyvéstyen distribution becomes too large.

Many oftthe results obtained in the present study agree with a Monte

Carlo simulation reported by B. Wang, and these are pointed out more specifically

below.

4. Comparison With Monte Carlo Results

[32

The Monte Carlo simulation ] and the present work show the same

géneral shapes in the high energy region. In the presence of an electric
field, the Monte Carlo result show that for the case 6f E/p = 10 V-cm~1—mm—1,
the di;tribution in the high energy region is not influéncéd by the field.
-For the low energy region, the.distributions can be approximated by a
Maxwellian or for the cases with fields, by a Druyvestyen distribution.
Deviations from those were observed when the source rates aré extremely-high.

6 1

( >101 cm-s-sec_ , 1-keV electrons). These deviations have the same trend

as the deviations cf the present calculations relative to source rates, pressures.

5. Concluding Remarks on the Methods

Numerical results under various specific parametric conditions wére
c#lculated from the equations develbped for the entire energy range below
the source energy. W;value'comparisons and comparisons with a Monte Carlo
simulation show these specific results to be in good agreement. Comparisons

[58,59]

with temperature measurements by micro-wave techniques are not made

because in the presence of a high energy source, the thermalized condition
is not assumed. As indicated, the important high energy region is indeed
found to be highly non-Maxwellian. The agrecment of current enhancement in

. . . n7 .
the presence of a high energy source with Ganley‘s[ ] observations has been
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noted although no numerical comparisons were made because of the differences
in gases and reactions involved.

The basic equations are generally valid for other gases and physical
parameters; however, the accuracy of results depends heavily on the cross-
sections and kernels. For the high-energy region, equation (II-28) can be
qsed provided slowing-past kernels are derived accordingly from accurate
cross-sections. For the low-energy region, equations (IV-5) and (III-11)
account for the preseﬁce of source and sink for the cases with and without
an electric field superimpoéed respectively. These equations can be numerical-.
ly solved without any of the approximations used in the present analysis, i.e.
the series expansion used in solving equation (III-11) and thé perturbation
method used in solving equation (IV-5). In fact, these techniques_were success-
- ful in the present case partly due to the specific circumstances involved, such
as cross—séctions in hélium, pressure ranges, electric field strengths and

system sizes,.

B. . Future Extensions

It is suggested that future work should concentréte on applying the
nethods developed here nad in the diréct confirmation of their validity
through experimental obéervations. Some examples are:

1. The electron energy distributions can be calculated by the methods
developed for the ap?ropiate gas or gas mixtures. These distributions can
then be used to find electron reaction rates for a set of rate equations
describing the plasma kinetics. The emission spectrum from a certain excited
state, for instance, could then be measured to varify the calculated excited
state density. This provides an accurate check of the calculated electron

energy distribution.



2. The energy distributions alsé provide a starting point in several

he electron
.energy distributions can be used to determine possible inversion of excited
states by solving the rate equations described above. In a nuclear light-
bulb reactor, the appropriate distribution can be used to caiculate the
radiative emission.spectrum from the fuel région and from the buffer-gas
region. This sets up a critefion for the addition of seeded gases to prevent
harmful radiations from reéching the wall structure. However, for a compli-
cated situation such as the gaseous core reactor, Monte Carlo calculations

may be a valuable supplement to the present methods.

3. The present method can.be used to complement a Monte Carlo calculation.
Because of the small electron population in the high-energy region, in a Monte
Carlo simulation, a proper treatment of this region results in a relatively
large number of sample particles in the lower energy région. Weighting
factors may help, but the calculation may still be prohibitively expensive.

The present analytic method handles the high-energy region with good efficiency,
but inQolvés complicated expansions and approximations in the iow-energy

reéion. Thus there is a strong motivation to combine the methods. The

present method would be used to generate a distribution in the high energy
region while a Monte Carlo calculation would provide more accurate results

in the lower energy region.

The present calculational technique might also aid the Monte Carlo
calculation by providing an initial input. The convergence of a Monte Carlo
code depends on an estimated initial input. A good initial input can be
obtained through the present calculation to assure a rapid convergence of

the code.




APPENDIX A

Approximate Flux Using a Continuous Slowing Down Model
With No Secondaries

[4]

U. Fano* °, using transform techniques on the flux conservation
equation, demonstrated that to a first approximation, the flux is related
to the inverse of the stopping power. This can also be shown by expanding

the flux in the_particie balance equation. In the absence of secondaries,

the balance equation becomes;

G(ENI(EY = gl(a’ﬂ,t)ﬂs'u)dt + S 3CE-Eo)

) 7

where Z.(&") is the total collisional loss cross-section; k(e'+t, )

(A1)

is the probability of a particle of energy (E'+T) losing an energy of
amount T frém energy, and SFS(E-EQ, the primary electron source, is taken
as a delta function at Eoiwifh source strength SF .

If é(e) and k(E,1q are slowly varying functions of energy, the first

two terms of a Taylor expansion give:

ST (EY = @(E'\g R (e, T)dT + %_S(E')gk(e‘,ﬂtoh«LSPx(E-Eo) (A2)
In the absence of absorption,
oo : B )
S R(E,)dT = KE RCE T) = 2(&") - (A3)
Multiplication of equation A2 by'dE' and integration vields:
: y (a4)
0 = {'Cc\t g de' }1_ de YR T) + Sp
A A QF
and since
: (A5)
fim  PE)R(E,T) =0
E 00
we obtain:

S (e) = C-°"5t/ﬂe R(E'TYT dT ()




. . 4
Equation (A-6) agrees with the result U. Fano[ ] obtained by Laplace

tfansforming equation (A-1).
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APPENDIX B

Derivation of an Integral Form of the Collision Density Balance Equation

After an ionization collision, two identical electrons will emerge. To
have an accounting system we shall label the one with larger energy as the
"primary'" electron and the one with the smaller energy of the two, the
"secondary'. The collision density balance équation for a é-function source

of electrons at energy E, is:

E+Q 4
r®&E = | Te-r)pEde S(EY+S8(e-E)  (B-1)
E+ U,
where Z%EtvE ) is the differential cross-section of scattering

into energy & from energy E'.
U,

A

first excitation potential of the gas atoms

1

E+Uif 2E + U Eo’ and A = Eo - Eif 2E+ U 2> E .
The '"secondary' source term takes the form:
E’o )
S () = g T (E'=e) F(eHdE (B-2)

. 2E4V .
where Qfs(Ej—,EJ is the probability per electron track length that the

"secondary" electron emerges with an energy in dE at E.

