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the assembly, using data obtained from mode surveys of the individual
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SUMMARY

The purpose of this study was to formulate, evaluate, and demonstrate
various procedures for analytically coupling two or more substructures to
obtain modal data for the assembly, using data obtained from mode surveys
of the individual components. Particular attention was paid to the
appiicability of the techniques investigated to the Space Shuttle, with
the possible replacement of full scale mode surveys of the shuttle assembly

by component mode surveys along with analytical coupling.

The synthesis procedures formulated in this report can all handle
redundant connections, although the presence of redundancies does add
complication to one of the techniques. All of the procedures use the
test data directly, without going through an intermediate analytical model,

and no analytical stiffness data is required to supplement the mode survey data.

The coupling procedures were initially verified and evaluated by
applying them to analytical check problems. Lumped parameter analysis
was used to compute the modal properties of an assembly and its components.
The analytical component modes were then coupled, and the results compared
with those obtained by direct analysis of the assembly. The two most
pronising procedures, determined from theaccuracy of the results and from the
ease of obtaining the required experimental data, were then applied to test

data.

Experimental data were obtained for a 1/15 scale dynamic model of an
early space shuttle configuration, which consisted of an orbiter and a booster.
Mode surveys were performed on the orbiter, booster, and coupled orbiter/
booster. The orbiter, and booster data were then synthesized, and the results

compared with those obtained from direct test of the assembly.

Results presented in this report show that the modes of an assembly can

indeed be successfully synthesized from mode survey data for the individual



components. Of the techniques studied, the most promising for shuttle
appiication involves the use of component modes which are obtained with
known weights attached to the junction points. This procedure, known as
mass loading, provides the least complicated means of "working" or deforming
the local structure near interface boundaries in the lower component modes.
Mass loading improves convergence of the synthesis procedure for assembly
modes having significant local structure deformation by lowering the
frequencies of the modes in which the local structure is deformed, and thus
reducing the total number of component modes required for coupling. dJust
how much advantage is gained through the use of mass loading is, however,

highly dependent on the nature of the structure.



INTRODUCTION

The dynamic characteristics of aerospace structures, as represented
by their normal modes of vibration, are required for many purposes,
including aeroelastic analysis, calculation of structural response to
dynamic loadings, and control system analysis to name a few. In the
design stage modal data is customarily obtained from a lumped parameter
analysis. When hardware becomes available, mode surveys are performed to
provide experimental verification of the analytical data. Because of its
size, full-scale vibration testing of an entire space shuttle assembly is
a very large and costly task, which may require the construction of a new facility
to accommodate it. For this reason an alternate approach to this problem, modal
coupling, is being considered. The use of modal coupling which is the subject
of this investigation would permit the limitation of vibration testing to
components. Assembly modes would then be analytically synthesized from the
component mode survey data. Furthermore, since modal data for the individual
corponents are required in any event, a reduction in the total amount of

testing could be affected in addition to avoiding the costly assembly test.

A great deal of work has been done in the field of modal coupling using
data obtained from amalysis of the components. The objective of this work
has been to reduce the size of the eigenvalue problem which must be solved
for problems having a large number of degrees of freedom. This is accomplished
by breaking the structure into a number of substructures, solving the eigen-
value problem for each substructure, and using only the lower component modes
in the coupling. Since they were developed for use with an analytical model
of the structure, most of these procedures require data, in addition to modal
prcperties, which are not readily available from a test. These additional
data include stiffness matrices, and static deflection shapes. More recently,
work has been directed towards making use of modal data obtained from

vibration testing rather than analysis.



Coupling procedures are formulated in this report which require only
data which are readily available from substructure testing. -These procedures
are basically existing techniques which have been adapted to suit the purposes
of this study. They are first applied to two analytical check
problems in order to verify and evaluate them without introducing the
uncertainties associated with test data. The coupling procedures are then
applied to test data for a NASA Langley Research Center (LRC) 1/15 scale
model of a space shuttle configuration. The mode surveys were performed
by Mr. Robert Herr of NASA/LRC, and the data were processed by the Systems
Group of TRW at Redondo Beach. The authors also wish to acknowledge the
contributions of Mr. Robert Goldstein, who did much of the coding and
computations at Grumman, and Mr. Edwin Lerner of Grumman, who made significant

contributions to the coupling procedures contained in this report.
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SYMBOLS

Matrix

Diagonal matrix

Transpose of a matrix

Inverse of a matrix

Column vector

Row vector

First time derivative of a vector
Second time derivative of a vector

Damping matrix for the uncoupled substructures in the physical

or "x" coordinate system

Damping matrix for the iTH substructure in the physical or "x"
coordinate system (a submatrix of [Cx] )

Damping matrix in the "coupled system modal" or coordinate

system

Damping matrix for the uncoupled substructures in the component

modal or "€" coordinate system

Damping matrix for the iTH substructure in the component modal

or "€" coordinate system (a submatrix of [Cg] )



Damping matrix in the "coupled component modal" or "g"
coordinate system
Vector of junction point forces in the physical or "x"

coordinate system

Vector of forces on the uncoupled substructures in the

physical or "x" coordinate system

mn_n

Vector of forces on the iTH substructure in the "x" or physical

coordinate system

Vector of internal point forces on the iTH substructure in the

"1

x" or physical coordinate system

Vector of junction point forces on the ilIIH substructure in the

n._n

x" or physical coordinate system

Vector of forces in the "coupled system modal" or "M" coordinate

system

Vector of forces on the uncoupled substructures in the component

modal or "E" coordinate system

Vector of forces on the iTH substructure in the component modal

or "€" coordinate system

LN

Vector of applied forces in the "coupled component modal" or c

coordinate system

Tdentity matrix



[Ky] 5[Mp]
[Kgl ’[M§J
[xde] [md*]

Stiffness and mass matrices for the uncoupled substructures in

the physical or "x" coordinate system

Stiffness and mass matrices for the iTH substructure in the

physical or "x" coordinate system (submatrices of [Kx] and [Mx} )

Stiffness and mass matrices in the "coupled system modal" or "M"

coordinate system

Stiffness and mass matrices for the uncoupled substructure in

the component modal or "€" coordinate system

Submatrices of component modal stiffness and mass matrices (jk
is a general index which takes on specific symbols defined in

the list of superscripts)

Stiffness and mass matrices for a substructure in the component
modal or "E€" coordinate system (obtained using fixed junction

normal modes and junction point displacements)

Stiffness and mass matrices for a substructure in the component
modal or "E€" coordinate system (obtained using fixed junction

normal modes, rigid body modes, and constraint modes)

Stiffness and mass matrices for the iTH substructure in the
component modal or "E€" coordinate system ( submatrices of [Kg}

and [ Mg ] )

Submatrices of component modal stiffness and mass matrices (X is
a general index which takes on specific symbols defined in the

list of superscripts)



{x'}

{"}

{z}

a2

- —
M

o]
e

Stiffness and mass matrices in the "coupled component modal"

or "g" coordinate system

Mass matrix of the added masses used for mass loading in the

n_mn

physical or "x" coordinate system

Component mass metrix excluding mass loading in the physical or

"x" coordinate system

Component mass metrix excluding mass loading in the component

modal or "E" coordinate system.

