TO: KSI/Scientific & Technical Information Division
Attention: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP and Code KSI, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.: 3,718,863

Government or Corporate Employee: JBL - Pasadena, California

Supplementary Corporate Source (if applicable): JPL - Pasadena, California

NASA Patent Case No.: NPO-11,868

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:

Yes [] No [X]

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "... with respect to an invention of"

Elizabeth A. Carter
Enclosure
Copy of Patent cited above
M-ARY LINEAR FEEDBACK SHIFT REGISTER WITH BINARY LOGIC

Inventors: James C. Fletcher, Administrator of the National Aeronautics and Space Administration with respect to an invention of; Marvin Perlman, 1100 Dempsey Ave., Granada Hills, Calif. 91344

Filed: Oct. 26, 1971

Abstract

A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producable with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tabulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers. The stages of the binary registers which are fed back depend upon the stages which are fed back through nonzero multipliers in the m-ary linear feedback shift register, utilizing sum modulo-m feedback.

11 Claims, 12 Drawing Figures
FIG. 1

CLOCK

a_{k-1} a_{k-2} a_{k-3} \ldots a_{k-r}

\begin{align*}
&\text{Cl} \\
&\text{C2} \\
&\text{Cr}
\end{align*}

+ \text{modulo } m

FIG. 2

\begin{align*}
&a_{k-1} \\
&(a_{k-2}) \\
&(a_{k-3}) \\
\text{Cl} \\
\text{C2}
\end{align*}

+ \text{modulo } 3

FIG. 4

\begin{align*}
&\text{CODER} \\
&x_{k-1} \\
&y_{k-1}
\end{align*}

\begin{align*}
&\text{CODER} \\
&x_k \\
\end{align*}

\begin{align*}
&\text{CODER} \\
&x_{k-2} \\
&y_{k-2}
\end{align*}

\begin{align*}
&\text{CODER} \\
&x_{k-3} \\
&y_{k-3}
\end{align*}

\begin{align*}
&\text{CODER} \\
&x_{k-1} \text{ (0)} \\
&x_{k-2} \text{ (0)} \\
&x_{k-3} \text{ (1)}
\end{align*}

\begin{align*}
&\text{CODER} \\
&y_{k-1} \text{ (0)} \\
&y_{k-2} \text{ (0)} \\
&y_{k-3} \text{ (0)}
\end{align*}

X

Y

MARVIN PERLMAN
INVENTOR

ATTORNEYS
<table>
<thead>
<tr>
<th>k</th>
<th>(a_{k-1})</th>
<th>(a_{k-2})</th>
<th>(a_{k-3})</th>
<th>(a_k)</th>
<th>(x_{k-1})</th>
<th>(x_{k-2})</th>
<th>(x_{k-3})</th>
<th>(y_{k-1})</th>
<th>(y_{k-2})</th>
<th>(y_{k-3})</th>
<th>(y_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>a_{k-1}</td>
<td>a_{k-2}</td>
<td>a_k</td>
<td>k</td>
<td>a_{k-1}</td>
<td>a_{k-2}</td>
<td>a_k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>33</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>34</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>35</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>36</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>37</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>38</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>39</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>40</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>41</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>42</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>43</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>44</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>45</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>47</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>48</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>49</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>50</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>51</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>52</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>53</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>54</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>55</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>56</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>57</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>58</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>59</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG. 5a

FIG. 6

<table>
<thead>
<tr>
<th>k</th>
<th>m_{k-1}</th>
<th>n_{k-1}</th>
<th>p_{k-1}</th>
<th>q_{k-1}</th>
<th>m_{k-2}</th>
<th>n_{k-2}</th>
<th>p_{k-2}</th>
<th>q_{k-2}</th>
<th>m_k</th>
<th>n_k</th>
<th>p_k</th>
<th>q_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k</td>
<td>d_{k-1}</td>
<td>d_{k-2}</td>
<td>d_k</td>
<td>x_{k-1}</td>
<td>y_{k-1}</td>
<td>z_{k-1}</td>
<td>x_{k-2}</td>
<td>y_{k-2}</td>
<td>z_{k-2}</td>
<td>x_k</td>
<td>y_k</td>
<td>z_k</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

MARVIN PERLMAN
INVENTOR.
M-ARY LINEAR FEEDBACK SHIFT REGISTER WITH BINARY LOGIC

ORIGIN OF INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 U.S.C. 2457).

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is generally directed to linear feedback shift registers and, more particularly, to improvements therein.

