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Vibration Considerations in Manipulator Design

by

Wayne J. Book

Abstract

In the second quarterly report of Contract NAS8-28055 a mathematical
procedure using 4x4 transformation matrices for analyzing the vibrations
of flexible manipulators was reported and applied to a specific example.
This report summarizes the previous work and extends the method to include
flexible joints as well as links, and to account for the effects of various
power transmission schemes. A systematic study of the allocation of
structural material and the placement of components such as motors and
gearboxes has been undertaken using the tools developed. As one step in
this direction the variables which relate the vibration parameters of the
arm to the task and environment of the arm have been isolated and non-
dimensionalized. In this manner one is able to reduce the number of
variables and yet hepefully retain an intuitive feel for the problem.

This effort is being continued as a general problem, making reasonable
assumptions as to the configuration and parameter ranges which are of
interest to further reduce the large number of variables and arrive at a
meaningful design tradeoff study. It is desirable at some future point to
consider a more specific case, whether this case 1s established by NASA or
assumed by the investigators.

The 4x4 transformation matrices have also been used to develop
analytical expressions for the terms of the complete 6x6 compliance matrix
for the case of two flexible links joined by a rotating joint, flexible
about its axis of rotation. This seems to be the most frequently re-
curring configuration. The availability of these analytical expressions
in terms of the link and joint parameters will circumvent the numerical
evaluation of these terms in further studies of this case.



The Compliance of Jointed Beams-Practical Matrix Approach

Manipulator arms are subject to deflection under loads and to vibrationms
about an equilibrium position when the loading on the arm is suddenly -
changed. The deflections deteriorate end point accuracy as computed
from joint positions and the vibrations can seriously deteriorate the
response of the arm, and the ability of an operator to perform desired
maneuvers. The following is a method for analyzing the deflection of
an arm under given loading conditions. The arm compliance matrix is
arrived at giving three displacements and three rotations as a linear
function of the applied forces and moments. The method can be used
to evaluate the bending of the arm segments and flexible joints as
well, If the compliance matrix is nonsingular it can be inverted to
yield a spring constant matrix and hence forces end moments as a
function of displacements and rotations. The motion of a lumpéd mass
spring system can be described by a linear differential equation using
these spring constants. The validity of this approximation for an arm
vibrating about an equilibrium position depends largely on how well the
mass involved can be lumped into a reasonable number of masses. It is
less seriously limited by a small amplitude assumption, the assumption
of negligible damping (only second order effects on the natural frequency),
and the assumptions that the joint angles are not changing. When the
mass of the payload is large compared to the mass of the arm the approxi-

mation is very good.

The Mechanics of Arm Deflection

Consider an arm in static equilibrium with the forces and moments

on its two ends as is shown in Figure 1. Initially we will assume

1) the mass of the arm can be lumped for purposes of vibration studies
2) the arm joints are rigid

3) the arms segments are simple beams
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When loads are applied to the ends of the arm the individual arm

segments deform according to
by the neighboring segments.
terms of a coordinate system

the neutral axis of the beam

the forces and moments placed on them
When these forces are expressed in
which has one axis coincident with

as shown in Fig. 2, the deflections

over the length of the segment are simply obtained. Each of the

deflections and angles along the three mutually perpendicular

directions is a linear fuanction of at most two of the loads.

Notice that one end of the beam is assumed at the zero position:

AX = o
C
AY = aYF
AZ =
ZF

Eq. 1

For a beam whose cross section is symmetric about the Y and Z axes

Ayrp = %zF

specifically considered.

the extra subscript at some loss in readability.

notation is as follows:

and will be denoted a. ...

XF

This will be the only case

The development which follows could retain

XF YF ZF
Oxm T %ym T %zy
%fF = % r~ ©

The simplification in



Beam theory additionally requires that Opy = @ Determining the

end displacement is a matter of summing the disSiacements of the in-
dividual segments and in accounting for the displacement due to end
point rotations at a distance from the end of the segment where

the rotation is calculated. For numerous arbitrary joint angles
this becomes a complex bookkeeping task. The matrix procedure which

is developed here automatically performs this task.

