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SURVEY OF DIGITAL FILTERING

H. Troy Nagle, Jr.

ABSTRACT

A three part survey is ﬁade of the state-of-the-art in digital
filtering. Part one presents background material including sampled-
data transformafions_and the discrete Fourier transform. Part two,
digital filter theory, gives an in-depth coverage of filter categories,
transfer function synthesis, quantization and other non-linear errors,
filter structures and computer aided design. Part three presents
hardware mechanization techniqﬁes. Implementation by general-purpose,

mini-, and special-purpose computer are presented.
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I. INTRODUCTION TO DIGITAL FILTERING

Digital Filtering may be described as the process by which input
discrete-time sequences of numbers with discrete amplltudes are trans-
formed into output discrete-time sequences of numbers with discrete
amplitudes. The transformation process (the digital filter) may be
described as a set of difference equations which may be programmed on
a general-purpose computer, or realized with specially designed devices.

The Computer Model

An example digital filter is shown in Fig. 1. The input signal
e;(t) is in analog form'anc is sampled every T seconds by an Analog-
to-Digital Converter (A/D). The input samples e; (nT), n an integer, are
in binary 2's complement formvand are supplied to the computing device,
which may be a general-purpose or special-purpose computer. The com-

puting device is programmed to calculate the filter output samples eq(nT)

which are fed to an output hold register. This register may actuelly be
considered to be part of the computing device. The cutput samples'eo(nT)
are held in the register until a new output sample is calculated‘and sup-
plied to the output hold register. The D/A converter produces an ana-
log output signal eo(t)'ﬁhose characteristic form is shown in Fig. 2.

The digital filter of Fig. 1 operates as follows: A pulse from the
digital filter control unit at t=nT instructs the A/D to calculate
e; (nT). However this sampled value of e;(t) is not available to the

computing device until time nT.-+ Ta, where Ta is the total A/D
1-1
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conversion time. Once the input sample has arrived at the computing
device, the output sample is calculated and sent to the output hold
device at t=nT+TatTc, where Tc is the computing time. Thus the output
e,(nT) is actually ey(nT+Ta+Tc). With modern technology, TatTc can be
designed to take less than lus. Hence for sampling rates of up to
200KHz(T=5us), T is much greater than Ta+Tc and hence,

e, (nT+Tat+Tc) = eo(nT).

The z-Domain Model

The digital filter of Fig. 1 has been examined and described from
a hardware or functional point of view. A mathematical model for this
filter is shown in Fig. 3 which employs the well known z-transform.
Fig. 3a demonstrates a discreteﬁlime model for the digital filter where
the switches labeled T represent impulse samplers and the block labeled

G,o(s) represents a "zero-order hold" device. Fig. 3b illustrates the
transfer function representation of the computing device itself. Fig.
3 differs from Fig. 1 in that the computing device of Fig. 1 uses the
amplitude of the input (and output) samples to calculate new output
samples eo(nt); Fig. 3 uses impulse functions weighted by the amplitude
of the input (and output) samples to calculate new output impulses
eo*(t). The impulse samples, zero-hold, and z-transform will be dis-
cussed in more detail later.
Scope of Digital Filtering
The.digital filter models presented above were for conventional one-

. dimensional processing of a single input variable. Although this con-

cept of digital filtering is most widely accepted, many other researchers
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have applied the label to more general schemes. Digital filtering in the
last few years has come to also mean optimal state estimation, discrete
qurier transformation, high speed convolution, non-linear discrete
filtering, two~dimension image processing, random and multirate sampling,
block recursion, least-mean squares filtering, quantization optimization,
computer programming, and hardware implementation. All of these topics,
and others, will be introduced in what follows. Emphasis will be, how-
ever, on the standard case of linear, one-dimensional digital filtering.
A prerequisite to understanding the theory of digital filtering is a
mathematical background in sampled-data transforms, Fourier transforms,
convolution, discrete state variables and stocastic processes. Hence,

these topics are now reviewed briefly.



II. STANDARD Z-TRANSFORM
The ﬁost common sampled-data transformation is called the standard
"z-transform. It is used to describé both the sampling process for the
digital filter input signal and the discrete transfer function of the
filter itself.

Impulse Sampling

The z¥transform is used to represent mathematically a discrete-
time system. The discrete-time intervals are produced by periodic
impulse samplers. Consider Fig. 4.. The Laplace transfer fdnction G(s)
is an analog filter; its input is a Dirac delta function. The filter
output g(t) is periodically impulse sampled every Tbseconds.. The

sampled output may be expressed as

g*(t) = g(t) I § (£-kT)
' k=0

(la)

I - g(kT) &(t—kT)

1-7
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Fig. 4. A continuous filter and sampler.



The Laplace transform of g*(t) is

L lex()] = cx(s) = T gm)eXTs
, k=0

If we define z = elS, then

G*(s) =31 g(kT)zk

s = fnz k=0

T

Equationi(lb) 1s the standard z-transform of g(t), or

6(2) & zlg(r)) & ex(s) - I samz
‘ I

Suppose that the analog transfer function G(s) is of the form

m
I
i=1 (s+aj)
G(s)=K
. n
i

371 (@)

(1b)

(2)

(3a)
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Where

-ay complex zeroes of G(s)

complex poles of G(s)

|
o
e
L]

s = ¢ + ju = Laplace variable

tal
n

Constant

n>n

If there are no repeated poles in G(s), then

n
K R (3b)
G(s) = & —K
k-l s+bk

Where Rk is the residue at pole -bk.

