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Vibration Considerations in Manipulator Design

by

Wayne J. Book

Abstract

In the second quarterly report of Contract NAS8-28Q55 a mathematical
procedure using 4x4 transformation matrices for analyzing the vibrations
of flexible manipulators was reported and applied to a specific example.
This report summarizes the previous work and extends the method to include
flexible joints as well as links, and to account for the effects of various
power transmission schemes. A systematic study of the allocation of
structural material and the placement of components such as motors and
gearboxes has been undertaken using the tools developed. As one step in
this direction the variables which relate the vibration parameters of the
arm to the task and environment of the arm have been isolated and non-
dimensionalized. In this manner one is able to reduce the number of
variables and yet hepefully retain an intuitive feel for the problem.
This effort is being continued as a general problem, making reasonable
assumptions as to the configuration and parameter ranges which are of
interest to further reduce the large number of variables and arrive at a
meaningful design tradeoff study. It is desirable at some future point to
consider a more specific case, whether this case is established by NASA or
assumed by the investigators.

The 4x4 transformation matrices have also been used to develop
analytical expressions for the terms of the complete 6x6 compliance matrix
for the case of two flexible links joined by a rotating joint, flexible
about its axis of rotation. This seems to be the most frequently re-
curring configuration. The availability of these analytical expressions
in terms of the link and joint parameters will circumvent the numerical
evaluation of these terms in further studies of this case.



The Compliance of Jointed Beams-Practical Matrix Approach

Manipulator arras are subject to deflection under loads and to vibrations

about an equilibrium position when the loading on the arm is suddenly

changed. The deflections deteriorate end point accuracy as computed

from joint positions and the vibrations can seriously deteriorate the

response of the arm, and the ability of an operator to perform desired

maneuvers. The following is a method for analyzing the deflection of

an arm under given loading conditions. The arm compliance matrix is

arrived at giving three displacements and three rotations as a linear

function of the applied forces and moments. The method can be used

to evaluate the bending of the arm segments and flexible joints as

well. If the compliance matrix is nonsingular it can be inverted to

yield a spring constant matrix and hence forces end moments as a

function of displacements and rotations. The motion of a lumped mass

spring system can be described by a linear differential equation using

these spring constants. The validity of this approximation for an arm

vibrating about an equilibrium position depends largely on how well the

mass Involved can be lumped into a reasonable number of masses. It is

less seriously limited by a small amplitude assumption, the assumption

of negligible damping (only second order effects on the natural frequency),

and the assumptions that the joint angles are not changing. When the

mass of the payload is large compared to the mass of the arm the approxi-

mation is very good.

The Mechanics of Arm Deflection

Consider an arm in static equilibrium with the forces and moments

on its two ends as is shown in Figure 1. Initially we will assume

1) the mass of the arm can be lumped for purposes of vibration studies

2) the arm joints are rigid

3) the arms segments are simple beams
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When loads are applied to the ends of the arm the individual arm

segments deform according to the forces and moments placed on them

by the neighboring segments. When these forces are expressed in

terms of a coordinate system which has one axis coincident with

the neutral axis of the beam as shown in Fig. 2, the deflections

over the length of the segment are simply obtained. Each of the

deflections and angles along the three mutually perpendicular

directions is a linear function of at most two of the loads.

Notice that one end of the beam is assumed at the zero position:

Ax = ac Fx

AY = a F + a K
YF Y YM Z

AZ = a F _ a M
ZF Z ZM T

Eq. 1

6,, = a
T*X

V VF

For a beam whose cross section is symmetric about the Y and Z axes

a.._ = a__ and will be denoted av_. This will be the only case
ir Lc Ar

specifically considered. The development which follows could retain

the extra subscript at some loss in readability. The simplification in

notation is as follows:

"XF = "YF

X6F= VF = a



Beam theory additionally requires that OL.., = otfl17« Determining the

end displacement is a matter of summing the displacements of the in-

dividual segments and in accounting for the displacement due to end

point rotations at a distance from the end of the segment where

the rotation is calculated. For numerous arbitrary joint angles

this becomes a complex bookkeeping task. The matrix procedure which

is developed here automatically performs this task.

