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A NONLINEAR THEORY FOR SONIC-BOOM CALCULATIONS
IN A STRATIFIED ATMOSPHERE

By Michael Schorling*
Langley Research Center

SUMMARY

The exact solutions to the equations of gas dynamics are given with respect to the
axis of slender lifting bodies in a stratified atmosphere. The boundary condition is sat-
isfied by using slender-body theory. The solution predicts the magnitude of the pressure
rise of the sonic boom and estimates the nonlinear effects in the vicinity of the cutoff
point.

INTRODUCTION

The theories of Friedma.n,'Kane, and Sigalla (ref. 1) and Hayes, Haefeli, and
Kulsrud (ref. 2) on sonic-boom propagation in a stratified atmosphere have the advantage
of being able to treat nonsteady flight maneuvers. However, they have the disadvantage of
not being fully nonlinear theories. Nonlinear effects such as focusing at the caustic are
now of great interest. Here a theory is preserited in which the exact nonlinear equations
for supersonic flow are solved for large distances from lifting bodies. This paper is an
ektension of the author's previous papers (refs. 3 and 4) to a stratified atmosphere in
which the speed of sound changes with the altitude of flight. The pressure p and the
density p are assumed to obey the hydrostatic law dp = -pg dz. The gas is considered
to be nonviscous, steady, homentropic, and homoenergetic. The shock front should be
attached at the nose of the slender pointed body.

The theory presented can be used to calculate the gas properties in the far field of
nonaxisymmetric bodies by employing area-rule concepts.

SYMBOLS
A cross-sectional area of body
A’ first derivative of cross-sectional area of body

*NRC-NASA Resident Research Associate,



a speed of sound

a(r) speed of sound at distance r- from the body .
a(z) speed of sound at altitude =z
Cp specific heat at constant pressure
Cy specific heat at constant volume
- L R

ox 8' 9x 9

AT A

g2 - grad x2 > Cartesian base vectors

e =grad x3
<

F&) function of integfation
Ggl)(g) function of integration
g acceleration due to gravity
g volume force due to gravity

9 functions dependent on the cross section (see eqs. (44))
h specific enthalpy

2.




M Mach number

fn’ generatrix of Mach cone

n number of degrees of freedom of the gas (air: n = 5)

n generatrix of the wave normal cone

p pressure

R distance from the body at which the boundary condition is satisfied
r. radial distance from the body

S entropy

5—,-{ locally dependent base vectors

t time

1) gravitational potential

W magnitude of the velocity

w velocity vector

Wi components of the velocity vector in a locally dependent basis (i =1, 2, 3)
X abscissa of the characteristic surface

Xg abscissa of the shock front

x! =x

x2 = r cos Y ) Cartesian coordinates
x3 = r sin 1

Z altitude of flight




o angle of attack
B Prandtl factor, M2 -1

Y ratio of specific heats

A= w®? _LOF,

Ap =D - P,
n Prandtl transformation, fr
9 angle of inclination of the streamlines
1/4
N Eﬁ,(O)2 ) a(O)%r)] iy
RO 2\r
i Mach angle
¢ characteristic variable
& = (&,r,¢) independent variables in locally dependent basis (i = 1, 2, 3)
(n+1)/4
ot
o= a‘r-/(z)
[w(o)z ) a(o)%zﬂ 1/4
p density
z = a(o)%r)
1 = (w,9,0+y) where i=1,2,3

Q@ azimuth angle



¢ potential function

17 cylindrical variable (azimuth angle)
w variable of integration

Subscripts:

0 state of undisturbed flow

gr values at the ground

Harmonic (or Fourier) numbers are denoted by numbers in the subscript position or
by the subscript m. The order of magnitude is indicated by numbers in parentheses in
the superscript position or by the superscript (j). The Greek letters A, o, and v
used as subscripts and superscripts denote the Einstein summation convention., A comma
preceding a subscript denotes differentiation with respect to that subscript.