Transformation of Coordinates Using 4 x 4 Matrices

We are interested in a transformation between two coordinate
systems whose origins are displaced from one another and whose axes are
not parallel,as in Fig. 3. The position of point P is described in

terms of coordinate system 2 by the vector X Given the vector ( X 0)1

2
from Ol to 02 and the angles between the axes (or lines parallel to
them), we desire to find the vector from O1 to P. This vector is
easily found by the following matrix multiplication:
1 i 1 0 0 0 B
X1 ;= (Xo)l cos (XZ’xl) Cos (Y2, Xl) Cos (ZZ’ Xl) X2
i
i
Eq. 3 Y1 % _(Yo)1 cos (XZ’Yl) Cos (YZ' Yl) Cos (22, Yl) Y2
LZI,J (ZO-)1 cos (Xz, Zl) Cos (YZ’ Zl) Cos (ZZ’ Zl) ,ZZ
ol ) R -~
! T
or |-2) =il o
X X), .+ R X
1 (%11 Ry 2

The cosine terms are the cosines of the angles between intersecting lines
parallel to the indicated axes. The sign convention is arbitrary for
these angles since the cosine is an even function.

We are interested in coordinate transformations of two special types.

One of these is the transformation due to joint angles and displacements.



- The other transformation is due to the deflection of arm segments
under loading. The former has been described for both rotating and
sliding joints by J. Denavit and R. S. Hartenberg (1)* in terms
of four independent parameters. The transformation for simple beam

flexure, compression, and torsion will be developed in this paper.

Transformation of Coordinates Due to Elastic Deformation

The information we seek is the displacement and rotation of an
arm, or more generally a jointed beam, due to the application of loads.
The end of the beam can be described in a fixed reference coordinate
system if one knows the transformation between the coordinate systems
which are fixed‘to the individual segments. As seen in Fig. 4 the
point p at the end of the beam can be described by two transformations,
represented by two 4 x 4 matrices. The transformation Ai relates
system i', the end point before deflection, to system i-1l. The trans-

formation E, relates system i to system i',

i
Eq 4 Xy g-1= 2 B [ ¥y, 17 4B [0
‘where: X = the position of the origin of system i in terms
-1, i-1
of system i-1
Ai = transformation with no deflection
Ei = transformation due to deflection
0 a 3 x 1 vector whose elements are zero
X ii = location of point p in i coordinates = origin of i
R .

in this case

* A reader consulting this paper should be aware of the fact that 64
in that paper is defined with opposite sign convention of this paper
and later papers by Denavit and Hartenberg.

(1)J. Denavit and R. S. Hartenberg; "A Kinematic Notation for Lower-

Pair Mechanisms Based on Matrices" Journal of Applied Mechanics
June 1955 pp 215-221. .




Any number of these transformations may be combined by multiplying
the transformation matrices. In terms of the reference system O, the

end of a beam with N joints is located at X as is given by:

1 =A B Ay ... AL E .o ApEL |1

We would like the variation of this position vector due to applied
forces and moments., First the elements of the E matrices must be

found. From Eq 3

! 0 0 o ]

Ei = ‘Xo)i' cos (xi,xi.) cos (Yi’xi') cos (Zi’xi')

Eq 6 (Yo)i' cos (Xi’Yi') cos (Yi,Yi,) cos (Zi’Yi')

(Zo)i' cos (Xi,Zi,) cos (Yi’zi') cos'(Zi,Zi.)

e —

For small deflections and small angles the elements of this matrix

simplify as follows:

F 1 0 0 0
E, = AX 1 cos (90 +°6 Z) cos (90- QY)
Eq 7 Ay " cos (90- ez) 1 | cos (90 +6X)
| Az cos (90 + QY) cos (90 - 6 0 1 _J,
where ex, OY and GZ are the angles of rotation about the X, Y and Z

axes respectively. For small angles the angles behave very nearly as
vectors, thus the order of occurance is irrelevant. Furthermore the

small angle assumption allows further simplification to



Eq 9

(1 0 0
Ey
X 1 - 8
Eq 8 ' z
AY 0, 1
Az - 8 6,

But these elements were expressed in terms of forces and moments

in Eq. 1. Thus Ei may be expressed as
- i
1 i 0
. {
%Fyrig 1

' o ‘a
Ovpifyii ¥ *oaMzai, “oriFyiat®omiMzis

s

|
|
}
\
|
l

a -a ! -
Pxeefzan T S Yorstzaa o rag

where

Fyiir ™vig0 Fzia

system i

%rifyit™ %omiMzii| -

0 \ : 0
!