Transformation of Coordinates Using 4x4 Matrices

We are interested in a transformation between two coordinate

systems whose origins are displaced from one another and whose axes are

not parallel, as in Fig. 3. The position of point P is described in

terms of coordinate system 2 by the vector £„. Given the vector ( X o),

from 0. to 0_ and the angles between the axes (or lines parallel to

them), we desire to find the vector from 0.. to P. This vector is

easily found by the following matrix multiplication:

Eq. 3

or

1

L-J

1 0 0

cos (X2,X1) Cos (Y2,

(YQ)1 cos (X2,Y1) Cos (Y2,

cos (X2, x) Cos (Y2,

_i.

X,

0

Cos (Z2, X.^

Cos (Z2, Y.)

Cos (Z2, Zj)

1

X2

Y2

^

The cosine terms are the cosines of the angles between intersecting lines

parallel to the indicated axes. The sign convention is arbitrary for

these angles since the cosine is an even function.

We are interested in coordinate transformations of two special types.

One of these is the transformation due to joint angles and displacements.



The other transformation is due to the deflection of arm segments

under loading. The former has been described for both rotating and

sliding joints by J. Denavit and R. S. Hartenberg (1)* in terms

of four independent parameters. The transformation for simple beam

flexure, compression, and torsion will be developed in this paper.

^
Transformation of Coordinates Due to Elastic Deformation

The information we seek is the displacement and rotation of an

arm, or more generally a jointed beam, due to the application of loads.

The end of the beam can be described in a fixed reference coordinate

system if one knows the transformation between the coordinate systems

which are fixed to the individual segments. As seen in Fig. 4 the

point p at the end of the beam can be described by two transformations,

represented by two 4x4 matrices. The transformation A. relates

system i1, the end point before deflection, to system i-1. The trans-

formation E relates system i to system i1.

Eq 4

where: X . .- l, i-l

0

the position of the origin of system i in terms
of system i-l

transformation with no deflection

transformation due to deflection

a 3 x 1 vector whose elements are zero

location of point p in i coordinates = origin of i
in this case

* A reader consulting this paper should be aware of the fact that OC-
in that paper is defined with opposite sign convention of this paper
and later papers by Denavit and Hartenberg.

(1)J. Denavit and R. S. Hartenberg; "A Kinematic Notation for Lower-
Pair Mechanisms Based on Matrices" Journal of Applied Mechanics
June 1955 pp 215-221. ;—™



Any number of these transformations may be combined by multiplying

the transformation matrices. In terms of the reference system 0^the

end of a beam with N joints is located at X „ as is given by:

Eq 5
X H- N,o

Al El A2 * * * Ai Ei " * AN EN

We would like the variation of this position vector due to applied

forces and moments. First the elements of the E matrices must be

found. From Eq 3

Eq 6

0

cos (Xi,Xi,)

cos (Xi,Y±I)

cos (Xi,Zi,)

0

cos (Yi,X1,)

cos (Yi,Yi,)

cos (Yi,Zi,)

0

cos (Zi,Xi,)

cos (Z±,Yi,)

cos (Zi,Zi,)

For small deflections and small angles the elements of this matrix

simplify as follows:

Eq 7

1

AX

AY

0

1

cos (90

AZ cos (90 + 8V)

0

cos (90 +6 z)

1

cos (90 - 6 )

0

cos (90- 6Y)

cos (90 +6X)