Mass matrix excluding mass loading in the coupled component

modal or "E€" coordinate system
Transformation matrix between the "€" and "g" coordinate systems

Vector of uncoupled substructure absolute displacements in the

mn_n

physical or "'x coordinate system

Vector of component internal point absolute displacements in the

"n_n

physical or "x" coordinate system

Vector of component junction point absolute displacements in the

physical or "x" coordinate system

Vector of component physical displacements relative to the

junction points

Vector of component physical displacements due to junction

point motion

Vector of component internal physical displacements relative

to the junction points



{n}
{5}

{51}

{°)

{e"}

Vector of component internal physical displacements due

to junction point motion

Vector of absolute displacements for the iTH substructure

in the physical or "x" coordinate system

Vector of internal point absolute displacements for the

iTH substructure in the physical or "x" coordinate system

Vector of junction point displacements for the iTH substructure

in the physical or "x" coordinate system

Vector of coupled system modal displacements

Vector of uncoupled component modal displacements

T
Vector of component modal displacements for the i H substructure

Vector of component modal displacements associated with

constraint modes

Vector of component modal displacements associated with normal

modes

Vector of component modal displacements associated with rigid

body modes

Vector of coupled component modal displacements

Vector of component modal displacements made up of junction

point displacements and the generalized displacements associlated

with fixed junction normal modes



{ex}

Vector of component modal displacements made up of the
generalized displacements associated with fixed base

normal modes, rigid body modes, and constraint modes

Matrix giving internal point displacements due to junction

point motion in the physical or "x" coordinate system

Submatrix of the component mode shape matrix giving internal

displacements associated with constraint modes

Submatrix of the component mode shape matrix giving internal

displacements associated with normal modes

Submatrix of the component mode shape matrix giving internal

displacements associated with rigid body modes

Submatrix of the component mode shape matrix giving Jjunction

point displacements associated with constraint modes

Submatrix of the component mode shape matrix giving junction

point displacements associated with rigid body modes
Matrix of uncoupled component mode shapes

Matrix of component mode shapes made up of fixed Jjunction normal

modes and unit junction displacements

Matrix of component mode shapes made up of fixed junction normal

modes, rigid body modes, and constraint modes

10



Superscripts:

«Q

Lo v B

Matrix of component mode shapes for the iTH substructure

(a submatrix of [wx] )

Submatrix of [wx ] containing only internal point displacements

i

Submatrix of [mx ] containing only junction point displacements
i

Submatrix of [¢x ] containing only normal modes
i

Submatrix of [@x ] containing only rigid body modes
i

n_n

Matrix of assembly mode shapes in the physical or "x" coordinate

system

Matrix of assembly mode shapes in the coupled component modal

N
or "€" coordinate system

Circular frequency of the assembly

Diagonal matrix whose elements are the circular frequencies

squared of the iTH substructure

Constraint Modes

Junction Point Displacements
Normel Modes

Rigid Body Modes

11



FORMULATION OF COUPLING PROCEDURES

Procedures will now be formulated for analytically coupling two or
more substructures to obtain modal data for the assembly using data from mode
surveys of the individual components. In order to perform the synthesis, the
mode shapes, modal mass, and modal stiffnesses of each component must be
known. Although damping is discussed briefly, Reference 1 should be consulted
for a complete discussion of the damping synthesis portion of this study.
All of the data required by the synthesis procedures other than the mass
properties are readily available from substructure testing and rigid body

considerations. No elastic analysis is required.

The component modal mass and stiffness matrices are coupled by requiring
Jjunction point compatibility. Solution of the eigenvalue problem associated
with these mass and stiffness matrices yields the undamped modal properties
of the assembly. The modal damping matrix for the assembly is obtained from
the component modal damping matrices by using the transformations developed
for the undamped problem. The only approximation introduced in the synthesis
is due to representing the components by only their lower modes of vibration.
A sufficient number of component modes must be employed to establish junction
point compatibility, and to represent the deformations of the coupled sub-
structures. The number of modes required depends on the type of component

modes employed as well as the nature of the structure.

A general coupling procedure based on the work of Hurty (Reference 2)
is first formulated. Although Hurty's work deals only with fixed junction
point component modes, the procedure developed here makes no restriction on
the type of component modes employed. Specific procedures are then discussed.
They differ only in the type of component modes employed, i.e., in the boundary
conditions used in the component mode survey. The first of these deals with
free junction point modes, and although this case was treated by Hou
(Reference 3), it can be seen that it is just a special case of the general

coupling procedure, and differs analytically from Hurty's method only in



that no constraint modes are required. The use of mass loaded junction
points, which was suggested by the interface inertia loading of Reference 4
is discussed next. The procedure developed here is, however, quite different,
from that of Reference 4, since it is intended to make use of experimental
rather than analytical data for the components. Next, the use of fixed
junction point component modes is treated. Although the development is
initially along the lines of Reference 5 because the physical significance
is clearer, the final formulation is that of Hurty (Reference 2) which
reduces the testing required. The application of this method to test data
required the development of additional techniques for the determination of
the constraint modes and the associated stiffness terms. Finally, fixed
base component modes are treated. It is seen that the formulation for fixed
base component modes does not differ from that for fixed junction point

component modes.

It should be noted that the general coupling procedure may be employed to
synthesize component modal data obtained with any combination of support
conditions on the various substructures, e.g., a free-free structure may be

coupled with one having fixed or mass loaded junction points.

Although the formulation is developed for two substructures, any number
of components may be coupled through repeated application. To couple sub-
structures "a", "b", and "c", one would first couple "a" and "b" to obtain
modal date for the subassembly "a/b", and then couple "a/b" with "c".

Since the intermediate results for the subassembly are quite often useful
it does not pay to couple all components at once, although the formulation

could be easily extended to do this.

13



1k
Genersl Coupling Procedure
The equations of motion for the uncoupled substructures "a" and "b"
mey be written in the "physical" or "x" coordinate system, as
] 45 - el - [ - =
X b X X
where PM] , [C ] , and [F ] are the mass, damping, and stiffness matrices,
X X X
and {FX} is the vector of applied forces, in partitioned form:
1 | .
C
an' Xa xa : ¥ Kxa' Xé an
ah e T e O Tl O ity il I 4t S B
v % % % b v % %
)

mn_u n_1mn

Here the subscripts "a" and "b" designate substructures "a" and "b", respectively
) )

and the {_x }’s may include rotations as well as displacements.

Equations (1) may be transformed into the "uncoupled component modal" or

"€" coordinate system, which is defined by

{X} = [cpx] *5} (2a)

or

1
® {
"a "a | Sa
. - (20)
& ¢ S

Lo



where the columns of [?x are component mode shapes. The types of mode
shapes included in this matrix depend on the support conditions used in
the component tests, and will be fully discussed, along with the testing

required to determine them, in the next four sections.

Substituting equations (2) into equations (1), and premultiplying by

7] etves ‘
[] K [+ K [x] ts] - {eef S

or
1 [ 1

| 1 c. ! : K. F

ga I §a ga L ga ga. | ga ga

el T S e e e
Lo b | b b | b b b
]

where

IV O R O | F

LMgJ = .¢x _Mx] _$x‘ ... uncoupled modal mass matrix (3c)

) - T T P . -

c.l =1eo C () ... uncoupled modal damping matrix (3d)

| &) *l L*ILE

F - 9 s

Ke| = | ‘1K ) ... uncoupled modal stiffness matrix (3e)

i _J I xj X x

i T
[FE} = wx {Fx:} . uncoupled modal force vector (3f)
S

r -1 P 'WT o - - -

M. |=|o M

Lga }La xa cpxa (3g)
- L. - - L e -
1 r v r 16 . component modal mass matrices

Me (71 "¢ (3n)
b X %] | % 3n
J L1 LAL




16

o - _ r— 1 o P~
[ S| |, [ xa] L(an_ (31)

... component modal damping matrices

- - "T = —
C = C .
['§b_l fﬁ) [ ﬁJ %% (33)

(3k)

component modal stiffness matrices

_ Tr A -
K, | = rcp)%] e |[o (31)

T
)
T = 9 F
3§a§ [xa] Xa! (3m)
. component modal force vectors
T
)
CREARA G

The component modal mass, damping, and stiffness matrices will be the input to
the synthesis analysis. Modal mass and stiffness matrices are discussed in the
next four sections, while component modal damping matrices are discussed in

Reference 1.

