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SUMMARY

This report presents the results of an airline study of the advanced technology

requirements for an advanced high speed commercial transport engine. This report is

one of a series of three reports developed as part of the NASA Advanced Transport

Technology Program. This specific report covers the results of American Airlines'

Phase II study effort .and covers the.following areas:

a. General review of preliminary engine designs suggested for a future air-

craft by the study contractors. This review includes general observa-

tions with respect to the engine design and general recommendations cover-

ing the noise and pollution reduction features, the installation concepts

and the economic studies presented by the contractors.

b. A suggested plan for propulsion system research is presented based on

airline objectives for the 1979 to 1985 time period. The considerations,

both environmental and economic, which form the basis for the suggested

, research programs and their order of priority is presented considering a

broad range of potential advanced aircraft types including the ATT.

c. The impact of current propulsion system reliability and the related cost

for unscheduled maintenance, including cost of departure delays, is dis-

cussed as a guide for advanced engine design.

d. A list of design criteria for commercial engines is presented as an aid

to insure that past mistakes in engine design and good commercial prac-

tices are reflected in future design.

e. Maintainability objectives for future propulsion systems are discussed

with emphasis on the cost of repairing prematurely removed engines and

the relationship these costs and labor costs have to aircraft direct

operating cost. Emphasis is also placed on mean time between unscheduled

removal objectives and removal and replacement times for engines and

subsystems.
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INTRODUCTION

This report has been prepared in response to NASA-Lewis

Research Center Contract NAS 3-15572 with American Airlines, and reports

on the studies undertaken in response to Task II of the contract.

The material contained herein is directed at providing an

assessment from an airline point of view of the preliminary propulsion

system design concepts provided by NASA for an advanced high speed

subsonic transport aircraft with respect to accessibility, maintain-

ability, noise and pollution control. The major component designs

and performance objectives of these engines have been reviewed with

respect to airline requirements for repairability, tolerance to

deterioration and technical risk. In addition to these specific reviews,

general design criteria have been developed and reported to assist in

the preparation of new designs. These criteria are based on airline

experience with engines from a number of manufacturers and are directed

at defining the design principles which insure a maintainable engine

and installation.

Airlines require high levels of reliability from engines

and propulsion subsystems to insure aircraft operating economics meet

projections. This report contains a review of current propulsion system

reliability and the costs associated with premature removals and air-

craft departure delays and cancellations. The gas turbine engine has

brought a high degree of reliability, however, propulsion system

elements such as starting systems have not produced the levels of



reliability necessary for advanced aircraft. Design reliability criteria

and premature removal rate objectives have been specified for components

of future propulsion systems. Projected cost trade-off criteria are pre-

sented as tools to assist the designer in achieving the desired goals.

Finally, this report includes a specific review of the ATT engine

contractors final oral reports and provides recommendations for future re-

search efforts.

This report is divided into five sections.

I. Evaluation of Phase II - Assessment of Preliminary Designs

II.. Evaluation of Phase III - Assessment of Technology Readiness

III. Propulsion System Reliability and Cost for Unscheduled

Maintenance

IV. Design Criteria for Future Transport Engines

V. Reliability and Maintainability Requirements for Subsonic

Commercial Aircraft Propulsion Systems

SUMMARY OF TASK I STUDY RESULTS

The airlines under increasing economic and environmental pressures

place heavy emphasis on improved engine economics for future propulsion sys-

tems. This requirement, as well as the requirement for significant improve-

ments in aircraft noise and pollution levels, present additional challenges

to research and technology programs. Advances in areas which will produce

lighter and more efficient engines are required to offset expected penalties

associated with noise pollution control. Along with these advancements, im-

provements in engine life, reliability and maintainability are essential to

insure improvements in direct operating cost and return on investment. Areas

of fundamental research which can be of significant benefit to the airlines

are advanced composite materials, advanced engine controls, and improved

thrust reverser and engine components, to provide improved performance with

4



respect to deterioration, stall margin and lesser cost. The area of pro-

pulsion system integration is expected to provide significant potential for

advances in performance, weight and maintainability. The tools available

to assess engine economics and the effects that past engine advancements

have had on maintenance cost were reviewed extensively in the Task I report.

It is essential that the adverse trends be reversed. This reversal can only

be achieved by careful attention to these factors in the research and

development process. Without fundamental research in long-life, high temper-

ature hot section components and higher pressure rise per stage compressors

of fewer blades, the objectives of low noise, low pollution and lesser cost

cannot be achieved. The challenges for the future are these broader inter -

pretationsof the requirements for advanced research.



SECTION I - EVALUATION OF PHASE II - ADVANCED TRANSPORT TECHNOLOGY ENGINE
STUDIES -- ASSESSMENT OF PRELIMINARY DESIGNS

The purpose of this section of the report is to review .to the ex-

tent possible the preliminary designs of both engines and installations

studied for application to an advanced transport with a design cruise speed

of Mach No. 0.95 to 0.98. The contractor placed emphasis on reducing engine

noise and pollution and on improving engine specific weight and specific fuel

consumption. The engine cycle designs selected as the result of the contractors'

studies during Task I were finalized and preliminary design drawings were pro-

duced for both engines and installations. These drawings were conceptual rather

than detailed. The following subsystems were omitted or only partially defined.

a. Accessory drive and gear box
b. Customer bleed air
c. Oil system
d. Electrical system
e. Fuel System
f. Instrumentation
g. Borescoping provisions
h. Rotor balance provisions

The omission of this data suggested that a detailed list of design

preferences should be prepared. This material is presented in Section IV of

this report.

Engine Design - General

a. Both contractors selected designs which minimized the number of

stages and eliminated the inter-turbine frame. The objective of reducing the

number of stages required to achieve the design performance is supported.

Hopefully the reduction of stages also reduces the cost of maintaining these

types of engines.

b. It is not clear from the engine drawings whether various blade

elements were designed as individually replaceable pieces, or were con-

structed in pairs, triples or segments. Recognizing the importance of leak-

ages between gas path parts, it is expected that the latter approach has been



used in these designs. This approach is directly contrary to airline needs.

The more costly the part, the more seriously the airlines become concerned

with the joining of parts. Other design means, such as additional seals to

control leakages}should be employed. An example of the worst kind of design

would be a single piece first turbine nozzle blade assembly. As a unit, the

assembly would cost in the area of $70,000. The replacement of the whole

assembly due to burning of a single blade, cracking of a single blade, etc.,

would be extremely costly to the airlines. Repair of the assembly would re-

quire special tooling and present real cost problems in terms of the value of

spares required to be on hand.

c. The engine designs for the late 1970 time period drew heavily from

current engines or developmental hardware. The engine designs for the 1985

time period considered changes to discs, high pressure compressor, combustor

and materials. Both contractors employed piggy-back turbine bearings to re-,

duce engine length and eliminate the inter-turbine frame. Particular attention

must be given to minimizing the number of joints and to alignment provisions

to ensure good tip clearance control. The ability to assembly and disassemble

the engine without damaging seals is essential. Additionally the oil system

must be well designed and the use of radioactive isotope impregnated parts

should be considered to aid in rapid fault isolation.

d. Both contractors planned to use composite blading. It is suggested

that early examination of the large bird ingestion problem is appropriate, both

from the standpoint of the realism of current requirements and to develop means

to protect the blades from damage.



Installation Design - General

The installation designs for the engines were described only briefly

and pod aerodynamics were adequately discussed in only one report. Both in-

stallation design concepts were unacceptable as shown, either from the lack

of detail or from poor design concept. As a general conclusion, greater

emphasis is required in the area of installation design and further wind tunnel

work on nacelle-wing or body aerodynamics is essential.

Noise - General

a. The approaches to achieving the NASA goals of: 1) FAR 36 - 10'EPNdB

in the late 1970's, 2) FAR 36 - 15 EPNdB in the tnid-1980's and 3) FAR 36 - 20

EPNdB in the mid-1980's using aircraft operating procedures were adequately

addressed.

b. Contractors' results indicated that the FAR 36 - 10 EPNdB goal was

achievable, the FAR 36 - 15 EPNdB goal was achievable at significant penalty

and the FAR 36 - 20 EPNdB goal was not achievable even utilizing unrealistic

flight procedures.

c. Neither contractor studied an aircraft-engine configuration using

current technology engines or their derivatives to provide a basis from which

to judge the difficulty of achieving the noise goals, or the relative cost

in terms of DOC and ROI with current technology. This is a significant over-

sight.

d. The contractors did not truly assess the impact of inlet acoustic

splitters. Nor was the loading produced by engine stall, the anti-icing bleed

required, the accessibility for fan blade maintenance, and the impact of anti-

icing the splitters on aircraft takeoff performance considered.



e. The airlines would probably look to operational procedures as the

first step towards achieving the specified noise reduction goals. Additional

acoustic treatment would be used to achieve the actual goal and every means

of avoiding fixed inlet splitters would be examined prior to their acceptance.

f. Noise footprint areas were provided in the contractors' reports.

It is suggested that this type of data be more carefully analyzed to determine

the benefits of varying the goals at each of the three measuring stations de-

fined in FAR 36. Uniform reduction of land area exposed to high noise levels,

until the impact area lies within the airport boundary, should be the overall

guide for noise research.

Pollution - General

The final reports of both contractors continue to suggest the use

of water injection to meet the NASA emission goal for oxides of nitrogen (NOX)

of 3 pounds of NOX per thousand pounds of fuel. The airlines believe that mean-

ingful reductions in NOX emission can be achieved through advanced combustion

research. The airlines are unalterably opposed to the use of water injection

either for thrust augmentation or for pollution control.

The bases for this position are;

a. The use of water injection in past and current engines has

invariably led to marked deterioration of hot section parts-

life.

b. Engine reliability and aircraft dispatch performance are ad-

versely effected, and

c. The cost of logistically supporting water injection is con-

siderable.

Water injection should be considered only as a last resort. It is

recommended that current emission goals be reconsidered, and that the NASA

set emission objectives based on forthcoming Environmental Protection Agency



Standards. NASA's objectives should be to insure that the required state-of-

the-art is available to meet stated requirements in a technically reasonable and

cost/effective manner.

Economicst - General

The assessment of economic benefits resulting from advanced technology

and the costs associated with meeting the pollution and noise goals arethe

weakest area of the contractors' reports. In future studies and perhaps as a

separate and distinct project /'economics" needs more study. it is the airlines

understanding that the Department of Defense is also concerned about ownership

and operational costs associated with advanced technology engines.

