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INTRODUCTION

Tensile testing of nominally prismatic round and flat bars

has long provided a basis for evaluation of the properties of

metals. The primary data from such tests, load, extension and

minimum deformed cross-sectional area may be used to infer stress-

strain relations taken to be characteristic of the material tested.

Inference of such material property relations is appropriate so long

as the deformation and associated stress field may be assumed

uniform over the cross-section in some region or gage length of

the tensile bar.

For ductile metals the assumption of uniformity of the

deformation and stress field clearly breaks down for extensions in

excess of some material dependent critical value. Once the

extension exceeds this value the axial load decreases and subsequent

prescribed overall specimen extension is observed to concentrate

in a highly strained local neck. Within this necked region

inhomogeneous deformation and a complex multi-axial stress field

must.exist. The phenomenon is referred to as tensile instability.

Evaluation of the validity of stress-strain relations inferred

from post-instability tensile test data as well as study of tensile

failure by fracture and/or rupture requires detailed knowledge of

the stress and strain fields existing in a necking tensile bar.

This need has motivated extensive experimental investigations, most



notably by Bridgeman [ 1 ] and Nadai [2], as well as a variety of

approximate analyses incorporating idealized models of material

behavior. Typically these analyses neglect either elastic deforma-

tion or work hardening, or both.

The absence of a complete theory suitable for analysis of

problems of general finite deformation of elasto-plastic continua,

such as necking in metal tensile bars, has provided the motivation

for development of such a formulation.

Analysis of finite deformation of elasto-plastic materials

requires explicit consideration of nonlinear effects arising from

both inelastic material behavior and deformation magnitude. While

the recent literature contains many examples of analyses incorporating

either material or geometric nonlinearity, few attempts have been

made at solution of the combined problem.* Excellent surveys of

these efforts are provided by Marcal [4] and Stricklin et. al. [5].

These previous developments typically employ finite element

techniques based upon energy principles and are primarily intended

for analysis of problems involving large deflections of plates

and shells in which local strains are small. -The application of

these analyses to the tensile instability problem is of questionable

*0den L3J provides extensive development of theory and solution
techniques for finite deformation of hyperelastic materials. The
approaches employed, while incorporating both material and geometric
nonlinearity, do not admit application to the elasto-plastic case.



value since the necking process involves large displacements, strains

and rotations distributed over a continuum of arbitrary shape. 'The

kinematic assumptions underlying analyses of plates and shells are

of limited validity under these conditions. Solution of a general

elasto-plastic continuum problem requires a formulation appropriate

for analysis of deformations of any magnitude irrespective of the

configuration of the deforming solid.

The adoption of what is herein termed the. tote, viewpoint*

toward the mechanics of finite deformation of an elasto-plastic

solid has led to the development of a complete theoretical

formulation of the problem. Rather than seeking equations

governing the total deformation attention is restricted to the

time rates of the independent variables, stress rate and velocity.

Equations are derived governing the time dependent velocity field

in a deforming elasto-plastic solid.

The formulation differs from previous developments in two

fundamental respects.

*A similar viewpoint is taken by Cowper and Onat [6] in establishing
admissible solutions for tensile necking in plane strain but they
do not attempt full solution for deformation and stress histories.



1. The entire development proceeds in an Eulerian or spatial

reference frame rather than the Lagrangian, or material,

frame usually employed in nonlinear analyses of plates

and shells.

2. Constitutive equations for finite elasto-plastic deformation

are obtained by generalizing those of the infinitesimal

theory in the spatial rather than material frame. The

fundamental features of the infinitesimal theory are

preserved without introducing problem dependent deviations

associated with the use of material frame stress tensors.

A complete initial- and boundary-value problem is posed in which

finite elasto-plastic deformation is viewed as a time dependent

process. The formulation reduces to well established results in

the limit of infinitesimal deformation.

The governing equations of the finite problem are distinguished

by their quasi-linear nature. This feature, which follows directly

from adoption of the rate viewpoint in an Eulerian frame, enables

the use of an incremental technique for accurate and efficient

numerical solution of finite deformation problems. Finite element

solution capability may be developed directly from the governing

differential equations.

Numerical procedures have been developed for analysis of finite



deformation under conditions of plane stress or plane strain. The

capabilities of these procedures have been investigated by considering

a number of problems of homogeneous finite deformation for which

analytic solutions are available. Comparison of numerical and

analytic results for these problems indicates that accurate numerical

solutions can be obtained for problems involving dimensional changes

of an order of magnitude and rotations of forty-five degrees.

The numerical analysis has been employed in an investigation of

symmetric necking in flat tensile bars of el as to-plastic material.

Solutions are obtained for the limiting cases of plane stress and

plane strain extension of bars containing a small initial geometric

imperfection. Full histories of neck geometry and internal stress

and deformation fields are obtained. The development of inhomogeneous

internal fields as the necking process proceeds is clearly demonstrated,

as is elastic unloading of previously yielded material in regions

outside the neck. The solutions also provide a vehicle for assessment

of the validity of stress-strain relations inferred from tensile

data over the full range of a test from initial yield through the

development of a significant neck.



I. THEORETICAL DEVELOPMENT

The. Kate. V-Lewpo^nt

The equations describing finite deformation of elasto-plastic

solids may be derived in what is termed a rate form. That is, atten-

tion is focused not upon field quantities such as stress and strain

but rather upon their rates of change with respect to time. The

approach is conceptually analogous to that employed by Swedlow [7 ]

for infinitesimal deformation. Even with this analogy, however,

analyses of infinitesimal and finite deformation are operationally

distinct.

In analysis of infinitesimal deformation stress and strain

tensors as well as all governing equations are referred to a single

configuration of the body. Either deformed or undeformed states

may be employed as they are by assumption indistinguishable from

one another. Thus time derivatives of field quantities reflect only

changes in component magnitudes with respect to an invariant frame

of reference. Should the deformation be regarded as finite, however,

deformed and undeformed configurations must be distinguished. Time

derivatives of field quantities such as stress and strain must

reflect changes in the fundamental reference frame provided by the

deforming configuration of the body. ..:

The present theory incorporates equations of elasto-plastic

behavior and stress equilibrium which reflect the foregoing implied-



tions of finite deformation. The equations are assembled to define

a complete initial -and boundary-value problem for the time dependent

velocity field in a deforming body.

The development of the constitutive and equilibrium equations is

predicated upon the character of certain tensorial measures of stress

and strain and their time rates of change. In the next few sections

these quantities are defined and discussed. Subsequently the field

equations are derived, boundary and initial conditions developed

and the full velocity problem is assembled.



I.I Fundamental Concepts

General concepts of nonlinear continuum theory are developed

below to the extent necessary to support the ensuing analysis. More

extensive discussions* may be found in Eringen [8 ] and Truesdell

and Toupin [9 ].

Descriptions of continuum deformation and loading are developed

in a fixed or laboratory reference frame. Deformation, deformation

rate, stress and stress rate tensors are defined. All definitions

are subject to the constraint of material objectivity, or spatial

invariance, which requires that the analysis be independent of

rigid motion of a deforming continuum.

Continuum Motion: Consider a three dimensional body whose

undeformed reference configuration is B0 with boundary 9B0. The

deformed configuration of the body is B with boundary 3B. Material

points in the reference state are located by coordinates X in an

orthogonal curvilinear coordinate system. In the deformed state

these points are located by coordinates x1 in the same system.

Thus the time dependent deformation may be given as the mapping**

*Much of the discussion in this section has been abstracted from
the texts cited.

**General tensor notation is employed. Repeated indices in subscript-
superscript -pairs imply summation over 1,2,3- A comma denotes
partial and a semi-colon covariant differentiation.

8



from Bo to B in Figure (1).

x1' = x1(XK , t) (1)

The nature of the motion (1) is limited only by the constraint of

material continuity:

J = |x\ I > 0 (2)> ^

In the special case where the mapping of B0 to B given by (1)

is such that angle and distance are everywhere preserved the motion

is termed rigid. In this case (1) admits the representation

x1 = Q1^* b1' (3)

In (3) the tensor Q1., is orthogonal, (4)*, and both Q1 and b1 are
N l\

functions of time.**

Reference Frames and Time Derivatives: We may def i ne a
i Kvelocity field v for the motion (1) by noting that the X are

constant and differentiating (1) with respect to time.

*In (4) overscript T denotes transpose. The mixed metric tensor
g1. is equivalent to the Kronecker delta 61..

J J
K i**In cartesian coordinates Q . is a rotation and b a translation.

In general coordinates no simple physical interpretation is possible.



X,x !

Figure 1 Deformation Mapping
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v1 = axVat = v i[x1(XK,t),t] = v i(XK,t) (5)

Note that the coordinate dependence of v may be given in terms

of either x1 or XK.

The choice of coordinate dependence in (5) is characteristic

of all tensor field quantities employed in finite deformation
I/

analysis. Analysis employing the X is termed material or Lagrangian

while that employing the x1 is termed spatial or Eulerian. The

present theory is developed in Eulerian form.

In differentiating Eulerian field variables with respect to

time, the time dependence of the x1 must be fully taken into account.

Thus if (Kx1 »t) is a tensor field of any order its time derivative

<f> is

$(x\t) = 3<(»/at + 4...V1 . ' (6)> i

The derivative (6) is the total or material derivative of <j>.

Unless specific exception is noted it is the only type of time

derivative employed in the present theoretical development.

Material Objectivity: Any theory attempting to describe physical

phenomena must be independent of the observer of an event. This

constraint is known as objectivity. A familiar example of its

significance is the restriction of Newtonian mechanics to inertial

reference frames.

11



In continuum analysis objectivity is most conveniently expressed

as the requirement that any theory be independent of rigid motion.

The constraint may be expressed operationally by considering tensor

fields referred to deforming bodies whose motions differ by a rigid

component. Objectivity requires that components of such tensors

be related by the transformation relating the two motions.

Consider, for example, the velocity fields corresponding to two

such motions, y and y , which are termed objectively equivalent.

From (3)

y1" = Q1^" + b1 (7)

Differentiating (7) with respect to time we find:

vi = g1. y° + Q1 . 7J + b^ (8a)
J J

However the tensor transformation of v1 from y1 to y1 defines

components v gi ven by

7s = (ayVay^) 7j = Q1 . ?•) (8b)
J

Thus velocity components referred to y and y are not related

by a tensor transformation. We therefore conclude, not unexpectedly,

that velocity is not an objective tensor.

Necessary conditions for objectivity may be developed for

tensor fields and functions of any order. Employing the two motions

12



y1 and y1 defined above, the following objectivity constraints are

found for vectors q , second order tensors t ^ and second order

tensor functions ^(t^-i). Recalling that the transformation Q1 .

is a function of time we require the following to hold for all

times.

= Q \ q J (9)

= Q\ Q^ F1 (10)

function** :

Strain and Strain Rate: The initial and deformed lengths of

a differential material line segment are given by dS and ds

respectively.

dS2 = dX1 dXJ GT1 (12)
Id

ds2 = dx1 dxj g. . (13)
' J

where g. . and GT1 are the metric tensors of the deformed and
ij IJ

undeformed coordinates. The change in length may be

*Tensor functions satisfying constraints of the form (11) are termed
hemitropic functions of their arguments.

13



represented as

ds2-dS2 = dx1dxJg1j.-dXIdXJ6IJ (14)

The differentials dx1 and dX^ are related by the deformation

mapping (1)

dX1 = X1 .dx1 (15)» i

Therefore (14) may be written entirely in terms of the deformed
1coordinates x

ds -dS = (gij-X §1X jGjjJdx dx (16)

The local deformation may therefore be described by the Almansi

strain tensor e. ..

eij s (V2)(g1j-X
I
f1X

J
J6Ij) 07)

Similarly the local rate of deformation may be characterized by

considering the time derivative of ds2 in (13).

d(ds2)/dt = 2 d^dxW (18)

+ V . ) (19)

The Euler deformation rate d. . provides a complete, objective
' \J

representation of the local non-rigid component of the velocity field.

It is of particular consequence in the present analysis by virtue of

its linear dependence on the velocity gradient. In the presence of

local rotation the angular velocity <ok of its principal axes is found

14



from the skew-symmetric velocity gradient, or spin tensor, u. .

(20)

(21)

where e is the permutation operator.

Almansi strain and the deformation rate are related as:

dij=X',ixJJ Ht̂ ./̂ n). (22)

Stress and Stress Rate: The Cauchy stress tensor 0
1J referred

to the deformed configuration is the i component of traction

on a surface normal to the j™ coordinate direction. The symmetric,

objective Cauchy stress provides a complete description of the loading

state at a point in a deformed body. Components of traction t1 on

planes of arbitrary orientation having normal vector components v.

are found as linear combinations of the olj

t1 = o1j'v, (23)
J

The time rate of traction t. is found by differentiating (23),

noting that the normal vector is itself time dependent.

t1 = (ô '-aPV' )v. (24)
>H J

The stress rate a, . in (24) is not objective.
' vl

We must therefore seek an alternative objective characterization of

15



the time rate of stress for use in the constitutive equations of

elasto-plastic flow.

The objectivity constraint (10) is necessary but not sufficient

to define a unique objective stress rate. Such tensors have been

developed by a number of investigators including Jaumann [10],

Truesdell [11], and Oldroyd [12]. As suggested by Prager [13] for

use in analysis of elasto-plastic flow the present analysis employs

the Jaumann rate.

Consider a stress S1J referred to the principal axes of the

deformation rate (19). The rotation of these axes at a point in

a deforming body is given by the spin <o. • of (21). The relative
I J

orientation of the rotating coordinates and a fixed frame is given

by an orthogonal mapping Q1. , defined by
J

The stresses S1J and a1J are at all times related by

-s1j = QVVpq (26)

The time derivative of S1J is objective. Differentiating (26) and

transforming the result back to a fixed reference yields the

symmetric objective Jaumann stress rate a1J

" (27)

<omj - aj'J"1 . (28)

16
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O4 4een by on ob&nnvun. pcviticJ.pcuti.ng -en itotoutian o^ o de.$osuni.ng

continuum cut eveJiy point.

A Jaumann rate may be constructed as above for any tensorial

quantity. If the quantity is intr insical ly objective the Jaumann

rate and material derivative (6) are equivalent.

17



1.2 Constitutive Theor

Gene/ui£. C/iotaĉ teA ofi the. Jkeaiy

K constitutive formulation is derived for elasto-plastic flow

of metals undergoing finite deformation. The theory is derived as a

generalization of an elasto-plastic flow theory appropriate for

analysis of infinitesimal deformation (See Fung [14]). Its

application is restricted to analysis of homogeneous isotropic metals

undergoing quasi-static isothermal deformation.