1

where 9 , 8V and 0 are the angles of rotation about the X, Y and Z

axes respectively. For small angles the angles behave very nearly as

vectors, thus the order of occurance is irrelevant. Furthermore the

small angle assumption allows further simplification to



Eq 8

1

AX

AY

AZ

~ e

o

e

- e x

But these elements were expressed in terms of forces and moments

in Eq. 1. Thus E may be expressed as

Eq 9

Xii

aXFiFYii

aXFiFZii

0

1

• aeFiFZii~a6MiMYii j

where

F v--> ^V<4» ^-74- = Forces at the end of beam i, in terms of coordinateXii

system i

. , M...., M_..™ Moments at the end of beam i, in terms of coordinate

system i

Now one must determine the forces and moments on segment i which

result from the loads on the end of the beam. This is done in the

following section:

Equilibrium Forces on the Arm Segments

A free body diagram of the beam segments between coordinate system

i and system N is shown in Figure 5. Equilibrium requires:



Eq 10

where:

II - ° • Roi I

b) M± - 0

0i No

N X R. F

r.. = the vector from system i to the end of the arm in
terms of system i

F. . = the force vector acting on the beam to the left of
system i in Figure 5, expressed in system i

M.. = the moment vector acting on the beam to the left of
system i in Figure 5, expressed in system i

R.'Oi

£i*>

3x3 rotation matrix from system 0 to system i

applied force at the end of segment N, expressed in
base coordinate frame

M., = applied moment expressed in the base frame

Vectorially eq (10) may be expressed as

Eq 11
" ?il"

*li
= R0i | °

£iiX R0i i R0i
1

~%o~

M
_~No_

where r.. x R . may be represented by the matrix multiplication

r XR
ii

Oi

0

rZii

-r

-rZii

0 -r

Yii LXii

Xii

0

Oi

In the above manner we can obtain the forces on the arm segments

resulting from the loads on the end of the arm. It remains to evaluate

the deflection of the arm by using these values in conjunction with the

transformation matrices.



Arm_ Deflection with Load

Having described the position of the end of the arm (sifter loading

has been placed on the end of the arm) by the coordinate transformation,

one could subtract from this vector the vector describing the position of the arm

before loading as in equation 13. Theoretically this would be correct.

Eq 13 A X =

In practice the difference of these two vectors will be much smaller than

the vectors themselves, leading to inaccuracies when the calculation is

carried out with two few significant digits. A more practical way is to

evaluate the partial derivative of the position of the end with respect

to end point loads, for example F 7n and
AM \s

Eq 14. "SNO 8 \|"1 El A2 E2
3FXNO

Eq 14b __^0 _3 U"l El A2 EZ

'0

One will now recall the assumption that the joints remain rigid.

Because of this:

3A = 8A^ = 0 i = 1, 2, ... , N

3T 0̂

If one found that this assumption was not valid it would.be relatively

simple to evaluate these partial derivatives and include joint flexibility.
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By the chain rule

Eq 16
Al 3E1 (A2E2

XNO
3FXNO [1]

(A2 E2 ••*

Continuing this differentiation one eventually arrives at: (for example)

Eq 17a
3FXNO

N
AI EI ...A. j) E A

3F0 XNO
[r]

and similarly for the other force components, as well as for the

moments: (for example)

Eq 17b -
3MXMO

N

I A1E1

_i - 1

Then deflections are obtained as AF;o "-"NO XNO
XNO

for example

In order to proceed we must evaluate

3E and

3F *3T~" '3p 'SM" *3M
XNO YNO ZNO ĈNO TNO

To do this we take the derivative of the individual elements of

Eq. 9 as follows:
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18 _!5
3F
XNO

0

gc
 3Fxii

FXNO

«xFi 3FYii + axMi 3Mzii
% T? ^ T?
dFXNO 3FXNO

«XFi 3FZii - aXMi 3MYii
3TXNO 3FXNO

0

0

«,-•*""**'

a8Fi 3FYii + a9Mi 3MZii
3FXNO 3FXNO

/

a8Fi 3FZii - a9Mi 3MYii
3FXNO 3FXNO

0

/
s t\ '

3FXii

* 3FXNO

-()

0 i

, and MZNQ. Note that theSimilarly for FYNQ, FZNQ, MXNQ,

derivative of the rotation submatrix is antisymmetric

There is but one thing left to evaluate, that is

3 F 3F
_diii • _-llf

and 3M±i Referring to Eq. 11

3FNO

it is seen that these partial derivatives are readily evaluated

if one assumes that R and r.. x R . are essentially independent

of the loading which they are to first order. Then

Eq 19 3
3FXNO

"I-1" ^

\ -.