SUMMARY

The Advanced Transport Technology Propulsion System Studies produced

a wealth of insight into the areas of research which require further or new

effort to enable the challenges of lower noise and pollution to be met. This

report although critical in nature is directed at providing additional insight

into airline concerns. The normal goals of better fuel consumption and lighter

weight need to be judged in the broader perspective of lower noise, lower

pollution and lower system operating costs.
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SECTION II: EVALUATION OF PHASE III - ADVANCED TRANSPORT TECHNOLOGY
ENGINE STUDIES -- ASSESSMENT OF TECHNOLOGY READINESS

The following recommendations and conclusions are based on the

final oral reports presented by the ATT Engine Study Contractors and

address the state of the art projected to be required to enable future

propulsion systems to meet the pollution, noise, performance and economic

goals which must be achieved. The ATT engine study contractors did not

present definitive statements as to the timing and research funding

required to meet future objectives. Both contractors did provide

recommendations concerning the research programs required to meet the

NASA objectives for the late 1970 and mid-1985 time periods.

The following suggested research programs have been organized

in a fashion to prioritize the research effort in categories of near

and long range as judged appropriate from an airline point of view.

The organization of the programs are based on a broader range of air-

craft types being considered for the same 1975 and beyond time frame,

and the combination of tasks in individual research projects to meet more

than individual aircraft requirements.

Background

Long Range Plan for Propulsion Systems

Long range plans are of little value beyond the immediate time

frame in which they are produced. The organization of data and the

interfaces between requirements are, however, valuable in assessing an

alternative course of action and project timing.

The airline environment is currently one of heavy economic and

social pressures to reduce aircraft noise and pollution. The economic

pressures are not expected to change even though airlines are beginning

11



to return to a profitable status, but investments in new facilities and equip-

ment are expected to be at a much slower rate than might otherwise be expected.

The investment rate in new facilities and aircraft and the growth rate

in cost of labor have far exceeded the growth rate of revenue. These

trends must be reversed and effort over a considerable number of years

will be required to achieve a proper balance. Effort to standardize

fleet mixes, prolong the use of current in-service aircraft through

interior re-arrangement/refurbishing are expected to dominate the

efforts of airlines. The purchase of new aircraft of existing or under

construction types will be slowed until well past the 1975 time period.

Noise levels of current aircraft will be addressed by current research

programs under FAA and NASA cognizance and a retrofit of noise attenua-

tion devices is possible for the 1975 to 1978 time period. Reconsidera-

tion by the airlines of the economics of retiring current aircraft or

retrofit may spur additional sales of current wide-body aircraft types

beyond those currently planned or on option. The sale of unretrofitted

current aircraft to supplemental or foreign carriers is judged to be

highly improbable as other industrialized nations have similar serious

noise problems and would undoubtedly require similar retrofit of their

own carrier aircraft and impose suitable aircraft noise limits for

access to national airports.

The combination of economic burdens placed on the airlines

could probably defer additional new type aircraft purchase until the

1978 to 1980 time period.

In the 1978 time period there are several aircraft types open

for consideration: super-sized wide-body jets of the 747 type, quiet

12



STOL aircraft and short field conventional aircraft of 727 to DC-10

size (100 to 250 passengers)'. The environmental.pressures against

new airport development pose serious difficulty in-, the development of

a STOL.transportation system. The airlines, already are greatly

concerned over, the high dollar per mile cost of the 747 so that except

in isolated cases, a super-747 does not appear attractive.

The use of existing airports: of the 4000 to 5000 feet runway

category, to.* take, over the short haul', transportation function-appears'

attractive for a variety of. reasons; reduce large airport congestion, mar-

ket expansion potential, population re-distribution,. etc., particularly

in terms of U.S. national long-range needs. Such aircraft must fit into

the airport environment without negatively changing the community social,

environmental',, and economic nature. If this can be successfully

accomplished, a STOL transportation,system-could be developed for the

mid-1980 time: period.

In' long haul' transportation' a second generation SST is possible.

However, the environmental pressures particularly;noise, will have

serious, impact on the profit potential versus investment risk-of such

a project. SST's must meet the same noise requirements as conventional

subsonic aircraft which will'be below current FAR.36 requirements. This

is an impossible challenge with todays state of.the art. The ATT. is a

logical choice, as is a slightly transonic aircraft with good

subsonic and low supersonic Mach number (1.3 to 1.6) capabilities.

These aircraft types appear to have a better chance of meeting environ-

mental acceptability criteria than a supersonic transport. A supersonic

transport meeting FAR 36 minus 15 EPNdB is a monumental task currently

impossible- to achieve.

13



For long range large freighter aircraft and transports, the

field of nuclear propulsion becomes attractive in the 1990 and beyond

period, particularly in light of the world's dwindling known oil

reserves.

In summary, research projects must be structured to fulfill

the needs of projected aircraft propulsion systems, permitting as many

alternative courses of action as are possible. The emphasis on engine

economics with heavy stress on the maintenance labor element

associated with engine operation, must not be overlooked. Pollution

control is obviously an integral part of advanced research efforts.

Military requirements are expected to provide continued

advancements in the field of materials, light weight components and

high performance engines. The lack of emphasis on noise, pollution and

economics, however, make the use of military developed engines highly

unlikely. Considerable re-design of core engine components would

undoubtedly be required to meet maintainability, reliability, life and

other economic criteria of the airlines. The value of these technology

programs, however, will be significant.

Technology Required

Through the 1978 time period, retrofit and short field CTOL

seem to dominate the picture in airline advanced planning. The socio-

political picture indicates that something must be done to the current

narrow-bodied aircraft powerplants to correct the excessive noise produced.

During the 1980 to 1985 era, STOL, a second generation SST and transonic

type aircraft propulsion systems appear reasonable targets. In the 1990's,

probably nuclear propulsion could be the "start" for advanced technology

research.

14



Research Program Elements & Timing

NOISE

A. The noise research programs required for near term aircraft

and retrofit are listed below, with 1976 the objective for availability.

1. Fan Noise Research

(a) Single stage high speed (1.7 to 1.9 pressure ratio)

(b) 2nd Stage low speed, high pressure (1.9 to 2.5) fans

(c) Inlet plus fan aero design integration.

2. Jet Noise

(a) Low speed jet ( 700' to 1500'/second)

(b) Effects of: turbine swirl, clearance tip speed,

nozzle configuration, mixing, suppressors.

3. Operational Procedures --

Validation of realism and effects of aircraft procedures

including effects on psycoacoustic reaction (fear of crash).

4. Psycoacoustics --

(a) Relationship of social and economic factors,

(b) spectral shaping as an approach to reducing psychological

reaction to noise , and

(c) Low velocity noise and house vibration/resonance on

annoyance.

5. Reverser Noise & Control --

Relationship to community annoyance.

6. Validation of current slant range noise levels (beyond 3000")

to establish baseline footprints of existing aircraft.

7. Inlet shape and variable geometry effects on noise including,

(a) Sonic Inlets

(b) Retractable Splitters

(c) Variable Lip/Suck-in door

15



8. Advanced load carrying acoustic treatment materials.

B. Long Term Noise Research - Objective, completion by 1980.

1. Fan Noise

(a) Low speed low pressure ratio single stage fans (1.1

to 1.3) including variable pitch fan effects.

(b) Multi stage fans of very high pressure ratio, 1.9 to

3.0 (for STOL & SST).

2. Jet Noise

(a) High Speed Jets (15001/second to 3000'/second).

(b) Low Speed (500' to 700'/second).

3. Combustion Noise - both basic combustor/duct burning and

afterburning.

4. Acoustic Materials.

5. Aircraft noise-floor due to flaps and gear extended (STOL),

6. Psychoacoustics.

EMISSIONS

The control of emission is essential.

1. Demonstrate combustors with ATT goals for smoke, carbon

monoxide and hydrocarbon emission levels in current high

by-pass engines by 1975.

2. Validate effects of water injection on NOX formation on

various engines and demonstrate effects of other emissions

by 1974.

3. Demonstrate advanced combustor system for NOX control on

appropriate real engines capable of reducing NOX by one

half by 1975, without water.

16



4. Demonstrate advanced combustion system capable of reaching

ATT goals by 1979.

5. Review and investigate dispersion of pollutants from aircraft

engines in upper atmosphere — continuing program.

ECONOMICS OF GAS TURBINE ENGINE/PROPULSION SYSTEMS

Undertake a study effort to establish the cost benefit relation-

ships of various engine design features as a guide to producing

economically attractive propulsion systems to offset cost of meeting

social requirements.

1. Maintainability criteria and design.

2. Reliability criteria for design.

3. Fuel consumption, purchase cost and maintenance cost

relationships and trade-offs.

4. Cost for development, certification and production and

minimization (realism of certification testing require-

ments) .

5. Advanced engine diagnostics.

The timing is urgent and such a .program should be started forth-

with to insure better guidance than the current ATA methods for assessing

engine design features.

ADVANCED TURBINES

Objectives for 1976 --

1. Highly loaded high speed turbines (reduced cost of high

turbine modules).

2. Highly loaded low speed turbines (reduce cost of low speed

fan turbine).

17



3. Turbine Materials — improved life, higher temperature,

lower cost.

4. Burst Protection.

INTEGRATED NACELLE DESIGN & AERODYNAMICS

Objectives for 1974 --

1. Weight reduction and improved economics.

2. Validate drag and performance of high speed nacelle

configurations.

3. Economic utilization of material for acoustic treatment.

4. Maximize maintainability.

5. Improve engine design techniques and reversers.

ADVANCED ENGINE CONTROL & INSTRUMENTATION FOR 1973-74

1. Reliable and accurate instrumentation for operation and

diagnosis of engine faults.

2. Engine controls which will provide desire/required power

at fixed power lever angle during appropriate flight

segment.

ADVANCED COMPRESSORS/FANS (1978)

1. Lower cost -- high stage loading, fewer blades -- for

pressure ratios of 20 to 30.

2. Composite Materials. . - '•' • ;

3. Burst Protection.

4. Low deterioration of performance and stall margins.

18



SECTION III; PROPULSION SYSTEM RELIABILITY AND COST FOR UNSCHEDULED
MAINTENANCE OF TODAYS AIRCRAFT

Introduction

The propulsion system for aircraft represents between 15 and 20

percent of an aircraft's purchase price and 45 to 50 percent of the cost of

aircraft maintenance. The material covered in this section of this report

addresses historical performance in terms of propulsion system reliability

and the cost for unscheduled maintenance. Presented are data concerning

the reliability of current propulsion systems as expressed in delays in

scheduled aircraft departures with a breakdown of the delays by ATA coded

subsystem. The economic impact of these delays is discussed in relationship

to the estimated cost and in terms of gross profit per aircraft flight.

Lastly the economics of premature removals is discussed with costs information

of engine and subsystem premature removals and the importance of accessability

and simplification of installation removal tasks.

Departure Reliability

Departure or dispatch reliability is usually quite poor when a new

aircraft is introduced into service. Figure 1 shows the trend of Boeing 707

series aircraft dispatch reliability versus years of service. Each new air-

craft follows the same trend. The airline concern is directed at the final

level achieved. The following table (Table 1) shows 6 months average dis-

patch reliability performance as of March 1972 for several aircraft and the

portion of the unreliability due to the propulsion system.