The character of the finite deformation constitutive formula-

tion is dictated by the adoption of three fundamental characteris-

tics of the infinitesimal theory.

1. The flow mode, elastic or elasto-plastic, is dictated

by the behavior of a scalar loading function f which

is dependent upon current stress state and deformation

history.

f = 0 ; f = 0 : the cases of loading, elasto-

plastic flow, and neutral load-

ing, elastic flow, may be
(29)

identified.

f < 0 : elastic flow or unloading

2. The deformation rate is a p̂ tô c assumed to be separable

into elastic and plastic components whose dependence upon

stress is independently defined.

18



3. The constitutive equations take the form of first order

differential equations relating time rates of stress and

deformation.

The generalization to the finite case employs consistent

interpretation of the time derivatives of stress and deformation

appearing in the constitutive differential equations. The resulting

formulation obeys the constraint of material objectivity. Deforma-

tion magnitude is limited only by an assumption that recoverable,

elastic, deformation is infinitesimal.

In the following sections elastic and plastic flow modes are

separately defined and then assembled to provide governing equations

relating Jaumann stress rate and total deformation rate.

Elastic Flow Hode: Following Green and Naghdi [15] an elastic

strain component is defined as the difference between total and

permanent deformation. Explicit representation of this recoverable

strain component* e.̂ 6' in terms of problem kinematics is neither

sought nor necessary. It is defined only as the time integral of

d-.j(e>, the elastic component of the deformation rate tensor.
' J

Stress and elastic strain are assumed to be related through

a positive definite strain energy density function w'e'. The

energy density is defined such that

a1j = 3W(e)/9e.(e) (30)

is not an index.

19



Since the strain energy is positive definite and the elastic strain

is infinitesimal we may approximate W^ as a quadratic function

of e,-,-(e). It may then be inferred* from (30) that the stress and
' J

elastic strain are related as

ffU = E1Jk lek l<
e) (31)

Taking a Jaumann time derivative of (31) and inverting the result,

yields an objective relation between the elastic deformation rate

and the Jaumann stress rate.

V6' - "Ukl '" (32)

For an isotropic material the constitutive compliance tensor M^^i

has the simplest isotropic form for a fourth order tensor.

Mijki = 1JT ^/2(gikgjl + gilgjk) - ^ gijgkl] (33)

The constants y arid v in (32) are the shear modulus and Poisson's

ratio of classical linear elasticity.

Plastic Flow Mode: Equations governing infinitesimal plastic

flow of work hardening materials may be inferred from a hypothesis

*This portion of the development follows that employed in Green's
method for development of the generalized Hooke's law of classical
linear elasticity. (See Eringen [ s ] > chapter 5.)

20



first enunciated by Drucker [16]. It is postulated that plastic flow

produced by application and removal of a self-equilibrated stress

field is restricted by the rate* inequality.

a i je.>) > 0 (34)

**
Three characteristics of plastic flow theory are implied by (34).

1. The loading function, f = const., is a convex closed

figure in stress space.

2. The plastic strain rate is normal to f = const.

3. Plastic strain rate and stress rate are linearly related.

Development of a similar formulation for finite deformation

is impeded by the absence of a unique choice of an objective stress

rate tensor for use in a generalized form of (34). In the present

theory the Jaumann rate is chosen for its conceptual simplicity

and obvious physical interpretation. The implications of Drucker's

hypothesis are postulated as operational characteristics of the

finite theory.

The loading function is taken to be of the form

f = <(.(a1J) - K(W(P)) (35)

*For infinitesimal deformation these rates may be taken as partial
time derivatives, for which objectivity is an unnecessary constraint
since the deformed and undeformed states are indistinguishable.

**Demonstration of these consequences of'Drucker's hypothesis is also
provided by Naghdi (17).

21



In (35) $ is the yield surface and K is a work hardening parameter

determined solely by prior plastic work, w''3'.

Yield surface dependence upon current stress state is restricted

to the invariants of the deviatoric stresses. Plastic flow inde-

pendence of hydrostatic stress, and material isotropy are thereby

guaranteed. This restriction also eliminates the Bauschinger

effect since the yield surface will expand isotropically in stress

space. Hence $ in (35) is written

where J9 = (l/2)si,sJ,
.J \ (36)

J3

The plastic component of the deformation rate is taken to

be normal to the loading function.

d^P) = A 3f/&aij (37)

The proportionality constant A in (37) may be found from a

consistency condition for plastic flow given in (29) as

f = 0 (38)

22



Taking the Jaumann time derivative of (35) obtains

f = <J-K = (8<|>/3ai:i) 01j-K'w(P) = 0 (39)

K1 = dK/dw(P) (40)

The Jaumann rate appears explicitly in (39) only for stress since

material derivatives of all other quantities present are objective.

The rate of plastic work w P in (39) may be expressed as

w(p) = a^d-.tP) (41)
' »J

Substituting (41) and (37) into (39) one may solve for A in (37).

The resulting expression for the plastic deformation rate is

(34./9ok1) Jk1 (42)
K'(3<|>/3ars)ars

in which a linear relation between plastic deformation rate

and Jaumann stress rate is apparent.

Plastic flow is fully defined by (42). Practical use of this

result requires a choice of an explicit form for the yield surface

<f> and definition of the work hardening function K. To complete

the formulation we employ a construction proposed by Swedlow [7 ]

for the infinitesimal case.

Dimensional consistency in (42) is established by assuming cj>

23



to have the dimensions of stress. It is therefore plausible and

convenient to consider it as an equivalent stress* T . We then

may define an equivalent plastic strain rate d conjugate

to T in the sense that

Teqdeq = W(P) = °ijdi.j(p) (43)

Substituting for d..'P' in (43) leads after some manipulation to

the equivalence

K- = (VTeq)(Teq/deq(P)) (44)

This expression for K1 provides means for its determination

from experimental data. Defining a total equivalent plastic strain

eeq as tne integral of d » (44) may be written

K' = %

where we have defined an equivalent plastic modulus y

dependent solely on the equivalent stress.

(46)

Derivation of the plastic modulus from uniaxial tensile test data

is described in detail in Appendix I.

*eq not indices

24



Introducing the equivalent stress and modulus in the flow equations

(42) yields

eq
(47)

For convenient reference (47) is written as

(48)

is hemitropic function of the deviatoric stresses. The full

flow equation is objective.

Elasto-Plastic Flow: The total deformation rate is simply

the sum of its elastic and plastic components. Assembling

equations (32) and (48)

It is convenient to rewrite (49) as

1j = Bijkl

Bljkl

(49)

(50)

eq eq

In (50) u is the shear modulus of linear elasticity.

25



y = E/[2(l + v)]

The flow mode is controlled in (50) by the modulus ratio y/y (P)
eq

For elastic loading and unloading the plastic modulus becomes

infinite and (50) reduces to the elastic equations (32).

Perfect plasticity is specifically excluded from the

formulation. Hence

and (51) may be inverted.

= P1jkl d
kl

In (53)

Pijkl s y [ (g -

2yy
eq

kl
eq

1+Y2(3T /8om n)(3T /3arS)gmrgnS

eq eq

The tensor p"|Jk' is a hemitropic function of the deviatoric

stresses. It possess the symmetries

pijkl _ pjikl _ pklji

(51)

(52)

(53)

(54)

(55)

(56)

26



and cannot be decomposed into elastic and plastic components.

The inverse constitutive equations (53) are objective. The

equations are expanded for planar flow in Apendix II.

Examination of the constitutive equations reveals two

critical features of finite elasto-plastic flow.

1. The constitutive equations cannot be integrated to

define relations between total stresses and strains

except under very restricted conditions.* The stresses

must be proportional and the deformation must be homogeneous.

2. The total strain, found as the time integral** of d..,
' \J

cannot in general be decomposed into elastic and plastic

components. The elastic and plastic deformation rate

components are defined with respect to the instantaneous

configuration of a body. This configuration reflects the

previous history of both elastic and plastic flow. Hence

the total deformation reflects problem dependent coupling

of elastic and plastic behavior.

These facets of finite elasto-plastic deformation provide the

motivation for the rate viewpoint adopted for the entire analysis.

*The usual distinction between incremental and deformation theories
of plasticity (Fung [14], p. 476]) is identified but must be
extended to exclude local rotation.

**See (22).
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1.3 Equilibrium Theor

The. Concept o

The rate nature of the constitutive equations for elasto-

plastic materials dictates that their deformation be viewed as

a time dependent flow process. Hence requirements of mechanical

equilibrium must be applied not only to instantaneous states

of a deforming body but also to the flow itself.

Equilibrium equations governing total stresses and their

rates of change are developed below. The derivation of the

total stress equations provides a model for establishment of

appropriate rate equations.

The flow is taken as quasi -static thereby allowing inertial

effects to be neglected. Body forces are also excluded.

Total Stress Equilibrium: The net load applied to a body

B in static mechanical equilibrium must be zero. The net load

is found as the integral of surface traction (23) over 8B the

boundary of B.
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/Vds = y°1Jv-ds = 0 (57)

9B 3B

Applying the divergence theorem* to (57) yields the volume

integral over the body

j. . dV = 0 (58)
jj

B

Since B is arbitrary, field equilibrium equations

a1j., = 0 in B (59)»j

may be inferred from (58).

Equations (59) are the familiar stress equations of

equilibrium in terms of Cauchy stress a1^. These objective

equations are valid irrespective of material constitutive

behavior and deformation magnitude.

*Sufficient smoothness of a1J in B is assumed.
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Stress Rate Equilibrium: Rate mechanical equilibrium of a

deforming body requires that the time rate of net applied load

be zero. The net load rate is given by the material derivative

of (57). Existing stresses are assumed to satisfy (59).

ar
3B 3B

t1 in (60) is given by (24). The additional term derives from

the time dependence of 9B.

Applying the divergence theorem* to (60) yields

Â 'J . - aP1 . VJ.J dl/ = 0 (61)
J jj »J »r.

B

Again noting that B is arbitrary we infer field equations

aiJ . - aP1'., VJ = 0 in B (62)jj »J >P

Satisfaction of (62) guarantees that given an equilibrated stress

field equilibrium will be maintained in the presence of time

varying loading. The equations are objective.

*Sufficient smoothness of a J, a , v. is assumed.
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The stress rate equilibrium equations (62) have been derived

by a number of previous investigators. Similarly to the total

stress equations (59) they govern the stress field irrespective

of deformation magnitude and material behavior. In the case of

linear elasticity it may be argued (Hill [18]) that the first

term in (62) dominates the second by the approximate order of

magnitude ratio (E/o1-^). Thus for elastic deformation of metals

under moderate stress (cr1J«E) the rate equation may be approximated

as

a1^ . = 0 (63)»J

Since the total deformation is infinitesimal the time integrated

equilibrium error introduced by dropping the additional term will

be small.

For elasto-plastic deformation, however, Rice [19] notes that

the dominance of the first term is diminished by the reduction in

material stiffness, (yeQ'
3/y)«l. The approximate form (63) may

still be employed.for infinitesimal deformation but the equilibrium

error will be larger, of more concern, and problem dependent. In

the present analysis for finite elasto-plastic deformation the

complete stress rate equilibrium equations must be employed.
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I.4 Governing Equations of Finite Elasto-Plastic F1ow

The. InLtA-aJL-OLnd BoundcVLtf-VaJLuie. PtLobtm ^on. VeJLoCsUty

The elements of a complete theory of finite elasto-plastic

flow are now in hand. Assembly of the constitutive and equilibrium

equations provides governing equations for the velocity field in

a deforming body. Initial and boundary conditions admissible to

these equations may be defined. The formulation reduces to previous-

ly established results for infinitesimal deformation.

In principle the governing equations may be integrated over

space and time yielding solutions for complete stress and deforma-

tion histories. In practice such integration is possible in closed

form only in a limited number of simple cases. However, the quasi-

Vinear nature of the velocity equations facilitates efficient

numerical solution. The potential for obtaining such solutions for

complex problems is a primary motivation for the present theoretical

development.

The Velocity Equilibrium Equations: The velocity field in a

deforming body is chosen as the primary dependent variable thus

guaranteeing flow compatibility. Equations governing this velocity

field are found by assembling the constitutive and stress rate

equilibrium equations. For convenient reference the equations are

reiterated below.
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Constitutive. Equation*: a1-3 = P1 j (64)
KI

Rate, EquAJLibnMm Equation*: alj . - aP1' . vj =0 (65)*jj jj ;p

Writing the Jaumann stress rate in terms of the material rate

alj the constitutive equations may be combined with the equilibrium

equations to obtain:

aVmj+amJ>);J. -aPl;jvJ;p - 0 (66)

Using the definitions of the deformation rate (19) and spin (21)
>

tensors (66) may be written entirely in terms of velocity.

+ [Pkll'Jv,. -,].,• + akPv1-..,! = 0 • • •
J » I ' ' sh1 I

This result, the velocity equilibrium equations, governs the

instantaneous spatial dependence of the velocity field. Presuming

knowledge of the stress field, these differential equations are

linear at an instant of time. Furthermore they provide a quasi -

linear model for the entire deformation process. Their solution

involves simultaneous, but decoupled, integrations with respect to

space and time.
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Immediate integration of the velocity equilibrium equations with

respect to time would provide equations governing the total deforma-

tion. However such integration is possible only for homogeneous

deformation under proportional loading, the same restrictions which

limit such integration of the constitutive equations. Thus the rate

viewpoint initially adopted proves to be a viable approach not

limited in application to specific classes of loading and deformation.

Complete Problem Definition: Complete definition of the finite

elasto-plastic deformation problem includes the governing equations

(67), specification of material properties, and prescription of

initial and boundary conditions for the dependent variables.

McLtvuat Vfiop&i£i&>: The elastic constants defined by (33) must

be known. Work hardening plastic flow character of the material

is defined by the equivalent plastic modulus prescribed as a

function of equivalent stress xeq. Any history of prior plastic

deformation is reflected in this function.

InJjtijaJt Condition**: The initial configuration, Bo, must be defined.

^Initial stress and velocity will normally be taken as null fields.

However certain non-zero initial fields are admissible; the stress

must be in equilibrium and the velocity single valued.
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Eoandafiy Conduti.om>: Admissible boundary conditions include

prescription of both traction rate* and velocity on the boundary

88 of the deforming solid. Traction rate and velocity vectors

prescribed at the same point on 9B must be orthogonal. Three

classes of problems may be identified.