Equation (3a) will now be transformed into the "coupled component modal"
Va
or "€" coordinate system by constraining the junction points of the substructures

to move together. First, Equation (2b) is rewritten in a partitioned form as
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h T 1|
I
(Xa cha| e
J J |
xa cPxa| gb
S
xtI) lcp)ch (1)
- —— N
| I g

where the superscripts "I" and "J" refer to intermal and junction points,
respectively. Junction points are those points at which the two components
are attached, while internal points are the remaining points. Component
mode shapes must include all junction point displacement. The compatibility

relationship for junction point displacements may be written as

LE-{) = o (52)

or, making use of Equation (L),

{ga} = {o} (5b)

or

[es] 454 = fol (5¢)



Next, Equation (5c¢) is arbitrarily partitioned

[“’J"F’J {E} = {o} (54)

where [5&] is a nonsingular-square partition of [%J]z and [&5] is the remaining

partition. It should be noted that this requires that the number of component
modes be greater than the number of junction point displacements. Solving

Equation (54) for{E}gives
-1

CE - [5] [“%]{’5; (5e)

~
and the transformation from the {g} to the {E } coordinate system is

LN O :lﬁr. { 3}
A I (6a)
g} - []{%} (6v)

T
Substituting Equation (6b) into Equation (3a), and premultiplying by [T ]

(] {é‘z ‘ [c]{.’é} . [Kg];g} SEREN (1a)

yields

18
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where

[=] [%] [*] (1)

~—
=
un)
w
I

(] - FYLel]
%] - (eF [=)le]

=] {7} (7e)

/

o~
+]
uni)
“—
il

The right hand side of Equation (7a) will now be examined. We first
partition Equation (3f):

.
L)
X
a
T | T | 1
Fe F‘P}c""i: ! W ¥,
_al __a'__t.a___l__._<__a_>
Fe ' : cpIT | cpJT - (8)
k S A RCS I
J
F
. xb y,

where the meanings of the subscripts and superscripts are the same as in 3quation
(4). For free vibration of the coupled system, the only forces on the sub-

structures are the equal and opposite forces at the junction points. Thus,



PP gt
N‘qH
o
N~
1]
A gt~
]
KJ'F‘< H
———————
H
o

and

P et
‘njw
1}
‘\-’l\_\
K
L e
1]
—
c_"l:i

P e
! =
[Tg:] | _ve
o 'SD
A
1}
| 1 1
l
°}<6L4 oy
Hip =]
—
——
S
N

T
’Fg} = [qﬁ ] {FJf

and, substituting this into Equation (7€),

{FE§ = [T]T[qﬁ]T{Fhi

20

(92)

(10a)

(10b)

(11a)
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or
T )
- Da sl glnt - opp o
o
therefore
{Fzg\} = {O} (11¢)

The free vibration equations for the assembly are from Equations (7a)
and (11c),

[Mg]{‘é} . M{é} . [Kg}{@} - ol
and the undamped eigenvalue problem is

ENIENES ogfmgmg}

(13)

T

The solution of Equation (13) yields the circular frequencies, the W_s, and

3

mode shapes, the{ cpA}'s » of the coupled system. These mode shapes, however,

”
are in the "€" coordinate system, and must be transformed to the "physical"

coordinate system. Fron Equations (2a) and (6b)

[<P;] = .[‘PxJ[T][Cpg] (14)
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where [cp_] is the matrix of mode shapes of the assembly in the physical
X

coordinate system, and [cp,\, is a matrix whose columns are the {cpA}'s.
g 3

Finally, for use with externally applied forces, Equation (Ta) can be

transformed into the "coupled system modal" coordinate system, "T", by leting

{g} - [cpe]{ﬂ;. (15)

T
and premultiplying by [cpA] 1
g

N [Cn]{ﬁ} * [Kn]{“} = {™} (162)

(] - [o] [%][e]
e - [“’@]T[Ca][%] (16¢)
[Kn] - “’gTT[ K’g‘][‘%] (164)

- 97T
3Fn£ - (o, 3FA( (16e)
g€ € .
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Free Junction Points

This is the simplest of all the coupling procedures from the standpoint
of the component testing as well as the analytical synthesis. A standard
free-free mode survey is performed on each substructure to determine its
freguencies, and mode shapes. The instrumentation must include transducers
at the junction points so that the mode shapes include all junction point
motions which are to be made compatible with those of the adjacent sub-

structure.

The matrix of component mode shapes includes both rigid body and

norral modes. For substructure "i"

RI N

[CPX.] - [cpx.' CPX.] (17)
1 11 1

where the superscripts "R" and "N" designate the rigid body and normal

structural modes, respectively. Normal mode shapes are measured in the mode

survey, while the rigid body mode shapes may be easily written by the

analyst.

The component modal mass matrix also consists of rigid body and normal

structural mode partitions:

M = 2if_ (18)
[ §i] :Mlg
I



where

EAEREIRENIES

Since [Kx ] is not known from test data, component modal stiffness matrices
i

are computed from

[K§i] § [Mgi]E“’i] (19)

where fugl is the diagonal matrix whose elements are the circular frequencies

squared. In partitioned form

[_Ké.] i -
L 1KY (20)
|

Once these matrices have been obtained, the synthesis calculations are

performed as shown in the previous section.

It should be noted that while free junction point synthesis is the most
streight-forward procedure, it is by no means the best. The major shortcoming
is that the local structure adjacent to the junction points is not "worked"

in the lower component modes, and therefore the mode shapes obtained from the

2k
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component mode surveys do not contain local structure deformations. The
lower modes of the assembly, on the other hand, will probably contain
substantial local structure deformations due to the inertia loads imposed
by the substructures on each other. This means that a relatively large
number of substructure modes must be employed in the synthesis in order to

include the modes which contain loral structure motion.

Of course, the importance of the shortcoming just cited is highly
dependent on the nature of the structure itself. If the substructures
have very stiff local structure, then the assembly will not exhibit
significant local structure motion in its lower modes, and the lack of local
structure motion in the component modes will not be important. It is also
possible for a substructure to have very flexible local structure and/or
very heavy junction points. In this case, local structure motion would be
reflected in the lower free-free component modes. Unfortunately, the
situations hypothesized above, while they can and do occur, are not

generally encountered.

Mass Loaded Junction Points

As discussed in the previous section, the shortcoming of free-free
component modes is that the local structure is usually not worked in the
lower modes. Through the use of "mass loading" this problem can be greatly
reduced, with the addition of very little complication in the component

testing and analytical synthesis.

When using mass loading, the component mode surveys are performed with
known auxiliary masses attached to each of the junction points. The addition
of these masses tends to increase the working of the local structure in the

lower modes, or, equivalently, to lower the frequencies of the local structure



modes into the frequency range considered in the mode survey. The amount

of mass loading which is required to accomplish this may be estimated by
analysis of the particular substructure being tested. By the time hardware
becomes available for vibration testing an analytical model will exist. The
analyst can use the model to compute frequencies and modes using various

values for mass loading and from these results select the minimum weights

which will lower the frequencies of the local structure into the range of
interest. Further verification of these weights by performing a synthesis using
the mass loaded analytical component modes, and comparing the synthesis results

with a direct analysis of the assembly is recommended.