19



Figure 1

CO
<

Q_
CO

o
CNJ
r-

ci

05
(O
0>

00
(O
0)

(O
0)

in
(Oo>

s
O)

CO
(£>
O)

CM
(O
O

(Ocn

o
co
O5

20



Table I

Aircraft Dispatch Reliability
(6 month average Oct. 1971 thru Mar. 1972)

B727 B707 B747 DC-10*

Dispatch Reliability 98% 96.5% 93.3% 89.5%
Delays/1000 departure 20 35 67 105
Engine (D/1000 dep.) 5.2 8.7 19.9 21.5
(ATA Code 72-80)' Sub-total (26%) (24.9%) (29.8%) (20.5%)

Total Powerplant (D/1000 dep.)
(ATA 72 thru 80 plus 2410,2420,
2612, 2910 6.9 10.9 23.4 Not Avail.

% Total (34.5%) (31.1%) (34.9%) Not Avail.

*Note - first 6 months of service.

The engine as defined above includes all items of engine subsystems

including starter, instrumentation and reverser/nozzle. See Appendix I for ATA

coding of engine and subsystems. The second groups called pbwerplant includes

all of the above plus the CSD (ATA Code 2410), Alternator/Generator (ATA Code

2420), fire detection system (ATA Code 2612) and hydraulic pumps (ATA Code

2910). These items are included because they are installed on the engines, sub-

ject to the engines environment, and require opening engine cowling for serv-

icing. The design simplicity of removal and installation of these components

effects the dispatch delay rates.

The basic engine (ATA Code 72) represents 8 to 10% of the delays

caused by the total engine or propulsion system. The large bulk of the delays

are caused by engine subsystems with starting, reverser and oil causing the

majority. The oil pressure/temperature instrumentation is part of the oil sys-

tem. 'Review of Table II which follows will provide the breakdown of delays

by ATA code and length of delay.
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Table II

Six-Month Delay Summary
October 1971 Through March 1972

System

72

Engine

73
Engine Fuel
& Control

74

Ignition

75

Air

76

Controls

77

Engine Ind.

78

Exhaust

79

Oil

80

Starting

Delay
Length
(Mins . )

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-29
60+
Total

6-29
30-59
60+

Total

(Rate:

707-Psgr.
No.

6
9
21
36

39
13
18
70

0
0
8
8

12
13
10
35

4
1
2
7

6
3
3
12

69
35
17
121

39
34
26
99

56
35
20
111

Rate

.104

.156

.364

.624

.676

.226

.312
1.214

0
0

.139

.139

.208

.226

.173

.607

.069

.017

.035

.121

.104

.052

.052

.208

1.198
.607
.295

2.100

.676

.590

.451
1.717

.971

.607

.347
1.925

Delays per 1000 departures'^

707-Ftr.
No.

0
3
9
12

1
3
4
8

0
0
3
3

2
2
7
11

0
0
1
1

3
0
0
3

5
6
3
14

0
5
6

. 11

4
5
4
13

Rate

0
.418

1.254
1.672

.139

.418

.558
1.115

0
0

.418

.418

.279

.279

.976
1.534

0
0

.139

.139

.418
0
0

.418

.697

.836

.418
1.951

0
.697
.836

1.533

.558

.697

.558
1.813

727-023
No.

5
7
15
27

24
11
10
45

0
12
5
17

19
12
21
52

3
4
1
8

3
3
4
10

17
9
9
35

19
19
16
•54

36
14
7
57

Rate

.085

.119

.254

.458

.407

.186

.170

.763

0
.203
.085
.288

.322

.203

.356

.881

.051

.068

.017

.136

.051

.051

.068

.170

.288

.153

.153

.594

.322

.322

.272

.916 ;

.610

.237

.119

.966

727-223
No.

4
2
17
23

10
3
3
16

1
4
7
12

13
7
10
30

5
4
5
14

4
0
2
6

14
13
9
36

24
15
7
46

44
7
7
58

Rate

.087

.044

.371

.502

.218

.065

.065

.348

.022

.987

.153

.262

.284

.153

.218

.655

.109

.087

.109

.305

.087
0

.044

.131

.305

.284

.196

.785

.523

.327

.153
1.003

.960

.153

.153
1.266

747
No. Rate

1 .156
2 .312
8 1.248
11 1.716

2 .312
2 .312
4 .624
8 1.248

0
0
4
4

3
1
0
4

0
0

.624

.624

4 .624
5 .780
3 .468
12 1.872

.156

.156

.156

.468

.468

.156
0

.624

7 1.092
9 1.404
18 2.820
34 5.316

6 .936
7 1.092
5 .780
18 2.808

16 2.500
10 1.560
8 1.248
34 5.308
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Table II
(Cont'd)

System

2410

CSD

2420

Generator

2612

Fire Prot.

2910

Hyd . Pumps

Delay
Length
(Mins.)

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-59
60+

Total

6-29
30-29
60+

Total

707-Psgr.
No.

17
3
0
20

27
16
10
53

13
4
2
19

7
8
25
40

Rate

.295

.052
0

.347

.468

.278

.174

.920

.226

.069

.035

.330

. 125

.139

.433

.697

. 707-Ftr.
No.

1
0
2
3

1
4
2
7

1
0
3
4

0
1
8
9

Rate

.139
0

.279

.418

.139

.558

.279

.976

.139
0

.418

.557

0
.139

1.115
1.254

727-023
No.

4
7
1
12

17
3
7
27

7
3
5
15

10
17
17
44

Rate

.068

.119

.017

.204

.288

.051

.119

.458

.119

.051

.085

.254

.170

.288

.288

.746

727-223
No.

7
2
3
12

5
2
3
10

8
9
13
30

8
8
19
35

Rate

.153

.044

.065

.262

.109

.044

.065

.218

.174

.196

.284

.654

.174

.174

.414

.762

747
No.

0
0
1
1

0
1
2
3

1
0
1
2

3
5
8
16

Rate

0
0

.156

.156

0
.156
.312
.468

.156
0

.156

.312

.468

.780
1.248
2.496
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The Economics of Aircraft Departure Delays

The ability of commercial aircraft to leave the gate on a scheduled

flight on time in the majority of instances has been one of the reasons for the

growth of commercial aviation. Individuals planning business trips or trips

for personal pleasure do not appreciate having carefully laid plans for meet-

ings with associates or friends cancelled or rescheduled by a long delay or a

cancellation of their planned flight. Airlines are sensitive to the fact that

reliable performance in completing planned flights and in meeting flight sched-

ules has an effect on their continued business success. In addition to this

simple truism the purchase price of an aircraft of the ATT type will be high

as is the space the aircraft occupies at the airport. The people who service

•the aircraft or provide the gate services for aircraft arrival and departures

must also be paid. The ability to make a profit requires the efficient utiliza-

tion of all of these resources. The key feature of all airline planning and

scheduling is attempting to achieve the maximum practical utilization of these

resources. The ability of the aircraft to arrive and leave the airport in a

dependable fashion is a powerful function in this planning. A delayed departure

is expensive and efforts are undertaken to avoid them. The cost for a departure

delay is associated with the unrecognized utilization of the aircraft, the ex-

pense for crew time, passenger service personnel time, baggage service person-

nel time and snarls, the revenue lost as passengers in a hurry find other means

of transportation, (normally a competitor) the cost for passenger assistance,

and revised reservations and analysis of why the delays occur. If all of the

delay costs are considered, excluding the cost of unrecognized utilization,

Table III below represents the estimated cost of a delay. The ATT type air-

craft will have at least the same expense per delay as the DC-Id and 747.
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$160
140
100
95
98
90

$420
350
280
270
245
230

$1710
1435
1315
1230
1100
950

Table III

Cost per Delay
(Length of Delay in Minutes)

0-29 30-59 60 and over

747
DC-10
707 (Stretch)
707
727 (Stretch)
727

Note: These cost are representative costs of an average
delay variations of $20 or $30 for 0 to 29 minutes
and 100 to 400 dollars for 60 minutes and over are
possible depending on circumstances.

The cost of delay data given above are made up of four parts:

1) lost passenger revenue, 2) passenger handling costs for lost passenger,

3) operating cost (cost of crew, fuel and oil) and 4) analysis costs. The

cost for maintenance effort, parts replaced or aircraft depreciation over un-

used hours is not included. If for accounting purposes it is assumed that

fche delayed time loss cannot be recaptured by operating longer another day,

the cost for depreciation could be added raising the cost by between $200

and $400 per hour of delay. There is no continuing or return trip revenue

loss (subsequent flight legs cancelled or delayed) included in the values

covered above and if they were the costs would become very much larger. The

average net profit per flight in a very good year would amount to $100 per

flight with an aircraft mix similar to American Airlines. The larger the air-

craft the larger the profit potential. For the ATT type aircraft an average

gross profit per flight of $500 dollars should be projected. The cost of a

delay equally projected would be between $2000 and $2500 per one hour delay.

It would therefore take several flights with good payloads to recover the cost

of a single delay over one hour. Improved reliability is essential for any

new aircraft type.

The Economics of Premature Removals

The premature removal of any items of equipment due to failure or
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unsatisfactory operation prior to the expected maintenance inspection or re-

pair period is equally expensive. In American's accounting system for re-

liability planned removals are not counted. Engines or components removed

from service on a scheduled basis for replacement of life limited parts or

upgrade modifications are not considered in the statistics reported below.

The basic causes for the unscheduled removal of engines are

categorized below as a percentage of total engines removed.

Table IV

Basic Causes of Unscheduled Removals

Blade failure 17.3%
Bearing failure 13.1
Accessory drive failure 13.2
Cracked frame 11
Cracked casing 7.4
Leaking or cracked fuel or
oil line 6.5
Carbon seal wear or failure 5
Performance loss 3.5
Pump wear or failure 3.1
Combustor distress 3
Vane failure 2.5
FOD . - 2
Imbalance 1

Note: Based on a sample of 2163 un-
scheduled removals.

Unscheduled engine removals are the most expensive aircraft component

removal. The repair of the average prematurely removed low bypass ratio engine

is '30,000 to 40,000 dollars. The cost to repair a prematurely removed high

bypass ratio engine is expected to average between 100,000 and 120,000 dollars.

Cost of repair of other prematurely removed minor components varies from $11

to $200. The repair cost of main engine fuel controls varies from $413 to

$2430 as you move to the more expensive engines. Premature removal repair

costs of starters vary from $220 to $1305.