1. fundamental problems in which either traction rate

or velocity are prescribed on the entirety of 8B,

2. mixed problems in which traction rate and velocity

are prescribed on distinct portions of 3B, and

3. mixed-mixed problems in which traction rate and

velocity are prescribed on the same portions of aB

and are limited by the orthogonality constraint cited

above.

*Traction rate t is prescribed either explicitly, as in the case
of pressure loading, or implicitly from knowledge of the total
load rate, t1, applied to a finite portion, 3Bj, of 3B. In the
explicit case from (24)

Implicitly the traction rate is given by T1 through (60)

T1 = At1' + aijvP v.:)ds
J »P J
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The Limit of Infinitesimal Deformation: The velocity

equilibrium equations (67) are valid irrespective of deformation

magnitude. Reduction of these equations to forms previously

established for infinitesimal deformation derives from the

assumption that the stress-velocity gradient coupling terms

make negligible contribution to the nature of the total deforma-

tion. The distinction between deformed and undeformed coordinates

becomes unnecessary. Under these assumptions (67) becomes

[PkliJV-,]., = 0 (68)j»i j i

These are the governing equations of infinitesimal elasto-plastic

flow developed by Swedlow [7 ] .

In the absence of plastic flow Pkll'J in (68) reduces to the

constant linear elastic form E J in (31). The velocity

equilibrium equations may then be immediately integrated with

respect to time. The resulting equations (69) are the Navier

equations for displacement ui of classical linear elasticity.

{[l/0-2v)]g i j'gk
p + g1'̂ ^} u....k = 0 (69)
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II. STRATEGY FOR PROBLEM SOLVING

The solution to a problem of finite deformation must include
. i/

complete histories of the deformation mapping xn(X ,t) and the

stress field a1^(x'<,t). Construction of this solution for the

elasto-plastic case requires simultaneous integration of:

1. the velocity equilibrium equations (67) to determine

the velocity field in the time varying domain B,

2. the velocity field with respect to time in order to

determine B, and

3. the constitutive equations (64) with respect to time,

thus determining the stress field a1J(x'c,t) in B.

As has been previously noted analytic solutions may be found only

for homogeneous deformation under proportional loading. Numerical

solution is unavoidable for more general problems.
I

Solution for the dependent variables as continuous functions

of time requires an iterative approach. A variety of techniques

might be employed including, for example, relaxation or predictor-

corrector methods. While such iterative solution is feasible an

enormous amount of computing might be anticipated with no guarantee

of numerical stability.

A more economic approach is suggested by the quasi-linearity
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of the problem. Rather than seeking a continuous solution for the

time varying configuration and stress field we restrict our attention

to the behavior of these quantities at a finite number of times

during the deformation. The total deformation is approximated as

a sequence of incremental deformations.

Adoption of the incremental viewpoint toward problem solving

allows spatial and time integration to proceed sequentially rather

than simultaneously. Spatial integration of the instantaneously

linear velocity equilibrium equations provides the velocity field

in B at time t. Subsequent integration of the velocity field and

constitutive equations over a time increment St yields the con-

figuration and stress field at a new time t + St. A new spatial

problem for the velocity at t + 6t may then be defined. The

computational efficiency of the incremental approach is immediately

apparent. A complete problem is solved by a sequence of linear

analyses. No iteration is required.*

The availability of the complete theoretical rate formulation

provides a distinct advantage for the incremental numerical

solution procedure. Problem solving capability is not tied to

particular numerical techniques.

*A single exception exists. If elastic unloading occurs during an
increment the plastic modulus becomes infinite and the analysis
for that increment must be repeated. The iteration is, however,
closed in the sense that it need be continued only until the local
modulus value is consistent with the. behavior, of the point in
question/" ----- . - .- --.

38



Irrespective of the numerical procedures chosen solution

accuracy is controllable. The incremental model assumes that the

velocity equilibrium equations written at an instant during the

deformation provide an acceptable approximation over a finite

time step. Note, however, that the coefficients in these

equations are stress dependent and the configuration of the

deforming solid defines their domain of integration. Hence the

degree of approximation is dependent upon the variation in stress

and configuration during a time step. The analyst retains

control over the error in modeling a problem through his choice

of time step size and is assured of convergence to a precise

representation as the step size tends to zero. Thus increased

time step size provides a less accurate solution at reduced

expense and vice-versa, a measure of control not available

in iterative solutions.

The incremental approach to problem solving provides a

vehicle for realization of the full potential of the rate

formulation for finite deformation of elasto-plastic solids.

No inherent restrictions exist upon loading type, geometry

or deformation magnitude. The utility of the analysis is

limited only by the availability of requisite material property

data.
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III. NUMERICAL SOLUTION PROCEDURE

The incremental approach is adopted for numerical solution

of the finite elasto-plastic deformation problem. A finite

element technique is employed to reduce spatial integration of

the field problem of Section 1.4 to algebraic form. The overall

procedure for analysis of a deformation increment is summarized

below and developed in detail in subsequent sections. The

procedures described are valid for analysis in three spatial

dimensions in any coordinate system.

The deforming solid is partitioned into an array of contiguous

sub-regions or finite elements. Behavior of the complete solid

is modeled by coupling these elements at a finite number of

common points or nodes. Within each element spatial dependence

of field -variables is approximated in terms of nodal values

which become the principal Unknowns of the numerical problem.

Linear algebraic equations governing the nodal velocities

at the beginning of a time step are developed by applying the

Galerkin method* [20] to the velocity equilibrium equations.

*Note that for finite elasto-plastic flow energy principles"are
not available as a basis for finite element solutions. Hence
an approach based solely on the governing differential equations
is required. This point is further discussed in Section III.l.
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These equations, termed the rate stiffness equations are of the

form*

ja = K<*eve (a,f3=l,...,M) (70)

where T<* and V& are nodal loading rates and velocities,

respectively. The range M is the total number of degrees of

freedom associated with the finite element model. The rate

stiffness K0^ in (70) depends upon the instantaneous configura-

tion, prior plastic deformation, and the existing equilibrated

stress field. Boundary conditions of the problem must prescribe

precisely half of the 2M variables, load rates and velocities.

Solution of the rate stiffness equations for the unknown

nodal quantities provides the basis for evaluation of a deforma-

tion increment. Nodal coordinates and loads as well as stress

and strain fields in the elements are found by integration with

respect to time. Values of these quantities at the beginning

of the increment provide initial values for this integration. A

new problem for the nodal velocities, may then be defined and

the incremental procedure repeated.

*6reek superscripts indicate matrix character. Repeated Greek
superscripts are to be summed over an indicated range.
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A single exception to the above procedure exists. Elastic

unloading is signalled by a decrease in the equivalent stress

in a region previously deforming plastically. When this occurs

the rate stiffness must be recomputed to reflect elastic behavior

in elements comprising that region at that time, and the incremental

solution repeated.

The incremental method described above has been implemented

for analysis of planar deformation in plane stress or plane strain.

Equations governing numerical solution of planar problems are

given in Appendix III.
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III.I Spatial Integration: The Galerkin Method

The use of finite elements for spatial integration of the

velocity equilibrium equations is contingent on the availability

of a method for transforming these equations to an algebraic form

involving a finite number of dependent variables. Discretization

procedures developed for analysis of infinitesimal deformation,

Zienkiewicz [21], provide a model for the present finite case.

Reduction to a finite number of variables is accomplished

by approximation of element field variables in terms of their

nodal values. These nodal values are taken as the dependent

variables of the numerical problem. Algebraic equations

governing these variables must be derived from the governing

differential equations.

In analysis of infinitesimal deformation advantage is

taken of the symmetric nature of the governing equations, e.g.

the Navier equations of linear elasticity. Problems governed

by such equations admit alternative statement as the variation

of quadratic functionals. The variational problem may be

extremal, e.g. minimum potential energy, or stationary, e.g. the

Reissner [22] principle. The functional is written in terms of

the finite element field variable approximation, integrated over

each element and the variation taken with respect to the nodal
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variables. The resulting linear algebraic equations are then

solved for the nodal quantites. This entire procedure is known

as the Ritz method.

Application of the Ritz method to the present case of finite

elasto-plastic deformation requires that the velocity equilibrium

equations be symmetric. Writing these equations in terms of a

linear differential operator L1, however,

L1' {Vj} = 0 in B (71)

and the boundary conditions as

,-) = 0 on 3B (72)
J

we find

^v-j^w. dl/ t y [lAcw..}] v. dl/ (73)

B B

In (73) v. and w^ are independent, single-valued velocity fields
J J .

satisfying (72). Symmetry requires that (73) be an equality.

Thus the Ritz method is not applicable in the present case. An

alternative integral method is required which, while admitting

the use of a finite element field variable approximation, does

not restrict the nature of the governing differential equations.
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The present numerical solution procedure employs the Galerkin

method which is applied directly to the governing differential

equations and is appropriate irrespective of their character. Rate

stiffness equations are developed for single elements and assembled

to define master equations for a complete problem.

The velocity field v^ in an element B is approximated* by v.

v. = v, = r«BVP*?(x ) <x,(3=l,...,N (74)1 1 i

where Ve are nodal velocities, ra$ is dependent upon the nodal

coordinates, <t>"(x ) is a vector of functions of x^ and N is the

number of degrees of freedom associated with the element. The
i,

<t>!? in (74) are prescribed functions of x providing an approximate

representation of the spatial variation of vn- in B . The matrix1 m
rag is defined by requiring that evaluation of v. at the nodal

positions yield V^.

The Galerkin method** is based on the observation that if

the ()>" in (74) are considered independent then requiring v- to

satisfy (71) as N tends to infinity implies orthogonality of

*Combined matrix tensor notation is employed. Greek superscripts
denote matrix character and Latin indices denote tensor com-
ponents. Thus the elements of <f>? are first order tensor components,
The overscript T denotes a matrix transpose.

**This discussion is intended to communicate the essence of the
technique. Rigorous discussions may be found in Kantorovich
and Krylov [20] and Rektorys [23],
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each of *? (a=l,...,N) to L^v,} in B . Thus
T J HI

/
B

m

« dl/ = 0 a=l N (75)

The orthogonality conditions (75) provide N linear algebraic

equations for the unknown Ve of (74). Expansion of (75) for

finite N yields the rate stiffness equations (76) for the

element B . The range of all Greek superscripts is N.

f {(at.
J '

SB
m

./at) ' - t n B c ' P . - 6 1 . ] ] } r 6 V d l / (76)
»p »

_ i/nawo

= /*{J
J

pkl
B

m

.
U m (77)

;p o ..,]ra} dl/

and
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The surface integral in (76) corresponds to the time rate of load

(See Section 1.4). on the element boundary and may be taken to

define a vector of nodal load rates Ta. Hence (76) is written

jn = IW* n,a=l,...,N (79)

The rate stiffness matrix Kna is full; depends upon the element

configuration through the nodal coordinates in rae and upon the

existing equilibrated stress state. In general the rate

stiffness matrix is not symmetric.

Having written (79) for each element, master rate stiffness

equations are written for the entire body by summing the load

rate components at each node. Thus follow the equations

Ta = Ka v3 a,3=l,...,M • (80)

where the range M is the total number of degrees of freedom

associated with the assemblage of finite elements used to model

a complete body. The stiffness matrix Ka& is M x M, sparse

and not symmetric. Banded coefficient structure may be achieved

in K°^ by appropriate construction of the finite element map.

Solution of the linear algebraic system (80) requires

specification of M of the 2M variables, Ta and Va. At internal

nodes equilibrium requires Ta to be zero. At boundary nodes

47



either Ta or Va may be prescribed* subject to the same ortho-

gonality restriction governing the boundary conditions of the

original field problem of Section 1.4. Solution of the equations

may precede by any convenient technique and yields full knowledge

of the velocity field in B and loading rate on 8B as character-

ized by their nodal values.

*Boundary loading is prescribed either as rate ofttotal load T
at nodal positions or through the traction rate t. on 8B. In
the latter case the rate stiffness equations are employed in
the form (76) and the requisite surface integrations performed
numerically.
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III.2 Time Integration

The solution of the rate stiffness equations at time t
o

provides a basis for evaluation of ensuing changes in deformation

and loading occurring during a small but finite time step St.

Time dependent variables are expanded in Taylor series about t ,
O

truncated to linear form and evaluated at t +6t. The procedure
O

allows evaluation of the deformation, nodal coordinates and

element strains, and loading, nodal forces and element stresses,

at t +<St, the end of the time step. Requisite time derivatives
o

are provided by the rate stiffness equation solution at t .
o

The procedures of this section provide sufficient data,

nodal coordinates and element stresses, for evaluation of the
Ct firate stiffness K at t +6t, the beginning of the next time

o

step. Although more sophisticated time integration schemes

might be employed, including higher order Taylor series

representations, the linear technique proves adequate in practice.

Nodal Coordinates.: The time dependent nodal coordinates

are expanded as

xa(t) = xa(t ) + [xa(t )]6t + ... (81)

49



Hence the nodal coordinates xa at the end of a deformation increment

may be approximated at (t +st) as

where xa are the nodal coordinates at t and V01 are the nodal
o

velocities. Total nodal displacements Ua are subsequently

defined by

Ua = x™ - Xa (83)

where Xa are the nodal coordinates of the original (t=0)

undeformed configuration.

Element Strains: The element deformation.mapping function

(1) at (t +6t) is written
o

xV. = X1 + U1 (84)

where the total displacement field U is taken as a function of

the undeformed field coordinates X .

The element total displacement field is approximated in terms

of nodal quantities in the same manner as was the velocity field

in the development of the rate stiffness equations in Section III.I

UJ(XK) = ra3 U^ 4,aI(XK) (85)
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Substituting (85) into (84) the element deformation gradient is

written

x1
 T = 9\ + 9Va3 U6 <j>aj, (86)
» I 1 U J

Inverse deformation gradients 8X /9X1 are defined by observing

that

(3XV3X1) (axVaxJ) = g1. (87)
J

A variety of strain measures may be computed from the

total deformation gradients (86). Almansi strain, for

example, is given by

e,, = (l/2)[g.. - (aX!/3X1J (8XJ/8xj) G..] (88)
ij ij i«J

It should be recalled that the strain is not separable into

elastic and plastic portions.