We shall divide the energv range into two cases: .

Case 1. If 2E + U Eo’ then SS(E) =0 and- A= Eo - E.
Integrating equation (B-1) from E to Eo’ we obtain,

Eo Eo Ea !
S T EN @ (EM AE" =§ ae"j L (E'-E) F(eYde'+ S (B-3)

E E E"‘.’U| F

Now consider the double integral on the R.H.S. of equation (B-3). Since

for E" in the range of Eo - U, to Eo’ Z£ (E' —> E") = 0, we have

1
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3 U Co
| SdE“§ 2 (E—E"YQCeYdE = S de“[ T (e=E" $(e) e
B+ U,

. E E'+ 0,
Eer ®eu (B-4)
A—.—_S de' & (E") X de" Z . CE'-E"M
E+u, E

‘where we have interchanged the order of integration. Combining equations

(B-3) and (B-4), we obtain

Eo E.'|~U‘ _ . Eo -y,
{ SCehde K T CE-E)dE = g de' & (51) 183 (eE s Sp (P73
€ E
mim Ety, &

where Emin is the minimum energy above which electrons with energy E' can
slow down. Note that we have changed the notation of dummy variables
inside the integrals. Breaking up the LHS of equation (B-5) gives:

E40, Ef-v, Eo E'-v,
LHS = X @(E")dE‘[ T (E'=E)dE jdE‘@(ﬁ‘)S 5 (e5e)dg, (B9
[ El’f\lﬂ . E—fU‘ Emu.)
so equation (B-5) becomes
. gl-u
CEY E-0, E, _ ' :
[(Femee ol cemeade, + | @ aen] | nceeae

E E min E +U‘ Emml

_ e'-u,
~& Zc(E‘-—DE.)dE(] = Sp
E ) .

DY"

-

£y, E-U, - o £
S §(E')0‘\E'S 2<(E’—vE.)dEl+§ §(E')dg'§z(<e’»g)dﬁ‘—.—SP 57

E .
- Emim EtU, Emin

Consider the L.H.S. of equation (B-7). The flux ¢(L') in the first integral

lies in the range from E to E + U, and any inelastic collision will slow the

electron down past energy E; as for the remalning integrals,El is in energy

range Emin to E and EC (E' = El) accounts for all collisions that slow the

electron down pést cnergy E. Therefore, the LHS of equation (B-7) represents




the total rate of slowing down past energy E.
Case 2., If (2E + U) < EO; in this case A = E + U and
Eo . .
S, LE) =g T (E'=E") BCENAE (B-8)

€40
Integration of equation (B-1) from E to E0 gives:

E. E.-\ 2"+
S Z(EYB(EMdE" = S de" S dE' B(eNT (E'5EY)
|3 ) e "4 U ‘

t. (Ee Ee

+ 5 de'|  dE' F(e)L(E—<E") 4 | S (B)dE' + S,
£,-U ° ¥ |
= E% U, LB (B-9)

Consider the RHS of (B;Q). The first two integrals cover the areas (1)
and (2) in the sketch of Fig. B-1. This is equal to areas [ (1) + (2)-
+ (3 ] - (3), i.e. the first two integrals become:

€o E"‘U| Eo ' Ei-zil
S ?B(E‘)da‘g de" Z<<E‘—aE")~S @(é)de‘g de"T _(=E" (B-10)
vy, E 2E+0 e

But, for the second integfal, ZC(E} + E")} is equal to zero for the region
of E" since no "primary'" electron can slow down past (E' - U )/2. The

integral therefore vanishes in area (3). Then equation (B-9) becomes:

€, E. Et-U, |
| zeenaene < [ “aenie| aerziceaet [seee g (B-11)

£ €+U, ‘ € €
Equation (B-11) is identical to equation (B-5) except for the ‘'secondary"
production rate term. Using equation (B-7), equation (B-11) can be
written as:

E+U, £y, Eo - B
g @(e')dE‘§ ZCe'wENdE, t g @(E’)dE'gic(E‘qr-_()dE‘ =
E

E [ E+Y,

-

Crmin

‘. |
> * f SCE e )
E
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Figure B-1 'Sketcih of irea Covered In the Collision Integral .




Here the LHS is equal to the total rate of slowing down past energy E while
the RHS equals the total rate of production above energy E. This is the

same as:

Eo .Eo
Z{ S (e K (B E)dE = Sp + XE S, (ende (B-13)
E

where Kj(E',E) = probability per trackllength of slowing down past energy E
through a jth type collision.

This shows that in both céses thé differential form of the balance equation

(Equation (B-1)) and the integral form of the balance equation are equiv-

alent.