26



The cost of premature removals can be segregated Into removal/

installation, transportation, repair, and testing. A large factor in the .

cost of removals is the manhours required for each of the task's set forth

above. The installation and removal manpower requirements are influenced

by the complexity of the installation and accessibility to the component

for removal and replacement. The 2nd largest tnanhour requirements are associated

with engine removal and the effort required to remove aircraft associated

hardware (inlets, plumbing, components, etc.) from the engine such that re-

pairs can be accomplished. The Quick Engine Change (QEC) configuration of

the engine is a configuration where part of the aircraft installation hard-

ware is installed. Normally this hardware includes instrumentation, fuel

system plumbing, electrical and hydraulic systems, reverser/nozzle systems

and inlets. Cowling and special position equipment is added later during

installation to match the position for installation (inboard, outboard, center,

right or left side) .

Table V

Maintenance Elapsed Time & Manhours Required to Change an Engine,
and to Strip or Rebuild the Quick Engine Change Configuration

Engine/Aircraft
Model

JT8D/727
JT3D/707
JT9D/747**
CF6/DC-10***

Engine Change*
Elapsed Manhours
(Hr.)

8 40
8 30
8 44
4 31

Q.E.C. Strip
Elapsed Manhours
(Hr.)

8 12
8 27
24 100
8 32

Q.E.C. Build
Elapsed Manhours
(Hr.)

24 80
32 102
60 500
16 120

Notes: * Engine change time based on QEC configured engine.
** Accessories mounted on core.
*** Accessories mounted on fan in an Integrated Propul-

sion System Design.

Table V provides the elapsed time and manhours required for engine

change and QEC strip and buildup. The JT9D installation, designed for mini-

mum drag, requires 450 manhours of additional labor per engine change, strip and

rebuild over the CF6 installation. The added cost is roughly $2250 per re-
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moval in direct labor. Elapsed time is also important and impacts spare engine

requirements and aircraft delays and cancellations. These factors are the

basis for the airlines insistence on an integrated pod design, outside gear-

box (not mounted to the core), and excellent accessibility. In Table VI

the demonstrated times to change various components are listed for the 747

pod and DC-10 pod. These times are indicative of what installation complex-

ity or simplicity can do to replacement times and the possibility of delays.

While only a few components have been listed there is sufficient indication

of the differences to understand airline concern in this area.

Table VI

Power Plant Accessory Replacement Times
Engine/Aircraft

Unit

Anti-Ice Shut-Off Valve
CSD
AC Generator
Hydraulic Pump
H.P. Bleed Control Valve
Starter

Bleed Air Precooler
Oil Tank
Fuel Control & Pump
Fuel Flow Transmitter
Oil Cooler
Fuel Nozzle

Hot Section B"scope

CF6/DC-10 (Wing)
in Minutes

6
12
39
11
12
4

None
19
45
15
25
13

29

JT9D/747 (Wing)
in Minutes

23
17
96
45
60
45

60
33
240
49
40
105 to 240
(depends on
location)

150

Airlines are concerned with small differences because they tend to get multi-

plied by large numbers.

Unscheduled Maintenance and Delay/Cancellation Costs

TableVII is a summary of 1971 estimated annual costs by ATA subsystem giving the

cost per 1000 flying hours of delays, cancellations, pilot reported discrepancies
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(PIREPS) and premature removals .(P/R) . These costs exclude engine costs and are

directed at subsystems. These data are part of the management tools utilized to

control costs and improve reliability.

Table VII

Estimated Cost for Unscheduled Maintenance,
Delays and Cancellations for 1971

($/1000 aircraft hours)

727 727

7310 Fuel Heating
7320 Fuel Control
7330 Fuel Flow Ind.
74 Ignition
75 Engine Air
7711 EPR
7712 Tachometers.
7722 EGT
7730 Vibration
78 Thrust Reverser
7901 Oil leaks/Svcng.
7930 Oil Pressure Ind.
7931 Oil Quantity Ind.
8000 Misc. Starting
8011 Starter
8012 Start Valves

Stretch
16

136
250
282
570
104
113
77
82

483
160
205
131
78
215
672

Standard
27
375
180
345
361
102
90
95
67
459
107
155
112
145
200
343

707-123/320-720 747

$/(1000 A/C hr.) Total 2574 3163

or $ per A/C Hour. 2.58/hr. 3.16/hr.

A/C Total per/hour $22.27/hr. $21.22/hr.
(excluding engine premature removal and delay costs)

51
250
123

207
67
70
82
44
789
143
358
47
42
592
106

2971

2.97/hr.

$22.56/hr.

428
338
505
245
1528
267
579
189
138
2328
347
581
253
549
1.948
224

10447

10.45/hr.

$83.44/hr.

The importance of this data is the relative increases in costs for

simple subsystems with advancing technology aircraft. If the DC-10 does not

show marked improvement the airlines will be extremely disappointed. Whatever

happens future aircraft must improve on the best that currently exists.
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SECTION IV: DESIGN CRITERIA FOR FUTURE TRANSPORT ENGINES

Introduction

The following material presents design requirements for commercial

powerplants. This section is divided by normal engine components from front

to rear (fan inlet case to final turbine case). The intent of this material

is to provide design guidance as to those features which assist the airlines

in long term maintenance and operation of commercial engines. These require-

ments should not be considered as rigid. Specific situations may dictate a

departure from the principles set forth, however, the necessity for such a

departure should be well supported.

It is possible that the annotation of these few principles will be

considered redundant, however, experience has shown that each new engine

design violates many of the principles set forth herein. The engineering de-

sign teams familiar with current and past problems are unfortunately not

necessarily involved in the design of future products and mistakes previously

overcome at great expense are often repeated.

Engine Component Design Life

The components of the engine shall have, as a minimum with normal

maintenance and repair, the design life capabilities as listed below:

*SLPI **TSL
Hours Landings Hours Landings

Stationary components 10,000 10,000 35,000 35,000
Casings, frames, compressor
section guide vanes, accessory
drive casings, inlet adapters
and associated components

Stationary Components 6,000 6,000 25,000 25,000
Combustion chamber, turbine
nozzle guide vanes, exhaust
nozzles and associated
components
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Rotating members 10,000 10,000 25,000 25,000
Fan blades & compressor blades

Rotating members 6,000 6,000 20,000 20,000
Turbine blades

Rotating members 15,000 15,000 30,000 30,000
Fan discs, compressor discs,
spacers, hubs, shafts and
associated components

Rotating members 15,000 15,000 25,000 25,000
Turbine wheels, spacers, •
shafts and associated
components

* SLPI - Service Life Per Installation
** TSL - Total Service Life (with inspection/repair)

General Design

The engine as installed shall be designed for modular maintenance.

Reference Surfaces. The engine shall have permanent reference

points to be used for the purpose of alignment and reference in plating,

machining, balancing and engine build up. The reference points serving

this function shall not be subject to wear or distortion. The use of close

tolerance bolts and bolt holes for maintaining concentricity and alignment

is unacceptable.

Fretting/Galling Protection. All bolted disc/disc, disc/shaft, or

shaft/shaft attachments must be designed or otherwise protected from fretting

and galling. Additionally, all air tubes, clamping devices or other components

in contact with compressor discs must have anti-fret protection on both the

component and bores.

Coatings/Wear Surfaces. Avoid coatings and processes that cannot be

applied at overhaul shops. Wear surfaces should be designed to be repairable

or replaceable (throw away) parts. Compressor vane platform ledges should be

protected with silver, moly spray, and tungsten carbide or equivalent in the

proper stages in the progression from forward to rear, "revisions to apply

peripheral loading on the vane assemblies in the casings shall be provided
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to eliminate relative motion.

Bolted Assemblies. Bolt holes shall be capable of repair by bushing

and sufficient material shall be provided for refurbishing such holes. Dowel

bolts shall not be used in rotating assemblies as radial alignment and radial

load carrying members - rabbeted joints or snap diameter provisions are re-

quired. Avoid use of two-thread series such as 1/.4-20 and 1/4-28 on the same

part or in the same area. When different threads must be used, use different

diameters. Bolt threads should not be exposed to hot air streams.

Alignment of Assemblies. Provisions shall be incorporated to

facilitate checking the alignment of shaft to shaft connections, squareness

of components .to their respective shaft. For shaft to shaft connections

helical splines are preferred.

Labyrinth Seals. Knife-edges of labyringth seals must run against a

soft abradable material to maximumize knife-edge life. Stationary seal linings

should be easily replaceable, preferably bolted. Backing plates should be de-

signed such that unlimited replacement of abradable material is possible.

Nibrazing or EB weld repair of knife edge seals must be developed. Long lead-

ins should be provided on engine parts to prevent damage to knife edge seals,

bearings, etc. during assembly. Reliance on the use of special guide tools

by maintenance personnel should be avoided.

Support/Handling Points. Ground handling points shall be provided

on engine case to facilitate engine buildup and teardown and on all components

and assemblies that exceed 44 pounds. . • " . . .

Bolt/Fastener Considerations. In designing and selecting fasteners

it is desirable to use quick opening fasteners wherever feasible and to pro-

vide ample clearance to permit the use of power tools. The use of integral

threads on expensive parts should be avoided. Plugs and fitting which require

frequent removal should have rugged threads to avoid stripping. The design
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should insure that washers, gaskets, bolts, etc. do not fall out of position

during blind assembly and captive fasteners should be used where access is

difficult and dropped feasteners difficult to recover.

Maintenance Tools and Operation Considerations. The total engine

design should be such that all maintenance actions can be performed in ac-

cordance with human engineering standards (Ref. MIL STD 803A). Provide means

to manually rotate engine rotors for inspection by borescope or other visual

means. Design to prevent personnel injury and damage to engine parts when

performing preventive and corrective maintenance. Wherever possible existing

tooling and wrenches should be considered. Provide guides to prevent tool

disengagement when tool access must be blind. Avoid the use of torque values

which exceed those attainable with hand operated torque wrenches with the

obvious exceptions of spanner nuts and bearing retainer nuts. Provide clear-

ance for drive sockets and at least 90 degrees movement of wrench handles.

0-Ring Installations. Blind o-ring installations must not be "blind,"

i.e., it must be possible to insure that the o-rings are not cut or gouged

during installation. O-ring seals must not be used on internal oil lines or in

the combustion section. A redundant o-ring seal installation should be con-

sidered in cricital areas.

Engine Rotating and Stationary Parts

1. Each major rotating unit such as the fan, compressor and

turbine shall be capable of being individually balanced prior to final engine

assembly. The requirement to trim balance after assembly is to be minimized.

2. The design of the fan, compressor and turbine cases shall pro-

vide containment of damage from rotor blade failures. All possible failure

modes of all high rotational speed portions of the engine shall be studied

with the objective of eliminating the possibility of catastrophic failure

where failed parts penetrate the engine cases. Fail-safe designs shall be

incorporated with the objective of eliminating the possibility of catastrophic
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failure. Particular attention shall be given to the following.

a. The integrity of turbine, fan, and compressor discs

with the objective of having blades fail first under

overspeed or overtemperature malfunctions.

b. The integrity of shafts connecting fan and compres-

. sors to turbines such that bearing or lubrication

failure shall not cause parting or decoupling of the

shaft.