It should be noted that the analytical model may not represent the local
structure flexibilities véry accurately. For this reason it is advisable to
perform this above analysis using several values for local structure stiffnesses
which cover the possible range, and to be conservative, select the largest mass
loading required by these cases. A further check of these estimated values of
mass loading may be obtained by applying a transient excitation to the added
masses and observing the frequency content of the response. The mass loading

may then be adjusted if required.

The synthesis of mass loaded modes is the same as for free-free modes,
except that the kinetic energy due to the added junction point masses must
not be included in the eigenvalue problem for the assembly. The physical

mas3 matrix, when using mass loading, is

(] - [4]- ()

where LMiI is the mass matrix of the structure and[ Mi ] is the mass matrix
of the added weights. The second matrix will have Zeros everywhere except

for the diagonal elements corresponding to junction point motions. The

26



eT

unccupled modal mass matrix is

[<] - [‘PX]T[Mi][@x] (22)

instead of that given by Equation (3¢). It should be noted that the component
normal modes are not orthogonal with respect to [Mi ], and that the component
modal mass matrices used to compute component modal stiffness by Equation (19)

should include the mass due to the added weights. Equation (7b) is replaced by

(%] [TJT [MEJ[T] (23)

g

and the eigenvalue problem for the assembly is now

(o] bt 4[4l

instead of that given in Equation (13). With the exception of these three

?.
J (2k)

equations, the synthesis of mass loaded modes is identical to that of free-

free modes.

Fixed Junction Points

This is the most complicated of the coupling procedures, but the best
fron the standpoint of working the local structure in the component testing.
The mode surveys are performed with the junction points held fixed, and
therefore the substructure normal modes give displacements relative to the

Junction points. To obtain the absolute displacements,{ x} for a substructure,



we must add the displacements due to junction point motion, { §'}, to the

relative displacements, {§ }:

{x}+ {x} (e5a)

———
>

~——
1l

~

or partitioning,

%?.} + {.i..} (25b)
J
X [o]

where the superscripts "I" and "J" designate internal and junction point

]
Rer %,
N

i

displacements, respectively. A matrix:[c] giving {};} in terms of {XJ} can
be determined from additional testing, as will be shown shortly. Making use
of [o] , BEquation (25b) becomes

{i;} ) E%ﬂ{é{} (25¢)

This equation expresses the absolute displacements of the internal points and

junction points as a function of the absolute Jjunction point displacements and

relative displacements of the internal points.

The relative displacements may be expressed in terms of the generalized

coordinates associated with the substructure normal modes:

{# - [ | (26)

28
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2
and [ur] is the diagonal matrix of circular frequencies squared. The [K%J]

matrix can be determined from static test, since it involves only junction

point coordinates which are external to the substructure and can therefore

be instrumented for force and displacement measurements.

The matrices [K%N] and [KgJ] are null, This follows from the definition
of a generalized stiffness coeffitient, Kij’ as the work done by generalized
forces associated with the iTH mode acting through displacements associated

with the jTH mode. The work done by Jjunction forces on a normal mode

displacement is zero since the junctions are fixed in a normal mode. Therefore

[thj is null, and by symmetry {KgJ] is also null.

By definition, an element of [b] B oij’ is the displacement at the i

internal coordinate due to a unit displacement of the jTH Junction point
corrdinate, with all other junction point coordinates held fixed. This

impiies that a series of static tests could be used to determine [6] for
redundant coupling, and that rigid body considerations can be applied for
statically determinate coupling. In the static tests the junction point
constraints would be removed, one at a time, and the unconstrained junction
coordinate given a unit displacement. Measurement of the internal displacements
would give [o] , one column at a time. This is not, however, practical because
of the difficulty involved in measuring displacements at many points. In

addition to this, some of the internal points may not be accessible.

We can, however, take advantage of the fact that the structure is already
inscrumented with accelerometers, and determine {6] from additional mode
survey data. The junction point constraints are removed, one at a time, and a

shaker attached to the unconstrained junction point. The modal data obtained
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from one such mode survey is used to calculate a static displacement shape,
which when normalized so that the free junction coordinate has a unit
displacement, is one column of [b] . Details of this calculation are
shown in the Appendix.

For a component with n junction point degrees of freedom the above
formulation would require the determination of an n x n junction point
stiffness matrix, [K%JJ, ¥from static test. An additional n mode survey
would be required to obtain data to compute the columns of [6] . A
reduction in the amount of testing can be effected through the selection of
a different set of generalized coordinates. The junction point displacements

can be expressed as

W= [EE - []4 (30

where the subscript "J" refers to junction point coordinates and the super-
scripts "R" and "C" refer to rigid body and constraint modes, respectively.
The total number of rigid body plus constraint modes is equal to the number
of junction point degrees of freedom, n. If the number of rigid body modes

is m; then {gc} ds a vector containging n-m arbitrarily selected junction
poirt displacements, and.[qg] is a matrix made up of ones and zeros. Xach
column of [cpgj contains one element which is unity while the rest are
zercs. If the jTH element of {EC} is the iTH Junction point displacement,

C
ther. there will be a one at row i column j of [ﬁJ] .

Combining Bquations (27a) and (30) yields
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and the component modal stiffness matrix is

[Kﬂ: oo 'o

o, ¥° o (33)

where [KNNJ is the same as in Equation (29) and I:Kgc] is determined from

g
. KJ . .. CC
static test, as was | of Equation (29). It should be noted that Kg

J
is an (n-m) x (n-m) matrix while I:KJ :] is an n x n matrix. The matrices
[KEN J , and [KI%IC] are null for the same reason the [K‘éN] and [K]gJ] of

Bquation (29) were null. The submatrices in the first row and column are

null since there is no strain energy in a rigid body mode.

R
The rigid body modes, [(pl;] and [cpJ], can be easily written by the analyst,

C C
while the submatrix [cpl] is the product of [o] and [cpJ]. It is not,
however necessary to determine the entire [o] matrix, since the postmultiplication

of _[cr] by [cpg] amounts to picking out n-m columns of [c]‘ . Only n-mc
additional mode surveys are required to determine the n-m columns of [mIJ .

If the connection between substructures is statically determinate, then

no constraint modes are required, and no static testing or additional mode
surveys are needed. Because of the reduction in the amount of testing required,
it is advantageous to use the component mode transformation of Equation (31b), °
and the modal mass and stiffness matrices of Equations (32) and (33) in the
synthesis. Once these matrices have been obtained, the synthesis calculations

can be performed as shown in the section entitled "General Coupling Procedures".
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It can be seen that the use of fixed junction point modes requires
considerable additional testing and analysis to determine the constraint
modes if the components are redundantly connected. In addition to this,
there is also the problem of determining the damping values associated

with the constrsint modes. This subject is discussed in Reference 1.

Fixed Base

This procedure rivals the previous one in complexity, although it does
not offer the advantage of working the local structure near the junction
points. In fact, the results obtained from using fixed base component
modes to compute free-free assembly modes are no better, and usually poorer,
than those obtained with free base component modes. The use of fixed base

modes is not therefore recommended unless test considerations dictate.

When using fixed base modes, a component mode survey is performed with
the base held fixed and the junction points free or mass loaded. (The base
ig defined here to mean any part of the substructure other than the junction
points.). Therefore the substructure normal modes give displacements
relative to the base. As with fixed junction point modes, the absolute
disvlacements in a substructure are expressed as the sum of the relative
dis»lacements and the displacements due to the motion of the base. The
analytical development for fixed base modes is identical to that for fixed
junction point modes as shown in the previous section. With the substitution
of the sub and superscript "B", designating base, for "J", which denotes
junction point, the equations of the previous section hold for fixed base
components. If the fixity is redundant, constraint modes must be used along

with rigid body and elastic modes to represent the displacements.
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ANAIYTICAL VERIFICATION

The coupling procedures formulated in the previous section were first
applied to two analyticael check problems so that verification and comparison
of the various techniques could be performed without introducing the
uncertainties associated with test data. The substructure modal properties
were computed, as were those of the assembly, from lumped parameter
idealizations of the coﬁponents and assembly. The modal properties of the
substructures were used as input data for the coupling analysis, while the
direct analysis of the assembly was performed in order to provide results

with which to compare those obtained from synthesis.