Nodal Loads: The time dependent nodal loads may be

expanded as

Fa(t) = Fa(t ) + [Fa(t )] fit + ... (89)
o o

Truncating this series to linear form the nodal loads at the

end of a time step are approximated as
\

Fa(t +6t) = Fa(t ) + Ta fit (90)
o o

where Ta are the nodal load rates of (80).
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Element Stresses: Evaluation of the element stress field

requires distinguishing between Cauchy stress a1J referred to

the instantaneous configuration of an element and a Kirchhoff

stress S1J referred to the configuration at t . Both o1J and
o

S1J are time dependent and are equal at t . Denoting the
o

Cauchy stress at t as a1J we define the Kirchhoff stress such
o

that

[S1j(xk,t)] = â x'St ) = a1-J(xk) (91)
o

Oikwhere x are the element field coordinates at t . At t +6t
o o

the two stress fields are related by

o1J(xk,t + t) = (1/J) (Bx 1 /3x k ) (3x j /ax 1 )S k l (x r , t +6t) (92)
o o

where J = |3xVaxJ|. Hence the final Cauchy stress may be

found from the final Kirchhoff stress using the transformation (92).

S is approximated at (t + t) by the truncated Taylor
O

series

Sij'(t +6t) = a1-J + S1j'.6t (93)
o

The Kirchhoff stress rate S1J in (93) is computed from the

Jaumann stress rate olj at t .
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- aW (94)
p p

where from (53)

and the deformation rate d.. is computed from the element
J

velocity field approximation (74).

Computation of o1J using (92) is facilitated by approximating
— 1 O -i

the element incremental deformation mapping x (xj) in the same

manner as the total deformation of (86). Thus

x1 = x1 + u1 (xk) (95)

The incremental displacement f ie ld u is represented in terms

of .incremental nodal displacements ue as

u i ( ° k ) = raeue ^ a i ( ° k ) (96)

where the incremental nodal displacements are determined from (82)

UB = Ve fit (97)
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I I I. 3 The Limit of Infinitesimal Deformation

It has been noted in Section 1.4, that the velocity

equilibrium equations reduce to well established results in the

limit of infinitesimal deformation. It is therefore reasonable

to expect similar limiting behavior of the algebraic equations

governing finite element solutions. This expectation is reinforced

by noting .(Kantorovich and Krylov [20]) that application of the

Galerkin method to symmetric differential equations, such as those

governing the infinitesimal case, yields precisely the algebraic

equations derived from a Ritz approximation.

For infinitesimal deformation stress-velocity gradient

coupling is assumed negligible and deformed and undeformed element

configurations are taken to be indistinguishable. The rate stiff-

ness equations (76) become

Tn = Knv (98)

where

/

T
{rnB$B.{rnB$B. piJ rfici} dl/ (99)

B
m

The stiffness matrix Kna is symmetric and positive definite and is

recognized as that governing infinitesimal deformation, see, for

example, Zienkiewicz [21] p. 16.
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For elasto-plastic flow Ta, Va in (98) are interpreted as

increments of nodal load and displacement. Total strain (assumed

«1) and stress are found as simple sums of incremental results

since the reference frame transformations of Section III.2 become

identity operations. In the case of elastic behavior (98)

integrates directly to provide linear relations between total

nodal loads and displacements.
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IV. EVALUATION OF SOLUTION CAPABILITY

IV. 1 The FIPDEF Program

The procedures of Section III have been implemented to

provide incremental solution capability for problems of planar

finite deformation. The computer program, FIPDEF (Finite

Hastic DEFprmation), performs analysis of elastic and elasto-

plastic materials deforming under conditions of plane stress

or plane strain. Elastic unloading and subsequent reverse

plastic loading are automatically treated.

The program employs triangular finite elements defined

by nodes at their vertices. The velocity field is approximated

within each element by assuming linear spatial variation. Rate

stiffness equations for these elements are developed in Appendix

III. General program logic is shown in Figure (2). The FIPDEF

program is written in Fortran IV and is operational on the

Univac 1108 system at Carnegie-Mellon University.

Problem definition includes the initial finite element

map geometry, material properties and incremental histories of

nodal boundary conditions. Material behavior is described by

the elastic constants, a proportional limit value of octahedral

stress and pointwise specification of an octahedral stress-

octahedral plastic strain curve.*

*See Appendix I.
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Figure 2

GENERAL STRUCTURE OF THE FIPDEF PROGRAM

1. Read and check input.

2. Set initial elastic material properties.

3. Generate rate stiffness matrix for the Nth

time step. (UNsNINC)

4. Solve for nodal velocities and load rates for

step N.

5. Evaluate element stresses at the end of step N.

6. Check all elements for load reversal.

a. i.f reversal has occurred in any element(s);

modify element material properties accord-

ingly and return to 3. to repeat the Nth step.

b. if loading continues in all elements evaluate

their material properties for step N+l.

7. Evaluate nodal loads and coordinates and element

strains at the end of step N.

8. Output

9. If N < NINC: go to 3 for step N+l.

10. If N = NINC: STOP.
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IV.2 Verification Analysis

Evaluation of the finite deformation analysis capability

provided by the FIPDEF program is difficult since comparison

with analytic solutions is possible for a limited number of

problems. In particular analytic solutions may be obtained only

for homogeneous deformation under proportional loading. Despite

their conceptual simplicity, however, such problems retain

considerable nonlinearity and therefore provide an acceptable,

albeit limited, basis for assessment of numerical results.

Furthermore, since the deformation of individual finite

elements employed in FIPDEF analysis is restricted to homogeneous

form, the behavior of these elements may be completely evaluated.

Verification of the accuracy of individual element response is

significant for two reasons.

1. It demonstrates the viability of both the rate theory

and the incremental approach for solution of finite

deformation problems.

2. Accurate prediction of individual element behavior is

a necessary condition for accurate solution of inhomo-

geneous deformation problems requiring the use of

element arrays.
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It should be recognized that the use of element arrays to

solve inhomogeneous problems may of itself introduce error in

numerical solutions. Quantitative assessment of this discre-

tization error is not possible on the basis of the homogeneous

deformation problems for which analytic solutions are available.

Some indication of the potential significance of this type of

error can be inferred from the numerical solutions of planar

necking problems which are presented and evaluated in Section V.

FIPDEF and analytic results are compared below for three

classes of homogeneous finite deformation problems: extension,

simple shear and simultaneous extension and rigid rotation.

These three types of problems span the range of possible finite

deformations. The non-rigid portion of any continuum motion

may be viewed as the simultaneous occurrence of dimensional

changes, such as those associated with finite extension, and

combined shearing and rotation of the form found in simple

shear. The third problem, extension and rotation, provides

a means for verifying the objective character of the analysis

since the solution must be tensorially independent of rotation.

Complete solutions for the verification problems are

developed in Appendix IV. Salient features of these solutions

are discussed below and compared with the results of numerical
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analysis. It is demonstrated that accurate, objective numerical

solutions can be obtained for deformations involving dimensional

changes of a full order of magnitude and rotations of up to 45

degrees. These upper limits do not reflect deterioration of

the numerical results but rather the judgement that most

deformations of practical interest will be within these bounds.
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IV. 3 Finite Extension

The uni t cube of Figure (3a) is deformed into a bar, Figure

(3b), by prescribing its horizontal or x dimension as a function of

time. The deformation at any time is fu l l y described by the

coordinate stretch ratios

X x - = L i t
A A O

xy = ty/io . ( loo)

A = Lit
2 Z o

in which £0 is the original un i t dimension. No shearing deformation occurs,

The deformation is produced by uniaxia l loading (a #),

a = 0 ) and may precede under conditions of plane stress or plane

strain. In plane stress we require

while in plane strain

In either case the applied load is found as

Pv = a A (101)
x x x v '
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Figure 3 Kinematics of Homogeneous Extension
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where

cj = cr (O (102)

ex = Vx

and the cross-sectional area A is found from
A

A = A (A ) = X X (103)
x xv x' y z

In plane strain we have the additional result

= o ( x ) . (104)z x

Full solutions for load, stresses and area are developed in

Appendix IV for plane stress and plane strain extension of elastic

and elasto-plastic materials.

For purposes of verification analysis elastic materials are

defined as those governed by (32) irrespective of deformation

magnitude. To facilitate analytic solution elasto-plastic problems

employ the .bilinear material property representation of Figure (4).*

While the validity of material property models restricts

engineering application of the FIPDEF program, it does not

affect evaluation of solution accuracy. The only concern here

is consistent definition of verification problems to be solved

numerically and analytically.

*The effective stress and plastic strain of Figure (4) are directly
related to the "equivalent" quantities of Section 1.2 (see Appendix
I).
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Figure 4 Bilinear Elasto-Plastic Properties
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FIPDEF and analytic solutions have been compared for problems

of plane stress and plane strain extension for elastic and elasto-

plastic materials. All FIPDEF analyses employ the two element

model of Figure (3c). The deformation was prescribed in terms of

incremental x displacements of the appropriate nodes in this

model. With one exception all displacement increments were one

percent of the original unit dimension of the cube. For elasto-

plastic problems plastic flow was first established by

prescription of a number of very small («.01) incremental

displacements. The increment sizes were arbitrarily chosen.

Detailed study of increment size effects was not undertaken.

Agreement between analytic and numerical results was

excellent in all cases. Applied load, stress and deformed

cross-sectional area were predicted within one percent of

the analytic results.

Figure (5) is a plot of P , a , and Av as functions of XvX X X X

for an elastic material in plane stress. It illustrates a

distinguishing characteristic of all problems of finite extension.

The applied load-stretch relation is multiple valued;* a maximum

load P is attained at a critical, property dependent, stretch X .
c c

*The effect is observable in the data from any tensile test.
Discussion of its physical significance is undertaken in Section
V.
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The maximum load and critical stretch may be analytically predicted

by solving the equation

d(Px)/d(xx) =(dox/dXx)A + ax(dAx/dXx) = 0 (105)

The plausibility of the maximum load phenomena is evident in

(105) since, for the materials considered, (dA /dx ) < 0.
X X

Analytic expressions for P and X are given in Table (IV-1),
c \*

Appendix IV.

Numerical comparison of FIPDEF predictions and analytic

results are given in Tables (1) and (2) for elastic and elasto-

plastic problems respectively. Critical stretch, maximum load

and critical axial stress are predicted within one percent. All

results are dependent upon elastic and plastic properties.

Sensitivity to the elastic Poisson ration is shown in Tables

(1) and (2) to illustrate the resolution which is attainable.

Load-stretch results for plane stress and plane strain

extension of elastic and elasto-plastic materials are given in

Figures (6) and (7) respectively. The results are normalized on

the critical values PC and X . FIPDEF results and analytic

predictions coincide over the full range of deformation considered.
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Table 1

Homogeneous Extension of Elastic* Bodies

Comparison of FIPDEF and Analytic Results

at Maximum Load

Plane Stress:

Poisson's
Ratio (Ibs x 10"5)

FIPDEF Analysis

0.3

0.4

0.5

6.15

4.62

3.70

6.13

4.60

3.68

FIPDEF Analysis

5.27 5.30

3.48 3.49

2.71 2.72

(lb/in2 x 10"5)
FIPDEF Analysis

1.67 1.67

1.25 1.25

1.00 1.00

Plane Strain:

0.3 9.46 9.43

0.4 6.59 6.57

0.5** 4.93 4.91

10.16 10.29

4.46 4.48

2.71 2.72

2.57

1.79

1.34

2.56

1.79

1.34

*Note: E = 10° ib/irT in all cases.

**Poisson's ratio of 0.5 is inadmissible in plane strain analysis
(See Appendix II). Since it corresponds to elastic incompressiT
bility the present analyses were performed using a high ratio
of bulk modulus to Young's modulus </E = 103, which approximates

"such material. ...."._." ~~ .
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Table 2

Homogeneous Extension of Elasto-Plastic* Bodies

Comparison of FIPDEF and Analytic Results

at Maximum Load

Plane Stress:
P

Poisson's c .
Ratio (Ibs x 10~4)

0.3 7.78 7.72

0.4 7.65 7.58

0.5 7.52 7.44

Plane Strain:

0.3 9.29 9.17

0.4 9.20 9.09

0.5** 9.03 8.92

r •>

\ a
C C

(lb/in2 x 10"3)

1.27 1.27 94.74 94.20

1.25 1.24 93.29 92.56

1,23 1.22 91.45 90.91

1.44 1.43 127.6 127.1

1.42 1.41 125.1 124.0

1.36 1.36 121.7 121.0

*Note: E = 106 lb/in2

3 = da/de(P) = 105 Ib/IrT for a > o.K UW A t U/ I II I VI U Z.' V .,

a = 8 x 104 Ib/in2 y

*/

**Poisson's ratio of 0.5 is inadmissible in plane strain analysis
(See Appendix II). Since it corresponds to elastic incompressi-
bility the present analyses were performed using a high ratio
of bulk modulus to Young's modulus K/E = 103, which approximates
such material.
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Figure 6 Load-Stretch Response:
Finite Elastic Extension
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Figure 7 Load-Stretch Response:
Finite El asto-Plastic Extension
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IV.4 Simple Shear

Consider a uniform elastic continuum deforming according

to the prescribed velocity field

v = 2ky
x (106)

v = v = 0y z

The resulting deformation is homogeneous simple shear in x-y

planes of the material. Thus a unit cube of material, Figure

(8a), becomes an oblique prism of unit depth, Figure (8b). The

deformation is completely described by the shear angle y in

Figure (8b).

Y = tan" T
(107)

T = 2kt

The solution for the time dependent stress field resulting from

this deformation is developed in Appendix IV. The non-zero

stress components are

a = v sin Txy •

(1-cos T) (108)

a = y (COS T-1)
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FIPDEF analysis was performed in both plane stress and plane

strain employing the two element model of Figure (8c). Simple

shearing deformation was developed by prescribing incremental x

displacements of the upper nodes of the element map. All other

displacements are null. For the unit dimension model these

incremental displacements correspond to increments of T in (107).

The increment size was 0.01.

Analytic and FIPDEF stress results are compared in Figure

(9). Shear stress is predicted within one percent and normal

stress within five percent over the deformation range 0 z -t z 0.7.

Results from plane stress and plane strain analyses are identical,
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Figure 9 Stress Response:
Finite Simple Shear

250

A n a l y t i c So lu t i on

0.6

75



IV.5 Simultaneous Extension and Rotation

Consider the problem of simultaneous rotation and unidirectional

extension of a bar of elastic material. As shown in Figures

(10 a,b), the x' dimension of the bar is prescribed as a function

of time while its y1 and z' dimensions are maintained at their

original unit values. The bar simultaneous undergoes a rigid

rotation e(t). This motion may be described in two objectively

equivalent ways. In the primed, rotating coordinate frame

only the extension process is observed. In the unprimed, fixed

frame both extension and rotation must be taken into account.

Components of stress and surface traction corresponding

to the above homogeneous deformation are readily found by

analyzing the problem in the rotating reference frame of Figure

(10). This solution is developed in Appendix IV. It predicts

non-zero normal stresses (ax., a ,, a ,) and normal tractions

(txi, ty") on x
1 and y1 coordinate planes respectively.