2. Description of the Prior Art

The availability of high speed and reliable two-state or binary devices, such as flip-flops or binary storage cores, has led to the development of presently known binary linear feedback shift registers which provide binary recurring sequences. Briefly, a binary linear feedback shift register, hereafter often referred to as a binary LFSR, comprises a plurality of stages, definable as r, and a feedback unit which performs the modulo-2 addition on selected outputs of the stages. It feeds back the modulo-2 sum to the register's input stage. When proper stages are selected for feedback the length of the resulting sequence is $2^r - 1$ and is referred to as a maximal length sequence. In the above expression $2^r = m$, which is the number of states which each stage can assume.

Mathematically the present-day binary LFSR in which $m=2$, is one type of a large class of possible LFSRs in which m is equal to an integer greater than 1, i.e., $m = 2, 3, \ldots$. The entire class can be described generally as an m-ary linear feedback shift register or r stages with modulo-m feedback. Selected ones of the r stages are fed back through separate multipliers which multiply the stages' outputs by appropriate factors of 0 through $(m - 1)$. Clearly, when $m = 2$, the m-ary linear feedback shift register is a binary LFSR. Hereafter a m-ary linear feedback shift register which will be referred to as an m-ary LFSR is one in which m is greater than 2, thereby excluding therefrom the binary LFSR case. In the m-ary LFSR when m is equal to a prime integer, by proper selection of the feedback stages and the multiplication factors, a maximal length sequence $p^r - 1$ can be generated for any p. When m is not a prime, shorter than maximal length sequences can be realized.

Whenever m is greater than 2, the resulting sequences are nonbinary recurring sequences. Such sequences have well understood properties and have wide potential use. Potential applications include ranging codes, error-detecting and error-correcting codes, counting scaling, prescribed sequence generation, memory paging, and associative memory organization.

To date nonbinary sequences have received little attention, since physical devices do not exist that are high speed and reliable and that are capable of assuming more than two states. Despite such hardware limitations the ability to generate nonbinary recurring sequences would represent a great advance in the state of the art.

OBJECTS AND SUMMARY OF THE INVENTION

It is a primary object of the present invention to provide means for generating nonbinary recurring sequences.

Another object of the present invention is to provide nonbinary recurring sequences with state-of-the-art storage devices.

A further object of the invention is to provide a m-ary linear feedback shift register for generating nonbinary recurring sequences with binary logic elements.

Still a further object of the invention is to provide a novel method of generating a nonbinary recurring sequence with binary logic elements.

These and other objects of the invention are achieved by coding in binary the state of each register stage which may assume any of m states and the feedback digit which also may be of any one of m values of a m-ary LFSR, where $m > 2$. The binary coded values provide a state or truth table used to design a plurality of parallel binary shift registers with interdependent feedback which simulate the behavior of the original m-ary LFSR. Generally the number of parallel shift registers is the number of binary bits needed for the binary representation of m. When m is the product of primes, the number of parallel binary registers is the sum of the numbers of binary digits required to represent the various primes.

The novel features of the invention are set forth with particularity in the appended claims. The invention will best be understood from the following description when read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simple block diagram of a general linear feedback shift register;

FIG. 2 is a simple block diagram of a ternary LFSR without binary logic;

FIG. 3 is a state table of the register shown in FIG. 2 and its corresponding table in a binary code;

FIG. 4 is a block diagram of a ternary LFSR with binary logic in accordance with the present invention;

FIG. 5 is a state table of a 10-ary LFSR with sum modulo-10 feedback;

FIG. 5a is a block diagram of a 10-ary LFSR without binary logic, utilizing sum modulo-10 feedback;

FIG. 6 is a table in which the entries at $k = 0$ through $k = 10$ in the table of FIG. 5 are coded in binary;

FIG. 7 is one embodiment of a 10-ary LFSR with binary logic;

FIG. 8 is a diagram useful in explaining another embodiment of a 10-ary LFSR;

FIGS. 9 and 10 recite state tables of the linear feedback shift registers 33 and 35 respectively shown in FIG. 8; and

FIG. 11 is a practical implementation of a 5-ary LFSR with binary logic, corresponding to register 35 of FIG. 8.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention may best be understood by first describing a general linear feedback shift register, in which each register stage is capable of assuming any
one of \(m \) states, defined as states 0, 1, \ldots, \(m-1 \). Such a register is shown in FIG. 1. The register 10 comprises \(r \) stages, \(a_{k-1}, \ldots, a_{k-2} \), connected through multipliers \(C_1 \ldots C_r \) to a modulo-m feedback unit 12. Each of the multipliers may multiply the output of the state supplied thereto by any value from 0 to \(m-1 \). As is known the register is clocked by clock pulses from a clock 15 to thereby cycle the LFSR through the states associated with a desired sequence. To simplify the following theoretically generated.