ANALYSIS

Basic Equations

The gas considered here is assumed to be in equilibrium. There are no heat or
mass sources. To describe the state of the gas, it is sufficient to calculate the vector of
velocity, the density, and the pressure. This can be done by means of the equations of
continuity, momentum, and energy. From these equations it may easily be seen that

(1)

&
[
=

As the entropy is assumed to be constant in the overall undisturbed field and, according to
equation (1), it does not change along streamlines, the entropy is constant in the disturbed
field as well. That is, the gas is homentropic. - '

Now the change of energy is to be considered. The equation of momentum is

(W . grad)w = -21)- gradp + & (2)

Combining equation (2) with the identity

—r - 2 — —
(w . grad)w = grad WT -wXcurl w (3)



ives
g 2

we -~ 1 -
gradT-wxcur1w=-5gradp+g (4)
where
w2=W.W

As the volume forces due to gravity are irrotational,
' g = grad U= (O;O,'g)

Projecting eqﬁation (4) onto the direction of the velocity vector w yields

w2 _ 1
d(—z— - U> = 5 dp | (5)

as W Xcurl w=0 along the streamlines (Beltrami flow is not considered here). Equa-

tion (5) can be integrated for a given relation between the pressure p and the density p.
According to thermodynamics,

1y [
P =pp,s) = 5(%) yexp<s - S> (6)

Cp

where the bar over symbols indicates an arbitrary initial state of the gas. For homen-
tropic flow, equation (6) is rewritten as p = p? . Const. Thus, the integration of equa-
tion (5) yields

2
W?+gz+h=H v ' (1

“where H is the total ehthalpy. Along the streamline the total enthalpy is a constant.
Since the undisturbed flow field was assumed to be homoenergetic, the disturbed flow field
is homoenergetic as well, according to equation (7). As long as no shocks are taken into
account, the result of these considerations is that the overall flow field is homoenergetic
and homentropic. Far from the body weak shocks are expected. For weak shocks the
entropy increases as the third power of the pressure coefficient. Thus, so long as only
weak shocks are considered, the flow can be assumed to be homentropic.



The basic equations can now be formulated. According to equation (1) the flow is
irrotational. This condition is expressed by the equation of irrotational flow:

curl w = 0 (8)

The equation of continuity is

dp . -

— +pdivw=0 9

a *° S )
a B

By use of the relations p = p(p) and al = s , equation (9) can be rewritten

g

1dp | .2 giv o =

X +a¢divw=0

For steady flow this equation can be expressed in terms of the speed of sound, the veloc-
ity, and a term due to gravity:

a2 divw -ww-gradw+w.g =0 (10)

The last basic equation is derived by considering the position of the characteristic
surfaces. Assume that the quantity £ denotes a characteristic variable along the gen-

eratrix n of the wave normal cone. The unit vector m along the generatrix of dtt.lge
~ gra
o=

~|grad ¢
or, according to the definition of the speed of sound, (w . ) = -a, the last basic equation

is written in terms of the speed of sound, the velocity W, and the characteristic variable

&:

Mach cone is perpendicular to 0 by definition; thatis, m -1 = 0. As

a? grad £ - grad £ = (W . grad 5)2 (11)

Change to a Characteristic Coordinate System

The basic equations have been written in an invariant form. Now a coordinate sys-
tem must be selected to carry out the solution. In a Cartesian frame, a point has the.
cylindrical coordinates x1 =x, x2 =r cos Y, and x3 = r sin Y. However, here a locally
dependent basis will be used, in which the velocity vector W has to be expresséd.
According to figure 1, the velocity vector W is given by



W:w[cosSé’1+sin8(cos¢§+sin<p't'i] ‘ (12)
where

S = cos d/é'2+sintpé'3

-t’=-sin1,l/é'2+cos x,bé’3

The velocity vector is defined by its magnitude w, by the angle of inclination 3 of the
streamline, and the azimuth angle ¢ + . If w, J,and ¢ + 3y are considered to be
new variables of the velocity vector, new components of the velocity are defined as

W= t=wdew) (=123 (13)

Up to now the unknown functions have been expressed by the cylindrical coordinates
w=w(,r,Y), &=£xr,)),and a=a(x,r,y). Here the problem is to calculate the posi-
tion of the characteristic surface rather than to determine the characteristic surface
itself. So, following the Poincarée-Lighthill-Kuo (PLK) method, the dependent variable &
is exchanged for the independent variable x. The new set of independent variables is now
£, r,and - ¢. The velocity vector W, the speed of sound a, and the abscissa x are to
be determined as functions of these variables. That is, defining &; = (£,r,¥) where
i=1,2,3, determine W =W({), x=x({), and a =a(). The frame of reference of
these coordinates must be constructed and the differential operators determined in these
given directions. The final results are (see ref. 3),

~
: _=1 = 1
Xy grad = e DE + 8Dy +2 tDlP

curl W = grad 7° X Wg ) o (14)

. — g —
divw=grad 7 . Wg

J

‘where D £ Dy, and D%U are abbreviations for the operators defined by the equations
Dg = ag, Dy =x8r - Xp9;, and Dy, = x€8¢, - szaé‘ Equations (12) to (14) have to be
_ introduced into the basic set of differential equations (egs. (8), (10), and (11)) to carry out

-

the solution in the given frame of reference (é’l,é', t).