__Roi L-._-
•w* ir "D it?

^ii X R0i R0i

"1"
0
0
0
0

.0.



In general
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Eq 20

3FYNO ~3FZNO 3MXNO 3MYNO 3MZNO.

-t"
I
I

These values can be substituted into Equation 18 to yield the

derivative of the elastic deflection transformation matrix with

respect to the end of arm loads. It has already been pointed

out how the displacements are computed using these transformations.

The next section will show how to arrive at the rotation of the

end of the arm due to the loads.

End Point Rotations Under Loads

One would also like to know how the end of the arm rotates with

applied forces and moments, i.e., determine the elements in the 6x3

matrix CQ.

Eq 21

3F.XNO

3F,
YNO

ZNO

6XNO 9YNO 8ZNO
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Most of the work to obtain these terms has already been done. It remains

for us to recognize the result and transform it into the proper coordinates.

What we have done up to now is to take the derivative of the equation

Eq 22(a)
fc]

with respect to forces and moments applied to the arm. It was assumed in

Eqs. 4 and 5 that the force was applied at the origin of the N

ordinate system, which was also the endpoint of the arm; thus

Let us use a general nonzero X., and rewrite Eq. 22 as

co-

0.

Eq 22(b) 0 0

(VNO COS(VX0) C08(YN'V N'"IT

COS(XN,YO) COS(YN,YO) COS(ZN,YO)

cosCĴ .Zg) COS(YN,ZO) COS(ZN,ZO)

v O'NO v^i* oy

(zQ)NO coscx̂ )

which is the same as

Eq 22(c) fl B._rj-̂ ][-y
Here (XQ)«O is the vector from the origin of system 0 to the origin of

system N, expressed in system 0 coordinates, while JC^ is the vector

from the origin of system N to the point of application of the load,

expressed in N coordinates.

Now we express the vector X^ in coordinate system N1 whose axes

are parallel to the axes of system zero before loading but has the same

origin as system N. (See Fig. 6.) The components of this new vector

are found from the expression:

Eq 23

Now
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Eq 24 fcl- 1. V*

Since the 0 and N* axes after loading are nearly parallel, for small

3ZNOdeflections cos(90-6_ ) = 97Mn etc. and simplifications can be made as

follows

Eq 25

~9

ZNO

ZNO 1
-eXNO

~9YNO 9XNO

Thus to get the partial of the angles 6 above with respect to a force

or moment , say F^ one must simply multiply as follows

Eq 26

1 0 0 0

*NO 1 ~9ZNO 9YNO

YNO 9ZNO * ~6XNO

ZNO "9YNO 9XNO 1

0 3
3FXNO

[A1E1A2'"ANEN1

1 0
.T 1

For small deflections R „ evaluated before loading from only

the joint angles.

Compliance Matrix and Spring Constant Matrix

Now we are able to piece together the above derivation to reach our

original goal: a compliance matrix of the arm under force. Equations

16, 17 and 26 are evaluated (as well as the similar equations for the

other forces and moments) and one can construct the following matrix

equation.
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Eq 27a)

AX

AY

A ft VAbA

A9Y

A O 7Ao£

!IO

3X 3X 3X 3X 3X 3X

•3Y 3Y 3Y 3Y 3Y 3Y

3FX 3Fy 3FZ SMj^ 3*^ 31^

3Z 3Z 3Z 3Z 3Z 3Z

39x 36X 39X 39X 30X 39X
3 FY 3 Fv 3 F_ 3 M.. 3 Jt, 3 M_

A L. C* A I £>«

-36Y 39Y 39Y 36Y 38Y 30Y

36Z 36Z 30Z 39Z 39Z 36Z
^ 3FX 3Fy 3FZ 3MX ^ 3y

•

.