Since,

2 =Z -ut = a -
2l s+u ] [ ae™ut ] 1-e~uT -1

The standard z-transform of (3b) results in

G(z) =

Re
k=1

1~-e-bkT,-1 (4)

o~

A third representation of interest is found by noting that multipli-

cation of g(t) andkzo 8§ (t-kT) in the time domain corresponds to con-

® =kTs _
volution of G(s) and o & T l'rs in the frequency domain. After
convolution the result is 1-e

G*(s) = 1/2-g(0+) + 1/T &

k=-o

Gls+iku,) (5)
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where ws=2n/T. Hence it is apparent that G*(s) is.periodic in w, the
sampling frequency. It is required that G(jw) = 0 for | w I > Wg/2 as

shown in fig. 5 so that the fréquency content of G(jw) will be preserved
in the primary strip of G*(jw). If this relationship is preserved the
envelope of G(jw) can be recovered from G*(jw). This phenomenon is
known as frequency aliasing.

The standard z-transform discussed above is best known of the
sampled-data transforms. The theorems and tables of z-transforms can be

found in any standard sampled-data text [1].
Hold Devices:

In the previous section we have seen the sampling process used to
determine values of an input signal at discrete time intervals. The
inverse process of data reconstruction from these sampled signals is
accqmplished by hold devices. Consider the problem of reconstructing the
signal g(t) given samples spaced T seconds apart. If we expand g(t)

in a Taylor's series

g(t) = g(@T) + g' @I (e-nD) + E0D  (eumy2 4 | )

for nT < t <t-nT ,

where g'(t) = dg(t)
’ dt L ]

The derivatives may.be approximated by

g'(@) = 3 (g(al) - g(aT-1)
)

g'"(nT)

"
= =

(g'-(nT) - g'(nT-T)) s ‘etc.
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v

1f equation (6) is truncated to just one term, this reconstruction is
called a zero-order hold; if the first derivative is included, a first-

order hold; etc.

Zero-Order Hold (1]

The zero-order hold device in the mathematical model of Fig. 3
accepts an impulse modulated input eo*(t) and produces an output egy(t)

as shown in Fig. 2. The input ey*(t) may be expressed as

e *(t) = ; eo(kT) §(t~kT).
k=0

Its Laplace transform is

E *(s) =E (2) = I e (kT)z"¥
o o] ﬁ?o o . *

The output (see Fig. 2) may be written

eo(t) ='°Z° e, (kT) [u(t-kT)~u(t-kT-T) ] . (8
' k=0 4

Its Laplace transform is

(- -]

E(s) = I e (¢)[eTXT® - ekT8,~Tsy

k=0 s s
[+ -]
= - kT -
L e (kT)e 18 (l-e TS}
k=0 8

Eo(z) (l:glzfg *
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The transfer function of the zero-order hold device is

-Ts
Gy (e) = 2ol 1e | 9)

Eo*ﬁf)

The frequency domain characteristics of Gho(s) are shown in Fig. 6.

Suppose that the sampling interval T is chosen very small. Then,

e T8 1-Ts +0(T2)

£ 1-Ts
Then,

G (s) 3 1UTe) o ' (10)
ho ™" s
This result is verified by noting in Fig.6 that, for w<<w§/2 (or

T small), the magnitude function approaches T; also, the zero-order
hold introduces phaze lag which is linear with frequency into the

system.

Discrete Transfer Functions [ 1 ]

In the mathematical model of Fig. 3, the transfer function of the
computing device 1s shown as

Eq(2) EO*(S) )
3 = z),

Ej(z) Ey*(s)

From Fig. 3

E, (s) = Ej*(8)G(s).
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Fig. 6. Gain and phase characteristics
of a zero-order hold.
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Hence,

eo*(t) . [t ei(kT)g(t-kT)] on s(e-3T) .
k=c =

In this expression g{t-kT) may be replaced with g(jT-kT) due to the
Dirac delta function. Next, let £=j-k and replace the summation

index j with £ as follows:

o -
e*(t) = I e (KI) g(iT) 38(t-RT-KT).
2=-% im0

Since g(y) = 0 for y<0, the -k may be replaced by zero. The Laplace

transform of eo*(t) is

~kTs -2Ts

Eo*(s) = [}ioei(kT)e |
= E4*(8) G*(s).

I £ g(aTe ]
L=0

Hence, the descrete-time transfer function of the computing device in

Fig. 3 is indeed

Eo*(8) .
CEee T v

Difference Equations [4]

The discrete transfer function of equation (11) is, in general,

the ratio of two polynomials in z"l’

-1 _
80+a12 +...+anz n= Iio(z)

G(2) = (12)

-1 -n

where the coefficients ay and bj are real numbers (can be zero). An

equivalent expression for (12) is the equation
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Eo(z) = aoEi(z) + a z'lEi (z) + . . .+ anz‘nEi (z)

-byz I (2)~ . .~b 27PE (2).

The infinite series for the z-transforms Eo(z) and Ei(z) is now
substituted into the above equation and the coefficients of like

powers of z1 are equated, yielding

T = - - .’.+ hand - - -...
eo(k ) a}?i(yT)+%_ei(kT )4 anei(kT aT) bleo(kT T)

-bneo(kT—nT). (13)

Note that z~1 = ¢-Ts which represent a time delay of T second. Equation
(13) may be programmed in the corputing device of Fig. 1;the variable
e4(kT) is furnished by the A/D converter; delayed values of the input
ei(kT-nT) and'delayed values of the output variable e, (kT-nT) are
stored in the computing device.

Equation (13) defines a programming scheme known as the direct
form. A block diagram of this form appears in Fig. 7.

Another programming scheme known as the cénonical form is determined

below. The transfer function is expressed as

Eo(z) M(z)

G(z) =
M(z)  E(2)
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e; (k)

T e

Fig. 7. Generalized block diagramlof the direct

programming form for a digital filter.
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where
E (2)
M?z) =a +a z'l+...+anz'“v
M(z) _ 1
E; (2)

1+b1z'1+...+an'n (14)

The time-domain equivalent expressions for (14) are

m(kT)= e; (kT)-bjm(KT-T)~. . .~b m(kT-nT) | (15)

ey (kT) = am(kT)+ajm(kT-T)+...+a,m(kT-nT) - (16)

Equations (15) and (16) are the difference equations to be used in
the canonical programming form. A generalized block diagram of this

form appears in Fig. 8.