2

Since g =-g€“, the equations are written as functions of the coordinates

& = (&,r,¥):

. . 1 . - . w
sin 9 sin ¢ Dyw +-fS1n3cos¢wa-wc038sm<pDrs ++ cos8cos<pr8

\

- wsin 9 cos ¢ D¢ -%sin&sin ¢DW¢ -%sin&sinq)xg = (15a)

sin 9 sin(ngw -% cos'Swa + W cos 9 sin qugs +¥ sinsDw8'+w sin § cos <pD§<p =0
(15b)

-siné)cos¢D§w+cossDrw-wcos19cosngé.s-wsinsDr8+wsinSSinch§¢=0

(15¢)
2 _ z) . 1. 5 |
(a w cossD§w+sm~9 (cos ¢Drw+rsm8Dwvx> + a‘w s1n8D§8
+ cos 3 <cos @ D9 +% sin 9 D¢/8> + a2w sin 8[—sin 1) Drgo +% cos ¢ quo]
- xggw sindcosy=0 . ) | (15d)
9 . . . 1 2 9 9 1 9\
w4{cos 9 - sin 9 cos ¢ X, - sin 9 sin ¢ = X, | =a4|l + X% + =X (15€)
Ty 22
w2 + na2 + 2gz = Constant - (15%)

The last equatiori — the energy equation — gives the interrelation between the speed of
sound and the velocity. Although this set consists of six equations for the five unknown
functions w, 9, ¢, a,and £, all of them must be used. The equations curl W =0
are dependent on each other and have, together with the equation of continuity,;the trivial
solution w = grad ¢, since curl . grad ¢ =0. ‘i

| |
Solution by a Perturbation Approach j

The system of nonlinear partial differential equations (15) is solved for large dis-
~ tances by a perturbation method. If the unknown functions are assumed to have the form
of a perturbation series




C= C(O) + C(l) + C(Z) + e e (16)

that is valid for large distances, the nonlinear differential equations can be split up into
orders of magnitude. The equations for the different orders of magnitude can be easily
solved in a step~by-step procedure. The series (eq. (16)) does not make any statement
about the values of the orders of magnitude. It only expresses the assumption that for
large distances r the zeroth-order term is larger than the first-order term, and so
forth. The special properties of this series will be determined in this paper. There is
some a priori knowledge about the zeroth order which is put into the calculation. For
large distances r, to zeroth order

0) 0)

w(® - Constant a(® - constant 50~ x(‘g = Constant x$) =0 (17

Contrary to the previous paper (ref. 3), xg,o) is now dependent on r. This complicates
the calculations greatly. Furthermore, for large distances the following assumptions are
made concerning the derivatives:

~
~

| —

3y 9 =8y By << B dp << By, (18)
but

Xy zxw zxg

According to the linearized two-dimensional equation of characteristics x = £ + fBr, x(o)
has been set equal to 1. Equations (16) to (18) must be introduced into equations (15) to
separate the equations for the different orders of magnitude.

The final differential equations are, to zeroth order,
2 - 2 2 ‘
W02 07 02, (192)

and to the first order,

Ep(o)s(lﬂ § =0 (19p)

WO L X0 D) g (190)
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x§.°)w$) + w(o)sfpl) =0 (19d)

20500 _ _0,0,07 , 0,0 _ a(O)a(l)[l . Xf~°)2]  (190)
o) _¢(1>s<1ﬂ,£ e - | (191
- - 0
w(o)fii}) + -11-. S(Iﬂ - xgo)wg_l) - ng_(EoEs_f_ 8(1) =0 (19¢)
L0
na(o)a(l) + w(o)w(l) - 0 | 4 (19h)

While w(o) is a constant in the whole field, a(o)

flight z. By means of the integrated hydrostatic law,

is dependent on the altitude of

na2(z) + 2gz = na2

2 (20)

S

the speed of sound can be determined for an arbitrary height or given-distance from the
body. In equation (20), z is the altitude of flight, a(z) is the speed of sound at the alti-
tude z, agr is the speed of sound at the ground, and n is the number of degrees of
freedom of the gas. The local speed of sound a(r) atthe distance r away from the

body is, according to figure 2,

az(r) _a2 .28 (z + T cos Y) | (@21

gr
To indicate the zeroth-order form of equation (21), this equation is rewritten as
2 2
a(o)(r) = aér -E(zZ+rcosy)= a(o)(z) -Ecosy-r : (22)
where E denotes a factor depending on gravity, E ='2g/n.