APPENDIX C

Comparison of Average Energy Loss Due to Elastic and Inelastic Collisions

For High Energy Electrons in He

For elastic ccllisions, we consider the first Born approximation

cross-sections [39,60] :

P
= g M am by x = (C-1)
1¢o) \ e 3 V(r)y dr\
Y

-]

wnere K = 2oy Ain 6/
= 2

For helium, Hylleraas[61] has employed a variational method to obtain the

following wave function:

_a(ﬂ*\aﬁﬂgo

g = (F/woz) € 3 (C-2)

with the potential:

—22Y/0v0

V)= -2¢€° (% +Z e (C-3)

where z = 1.69, and a, is the Bohr radius. From this, the differential

scattering cross-section becomes

I(e) =

anmZet A X AR) (C-4)
£4 (O + W37 |

where A = 2 z/a_, A = atomic weight.
. o

The fractional energy loss due to elastic collisions is related to

the angle of scattering by[l ]
E 2m
AE _ 2m ¢\ _(0s8) e

where m/M is the mass ratio between the colliding particle. From equations

(C-4) and (C-5) the average fractional loss per track length becomes:
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lne\ (T ac o d
<&/ B (?)I(e)znx)ms e ‘
: 2 \ ,
= amn (iﬂ) gmeth g g %3 (20t bxry dx )
™ R o . (a+ px2)s ‘
= gv (2 4we*A [ | a+b S DR W
Q M) 4+ b fg b + ébz_ bz((l*'b)
or - ___« -
NPT YT SN YRR ] (C,é)
| where a = )\2,
2\ SmE
b = (2"_;‘:‘" \ = 5T

After rearranging the constants, we obtain:

G = T (B T (5] - 4 - 2

E
SR + k ——}
4 (hz+/51) 6Chl+lgl)3 (C—7)

where P = Ye and k = ;‘{ ( ‘/137)1

and we have used the fact that X‘ =

For inelastic collisions, we ccnsider the MOller cross-section[ ]
, 1 1
Re (B, aee €1 L _Gxe) [ L, 1, 1Y
g LT TEOT @y T ET T @y
where E and z are the incident energy and energy loss for the collision

respectively, in units of leoC . The average fractional loss per track length




" becomes:
rE‘/z_ :
AE = ' L
< E /ihel. la hM(E’t\ E dT
E(
- S 2 oNeYZ { o, T (2+ %)
a R*E T (e-) (1+E)
. < ,
e ) (+ Y } (C-9)

2 —_ .
where r = e2/mc", and Q is a constant determined from stopping power
1 2 .
6] Q. = LU-Z—)—,, . The upper limit
min 2
2 MU
is arrived at from the consideration of indistinguishability of electrons.

theory. For U << C, Q equals Bethe's

Changing the energy units to electron volts and integrating (C-9), we find

A€ = 2muNee >_ E E Ef>
AED 0 {Z - 1 za +h§ E-Q

+ (ZE+mc)mc? El2 ( E* & c-10
(E+me )" 93 E-Q * (E*mc“f-é 2 )] (C-10)

Comparison of equations (C-7) and (C-10) demonstrates that in the energy
range where Born approximation and Moller's ci‘oss—section are valid, the
average energy losses due to inelastic and elastic scattering differ by a
factor of magnitude about m/M. This justifies the neglect of elastic

collisional losses in that energy range.



87

Slowing Down Kernels from Binary Encounter Collision Theory

The binary collision theory neglects the influence of the atomic
nucleus and treats inelastic collisions as an interaction between two
éleétrons alone, When two interacting particles obey the inverse square
law, the problem is exactly soluble in wave mechanics, and the solution
yields the same scattering law as the classical theory[sg]. I1f, however,
the two interacting particles are identical, as in the case for electrons,
symmetrical and antisymmetrical wave functions in the space-coordinates of
the electrons must be used. Therefore, if the corresponding cross sections
are 0 and 07and © is the angle between the spin directiong of the électrons,

the total cross section is[Jg]

c =’¢Jf(l—Co::S>O‘+ +3‘(3f&o09)5'_

(D-1)

If one assumes unpolarized electrons, this reduces to

= 4 3 -
6 4@»1-* e -2)

L. Vriens' model of two interacting electrons with exchange and

[20]

interference gives

edes < T [0+ E8) ~ {mm

E, 3QE7 (B,-E,-08)
PO TN W ]
3(E4-E,-aLy AE(E,-E,-4F)

{.OY E‘S > Ez




wv/\4‘ ™ r A A !:‘ \ . / \ q‘ E'i
Cig daE = "¥ S A A L -
aF 3 LKL\E 3 OEZ‘S i(E;—E;AE)Z 3{E,-E,~0E\®
® g\
—_ ] (;3» (XAE \
AE\E,-F _-AE| E, , Yer  Ey S E, (D-4)

wbere the terms are defined in the text. The value of &' is ~ 1 for
El >> R. In the following integrations, we shail approximate ¢' by a
constant. This is consistent with the assumption that Vriens made in
arriving at his total ionization and excitation cross-sections.

For the case of ionization collisions, consider El to be the incident

energy and E1 - AE and AE - U to be the exit energies after ionization,

U being the ionization potential (Fig. D-1)

E EE/ .
——y 2 Fig. (D-1) Electron Energies in

AE -V an Ionization Colli-

sion

The two emerging electrons are indistinguishable and the maximum energy
loss possible is (E1 + U)/2. The minimum energy loss thaf an incident elec-
tron can suffer and still'slow down past energy E from energy E' is E' - E.
The siowing-past kernel due to ionization collisions is then obtained by
integrating Vriens' differential cross-section through these limits. Thus,
for (E' + U)/2 > E' - E > U;

(E'+U) /2

Ky (e\E) = j Ne O daE
(1 ) )
- Mgﬁe4{ \ A ~ QE,_[ \
EB E|~E E3_EL 3 (E"E)z

3 -
N (E;- EL)‘] T ETY b %yl
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where 1t . C rQ~ n ™ .o \
Q - (o v s (= SR
ey I 222 ©-5)

and Ne is the total number of valance electrbns in helium. For more compli-
cated atoms, one has to sum over each different electrons in the shells with
their appropriate ionization potentials and averaged kinetic energies. An
aéproximate method suggested by Vriens is to simply multiply by the number
of electrons in the outer valance shells.