JNO

or

Eq 27b)

A0

" C NO

NO

F

NO

The subscripts on the matrices are understood to apply to each element.

Due to the nature of the problem the matrix C will be symmetric. Th«

inverse of the matrix C will be the spring constant matrix IC,n and
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Eq 28

,-1
'NO

NO

AX

A6
NO

AX

A6
NO

will be nonsingular for all physical cases. For some arm con-

figurations and parameters the inverse may require excessive accuracy,

and hence be încalculable. In this case one must eliminate one or

more of the directions from consideration to get an invertible matrix.

Linear Beam Vibrations

Up until this point we have been considering the displacements of

and loads on a static beam. If one considers a rigid mass and inertia

placed at the loading point of the beam, the forces and moments on that mass are

the negative of the forces and moments on the beam. These forces and

moments can be determined from the spring constant matrix and the

deviation of the mass from the equilibrium position. Since structural

damping is small, the natural frequency of the spring-mass system as

well as the amplitude ratios of the various modes of vibration can be

determined. Nonlinearities such as Coriolis accelerations and centr-ipital

accelerations can be neglected for angular velocities which are appropriately

small. This seems to be the case in practical arm problems with small

vibrations. The equations of.motion are then written as

0 0 0

0 0 0

Eq 29 0 0 M 0 0 0

M

0

0

0

0

0

0

M

0

0

0

0

0

0

M

0

0

0

XY

zz

dt A6
NO

A6
NO

where: M = the lumped mass at the end of the arm
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IXX' IYY>
the mass moments of inertia of the lumped

inertia at the end of the arm about axes parallel to the

reference axes but through the center of mass

, I™, !„„
1 L*

the cross moments of inertia about axes

parallel to the reference axes but through the center of mass ,

For convenience Eq 29 will be rewritten as

NO

This can be written in state variable form as

Eq 31
d

dt
AX

A8
4

AX
,

_A-_

r o i]
L-J'1 K Oj

AX

Ai
, .

AX
ft

A6

A

AX

A6
,

AX
4

/-.

The dot above AX and A6 indicate a derivative with respect to time.

The roots of the equation

Eq 32 si - A = 0

are the natural frequencies of the system. The amplitude ratios can

found as for any undamped linear system.
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Extensions - More Than One Lumped Mass

The case of the unloaded or lightly loaded arm is one in which

the dynamics of the arm vibration are not dominated by one lumped mass.

The criteria for modeling with lumped masses will not be discussed

here, but rather the use of the technique developed will be extended

to include any number of lumped masses. Figure 7 shows schematically

a model that one may be interested in.

Initially one obtains spring constants between each mass point and

its adjacent mass points. The nonequilibrium forces .on each mass depend

only on the difference in the vector positions between it and its neighbors.

Thus for the example in Figure 7, with some change in notation:

Eq 33 J± X± - K1§ ,_, (X̂ -X̂  + Ki+lj ± (Xi+1 - X±)

where X
~*1 AX "1 = position and angular orientation for mass i,

1 measured from equilibrium in base coordinates
A9 J .

K. . 1 = spring constant matrix between mass i and mass i-1

K - . = spring constant matrix between mass i and mass i+1

J, = the inertia matrix for mass i

This equation can be written for all M masses. The end masses are

special cases

Eq 34 Jj^ ̂  - -KJO

35 JM 2* ' -S,, „-! <*M-I - V
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If we assemble these into one matrix expression, its form is:

Eq 36

-1

*

x
-i

a

«

_! +K 1 ^ I 1

i i '
-i ! -i ! -i 1TIT * T fV 4 ,y Yl T IT
2 21 | 2 ^ 31 2r, 2 3l1"