FIPDEF analysis, however, proceeds in a fixed non-rotating

reference frame. Solutions developed in such a reference frame

must be independent of rigid rotation, i.e., the analysis must

be objective. Hence the FIPDEF solution must be related to

the rotating frame solution by the objectivity conditions of

Section I.I. Denoting the results of fixed frame analysis by
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Figure 10 Kinematics of Combined
Extension and Rotation
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unprimed quantities we require that the stresses be related as

a = 0vi cos
2e + a.. i sin2ex * y

a = a , sin2e + a , cos2e (109)y x y

az = oz.

aw = (°Y- " av') cose sineAjr A j

and the in- plane nodal forces as

F IN) = F (N) cos Q . F (N) sin
x * y1

(110)

In 009,110) e is the time dependent orientation of the extending

bar. In (110) F 'N) is the x component of total load at the

N node of a finite element model. F t^
n) is analogously defined

X

in the x' system but corresponds to the surface tractions of the

rotating frame solution.

The elastic extension-rotation problem was analyzed

using the two element model of Figure (lOc). Incremental displace-

ments were prescribed at all nodes such that the body underwent

simultaneous increments of extension and rigid rotation about

node 1 in that figure. Extension increments were one percent of
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the original unit length. Rotation increments were 0.005 radians.

The final stretch ratio, X v i , was 2.6 and the final orientation
A

angle was 0.8 radians.

Results obtained agreed with equations (109) and (110)

within one percent over the full range of deformation considered.

FIPDEF stress results are plotted in Figure (11) as functions of

A , and e. Representative nodal force results are given in Figure
y\

(12).

On the basis of these results, as well as those of similar

analyses for plane stress, it is concluded that affects of finite

rotation are properly treated in the FIPDEF program. The ob-

jective character of the underlying rate theory is preserved.
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Figure 12 Nodal Forces:
Combined Extension and Rotation
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V. NECKING IN FLAT TENSILE BARS

The numerical solution capability which has been developed

for problems of two dimensional finite deformation of elasto-plastic

materials provides a basis for the investigation of necking in flat

tensile bars. The physical aspects of the problem as well as a

number of significant previous analyses are discussed below.

Subsequently the numerical problem is described and results of

analyses under conditions of plane stress and plane strain are

presented and discussed. The results provide some insight into

the mechanics of the necking process as well as a basis for

quantitative evaluation of the utility of stress-strain relations

inferred from post-instability tensile test data.
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V.I The Physical Problem

Consider a flat metal bar, Figure (13), initially of length

I , width w and thickness t . In a tensile test the bar is
o o o

quasi-statically extended in the y direction by prescribing its

deformed length (£ > L ) as a function of time while the lateral
o

surfaces of the bar remain traction free. The present discussion

is limited to tensile testing of metals at room temperature

under atmospheric pressure.

Under the above conditions the bar will initially undergo

a process of homogeneous extension requiring a monotonically

increasing applied load.* For extensions in excess of some

critical value the applied load is observed to decrease with

increasing extension and subsequently a highly strained local

necked region develops in the bar. Extensions corresponding

to maximum load and necking initiation are found to vary with

the material and to a lesser degree with initial bar geometry.

As overall bar length continues to increase plastic straining

continues in the necked region while previously yielded material

in the remainder of the bar unloads elasticaVly. For convenience

we define the onset of necking as that point at which elastic

unloading first occurs.

*The upper and lower yield point phenomenon characteristic of
mild steel is excluded from this discussion.
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Figure 13 Flat Tensile Bar: Initial Geometry
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Neck development in flat bars is observed to be dramatically

dependent upon initial bar geometry. Nadai [2] reports that for

thin bars (w /t > 10) necking takes the form of local thinning
o o

in oblique bands parallel to the x-y plane of Figure (13). For

thicker bars (w /t < 7), however, necking appears as a symmetric
o o

reduction in width in an x-z plane of that figure. In bars of

intermediate aspect ratio (7 < w /t < 10) complex combinations
o o

of these necking modes are observed.

Experimental investigation of the necking instability

phenomenon has not provided a sufficient basis for identification

of criteria for either necking initiation or location of the

necking region in an initially prismatic bar. Criteria for

attainment of maximum load*, such as those employed in verifying

the FIPDEF program (Appendix IV), provide only a lower bound

for necking initiation. Experimental and very limited analytical

results indicate, however, that necking occurs somewhat later

than maximum load. The additional extension required is dependent

upon the properties of the material tested and possibly upon

initial bar geometry.

Presuming the existence of a stress- and/or strain-based

*The earliest prediction of maximum load criteria was provided
by Consider! L24J who considered simple extension of incompres-
sible materials.
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necking initiation criterion neck location might be determined

by the distribution of small imperfections in geometry or

material properties in seemingly perfect bars. Satisfaction of

the necking criteria in the vicinity of one such flaw, or in a

region of high flaw density, will cause additional prescribed

bar extension to concentrate in the flaw region, thereby

developing a neck. It has been shown that the intentional

introduction of geometric flaws can be used to control neck

location. Standard test procedures (ASTM [25] standard E-8)

for flat bar specimens allow a local reduction of area of up

to 10 percent for this purpose. It must be noted, however,

that the above interpretation of necking initiation has not

to date yielded complete understanding of the mechanics of

the problem.

The present investigation is limited to consideration of

symmetric necking in flat bars of elasto-plastic material. In

lieu of analysis in three spatial dimensions, the present effort

is restricted to consideration of the limiting cases of plane

stress and plane strain deformation in the x-y plane of Figure

(13). Neck location is controlled by considering an initial

geometric flaw in the form of an 0.5 percent area reduction in

the plane y = 0, which becomes the root plane of the neck. The
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The analysis is further simplified by assuming the transverse

tractions on the ends of the bar (y = ±1/2) to be zero.
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V.2 Previous Analyses

Tensile bar necking has been analyzed by a variety of

techniques. The utility of these analyses has been limited

largely by their consideration of idealized models of material

behavior as well as, in some cases, an inability to predict both

deformed geometry and internal stress and strain fields throughout

the necking bar. A number of these analyses are described below

to indicate the range of previous efforts as well as to provide

a basis for comparison with the results of the present analysis.

Bridgeman [1] developed a solution for the stress distributions

in the root planes of necks in round and flat tensile bars. The

analyses consider a material obeying a Mises yield criterion

and neglect elastic deformation. An assumption of uniform

strain in the root plane is made in both cases. The assumption

is corroborated for the axisymmetric case by the experimental

work of Bridgeman himself as well as that of Davidenkov and

Spiridonova [26]. No experimental evidence exists to support

the uniform strain assumption in the planar case. The solutions,

while physically plausible, are of limited use since a pt-to/u.

knowledge of neck geometry is required and no relationship is

established between overall bar extension and development of

the neck. -
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Full field solutions for tensile necking in flat bars have

been obtained by a number of investigators through analysis of

plane strain extension for rigid-plastic materials. The

perfectly plastic case has been considered by Richmond [27] and

Onat and Prager [28] and hardening plastic by Cowper and Onat [6].

These solutions may also be distinguished by the manner in

which necking deformation is introduced. Richmond considers the

prismatic bar as the limit of a V-notched bar and thereby has

in effect introduced an initial imperfection. Onat and Prager

explicitly consider initial shallow longitudinal grooves. Cowper

and Onat, on the other hand, develop admissible solutions correspond-

ing to incipient necking by demonstrating bifurcation of the

solution to the homogeneous extension problem for a hardening

material.

Neck geometries are predicted by all three analyses.

Richmond predicts a boundary profile which is convex at the root

plane and tends to a linear profile away from the neck region.

Qualitative agreement with limited experimental data is

demonstrated. The Richmond profile, while differing drastically

with the V shaped neck predicted by Onat and Prager, is qualita-

tively similar to that shown to be admissible for hardening
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material by Cowper and Onat. This similarity perhaps indicates

that analysis of necking employing slight initial geometric

imperfections provides results indicative of behavior of perfect

bars.

Analysis of necking has recently been extended to include

consideration of elasto-plastic (work-hardening) material

behavior by Chen [29] and Needleman £30], Both investigators

have developed numerical solutions for the axisymmetric case.

The two studies are significant in the context of the present

effort not only by virtue of their consideration of elastic

deformation but also because both analyses indicate that necking

initiation is distinct from attainment of maximum load. The

observation is of increased significance since Chen considers

an initially imperfect bar while Needleman establishes necking

deformation using a bifurcation technique.
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V.3 The Numerical Problem

Two numerical analyses have been performed, one in plane

stress, the other in plane strain. Initial geometry, material

properties and in plane boundary conditions were identical in

both analyses.

The undeformed bar of Figure (13) is represented in two

dimensions by the finite element model of Figure (14). The

model employs 600 finite elements defined by the positions of

341 nodes. The finite element model is bounded by symmetry lines

at x = 0 and y = 0 and represents one quarter of a complete bar.

An initial geometric imperfection is introduced by reducing the

cross section at y = 0 by 0.5 percent. The amplitude of the

imperfection is shown greatly magnified in Figure (14).

The bar is taken to be of isotropic homogeneous material

whose inelastic deformation is described by the constitutive

formulation of Section 1.2. Elastic deformation is characterized

by the constants

E = 10 x 106 lb/in2

v = 0.3

Work hardening plastic deformation is controlled by the effective

stress-effective plastic strain relation plotted on both linear

and logarithmic scales in Figure (15). Initial yield occurs for

Jef = aY = 35 x 103 lb/in2
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Figure 15 Effective Plastic Stress-Strain Curve
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Thereafter the stress-strain relation is

A[(oef/aY)-l]
N 0 < ê '< 0.05ef Y mi)

ef
(a- - K) /B ev^> 0.05
ef ef

where

A = 5.0814 K = 40 x 103 lb/in2

N = 3.0 3 = 50 x 103 lb/in2

The effective modulus ratio E /(da f/de f ) therefore varies

smoothly from zero at the yield point to a constant value of

200 for effective plastic strains in excess of 0.05, The

plastic stress-strain curve is input to the analysis in the form

of data points corresponding to (111). The spacing of these

points in strain varies from 6e(£>= 10 at initial yield to

= o.05 in the linear portion of the curve.

The initial stress-free configuration of the two dimensional

quarter symmetry model of the bar is shown in Figure (14). The

initial length to width ratio is 3:1. The model is deformed by

prescribing the history of incremental boundary conditions. Within

each increment these boundary conditions are as follows:

1. Normal displacements and tangential traction are zero

on the symmetry boundaries x = 0 and y = 0.
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2. The lateral boundary in i t ia l ly at x = w /2 is traction
o

free throughout the analysis.

3. Extension is imposed by prescription of uniform positive

normal displacement of the boundary initially at y = I /2.
o

Tangential traction on the boundary is zero.

The magnitude of the incremental extensions was varied over the

extension history. Initially small steps (&t/l : 10" ) were taken
o

to establish plastic flow over the entire bar. Incremental

extensions were then gradually increased according to the algorithm

6l/(l-l0l = 0.05 until necking initiated. Subsequent incremental

extensions were maintained at approximately 0.5 percent of the

length of that portion of the bar which continued to deform

plastically. The final overall stretch ratio l/l considered
o

was 1.43 in plane stress and 1.62 in plane strain.

Approximately 130 loading increments were employed in each

case, each increment requiring an average of one minute of

computing time on a Univac 1108. The analyses were terminated

when deformations were developed which were judged sufficient

to permit reasonable assessment of the necking process. The

results do not suggest any breakdown in the analysis. There is no

reason to suspect that the analysis could not have been extended

indefinitely although in the absence of quantitative criteria for

prediction of tensile fracture such effort was not warranted.
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The analyses provide full histories of deformation and stress

associated with the process of extension and necking in plane

stress and plane strain. The deformation is given explicitly by

the deformed configuration of the finite element model. The

stress field is represented in terms of its component values at

the centroid of each finite element.
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V.4 Necking in Plane Stress and Plane Strain

Overall tensile bar behavior may be characterized in terms of

relationships between extension and applied load provided by the

numerical analysis. These relationships are discussed below and

compared with the results of homogeneous analysis in which necking

is not considered. Inspection of neck geometry and internal

stress field histories provides some insight into differences

between load-extension relations predicted for plane stress and

plane strain extension.

Load-Extension Response: Numerically established relationships

between applied load and extension or engineering strain e~ = &l/t ,
O

are given in Figure (16) for both plane stress and plane strain.

Results are shown from the inhomogeneous analysis of Section V.3

as well as from homogeneous analysis in which necking is disallowed.

The inhomogeneous and homogeneous numerical analyses are distinguished

only by the use in the latter case of a two member finite element

model of an initially prismatic bar. The homogeneous approach

provides what might be termed fundamental solutions for finite

elasto-plastic extension which provide a convenient reference in

discussion of the necking process.

A maximum load phenomenon is evident in all cases shown in

Figure 06). The critical extension ¥c at which maximum
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Figure 16 Load-Extension Data;
Plane Stress and Plane Strain
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load occurs is significantly larger in plane strain than in

plane stress. In both cases e~c for the perfect bar is slightly

larger than that for the initially imperfect bar.

These differences in critical extension may be explained

qualitatively and in an approximate sense quantitatively on the

bases of the Considere [24] criterion for attainment of maximum

load. By solving the equation

=0 (112)

for an incompressible material it may be inferred that at

maximum load

ay = ey 5 day/dEy
The overscript bar denotes deformation measures averaged over the

entire bar as opposed to local values^ In (112, 113) P is the

tensile load, x" = 1 + ¥ = lit is the uniform stretch of they y °
bar, a is the so-called true stress (load divided by current

area) and 7 = tn\ is the logarithmic or natural strain. They y
assumption of incompressibility, which is not made in the numerical

analyses, is later shown to be a reasonable approximation for

some purposes. Noting the linear nature of the stress-strain

curve for large plastic strains, Figure (15), it may be predicted
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using (113) that the maximum load natural strain in plane strain

is approximately 1.7 times the corresponding strain in plane stress.

The data of Figure (16) show the numerically established ratios

to be 1.57 and 1.6 for the perfect and imperfect bars, respectively.

The deviation between the above prediction and the numerical

results is a consequence of the elastic dilatation considered in

the numerical analysis.