Yrifzi1 %miMlyis

1 Vo opiMysg
3

%riMeis ; 1 )

= Forces at the end of beam i, in terms of coordinate

MXii’ MYii’ MZii= Moments at the end of beam i, in terms of coordinate

system i

Now one must determine the forces and moments on segment i which

result from the loads on the end of the beam.

following section:

Equilibrium Forces on the Arm Segments

This is done in the

A free body diagram of the beam segments between coordinate system

i and system N is shown in Figure 5. Equilibrium requires:




a) >F = 0 = R F - F,
Z <N =
Eq 10 0i o ii |
b) DM = 0 = Ry My, 4 ry XRy Fy - Mgy
where: " I = the vector from system 1 to the end of the arm in
terms of system i
Eii = the force vector acting on the beam to the left of
system i in Figure 5, expressed in system i
'gii = the moment vector acting on the beam to the left of
system i in Figure 5, expressed in system i
ROi = 3 x 3 rotation matrix from system O to system i
Fro = applied force at the end of segment N, expressed in
base coordinate frame
yNo = applied moment expressed in the base frame

Vectorially eq (10)may be expressed as

|
Big | _ Rot : © o
Eq 11 |---—=- | ——-
Y4 Iis* Ros | Ror | |5
i (o]

i 0i
_ _
0 “Tzii Tyii
L XRopy =|Tz214 0 Ty Roi
i1
“Tyig Txii °
-

In the above manner we can obtain the forces on the arm segments
resulting from the loads on the end of the arm. It remains to evaluate
the deflection of the arm by using these values in conjunction with the

transformation matrices.



. Arm Deflection with Load

Having described the position of the end of the arm{after loading
has been placed on the end of the armfby the coordinate transformation,
one could subtract from this vector the vector describing the position of the arm

before loading as in equation 13. Theoretically this would be correct.

Eq 13 AX = [( A E A E, cEyop Ay By T AL Ay eee AN)][_%r]

In practice the difference of these two vectors will be much smaller than
the vectors themselves, leading to inaccuracies when the calculation is
carried out with two few significant digits. A more practical way is to

evaluate the partial derivative of the position of the end with respect

to end point loads, for example FXNO and MXNO
Eq 42 °XN0 = 2 [A1 Ey A By oo By EN] L
3F_ oF 0
XNO XNO

Fq 14b X0 2 ___<[A1 E; Ay By ooo Ay EN][_%_:I>
Mo Mo

One will now recall the assumption that the joints remain rigid.

Because of this:

BAi = BAi

9F o Myvo

fl
o
e
fl
[
N
v
.
-
=

If one found that this assumption was not valid it would be relatively

simple to evaluate these partial derivatives and include joint flexibility.
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By the chain rule

Ko = A B, (A B, .. AE[1]
Eq 16 —% oF 0
XNO XNO

A, E 2 (A, E, ... Ay E) [_1_]
11 : 2 72
Fxno 9

Continuing this differentiation one eventually arrives at: (for example)

N

Eq 17a _Fwo  =| 281 By oAy 2By Ay ooy F‘N[-l]

F o i=1 Fyno

and similarly for -the other force components, as well as for the

moments: (for example)

N
Eq 17b Kyo S| T AL Ep Ay M AL Ay Ry [-%-]
NO i=1 Mo =

(17c¢) for example .

Then deflections are obtained as AKNO = 8§N0 AFXNO
oF

XNO

In order to proceed we must evaluate

iEi aEi oE oE BEi and aEi

i i
’ [ ’ s N
Frvo °Fyno Fzno Mxno MyNo Moo

To do this we take the derivative of the individual elements of

Eq. 9 as follows:



: 3E, =
ET. '
0 ; 0 i 0
! .1
ac 9Fyy4 ‘ o
oF -( )
XNO -
T )
- 4’/
axri Fyis + %o Mzis | %orr Fyas + %ot Mpgg , /"'/o_
» i
! / s
| | |
oxri Fzis - %o Myas | %ori 2Fzis - %o Myas | o Fyi4