3. Design stator vanes to be individually replaceable insuring

that reversed installation or installation in the wrong stage is precluded.

4. Design compressor blades such that installation in the wrong

stage or in reverse position is precluded. Moment weighted blades should be

used. If shear wire is used for blade locks, use minimum diameter consistent

with loading and make wire holes in blades readily accessible.

5. Knife edge seals and seal lands should be inexpensive replace-

able parts. Replacement seal lands should have additional material to allow

continued use of worn knife edge seals.

6. The design must permit and provide for borescope inspection to

the maximum extent possible. Borescope provisions for rotating components

should all be located on the same side of the engine below the horizontal

centerline and must be free of obstruction for rapid access as installed.

7. Provide centerpunch on turbine blade tip and vane roots at

stacking points. This point serves as a reference for dimensioning to

facilitate repair.

8. °rovide means of ataching fixtures for radial and axial restraint

between static and rotating parts for use in assembly and disassembly. Provide

generous snap engagement on hubs, spacers and discs.
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9. Rotating assemblies should be removable without loading the

bearings.

Fan

1. Design the nose cone (spinner) and cover to be individually

replaced with quick release fasteners.

2. Insure that the nose cone is independent and not a part of

fan blade retention.

3. Access to low rotor trim balance weights through the nose cone

cover is required.

4. The fan blades should be individually replaceable as installed.

5. Blade retention should be accessible from the forward side.

6. The design should avoid the requirement to remove the entire

rotor assembly for blade replacement.

7. All fan maintenance action required including fixturing for

axial anti-torque, and radial restraint for removal and replacment of the fan

hub or entire rotor assembly should be possible from the front of the engine

without loading the bearing or removing the turbine.

Low Compressor

1. The design should provide for the removal and replacement of the

low compressor assembly without removal of the low turbine or loading the

bearings.

High Compressor

1. Variable stator vane system design should insure foolproof at-

tachment of variable stator actuating levers to preclude improper installation

of stator vanes.

2. Rod end bushings and seal must be externally replaceable and pro-

visions for larger bushings to account for rod end wear should be provided.
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3. The actuating system elements must be easily replaced, adjusted

or repaired with the engine installed.

4. Experience dictates the last stages of the compressor should be

designed to permit removal of material from the leading edges of blades and

vanes without significantly effecting performance or surge/stall character-

istics.

Turbines

1. Nozzle guide vanes should be weld repairable without a require-

ment to strip coating, if used. Additionally, coating should be such that

localized applications can be made for patch repairs. Nozzle guide vane leading

and trailing edges should be repairable by installing a new segment employing

nibraze or an equivalent process.

2. Turbine cases and components must be designed to be satisfactory

with regard to distortion, rail wear, repair welding and machining, maintenance

of distortion free turbine tip shroud assemblies, and matching of used case

halves with new halves in lieu of scrapping entire assemblies.

3. High turbine inlet temperatures require that all components forming

the cooling air passage be designed with an absolute minimum of exposure to

leaking, clogging, etc. In addition, anticipating that inspection limits on

these components will be extremely critical, ease of repair and restoration is

mandatory.

4. Replacement and repair of turbine blades are one of the most ex-

pensive elements of engine maintenance cost, and blade cracking is a large

source of engine premature removals. Considerationof blade replacement and

re'pairability are essential during the initial phases of design. It is de-

sirable to design the turbine such that the replacement of first stage turbine

blades as well as first stage nozzle vanes can be acomplished with the engine

installed.

36



.1

5. The means to check first turbine blade stretch at hot section

inspection should be provided.

Combustor/Fuel Nozzles

1. Fuel nozzle ferrules must be durable and should be easily re-

placeable without the need for spot welding. In addition, increased dur-

ability of fuel nozzle shrouds is required. Fuel nozzles should be self-

cleaning to eliminate carbon buildup and resultant clogging or hot streaks

in combustors.

2. Fuel manifold should be external to the case and both manifold

and fuel nozzles individually replaceable. Removal and installation of spark

igniters shall require a minimum of time.

3. Historically, myriads of small cooling holes and slots in com-

bustor assemblies will be extremely critical regarding distortion, closure,

etc., and such distortion will occur frequently in service. Every effort

should be made to produce a configuration not critical in this respect.

4. Combustion section support/sliding areas should be highly wear

resistant. Design for repair of wear surfaces by replating or easily replace-

able parts. Special attention should be given toswirler cups, combustion

liner seals, liner retaining pin bosses and 1st N.G.V. attachment points.

5. Provide for long lead-in on dowels, etc. in vane retaining

rings to facilitate reassembly after vane replacement.

6. Consider use of trapped nuts, tapped threads, studs, etc. at

fuel nozzle attachment pads.

7. Provide for borescope inspection of combustion section. Locate

a sufficient number of borescope ports to facilitate inspection of fuel

nozzles, combustion liners, and first stage turbine vanes and blades.
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Structural Cases

1. Use weldable materials for static structures and, where

possible, avoid materials requiring extensive heat treatment after welding.

2. Design case structures to be weld repairable on "the wing"

where possible.

3. Minimize the number of flange bolts where possible to facilitate

installation and removal.

4. Provide extra material (.020 to .030) in flanges to facilitate

repair.

5. Eliminate areas which will trap metal particles. They should

discharge through the scavenge system where they can be collected and

monitored.

6. Provide sufficient piloting of plumbing to facilitate blind

assembly.

7. Provide additional mounting locations for use when engine must be

disassembled for shipment.

8. Minimize size of case weldments to simplify repairability and

reduce spare parts requirements.

9. Bypass ducting shall not be part of the engine but rather part

of the installation for both non-mixed flow and mixed flow engines.

Bearings

1. All bearings should have anti-rotation devices to prevent

spinning, wear and metal debris development. If bolted, attachment/alignment

surfaces must have anti-fret treatment.

2. Bearing balls, rollers, races, and cages should be considered

interchangeable where possible.

3. Sumps must be easily replaceable.

4. Provide non-integral bearing and seal supports where feasible.

Where integral seal supports are used, design to permit replacement of seal
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assembly independent of the support structure.

5. Puller grooves should be provided as necessary to permit re-

moval of bearing without loading the bearing. This applies to inner and

outer races when other means of removal are not possible. Special attention

should be given to split inner races.

6. Avoid use of gear-driven scavenge pumps and "last chance" oil

filter screens in the bearing compartments.

Gearbox/Gearbox Drive

1. Gearbox drive shaft gear should have positive retention with

anti-fret and gall treatment on both the nut and mating surfaces. Silver

is not acceptable.

2. Gearbox drive shaft and gear must be removable as a unit and

gear matching should be a simple procedure with no blueing required.

3. Weak link in engine to gearbox drive assembly should be splined

center shaft.

4. Spline repair procedure shall be provided..

Accessories, Plumbing and Wiring

1. Consider location of plumbing and accessories to provide for

ready removal of gearbox.

2. Route external plumbing and wiring to minimize disassembly re-

quired for replacement of external components.

3. Locate joints in plumbing and wiring systems near separation

planes of basic engine units,

4. Consider ease of replaceability of EGT thermocouples when

selecting mounting design and type and location of wiring junction.

5. Design to permit calibration of exhaust probes without running

the engine.

39



6. Consider combining external components wherever reliability

and maintenance cost suggest payback (piggy-back fuel-pump-fuel control,

integral fuel filter-fuel pump, combined variable stator and main engine

controls, etc.).

7. Locate individual components and accessories to permit re-

placement without prior removal of other units.

8. Quick-disconnect mounting features for all components and

accessories shall be used.

9. Utilize trapped nuts or bolts where necessary to facilitate

removal of external units.

10. Consider accessibility when selecting locking devices for nuts

and bolts. (Lockwire requires more accessibility than tablocks.)

11. Provide ready access to borescope locations to provide for

use of borescope equipment.

12. Provide ready access to chip collectors, scavenge screens, vi-

bration pick-ups and other engine monitoring systems.

13. Provide access to oil and fuel filters, spark igniters, oil

filling provisions, oil level indicating devices, etc.

14. Establish envelopes for removal and/or inspection of oil and

fuel filters, spark igniters, chip detectors, scavenge screens, gearbox oil

pumps, and critical accessories.

15. Design to permit a check on ignition system continuity without

removal of spark igniters.

16. Fuel control wear points should be determined well in advance

so.field check out and repair procedures can be simplified.

17. Pressure port provisions should be considered in-between con-

trols to determine condition of control without removal.
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18. Cockpit engine trim capability shall be provided for use

after changing control.

19. Provide wrench flats as necessary to facilitate tightening and

loosening of gland nuts.

20. Slip joints and more wear resistant materials should be used

in clamping areas. Replaceable wear strips are preferred.

21. Oil cooler should be designed to facilitate cleaning,inspection

and repair.

22. Provide control adjustment features which preclude movement

caused by vibration, etc.

23. Provide an external speed trim adjustment on main fuel control.

24. Variable stator bellcrank bearings (if used) must have satis-

factory wear characteristics such thatwear will not cause calibration drift

which could induce stall.

25. Let design be guided by the requirements for minimum time,

minimum complexity and minimum cost.
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SECTION V: RELIABILITY. AND MAINTAINABILITY REQUIREMENTS FOR SUBSONIC
COMMERCIAL AIRCRAFT PROPULSION SYSTEMS

Propulsion System Reliability Objectives

The reliability objectives for future aircraft will be that the

total mechanical delays over 15 minutes plus mechanical cancellations and

interruptions shall not exceed 2 percent of the scheduled departures during

the last 6 months of the second year after introduction into scheduled serv-

ice. During the last 6 months of the third year of service the total

mechanical delays over 15 minutes plus mechanical cancellations and air

interruptions should not exceed 1 percent of the scheduled departures. The

objective is a dispatch reliability of 987, during the last 6 months of the

second year and 99% during the last 6 months of the third year.

Current dispatch reliability performance of the Boeing 727 is 98%.

The dispatch reliability of the Boeing 707 has averaged between 96.5 and 97.57<>

for a long period. The Boeing 747 and DC-10 as of March of 1972 had dis-

patch reliabilities of 957= with improvements in performance expected.

The powerplant contribution to aircraft mechanical delays, cancella-

tions and air interruptions is not expected to change greatly in the future.

Current propulsion systems are responsible for between 30 and 40 percent of

disptach delays. In order to achieve the goals stated above the propulsion

system for future aircraft must, not produce more than 70 delays over 15

minutes per 10,000 departure as a 6 month average during the last 6 months of

the second year of service, and not more than 35 delays over 15 minutes per

10,000 departures on average during the last 6 months of the third year.