The difference in critical extension between the perfect

and imperfect bars is qualitatively explained by the presence

of the initial imperfection. In the imperfect bar the stress

at the location of the initial area reduction will be somewhat

higher than that existing in the perfect bar for the same overall

extension. Hence (113) is satisfied for a slightly smaller H0%)

extension of tKe initially flawed bar. The difference in initial

Jirinimum cross-sectional area similarly explains the development of

lower loads in the imperfect bar than in the initially prismatic

bar prior to attainment of maximum load.

Post-maximum load behavior in both plane stress and plane

strain is characterized by a more rapid reduction.in applied load

than that demonstrated by the fundamental solutions of Figure (16).

The load reduction in plane stress is noticeably greater than the

reduction in plane strain. Six stages in the load reduction process
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are noted In Figure (16) for convenient reference in discussing the

associated necking deformation. The first stage is the maximum

load point.

The difference between plane stress and plane strain load

reduction is more readily apparent in Figure (17a) in which post-

maximum load response is plotted normalized to the critical

values, maximum load P and critical overall stretch T . Thec c

fundamental solution is also shown for an incompressible

material. This solution, identical for plane stress and plane

strain, is found as

P/PC = (TyT) lln(\/\c) + 1] (114)

A more rapid deterioration of applied load in the case of

plane stress extension is apparent in Figure (17a). This

observation is consistent with the more rapid concentration of

stretch at the root- plane of the neck in plane stress as shown

in Figure (17b). The figure shows X, the average root plane

stretch, as a function of X, the stretch of the entire bar.

The data are again normalized to their values at the maximum

load point, stage 1. The root plane stretch X is computed from

the numerical results as (assuming incompressibility)

X = A /A (115)
o
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Figure 17 The Influence of Necking
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where A (A) is the original (current) root plane area.
o

The data of Figures (16, 17) also suggest that necking does

not initiate until somewhat after maximum load is attained. This

observation has also been made by Chen [29] and Needleman [30]

based on analyses of the elasto-plastic axisymmetric case. The

present results also indicate that necking initiation, signified

by the occurrence of elastic unloading away from the root plane,

occurs somewhat later in plane strain than in plane stress. The

normalized overall stretch ratio X/TC at necking initiation is

approximately 1.03 in plane stress and 1.06 in plane strain for

the material and initial geometry considered in the present

analyses.

Necking Deformation: The physical character of the necking

process is illustrated by the deformation histories depicted in

Figure (18). Configurations of the finite element model are shown

which correspond to the undeformed state and the six stages in

the necking process previously identified in Figure (16). Results

are shown for both plane stress and plane strain.

The geometric imperfection present in the undeformed state

appears slightly amplified in the maximum load configuration,

stage 1. Shortly thereafter necking initiates and subsequent
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Figure 18

THE NECKING P R O C E S S
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prescribed bar extension is increasingly concentrated in the vicinity

of the initial area reduction5 stages 2-6. Simultaneously the

existance of decreasing load in combination with little or no

reduction in area produces elastic unloading in regions removed

from the neck. Unloading first appears in the center (x = 0) of

the bar at the furthest boundary (y = 1/2} from the initial flaw

and thereafter spreads down the bar. The elastic-plastic

boundary is shown in Figure (18) as an oblique solid line. As

bar extension proceeds this boundary moves down the bar, closer

to the center, material above the boundary recovering elastically,

material below it continuing to deform plastically. The position

of the boundary throughout the necking process qualitatively

corroborates Bridgeman's [1] experimental observation that

plastic deformation in necking bars is confined to the region

between the inflection points of the neck boundary profile.

The neck profiles shown in Figure (18) for necking in plane

strain are in qualitative agreement with results obtained by

Richmond £27] and Cowper and Onat [6] for rigid-perfectly plastic

and hardening plastic materials, respectively.

While the profile histories of Figure (18) provide a complete

picture of neck development in plane strain this is not the case

for plane stress. While the plane stress analysis proceeds in
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the x-y plane of that figure it admits and indeed, in a thickness

average sense, reflects the effect of out of plane deformation.

The nature of this deformation is shown in Figure (19) where

boundary profile histories in the three symmetry planes (x,y,z =0)

are shown. It is apparent that the necking process in plane

stress is properly considered as a problem in three spatial

dimensions since a three dimensional neck develops.

In plotting the profiles of Figure (19) the bar has been

assumed to have an initial thickness of unity over its entire

length. Thus the symmetry model for which results are shown

is bounded by a symmetry plane at z = 0 and a traction free

surface initially at z = 0.5. Note that the initial imperfection

involved a reduction only in width at y = 0 not in thickness.

The analysis does not predict the portion of the boundary

profile at y = 0 (the root plane) which is nominally parallel

to the z axis. The absence of shear in this plane and the

symmetry condition at z = 0 suggest the profile shown. Merchant

[31] has observed profiles of this nature in thin plate steel tensile

specimens.

The prediction of a three dimensional neck in plane stress is

consistent with the more rapid load reduction and root plane stretch

concentration previously noted, Figure (17), in this case as opposed
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to that of plane strain. The result also exemplifies the limited

utility of plane stress analysis which by definition neglects

stress field three dimensionality which must follow from the

deformed profiles of Figure (19).

Jhe Field Solution: The numerical results provide full

histories of stress and deformation over the two dimensional

domain of the analysis. The essential characteristics of these

results are discussed below in terms of distributions of field

quantities along the symmetry lines at x,y = 0. The numerical

analysis provides stress component values at finite element

centroids. The data plotted below represent averages of results

for pairs of adjacent elements and are plotted at the centroid

positions. No extrapolation has been performed. Thus results

reported at x,y = 0 are actually values obtained at centroid

positions slightly removed from these symmetry lines.

Figures (20, 21) show histories of stress distributions at

x = 0 in plane stress and plane strain, respectively. Distributions

are given at maximum load, stage 1, as well as at stages 2, 3, and

6 of the subsequent necking process. Associated x-y plane boundary

profiles and elastic-plastic boundary locations are also provided

for convenient reference. The plane stress and plane strain results

are similar in form and variation during the necking process.
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Figure 20 Axial Stress Distribution:
Plane Stress
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Figure 21 Axial Stress Distribution:
Plane Strain
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They are distinguished by the previously noted greater localization

of the necked region in plane stress and the presence of a non-zero

a component in plane strain. A number of observations may be

made which are equally applicable to both cases:

1. The effect of the initial imperfection is apparent

at maximum load, stage 1. Noticeable although small

amplification of its effect upon the axial stress

distribution has occurred. Recall that the initial

local area reduction at y = 0 was 0.5 percent while

at maximum load the loading direction normal stress

a varies by 5 percent over the half length of the bar.

The transverse stress a is non-zero only in the
/\

vicinity of the initial flaw and attains a maximum

value of approximately 2 percent of a .

2. At subsequent stages (2, 3, 6) of the necking process

explicit correlation may be established between the

axial stress distribution and neck geometry. All stress

components respond dramatically to neck development.

At stage 6 the root plane (y = 0) value of a (and in

in plane strain a as well) is nearly twice that found

at the opposite end of the bar. This distribution is

directly related to the variation in cross-sectional

area along the length of the bar. The root plane transverse
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stress a , responding to boundary curvature in the necked
X

region, rises to 20 percent and 7 percent of a in plane

stress and plane strain, respectively. Furthermore the

sign of a in both cases correlates with the sign of
/\

the boundary curvature, positive when the boundary is

concave and negative when it is convex.

3. The presence of elastic unloading behind (for greater

y) the elastic-plastic boundary is clearly evidenced by

the cusp in the a distribution occurring at the boundary
/\

location. The boundary position is also reflected in

the relative magnitudes of the stress components a , a

at the various stages in the necking process. For

example, in plane stress a at stage 6 exceeds a at

stage 3 in the plastic region ( y < 1.0) while the

converse holds in the elastic region (y > 1.0). The

progress of the elastic-plastic boundary through the

bar may be followed by inspection of the axial stress

distributions in the manner described above.

The distribution of stress and deformation in the root plane

of the neck is of particular interest since material property

relations inferred from tensile data reflect average material

behavior in this plane. Distributions of stress and loading

direction stretch at several stages of necking are given in
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Figures (22) for plane stress and (23) for plane strain. The

field quantities are plotted as functions of x/x where x is

the minimum width of the necked region.

The distributions at maximum load, stage 1, again reflect

the presence of the initial imperfection. In both cases variations

in o across the width is small (< 2 percent) while a is noy x
greater than 1 percent of a at any point. As bar extension

proceeds, however, the difference between necking in plane

stress and plane strain is quite apparent. In plane stress the

variation of stress and stretch across the root plane is

significantly greater.

The stress distribution in plane stress is the result of

both diminishing thickness toward x/xm = 0, see Figure (19),

and the presence of hydrostatic tension derived from the in

plane boundary profile through the development of ax > 0 in

the root plane. The a variation is approximately 17 percent

at stage 6. Note that the variation in stretch is noticeably

less, about 10%, since it is the result of thickness variation

only, plastic flow being independent of hydrostatic tension.

In plane strain, on the other hand, variation of field

quantities across the root plane results only from in plane

neck geometry. This circumstance apparently provides sufficient
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Figure 22 Root Plane Data: Plane Stress
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Figure 23 Root Plane Data: Plane Strain
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"stiffening" in the plane strain neck that boundary curvature

remains much larger than in plane stress despite significant

reduction in area at the root plane, 55 percent at stage 6.

Variation in stress 5 percent, and stretch, 12 percent, at stage

6 are much smaller than in plane stress.

Figure (23) also provides a comparison of root plane stress

distributions in plane strain predicted by equations due to

Bridgeman [1] and by the present numerical analysis. Boundary

profile data required as input to the Bridgeman analysis are

extracted from the numerical results. Bridgeman's equations

are seen to overpredict a while underpredicting both a and

av. While the absolute differences between the results are
J\

not large in the present case the trend of the comparison over

the necking history considered suggests that for smaller root

plane boundary profile radii the Bridgeman analysis may

significantly underpredict hydrostatic tension.* The present

results do not indicate under what circumstances such profiles

might develop.

*Needleman [30] draws a similar conclusion for the axisymmetric case,
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VI. INFERENCE OF STRESS-STRAIN RELATIONS

The numerical data of Section V provide a basis for inference

of stress-strain relations utilizing procedures similar to those

employed for reduction of tensile data obtained experimentally.

This exercise provides a basis for assessment of the validity

of these relations since the actual stress-strain curve (111)

for the material tested (analyzed) is known. Comparison of

inferred and actual stress-strain behavior is undertaken over the

full range of deformation from initial yield through development

of a significant neck, stage 6 of the plane stress and plane

strain necking processes of Section V.

The comparison is performed in terms of effective stress

and effective plastic strain. Procedures employed for the

inference of these quantities from tensile data of Section V

are described below.

P&me S&IUA: In plane stress the effective stress is

found as

°ef = *y = Py/Ay

where P is the axial load and A the corresponding minimum

cross-sectional area of the tensile bar. The overscript bar

in (116) denotes a cross-section average value.
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Prior to initiation of necking the average plastic strain in

the bar may found in terms of overall bar extension as described

in Appendix I. Thereafter, however, the overall extension is not

indicative of minimum section, root plane, plastic strain.

Alternatively, therefore, average min imum section plastic strain

is computed directly from the min imum section area. The effective

plastic s train. e i s given b y

o (117)

in which incompressibility of plastic deformation has been noted.

In (117) A is the undeformed area and A^'is the deformed area
o y

corrected for elastic deformation. The corrected area Ais thaty
which would exist should the applied load be removed and elastic

recovery occur. In plane stress

A(P)~ A [1 + v 7/E]2 (118)y y y

where A is the deformed area under load.y
It is apparent that for metals (o"/E « 1) the elastic area

correction (118) will be small and of diminishing significance as

plastic deformation increases. The data in hand confirm that for

plastic strains in excess of several percent the elastic correction

(118) is negligible thus permitting the use of A: A in (117).
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P&me S,t)wJ(jfi: Procedures similar to those described above

are employed in plane strain. They are, however, complicated

by the impossibility of inferring the plane strain (z) direction

component of plastic strain from experimental data. Recall that

in-plane strain

d = d e + d = 0 (119)

where the elastic and plastic deformation rate components are

not individually zero. To facilitate data reduction, however,

we assume e^W = /dz^
p'dt to be zero. The results below demonstrate

this approximation to be of increasing accuracy as in-plane

plastic deformation becomes large. The average effective plastic

strain is thereby found as

= 1.157 £ M A - = 1.157 £n(AyA P) (120)

The elastically corrected area A ' is found from
J '

A(P)= A [1 + (v(l+v)/E) a ] (121)
y y y

which reflects the influence of the plane strain condition upon

elastic recovery. As for plane stress the assumption A^~ A

is demonstrated to be a reasonable approximation for large

plastic strains.
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Computation of the effective stress is similarly impeded by

lack of precise knowledge of a . The ratio 0/0 is given by
^ 0"

Poisson's ratio v at the yield point and tends toward 0.5 for

large plastic strains. Its variation with increasing deformation,

however, cannot be ascertained experimentally. In lieu of such .

information we consider both l imit ing cases and find

o~ .1 = 0.890 a" for a,/a = v = 0.3e f iv y z y
(122)

aeflo.5 = °'866 a
y
 for CTz/CTy = °'5

The present numerical results are wi th in these bounds prior to

necking ini t iat ion.

Effective stress-plastic strain data inferred from the

plane stress and plane strain results of Section V are given

in Figure (24). The actual stress-strain relation (111)

employed in the numerical analysis is also shown.

Comparison of the inferred data points and the actual

property curve for small plastic strains (<0.01) indicates, not

unexpectedly, that noticeably more accurate prediction results when

the data are corrected for elastic deformation. The corrected data

for plane stress are quite accurate. Stress-strain data inferred

from the plane strain results, however, are significantly in error
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for effective plastic strains less than one percent. The error

results from the assumption of zero plastic strain in the plane

strain direction. This observation indicates that the inference

of stress-strain data utilizing results of tensile testing of

flat bars is not appropriate unless specimen dimensions ensure

deformation under conditions closely approximating plane stress.

For effective plastic strains exceeding two percent the

results shown in Figure (24) clearly suggest that flat bar

tensile data provide an adequate basis for inference of stress-

strain data. The transition from the power law portion to the

linear portion of the actual stress-strain curve, occurring

for e^E' = 0.05, is accurately detected in both plane stress

and plane strain. Furthermore it is evident that for plastic

strains in excess of several percent the data need not be

corrected for elastic deformation. The results also suggest

that in the absence of necking the data reduction procedures

employed are adequate for the inference of stress-strain data

so long as the deformation is predominantly plastic.