11

XNO

Similarly for FYNO’ FZNO’ MXNO’ MYNO’ and MZNO' Note that»the

derivative of the rotation submatrix is antisymmetric

Ther

e 1is but one thing left to evaluate, that is

9F

Fyi, 98540 My
F w0 Mo Ex

and 9M,
-i

Oy

i

Referring to Eq. 11

it is seen that these partial derivatives are readily evaluated

if one assumes that R

oi

and r,

X R

ii 01

are essentially independent

of the loading)which they are to first order. Then

Eq 19

OO OO
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In general

'I:i;[g__ 3 3 _ 3 3 _a_]
Fovo °Fyno Fzno ™Mxvo Mmoo Mano
Eq 20 .

M4

These values can be substituted into Equation 18 to yield the
derivative of the elastic deflection tranéformation matrix with
respect to the end of arm loads. It has already been pointed

out how the displacements are computéd using these transformations.
The next section will show how to arrive at the rotation of the

end of the arm due to the loads.

End Point Rotations Under Loads

One would also like to know how the end of the arm rotates with
applied forces and moments, i.e., determine the elements in the 6x3
matrix Cg. o

)
doF [eXNO eYNO 6ZNO]

Eq 21 JF




Most of the work to obtain these terms has already been done. It remains
for us to recognize the result and transform it into the proper coordinates.

What we have done up to now is to take the derivative of the equation

1

Eq 22(a) I}go] = AEAE - ARy [—g';]

with respect to forces and moments applied to the arm. It was assumed in
th

Eqs. 4 and 5 that the force was applied at the origin of the N~ co-
ordinate system, which was also the endpoint of the arm; thus —}SN N = 0.
Let us use a general nonzero _)_{.N N and rewrite Eq. 22 as

Eq 22(b) 1 0 0 0 1

1 x 0 ‘10 t:os(xN X ) eos(YN,Xo) coé(ZN,XO) 1

‘!“-NO '(YO)NO cos(xN,Yo) cos(YN,Yoj cos(ZN,Yo) )—(NN
L_(ZO)NO cos(Xy,Z,) cos(Yy,Z) COS(ZN’ZOL

which is the same as

Eq 22(c) Ll OT:I[*I__]
[ 0] [(EO)N(): Ryod LEw

Here (X ) is the vector from the origin of system O to the origin of
system N, expressed in system O coordinates, while ENN is the vector
from the origin of system N to the point of application of the load,
expressed in N coordinates.

Now we express the vector §NN in coordinate system N' whose axes
are parallel to the axes of system zero before loading but has the same
origin as system N. (See Fig. 6.) The components of this new vector-ENN,

are found from the expression:

Eq 23 Xt = R ¥y

Now



Eq 24

1 —_1_.___:___]
L‘No} " @wo i Ruo

Since the O and N' axes after loading are nearly parallel, for small

deflections cos (90-6

ZNO
follows ’
1 ~O250 %yno
Eq 25 Ryto = |9%n0 1 ~Oxvo |
“%yno e'xno_ 1

-

) = GZNO etc. and simplifications can be made as

Thus to get the partial of the angles 6 above with respect to a force

or moment, say F.

Eq 26

1
Xvo t

Yno %znvo

0

aFXNO

-6

Znor YNO

For small deflections RN'N =

ANO

0 0
‘ezuo %o 5
T 9F
1 80 XNO
%0 1
RoN

the joint angles.

1
[AlElAz...ANEN] [Q

one must simply multiply as follows

T

o
Ry'n

Compliance Matrix and Spring Constant Matrix

evaluated before loading from'only

Now we are able to piece together the above derivation to reach our

original goal:

a compliance matrix

of the arm under force.

Equations

16, 17 and 26 are evaluated (as well as the similar equations for the

other forces and moments) and one can construct the following matrix

equation.



AX

Eq 27a)

Ay

AZ

ABX

ABY

A0Z
L.

or

AX
Eq 27b){._ -
A8

15

ox 9X 3% oX axX axX
QFX BFY ,BFZ BMX BMY aMZ
oY Y Y Y oY oY
9F, 3F, oF, aM, 3, a,
=| 9z oz 9z Py YA 3z
BFX BFY BFZ BMX BMY | BMZ
90X 29X 96X 90X 36X 96X
5F, O0F, OF, oM, M, 3 H,
]
00y -30Y 36Y o0y 006Y 00Y
BFX BFY BFZ BMX BMY BMZ
367 362 902 302 362 362
o L 3FX QFY BFZ BMX BMY BMZ
= C 3o F
M

NO

NO

The subscripts on the matrices are understood to apply to each element.