The stages of the register. digits are listed in the five columns from the right of the register is clocked by clock pulses from a clock 15 to thereby cycle the LFSR through the states associated with a desired sequence. To simplify the following theoretically generated.

Clearly, if \(m \) is 2 the arrangement shown in FIG. 1 is a conventional linear feedback shift register in which each register stage stores a binary value, either a 0 or a 1 and is either connected or not connected to unit 12 which is a modulo-2 unit. That is, the arrangement of FIG. 1 is a binary LFSR. If, however, \(m \) is an integer, greater than 2, the arrangement of FIG. 1 can be thought of as a \(m \)-ary linear feedback shift register or simply a \(m \)-ary LFSR, since any stage can assume any one of \(m \) states, and unit 12 is a modulo-\(m \) summer unit. Herebefore an \(m \)-ary LFSR could not be reduced to practice since to date there is no physical device which is capable of assuming any one of \(m \) states where \(m \) is greater than 2 yet be fast and reliable, as known binary devices.

The advantages of a \(m \)-ary LFSR if one could be built should be appreciated by those familiar with the art. A \(m \)-ary LFSR can provide nonbinary recurring sequences, not feasible with binary LFSRs. Also, sequences of lengths which fall between maximal length binary sequences can be generated with a \(m \)-ary LFSR. For example, with binary LFSRs of 3, 4, 5, 6, 7 and 8 stages, maximal length sequences of 7, 15, 31, 63, 127 and 255 states can be generated based on the formula \(2^m - 1 \), where \(r \) is the number of register stages. Yet, with a \(m \)-ary LFSR, in which \(m \) is a prime (\(m = p \)), maximal length sequences, falling between these values, could be generated. For example with \(m = p = 3 \), the maximal length sequence is 3\(^2 - 1 \). Thus, with registers of 2, 3, 4 and 5 stages, sequences of 8, 26, 80 and 242 states can be generated. Clearly, with different values of \(m \) and \(r \) and different feedback connections, the number of sequences which could be generated is very great. However, herebefore none of these were practical due to the 2-state limitation of practical devices.

These limitations are eliminated by the present invention which enables the simulation of a \(m \)-ary LFSR with binary devices. The basic principles of the invention may best be highlighted with a specific example. Let it be assumed that it is desired to simulate the performance of a three stage ternary LFSR, such as the one shown in FIG. 2, wherein the three stages of register 20 are designated as \(a_{k-1}, a_{k-2} \) and \(a_{k-3} \). Therein, \(a_k \) represents the feedback digit from a mod-3 unit 22. Stage \(a_{k-1} \) is connected directly to unit 22 through C1 which provides a multiplication factor of 1 and \(a_{k-2} \) is connected through C3 which provides a multiplication factor of 2. Stage \(a_{k-3} \) of register 20 is not fed back to unit 22. Theoretically it can be thought of as being connected to unit 22 through a multiplier C2 (not shown) with a multiplication factor of zero.

The ternary linear recurrence relation can be expressed as:

\[
a_k = a_{k-1} + 2a_{k-2} \mod 3.
\]

The theoretical state table for such a ternary LFSR is charted in the first five columns from the left in FIG. 3. It is thus seen that for an initial state at 002 at time \(k = 0 \), a maximal length sequence of 26 \((0-25)\) can be theoretically generated.

In accordance with the present invention the state of each register stage and the feedback digit \(a_k \) are coded in binary for each time \(k = 0 \) through \(k = 25 \). Since \(m = 3 \) a 2-bit code is needed. The coded states and feedback digits are listed in the five columns from the right of FIG. 3. The entries under \(x_{k-1} \) and \(y_{k-1} \) represent the binary digits of the entries under \(a_{k-1}, a_{k-2} \) and \(y_{k-2} \) for the \(a_{k-3} \) entries, \(x_{k-3} \) and \(y_{k-3} \) for the \(a_{k-3} \) entries and \(y_{k-2} \) for the \(a_k \) entries. Therein the \(x \)'s entries represent the higher order digits and the \(y \)'s entries the lower order digits of the binary representation.