The cost for delays beyond 1 hour increase rapidly. Additional

design goals for delays over 1 hour have been established at no more than

25 delays per 10,000 departures during the last 6 months of the second year

of service, and not more than 8 to 10 delays per 10,000 departures during

the last 6 months of the third year of service.
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The performance of current aircraft propulsion systems in meeting

the 1 hour delay objectives based'on 1971 data are as follows Boeing 727-21/

10,000, Boeing 707 series - 28/10,000 and 747 - 98/10,000. In these delay

rates the delays over 1 hour for the constant speed drive, generator, hydrau-

lic pump and fire detection system have been included. The inclusion of

these items is based on the rationale that installation and removal of such

items is a function of the manner in which the pod is designed. Delay rates

versus time for the majority of engine and installation subsystem can be studied

by reviewing Table II in Section III. If only normal power plant components

are included in the consideration of objectives (and this practice will be

followed for the rest of this report) the 1971 annual experience for propul-

sion delays are 727 - 15/10,000, 707 - 22/10,000 and 747 - 80/10,000 departures.

The objectives of 8 to 10/10,000 departures is approached the closest by the

727.

It is obvious that to meet the goals set forth that an allocation

of permissible delays within powerplant subsystem must be made. The follow-

ing table (Table VIII) is such a suggested allocation, and such allocations

would be made by the contractors under normal development programs, with ad-

justments for the actual design. Boeing 727 experience is included in the

table to illustrate suggested improvements and where relaxation can be tol-

erated.
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Table VIII

Possible Allocation of Potential Departure Delays
Over 15 Minutes and Over 1 Hour

(Targets 35 delays/10,000 departures over 15 minutes
and 8 delays/10,000 departures over 1 hour)

Over 15 min. Over 1 hour
ATA Code

72 Engine
73 Engine Fuel & Control
74 Ignition
75 Engine Air
76 Engine Controlling
77 Engine Indicating
78 Exhaust
79 Oil
80 Starting

Total

Note: Objectives and

2410 CSD
2420 Generator
2612 Fire Protection
2910 Hyd. Pumps

Target

13.1
5.5
2.1
4.1
0.3
2.0
3.3
2.3
2.3
35.0

experience

2.0
2.0
1.0
5.0

B727 Exper. Target

4.8
5.5
2.7
7.7
2.2
1.5
6.9
9.6
11.2
52.1

for other 'pod subsystems

2.3
3.3
4.5
7.5

3.5
1.4
0.6
0.7
0.1
0.3
0.6
0.5
0.3
8.0

are as

0.75
0.75
0.10
1.6

B727 Exper

3.1
1.2
1.2
2.9
0.6
0.6
1.7
2.1
1.3
14.7

follows :

0.4
0.9
1.8
3.5
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Reliability Requirements for Incorporation in Future Contracts

1. Reliability Program Plan - The contractor should prepare and

submit a Reliability Program Plan specifically oriented to the requirements

of the propulsion system package. The plan shall also identify the organ-

ization and responsibilities for managing the Reliability Program. It will

provide specific information as to how the contractor will meet the reliability

requirements during design, development, production, and test phases. An

extremely critical inclusion shall be specific vendor-supplier controls to be

implemented by the contractor. Guidelines provided in MIL-STD-785 can be used

for the preparation of the Program Plan.

2. Reliability Guarantees - The contractor shall agree on guaranteed

reliability values which the propulsion system package will meet or exceed

during the last six months of the second year and the last six months of the

third year that the aircraft is in commercial service. The first year shall

commence with the introduction of the first certificated aircraft into com-

mercial service.

a/ Proposed "Dispatch Reliability Guarantee"

a.I/ - As a design goal, total "mechanical" delays over 15

minutes, plus "mechanical" cancellations and air interrup-

tions, shall not exceed an average of 17<, of scheduled de-

partures caused by the propulsion system during the last

six months of the second year after initial scheduled serv-

ice; i.e., aircraft disptach reliability shall then average

at least 9870. During the last six months of the third year,

this DR shall average at least 99.5% with respect to the

propulsion system.
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a.2/ - As a design goal, total "mechanical" delays over

one hour, plus "mechanical" cancellations and air interrup-

tions caused by the propulsion system, shall not exceed, an

average of .25% of scheduled departures during the last six

months of the second year after initial service; i.e., air-

craft dispatch reliability shall then averagte at least 99.5%.

During the last six months of the third year, this DR shall

average at least 99.90%.

a.3/ - The above DR goals shall be based on a scheduled ground

time of 20 minutes for Through Flights and 30 minutes for

Turnaround Flights, assuming an average flight of 2.6 hours

block time (2.3 hours flight time). (See Note 1)

3. Desired Engine Quantitative Reliability Objectives - The minimum

quantitative reliability objectives for the engine as installed in an aircraft

are:

Reliability Parameter .Vnlue (hrs.)

Mean-time-between-in-flight 25,000
shut downs (MTBIFS) Requirement

Mean-time-between-unscheduled 5,000
engine removal (MTBUER) Objective

4. Definition of Parameters -

a/ Mean-time-between-in-flight shutdowns: •
Cumulative Block Time

MTBIFS = Total Number of Shutdowns

Block Time - Includes total operating time from
beginning of taxi-out through taxi-in.

In-Flight Shutdown - The stoppage of an engine
which is necessary in the judgment of the pilot
or flight crew to prevent or eliminate airframe
damage, engine damage, and/or personnel hazard
which is later confirmed to be a direct result of
an independent engine failure.
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b_/ Mean-time-between-unscheduled-engine removals:
Cumulative Block Time

MTBUER = Total Number of Unscheduled Removals

Block Time - Includes total operating time from
beginning of taxi-out through taxi-in.

Unscheduled Removal - A failure or malfunction
which is directly chargeable to the engine and
which necessitates, due to requiring more than 6
elapsed hours to repair, an unscheduled removal.

5. Corrective Action - If the actual reliability values exper-

ienced in service are less than the reliability values guaranteed, the con-

tractor shall at his expense repair, modify, consign spares and re-design

the equipment as necessary to obtain six months of operation within the

guaranteed value.

Note I. For the purpose of applying these criteria/goals

it should be assumed that there will be 20 minutes

available on scheduled through flight and thirty

minutes on turnarounds. This means that fault

diagnosis and repair must not exceed 45 minutes.

Where such action does exceed 45 minutes it shall

be considered a delay. It should also be assumed

for an ATT transcontinental aircraft that the average

flight time will be on the order of 2.6 hours and that

there will be a 407» - 60% split on through stops and

turnarounds.

Maintainability Objectives for Future Propulsion Systems

Maintenance costs are a function of maintainability and unscheduled

removal rates. The times required to isolate a fault, gain access, repair or

replace a component and the manpower required are part of maintainability.

The manpower and hours required to remove the engine, its quick engine change

items and disassemble the engine, .and repair and/or replace damaged parts is

equally a part of maintainability. The efforts for the future must be on re-
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ducing premature removal rates and at reducing the labor and material re-

quired in maintenance. Section III of this report addressed the economics

of unscheduled maintenance for current systems and Section IV the design

criteria which is fundemental to maintainability. This section addresses

the goals for future engine premature removal costs, engine and subsystem

premature removal rate, and possible requirements for incorporation in

future contracts.

An ATT type aircraft would be employed in American Airlines system

in much the same manner as the current Boeing 707 series aircraft. The ob-

jectives for premature removal rates and costs would be expected to equal

or better current performance with costs at least in proportion to the in-

crease in seating capacity.

1. Engine Premature Removal Costs Projection & Goals - Based on

current experience the average cost to repair an engine premature removal from

an ATT aircraft would be estimated to be between 60,000 and 100,000 dollars.

This: estimate includes both labor and material. The range of this estimate

considers the possible variation in engine maturity, installation configura-

tion and areas of probable distress. The cost per hour for repairing pre-

mature removals can vary depending on actual rate achieved. Repair of pre-

mature removals is not the total cost of maintenance. To the cost for repair

of premature engine removals mustbe added replacement of life limited parts,

upgrade and modifications, and in-service inspection and servicing. The

cost per hour projected by the ATA equation for the contractor selected

engines would be' from $45 to $50 dollars but from American's Task I Report,

•Figures 10, 11 and 12, the cost would be projected at between $65 and $70 an

hour for the near term, 1978, ATT engine. In order to approach the ATA pro-

jected level of maintenance cost the premature engine removal rate must be

equal or less than 0.2 per 1000 hours. A P.R. rate of .3 to .35 would pro-

duce the $65 to $70 per hour maintenance cost level. If aircraft hourly
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direct operating costs are anticipated to be in the $2000 an hour range then

the difference of 20 dollars per engine hour in engine maintenance cost

represents a 3% change in direct operating cost.

2. Unscheduled Removal Rate Goals for ATT Engines and Components -

In keeping with the objectives for reduced engine maintenance cost to im-

prove overall aircraft operating economics Table IX presents by ATA code

Mean Time Between Unscheduled Removal objectives and Time to Remove and

Replace objectives for ATT propulsion system elements.

3. Maintainability Requirements for Future Contracts - It is

intended that the propulsion system and its components have equal or lower

maintenance costs than corresponding systems and/or components now in airline

service. These objectives must be met through increased time between in-

spection, servicing, repair, replacement and/or overhaul; minimum number of

personnel, skill levels and time to accomplish the maintenance functions

mentioned; and by reduced spares/ replacement parts requirements.

The maintainability objectives for the system and its components
•

must be achieved through an engineering approach which translates maintenance

requirements into definitive design and equipment requirements. The con-

tractor's trade-off and/or design reviews shall assure that maintainability

is given equal consideration with other design factors and that commonality,

simplicity, and aircraft dispatch keynote maintenance considerations. Com-

plexity is to be avoided wherever possible.

Consideration shall be given in the design of maintainability

features in the propulsion system package to ensure that they are integrated

with the maintainability features of, and access to, the engine and result

in the optimum overall configuration. For example, consideration shall be

given to provisions in the pod for engine support during various stages of

partial engine disassembly.
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Table IX

Mean Time Between Unscheduled Removals and
Removal and Replacement Time Goals

for an ATT Propulsion System

ATA Code

71 - Cowls

71-10 Engine Nose Cowl

72 - Engine

73 - Engine Fuel '

73-10 Distribution

Heater Fuel

Pump

Valve

73-20 Controlling

Fuel Control

73-30 Indicating

Instrumentation

74 - Ignition

74-10 Power Supply

Exciter

74-20 Distribution

Dlug

75 - Engine Air

75-10 Engine Anti-Icing

Valves & Regulators

77 - Engine Indicating

77-10 Power

Tach. Generator

Tach. Indicator

EPR Transmitter

MTBUR*

10,000 hrs.

5,000 hrs.

40,000 hrs.

10,000 hrs.

10,000 hrs.

8,000 hrs.

8,000 hrs.

10,000 hrs.

15,000 hrs.

10,000 hrs.