Mapping Function

The standard z-transformation of an analog function in the s-plane
may be considered to be a mapping from the s-plane to the z-plane under

the rule

z = elS, (17)
See Fig. 9. The mapping illustrates that the region of stability in the
s—plane (the left half-plane) corresponds to the interior of the unit |

circle in the z-plane. 1In facfa the primary strip in the s-plane maps

onto the unit circle. All other strips also map to the unit circle
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eo(k)

ej (k)

AT P AT

Fig. 8. Generalized block diagram of the canonical

programming-form for a digital filter.
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| IR(Z)

(é) s-plane (b) z-plane

Fig. 9. s-plane to z-plane mapping.
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further illustrating the frequency aliasing problem of Fig. 5. Thus,

transfer functions which are stable in the s-plane will also be stable

after taking their standard z-transformation.

Frequency Response

The frequence response in the s-plane is evaluated by

|6(s) |

s=juw

LG(s) s=jw 0< w<uwg

This corresponds to evaluating G(s) along the contour in the s—plane of

Fig. 9a. Some upper cutoff frequence wpg is shown for illustration. In

the z-domain the contour follows the unit circle so that

z D(z) z= ejuwT 0 2wc< wg,

is used to calculate the frequency response of a discrete transfer function.

From equation (5) we see that D(z) is periodic in w_, so that in practice

s

“B = Wg /2 and the contour traverses the top half of the unit circle. Hence

db = 20 log |D(eduT)|

. (18)
¢ = (D(erT) 0< w = wg/2 .

~will be used to calculate the frequency response of a digital filter.



III. SAMPLED DATA TRANSFORMATIONS

Sampled-data transformations are the techniques one uses t6 obtain
numerical solutions to integral and differential equations. Any linear

 system's transfer function may be written as

Y(s
GS =—(—l
) = XGs)
Y(s) = Laplace transform of the output

X(s)

Laplace transform of the input.

Alternately the relationship between input and output may be described

as a differential or integral equation. Numerical methods may be

employed to solve these equations; these methods approximate the integral
and differential equations by difference equations. As we have seen pre-
:viously the difference equations may be represented by a discrete transfer

function. The complete process is illustrated in Figure 10.

Numerical Approximations

Several numerical approximation techniques will now be presented,

some for differentiation and some for integrationm.

Backward Difference

The backward difference is a simple technique which replacés the

derivative of a function by
1-23
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Sampled Data

Transformation

Laplace
Transfer
Function

G(s)

Discrete
Transfer

Function

D(z)

Integral

and Difference
Differential Equations
Equations Numerical
Approximation

Figure 10. Relation between numerical approximations
and sampled data transformations.



d y(t) = y(t) - y(t - T)

T.

dt

See Figure 11.

In the Laplace domain

Y(s) - e 3Ty (s)

sY(s) =
T

. s 1 - e—sT

T

« 1 - z“l

g = .

T

Hence,
D(z) = G(s)
1 -271
s = .
T

Example. Find a discrete approximation for

G(s) = S
s + a
Y(s) = G(s) X(s)

sY(s) + a¥(s) =.sX(s)

1-25

(19)
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x(t)

~2_.

y(uT)-y (nT-T)

nT-T nT

(a) Backward Difference
x(t)

A

‘tz"y(nT + T) - y(nT)

o - - - -
R O

=]
L

nT+T

(b) Forward Difference

Figure 11. Difference Approximations.
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or

1%; x(t) + ay(t) =-7%; x(t).
Now let

% y(t) = y(t) - ¥(t - T)
_;t_x(t)___iﬁi) -;?c(t—T) .
Therefore

y(t) - y(t - T) _x(t) - x(t - T)
T + ay{t) = T

Evaluating at t = nT yields

1
1+ Ta

y(nT) = (x(nT) - x(nT - T) + y(nT -T)) .

Employing equations (12) and (13),

D(z) = L 1-z .
_ 1+ Ta




1-28

An alternate solution‘epploys equation (19) as follows

D(z) = —=
s + a
1 - 271
s=
T
1l - z-1
= T
-1
a+ 12
T
_ 1l - z—1
aT +1 - z-1
-1
D(z) = 1 1-2 .
1+ aT
1 - 1 21
1+ aT

Forward Difference

A similar numerical technique approximates

_d s y(t+T) -y(t) .
pTa y(t) % .

See Figure 11.
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This repi:esents the equivalent Léplace domain approximation

STy () - ¥(s)

sY(s) = T T
o'r
. s esT -1
T
.2 =1
s =
T
Hence,
D(z) = G(s)
(20)
z -1

6(s) = —
s + a
S

D(z) =

(2) s + a
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D(z) = T+
z=1 .,
T
1 - z-1
D(z) =

1+ (aT - 1) z~1

Rectangular Rule

Suppose now we try some numerical approximations to integrals and

compare results.

Left Side Rule. Let us determine the numerical approximation for

y(t) = j; x(t)dt .

Assume that the upper limit of the integral is t = nT. Hence

y(nT) = IL‘T x(t)dt . ’ (21)

Figure 12a illustrates the rectangular rule using the left side of the
-rectangles, Hence

n-1
y(nT) =T &£

x(1iT)
i=o :

n n-1
y(aT+T) =T I x(iT) =T7Z x(iT) + Tx(nT)
i=o0 i=o

= y(nT) + Tx(nT)



1-31

-
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(t)
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(a) Left Side Rule

NS

x‘t)

(b) Right Side Rule

gu

tan

12. The rec

Figure
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Therefore using equations (12) and (13)

Tz~1

D(z)
l-z’;

T
z~1

Hence we have approximated the integration transfer function

i , T
s T z=1

which gives the same results as equation (20) for the forward difference.