Due to the nature of the problem the matrix C
inverse of the matrix CNO will be the spring constant matrix KNO and

NO

will be symmetric.

The

NO
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-1

= Cvo | M| = Xno [ 0%
B 28w | 2e 88
NO NO NO
CNO will be nonsingular for all physical cases. For some arm con-

figurations and parameters the inverse may require excessive accuracy,
and hence be uncalculable. In this case one must eliminate one or

more of the directions from consideration to get an invertible matrix.

Linear Beam Vibrations

Up until this poiﬁt we have been considering fhe displacements of
and loads on a static beam. If one considers a rigid mass and inertia
placed at thé loading point of the beam, the forces and moments on that mass are
the negative of the forces and moments on the beam. These forces and
moments can be determined from the spring constant matrix and the
deviation of the mass from the equilibrium position. Since structural
damping is small, the natural frequency of the spring-mass system as
well as the amplitude ratios of the various modes of vibration can be
determined. Nonlinearities such as Coriolis accelerations and centripital
accelerations can be neglected for angular velocities which are appropriately
small. This seems to be the case in practical arm problems with small

vibrations, The equations of.motion are then written as

— -
M 0 o 0 0 0
0 M 0 0 0o 0 2
d x| = &y | 8%
EQ29 |0 o M 0 0 0 = |- -
| . dt 28 A8
0 o (0] Ixx IXY IXz NO NO
0 0 0 IXY IYY IYZ
0 o o IXZ IYZ IZZ

where: M = the lumped mass at the end of the arm



17

IXX’ IYY’ IZZ = the mass moments of inertia of the lumped
inertia at the end of the arm about axes parallel to the

reference axes but through the center of mass

I the cross moments of inertia about axes

Xy’ IXZ’ IYZ

parallel to the reference axes but through the center of mass.

For convenience Eq 29 will be rewritten as

2
J d AX]| = - AX
NO '(-i—t*z— [AE.] KNO [AE]

NO

This can be written in state variable form as

— ™~ - 3 ’!
4 | ax] 0 1 BX | ax |
Eq 31 dt -1 A
a8 [= L3Pk ol | ae & A |ae
AX AX AX
| a6 A8 |8

The dot above AX and Ag indicate a derivative with respect to time.

The roots of the equation
Eq 32 |sI - A | = 0

are the natural frequencies of the system. The amplitude ratios can

found as for any undamped linear system.
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Extensions - More Than One Lumped Mass

The case of the unloaded or lightly loaded arm is one in which

the dynamics of the arm vibration are not dominated by one lumped mass.

The criteria for modeling with lumped masses will not be discussed

here, but rather the use of the technique developed will be extended

to include any number of lumped masses. Figure 7 shows schematically

a model that one may be interested in. '
Initially one 6btains spring constants between each mass point and

its adjacent mass points. The nonequilibrium forces .on each mass depend

only on the difference in the vector positions between it and its neighbors.

Thus for the example in Figure 7, with some change in notation:

Ee 33 3% = Xy g0 EtE) o K, g Gy - %)
where Ki = 'Ag = position and angular orientation for mass i,
-—— measured from equilibrium in base coordinates
sy
Ki -1 = spring constant matrix between mass i and mass i-1
1 B
Ki+l i spring constant matrix between mass i and mass i+l
’
Ji = the inertia matrix for mass 1
i = 1,2,...,M

This equation can be written for all M masses. The end masses are

special cases

Eq 34 J, X, = -K . X, +

1 % 10 X1 Kjy - X

-2 —1)

Eq 35 Tt = Ny w1 Ber —H
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If we assemble these into one matrix expression, its form is:

Simplifications - Some Moments of Inertia Insignificant

One or more of the moments of inertia of a lumped mass-inertia

may be insignificant with respect to the mass and the other moments

of

inertia. In this case it is desirable to reduce the number of -

state variables by two by ignoring the associated angle and angular

velocity.