10,000 hrs.

5,000 hrs.

5,000 hrs.

Remove and
Replace
Time as
Installed

1 hr.

2 hrs.

45 min. (Max. )

45 min.(Max.)

45 min.(Max.)

45 min.(Max.)

45 min.(Max.)

20 min.

20 min.

30 min.

20 min.

20 min.

20 min.
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Table IX (Cont'd)

ATA

EPR Indicator

77-20 Temperature

EGT Indicators

77-30 Analyzer

Vibration

78 - Exhaust

78-30 Reverser

All elements

79 - Engine Oil

79-10 Storage

Oil Tank

79-20 Distribution

Oil Cooler

79-30 Indicating

Oil Pressure & Temperature

80 - Starting

80-10 Cranking

Starter

Valve

MTBUR*

5,000 hrs.

5,000 hrs.

5,000 hrs.

20,000 hrs.

60,000 hrs.

60,000 hrs.

7,000 hrs.

10,000 hrs.

7,000 hrs.

Remove and
Replace
Time as
Installed

20 min.

20 min.

30 min.

Same as 72

45 min.

30 min.

30 min.

15 min.

15 min.

*Mean Time Between Unscheduled Removals.
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Materials utilized shall be compatible with normal field service

repair procedures and equipment insofar as practical. Where new materials

or manufacturing methods not in airline service, are employed, the contractor

shall develop and provide appropriate repair procedures.

Specific Engine Maintainability Requirements - The following

criteria shall be met:

a/ - Avoid placing components, accessories, plumbing, and

wiring on the upper arc of the engine where they are inac-

cessible for maintenance. Parts of the engine requiring

routine service-checking, adjustment, or replacement shall

be made readily accessible for servicing without teardown

of the engine or removal of any major part, component, or

accessory.

b_/ - Make all instrumentation probes and thermocouples,

ignitors and fuel nozzles inspectable and replaceable in-

dividually from the outside periphery of the engine.

c_/ - Provide inspection provisions to permit adequate in-

spection of the cotnbustor, compressor, and turbine sections

as installed.

d_/ - Provide for remote engine trimming by flight and ground

crews.

e_/ - It shall not be necessary to remove one accessory or

engine component item to repair or replace another.

f_/ - The mating points of the propulsion system shall be con-

trolled to maintain full interchangeability.

j»/ - Interchangeable component or accessory items of the pro-

pulsion system shall be so located such that the rapid removal

or installation of these component accessories is facilitated.
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h/ - Items requiring similar maintenance functions shall be

grouped together in the same area.

i/ - The engine interface relative to the airframe shall be

defined so that it will be possible to remove and install the

engine with the minimum number of disconnections. These dis-

connection points shall be controlled to maintain full inter-

changeability.

j_/ - All proposed propulsion interface changes shall be co-

ordinated to assure that maintainability, reliability, and

performance are not adversely affected.

k/ - A maximum capability shall be provided to perform all

engine maintenance while aircraft installed.

Further, the design of the handling and attachment features

provided in the basic engine shall permit;

!_/ - Air, truck, and rail transportability so that the main

engine mount points can be made accessible for engine handling

and installation at the destination.

m/ - Shop maintenance in the horizontal or vertical position.

n/ - Complete and efficient disassembly of the engine for repairs

or heavy maintenance with minimum disassembly of other portions of

the engine that do not require maintenance or repair.

Maintainability Elements -

a/ - Predictability - The unit/system shall be analyzed for the

predictability of failure modes. Methods and/or means shall be

documented and provided by the contractor.
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b/ - Postponeability - It is desired that the unit/system be

analyzed to determine its ability to be isolated or to continue

operation when a failure/inoperative mode is imminent or has

occurred, but shall not compromise safe flight as defined by

the FAA or aircraft contractor.

c_/ - Fault Indication - Means shall be provided to indicate and/or

detect each fault in the system in some manner, i.e, improper per-

formance obvious to crew, indicators, test means/equipment or

ground inspection where delayed indication does not: compromise

safety and economy.

d_/ - Fault Isolation - A system for fault isolation shall be

developed which enables rapid and positive isolation of malfunctions

and failures to single major, removable components and to the

single line replaceable unit (LRU) at fault. The elapsed time and

tnanhours to accomplish this identification shall be specified to-

gether with the equipment (built-in or portable) and procedures

necessary to accomplish the tasks within specified time periods.

e/ - "AIDS"/"Bite" - To minimize flight cancellations and delays

each system in the propulsion system package should be designed,

analyzed and instrumented in accordance with the following:

1. Dispatch Inoperative - The system should be capable of

safe dispatch with the maximum number of components in-

operative. This is especially important for components

where impending failure cannot be predicted or which can-

not be replaced or repaired within 30 minutes total elapsed

time, as is necessary to avoid delay in departure. Some

redundancy is permissible to achieve this objective. It

is assumed that parts capable of inoperative dispatch
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will be replaced or repaired the evening of the day

of the failure. (Inoperative flight time:? flights

or 12 hours).

2. Predictability - All units of the system having failure

modes that give warning of impending failure by degraded

performance, internal leakage, increased vibration or

sound level, or other means, should be analyzed to deter-

mine the optimum means for warning maintenance personnel

of impending failure. For those units having very gradual

"wear-out" modes,ground tests are permissible if not re-

quired more frequently than 600 flight hours. Ground

inspection or very simple checks are permissible at 150

hour intervals. Sensors for ground tests should be in-

stalled if aircraft sensors are inadequate.

For units having more rapid failure modes after initial

detection, sensors should be installed (if normal aircraft

sensors are inadequate) and means provided to warn of

impending failure at least 16 flight hours in advance of

failure. A recommendation should be made as to the use

of BITE (Built-in Test Equipment) versus AIDS (Central

Airborne Information Data System). The final choice will

be made jointly by the appropriate contractors.

3. Repairability - When the LRU is required for dispatch

and when failure is not predicatble in advance, rapid

replacement or repair (within 30 minutes) is necessary to

avoid delay in dispatch. One essential to rapid repair is

rapid fault isolation to the faulty LRU within the system.

For such components, means should be provided for rapid

(2 to 3 minutes^, accurate, fault isolation. A system
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fault isolation analysis should be made and the necessary

sensors provided to enable such fault isolation through

the use of ground equipment, BITE or AIDS. A recommendation

as to the optimum method should be made. Generally, BITE or

AIDS are preferred to systems when components will be stocked

at many stations. When spares will be kept only at main

repair bases, ground test fault isolation is permissible.

General Maintenance Requirements, Guarantees & Design Objectives •

£/ - Maintenance Parts Cost Warranty - The mean direct main-

tenance cost for parts and materials for the engine(including

reverser)per engine block hour shall not exceed three dollars

per one hundred thousand dollars of the initial price, for the

initial ten years of airline operation, and shall be suitably

guaranteed.

b/ - Maintenance Manhours - (i) The mean direct manhours re-

quired for scheduled major maintenance when necessary, shall

not exceed 2000, (ii) The mean direct maintenance manhours per

engine block hour shall not exceed 1.60. These manhours are the

summation of those expended for all line, dock, shop and over-

haul maintenance, both scheduled and unscheduled.

c_/ - Unscheduled Maintenance Programs - (System Fault Isola-

tion and Correction Effectiveness Goals) A design requirement

shall be to develop fault isolation and correction procedures

and initial maintenance training programs so that the resulting

maintenance corrective actions on system faults shall average at

least 90% for the last six months of the second year after

initial service. This effectiveness shall increase to an average

of at least 95% during the last six months of the third year

after initial scheduled service.
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d/ - Scheduled Maintenance Programs - (i) The design goal

shall be to design the propulsion system and establish pro-

cedures which permit scheduled maintenance and appropriate

remedial actions to be accomplished on the airplane within

a maximum of 8 hours elapsed time at minimum intervals of

500 hours, (ii) scheduled maintenance, other than flight

crew "Walkaround" inspection and minor maintenance servicing

tasks (such as lubrication checks and fuel sump draining)

shall not be required at intervals less than 500 hours. Minor

maintenance servicing tasks required at less than 500-hour in-

tervals shall not collectively require more than 1/2 hour

elapsed time nor more than 1 manhour to accomplish and at in-

tervals not less than 50 hours, (iii) corrective actions found

necessary at other than the 500-hour check shall be achievable

within the normal Through and Turnaround Service elapsed times.

e_/ - Time Between Overhauls (TBO) - It is desired that minimum

reliance be placed on scheduled overhaul. Inspections and

tests which verify system/component operability, or which

indicate performance degradation, are preferable to the estab-

lishment of arbitrary scheduled overhaul times.

In general, a scheduled overhaul time shall only be specified

if a component incorporates a detail part which will wear out

or deteriorate as a function of time in service. Where the

failure or malfunction modes of a component are random with

respect to time and/or cause, no scheduled overhaul time shall

be established unless the consequences of an undetected mal-

function would result in a compromise to safety or excessive

repair cost.

If a scheduled TBO is required on any item supplied as a part
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of the propulsion system package, numerical TBO guarantees

for the first and third years of operation shall be estab-

lished. The numerical values of such goals shall be sub-

ject to acceptance and approval by the FAA, aircraft contractor,

and its customers. If these values are not met, the contractor

shall take whatever action is required to meet these goals.

f_/ - Powerplant Assembly Removal - The time required to con-

vert a QEC from either a wing-mounted or tail-mounted con-

figuration shall not exceed 45 minutes.

All items which must be changed to make a wing-mounted or tail-

mounted configuration shall be designed for ease of removal and

replacement to minimize the time to make a change.

This feature shall be demonstrated and resolved by use of

the mock-up.

Engine and QEC mounting provisions shall permit removal or

installation of a complete QEC unit in one hour elapsed time

with optimum manpower.

The inlet duct retention system shall be consistent with this

time limitation.
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CONCLUDING REMARKS

Noise and pollution control must dominate advanced research efforts for the

forseeable future. The purpose of such research must be twofold however, to re-

duce noise and pollution, and to reduce the economic impact of achieving the re-

ductions. Improvements in propulsion system reliability, maintainability and

engine installation technology offer areas where economic benefits can be achieved.

Advanced research projects must consider total engine economics as a major forcing

function for the future. It is apparent that specific fuel consumption and

specific weight improvements cannot by themselves produce the economic improvements

necessary for a timely introduction of the results of noise and pollution research.
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SYS/ SUb-SYS/
CHAP SECTION

SPECIFICATION1 FOR MANUFACTURERS' TECHNICAL DATA

TITLE DEFINITION

72 ENGINE TURBINE/TURBO-
PROP

-00

-•10

-20

-30

General

Reduction Gear
fc Sheft Section
(Tuv.io-Prop)

Aiv Tnlet
Sec ti on

C-';.upre.ssor
Seo!;:ior«.