Right Side Rule. Figure 12b illustrates the use of the right side

of the rectangle in approximating equation(21l). Therefore
n
y(aT) =T I  x(iT)
i=1

n+l A n
T = x(iT) =T ¢ x(iT) + Tx(nT + T)
i=1 i=1

y(nT + T)

y(TI) + T x(nT + T)

Letting n =n - 1

y(nT) = y(nT -~ T) + T x(nT)

Employing equations (12) and (13) one finds

T

D(z) = 1-2"1
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Hence, we have approximated the integrator

i . _T
s 1-z-1
which yields the identical result of equation (19) for the backward

difference.

. Trapezoidal Rule.

The trapezoidél rule takes the average of the left and right side

of the rectangles in Figure 12. Hence

y(nT) = %‘ "TT [x(T) + x(ET + T)]
) 1=0
. 1 n-1 n
=2 [T T x(p+7T I oxUD ]
i=o i=1

Using the results of the rectangular rule,

1 -1
D(z) =7 [ Iz T
2 T t1T
I 1+z7L
"2 1-z71

Thus we have approximated

i + z"1

i . I
s 2 1T -2z1

This approximation is the familiar bilinear z - transform.
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Simpson's Rule

Simpson's Rule evaluates equation (21) by the following formula

y(nT) =% [x(o) + 4x(T) + 2X(2T) + ... + 4x(nT - T)

+ x(nT)]

But

y(nT + 2T) = y(aT) +% [x(nT) + 4x(nT + T) + x(nT + 2T)]

Letting n = n - 2 and following equations (12) and (13) yields

D(z) =T 1+ 4771 4 272

3 1 - 274

Hence, we have approximated

Note that this formulation is valid only at even iterations (n even).

Impulse Invariance

Suppose that we want to find a discrete equivalent filter for the
Laplace transfer function G(s). Further suppose that we desire the im-
pulse response of the discrete equivalent to match that of the analog

filter as shown in Figure 13.

g(nT) = d(nT) .
Then

d(nT)z
=0

e 1 8

D(z) =
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_ t ' ' =

—_— G(s) e

t

(a) Analog Filter

d(t)

I
p(z) p—————> —-sl 'e—

(b) Digital Filter

Figure 13. Impulse Invariance
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) g(nT)z ™
i=0

]

G(z) ,

which is the standard z-transform. Hence, for impulse invariance
D(z) = Z[G(s)] = G(=2)
the digital approximation is just the standard z-transform of G(s).

Impulse Invariant Integrator

Let us find the digital equivalent of an analog integrator using

impulse invariance and the models of Figure 14. We know that

1 1
G(z) =2 [;] = 1 - z-l

and that

~-Ts
G (s8) = 1l-~ce
ho

S

=T

for small values of T. Hence

Y92 o 1
X(z) 1-2z1

and we have again approximated

_T
1 - 21

i
s
Therefore, the backward difference, the right side rectangular rule, and
the impulse invariant integrator all indicate equation (19) as their

equivalent sampled-data transformation.
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G(s}

X(8) __;_//;._.

G(z)

(a) Analbg Integrator

/,

Y(s)

(b) Digital Integrator

Figure 14.

Ghé(S)

——%Yd(s)

Impulse.invariant integrator.
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Mapping Functions Summary

As a result of our analysis of some elementary numerical approxima-

tion techniques we have identified several sampled data mapping functions.

Standard z-Transform

The standard z-transform yields an impulse invariant filter the

mapping function for this transformation is

s=11nz . (22)
T

This mapping has been previously defined in Figure 9.

Backward Difference

The backward difference approximation for the solution of differ-

ential equations provides the following mapping
s=1-z1 . (23)

See Figure 15. Note that the region of stability in the s-plane maps

1 plane. Since the region

into the right half plane z7) > 1 of the z~
of instability in the z'-1 plane is the interior of the unit circle,
stable analog filters will always result in stable digital equivalents.

In fact some unstable analog filters give stable digital ones. A major

disadvantage of this mapping is seen in the frequency response contour.
The jw axis in the s-plane does not map to the unit circle in the z_1
plane (or the z-plane either). Hence, as we get farther from s = 0 or

zA= 1 the more degraded will be our desired frequency response. Thus,



b“.

// ////
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we must decrease T (increase f) to improve this approximation.

Forward Difference

The forward difference approximation suggested the following
mapping

s =2z-1 . (24)

This mapping function is shown in Figure 16. Note that the left-half
plane in the s domain ﬁaps to the region to the left of z = 1 in the z-
plane. But the interior of the unit circle represents the stability re-
gion in the z-plane. Consequently, some stable analog filters will

give unstable digital ones. Unstable analog filters will also be un-
stable digital ones under this mapping. Yet a further disadvantage is
the same frequency contour encountered in Figure 15. Hence, this is an

undesirable mapping.

Bilinear z-Transformation

The trapezoidal integration approximation led to the sampled data
mapping

s =21 -1

21-2 . (25)
T1+z 1

This mapping is illustrated in Figure 17. Notice here that the entire

left-half s-plane maps to the interior of the unit circle in the z-

plane. Hence, all stable analog filters will result in stable digital

ones. Also, the jw axis in the s-plane maps to the unit circle in the
z-plane. However, the entire jw axis maps onto the unit circle which

causes a mismatching of frequencies. This is a direct result of the



aaaaaaaaaa
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_ 0) Re(z)
1

(b) z-plane

Figure 17. Bilinear z-transform.
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characteristic that for a digital filter

z=1-»0

=0
z = -1l -+>uw= ws/z

as required by equation (18). For the bilinear z-transform the frequen-

cies in the z-plane (wD).are related to frequencies in the s-plane (W,)

by
jupT _ s ed
v e 1 2j sin wpT
Jwa= . . = -
DT 4 3 2
2 cos wDT
2
or
-1 )
wp = 2 tan. wA (26)
T E