< i I ; -
: • ' : . : J 'iji\.w]^lffi+i.i«i.t-i>iji\+i.i-

1 ! 1
• '» ' *

JM , M-l
* -
~JM KM, M-l

x i
-2 i

v
-i

Simplifications - Some Moments of Inertia Insignificant

One or more of the moments of inertia of a lumped mass-inertia

may be insignificant with respect to the mass and the other moments

of inertia. In this case it is desirable to reduce the number of

state variables by two by ignoring the associated angle and angular

velocity. The moments will be continuous in the beam for the axes

associated with the trivial moments of inertia. The other moments

and the forces in the beam undergo a discontinuity in our lumped mass

model due to the inertial loading. Let *K designate the spring constant

matrix of the entire arm, considering all points of loading. Its foann
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is similar to the large matrix in Eq 36, but the J terms are re-

moved . Then

Eq 37

0 M

where T£ = unknown, possibly nonzero loading

\X. = displacements or angles associated with the T elements

M_ = loading terms which will be identically zero

0_ ** angles associated with the M_ elements

Eq 39
,"_ i n
C21 ' C22

Eq 40 X_ = C

Eq 41 0_ = Q21

Eq 42
r x "]

al

Eq 43

22 C21*
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Eq 44 F = KI;L X + K12 C ̂  F

Eq 45 7 = (I - ¥12 Ĉ )"1 K^ Y

The above operations assume the inverse can be performed.

The reduced equations of motion are then:

Eq 46 M d2 JC - (I - K C )"1 K _X
9 " 21 "

dt

where M is the reduced inertia matrix obtained by eliminating the

appropriate rows and columns from the unreduced inertia matrix.

Example Problem

In order to illustrate the theory

presented above, a computer program was developed to evaluate the

compliance matrix for an example arm. The compliance matrix was

then input to an existing matrix manipulation program along with an

inertia matrix to develop the equations of motion for a simple case.

As a realistic example the arm parameters and configuration were

taken from a proposal by the Martin Marrietta Company for a boom

for the space shuttle. These are shown in Table 1. Figure 8 shows

the arm in the configuration of the example and the distribution of

the 65,000 Ib. load. These joint angles were chosen because they

realistically duplicate a position in a retrieve maneuver for which

the arm might be used. It also enables a separation of modes reducing

the number of state variables to six. This is due to the planar

motion of the mass. Figure 9 indicates the oscillations resulting

from an initial displacement of ten inches in the Y direction at the

endpoint.
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The computer program required 0.08 hours of IBM 1130 computer time

to evaluate the compliance matrix for six joint angle positions. This

includes some compilation and program listing time, and the program

could be considerably streamlined.

Rotational Compliance at a Point

As developed previously the transformation of coordinates due to

deflection is given in Eq. 8. If only rotations at a point are of

interest the form of the transformation for small angles is:

Eq 47

1 0

0 1

0 9z
0 -9

Y

0

-ez
1

e
X

0

9Y

-ex

^ _

Here 6 6 and QZ are the angles of rotation due to loading about the

X,Y, and Z axes in any coordinate system of interest.

These angles may be expressed in terms of the components of the

moments acting on the point expressed in the same coordinate system as

the angles, and a rotational joint compliance about each axis, here

denoted ajx> ajv§ and ajz

Eq 48

1 0

0 1

0

0 -

0

This matrix can represent a joint compliance. It can then be used to

evaluate overall arm compliance in a manner similar to the matrix E of

Eq 8. which represents the link compliance. Note that for joint com-

pliance due to bearing supports, etc., on the end of two adjoining links
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which change orientation with the joint angle, two point compliance matrices

are necessary to properly account for a change in orientation as follows

Eq 49

where notation is the same as for Eq. 4 with the addition of D. and

D . D is the point compliance matrix which accounts for deflection

of bearings, supports and drive at joint i which remain stationary on

the link i-1. D. accounts for compliances stationary on link i.

Flexibility and Mechanical Power Transmission

When power is transmitted to a joint from a prime mover which is

located away from the joint, the deflection of the link between the motor

and the joint will depend on the manner in which the power is transmitted.