By developing a Fourier series in ¢ the number of independent variables in equa-
tions (19) can be reduced from three to two. The proposed Fourier series is




D= ) PV Gzn (29)
A==

R Y il ORYRTI L RS S EIC I

for the vanables X, w, 8 and a and

- .,',.: - - P - z : R
0’

oty = Z w@@ r)e“‘” SoLE

A=—o0

(24)

v
—
S

for the azimuth angle ¢. Naturally, the number of equations is increased by this pro-
cedure from seven equations in three variables to an infinite number of equations in two
variables. However, for a lifting body of revolution the first two terms of the Fourier

series will suffice.
]

After having 1ntroduced the Four1er series (eqs (23) and (24)) 1nto the set of equa-
tions (19), the differential equations are rewritten as

E—P(O):’Sgﬂ‘g;‘b- N I o | , ' (25a)
2 02 _ (02 |
MM A ) _ (25b)

0 '

0.0 %O @) O e %cos y (1)
.0 ~
<o> S0 +W(o> W (25¢)

[ .

<°>[z Q]mfn) I
1

%O 0,07, (0,0 0,00 07 258)



0),Q) , ,0),(1) _ _ -
L na‘a /+ wlw ‘—~0" A (25h)
Here the subscript m indicates Fourier numbers and the superscripts indicate the order
of magnitude. The summation index v can be restrictedto 0 =v =2 as the body.. . .
should be symmetrical with respect to the plane ¥ =0 and the first Fourier coefficient
is assumed to be much greater than the next one, and so forth.

The solution of equations (25a) and (25b) can be ‘written as

(p(O) = Constant . _ _ . (26)
and‘. -, . - . : ' . . !
SN (1) P T N (1) \} 02 _ L0 _ 0| '(0>2 YN
" X m st (z) W - atii(z) = at () fw T - at () |
» E cos ¢y . . T I -
5 5 5 |
0 0 0
+ EW:o)s zpt -1 - z( )(Z) 2 tan”? . z( ).(I") 2 *E (272)
‘ \W(O)‘ - a(o)(z) w(o)«‘ - a(o)(r)_J !
i“oAx:‘: E=0 or cos y =0, 1'Hospital's rule gives the limit:w‘b i
2 2
x(0) - W( ) . ;( )(r) + & . CL et (2'Tb)
20)r) " |
The.integration of equation (25¢) with i;espéct to £ gives . -
X§O)w$) . W(0)19&11) - w(o)Fg)(r) (28)

If the integration function Fg)(r) is set equal to zero, equation (28) becomes the same
as equation (25e).

Differentiating this equation with respect to - r :Yiélds

kg,o)wfrll). + xﬁ,o_)wg)r +W(0)8§rll)r =0 R (29)

13



Adding equations (29) and (25d) eliminates the quantity wg)r:
T

5(0)

ol ol £ L0 @
| a(o)(r)‘ Xr '
The integration gives
(D) _ (D) -1/2, Al
Sy =G (&)r H———E(n+1)/4 . (31)

Here Gg)(g) is a function of integration which is to be determined by the boundary con-
dition. For brevity the abbreviations II, A, and Z are used henceforth:

N (n+1)/4
0]

' 1/4
@2 %)

)2

0

: 2
A= w( - a(o)(r)

2
z = a(O) (r)

From equation (28) the first-order velocity component is calculated as

1
0 G® .
T Al/45(@-1)/4

Wg) =W (3 2)

Equation (25g) can be rewritten, by using equations (25h) and (28), as

2
o]
(1) __n+1[1+xr (1)

m,r n (0)2 9m
Xp

14



or

1 4
@ _ ne1%m® O
m,r n VI ,\3/45(n+5)/4

(33)

This equation is solved by developing the terms E'(n+5)/ 4 and A'3/ 4 ina power
series.