If, however, E' - E < U, any ionization collision will show the electron

from energy E' past energy E. Therefore, for (E' - E) < U;

B0

ke(e ) = | noopdae
v
= Nowet it 3
IR E[U‘ ”1 E+UL’U} (D-6)
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This is, as one would expect, identical to the total ionization cross-section

and is consistent with the ionization cross-section given by Vriens and
others. The two slowing-down kernels (D-5) and (D-6) are continuous at
E' ~E=U. For E' - E> (E' + 1}/2 or E° < U, the slowing down kernel

0.

K;(E',E)
The binary collision model assumed that an excitation to level n

takes place when the energy loss AE is such that, Un < AE :-Un+1’ where.Un

and Un+1 are excitation potentials of levels n and n+1 respectively. In the

case of helium where the final state depends on the spin orientation, we
will apply the following approximation. Mott and Massey give the excltation
cross-section for an arbitrary angle 6 between spin directions of interacting

electrons to be[39]:

Qe(e) = Qde+ Qge -+ (\—fmS)Q{nt_ (D-7)



S0

where de, ee and int denote contributions due to direct, exchange, and

i . i - + .

interference. For parallel spins, Qe(o) Qde Qee + 2 ant and for
antiparallel spins, Qe(w) = Qde + Qee' However, direct excitation only
occurs in the singlet mode while exchange excitation can be either singlet
or triplet. If one assumes one half of electrons have opposite spins and

the other have parallel spins; then

Qe - .\i Qe(“\ + {QQ(O) = QQ(T‘ﬁ)
= Qae + Qee + Qint (08

From this we deduce that,
Q'“"SLQ* = Qde N @fe and Q*a;pLe’f_: Q_z'ee (D-9)

In general the excitation to the nth cross-section is calculated according

to:
Unet

Qe (n) = SU 0y, dac (D-10)

Since only AE, the loss of energy is considered, there is no distinction
between levels when one ccnsiders the kernel‘of slowing down past a certain
energy. One can therefore group all the excitations into one level and
consider an excitation range, i.e. one considers excitation to have occurred
if U1 S_AE :_Ui where U1 is the first excitation potential energy and Ui’ the
iohization potential. We refer to the slowing down past kernel due to exci-
tation derived through this model as the one level excitation model.

For E' - E > U,, no excitation collision can bring an electron from

1’

energy E' down past energy E and the slowing down past kernel Ke((E',E) = 0.

For E' > U, and U. » E' - E > U
-1 1 - — 1



U
Kex (8| E) = g Ne 0zc dat

E'-g

{ . 2E,
EfU" 3>

[ ' _ |_ +_l_ _ \ ]— §u( br U;(Ef-U;)]
(e~ey VAR S (E*UC\_’“ (e'+0)) L (e-g)E

i (i 2

For E! z_Ui and Ul > E' - E, any excitation collision will bring the elec-

[
I__E \)C

= Ne“eq' { |
=3

i
+ — -
Ea E

where -

tron down past energy E from energy E', and

U.

“

Kex(E:E\ = S NQO;E dAE

v

Newe? |
(E‘i“:) [.(— - —)1' e'\»‘u;-u.)‘*‘ .;EL

{_l_LL+¢ R _ &Y g, fucleu: -U.\}
U- X B (e'wusoy) B0 RO

(D-12)
This agrees with Vriens' one-level total excitation cross-section.

The secondary production kernel is defined as the probability per track
length that an electron with energy E' is going to produce two electrons
with energies both larger than E. This (Fig. D-1) imposes the requiremen;
that AE - U > E or E' > 2E + U. For energy E' > 2E + U, after an loni:zation
collision, at least one of the electrons will emerée with enefgy larger than
E. For both to emerge with energies larger tharn E, the minimum energy loss

£ the " -:ident electron must pe E + 4. The maximum loss of energy due to

the inc._stinguishibility of electrons, cannot exceed %—(E' + U). The kernel

-



for secondary production KS (E',E) is; for E' > 2E + U;

Lg'+0)
K,(E'E) = X O:EAAE

E+U
= g‘re“ % \ — ! 4 ZEL[ ‘ —_
(Exw) L E+U E'~E = (e+uy

I E-E ]
(e'-ey] E'+v Q“[ E+U

(D-13)

and K_(E',E) = 0 for E' < 2E + U.
S
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APPENDIX E

Determination of the Number of Secondary Electrons Produced Per §-ray

First, we shall show explicitly that'in an energy range beiow the first
excitation potential but above an energy where recombination is significant,
i;e. Between 19.5 and say 2 eV in helium, the slowing down past density q(E)

i%s a constant. In this region{ the recombination is considered to be negli-
'gibly small and in the case of helium, processes like dissociative ioniz-
Aation (e + AZ > AT 4 AT 4 e) can be neglected[SO]. Consider the collision
density F(E) defined as the totél number of collisions at energy E per unit

energy interval; .
B U\ .
F(E)dE = S F(e')P(e'=E)dedE + Sy (e)dE — S(e)dE (E-1)

TE

. .
MREYE R(R) = T (&) B (E) ,

- REY=Z, (&) B(E) |
and SI(E)dE gives the rate of electrons arriving in dE at'E from inelastic

scatterings above energy U ZS(E) and Za(E) are macroscopic elastic and

1
recomoination cross-sections and P{E' - E)dE is the probability that an

electron scattering at energy E' will arrive in energy interval dE at E.