See Figure 18. Correction for this frequency scale warping may be accom-
plished by redesigning (prewarping) the critical frequencies of the de-
sired transfer function G(s) before applying the bilinear z-transform.
This transformation maps circles and straight lines in the s-plane
to circles in the z-plane. It works well for frequency characteristics
which are piecewise linear. It also insures that no frequency aliasing
can occﬁr in the tfansfer function ffequency charaqteristic because the
+j® axis does map in;o the upper half of the unit circle. Hence, the

‘bilinear z-transform is quite popular.
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Figure 18. Change in frequency scale for bilinear
2-transform.
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Matched z-Transforms [2]

The standard z-transform of equations (3b) and (4) required a

partial fraction expansion of G(s) in order to complete the mapping

1 = 1

s +u
e uT,-1

1 -
For the purpose of simplifying the calculations, the matched z-transform
maps the poles and zeroes (-bj and -y of equation (3a)) to the z-plane

as follows:

s+a-+1-z1e0l @7

Hence the matched z-transform of equation (3a) is

G(z) G(s)

1 - gz lemail

s + ay

s + bj =1 - z-le_bjT
-1 ~-a.
(1-2z"e a1T)

=8

=k i " (28)

-1 ~-a:T
e

Qa-z 37

n=g

| 1

where K is adjusted to give the desired gain at d.c. (z = 1). This
-transform matches the poles and zeroes in the s and z planes. Note that
the poles of this transform are identical with those of the standard z—
transform but that the zeroes are different. Because of this difference,
the matched z-transform may be used on nonbandlimited inputs. If G(s)

has no zeroes, it is sometimes necessary to multiply (1 + z'l)N, N an in-

teger, times the expression (28).
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Other Transforms

_ In general any transformation which maps the stable region of the
s-plane into the stable region of the z-plane may be used. It is help-
ful for the jw axis in the s-plane to map to the z-plane's unit circle.
Another important property is that rational functions G(s) should be
transformed into rational functions D(z) so that the proper difference

equations may be determined for realization.

Simpson's Rule

The Simpson's Rule approximation suggested that the mapping

1 - z-2 (29)

-2

S=

3
' 1+ 42-1 + z
be used as a transformation. The analysis of this mapping is left as
an exercise for the reader. Please note that a second-order function
G(s) will transform to a fourth-order D(z). This is undesirable from a

digital hardware viewpoint.

(w,v)=Transform [14]

In some applications, the system transfer function G(s,z,z%) may be

a function of s, z = eTS, and z%, where 0 < o < 1. 1If all initial con-

ditions are zero and

-1

l1-12z2
+ z=

1

v(@) =1 - a(l - z—l) +a(a = 1) (1 - z—l)z,
2
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then for a system described by
¥(s) = G(s,z,z®*) X(s)

its z-transform will be

Y(z) = G(w,z,v(a)) [ X(z) - %S%l;>1] .
If x(0) = 0, then
D(z) = G(s,z,2z%)
s =w
z% = v(a)

This completes the definition of the (w,v) transform.
Example. Scott [15] has shown that a desirable phase lock loop
has the transfer function

10
s + 10z

. 6le) = 0.5

Using the (w,v) transform to find a digital equivalent if x(0) = 0

b = 10
s + 10z ~°
s =w= 2;1 - z-l
T1+ z 1
2703 = v(0.5)

v(0.5) =1 - 0.5(1 - z‘l) + 0.5(-0.5) (1 - z‘l)2
2

= 0.375 + .75z"% - .125272

D(z) = ST 420

= =) )
T+ 1.875T) - (I - 5.625T)z I (3.125T)z % -(.625T)z



IV. DISCRETE STATE VARIABLES [5]

An nth order discrete-time system is generally described by diff-
erence equations. The difference equation description of the system
dynamics may be alternately presented in vector matrix (state variable)

form by the following set of first-order difference equations.

x(kT + T) = Ax(kT) + Bu(kT)

y(kT) = Cx(kT) + Du(kT), (30)

where x(kT), u(kT), and y(kT) are vectors of the discrete state variables,
input variables, and output variables respectively. The symbol T is the
sampling period and k is any non-negative integer.
For the purpose of simplifying the notation, the sampling period
T shall hereafter be omitted from the equation; thus, equation (30) be-
comes
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (31)

The solution of equation (30) can be found by rewriting the first

of equations (31) in standard z-transform notation:
z X(z) = AX(z) + BU(z) + zx(0),

where x(0) is a vector of the initial condition of the state variables.

Solving for X(z) produces

X(z) = (2I - &) 1zx(0) + (21 - &)71BU(2). (32)

1-48
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The inverse z-transform (Z-l) of (zI - A)_lz is
27 - m7 2] = 00 = A
Therefore, the inverse z—transfofm of (32) yields
k-1 :
x() = a%(0) + } A¥ 1 Ppyn) . (33)
‘ n=0
This solution demonstrates that the present state of the system x(k) is

dependent upon the initial state x(0) and the system inputs u(n) from

the initial time (t = 0) to the present time (t = kT).



V. CONVOLUTION

In this section a review of continuous and discrete linear systems

is presented. The equations are discussed in rapid succession.

Continuous Linear Systems

Figure 19a illustrates the conventional continuous system under

consideration. Any linear system obeys superposition and is characterized

by the impulse response g(t, £), the response at time t due to an impulse
at £. Hence

y(t) = [ x(&)glt, €)dg, (34)

=00

which is called the superposition integral. If the linear system is

shift invariant then
g(t9 g) = g(t - g)

and equation (34) becomes

yt) = [ x(E)g(t - £)de, (35)

A x(t)*g(t)

which is the convolution integral.

But, by definition of the Laplace transform

-]

Y(s) = é y(t)e Stdt .

1-50
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x(t) >+ System

(a) Continuous Systém

x(nT) >» System

(b) Discrete System

Figure 19. Convolution.

—

y(t)

y(nT)
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Taking the Laplace transform of equation (35) produces

Y(s) = G(s)X(s),

where

[~}

[ g(r)e™tae
0

it

G(s)

is called the system transfer function;

and G(jw), the frequence response of the system.