Grumman's COMAP/ASTRAL system, which combines a structural analysis
program (ASTRAL) with a matrix language (COMAP), was employed to perform
these analyses. This system is well suited to this purpose, since the
coupling procedures are merely a series of matrix operations which are
easily coded in the COMAP language. In addition to this, the stiffness
matrices can be generated, and the eigenvalue problems solved for the

assembly as well as the components, all within the same program.

Orbiter/Tank Coupling

The first analytical check problem represents orbiter-to-tank coupling
for a '"series-burn" configuration which was under serious consideration by
Grurman at the time that this problem was selected. Figure 1 shows the
idealization, which considers pitch-plane motion only, with the orbiter having
seven mass points, and the tank being represented with eleven mass points.

The problem features redundant connections between the two components as well

as local structure flexibility.
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There are two degrees of freedom at each point (longitudinal and
lateral displacement) and thus the orbiter and tank idealizations contain
fourteen and twenty-two degrees of freedom, respectively. Since the orbiter
and tank are coupled by pins at the three junction points, the coupled
system has thirty degrees of freedom. It should be noted that the Junction
points are offset from the fuselage center lines, and connected to the
fuselage masses through flexible members which represent the local structure

flexibility.

The coupling procedures were applied to this problem for seven different
combinations of substructure boundary conditions. These boundary conditions
are:

1. A free-free tank coupled to a free-free orbiter.

2. A free-free tank coupled to a free-free orbiter, with the junction

points of both components mass loaded.

3. A free-free tank coupled to an orbiter supported from its junction
points.
L, A free-free tank coupled to an orbiter supported from its junction

points, with the tank junction points mass loaded.

5. A free-free orbiter coupled to a tank supported at its base with
the junction points of both components mass loaded.

6. An orbiter supported at its junction points coupled to a tank
supported at its base, with the tank junction points mass loaded.

T. A tank supported from its junction points coupled to an orbiter

supported from its junction points.

The free-free assembly modes were synthesized from component modes having
all seven combinations of boundary conditions listed above. In order to check
the coupling procedures, all of the substructure modes were employed in the
initial coupling analyses. As expected, the results obtained using all sub-
structure modes were identical, except for roundoff, to those obtained by

direct solution of the eigenvalue problem for the assembly.
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Since in a practical case, only a limited number of substructure
modes will be available, the synthesis procedures were next applied using a
reduced number of component modes. Results obtained using sixteen and ten
total substructure modes are shown in Tables 1, 2, 4 and 5. An equal number
of modes was used to represent each substurcture, e.g., eight orbiter modes
and eight tank modes were used for the cases having sixteen total modes.
The three rigid body modes per substructure are not included in the total
number of component modes. This figure represents only normal and
constraint modes. Thus for a free-free substructure represented by eight
modes, these modes are the lowest eight normal modes, while for a component
supported at its base or junction points, the eight modes would be made up
of the lowest five normal modes and three constraint modes. This method of
counting the component modes provides a fair basis for comparison, since the

three rigid body modes of the assembly are not included in the results

presented.

A synthesis performed using sixteen substructure normal and constraint
modes along with six rigid body modes will yield thirteen elastic modes and
three rigid body modes for the assembly. This is due to the fact that six of
the componeht modes are used to establish junction point compatibility.
Similarly, seven assembly elastic modes can be computed using ten component

normal and constraint modes.

Table 1 shows a comparison between the assembly frequencies obtained
from synthesis using substructure modes with bouhdary conditions one through
four, and those obtained from direct analysis of the assembly. The results
obtained using fee-free modes for both components (boundary condition #l)
are very poor. Only the first frequency is close to that of the direct
solution when sixteen substructure modes are used, and there are no good
frequencies obtained with ten substructure modes. This is due to the fact

that the local structure is not worked in the lower camponent modes.
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The addition of mass loading to the Jjunction points of both free-free
substructures improves the situation significantly. Results obtained using
these component modes (boundary condition #2) show that the first seven
assembly frequencies can be computed reasonably well using sixteen component
modes, and the first two frequencies can be computed from ten substructure

modes.

Results obtained using free-free tank modes along with fixed junction
point orbiter modes (boundary condition #3) are as poor as those computed
using free-free modes (boundary condition #1). Here again this is due to
not working the local structure of the tank, even though that of the orbiter
is worked by the supports. The use of mass loading at the tank junction
points (boundary condition #h) yields results which are much better, and
comparable to those of boundary condition #2.

Frequencies calculated for fixed base tank modes are shown in Table 2.
These include g free-free orbiter with mass loaded junction points coupled
to a tank with mass loaded junction points supported at its base (boundary
condition #5), and an orbiter supported at its junction points coupled to a
fixed base tank with mass loaded junction points (boundary condition #6).
It should be noted that the last three frequencies shown in Table 2 differ from
those of Table 1. This is due to a slight difference in the mathematical model
of *“he tank used to obtain the results in these tables. The tables are,
however, consistent within themselves. Comparison of the frequencies obtained
from synthesis with those of the direct solution shows the results for these
boundary conditions to be uniformly poor. Only one frequency is computed
correctly using sixteen substructure modes, while none are calculated with ten
component modes. These poor results are not caused by failure to work the
local structure in the component modes, since all junction points are either

fixed or mass loaded.
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The data shown in Table 3 will help explain the difficulty. This
table contains the free-free frequencies of the tank as computed from direct

analysis of the tank, and by representing the tank in terms of its fixed base
normal modes, constraint modes, and rigid body modes. The second calculation
involves the solution of the eigenvalue problem associated with the component
mass and stiffness matrices in the component modal coordinate system. This is
the same representation of the tank employed in the synthesis, and therefore
the intermediate calculation indicates how well the free-free tank is
approximated in the synthesis. Examination of the results shows that only
the first three free-free tank modes are accurately represented when eight
fixed base modes (five normal modes and three constraint modes) are used,

and that none of the free-free modes are represented when five fixed base
modes (two normal modes) are employed. This explains the poor results shown

in Table 2.

Table 4 contains results obtained by coupling a tank supported from its
juncztion points to an orbiter supported at its junction points (boundary
condition #7). These results are essentially the same as those obtained
for boundary conditions #2 and #4. It should not, however, be concluded
from this that mass loading is always as effective in working the local
structure as fixing the junction points. This is true if sufficiently large
masses are used, but there are practical limitations on the amount of mass

which may be attached to the junction points in a test.

The data presented in Table 5 is intended to demonstrate that the results
obtained from modal synthesis are highly dependent on the nature of the
substructures being coupled. The orbiter/tank problem was modified by
stiffening the members which represent the local structure in both the
orbiter and the tank. Comparison of the data contained in Table 5 with that
of Table 1 shows that, as expected, the assembly frequencies have been raised

by stiffening the local structure. The important thing to note, however, is the
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great improvement in the synthesis results obtained using free-free modes

for both components (boundary condition #1), due to the fact that the

stiffer local structure is not significantly deformed in the lower assembly
modes, and therefore the lack of local structure deformation in the component
modes is not important. This demonstrates one way in which the nature of the
structure, in this case the local structure stiffness, effects the coupling

analysis. Another situation will be encountered in the next check problem.