After the development in a series in terms of r, the integration can easily be car-
ried out:

4

MO T PO w0 zvf_Eczsw,DIB/z s
N (E cos zp)z r5/2 21 . n2 + 14n + 45
=) EN,(O)2 . a(o)%zﬂ L(mﬁzﬂ

+ 6(n + 5)
4 2 2 2]
O w0 - O

(34)

Here the function of integration has been chosen to be zero. The calculations still con-
tain the quantity 'n, the number of degrees of freedom of the gas. For air, which obeys
the model of a molecule with two atoms, n = 5. ‘

By a development analogous to that of the first-order set of equations, a set of
second-order equations is written as

(1>w<1) 5)°

15




oL ' ot : (1, () ' .
'XS-O)W?) . V\{(O)ng);f--xl: w(O)s(Z) _ g cos W w0 ‘8(2) _ bt 1w E - x(0) ] . w (l){ (0 ) E'Jﬁxg‘o)z]} .

a(O)Z n (0

. 2 :
v+%.&y(1)s(.l_) M - -w—f_o—)lga(l)s(lﬂ v ~ (35b)
, 2
0) ) (l + x(o)2
NONCIWORCN w0, <1>3(1] +W(0) W0 _ s w9 1t e
0 2 0
KONRE 0
’ (35¢)

: 2
(0, (2), (0)2 (0),,(2) (2),(0), () [ (0)2] 0),) . (2 : Nk +X(0)2 ©? :| 0)?
- - n+ r
Zxr x,’a = 2w w229 x.'w -2 1+xr - a’at s w (—n-) jxrr Exr -1 + X v (35d)

w( ) + 2w(0) 2) + na( ) + 2na(0) (2) (35¢)

The formal solution for this set of equations is obtained in a manner similar to that
for the first-order equations. By investigating the solution for the second-order angle of
inclination 8(2), it can be shown that this quantity is really much smaller than the first-
order angle of inclination. The solutions will be provided to enable an investigation of the
behavior of the second-order quantities at the caustic, that is, the condition w2 - a2 (r) <<1.
(However, the second-order calculations have not been included in the sample calcula-
tions.) A The differential equation for the sgcond-order angle of inclination is

Cor 2 ) '
2‘9(2) . 8(2) 1l g cos Yo W(O)E cos y -1 G(l) (1) A E cos W{' (0 5A
m,r mir (0 ( ) 2A% .. m- V Y 227'/2 .. |_2A225/Z . 229/2

2
(0) {0}
+1 Gg) VGS/1) z cn(;S ¢ -;1 wg/z +— 5/2]
b 242%

LRy (3 il Ecosyl 3 1~V
’ lI5‘0 Gn? o _Z“,n r5/251/45 ' /2 \4A1/.4>:2 “2a5/45

2[ (0)2 , ) (0)
. (E cos ¢) -3 W - 1 + Fg)(r) F(z)(r) (36)
ri/2 EA1/423 829452 16a%%z 20

16




The left-hand side of this differential equation has the same structure as the analogous
equatmn in the fifst-order calculation (eq. (3_0)) "Hence, the second order angle of incli-

"nation 8(2) can be determined as

3/4 e r.1/2
5(2) nag)v 9) B} :/2 - dr + 26 4 ( - %)Ago Gg)(g)dgj‘wfl/;;dr
r

' 2
. (1>E wO sa%/ | o
a6 cos ‘”S VoS
g (1) (1) E cos w w(0)2 S‘r -11 1
~+ HAG .
+ MGy Gy w\gr1/2,1/453 5 172,974

+ AE cos d/S G (E)dES‘w " A1/2 7 3 dr

0 1/2
+ A(E cos zp)zg G(l)(g) gg 7w'0 2151/ (37)

+ - r

where.. .. . L. .

. 174 o N Lo
223/2r1/2

Yo

and G(2) is the second-order integration function. In calculating the 1ntegrat1on func--
tions G(l) and G(z) it will be shown that G(z) is really much smaller than G(l)
The integration functions are assumed to obey . the relation (eq. (23))

hY - i

For completeness the second-order differential equation: for the abscissa of the Mach
cone will be given.as well. According to equation (3 5d),

17 -




2 2
A2 - @ w n2c,<1> m_wO" ) w0

ST woa m-15y 2rA223/2 nz2
o ™ ar3/2a%/45 V2 \4a9%%5  A5/452
2,025 ) __ 1 [ 0%, () ]
w0 g 1 A-w
m-»%y 2ra259/2 n2

)4

P 2 1 [ ot
1 4w(0) A - ZW(O) Z+ w(o) EA] + 2W(0) A - w(0 Z+ A22:I ’ (38)

If the influence due to gravity is set equal to zero, all the previous equations can be
reduced to the corresponding equations in reference 3.