Discrete Linear Systems

Figure 19b illustrates the conventional discrete-time system under
consideration. The linear discrete system also obeys superposition and
is also characterized by the impulse response d(nT, kT), the response

at time nT due to and discrete impulse §(kT), where

§(kT) =1 if k=20
(36)
=0 ifk#0
and
x(nT) = Z x(kT)G(ﬁT - kT)
k=0
By superposition
y(oT) = ) x(kT)d(nT, kT), (37)

k=0
which is called the superposition sum. If the system is shift invariant,

then
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d(aT, kT) = d(aT - kT)

and equation (37) becomes

y(@T) = ) x(kT)d(aT - kT), (38)
k=0

A x(nT)*d (nT)

the convolution sum. But by definition of the standard z-transform

Y(z) = ) y(kT)z_k.
k=0

Taking the z-transform of equation (38) produces
Y(z) = D(z2)X(z)

which is the identical result in equation (11). Hence, D(z) is called

v the discrete system transfer function and D(eij) is called the frequency

response (see eqhation (18)).



VI. DISCRETE FOURIER TRANSOFRM

This section examines the properties of continuous Fourier trans-

forms and derives the discrete approximation.

Continuous Fourier Transform

The Fourier transformation may be defined by

G(f) = [ g(t)e I2rftye (39)

-0
and the inverse Fourier transform as

g(t) = [ G(f)ed? s | (40)

The similarity between equations (39) and (40) is illustrated by the
summary of Fourier transform pairs listed in Table 1.

Another useful property of Fourier transforms is shown below:

o« 2 0
[ e at = [ le®)|? at. (41)

-C0 - 00

This is known as the Fourier Integral Energy Theorem.

Discrete Fourier Transform [6]

Sampling Process

In Figure 4, an impulse sampler was presented which sampled a
signal for t > 0. However, if the signal is zero for negative t, the

following sampling function produces the same effect:
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TABLE 1. Fourier Transform Pairs

" Time Function

Fourier Transform

g(t) G(£)
§(t) 1
1 6(t)
A A sinmAf
t+>) - u( -= A——=
nle + ) —ule =) TAf
asinmAt u(f +8) - u@e - 4
TAt 2 2

§(t + %) - 8(t '_-.%)
2 cosTAt
La(0)
ijntg(c)
.

[ g(x)dx
0

g(At)

Ag; (t) + Bgy(t)
g(t + A)

eZTTAtg(t)

g(t)*x(t)

g (t)x(t)

] 8(t - kT)
k=-.co

2 costmAf

A - A
S(E +2) + 8(F - )

j2mEG(£)

d
3£ ¢(H)

G(f)
j2nf

1 g
A A

AG{ (£) + BG,(f)
ej2anG(f)
G(f + jA)
G(E)X(f)

G(f) *X(f)
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ACt) = ) 8(t - KI). (42)
k==

From Table 1 the Fourier transform of'A(t) is
1 ¢ k
F[A(E)] == ) 8(f - ).
Tk:-oo T

In order to verify this result we may note that F[A(t)] is periodic and

may be expressed in a Fourier Series as

©o

Fla(e)] = [ ¢

n==—w

-j2nnTf
e

where

]ej2nandf

[p]
1]
L]
S

F{a(t)

(2]

"
=]
—
3=
[= N
rh
1
'—l

Hence

o

Fla(t)] = ]

n==—w

-j2mnTf
e

as expected from equation (42).
Suppose the sampling function in equation (42) is multiplied by

an input signal g(t) to produce the sampled signal
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g(t)Aa(t)

g*(t)

) g(kT)s(t - kT).
k==

As illustrated in Figure 5, if B/2m, the highest frequency in the
sampled signal is less than fs/2, then recovery of the original signal
is possible with an ideal low-pass filter whose cutoff is fgs. To

recover the signal, g,.(t) we multiply G*(f) by a square window function

Eﬁp(f)'
G (£) = G¥(£)Fg, (£) (43)

Since multiplication of Fourier transforms represents convolution in the

time domain

g*(t)* sin(nt/T)

g.(t) = /T
_ o sin(nt/T)
—-Lz_m BUDS( - kT)] * [————nm ]
® . sinl(t - k |
g (t) = ] gkI) Sﬂnf(t D (44)
k=—o F(t = kT)

If fS > B/m, the low pass filter is 1deal, and the samples g(kT) are

exact, then

gr(t) = g(t) .
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However, the samples are never exact, no signal is ever bandlimited, and
no low-pass filter is ideal. Therefore, we can't exactly recover a
sampled signal.

DFT Derivation

Now discrete versions for (39) and (40) will be determined. Define

the following conditions for (39):

fs = sampling frequency

T = 1/f, = sampling interval

g(t) = 0 outside the interval t = [0,NT]

N = an integer, the number of sample points

G(f) is bandlimited to i;fS/Z.

Please note that these conditions can never be completely satisfied.
With the time-limited function g(t), G(f) cannot be bandlimited. In
practice it can get quite small as'|f| increases. However, sincg a
function is never time and bandlimited, the time and frequency samples
are corrupted by aliasing.
Using the above conditions in equation (39) one obtains
G(f) = fNTg(c)e'jZ“ftdt :
0
Using the rectangular rule for numerical integration
N-1

G(f) =T § g(kt) e I2MEKT (45)
k=0
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The discrete'version of equation (39) will compute samplés of G(f)
every Af = fg/N = 1/NT Hertz. Substituting f = nAf into equation (45)
N-1

G(nAf) = T } g(kT)e
- k=0

=j2mnAfkT

or

N-1 .
G/NT) =T J g(kT)e d (27/NM)nk
k=0

In another form
N-1

G(/NT) = T ] g(kT)w ™K | (46)
k=0 :

where

W= ej21T/N

Since g(t) = 0 outside the interval O<t<NT, one can construct

a periodic function h(t) from g(t), with. period NT:

[--}

h(e) = ] g(t - mNT), (47)

m=—oo

which may be written

-]

t
f g(t) Z §(t - mNT - t)dt
0

m==oo

h(t)

©

g(t)* )  s(t - mNT)

==~ CO
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where the * denotes convolution. Since G(f) is bandlimited to £5/2,

so is H(f). Therefore,

G(f)[1/NT ] &(f - m/NT)]

H(E) =
m==-o
=71 Ei%éﬂil 1 6(f - m/NT),
m==c 4 :
and
H(f) = )} H (@/NT)6(f - m/NT) , (48)
m=—co )

where H(f) is the continuous Fourier transform of h(t). The weighting

function H"(m/NT) in equation (48) is defined below:
H"(m/NT) = (1/NT)G(m/NT) . (49)

Equation (46) may be inserted in (49),

N-1

H @/NT) = (1/N) | g(kr) w oK (50)
k=0
From (47),
g(kT) = h(kT): k=0, N-1.
~ Therefore (50) becomes
N-1
H (@/NT) = (1/N) J h(kT) Wk (51)

k=0
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IDFT Derivation

The inverse discrete Fourier transform is found by considering

equation (40)

=]

h(t) = [ H(f)edI2TEtys,

-—C0

Under the conditions of the previous section

“1/2T . :
h(t) = { u(e) eJ2mitys (52)
-1/2T | ‘

since H(f) is bandlimited to fs/2 = 1/2T.

Substituting equation (48) into (52) and evaluating at t = kT,

1/2T o
/ ) H,(m/NT)ejankT

-1/2T m=-o

h(kT) = §(f - m/NT)df

Since the integrand is periodic (1/T) in £,

/T o
heery = /7 we@/ryed GV onynmyat
' 0 m=-o

The limits of‘integration truncate the sum to
N-1 . ' ,
hGT) = B (o/ND)WE. | (53)
m=0
The prime is dropped in equations (51) and (53) for convenience, and the

resulting relations are
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DFT
N-1
H(m/NT) = (1/N) [ hknw ok
k=0
IDFT
N-1
h(kT) = §  H@/NDWK
n=0

These equations define the discrete Fourier transform pair.

(54)

(55)

This

" transform may be thought of as a mapping of N points in the time domain

to N points in the frequency domain.

DFT Pairs

Although equations (54) and (55) are discrete approximations of

(39) and (40), we can show that they form exact transform pairs.

From equation (54),

(56)

where H and h are vectors constructed of the N samples in the frequency

and time domains, and

1 1 C e 1

1 wl L. w2 (8-1)
W] = . .

1w @®D - (-1)2

From equation (55)

h = [W*] H

(57)

(58)
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where [W*] is the'complex'éonjhgate of [W]; In order to prove that the

transform pairs are exact one must show that
=1 _ 1 st .
W] = = = [W*] . . (59)
. N i .
This proof follows:
Let
[P] = [W][W*]

then a general element of [P] is '
1
W (m"l)

_ g o-@-1) -(N-1) (£-1)
Ppn = [1W e W ]

w(8-1) (@-1)

- -d

W (N-1) (£-m)

=1+ W—(ﬂ-m) + .

Then all diagonal elements of [P]
Ppp=1l+1+...4+1=N
and the off diagonal elements

1 - ed
Tt o oY

Hence

[P} = N[I]

and the exact relationship is proved.
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A summary of DFT pairs is listed in Table 2. Several other

interesting relations are displayed below:

N-1
h(0) = )} H(m/NT) (60)
m=0
N-1
H() = (1/N) ]} h(kT) (61)
k=0 '
and
N-1 -
% I han|2= J  |H@nND |2 (62)
k=0 m=0

This last relation is known as Parseval's Theorem.

Fast Fourier Transform

Calculation Time

The fast Fourier transform (FFT) is a high speed technique for

calculating the bFT. If the number of samples N may be written
N = ryrp...r, , rj an integer

then
(W] = [0 1[W,]" "~ [W,] - (63)

where [Wi] is an N x N matrix with only r;N non-zero elements. The

calculation of

1
H=5 [Wlh
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TABLE 2. DFT Pairs

h(kT) : H(m/NT)

Ahj (KT) + Bhy(KT) - AH(m/NT) + BH(m/NT)
h(kT - nT) | W (m/NT)
hy (kT)hy (KT) H, (m/NT) *H, (m/NT)
h*(kT) H* (-m/NT)
h(-kT) H(-m/NT)
6 (kT) - 1/N
S(KT - nT) (1/N)wmn
1 Nil hy (€ + k)hy(£) | H, (m/NT)H, (-m/NT)
N 2=0 E - »
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requires N2 operations of complex multiplication, whereas
—— 1 LN
SRS USICACRIUR DY (64)
r,N operations

requires (r; + ra + +-+ + r,) N operations. For the special case r; = 2,

N = 2B, the total number of operations is

ffoper (2+2+ *°* 4+ 2)N

= 2nN

Example. Compare the time to calculate the DFT and FFT of a sequence
of 1024 samples of a time function given that a typical computer cal-

culates a complex multiplication in about 40us

DFT:

Calc. Time = N2(40us)
= 1.053 x 10°% x 40 x 1076
= 42.1 seconds

FFT:

Calc. Time =

2Nlog2N(4Ous)
= (2048) (10) (40 x 10~6)

= ,82 seconds
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FFT Derivation

Since the DFT is a linear operation and N = Zn, we may break equation
(54) into two functions, the even samples and the odd ones:

(N/2)-1

H(w/NT) = % T [hT)w 28k 4 p okt +Tyw 20y
k=0
(N/2)-1 -m (N/2)-1
=1 Y hermw?m 4 B Y hekr + T2k
¥ k=0 N k=0
or

H(m/NT) = DFT[h(2kT)] + W DFT[h(2kT + T)] (66)

form=0, § - 1. But

=4

-t _m

X N

W 2 =W 2=-W
-2(m + x -2m_~N -2m

w2+ 2) _yimyN i

Therefore, the remaining samples may be determined by -

(N/2)-1 _

H@/NT + 1/2T) =X §  heknyw 2™

N k=0

-m (N/2)-1 o
- F Y Thkt + D2
N k=0
or

H(m/NT + 1/2T) = DFT[h(2kT)] - W "DFT[h(2kT + T)] (67)
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for m = 0, g'— 1. The above equations may be successively applied in
order to achieve the maximum reduction in computation time indicated
by equation (65). The technique of dividing the time samples into
even and odd parts is sometimes called "decimation in time." The FFT
of eight-points is illustrated in Figure 20.