The moments will be continuous in the beam for the axes

associated with the trivial moments of inertia. The other moments

and the forces in the beam undergo a discontinuity in our lumped mass

model due to the inertial loading. Let %K designate the spring constant

matrix of the entire arm, considering all points of loading. Its form

Eq 36
%] I | |
TRy 10’{ J1 %9 : :
R e -1
e I -7, (K ): Lk, d
. 2 21 { 31" 21 ) A
. 1 Rkt : :
X, ‘- : e A .
£ [ . "'1, 4 _l . _l . I
: L33 xy, AT o ) Ty K1t
" ""_---_—!—*“—"‘"—*~~T~-_—Tm
X : ' :
“M L
— - y
51 {
< i
%
%
N S :
1 = .
TR TS T A SRS X
— -
-
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is similar to the large matrix in Eq 36, but the J_l terms are re-

moved. Then

Eq 37 c=x1
X| =_|F
— CJ-=-
o| |=
where F = unknown, possibly nonzero loading
X = displacements or angles associated with the ? elements
E = loading terms which will be identically zero
@ = angles associated with the M elements

H = fai G
] t. !l T

21 ) 22

1=l

Eq 39 [

D <l
{ I|:><
1l
2]
o1
[ B

Eq 40 X = ¢,, ¥
Eq 41 0 = C21 F
0 8 €tk
= %, i%,]|[ X
Eq 43 RS }___g_ Rl
Kop 1 Koo € X
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Eq 44 F = ¥, X + X, €, F
— _l —_— —
Bg 45 F o= (I1-K, G, ¥; X

The above operations assume the inverse can be performed.

The reduced equations of motion are then:

2 < = 7 1= =
Eq 46 M d° X T-%, €))7 %, X

where M is the reduced inertia matrix thained»by eliminating the

appropriate rows and columns from the unreduced inertia matrix.

Example Problem

In order to illustrate the theory
presented above, a computer program was developed to evaluate the
campliance matrix for an example arm. The compliance matrix was
then input to an exisfing matrix manipulation program along with an
inertia matrix to develop the equations of motion for a simple case.

As a realistic example the arm parameters and configuration were
taken from a proposal by the Martin Marrietta Company for a boom
for the space shuttle. These are shown in Table 1. Figure 8 shows
the arm in the configuration of the example and the distribution of
the 65,000 1b, load. These joint angles were chosen because they
realistically duplicate a position in a retrieve maneuver for which
the arm might be used. It also enables a separation of modes reducing
the numbef of state variables to six. This is due to the planar
motion of the mass. Figure 9 indicates the oscillations resulting
from an initial displacement of ten inches. in the Y direction at the

endpoint.
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The computer program required 0.08 hours of IBM 1130 computer time
to evaluate the compliance matrix for six joint angle positioms. This
includes some compilation and program listing time, and the program

could be considerably streamlined.

Rotational Compliance at a Point

As developed previously the transformation of coordinates due to
deflection is given in Eq. 8. If only rotations at a point are of

interest the form of the transformation for small angles is:

- -
10 0 0
Eq 47 01 -5, 6
Da
08, 1 -o
0 -8, 8. 1
L. . o

Here ex, eY’ and 92 are the angles of rotation due to loading about the
X,Y, and Z axes in any coordinate system of interest.

These angles may be expressed in terms of the components of the
moments acting on the point expressed in the same coordinate system as
the angles, and a rotational joint compliance about each axis, here

denoted aJX’ GJY’ and an

Eq 48

Iy

0 apM 1 O yxty
L° Oty oy 1

This matrix can represent a joint compliance. It can then be used to
evaluate overall arm compliance in a manner similar to the matrix E of
Eq 8. which represents the link compliance. Note that for joint com-
plignce due to bearing supports, etc., on the end of two adjoining links'