As this theory is based on the hyperbolic differential equation of wave propagation,
the solution to the problem at the cutoff point w = a(r), which is a parabolic problem,
cannot be obtained. - Here, the Mach cone and the wave normal cone degenerate to a plane
and a straight line, respectively, when the Mach angle u = 90° (fig. 3).

Coordinates of the Shock Front

The differential equation for the coordinates of the shock front in a stratified atmo-
sphere does not differ essentially from equation (28) of the previous paper (ref. 3). For
a stratified atmosphere, this equation is written as

2 ' 9
. 2
E+.x§,0)xs’;‘ <1+xr2+;1§xw2> <1+x Xg 12 X Xs 'P) li1+x£,0)] (39)

This equation must be developed in orders of magnitude and in Fourier serieés in Y in
the same manner as the set of equations (15). The coordinate x s of the shock front is
calculated to be

Xg = x(o) + -;- xg) | | | . (40)

In this paper the bow shock is the only shock that is considered and calculated.

18




Satisfying the Boundary Condition
The integration of the system of equations (25) and (35) introduced the functions of

integration Ggl)(g), which have to be determined from the boundary condition. Although
these equations have been integrated for large distances r, the boundary condition can
be formulated only for small r — that is, at the body itself. However, here the bound-
ary condition will be matched with the nonlinear solution at some distance R. If linear
slender-body theory is used, the boundary condition means another approximation. But
slender-body theory has here the advantage of short, compact solutions. To handle the
problem in such a way means that the disturbances sent out by the body are assumed to
run along straight characteristics (zeroth-order theory). At the distance R, the straight
characteristics are matched with the characteristics resulting from the exact theory that
are valid for large distances r. At first glance it seems to be a problem to find an
appropriate matching distance R. But numerical testing showed that this parameter can
be chosen in a broad range of values without essentially changing the numerical results
(ref. 3).

It is convenient to calculate the functions of integration by considering the angle of
inclination 9 of the streamline. The inclination can be expressed by

tan § = —v (41)
U, + U

where v is a vertical velocity component and u,, + u is a horizontal velocity compo-
nent. For small disturbances this equation can be approximated by

v R0
g B or

20 )
=8 '3? ' . (42)

where S = M2 -1 and n = Br.

If equation (42) is developed in perturbation and Fourier series, it can be rewritten
as

8(()1) + 8(()2) + E’(ll) + sgzﬂz cos Y + [8:(21) + 8g2ﬂ2 cos 2y = ¢%) + ¢>1(720) + l}?(?ll) + ¢1(7211—’2 cos Y + Ep%) + ¢1(722le cos 2y ) B

(43)
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By comparing equation (43) with equations (31) and (37), the functions of integration can
be expressed in terms of cpn', which itself will be determined by slender-body theory.

This will now. be demonstrated for a lifting body of revolution. ..

Lifting Body of Revolution

The quantities ¢7(7j) can be taken from reference (3):
m

\

¢(2) _1 VE(E + 3n) H(z)(A)

o 2m (g + 27)3

ap VEG + )

(1) _ (1)
o = HYW/(A)
M 21r172 £+ 2.
52 _ 28 (E@3E2 + 10nE + T72) 1@ a)
M 2
27 2\(¢ + 2n)3

A

where

D@ -4 Lag- 4 +iEﬂe2 - 2A% + 2§§ A(w)dw]
b a2 o8 °

P @'53 - 3A£2 + GSE Alw)w du] ...
16¢* 0 ‘

i

H(z)(A) =-A' +L(A'§ - A)+ _l-Ex'gz - 2A¢ + 2§§ A(w)dw]
2& 852 0

+ 1 3@'53 - 3A€2+GS‘§ A(w)w du}+. ..
16¢ 0
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Here A’ = %; a _den‘,ot'esAthe. a:mgle of attack, which is r_neasured counterclockwise; and

n = AR, where R is the distance from the body where the boundary condition will be
satisfied.