The torque which is taken from the joint is transferred to the prime

mover in various ways and the manner in which this is done affects the

state of stress in the intervening segment. For example, a band drive

with no reduction completely removes the component of moment along the

axis of the joint and increases the compressive normal stress. A bevel

gear and shaft drive as shown in Fig. 10 with no reduction retains the

moment M_ along the joint axis but shifts the moment about the link axis

by an amount >L divided by the distance of transmission. A flexible

cable drive as shown in Fig. 11 removes joint axis moments while altering

forces mutually perpendicular to the joint and link axes and moments

along the link axis. The effects of a particular transmission system

must be determined by equilibrium considerations and possibly deflection

considerations. Once determined, the effects can be represented in a

transformation matrix which enables one to conveniently determine the

overall compliance. For example, consider the schematic in Fig. 13.

The segment of the arm from the fixed mounting to the motor M would be

described by a simple beam deflection transformation matrix E of the

form of Eq 9. The segment between the motor and gearbox would be

described by a drive deflection transformation E, such as those displayed
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in Fig. 10, 11 or 12, depending on the type of drive employed. The joint

itself will have a rotational compliance which accounts for the bearing

supports, joint shafts etc. In addition servo motor compliance (although

nonlinear), twisting of drive shafts or stretching of drive cables,

and deflections within the gearbox will manifest themselves in the joint

compliance. These are rotational compliances which manifest themselves

at a point, and should not be confused with the distributed deflection

described by E,. For Fig. 13 the complete transformation expression for

end point loads would be:

Eq 50

Design Analysis and Tradeoff Studies

Initially the simple but general case of an arm with two links and

one joint is being studied. The criterion initially considered will be:

maximize minimum resonant frequency and minimize the static deflection

while penalizing the design weight. Fig. 13 shows the general case being

studied. Even this simple case will have an unmanageable number of

variables without certain assumptions. Among the assumptions being

made are:

1) Hollow circular cross sections for all arm segments

2) Constant cross section over arm segment lengths

3) The same homogeneous material is used in all arm segments and

power transmission members. Nonhomogeneous materials such as filament

reinforced composites are excluded for the time being.

Additional assumptions will undoubtably be made as study indicates their

reasonablemess.

Among the questions being addressed are:

1) What is the most desirable location of prime mover and speed

reduction for varying sizes of prime movers?

2) What is the most desirable allocation of structural material

between the arm and power transmission members?
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3) How do these decisions depend on the penalties for natural

frequency, deflection, and weight?

4) How do these decisions depend on the relative proportions of

the arm?

5) How do these decisions depend on the mode of power transmission?

6) What is the limiting component of the design in terms of load

capacity?

The analysis will be done in nondimensional variables to allow the

broadest application and the presentation of results will be graphical

whenever possible.

Analytical Expression for the Compliance Matrix

An analytical expression for the compliance matrix of a two link,

one (compliant, revolute) joint arm has been derived. Fig. 14 displays

the case and explains the variables. Eq. 51 gives the analytical results.

This was accomplished by using the coordinate transformation

equation and its derivative with respect to force. The matrix manipulations

were carried out manually with the terms being analytic expressions

instead of numerical values which could be substituted in for a particular

case. These results should avoid numerical evaluation of the compliance

in many cases to be studied, and allow straightforward substitution of

the arm parameters into an expression for the compliance.

Future Work

Preliminary xrork has developed the controllability matrix for the

general case with joint angle position control. This has been used to

show that the example problem above is controllable using two of the

joints. Optimal control theory can now be used to determine suitable

feedback gains if one has access to the state variables. The state

variables can be partially measured and partially reconstructed using

the measured variables. Measurements might be performed via accelero-

meters, optically, or in some other fashion. In all this future work

the method developed here will make the determination of the equations

of motion for arm vibration practical, even for complicated arm con-

figurations.
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Fig 3. A transformation between coordinates.

4 . Trcins-formations between de-formed cand unde-formed

beam.
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A -free bodu diagram o-f a portion of dn an/\
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