Integratioh of equation (E-1) from 0 to E where E is below Ul gives
e c c L

S FCE"Yde" = gde" g FCeyP(e'we")dE + g[sx(éysf\(a")] de’ '
° ° Eu ° (E‘Z)

The shaded area in sketch is the area of integration for the double integral

E%\ / e'=E"

in a Collisional Inte. ! \§Ei;§;;
N /// >

Figure E-1 Sketcih of Area Udue-c - ”/
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on the R.H.S. of equation (E-2). Changing the order of integration, we’
write the double integral as a sum of integrations over the two shaded

areas (1) and (2); i.e.;

e VU e . o ‘ u
g dE“( F(EWP(E'-EYdE' = S de \-(E)S B (el ey de
"

[ . o - o

0. i E
+S dE‘F(E‘)S Ple'seyde” (E-3)
€ o '
But g
« g Ple‘seyde” = 1.
7 (E-4)

and g Ple'-ede" = KER)

where K(E',E) is the probability that an electron slows down past energy E

after collision at E'. From equations (E-2), (E-3) and (E-4);

= e —_ €

e L € \ \ A
S F(e")yde" ='§ de' F(E) « S S (EVdE —gsk(e')de‘
[} Q o o
U\
+ § de' FEEVK (R E)
"> (E-5)
or Y, . S e |
g AEF(EYK (E'E) +g S, (EYdE' = g sa(ehde! '
E ® o (E‘6)

But the L.H.S. of equation (E-6) is exactly the definition of q(E); i.e. the
Tate that electrons slow down past cnergy E or appear at energies below E.

From this;

< )
%(e\ = R S, (eYdE' (E-7)

However, above a certain enecrgy El’ recombination 1s not significant, so

wg obtain

(E-8)

€,
4 (&)= g 3 (e YdE'

]
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and q(E) is not a function of E in this range. This value of q(E) represents
the total number of electrons slowing down per unit volume and time and can

be used to calculate the W-value of a gas. From equation (E-6)

, .
S q(E=0) = g S (&) dE!

Q

T

Ul
= g dE\ S
o . J

EO
= ( de' 3 () K (810
U,

"y, (B'>e) de’

1

(E-9)
where . v, _
K\N(E‘:Ul\= g de' ¥, (&' =E"
= number of electrons produced with energies
below ﬂl per unit ¢(E") at E" around dE".
Using the previous notation for slowing-past kernels due to excitation and
.ionization, wé can illustrate some of the Kin(E”,Ul) in different energy
ranges:

For E'" > Ui + 2U, , after an ionization collision only one electron

1

could have energy less than Ul' No excitation collision is going to result

in slowing down an electron past energy U In this case:

1

s - il 4 u "
K E“)UQ h Kx(E;E -4) “Ke(ELE —UL—U') (E-10)
where Ui = U, the ionization potehfiéi.
Using similar lines of argument, we obtain

Ui + 2U1 3_E i-Ui + Ulz

K (E10,) = K (B 0D + Ky &) U +K (B E-U ) gy,




T -
Ul + Ui > E" > 2Ul .

K\\.\QE“; U\> = 2—K1 (E-“/ E“‘ u.;)

2Uy > E" > U,
KN(E", L) = 2Ky (" el UL) + Koy (.é‘: EL0,) ,
up > EM > U
K,w(E'0) = Kex CE" €-0)) ;
U1 > E"

The above nctation follows from the one level excitation model

~ in Appendix D.
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(E-12)

(E-13)

(E-14)

(E-15)

defined
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APPENDIX F

Diffusion Approximation for Electron Leakage

[P N 3
Instead of f(r,u,t) in equation (II-1), consider an equivalent form
f(?,ﬁ,E,t) where f(}‘,ﬁ,E,t) d dEdQ is the number of electrons at T in ds?
A A
whose flight direction @ is in the differential solid angle d{ around Q

and whose energy is between E and E + dE. With the differential electron

flux defined as:
- A
@(ﬁﬁ,E,‘t) dstde = g(TJSI._IE,t\U da de (F-1)
The Boltzmann equation [Equation (II-1)], in the absence of an external

force field, becomes

L3 3@ aEt) = —1-vaEiet) - Z @ SELED)

-+ ﬁ 3 (Ese, V=) 3 (F e «)de'dl + ST 881 -

where we have replaced the collision term by the last three terms. In
equation (F-2) Zt(E) is the total collision cross-section at energy E and
A A X . . .
ZS(E' -+ E, &' = &) is the cross-sectiocn for a process in which an electron
with energy E' and the direction &' is scattered into the element of solid
n .

angle d2 arcund 2 and the energy interval dE at E. The term S(r,Q,E,t)
accounts for other primary or secondary electron sources. We assume rota-
tional symmetry around a distribution axis arbitrarily defined as the x-axis.

Then the steady state form of eguation (F-I) becomes:

cos® LEAE) 4 T, (BVB (f,8) = S(zsca‘qe,ﬁ‘»ﬁ)%,ﬁ',E')de'Asl'
DX

+ S G5 E) -3)




98

We expand the angular dependence in Legendre polynomials, i.e.;

S (xR ey =) l_::‘\_ ® (x &) P, (cos®) -
S (x,ﬁ,E\ = :L‘:u 7‘:;\ Sm(x,E‘) . (cosB®) (F-5)
and ZS (E‘qelﬁ’qﬁ>: ;o 12;‘ Zsm(ﬁlag)‘)'.“(me")
) : ) (F-6)
A, A
where (s 68, = 2.1

By the addition theorem for Legendre polynomials, Fm(UN 8,) can be
expressed in terms of P“S((,,553 and me (ose') where the ng‘ are the
a;ssociated Legendre Polynomials. Performing the angular integral of
equation (F-3) and using conventional orthogohal relations one arrives at

the P [44:42] .

N appr;)ximation
d X@S‘:E\) in¥| b -
(o) g S )+ ST DT R Gixe) =
Coned) (3, (xee0),(xg) e’ + (2n+1) S, (%, E)

nEe L, | (F-7)

Truncating the equations with n = 1, we obtain the'Pl approximation or the

- diffusion equation. For a homogeneous medium, this becomes[-62 ]:

P (YT ECFE) + T (8)B(F,E) = g25(5‘4515(".5')45"*5@5) . ,

where
& (v e) :S F (¥ Qe)d
<
S(‘(,E): g S(;"IEL,E\O\Q ]

Ty
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2 (eSe)= S ZS(E’QEI{‘L) df.,
) T '
and '
D(E) = \ __
3(Z(e) ~Z5me.) _ (F-9)