Thus the functions of integration are determined as

o . ey, “45a)
2n\R\€ + 27

@ e+’

G
1
211R3/2 \|g + 27

10 (a) » , (45b)

@ - V&30 p@)y) _pla?, 2G(11)2j| [ SAS
3 = 2r3/222
ZW\Iﬁ\J(E +21)

. 2
R .1/2 9 9 R 0
+§S‘§ G(()l)(g)dES _E_/_ dr - H[Gé)l) N 2G(11):IE cos 4/5‘ -11w®
8Jg w 12 v |l
A~ “r2 RN 23

E cos ¢ R 3 21/2

©° |
2 ar - " 6{Dia

dr

+ -
r1/2A9/4E 0 °© 2rA1/221/2v A3/2r
S*E (1)( ) <E cos Y ZgR -3 7w(0)2 212)2 d (45¢)
- Gp /(£)dE > ' + - r c
0
0 2 o A1/223/2 4A5/221/2 8A5/2

21




3£2 + 10 7 3/4 |
o@ _ a\]—(é + 10n& + n)H(z)(A) G(I)G(l)g —A—/—dr

! 417R3/2 \’(E + 277)3 0 1 3/222 |
‘lg D) ES‘ HG(I G(l) E cos EES' 0)2 . 5A3/4‘|dr
8

1/2 A9/45 r1/223J

2 2
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2
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Within the limits of a small error, equations (45) can be integrated for a(z) = a(R).

The integration functions G_(l) and G(z) are compared in figure 4 for a fighter
airplane. The cross-sectional area distribution of that airplane is given in figure 5 for
M = 1.6 Mach cuts. The negative areas are due to the fact that the engine stream tube
exit areas are smaller than the intake. It can be seen from figure 4 that the integration
functions satisfy the assumption of equation (16), since G(l) >> G(z) is the fundamental
condition for the gas properties of first order, such as 9 1) and w(l), to be greater
than those of second order.

Pressure Signature

The pressure coefficient is approximated by

p-p 9
—_ - _(]5__ _.Lcos,S-]_ (46)
T W
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The pressure Ap at the altitude Z + T COS Y has been nondimensionalized with respect
to the dynamic. pressure at the ground. By using the equation for the speed 6f sound at the

2 n+2 gr
gr - n pgr

the ground, a equatmn (46) can be rewritten as

2
Ap =_n+2w(0) |—w
P, n - 2 0

To use this equation, the solutions for w and 9 have to be introduced.

cos 9 -1 (47

DISCUSSION

Some pressure signatﬁres will be given for a ﬁghte'r airplane. The point of inter-
section of the Mach line of the undisturbed flow through the nose of the body and a line
parallel to the abscissa x at the distance r away from the body gives the origin of the
plots of the pressure signatures, as shown in figure 6. The points of multiple values on
the pressure signature indicate the occurrance of shocks. In figure 7 thé pressure sig-
nature is shown for the Mach number M = 1.5, the altitude of flight z = 10 000 m, and
the speed of sound at the ground 'agr = 300 m/sec at the distance r = 100 m away from
the body. Here the factor « cos y has been varied. Naturally the pressure rise is
greater at the:bottom of the body (cos y = ~1) than at the top (cos ¥ = 1) for an angle of
attack a = -0.1. In figure 8 the decreasing pressure with increasing distance from the
craft is demonstrated. In both figures only the bow shock has been calculated. A com-
parison with the theory given in reference 2 is shown in figure 9. For this calculation a
fairly good agreement has. been obtained.

At the caustic the speed of sound is of the same order of magnitude as the velocity;

that is, w2 - a2(r) << 1. For the cutoff point, this can be written as w2 = az(r) = aér
- E(z + r cos ¢). The locus of the cutoff can be calculated for given values of ¢, z, a,

and M(z):

L P - M2eele)

Tcutoff = cos ‘Pl_ E

Because of the parabolic character of the flow, the pressure rise cannot be investigated
at the cutoff point. At this point the assumed series, equation (16), breaks down. As can
be seen from equations (31) and (32), the first-order angle of inclination 9 1 decreases
continuously and becomes zero at the cutoff point, whereas the first-order velocity com-
ponent decreases at first and then increases, reaching a high value near the cutoff point.
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Thus, at the cutoff point the first-order quantity w(l) is inconsistent with the assump-
tion of equation (26), whereas the result for 8(1) is compatible with this assumption.
However, in the second-order calculation even the angle of inclination 8(2), equation (37),
contains singularities at the cutoff. However, so long as the Mach number is inghtly
supersonic, the pressure can be calculated. The pressure rise is shown in figure 10, -
First, a pressure decrease with increasing distance from the body can be observed.
Then, ahead of the cutoff point, the pressure increases because of the focusing-and then
augments very rapidly near the cutoff point. It should be pointed out that the most rapid
increase of the pressure occurs within a distance of a few centimeters. . For complete-
ness the cutoff distance, at which the calculation breaks down, has been included in the
figure. For this point;-geometric acoustics give-an infinite pressure rise. It is the.
author's opinion that so long as the initial equations do not contain any damping mecha-
nism, such as viscosity or entropy increase, the pressure rise at the cutoff cannot be
expected to be finite.