The effect of necking is evident in Figure (24). For

effective plastic strains exceeding those corresponding to

maximum load the effective stress is increasingly over-predicted

in both plane stress and plane strain. At stage 6 of the necking
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processes the error is approximately 10 percent in both cases,

being slightly larger in plane stress. It is also clear, however,

that the maximum load point does not provide a strict upper

bound upon the utility of inferred stress-strain relations. This

observation is consistent with the previously noted fact that

necking does not initiate until somewhat after maximum load is

attained. The data of Figure (24) indicate that reasonable

prediction of material behavior may be obtained for effective

plastic strains up to 50 percent higher than those existing at

maximum load.

The foregoing observations are, of course, strictly pertinent

to testing of materials whose behavior may be characterized by

stress-strain curves of the modified linear form (111). In

particular it should be noted that in the above analyses the

effective plastic modulus (do f/d .̂') is constant throughout

the necking process. Consideration of a variable modulus

would quantitatively affect the quality of stress-strain relations

inferred from post-instability data.

In order to demonstrate the effect of arvariable modulus

the preceding plane stress and plane strain analyses have been

repeated for the power law stress-strain curve of Figure (25).

This curve is identical to the previously considered modified
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Figure 25 Linear and Power Law Hardening
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linear relation for 0 < e('p)< 0.05. For e^> 0.05 the plastic
~ ef ef

modulus associated with the power law curve diminishes rapidly.

Figure (25) provides a comparison of the two stress-strain curves

as well as their associated plastic moduli.

Effective stress-strain data inferred from the post-instability

results of plane stress and plane strain analyses are compared

with the power law input relation in Figure (26). Two significant

effects of the variable and diminishing modulus are immediately

apparent. Maximum load is attained at an effective plastic strain

much lower than that found in the case of a constant plastic

modulus. Furthermore, the error in stress-strain curve prediction

subsequent to attainment of maximum load develops more rapidly

for the power law material than is observed in Figure (24) for

a linear hardening material.

The observed effects of a variable plastic modulus are

qualitatively consistent with the nature of the equations governing

the finite deformation process. Inspection of the velocity

equilibrium equations (67) reveals that the nature of the deformation

process is controlled by the relative magnitude of the existing

stresses and the material stiffness. In the present case of a

continuously diminishing modulus the governing equations are

dominated by the effect of existing stress for smaller total

deformation than would be the case for a constant modulus. Thus
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Figure 26 Inferred Stress Strain Data:
Power Law Input
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maximum load is attained for smal ler uniform bar extension as

observed in the numerical results and predicted by the Considere

criterion (113). Subsequent to necking ini t iat ion the plastic

modulus of material in the necking region diminishes with increasing

overall bar extension. Thus a more localized neck, and consequently

higher root plane hydrostatic tension, w i l l develop accounting for

a larger error in inferred effective stress for the power law

material .

The preceding results suggest that stress-strain relations

inferred from flat bar tensile data are h igh ly accurate only for

a bounded, material dependent range of plastic strain. This

range excludes both the v ic in i ty of in i t ia l y ie ld , wherein

non-proportional loading renders the inferred effective quantities

indeterminate, as well as the large strains associated with tensile

necking.

Of equal significance, however, is the demonstration of the

ut i l i ty of f ini te deformation analysis capabili ty in assessing the

val idi ty of stress-strain relations developed from test data. The

present solut ion capabil i ty admits consideration not only of

functional relations such as those considered above but also of

numerical relations provided directly by experimental data.
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The analysis might profitably be employed for evaluation of more

sophisticated property inference procedures as well as for the

prediction of experimental load-deformation data on the basis of

inferred stress-strain relations. The latter approach provides

a direct means of assessing the validity of stress-strain relations

subsequently to be employed in design analysis.
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VII. CONCLUDING REMARKS

A theoretical basis has been established for analysis of

finite deformation of metals. The observation that finite

deformation of such elasto-plastic materials may be viewed as

a process rather than an event has led to the derivation of a

complete initial- and boundary-value problem distinguished by

its quasi-linear nature. This feature of the formulation motivates

the adoption of an incremental approach to numerical problem

solving.

Efficient numerical solution capability has been developed

for problems of two dimensional deformation under conditions of

either plane stress or plane strain. The validity of the

numerical analysis has been evaluated by considering a variety

of elastic and elasto-plastic finite deformation problems whose

homogeneous nature renders analytic solution possible. It is

demonstrated that accurate solutions may be obtained for problems

involving extremely large displacements and rotations.

The numerical analysis has been employed for the investigation

of necking in flat metal tensile bars. The results of this

investigation provide not only the first full numerical solutions

for tensile necking of metals in plane stress and plane strain
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but also an appraisal of the validity of stress-strain relations

inferred from tensile test data. It is demonstrated that such

relations inferred from the behavior of flat tensile bars are

erroneous for both very small and very large (post-instability)

plastic strains. The post-instability error is shown to be

significantly dependent upon material behavior and in particular

upon variation of the plastic modulus.

It is evident from the results obtained that present knowledge

of the mechanics of tensile testing is insufficient to enable

precise characterization of material behavior from tensile data

over the full range of a test. The theory and numerical analysis

which have been developed provide the means for necessary further

study of tensile testing mechanics and procedures. Such

investigations might consider, for example, the effects of material

properties and tensile bar geometry upon the necking process.

The possibility exists of developing procedures for correcting tensile

test data to account for root plane hydrostatic tension and thereby

to provide a basis for inference of accurate stress-strain relations

frqm_post-instability test results. The existence of such a

material independent correction procedure is suggested by the

experimental work of Bridgeman [1].

The availability of analysis capability for finite el as to-plastic
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deformation also provides the basis for evaluation of alternative

material property tests. Two obvious'candidates present themselves,

compression testing and indentation testing. Both of these are

attractive since neither involves an instability phenomenon. Since

full solutions for stress and deformation may be obtained the

inhomogeneous character of the indentation or hardness test would

not necessarily obstruct inference of effective stress-strain

data. The utility of these alternative procedures might be assessed

not only by analysis of the individual tests but also by comparison

of stress-strain data inferred from the results of analysis of

several test methods.

The present analysis of necking in flat tensile bars, as well

as the possible avenues of research identified above, suggest the

primary significance of the finite deformation solution capability

which has been developed. Precise characterization of inelastic

material behavior can be extracted from the results of mechanical

testing only if the mechanics of each test employed is understood

and, in particular, only if quantitative distinction can be made

between the effects of material and geometric nonlinearity. The

availability of an analysis incorporating treatment of both forms

of nonlinearity provides the means of distinguishing their effects.
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APPENDIX I

Operational Form of the El as to-Plastic Constitutive Equations

In order to utilize the elasto-plastic flow equations (50)

and the inverse equations (53) we must choose a specific form

for the yield function <f = T of (39) and operationally define

the equivalent plastic modulus vea of (46). Means must be

provided for the evaluation of Pea'P' from test data for

particular materials.

In the present analysis <f> is taken as the octahedral shear

stress T

+ = T = T E [(2/3) JJ (1-1)
eq o 2

where J0 is the second invariant of the deviatoric stresses s.
2 ij

J2 = (1/2) siJ Sij (1-2)

(P)
1

requiring the rate of plastic work W'P' to be given as

An equivalent plastic strain rate d Q ' is defined (43) by

= To

from which we find

(1-3)

d = 3d (1-4)
eq o
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In (1-4) d 'P' is the rate of octahedral plastic shear strain
o

d (p) = [(1/3) d.>) d̂ (P)]1/2 (1-5)
o 1J

Integration of (1-4) with respect to time defines the equivalent

plastic strain e (P) in terms of the octahedral plastic strain

(P).Yo

(P) dt
(1-6)

5 AJP) dt = 3 /"d {p) dt = 3TJ °H J ° o

The equivalent plastic modulus y 'P' may now be expressed in

terms of an octahedral plastic shear modulus y 'P'.
o

yeq(P) = (1/2) dTeq/deeq(P) = (1/3) yJP) (1-7)

y LP; = 0/2) dT /dY IP' (1-8)
o o o

The octahedral plastic shear modulus may be evaluated for

particular materials utilizing data obtained by quasi-static

testing under simple loading conditions. In the case of uniaxial

tension* we have a single non-zero stress component a (t) > 0
A,

and from (1-1) we find the octahedral shear stress

T = (/273) 0¥ (1-9)

*The discussion is restricted to tensile data obtained prior to
initiation of necking.
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Note that a is defined as applied load divided by actual specimen
X

cross-sectional area as discussed in detail by MacGregor [32].

As a increases with time the tensile specimen deforms in simple
J\

extension. For an isotropic material this homogeneous elasto-

plastic flow process is described by the cartesian deformation

rate components

d = d (P) + d (e) > 0
x x x

d = d + d fi < 0
y y y (1-10)

d = d (P) + d (e) < 0
z z z

d = dy

Noting the incompressibility of plastic flow we find

d (p) = d (p) = -(1/2) d (P) (1-11)
j> £- x

The plastic strain rate in the loading direction is given by

= (t/l) - ax/E (1-12)

where £ is the instantaneous x dimension of the tensile specimen

gage length and E is the elastic Young's modulus. Substituting

(1-12) into (1-5) and integrating with respect to time the octahedral
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plastic strain is found as

(p) = (1//2) [£n\ - a /E] (1-13)I » • i - — / i_ -" — - ~ v*
O X A

where A = III and £ is the original (undeformed) gage length.*
X o o

The octahedral property relation T (y ̂ p ) provided by
o o

(1-9) and (1-13) may be approximated by a monotonic function or

retained in the numerical form provided by the experimental data.

The FIPDEF program utilizes the octahedral data directly and

employs a finite difference technique to re-evaluate p 'p' in
o

each finite element at the beginning of each time step. The

value of T for which y tends to zero defines the initial
0 0

proportional limit for the material. Elastic analysis is

performed until the octahedral stress exceeds this value.

It is occasionally convenient to utilize material property

variables which reduce to the principal uniaxial quantities in

the case of simple extension under uniaxial loading. For this

purpose we define

°ef ~= t3

def
(p) = [(2/3) d.>) d1^]1/2 (1-14)

e
ef

= /(P) = d(P) dtef

*Under the assumption of infinitesimal elastic strains («1) the
undeformed length defines an appropriate reference state for the
entire plastic deformation process.
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In the case of uniaxial tension these reduce to

ef x (1-15)

d ">> = d <P)
ef x

These effective quantities (1-13) are related to the octahedral

variables as

= (/2/3) a fef

(1-16)

= (1/3) da /de (P)
cif Pi

The elasto-plastic flow equations (50) and inverse equations

(53) may be written in terms of the octahedral quantities as

2yd1. = o1 . -(x>/l+v) CTk
b si Hy/y (p))(3T 2)~1si . skla, , (1-17)

J J K j ° o J k l

a1- = Xdk. 61 .+2pdi .-2P[3r 2(l+y ^Vy)]"1 s1. skl d, , (1-18)J N J j o o j k l

where x,y are the Lame constants of linear elasticity.

140



APPENDIX II

Elasto-Plastic Constitutive Equations for

Plane Stress and Plane Strain

The general elasto-plastic constitutive equations of Section

1.2 are specialized in Appendix I for analysis of materials in

which plastic yielding is controlled by the octahedral stress.

These equations (1-17, 18) are expanded below for analysis of

elasto-plastic flow under conditions of either plane stress

or plane strain.

It is convenient to develop the equations in matrix form.

For this purpose we define matrix vectors consisting of the
/s

in plane cartesian components of the Jaumann stress rate a..
• J

and deformation rate d . . .
' \J

ax

(II-D

xy

2dxy

(H-2)
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For either plane stress or plane strain the elasto-plastic flow

equations may be written

* ; 5, ? = 1, 2, 3

and the inverse equations as

; c, $ = 1, 2, 3

The constitutive matrices B and P^ are full and symmetric.

Specific forms of these matrices are developed below. The

notation employed is similar to that utilized by Swedlow [33].

Plane Stress: It is assumed that

0 = 0 = 0 = 0
z xz yz

Under these conditions the constitutive matrices are found as

(II-5)

= 0/E)

sy
2/s 2

X o

(sym)

-v + s s /s 'A y o 2s 0 /s 2x xy o

2s o /s '
y xy o

2(l+v+20 2/s 2)xy o

(H-6)
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l-P(sx+vsy)
2/So

2

(sym)

where

l-P(s +vs )2/sy x (H-7)

yvxy /s

(H-8)

= l-v2+[sx
2+2vsxsy+sy

2 + 2(l-v)axy
2]/so

2

In plane stress the octahedral stress is found from (1-1) and

PO^ is the octahedral plastic shear modulus (1-8).

\ = (2/9) (ox
2

The deviatoric stresses are

(H-9)

(11-10)

- Oy)

(20y - (II-ll)
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The constitutive equations (1-17) also provide the auxiliary

relation

(11-12)

Plane Strain: It is assumed that 3/37 is a null operator and

that

•

Under these conditions the constitutive matrices become

(H-13)

1

E(l+s 2/s 2)
Z o

(sym)

SK(I-V) - Q s 2/SQ
2

-v(l+v)+(s s -2vs 2)/s 2
A y *- o

l-v2+(sy
2
+2vsysz+sz

2)/so
2 2[(sy+vsz)axy/so

2

2{(l+v)+2[0v
 2+(l+v)s 2/s 2}

(11-14)

SKV - Q s s 7s 2
A Jr o

v) - Q s 2/s 2
J o

(n-15)
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p
where s is defined by (I I -8) and

SX = (2°X - °y - az} ' 3

sy = (2a
y - az - ax> / 3

(11-16)
S = (2a - o - a) / 3

In (11-15)

Q = 2y/(l + y/w ( P ) ) (11-17)
o

and K is the elastic bulk modulus.

K = E/ 3(l-2v) (11-18)

Note that boundedness of K and thereby P^ in (11-15) requires

v < 1/2. Hence plane strain analysis of elastically incompres-

sible materials is not possible. Approximate analysis

of such materials may be accomplished by setting K/E »1 .

In addition to (11-14, 15) we have the auxiliary relation

= l/(l+v){[3KV -Qs S /s 2]d + |>v-Qs s /s ]d
Z X o X Z y o

,
- [2Q s a /s 2]d }2 xy ° xy

2 2

y

(H-19)

145



APPENDIX III

The Rate Stiffness Matrix for Planar Analysis

The rate stiffness equations are specialized below for analysis

of planar problems under conditions of either plane stress or

plane strain. A triangular finite element is employed with the

assumption that the velocity field varies linearly within the

element.