In accordance with the present invention two parallel 3-bit binary shift registers \(X \) and \(Y \) are provided as shown in FIG. 4. The stages of register \(X \) are designated \(x_{k-1}, x_{k-2} \) and \(x_{k-3} \) while those of register \(Y \) are designated \(y_{k-1}, y_{k-2} \) and \(y_{k-3} \). The outputs of stages of the two registers, which correspond to stages of register 20 which are connected to unit 22 through multipliers with nonzero factors, i.e., through nonzero multipliers, are supplied to a feedback logic unit 25. The outputs of unit 25 are the feedbacks \(x_k \) and \(y_k \) to registers \(X \) and \(Y \), respectively. Since in register 20 only stages \(a_{k-1} \) and \(a_{k-2} \) are fed back through nonzero multiplication factors, only stages \(x_{k-2} \) and \(x_{k-3} \) of register \(X \) and stages \(y_{k-2} \) and \(y_{k-3} \) of register \(Y \) are fed back to unit 25.

It is thus seen that \(x_k \) and \(y_k \) are functions of only four of the six stages of the two registers. They are provided by the logic unit 25 as a function of the combined states of these four stages, i.e., \(x_{k-2}, x_{k-3}, y_{k-2}, \) and \(y_{k-3} \). For example, \(x_k \) is made a 1 only when the combined states of these four stages are in any one of 9 combinations at times \(k = 4, 7, 13, 14, 15, 18, 19, 21, \) and 23 and is 0 in all the others. Similarly, \(y_k \) is a 1 only for given combinations of these four stages and is 0 for all others. It should be apparent to logic designers that \(x_k \) and \(y_k \) can be generated by considering each of the 26 combinations of the states of \(x_{k-1}, x_{k-2}, y_{k-2}, \) and \(y_{k-3} \) separately. Preferably however, the states can be plotted on a Karnaugh chart or map to simplify the logic implementation.

It should be appreciated that the binary values of \(x_k \) and \(y_k \) can be recoded by a coder 26 to generate the nonbinary recurring sequence \(a_k \), while the outputs of corresponding stages of the two registers, such as \(x_{k-1} \) and \(y_{k-1}, x_{k-2} \) and \(y_{k-2} \) and \(x_{k-3} \) and \(y_{k-3} \) can be recoded separately by coders 27, 28 and 29 to provide the nonbinary values of \(a_{k-1}, a_{k-2} \) and \(a_{k-3} \).

It is thus seen that the arrangement, shown in FIG. 4, truly generates the sequence which would have been generated by the ternary LFSR, shown in FIG. 2, except that herein it is generated with two binary registers and with interconnected binary logic feedback. Therefore the arrangement shown in FIG. 4 can be thought of as a ternary LFSR with binary logic.

It should be appreciated that the invention is not limited to the single arrangement shown in FIG. 4. It is applicable to the simulation of any \(m \)-ary LFSR. Based
on the desired sequence the state table for the m-ary
LFSR is charted. Then it is coded in binary to deter-
mine successive stages associated with the sequence as
well as the feedback digits which are then generated by
a feedback logic control unit, designed to provide the
proper feedback to each of the registers.

Mathematically it can be shown that when m is a
product of two or more distinct primes, i.e., p,p_2, etc.,
the selected recurrence relation for m can be decom-
piled into separate p recurrence relations which can be
treated separately. For example, for m = 10, a 10-
ary LFSR can be implemented with four parallel binary
registers, since 2^4 < 10 < 2^5, and with a single intercon-
ected feedback unit with four feedback outputs, in a
manner analogous to that of FIG. 4. However, since 10
= 2 x 5, the same sequence can be derived with one 2-
ary LFSR, i.e., a simple binary LFSR and with one 5-
ary LFSR with binary logic, consisting of three parallel
registers (2^3 < 5 < 2^4) with interconnected feedback.
The latter arrangement may in some instances be be-
nefficient to simplify the complexity of the feedback
logic.

These aspects may further be explained with specific
examples. Assuming a cycle structure or nonbinary recur-
rence relation or sequence a_k = a_k-1 + a_k-2 mod-10
and an initial state of 19, i.e., a_1 = 1, a_2 = 9, it is clear
that a state table can be provided therefore as shown in
FIG. 5. Theoretically this nonbinary recurrence rela-
tion can be generated by a 10-ary LFSR 30 as shown in
FIG. 5a wherein A represents a two-stage register, each
stage capable of assuming any of 10 states. Each of the
sequences is connected directly (multiplication factor of 1)
to a feedback modulo-10 summer 31.