There are some uncertainties about how the pressure wave vis‘reflecte"d at the
ground and at the cutoff point. Figure 11 (from ref. 5) shows the reflection of the pres-
sure wave at the ground as measured from various tower microphones. It seems to indi-
cate that the pressure wave is reflected in the same way as a wave at a solid wall; that is,
the compression wave is reflected as a compression wave and the rarefaction wave as a
rarefaction wave., The pressure signatures of the wave traveling toward the ground and
the reflected wave can be superimposed. The abscissa of the reflected wave is Xyef] = -X,
whereas the pressure signatures of the reflected wave are given by equation (47). How-
ever, in this case no obstacles at the ground are taken into account; the ground is con-
sidered to be plane and smooth. Figure 12 indicates the complexity of the boundary con-
dition in the mixed-flow region of the caustic.: It is not clear whether the atmosphere can
be considered to behave as a "soft" solid wall at the cutoff point. Figure .13 (from ref. 5)
shows some measurements at the cutoff point. Here the phenomenon of the U-shaped
wave can be observed. The incident N-wave is changed at the focus with a component
phase shift of 7/2 radians, whereas the reflected wave, after passage through the focus,
again has an N-waveform. In first-order calculations the U-shaped waveform has not
been obtained by the present theory. It is hoped to get an improvement by. including the
second order in the calculations. :

Although some progress has been made by Seebass (ref. 6) in calculating the sonic
line at the caustic by using Tricomi's equation, this problem needs more investigation for
the understanding of the complete behavior at the caustic and the cutoff point.
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CONCLUSIONS

" The exact nonlinear system of partial differential equations for supersonic flow is
solved for large distances in a nonhomogeneous atmosphere by using a perturbation
method. The unknown functions were expanded in a perturbation and a Fourier, series.
The system of differential equations was derived and solved for each order of magnitude
and Fourier order. The integration introduced a function of integration which could be
used to satisfy the boundary condition. To calculate the far field, the boundary condition
was not satisfied at the body itself, but at some distance R away from the body. The
matching point does not influence the numerical solutions in a broad interval of values
of R.: Theexample calculations give reasonable sonic-boom signatures. They are in .
good agreement with those obtained by previous theories.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., February 14, 1973.
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Figure 6.- Description of construction of the figures for the pressure signature.
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Figure 10.- The pressure rise at the caustic. M = 1.1; z = 10 000 m; agp = 300 m/sec.

32



/ /
T s/
gﬁ%lcog \ /7" REFLECTED

// SHOCKS
\ e
v
e —— - /Im./,. .
\ L/ ]
TOWER |, :
457 m /
(1500 ft) o —— M SIGNATURES

B

77777/'7'7'/‘/L"// T —

T 7 777777 7 47T 77T 7 777 T T T

Figure 11.- Measured sonic-boom signatures at various heights above the
ground for an F-104 aircraft in steady, level flight at a Mach number
above cutoff (M = 1.3) and an altitude of 10.26 km. (From ref, 5.)

33




34

Reflected shock Bow shock

Caustic line, M =1

\ Detail

Cutoff point

Ground

TIT7T7T7777 777 77777 T 77
Figure 12.- The shock behavior at the caustic.



N - F

57em o - o g ] BOOM REGION
(1500 ft ] *
TOWER |+ ——— -~ - CAUSTIC (LINE FOCUS)

o ———— - — P -
-ACOUSTIC REGION

- =F VA A A A A R A A

rrl sy s st

Figure 13.- Measured sonic-boom signatures at various heights above the
ground for an F-104 aircraft in steady, level flight at cutoff Mach num-
ber (M = 1.095) and an altitude of 10.26 km. (From ref. 5.)"

NASA-Langley, 1973 — 2 1,-8094 35



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
’ WASHINGTON, D.C. 20546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

SPECIAL FOURTH-CLASS RATE st
BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

P.3

——
U.S.MAIL
——

. If Undeliverable (Section 158
POSTMASTER : Postal Manual) Do Not Return

“The aeronautical and space activities of the United States shall be

conducted so as to contribute

... to the expansion of human knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a

contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered -
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbocks, sourcebooks, and special
bibliographies. '

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