Results presented here demonstrate that the coupling procedures developed
can be successfully applied to a representative problem using calculated modal
data. It was also shown that the results obtained using free-free modes can
be significantly improved through the use of mass loaded or fixed Jjunction

points, and that the results obtained using fixed base modes are poor.

Orbiter/Booster Coupling

The second analytical check problem is the Langley 1/15 scale dynamic
model of a Space Shuttle configuration which is made up of an orbiter and a
booster. This problem is the same as that described in Reference 6, except
for the addition of a third spring assembly, half way between the two
existing ones, and the use of pins to connect the orbiter with the spring
assemblies when coupling the components. The third spring assembly was
added in order to provide redundant coupling in the pitch direction, while the
reason for using pins is related to the fact that this structure was also employed in
the experimental verification discussed in the next section. If the original
connections which had moment continuity had been retained, the synthesis

procedures would require that the mode shapes contain Jjunction point slopes
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as well as junction point displacements. Because of the difficulties
involved in slope measurement, the connections were modified. Calculation
and coupling of analytical modes for the 1/15 scale model will be discussed

here, while the synthesis of the test modes for this structure is treated

in the following section.

Figure 2 shows the orbiter, booster and coupled orbiter/booster. Both
fuselages are tubes with concentrated lead weights to simulate propellant.
The orbiter is 1.93 meters (76 inches) long and has a mass of 40.8 kilograms
(90 1bs.), while the booster is 3.43 meters (135 inches) long, with a total
mass of 130.2 kilograms (287 1bs.). The three spring assemblies which are
attached to the booster may be considered to represent local structure
flexibility, and are included as part of this substructure when calculating
booster modes. A more detailed description of the structures is contained in

Reference 6.

The lumped parameter idealization considers pitch-plane motion only, and
employs ten degrees of freedom to represent the orbiter, twenty for the booster,
and twenty-four for the coupled orbitér/booster. These degrees of freedom
are represented by arrows in Figure 2. It should be noted that six degrees
of freedom are used to represent junction point motions on both the orbiter
and booster. This was done because the component mode shapes must contain
all junction point displacements in order to establish junction point
compatibility in the synthesis analysis. The booster junction points are
located at the ends of the spring assemblies, while the orbiter junction
points are offset from the fuselage centerline through rigid links. The
sparcity of longitudinal degrees of freedom on the fuselages is due to the
fact that the flexible longitudinal fuselage modes have frequencies which are

above the range of interest for this study.
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The fuselage mass and elastic properties used on the analysis were
obtained from Reference 6, as were the spring assembly stiffness matrices,
which were taken from the 10 nominal case. The masses of the spring
assemblies were lumped at the fuselage center line and at the tips of the
spring assemblies. The proportion to be lumped at the tips of the spring
assemblies were determined by matching the analytical results to test
results for booster modes showing large motions of the spring assemblies.
This is very important to the coupling, since the spring assembly modes are,

in this problem, the local structure modes.

Table 6 shows the frequencies of the component elastic modes used in
the synthesis, along with descriptions of the associated mode shapes.
Although frequencies obtained from both analysis and test are presented
in this table, the discussion of the test data, where it differs from the

analytical data, is reserved for the next section.

Only the first and second orbiter bending modes were used in the
synthesis, since the third orbiter mode was above the frequency range of
interest. Table 6A shows those frequencies as obtained from analysis and
tes: of the free-free orbiter, while the mode shapes are plotted in Figures
3 and k. Although modes were plotted from test data, the analytical mode shapes

show the same character.

Nine free-free booster modes were employed in the synthesis. Table 6B
lists the frequencies of these modes and Figures 5 through 13 show the mode
shapes as determined by test. The first two modes are the first and second
fuselage bending modes. The next three modes are "spring axial" modes.
These are modes in which the booster fuselage stands still and the orbiter
ends of the spring assemblies move parallel to the axis of the fuselage (see
Figures 7, 8 and 9). Mode number 6 is the third fuselage bending, and modes

7, 8 and 9 are "spring lateral" modes. These are similar to the "spring axial"
b
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modes except that the spring motion is perpendicular to the axis of the
fuselage (see Figures 11, 12 and 13). The "spring axial" and "spring
lateral" modes are very important to the synthesis, since they represent

local structure motion. This will be demonstrated shortly.

Table 6C presents the frequencies of the mass loaded booster and Figures
14 through 21 show the experimental mode shapes. It is interesting to compare
these frequencies with those of the free-free booster, to see the effect of
mass loading. Mass loading has lowered the frequencies of the "spring axial"
and "spring lateral" modes. The mass loaded "spring axial" frequencies are
all below 67 Hz, as opposed to the free-free "spring axial" frequencies which
were above 145 Hz. The mass loaded "spring lateral" frequencies are below
80 Hz as compared with the free-free "spring lateral" frequencies which were
above 209 Hz. If modes above 100 Hz were left out of the synthesis, the
free-free results would not include any spring or local structure modes, while
the mass loaded results would include all six of these modes. Mass loaded
synthesis using these modes would then produce good results, while the free-

free synthesis would yield nonsense.

It should be noted that the structure considered here is not typical
and does not fully demonstrate the advantage of mass loading. Because there
are 3o few fuselage frequencies below the local structure frequencies, a
significant reduction in the local structure frequencies through mass loading
does not markedly reduce the total number of booster modes which must be
taken in order to include the local structure modes. All local structure
modes are included in the first 9 free-free modes while the first 7 mass
loaded modes include all of the local structure modes. In a more typical
structure, a similar reduction in local structure frequencies would produce a
greater reduction in the mode numbers of the local structure modes, and therefore
a far more significant reduction in the total number of component modes required

for synthesis.
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Coupled orbiter/booster modes were synthesized using the component

elastic modes along with rigid body modes. Free-free orbiter modes were
coupled with free-free booster modes and mass loaded booster modes. The mass
loaded booster had a mass of approximately 5.9 kilograms (13 1lbs.) attached to
the orbiter end of each spring assembly. There was no point in mass loading
the orbiter, since all of the local structure flexibility is in the spring
assemblies which are attached to the booster. Fixed base modes were not
used due to the poor results they yielded for the orbiter/tank synthesis,
while fixed junction point modes were omitted because of their complexity

and doubtful advantage over mass loaded modes.

Table 7 presents a comparison of coupled orbiter/booster frequencies
as computed by: direct analysis, synthesis of free-free analytical modes,
and synthesis using mass loaded analytical modes. Mode shapes obtained
from the direct analysis are shown in Figures 22 through 27. For both mass
loaded and free-free synthesis, frequencies obtained using 11 substructure
modes (2 orbiter modes and 9 booster modes) compare well with those computed

directly. This was expected, since, as previously shown, the first 9 booster

modes include all 6 local structure modes. The synthesis results obtained using

only 8 substructure modes (2 orbiter modes and 6 booster modes) are another
story. The free-free synthesis results are quite poor, and, while the mass
loaded synthesis results are significantly better, they are not as good as
those obtained using 11 substructure modes. The reason for this is again
obvious from the previous discussion of the component modes. The first 6
free-free booster modes do not include any of the 3 spring lateral modes,
while the first 6 mass loaded booster modes include 2 of the 3 spring lateral
modes. Once again, this demonstrates the importance of local structure modes
in the synthesis and the advantage of using mass loading to reduce the number

of component modes required for synthesis.