In the calculation, we have made the simplying assumption of isotropic
scattering so the averaged cosine of the scattering angle vanishes. This
form for the diffusion coefficient is only valid when the electron motion
is not influenced by electric field forces. This restricts it to large
electron kinetic energies and a small degree ionization. Furthermore, the
diffusion equation (F-5) carries the usual restrictions for the validity of

[62], one being that the size of the system be large relative to

Fick's Law
the mean free path of the electrons. For a l-cm radius tube, this restricts

the gas pressure to be, roughly, above one torr.
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APPENDIX G

Energy Deposition Rate and Primary g-Ray Energy Distribution

by a Two Region Model in the Plasmas Created by Nuclear Radiation

Using a two-region model, J. Guyot[63]and G. Miley[64]have derived
expression for the rate of energy deposition by heavy-charged particles'in

[13]and T. Ganley[57],

gaseous media. In the experiments performed by J.’Guyot
laser tubes coated with B-10 were placed in the University of Illinois TRIGA
“Reactor. The pulsed neutron flux falls upon the boron coating inducing the
nuclear reaction n¢B = Li+a . The heavy-chérged particles traverse the
and deposite their ehergy as they slow down.

The geometry of the system and the heavy-charged particle reactions are
shown in figure (G-1) where a slab geometry is used to approximate the cylinder.

For 0 g the rate of energy deposition Ri(x.TO) at x for the ith type of

t’

heavy-charged particle with initial energy To is:

Rite )= ST [ et - m:( )]

(G-1)
and for x_ . <¢x s/\g(To),

- (x — S(IYT XACR) asry
Q\i,t) )T [ A4 ms(t ]

(G-2)

i

where in (G-1), (G-2); S(To) éouréé fate of heavy-cﬁarged particle

i

X distance from the surface of coating

= A ()Cr- Z/T))
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GAS

8 - Electrons

.

Figure G-1. Slab Geometry of the Source and G:seous Medium

Equivalent to the Actual Cylindrical Geometry
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A(TO) = range.of heavy charged particle at TO in the Boron'Coating
Ag(To) = range of heavy charged particle at T, in the gas
T = thickness of Boron region
J(u,v) =

v ey
Su (J%‘ﬁdeﬂ

1= G- W) o

o+
il

ct
1}

2= Uiz - W)

n = a fitting parameter for the slowing down and energy degradation.

‘For nzo, JI(uy) = [la(‘v‘%\—'—lé—q]:

The following parameters are used in the calculation:

T  (MeV) g (T )cm A (T )em n
a 1.459 2738.7/p 5.7 x 107 0
Li 0.855 1240/p . 1074 -0.25

and S(T_) = 450 R @/cms sec, where ¢ is the neutron flux (cm-zfsec_l),
R is the fraction of the type of heavy charged particles. For the production
of 1.459 MeV o and 0.855 MeV Li, R = 92% The coating thickness is 0.4 mg/cmz.
Figure (G-2) shows the rate of energy deposition versus gas pressure at.
the center of the tube. The tube diameter is 2.54 cm and the neutron flux
used is ¢ = 5 x 1013 cm-2 sec_l. The rise in energy deposition rate as
pressure increases is because of the increased slowing down efficiency as
gas pressure 1is increaséd. This reaches a maximum at ~ 550 torr bécause
fewer heavy-charged pértiéies can reéchAat the centerliné as pressure goes
higher.
The heavy-charged particle flux spectrum Fi(x,T,Tb) for the ith type

heavy charged particle with initial kinetic energy T, at X with kinetic

energy T is given by: (133 ff. ref [64])



Energy Deposition Rate {KeV/cmsec) per Neutron Flux

1 1) 1 1 %* T T 1 - T

10j— -
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g}— - ond a (1,495 MeV)
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Due to Li {0,866 MeV)
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, i I R o
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Figure G-2. Heavy-learged Particie Energy Deposition Rate at the Center-line of the Tube
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SCT)T (n+) E" 0 < TS Zout
FGV <
A e .
2T, (\__€n+c) C £ € £ Q1
Fi (216 ,TO) ==
ST CWH\en[w =z SRR R A EPR- PN
?'-r; 3 - En?“) € \.iesemu\(w OSQSE(M\*
(G-3)
where e = T/To, z = x/kg(To), S = T/AC(TO)
_ 1/n+1
€rax - (1-2)
_ 1/n+1
Cerit (1-5-2)
Zerig = (155

The primary S§-ray electrons are created by the passage of this flux
through the gas. The spétial and energy distribution of these primary-

h

§-electrons is related to the it type heavy charged particle flux by:

_ T
N, (x,E-V) = g T OGT, Y2, (T, E)dT

T\'ku.a.; (G-4)

where Tthres.i is the minimum kinetic energy for the ith type heavy-
charged particle to ionize and Zi(E,T) is the probability per unit flux
that a particle with energy betwéen T and T + dT will lose an amount of
kinetic energy between E and E + dE through ionization. Finally, U is the
ionization potential of the gas atoms. Employing the formulation derived

by M. Gryzinski for Zi(T,E) and T . {equations (6) and (8) of reference

thres,i
[23]), ni(x,E) has been solved for x = centerline of the tube at 1.27 cm and
for 1.495 MeV a and 0.855 MeV Li ions which account for 92% of the heavy
charged particles produced in the neutren irradistion of boron. Figure (G-3)

shows the primary 6-electron production rate, per unit neutron flux, as a

function of energy in 10 torr helium.
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The total electron density is determined by a balance of the source
due to the heavy-charged particles and the losses due to recombination and
leakage. The main body of electrons is assumed to be thermalized and the
losses are mainly due to the recombination and diffusion leakage of thermal
electrons. With this assumption, the thermal diffusion coefficient is taken
to be the ambipolar diffusion c§efficient. For a 1/U recombination cross-
section, with-only one species of ioﬁs present, the steady state electron

density, Ngs is simply:

“Da /i + JOsRY 4B o

e = ‘ (G-5)
22X g
where Da = ambipolar diffusion coefficient
X = rate of energy deposition by heavy charged particle slowing down
”“““““”‘””“*dﬁ“f”f9combination coefficient

w = energy deposition for each ion-pair production
A = first fundamental mode characteristic length of system
However, if molecular ion formation by three body collision is included,

electron recombination is predominantly with the molecular ion. Then: the

electron density becomes:

. Ay » + \
!’\e=~§2_91_+[v15;e +3}_Sg 4 EQ*D;’ SL]/*L
zq 2N Py NP 2a  2Nxp
(G-6)
D+
h =1
S\
S.= R/w = rate of electron production/volume [cm-i—sec~l]
DI, D; = ambipolar diffusion coefficients for the atomic ions and

. . 2
molecular ions, respectively [cm /sec]

n = coefficient of molecular ion formation through three body

collisions [1/sec]
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Equation (G-6) has been evaluated using the coefficients given in references
(491, [50] and [g3] and the resulting electron density vs. pressure for
several tube sizes and neutron flux densities is illustrated in Figures
G~4) - G-6). The densities shown are fdr the centerline_of the tube. The
cross-over of the curves at about 30 torr is‘due to the balance between
leakage and energy deposition rate. The peak electron dénsity occurs at
about 550 torr because highér pressures reduce the number of heavj—charged
.particles reaching the centerline.

The addition of a distributed primary source S(E) in the low energy
region makes equation (ITI-10) inhomogeneous; namely: |

amew‘m)+zYcEW(EB=SZs[(m—E)%~§) (E)+E‘LTAT:§§E) *SE(TEE))_ .
A series solution ¢(y) for equation (III-10) was given earlier in equation
yﬁiFIII-ls). [A second independent homogeneous solution, 2,(y), given by
De Sabre (equation (8) of Ref. 65) was.discarded by Horwitz et a1[43] because
it gives ﬁegative slowing down density at y = 0.] A particular solution to

equation (G-7) can be found by the method of variation of parameters from

the two homogeneous solutions. This method gives:

_ 45
F(4) = g 3L - 2B LP]
% L) - FF W) (G-8)

where S.(x) = SCx)/i Z ek

Equation (G-8) has been evaluated numerically, the particular solution
added to the homogeneous solution, Ql(y), and the entire distribution nor-
malized. Notice that as y - 0, ®p(y) = 0 and ¢2(y) again has a zero

coefficient. Results are presented in figures (5-7) and (5-g) élong with

a plot of the distribution for the homogeneous case. It is seen that for
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lew energies where the electron population is high, the deviation is
insignificant. For higher energies, where the population is already

small,. the difference is about a factor of three.
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APPENDIX H

Series Solution of the Thermalization Eguation With

Recombination and Leakage

With the notation of Chapter III

the thermalization equation, including
the second moment of AE, becomes

DEWHY(E) + LA BYW(E) =3 Z (E) [(2“—\':)%;"5% el dve]
with

(H-1)
E(E)= QE)NUIE),
av® _ 2E) {7 | i A4
dE &) &’ﬁ } E] * e S € |
' . (H-2)
L L &Ce) L - L\[z 42 J_ L
_d&‘ET) = E: ) \RT E)[M(E) ae RY E
B g &
2T + he it (H-3)
- From equations (H-l), (H-Z)Aand (H-S); we obtain
—b(ewl@(s) + T E)E(E) —}Z (E)L@(s)»«ﬁ%;_ﬁg)w?d %](H "
To change this result into the variable y, where y = E/vt , we
note that:
d

"_~

Sty oo G R

B . A _ (H-5)
and with these relations

equation (H-4) may be written as

adﬁ“ ~L- a1y @t\,ww —y-a] & (y) =0

(H-6)
where g and A are defined in the text

The solution for the special case of
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no leakage or recombination, with the boundary condition ¢(y) = 0 at y = 0
2

is ¢ y2e y ; i.e. a Maxwellian distribution. We can use this to find a

correction factor S(y) applicable to the general case. If one lets &(y) =

vl
yze y S(y), the differentials of ¢(y) with respect to' y are:

B'y) = eV Laysy)—2ytsiy) +y SC‘\’] (H-7)

di"(lj) = e [sey)(z- l0‘12+ 4y F)+s'ty)ay- .(H—S)
4y*) + Sy Y]
The differential equation for the series S(y) from equations (H-6) to (H-8)

is:
ys'y) +L=z-2y°] s’(/) ~SCY)La+3y] = (H-9)

WritingA out equation (H-9) in terms of the series S(y) = ZA /

we obtain:
?“N”O%“+3ZAH“~ZZA\T“
™ ' _
-4 Zi\n‘i -9z ALy

(H-10)

The coefficients of (H-10) are seen to be:

Ay = [2C-22 ) Ay + 8 A5]

Q(Qu) (H-11)

With the normalization such that fg ¢(y) dy = 1, the first five coefficients

of Ag are:

Aa=4/ﬁ ,A :é]gAn

! P

Ay= BTz (e 1) 95 + 15 + 2]

ma P BTaei@ ) 0D e 2 T (#-12)

|89 ]

Collecting terms of order 1, A, g, A7, g" and Ag; for A, g << 1; we

&3

can write S(y) as:



sQy) = Roli+ aqny) + iy s ALY + 4;;&1(‘/)*45)5()’)] (H-13)

The series with first order in g appears only with even powers of y;

L) = '{i;‘ bzn‘}\z“ , b =b num) . ‘97_:‘/5;

in 2(n-1)

R VL S SR YR U B ] ¥,
'\.(\}) -l B ol Rl B 4‘(,-5’.:0\/ * (H-13)

The series with second order in g appears only after y4 and appears only in

even powers of y:

o2 2(n+!)
q»(\{) =2 d 20n+1) 4 (H-14)

h ! . ‘
mhere dz("“) T (1n+2)(2n+y4) [ZCZH)dM* Azn]

and d4 :'I/4,.6'8

This gives d - Vis[8/46x * 1/6.&'1 , dg = l/s.% ['/e-sz Cz'.”(n‘?'-"g)]