The analogous sequence can be generated by coding
each state and each feedback digit in binary, as
represented in FIG. 6 shown only for k = 0 through k =
10. Each state is coded into a four-bit binary representa-
tion mn-pq. Four registers m, n, p and q are em-
developed as shown in FIG. 7 with a feedback unit 32
which provides m, n, p and q feedbacks to the four
registers, to generate the binary coded sequence. Since
in the theoretical 10-ary LFSR 30, shown in FIG. 5a,
each of the stages of register A is fed back through a
nonzero multiplier to the modulo-10 summer 31, each
of the stages of each of registers M, N, P and Q is fed
back to unit 32. It is clear that unit 32 provides the
feedbacks as a function of eight Boolean or state-vari-
ables.

This arrangement can be simplified by generating a
cycle structure b_k = b_k-1 + b_k-2 mod-2 and a cycle struc-
ture d_k = d_k-1 + d_k-2 mod-5 with an arrangement as shown in
FIG. 8. The binary cycle structure is provided by a
binary LFSR 33, consisting of a B register and a modu-
o-2 summer 34 and the cycle structure d_k = d_k-1 + d_k-2
mod-5 is theoretically provided by a 5-ary LFSR 35.
The latter consists of a two stage register D, each stage
capable of assuming any of 5 states and a modulo-5
summer 36. Since in the theoretically 10-ary LFSR of
FIG. 5a each of the stages of register A are connected
to the modulo-10 summer, each of the two states of
each of registers B and D is connected to its associated
summer. Each digit of the initial state 19 of register A is
reduced modulo-2 to provide an initial state 11 for re-
gister B and is reduced modulo-5 to provide an initial
state of 14 for register D.

The resulting truth table of the binary cycle of the bi-
ary LFSR 33 is shown in FIG. 9 and the state table of
the 5-ary LFSR 35 with its corresponding binary coded
states and feedback digits are shown in FIG. 10. The 5-
ary LFSR 35 is implemented with binary registers X, Y
and Z as shown in FIG. 11, and with a feedback unit 38
which provides only three feedbacks x, y, z as shown as
a function of only 6 states or values (of registers X, Y
and Z). Thus, it is simpler than unit 32 of FIG. 7, which pro-
vides four outputs as a function of eight state-variables.

Attention is again directed to FIG. 5. The entries
under a_k represent 60 steps or states of the infinite
sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... known as
the Fibonacci sequence, reduced modulo-10. Accord-
ing to the present invention, these states of the
Fibonacci sequence may be generated by either the
embodiment shown in FIG. 7 or by the 5-ary LFSR with
binary logic, shown in FIG. 11, together with the binary
LFSR 33 shown in FIG. 8. In either embodiment the
feedback digits can be recoded into decimal digits to
provide the various states of the Fibonacci sequence.

As is known the Fibonacci sequence has many useful
properties. Among some of its applications are random
number generation and sort merge strategy for data by
means of a general, purpose digital computer. Thus the
present invention provides means for generating a sig-
ificant number of states in the Fibonacci sequence
with binary logic elements.

Summarizing the foregoing description in ac-
cordance with the present invention, m-ary LFSRs with
binary logic elements are provided to generate nonbi-
nary recurring sequences. Based on the desired nonbi-
nary recurring sequence which is theoretically
producible by a register of r stages, each capable of as-
suming any of m states, with feedback of selected
stages through nonzero multipliers which are modulo-
m added to provide a feedback digit to the register, the
sequence's state table is produced. Each state therein
and the feedback digit are coded in binary to provide a
corresponding binary-coded sequence. A plurality of
binary registers, equal in number to or greater than
log_m, each with r binary stages are employed. The
states of corresponding stages of all the registers are
supplied to a single feedback logic unit which provides
a binary feedback digit to each of the registers. The
combination of states of the registers cycles through a
sequence of binary states which corresponds to the
states associated with the nonbinary recurring
sequence. The novel combination with a plurality of re-
gisters may also be thought of as a combination of
equal length binary shift registers, with a feedback logic
unit which provides a separate feedback binary digit to
each register which is a function of the states of cor-
responding stages of all the registers.