Unlike the first analytical check problem, this one lends itself well to
free-free coupling, and therefore the improvement obtained through the use of
mass loading is not as significant. This is because the actual (or original)
junction point masses were large enough to work the local structure to a

significant extent, which was not the case in the orbiter/tank synthesis.
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EXPERIMANTAL VERIFICATION

As a final demonstration and verification of the synthesis techniques
formulated in this report, modal data obtained from substructure tests were
synthesized. The Langley 1/15 scale model described in the previous section
and shown in Figure 2 was used in this effort. Orbiter, booster, and coupled

orbiter/booster modal properties were determined from mode surveys of the

‘individual components and the assembly. The modal properties of the sub-

structures were used as input data for the coupling analysis, while the
assembly mode survey was performed in order to provide results with which
to compare those obtained from synthesis. The coupling analyses were
performed using Grumman's COMAP/ASTRAL system which was described briefly

in the section on orbiter/tank analytical coupling.

The structures were instrumented for pitch plane motion only, and
employed ten transducers for the orbiter, twenty for the booster, and
twenty-four for the coupled orbiter/booster. The transducers are represented
by arrows in Figure 2, and are the same as the degrees of freedom employed in

the analysis.

Table 6 presents the frequencies of the component elastic modes, as
obtained from both test and analysis, along with descriptions of the associated
mode shapes. The component mode shapes obtained from mode survey data are
plotted in Figures 3 through 21. The reader is referred back to the discussion
of this table in the previous section, since only differences between analytical
and test data will be pointed out here. There is generally good agreement
between the two sets of data, except that the third mass loaded booster mode,

a spring axial mode, is not present in the test data. The consequences of this

will be seen from the synthesis results obtained using these modes.
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The component elastic and rigid body modes were coupled to obtain the
modal data for the assembly. Substructure boundary conditions were the same

as those of the second analytical theck problem.

Table 8 presents a comparison of coupled orbiter/booster frequencies
as determined from :direct test of the coupled structure, synthesis using
modal data from free-free tests, and synthesis using mass loaded modal test
data. Assembly mode shapes obtained from direct test are plotted in
Figures 28 through 32. The first and second modes are missing from the
direct test data, but are included in the plots of analytical mode shapes
in Figures 22 through 27. Synthesized mode shapes obtained using free-free
test modes are contained in Figures 33 through 39, while those obtained with
mass loaded test modes are presented in Figures 40 through 46. The third
mode shape was computed using analytical spring axial modes, for reasons to
be discussed shortly. The first 7 synthesized frequencies obtained using
11 free-free test modes (2 orbiter modes and 9 booster modes) compare well
wita those obtained from direct test. Those obtained using 12 mass loaded
modes (2 orbiter modes and 10 booster modes) are not as good. The second
frequency does not compare as well as that computed using free-free modal data,

and the third mode is missing completely.

Examination of the mode shapes for these two modes shows that they both
possess the same characteristic: The orbiter and booster move in opposite directions
axially (sce Figs. 23&2L4). This type of motion is small in the second mode, but a
dominant characteristic of the third mode. Due to the fact that one of the
"spring axial" modes was missing from the mass loaded test data, it is
impossible to synthesize modes having this characteristic. The fact that this

is a problem is demonstrated by the frequencies shown in the last column.
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These results were obtained by using 3 "spring axial" modes from analysis
along with the mass loaded test modes. It can be seen that the second

frequency improves and the third one, which was missing, is now present.

The results presented here demonstrate that the modes of an assembly can
be synthesized from mode survey data for the individual components. Because
of the missing third mode of the mass loaded booster, the effect of mass
loading could not be evaluated. It is, however, safe to assume that it would

be the same as for the analytical coupling.
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CONCIUSIONS AND RECOMMENDATIONS

It has been demonstrated in this study that the frequencies and mode
shapes of an  assembly can be synthesized from mode survey data for the
individual components. Modal coupling has been’successfully accomplished
using both free-free and mass loaded test modes. No elastic analysis was
required to supplement the test data, even though the 1/15 scale space
shuttle model used had redundant connections. The component mode surveys
were of the same type as the usual mode surveys to obtain free-free modes,

and the use of mass loading added only slight complication.

Synthesis using free-free component modes proved to be the simplest
from the standpoint of component testing as well as analytical coupling.
The convergence of the synthesis procedure was, however, poorer than that
obtained using mass loaded or fixed Junction point component modes. This
was due to the fact that mass loading provides a more realistic "working"
of the local structure adjacent to the junction points in the lower
component modes, and therefore these mode shapes include more of the local
structure deformations. If sufficient mass is employed, convergence
is comparable to that obtained using fixed junction point component modes.
Practical considerations do, however, limit the amount of mass, and therefore
the convergence is usually not as good as that obtained for fixed Jjunction
points. Mass loaded synthesis is only slightly more complicated than free-
free synthesis, however, and a great deal less complicated than fixed
junction point synthesis. In the latter procedure, considerable additional
testing and analysis are required to determine the constraint modes. In
addition to this, the determination of damping values associated with the

constraint modes presents a problem.

Synthesis using fixed base component modes has all of the disadvantages
associated with fixed junction point modes, but does not have the advantage
of working the local structure. Convergence is no better, and usually

poorer than that obtained with free base component modes. The use of fixed
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both component modes in not recommended. They should only be used when test

considerations dictate.

Fixed junction point component modes are recommended only when the sub-
structure connections are statically determinate. When the components are
redundantly connected the improved convergence obtained by fixing the junction
points is more than offset by the added complication, and the use of mass loaded
modes is recommended, even though a greater number of them may be required. Free-

free component modes may also produce acceptable results for some structures.

It should be noted that while the above statements about the relative
merits of the various coupling procedures are true in general, the extent to
which they are important is highly dependent on the nature of the structure.
If the local structure is very stiff, and does not deform significantly in the
lower modes of the assembly, then there is no need for the component modes to
reflect local structure motion, and there is in turn no advantage to using mass
loaded or fixed junction point modes over free-free modes. If the junction points
are sufficiently heavy, and/or the local structure is sufficiently flexible, then
the local structure will be naturally "worked" in the lower free-free modes, and

again there is no need for fixing or mass loading the junction points.

Care must be taken when performing the component mode surveys to insure that
all of the substructure modes of interest are obtained, and that the data is
accarate. If a component mode is inaccurately measured, or missing altogether,
then one or more of the assembly modes may be missing or poorly represented when
the data is synthesized. This is particularly true when the missing or inaccurate
mode is a local structure mode. It should , however, be pointed out that modes

can be missed or inaccurately measured in an assembly mode survey,

Since the results produced by modal coupling procedures .are so highly dependent
on the nature of the substructures being coupled, it is recommended that if there is
continued interest in using modal coupling for the Space Shuttle program, a modal
coupling study be performed using test data from the Langley second generation
Shuttle dynamic model. The second generation model is much more representative of
the final shuttle configuration than the 1/15 scale model used in this study, and
therefore conclusions drawn from the new model would be more relevant to the actual
shuttle.
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where

[x]
|

The mode shapes and modal stiffnesses are obtained from a vibration survey

[cp]T [K] [cp] - the modal stiffness matrix (A-3b)

[tp]T ;F’ \ (A-3c)

W

performed with all but one junction point coordinates held fixed. There
are no external forces other than the shaker force, F&, applied at the free

junction point. Partitioning Bquation (A-3c) gives

el - [qid]}E (1o

where the subscripts "I" and "J" refer to internal degrees of freedom and

the junction degree of freedom, respectively. It should be noted that

@§ is a column vector. Since { FI} is zero,

SR

SRESEUE
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and making use of Equation (A-2) gives -

(<} = LoD <) (1)

This is the static deflection shape due to a load, FJ, applied at the free
Jjunction point. It should be noted that [k) is not obtained from EBquation
(A-3b), but by taking the product of modal mass and circular frequency squared.