The Linear Velocity Element: Consider the triangular finite element

of Figure (III-l). The instantaneous configuration of the element

is defined by the coordinates of its vertices or nodes. These

nodal coordinates are represented in matrix form as X01

X Ot —= (HI-1)

where X (Y ) is the x (y) coordinate of node 1, etc.
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Figure III-l Linear Velocity Finite Element

X2
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Vectors of nodal velocity components Va and nodal loading

rate components Ta are similarly defined.

'xl

yi

x3

y3

(HI-2)

Txl

Tyi

Tx2

T
>

Tx3

T

(HI-3)
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The velocity field components within the element are

approximated as

vx = A
a «x

a (x,y)

a = 1.....6 (III-4)

% = Aa Iy
a (x,y)

where the vector functions 4>a possess the components

1

2

3

4

5

6

1

0

X

0

y
0

0

i

0

X

0

y

(III-5)

Hence the velocity field approximation (III-4) is expanded as

v (x,y) = A, + A x + A5yx ' 6 D (III-6)

vy (x,y) = A2 + A4x + A6y

Evaluation of the velocity field approximation (III-6) at the

nodal positions (III-l) must yield the nodal velocities (III-2).
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Substituting (III-l) into (III-6) and solving the resulting

equations for Aa obtains

rae = (1/2A)

(X2Y3-Y2X3) 0 (XgY^Xj) 0 (X1Y2-Y ]X2)

0 (X2Y3-Y2X3) 0 (x
3

YrY3X1'

(Yo-Y.) 0 (Y,-Y,) 0
c. 3 3 '

0 (Y2-Y3) 0 (Y3-Y1)

(x3-x2) o

o (x3-x2) o (xrx3)

and A is the area of the element.

0 (X1Y2-Y1X2)

(YrY2) 0

0 (YrY2)

(Xo-X,) 0

o (x2-x])

(III-8)

A = (1/2) EX2(Y3-Y1) + + X3(YrY2)] (III-9)

Substituting (III-7) into (III-4) yields the velocity field

representation (111-10) corresponding to the general form (74)

of Section III.l.

The element deformation rate and Jaumann stress rate fields

in the x-y plane are given by the matrix vectors a? and D?,

respectively (t, = 1,...,3)
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0^ = .a

xy

y

2d.

(111-10)

These in-plane rates are related by the constitutive equations

of Appendix II

a? = P?? D5 ; a, 0 = 1,...,3 (111-11)

where P^ = P^? takes a form appropriate for either plane

stress (II-7) or plane strain (11-15).

The Planar Rate Stiffness Matrix: The preceding formulation of

the rate behavior of the linear velocity element provides the

basis for specialization of the element rate stiffness matrix

Ka& of (79) to a form appropriate for two dimensional analysis.

The general form of this matrix is given below employing cartesian

tensor notation*. The matrix is decomposed into three components

to facilitate the ensuing two dimensional specialization.

*The notation of Section III is employed here. The distinction
between covariant and contravariant tensor components need
not be made in cartesian coordinates.
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K<iB = ^06 t Kg"6 + Kj06 a, 6 = 1,. ..,6 (111-12)

K/ -

Li v5.P -2*l- °j* *'. ]r6S)d"
m

f T T *
K ae = / (ran^n 6 63}d(/

3 y 1,p IP J»J

In (111-12) matrices K aB and K ̂  are symmetric while K.aS is not.1 d. j
Latin indices take the values 1, 2, 3.

Expansion of (111-12) for analysis of plane stress and plane

strain deformation precedes on the basis of the following

observations.

1. Since all quantities present in (111-12) are uniform in a

single element the requisite volume integration over B reduces

to multiplication by V the volume of the element.

In (111-13) A is given by (III-9) and I , the element thickness
m

in the z direction is computed by noting that in plane stress

d -Lit (111-14)
z m m
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where d is given by (11-12), while in plane strain

(111-15)

2. Substituting for <j>..a in K,0^ the matrix may be written as
' vl

_' f T
~ y pt Fe di/

a,B = 1,... ,6

?,? = 1, 2, 3
m

where P^S i$ the constitutive matrix in (III-ll) and

(111-16)

(Y2-Y3) 0 0 (YrY2) 0

o (x3-x2) o (xrx3) o

(X3-X2) (Y2-Y3) (XrX3) (Yg-Y^ (X

3. Reduction of K"^ to proper form for planar analysis is

accomplished by considering Latin indices to take the values

1,2, corresponding to the x and y coordinate directions.

(111-17)

4. The matrix K"^ contains a factor <f>. . associated with
J,J

the dilatation rate v. ., i.e.,

T,
(111-18)
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In plane strain v. . is completely defined by the in- plane
J 3 J

deformation rate components d and d (d =0) and K,a& may be
X y Z J

employed as written in (111-12) for i,j,p =1,2. In plane

stress, however, dz f 0 and is given by (11-12). To accommodate

both of the above cases the matrix is written as

where

/ ag _ / r r a T l 'An
S ~ J{T -*1,p

B
m

(HI-19)

P6 E (1/3K)

13

13

12

0

23

23

22

(111-20)

For analysis of plane stress E in (I11-20) are the P^? of

the constitutive equations (III-ll); for plane strain we take
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and in both cases K is the elastic bulk modulus K = E/3(l-2v).

In summary the rate stiffness matrix for planar problems is

written as

Kag = K i ag + ^ + ^ae (111-21)

where

K,a^ = (£ A) {r0^1? P<i m i >p

In (111-20) Latin indices take the values I, 2 while of the

Greek indices; 5,? take the values 1, 2, 3, while the remainder

vary over 1,...,6. Analysis of either plane stress or plane

strain precedes by choosing appropriate forms for P^ and P6

and setting the value of L according to either of (II 1-14) or
m

(.111-15).
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APPENDIX IV

Solution of Verification Problems

Homogeneous

Problems of homogeneous finite deformation may be defined

ecification of velocity fi

are spatially uniform, that is,

by specification of velocity fields v.(xJ,t) whose gradients

The time dependent stress fields corresponding to velocity

fields of the form (IV-1) are likewise spatially uniform.

Consequently the velocity equilibrium equations (67) are

satisfied identically by any velocity field corresponding to

homogeneous deformation.

Complete solutions to such problems are developed by time

integration of the velocity field to define the deformed

configuration of a body and of the constitutive equations (53)

to define the stress field in the body. Solutions are developed

below for problems of finite homogeneous extension and simple

shear. Except as noted the solutions are developed in a fixed

cartesian coordinate system (x,y,z).
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A-IV.l Finite Extension

Consider the problem of extension of an isotropic material

in the x-y plane as defined by the cartesian velocity components

v = ax
x

vy = kay

where a is a constant and k is an unknown function of the material

properties and possibly the state of stress. We may consider

cases of plane strain for which

vz - 0 (IV-3)

and of plane stress for which we expect

vz = kaz (IV-4)

The deformation rate components for this velocity field are

d = ka
y

0 plane strain
dz = ka plane stress

dxy = dxz = dyz
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Integrating (IV-5) with respect to time the total deformation may

be described by the logarithmic strain components

e = tn AX = at,

e = In A = U.n X (IV-6)
•J J X

0 plane strain
e = In. \ =

2 YJLn X plane stress
A

In (IV-6) (X- ,x ,X ) are coordinate direction stretch ratiosA y t.
and K is expected to be a function of material properties and

possibly the state of stress.

Non-zero stress components a , a and in plane strain aA y z
are found by substituting the deformation rate (IV-5) into

the constitutive equations (53) and integrating with respect

to time. The Jaumann stress rate.a., in (53) reduces to a

material derivative a.-• since no rotation occurs.
* J

In plane applied loads are found by integrating the tractions

tx and t over x and y coordinate faces of the body, respectively.

That is, for a body which is initially a unit cube, as in

Section IV, we find

P = a A on x faces
X X X

P = a A on y facesy y y
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where

A = X Xx ' y z

f\ *"" A w^ "j
y A f.

Elastic Material: Substituting the deformation rate components

( IV-5)

yields

(IV-5) into the constitutive equations (53) for y /y e Q
p = 0

a = (X+2u) d + X(d +d )
A A jr Z

a = (x+2p) d + X(d +d )
y y x z ( IV_9)

a = (X+2p) d + x(d +d )
Z Z X jr

axz = axy = ayz = u

Integrating (IV-9) with respect to time for an initially

stress free material obtains

0., = (X+2v.) ev + X(e +ej

a = (X+2y) e + X(e +e )y x z

= (X+2y) e + X(e +e )
^ X Jr

a = a = a = 0
xz xy yz

where the strains {e , e , e ) are given by (IV-6)

(iv-io)
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Solutions to problems of plane stress and plane strain extension

may be given in terms of a prescribed stretch ratio in the x

direction A * X.x

Plane,

av = E InA
x\

a = a = 0
y z

^ z (IY-11)

M *" A A ™~ A
x y z

P = a¥Av * E A"2v
x x x

Pj - ,A . 0

o = [E/(l-v2}] in A
A

y11)] £n X

= 0 (IV-12)

X = 1
Z
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A = XX = Ay x z uv-12)

P = aJ\ =0y y y

Elasto-Plastic Material: Development of solutions for elasto-

plastic materials is facilitated by considering the flow

equations (51) rather than the inverse equations (53).

Substituting the deformation rates (IV-5) into these equations

and noting that the shear stresses are zero yields

dx = (VE)[ax-v(ay+az)]+(3/2)(aef/3aef)[0x-(l/3)(ax+ay+az)]

d = (l/E)[ay-v(ay+az)]+(3/2)(oef/8aef)[ay-(l/3)(ox+ay+az)]

. . . (IV-13)
dz = (l/E)[az-v(ay+az)]+(3/2)(aef/3aef)[az-(l/3)(ax+ay+az)]

where agf is defined by 1-14 and in the present case is given as

oef
2 = (l/2)[(ax-a)

2 + ( a ) 2 + (az-ax)
2]
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In (IV-13) we have

1/8= 0 for a , < ay ; elastic flow

B = da f/
deefp ' > ° for <*ef Z ay > elasto-plastic flow

where a is the initial yield stress of the material.

Immediate integration of (IV-13) is not possible due to

the presence of the stress components in the equations. To

facilitate integration of these equations we assume proportional

loading, i.e.,

ffij = q(t) aij°

where a-.° is a constant reference stress state defining stress

component proportionality. The time varying loading level is

controlled by the scalar q(t). Integration of (IV-13) subject

to (IV-14) provides equations relating total stresses and

logarithmic strains (IV-6). This simplified formulation, termed

deformation theory, is correct to the extent that the constraint

(IV-.14) is valid for particular problems. For plane stress

extension the stresses have the form (IV-14). In plane strain,

however, the proportionality between the in plane stress

components (a ,a ) and out of plane component a changes at thex y z

162



yield point. Hence the deformation theory is in a strict sense

not appropriate for plane strain elasto-plastic analysis. For

the extension problem considered here the quantitative error

in deformation theory results is small and the availability of

those results in analytic form facilitates comparison with

FIPDEF numerical results. For more general problems, however,

the general flow theory of Section 1.2 must be employed.

For a - < ay the solutions for plane stress and plane

strain are given by (IV-11) and (IV-12), respectively. In

each case a yield point value of X, x=Xy, may be found

corresponding to a =a,/. For anf > a,/ the solutions are asef x er y
follows.

P&we. Stte6A

x > x~y.=

a , = o7 = 0
y 2 (IV-15)

P = {[B/(l+n)[^iX~+Y]A~} er«
x

P = 0y

where e is the natural base.
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In (IV-15)

n = 3/e

Y = a/3

To = [n(l-2v) (£nA+Y)]/(l+n)

P£one Strain

In

av = H-, In \ + H.
X 3

= 0

= ax[l+2vn)/2(l+n)] + ay*[(2v-l)/2(l+n)]

Px = H3Xy £n + H4

where e, n» Y a^e as defined previously and

H = -(l+2vn) [3+2n(l+v)] / [4(l+n)6

H3 = 43(l+n) / [3+4n(2-v)+4n20-v2)]

H, = (a,,/*) (4n+3<t>2) / [3+4n(2-v) + 4n2

4- f

I/*2 = 1-v + v2
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Maximum Load Phenomenon: The, applied load in the direction of

extension may be written as

P = g A = f(x) (IV-17)
x x x

This relationship P (x) is characterized in all cases considered
X

here by a maximum value P occurring at some critical stretch
I*

Xc. The critical stretch may be found by solving

d/dx (PY) = 0 (IV-18)
X

where P (x) is given by any of (IV-11, 12, 15, 16). The maximum
X

load is evaluated by substituting x = X in the appropriate
c

load equation.

Expressions for P , x are given in Table (IV-1) for each

of the four extension problems solved in this section.
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ĈM

^1

ĉa
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A-IV.2 Unidirectional Extension

Consider the homogeneous deformation corresponding to the

velocity field components

V = ax'

vyl = 0 (IV-19)

V = 0

where (x1', y', z') is the rotating coordinate system of Figure

(lOb). The deformation rate components in the rotating system are

dy i = a
(IV-20)

V = dz' = dx'y' = dx'z' = dy'z' = °

and the total deformation is described by the single non-zero

strain component

ex, = in Xx, (IV-21)

For an elastic material the stress field in the prime

system is found by writing (IV-10) in that system and setting

all strains to zero except e ,. The complete solution of the
X

problem in (x1, y', z1) is
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X = \
x1

av. = {(l-v)E/[(l+v) (l-2v)]} In X
A

ovi = a i = (v/l-v) a
J *• A

Py- = VAX' = VW = ]
X A A A J t

P , = oy,Ayl = ay,A = (v/l-v) A CTX,

where the initial configuration has been taken as a stress free

unit cube.

(IV-22)
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A-IV.3 Simple Shear

The velocity field (IV-23) is imposed upon an initially

stress free elastic continuum.

vx = 2ky
(IV-23)

vy = vz = 0

k = constant

Corresponding to (IV-23) are the non-zero deformation rate

components

d = d = k (IV-24)xy yx ^ ^'

and non-zero spin components

wxy = '"yx = k (IV-25)

Recalling the definition of the Jaumann stress rate, a ,

~k _ 'k . k m m k ,... oc%a , - a , + a u , - a -, u (IV-26)
I 1 m 1 I m

The constitutive equations, (53) for y/u = 0, may be
eq

wri tten
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d/d-r(a ) = a
x Xy

d/dT(ay) = -axy (IV-27)

d/dr(axy) = y + (1/2) (ay - DX)

where:

2y = E/O+v)

T = 2kt

Integrating (IV-27) subject to initial conditions of zero stress

obtains the solution

a = p Sin T
xy

aY = y (1-COS T) (IV-28)
/\

ay = y (COS T - 1)
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