This: topic is intended f.c cover general
information, limits; and procedures. Ir. the
engine overhaul -man-.tal this section wou.Id
include such subjects as tear dovn, clean-
ing, Inspection, as£iei'.:bjy, testing, etc,

The section of the; engine v/hich contains the
pi/opelier shaft? and reduction gears. In-
cludes items such as drives for nose aounted
accessories^ etc.

Tha section of the ?ri£ine_ through v?hich i:hs
air 6-.iit«:V« the cir.iiprec-iKor section. Includes
items such as guide vanes', ."h;:ou'ds:, ca.ve.s. etc

The section cj:"tbe. cngr-.ni: la which the air
is cowprer-sfid, T.ric.lurj ."..-> itcrtir:; such, as case:},
vanes,, shrcuds, rotors,, d if^esers , etc. Al-
so includes l:br. r.iaintenarsce ard overhaul or
atator blades hut not the operation of vnri:-'t
stat.or blades v/hicii is cov-ir^d inider Ciiaj-'ter
7!"1 ••• 30, Pees not include compressor bJeed

The !\e::.'c i./-'.~:. of chc engine it; vhic'i the ai:
e'i'i.id tup.l are combined a'vd burned, lufJ.udi
items .uuoli »a biirr.e-.r 0.3 r»s, CASCH, etc.

The iiecilo'O. of t:he cv52i.no contaiuing tho.
turbines. iacludef; :i.i.'.-i\is r.-ueh as r u r b i n e
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.setIon

iciiar;icriJ. v/o-sC.vr t.-)Rc-i.--r:t:l"i) to Oi:.i.vts
;or.l«Sv IncHides .Itenu- s-sjch a;; ':;rigi"fi-

i-'-nuiitc-l gear toxes;, ;:;e£is, aii-^l.Sj vini;ps ,i:<:c.,
Doss not include remotely installed gear
boxes wh ich f.rf. coverfcc in ChaDte:~ S3,

The section of the pr.cziri!?. which by—paci ics a
portion of the ncrria! enginB airflow (either
ran or cn'iipj-esfied air) for ^ue pri;n^. purpose
of adding t.o enfjina thrust <;r reduc:i.ii>;

1 APPENDIX II contains pages 50,
52, 53, 54, 56, 57, 58, & 59 of ATA
Specification 100, August 25, 1970
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SUB-SYS/
SECTION TITLE DEFINITION

-00

ENGINE FUEL AND For turbine engines, those units and components
CONTROL and associated mechanical systems or electrical

circuits which furnish or control fuel to the
engine beyond the main fuel quick disconnect;
and thrust'augmentor, fuel flow rate sensing,.,
transmitting and/or indicating units whether the
units are before or beyond the quick disconnect.
Includes:

Coordinator or equivalent, engine driven fuel
pump and filter assembly, main and thrust augmen
fuel controls, electronic temperature datum con-
trol, temperature datum valve, fuel manifold,
fuel nozzles, fuel enrichment system, speed
sensitive switch, relay box assembly, solenoid
drip valve, burner drain valve, etc.

For reciprocating engines, those units and con:—
ponents which deliver metered fuel and air to
the engine. The fuel portion includes the .. "
carburetor/master control from the inlet side
to the discharge nozzle(s), injection pumps,
carburetor, injection nozzles and fuel prirnsr.
The air portion includes units i:roin the scoop
inlet-to the vapor veat return, and the im-
peller chamber.

General

-10 Distribution

-20

-30

Controlling

Indicating

Th?.t portion of the system from the main quick •
disconnect to the engine, which distributes fuel
to the engine burner section and the thrust
augiaeutor. -Includes items such as plumbing,!
pumps, temperature regulators, valves, filters,
manifold, nozzles, etc. Does not include the
main or thrust augmentor fuel control.

The main fuel controls which meter fuel to the
engine and to the thrust augmentor. Includes '
items such as levers, cables, pulleys, linkages,
etc., which are components of the fuel control
units.

That portion of the system which is used to indi-
cate the flow rate, temperature and pressure of
the fuel. Includes items such as transmitters,
indicators, wiring, etc.
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SYS/ SUB-SYS/
CHAP SECTION

74

TITLE DEFINITION

IGNITION Those units and components which generate, con-
trol, furnish, or distribute an electrical
current to ignite the fuel air mixture in the
cylinders of reciprocating engines or in the
combustion chambers or thrust augmcntors of
turbine engines. Includes induct.i.on vibrators,
magnetos, switches, lead filters, distributors,
harnesses, plugs, ignition relays, exciters,
and the electrical portion of spark advance.

-00

-10

General

Electrical
Power
Supply

-20 Distribution

That portion of the system which generates elec-
trical current for the purpose of igniting the
fuel mixture in the combustion chambers and thrust
augmentors. Includes items such as magnetos,
distributors, booster coils, exciters, trans-
formers, storage capacitors and compositors,
etc. •

That portion of the system which conducts high or
low voltage electricity from the electrical power
supply to the spark plugs, or igniters. Includes
wiring between magneto and distributor in these

. systems where they are separate.units. Includes
ite.ms such as ignition harness, high tension
leads, coils as used in ''low tension" systems,
spark plugs, igniters, etc.

-30 Switching That portion of the system which provides a means
of rendering the electrical power supply inopera-
tive. Includes items such as ignition switches,
wiring, connectors, etc.
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SYS/ SUB-?YS/
CHAP SECTION

75

im.v:

AIR

-00 General

-10 Engine
Anti-Icing

-20 Accessory
Cooling

-30 Compressor
Control

-40 Indicating

For turbine engines, l-hose external units and
components and integral basic engine parts
which go together to conduct-air to various
portions of the engine, and to the extension
shaft and torquemeter, assembly, if any. In-
cludeo compressor bleed ays terns used to con-
trol flow of air through the engine, cooling
air systems and heated air systems for engine.
anti-icing. Does not include, aircraft anti-
icing, engine starting systems, nor exhaust
supplementary air systems.

That portion of the-system which is used to
eliminate and prevent the formation of ice by
bleed air in all parts of the engine, excluding
power pj ant cowling vyhich is covered under
Chapter '30. Includes itoms such as valves,
plumbing, wiring, regulators, etc. Electrical'
anti-icing is covered in Chapter 30.

That portion of the system which is used to
ventilate engine compartments and accessories.
Includes items such as valves, plumbing, wiriat:,
jet pumps, vortex spoilers, etc.

That portion of the system which is used to con-
trol the flow of air. through the engine. In-
cludes it:ens such as governors, valves, actua-
tors, linkages, etc. Also includes the. opera-
tion of variable stator blades, but not the
maintenance and overhaul, which shall be
covered under 72-30.

That portion of the system which is used to
indicate temperature, pressure, control posi-
tions, etc. of the air systems. Includes iten.s
such as transmitters, indicators, wiring, e.tc.
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SYS/ SUB-SYS/
CHAP SECTION .TITLE DEFINITION

77 JEN51?i§. Those units, components and associated systems
INDICATING which indicate engine operation. Includes indi-

cators, transmitters, analyzers, etc. For turbo-
prop engines includes phase, detectors. Does
not include systems or items which are specifi-
cally included in other chapters.

-00 General

-10 Power That portion of the system which directly or
indirectly indicates power or thrust. Includes
items such as BMEP, pressure-ratio, RPM, etc.

-20 Temperature That portion of the system which indicates tem-
peratures in the engine. Includes items such as
cylinder head, exhaust (turbine inlet), etc.

-30 Analyzers That portion of the system which is used to
analyze engine performance or condition by r.ifians
of instruments or devices such as oscilloscopes,
etc. Includes items such as generators, wiring,
amplifiers, oscilloscopes, etc.
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SYS/
CHAT

78

SUB-SYS/
SECTION 'TTTT T,1

1 A i. u li.

EXHAUSI

-00

-10

General

Collector/
Nozzle

-20 Noise
Suppressor

-30 Thrust
Revetser

-40 Supplementary
Ar.r

DEFINITION

Those units and components which direct the engine
exhaust gases overboard.

For turbine engines, includes units external to the
basic engine such as thrust reverser and noise
suppressor.

For reciprocating engines, includes augmentora,
stacks, clamps, etc. Excludes exhar.st-drive.n tur-
bines.

That portion of. the system which collects the exhaust
gases from the cylinders or turbines and conducts
them overboard. Includes Items such as collector
rings, exhaust and thrust, augir.entor ducts, variable
nozzles, actuators, plurbing, linkages, wiring, posi-
tion indicators, warning ^ystaws, etc. Docs not in-
clude power recovery turbines, turbo-superc-har^er.?;,.
etc., nor noise .suppressors or thrust reversers
where they are not an integral part of the nozzla
system.

That portion cf -the system which reduces the noise
generated by the exhaust gases. Includes items such
as pipes, baffles, shields, actuators, plumbing
linkages, wiring, position indicators, warning sys-
tems, etc.

Use -10 whe.re integral part of nozzle system.

That portion of the system which is used to change
the direction of the exhaust gases for reverse
thrust. Includes items such as clamshells, linkages,
levers, actuators, plumbing, wiring, indicators,
warning systems, etc.

Use -10 where integral part of nozzle system.

That portion of the system which varies and controls
supplementary air flow to the exhaust system. In-
cludes items such as tertiary air doors, actuators,
linkages, springs, plumbing, wiring, position
indicators, warning systems, etc.
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SYS/ SUD-SYS/
O

79 OIL

-00

-10

General

Storage

-20 Distribution

-30 Indicating

L.T.T J. IV .1.1

Those units and components external to the engine
concerned with storing and delivering. lubricating
oil to and from the engine. Covers all units and
components from the lubricating oil engine outlet
to the inlet, including the inlet and outlet fit-
tings, tank, radiator, by-pass valve, etc., and
auxiliary oil systems.

That portion of the system used for storage of oil.
Includes items such as tanks, filling systems,
internal hoppers, baffles, tank s.urap and drain,
etc. Does not include tanks which are an integral
portion of the engine.

That portion of the syrjfrrii which 'Is ucecJ to con-
duct oiJ from and to the engine. Includes items
such as plumbing, valve?, temperature regulator,
control systems, etc.

That portion of the system which is used to indi-
,cate the quantity, temperature and pressure of
the oil. Includes items such as transmitters,
indicators, wiring, warning systems, etc.
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SYS/ SUU-SYS/
CHAP BKCTTON 17-TLE

80 STAK.-'fMG

-00

-10

General

Cranking,

DEFINITION

Those units, components and associated systems
used for starting- the engine.. Includes
electrical, inertia air or other starrer sys-
tems. Do.;-..: not include ignition sys;.:ei7is which
are covered in Chapter 74, IGNITION.

That portion of the system which it: usad to
perform the cranking portion of the starci.-:;;!,
operation. Includes itenia such as pli.Mrtbiv:gs
valves, vilring, starters, switclies, relays..
etc.
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