23

which change orientation with the joint angle, two point compliance matrices

are necessary to properly account for a change in orientation as follows

1
" [X———_. [_—*i—“]
=D, AD E
Xy gy LK

where notation is the same as for Eq. 4 with the addition of Di- and
Di+' Di— is the point compliance matrix which accounts for deflection
of bearings, supports and drive at joint i which remain stationary on

the link i-1. Di+ accounts for compliances stationary on link i,

Flexibility and Mechanical Power Transmission

When power is transmitted to é joint from a prime mover which is
located away from the joint, the deflection of the link between the motor
and the joint will depend on the manner in which the power is transmitted.
The torque which is taken from the joint is transferred to the prime
mover in various ways and the manner in which this is done .affects the
state of stress in the intervening segment. For example, a band drive
with no reduction completely removes the component of moment along the
axis of the joint and increases the compressive normal stress. A bevel
gear and shaft drive as shown in Fig. 10 with no reduction retains the
moment Mz along the joint axis but shifts the moment about the link axis
by an amount MZ divided by the distance of transmission, A flexible
cable drive as shown in Fig. 11 removes joint axis moments while altering
forces mutualiy perpendicular to the joint and link axes and moments
along the link axis. The effects of a particular transmission system
must be determined by equilibrium considerations and possibly deflection
considerations. Once determined, the effects can be represented in a
transformation matrix which enables one to conveniently determine the
overall compliance. For example, consider the schematic in Fig. 13.

The segment of the arm from the fixed mounting to the motor M would be
described by a simple beam deflection transformation matrix E of the
form of Eq 9. The segment between the motor and gearbox would be

described by a drive deflection transformation Ed such as those displayed
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in Fig. 10, 11 or 12, depending on the type of drive employed. The joint
itself will have a rotational compliance which accounts for the bearing
supports, joint shafﬁs etc. In addition servo motor compliance (although
nonlinear), twisting of drive shafts or stretching of drive cables,

and deflectiohs within the gearbox will manifest themselves in the joint
compliance. These are rotational compliances which manifest themselves
at a point, and should not be confused with the distributed deflection
described by Ed'
end point loads would be:

1 1
Eq 50 [.x.j = E,E.D, A,D, E, [6]
(1] ) —

Design Analysis and Tradeoff Studies

For Fig. 13 the complete transformation expression for

Initially the simple but general case of an arm with two links and
one joint is being studied. The criterion initially considered will be:
maximize minimum resonant frequency and minimize the static deflection
while penalizing the design weight. Fig. 13 shows the general case being
studied. Even this simple case will have an unmanageable number of
variables without certain assumntions. Among the assumptions being
made are:

1) Hollow circular cross sections for all arm segments

2) Constant cross section over arm segment lengths

3) The same homogeneous material is used in all arm segments énd
power transmission members. Nonhomogeneous materials such as filament

reinforced composites are excluded for the time being.

Additional assumptions will undoubtably be made as study indicates their
reasonablemess.

Among the questions being addressed are:

1) What is the most desirable location of prime mover and speed
reduction for varying sizes of prime movers?

2) What is the most desirable allocation of structural material

between the arm and power transmission members?
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3) How do these decisions depend on the penalties for natural
frequency, deflection, and weight?

4) How do these decisions depend on the relative proportions of
the arm?

5) How do these decisions depend on the mode of power transmission?

6) What is the limiting component of the design in terms of load
capacity?

The analysis will be done in nondimensional variables to allow the
broadest application and the presentation of results will be graphical

whenever possible.

Analytical Expression for the Compliance Matrix

. An analytical expression for the compliance matrix of a two link,
one (compliant, revolute) joint arm has been derived. Fig. 14 displays
the case and explains the variables. Eq. 51 gives the analytical results.

This was accomplished by using the coordinate transformation

equation and its derivative with respect to force. The matrix manipulations
were carried out manually with the terms being analytic expressions
instead of numerical values which could be substituted in for a particular
case. These results should avoid numerical evaluation of the compliance
in many cases to be studied, and allow straightforward substitution of

the arm parameters into an expression for the compliance.

Future Work

Preliminary work has developed the controllability matrix for the
general case with joint angle position control. This has been used to
show that the example problem above is controllable using two of the
joints. Optimal control theory can now be used to determine suitable
feedback gains if one has access to the state variables. The state
variables can be partially measured and partially reconstructed using
the measured variables. Measurements might be performed via accelero-
meters, optically, or in some other fashion. In all this future work
the method developed here will make the determination of the equations
of motion for arm vibration practical, even for complicated arm con-

figurations.
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~ Fig. 10 Shatt Drive
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