This shape will now be normalized so that , the junction point displacement,

x
J
is unity. From Equation (A-T)

X = B F (A-8a)

where

o - S 6] {9 (300

T _
and {¢§ } is a row vector. Solving Equation (A-8a) for FJ, substituting

in Bquation (A-T), and setting Xy = 1 give a column matrix for the internal

deflection shape due to a unit junction point displacement. Repeating this

operation with each junction point free gives the entire desired matrix [c] .
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TABLE 1

COUPLED ORBITER/TANK

ELASTIC FREQUENCIES - RAD/SEC

54

SYNTHESIS

(1) (2) (3) (&)
Free - Free Free - Free Tank | Free - Free Tank| Free - Free Tank
Tank with Mass Loading to Fixed with Mass Loading
to to Free - Free Junction Point to Fixed Junction
Free - Free Orbiter with Orbiter Point Orbiter
Orbiter Mass Loading
Mode Direct 16 10 16 10 16 10 16 10
No. Solution Modes Modes Modes Modes Modes Modes Modes Modes
1 .02 14.85 23.02 14,02 14,19 b 72 17.8 14,02 14,18
2 15.77 22.ko 27.20 15.77 15.92 17.99 19.19 15.77 15.87
3 33.83 62.77 65.38 33.83 49,38 L7.48 65.43 33.83 51.11
L 38.01 65.95 73.70 38.02 136.2 52.48 T72.66 38.01 1h42.3
5 65.80 81.32 121.9 65.81 180.7 65.83 16k4.2 65.81 163.7
6 72.72 152.8 169.6 75.96 326.9 80.18 258.8 Th. 76 320.7
7 80.72 168.7 191.9 81.19 Lo2.0 89.02 30k.0 81.20 Lo2.5
8 81.86 194.0 168.1 22k, 0 190.8
a 152.8 285.1 398.4 259.2 400.5
10 19k.1 291.1 Loo. k4 289.6 Lo2. L
11 247.3 419.4 490.9 291.0 517.8
12 289.1 hoo. 7 636.9 Lo1.7 676.6
13 291.1 428.3 T61.7 Loh.8 698.5




TABLE 2

COUPLED ORBITER/TANK

ELASTIC FREQUENCIES - RAD/SEC

SYNTHESIS

(5)

Free-Free Oribiter
with Mass Loading
to

Fixed Base Tank
with Mass Loading

(6)
Fixed Junction
Point Orbiter

to

Fixed Base Tank
with Mass Loading

Mode Direct 16 10 16 10
No. Solution Modes Modes Modes Modes
1 14,02 14,83 18.97 14.83 18.48
2 15.77 18.36 29.17 18.23 29.37
3 33.83 51.58 83.28 51.60 83.1k
L 38.01 53.92 126.3 53.89 128. 4
5 65.80 75.53 ho1.1 75.54 ka1.5
6 T2.72 81.06 597.1 80.61 593.5
7 80.T72 143.5 662.6 143.8 662.2
8 81.87 252.5 236.8
9 152.8 399.4 Lo1.4
10 194.1 hos5. 4 Lok.2
11 248.5 oo, 0 4189.6
1 418.4 599.2 599.2
13 ko3 4 664.5 667.2
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FREE-FREE TANK ELASTIC FREQUENCIES (RAD/SEC)

TABLE 3

Computed

From Fixed Base

Modes
Mode Direct 8 5
No. Solution Modes Modes
1 29.13 29.1k 68.59
2 29.54 29.54 1243
3 30.18 30.27 597.5
b 55. 47 75.95 663. 4
5 61.78 133.8 19308.
6 66.12 598.3
7 69.2k 665.2
8 88.79 19393.
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TABLE L4

COUPLED ORBITER/TANK

ELASTIC FREQUENCIES - RAD/SEC

SYNTHESIS
(1)
Fixed Junction Point
Tank to
Fixed Junction Point
Orbitor
Mode Direct 16 10
No. Solution Modes Modes
1 .02 k.01 k.07
2 15.77 15.77 15.84
3 33.83 33.83 52.13
L 38.01 38.02 148.4
5 65.80 65.81 196.9
6 T2.72 Th. 76 296.9
7 80.72 81.20 ho2.1
8 81.86 190.8
9 152.8 400. 4
10 194.1 ho2.1
11 oL7.3 522.0
12 289.1 680.7
13 291.1 697.8

o7



TABLE 5

COUPLED ORBITER/TANK
ELASTIC FREQUENCIES - RAD/SEC
(STIFFENED LOCAL STRUCTURE )

SYNTHESIS

(1)

Free-Free Tank

to

Free-Free Orbiter

Mode Direct 16 10
No. Solution Modes Modes
1 23.40 23.46 2L, 6k
2 58.73 59. 1k 61.45
3 67.09 67.32 69.99
L 87.88 88.83 106.1
5 170.0 172.1 178.0
6 172.1 176.3 223.0
7 211.6 216.9 338.6
8 218.7 221.9
9 376.6 384.3
10 573.7 591.6
11 k.3 816.0
12 937.2 952.9
13 116k, 1167.




TABLE 6

ORBITER/BOOSTER COMPONENT ELASTIC MODES

6A - Free-Free Orbiter Modes

Mode Frequency - HZ Frequency - HZ Mode Description
No. (Analysis) (Test)
100. 102. First Bending
2 20k. 221. Second Bending
6B - Free-Free Booster Modes
Mode Frequency - HZ Frequency - HZ Mode Description
No. (Analysis) (Test)
1 35.0 38.0 First Bending
2 106. 102. Second Bending
3 1h5. 1k6. Spring Axial
4 152. 152. Spring Axial
5 161. 163. Spring Axial
6 191. 184, Third Bending
T 209. 211. Spring Lateral
8 216. 221, Spring lateral
9 225. 225. Spring Lateral
6C - Mass Loaded Booster Modes
Mode Frequency - HZ Frequency - HZ Mode Description
No. (Analysis) (Test)
1 31.7 34.0 First Bending
2 57.5 52.8 Spring Axial
3 60. k4 ——— Spring Axial
L 66.2 65.4 Spring Axial
5 79.5 T1.3 Spring lateral
6 8k.1 76. 4 Spring Lateral
7 92.7 81.5 Spring lateral
8 115. 110. Second Bending
9 203. 203. Third Bending
10 2l 257. Axial
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TABLE T
COUPLED ORBITER/BOOSTER
EILASTIC FREQUENCIES - HZ

(ANALYTICAL MODES)

FREE.FREE MASS IOQADED
SYNTHESIS SYNTHESIS
8 Modes 11 Modes 8 Modes 11 Modes
Mode Direct 2 Orbiter 2 Orbiter 2 Orbiter 2 Orbiter
No. Analysis 6 Booster 9 Booster 6 Booster 9 Booster
1 25.9 29.3 26.0 26.2 26.1
2 37.3 k9.0 37.3 37.6 37.5
3 52.7 86.7 52.7 53.7 53.0
L 99.2 120. 102. 110. 99.4
5 113. 170. 113. 200. 113.
6 120. 122, 120.
T 201. 202, 201.
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TABLE 8

COUPLED ORBITER/BOOSTER

ELASTIC FREQUENCIES - HZ

(TEST MODES)
FREE-FREE MASS IOADED
SYNTHESIS SYNTHESIS
11 Modes 12 Modes 12 Modes*
Mode Direct 2 Orbiter 2 Orbiter 2 Orbiter
No. Test 9 Booster 10 Booster 10 Booster
1 26.0 26. 4 26. k4 26.6
2 38.7 38.k 4o.0 39.3
3 5T7.6 55.0 ---- 49.9
L 92.3 98.3 90.5 89.4
5 108. 110. 106. 10L.
6 125, 129. 111. 111.
T 185. 190. 203. 203.

* Using Analytical "Spring Axial" Modes

61
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