The series with first and second order in A have been developed by

Cohen'[éé_] and they are given as:

g za+t! ]
Jutg)= 2 J - (H-15)

ﬂ="(zn-r|) [? (n+54)

and

I 4" TS (!
() = L 4 [ !
/“"" d) 4’2—- N(n+y)l Koo (2t |)F’Lh+3'/L)
(H-16)

The series with terms in order of Ag starts with y3 and appears only for
odd powers of y. The coefficients of this series are:
Ll _l\s
X(‘&\ = z(g, - §)nz:,_| emﬂ%

where T2 (2ne (H-17)
elnﬂ = ez.rH |’2 (2o ‘\ e = X
L(l“"’ X2n+ay J

2n+|

s {
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These series converge rather rapidly for y < 5. For larger values of

i\

[a)
The first few terms of Ciuy are; €3

y, the series is given as an inverse power polynomial of y. As it converges

rapidly for large y, the series need not be broken into orders of g and A.

63
De Sabrino et al[ ] give two independent asymptotic series for large y:

Vo) = 4 Sy

with
Ce =é/7_ 3 Q‘ - (A/'?-y-
é = AC'\—I | C%/‘L +n=-2)(U +n -4) c
" zn 2n n-2
’ (H-18)
and . Wz(\i) = ‘j—‘i/z,-q. e‘/ gc\“\j-n
wieh d, = A ) d, = -(~L)
d"n = .—Ad"__"' + (n+1;9/1_) ("‘9/1) du-y ‘
“ 2 ~(H-19)

: _ut
The series l,bl(y) is damped by the Maxwellian factor; cf(tf):- yze '/ @ (\%)
and it becomes negligibly small because of the exponential factor. The

asymptotic solution for equation (H-6) is, therefore:

&) = ﬂ'l+qh'§§;dny~ﬂ (H-20)
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Effect of Electric Field on High Energy Electrons

During Slowing Down

Consider an electron above the ionization energy of helium in an electric

field E eV/cm. The drift velocity ug, due to the field is (pg. 122 of ref.[gil)

\J
M, %Lt e —eE = U =gk ¢ (1-1)

where T is the mean collision time. The electrons drift distance in the

direction of the field in this time is €ET% , and they acquire an energy

Me
AT given by:
AT = €E'z2 _ _eE”
Me Mt TR

(I-2)

where Ei is the macroscopic inelastic. cross-section and ¢ the random speed

of the electron. Consider two extreme cases of 1 Kev and 30 eV electrons in
helium at 1 Torr with an electric field of 10 V-cm 1. For l-KeQ, L=0.5 ;m_lui
(pg. 63 of ref.[SI]) and AT * 0.2 eV. For a 30 eV electron, Z = 3 cm-1 and
AT = 0.3 eV. The loss of energy due to an inelastic collision, however, is
larger than 20 eV. For higher pressures, the gain in energy due to the drift
in electric field is even less because AT ~ l/z2 - 1/p2. After an inelastic
collision, the electron emerges in random directions. The drift in the elec-
tric field has to be started anew.. As illustrated above, the gain in enefgy
from the fiéld between two'inelastic collisions, for both of those extreme
energies, are less than 1 eV. If is concluded that the energy ggin in the
field can be neglected compared to the energy losses for electrons with
energies above the ionization energy. This, however, is limited to moderate

electric fields of 10 V—cm_1 or less.
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APPENDIX J

Discussion of the Equation for the Distrubtion Function

in an Electric Field

Various authors[ 11.021.13] have used different forms of the equations
for the two term expansion fy(w) and T:"l (u) of the distribution function in
an electric field. Chapman and Cowling [67] give the coupled equation for

f, and fl in velocity space as:

eE H(c) _eR.2 £(9 | 2 =
W\ec 3C Me {ce) —/ge_ﬁe‘cg‘cq (J-1)
eEV . 35,
(wﬁ [$.cor + %H 1= (=), 52
with ;oC_C) = @)

feoy = f@-2
c
Uy = C/‘l)cCc)

where R(e),ﬁcé‘)) /5 and ) 'Cc) are defined in chapter IV and the

leakage term has been neglected. Without recombination Equation (J-1)

becomes: & d . s
_%\:QEQ°CC) = -‘17( C) -Q‘ ) |
(J-3)
and the LHS of equation (J-2) is:
XA
%(%\) [3@‘-(:‘(() + c3’%zg.Ccﬂ
-
=12 (¢ (% LR @] 0-4)

With vc(c) expressed as I NjcQJ. (c) where j denotes the type of molecules,
J -
NJ. the density and Qj the momentum transfer cross section; Nigham[ 31 arrives

at a set of coupled equations:
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~2E 4 (T = (55)
Lol KbLU {(U” - (%L < (J-5)
“"g:".\'a-)‘p(u) -ZI\ (U)U‘F<-U) (J-6)
Combining (J-5) and (J-6) and changlng the variable u to W= ei, with
é} um d , Nigham obtains the following working equation:
w= e aw
S SgL
B ledf @ /ZN e w]- (2 -7
However, if recombination is included, equation (J-1) becomes
XCC) }Q : ‘
FACC) - [ +/@C£(C) —DC_ (J_S)
e o [67] __.
and equation (J-2) is given by Chapman as:
L{eB\,.3 Cc‘)—:\QT 3{:_, SDL ) de
3(,—!‘7\-3) < ¥' Mi<e) oc N\LCC} ( /3 (J-9)

where unlike in Nigham's case, ionization sources, recombination and the kT

term have now been included. Combining equations (J-8) and (J-9) and

assuming 8 & {c} << ¢, we find:

C
-4 W [ o >
[7eteo +EL 1280 —med gcoy =) uopf)eTde

(J-9)
Then, after a formal integration

, equation (IV-6) of chapter IV is obtained.
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