The invention may further be summarized by ex-
pressing a nonbinary recurring sequence as

\[a_k = \sum_{i=1}^{r} c_i a_{k-i} \mod m \]

Such a sequence can be generated theoretically by a
m-ary LFSR without binary logic. Therein r represents
the number of stages of the register. Each stage a_k is
capable of assuming any of m states. a_k is the modulo m
of the states of the stages which are fed back through nonzero multipliers c_k. In accordance with the present invention such a sequence is practically implementable by a m-ary LFSR with binary logic. Such an arrangement includes W registers ($W \geq \log_p m$), each of r binary stages, and a single feedback logic unit. The latter is supplied with corresponding stages of the W registers which correspond to the a_{k-1} stages with nonzero multipliers in the theoretical m-ary LFSR without binary logic utilizing sum modulo-m feedback. The single feedback logic unit provides a feedback binary digit to each of the W registers, with all the feedback bits representing a_k in binary, which can be coded into an m-ary representation or code.

Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art and consequently it is intended that the claims be interpreted to cover such modifications and equivalents.

What is claimed is:

1. A binary logic arrangement comprising:
 a plurality of binary shift registers, each of r binary stages; and
 feedback means coupled to corresponding stages of all of said registers for providing a separate feedback binary digit to each register as a function of the states of the stages coupled to said feedback means.

2. A binary logic arrangement as recited in claim 1 wherein each register stage is settable in a selected initial binary state, and means for clocking said registers' stages to provide a binary sequence corresponding to a selected nonbinary recurring sequence.

3. A binary logic arrangement as recited in claim 2 wherein the number of registers is definable as W, $W \geq \log_p p$, wherein p is a distinct prime, greater than 2.

4. A binary logic arrangement as recited in claim 3 wherein the stages of said W registers are settable to selected initial binary states whereby the length of the sequence provided by said arrangement is p^r-1.

5. A binary logic arrangement as recited in claim 2 wherein the number of registers is definable as W, $W \geq \log_p m$, wherein m is an integer greater than 2.

6. A m-ary linear feedback shift register for providing a recurring sequence, which is analogous to a nonbinary recurring sequence, in binary representation, wherein m is an integer greater than 2, comprising:
 a plurality of binary shift registers, each of r stages, with corresponding stages in said registers settable to initial binary states which are functions of the initial states of said nonbinary recurring sequence; feedback means coupled to selected stages of said registers, with corresponding stages of said registers being coupled to said feedback means for providing a separate feedback binary digit to each of said registers as a function of the states of the stages connected thereto; and
 means for selecting stages whereby each register stage is selected in a selected nonbinary recurring sequence, modulo-m.

7. The arrangement as recited in claim 6 wherein said nonbinary recurring sequence is definable as
 $$a_k = \sum_{i=1}^{r} c_i a_{k-i} \mod m$$
 a_k being the sum modulo m of the states of a register, definable as A, of r stages, which are summed modulo-m through nonzero multipliers c_i, each stage of register A being capable of assuming any of m states and the feedback binary digits provided by said feedback means representing a_k in binary.

8. The arrangement as recited in claim 7 wherein the number of said binary registers is W, $W \geq \log_p m$, and said feedback means is coupled to corresponding stages of said W registers which correspond to stages a_{k-1} connected through nonzero multipliers for the modulo-m summation.

9. The arrangement as recited in claim 6 wherein $m = p$, p being a prime integer and the nonbinary recurring sequence is definable as
 $$a_k = \sum_{i=1}^{r} c_i a_{k-i} \mod p$$
 a_k representing the feedback digit from a feedback unit which provides the sum modulo-p of the states of a register definable as A of r stages, connected to the feedback unit through r multipliers, selected ones of said multipliers providing nonzero multiplication factors, each stage of the A register being capable of assuming any of p states, and a_k being fed back as the input to said register, with the feedback binary digits from said feedback means representing a_k in binary.

10. The arrangement as recited in claim 9 wherein the number of said binary registers is W, $W \geq \log_p p$, and said feedback means is coupled to the stages of each of said registers which correspond to the stages of said A register which are connected to the feedback unit. Providing a_k through nonzero multipliers.

11. The method of providing a binary representation of a nonbinary recurring sequence of the type provided by a m-ary linear feedback shift register comprising a register A of r stages, each stage being capable of assuming any of m states and a feedback unit which provides a feedback digit, definable as a_k, which is a function of the states of selected stages connected to the feedback unit through nonzero multipliers, the steps comprising:
 coding in binary states of said r stages and the a_k in said nonbinary recurring sequence which starts from an initial state to which the r stages of said A register are set;
 providing W binary shift registers, each of r stages, corresponding stages of said W registers being set to represent in binary the initial states of the r stages of said A register; and
 providing a feedback binary digit to each of said W registers as a function of the states of selected stages of said W registers, whereby the feedback binary digits represent a_k in binary.

...