Note that the time samples are entered in "bit reverse' order:

bit
binary reversal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

IFFT Derivation

Since the IDFT is a linear operation and N = 2B, we may separate

equation (55) into two functions, the even samples and the odd ones:

h(kT) = (lez-l [HQo/NTW + H(2m + 1/NT)W2ORWE]
n=
= (N/f)_lu(zm/unwz"‘k +.wk (N/f)-ln(‘zm + 1/NT)w?ek
m=0 m=0
or
h(kT) = IDFT[H(2m/NT)] + WkIDF'I‘[H(Zm + 1/NT)], {68)
for k = 0, g- 1. But
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N 4
w2k +2) o g2l o g2k

Therefore the remaining samples may be calculated by

NT (N/2)-1 4 (N/2)-1
hT + ) = ] HEo/NDWEK - wk ) HEn + /8D
m=0 - m=0
or
NT k
h(kT + j;) = IDFT[H(2m/NT)] - W IDFT[H(2m + 1/NT)] (69)
for k = 0,-% - 1. The repetition of this process yields the algorithm

for the IFFT. The above derivation is sometimes called "decimation in
frequency."

Equations (66) through (69) suggest an algorithm for calculating
the IFFT as shown in Figure 21. In this figure the equations (68)
and (69) are employed at each stage of the transformation of eight
frequency samples into eight time samples. Note that the frequency
samples are again inserted in "bit reverals' order.

The reader will please note the similarity of the Figures 20 and
21. The basic element is sometimes called a "butterfly" as shown in
Figure 22. The gains on a few multipliers are different. This structure

suggests the mechgnication of FFT hardware.
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VII. RANDOM PROCESSES

In the analysis and synthesis of digital filters one frequently
encounters signals which are random in nature that must be examined

with special techniques.

Continuous Processes [6]

If G(f) is the Fourier transform of a continuous signal g(t), the

power density function or power spectrum may be defined as

- 1 2
Vo () = lim {3 G(£)|“ } .

Ao

The auto correlation function

1 A -
(t) = lim 2 f g(t)g(t + 1)dt.

1
- Veg ao A0

These two functions form a Fourier transform pair

ng(f) = -i wgg(r) ejZ"der

Both the power spectrum and the auto correlation function are real and

symmetric.

Discrete Processes [16]

For the discrete case, the cross-correlation function is first

defined

1-73
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N-1
Y. (kT) = 1im %- ) y(@T)x(nT + kT)
Xy N-+o n=0

When both functions are the same (x = y), the cross-correlation becomes
the auto-correlation
' 1 N-1
wxx(kT) = lim § Z x(nT)x(nT + kT).
Noroo n=0

The auto-correlation function evaluated at k = 0 yields

1 N1,
Vg (0) = lim & Z x”(nT)
N> n=0
= x2 (kT)

the mean squared value of the signal x(kT).
Since the power spectrum is the Fourier transform of the auto-

correlation,we see from Table 2 that
‘l’xx(m/N‘T) = X(m/NT)X(-m/NT)

if the signal x(kT) is time limited in the interval [0, NT]. Therefore
¥ _ (@/NT) = |X(m/NT) | 2.

The Fourier transform of the discrete cross—correlation function is
‘i’xy(m/NT) = X(-m/NT)Y (m/NT)

and is sometimes called cross power spectrum or cross-periodogram.
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Lastly, consider the discrete system of Figure 13b with a random
input whose power spectrum is known. We may find the mean squared

value of the filter's output by the following:

yz(nT)=.2—Tlrj- lj: ¥_ (2)D(2)D(1/2)dz/z

where

I' = the unit circle

k

]

Your 2) = 1 W (kT)z™
XX k=0 XX

power spectrum



(1]

[(2)

(3]

(4]

(5}

{6}

(7]

[8)

(9}

(10}

11}

[12)

(13}
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I. DIGITAL FILTER CATEGORIES

The generalized transfer function of a digital filter has been
shown to be the ratio of two polynomials in z. Generally the coefficients
‘of the polynominals are real numbers which must be determined in some
manner to force the digital filter transfer characteristics to meet
some criteria. The manner in which the coefficients are found as well
as other considerations (for example, implemention details) allow us
to categorize digital filters into several classifications. In this
chapter we examine non—reﬁursive, recursive, aﬁd several other major

categories for digital filters.

Non-Recursive Filters

General

Non-recursive digital filters are those whose transfer function

can be written as

m .
D(z) = ] azz t . (1-1)
i=0
Non-recursive filters have no feedback terms, and hence they have a
finite impulse response. They are sometimes called transversal filters,

a name used for delay line filters in radar moving-target-indiéator

applications.



Much emphasis has been placed on these filters in the literature

and several design techniques will now be illustrated.

Finite Impulse Response Filters [1]

Finite impulse response (FIR) filters satisfy equation (1-1).

Consider the first order filter

1
H(z) = 1 la] <1
1-az
=1+ azl+ (az'l)2 + *c
= ) (az_l)z .
£=0

Suppose we truncate the series to M terms to produce the FIR below

M-l £
Hy(z) = ] (az”h) (1-2)
2=0
Also,
-1.M M_ M
By(z) =222 . 2 "2 (1-3)
1 - az-l zn-l(z - a)

This is another way of expressing the FIR as filter with feedback.
Fig. 1 illustrates the z-plane pole-zero locations for both H(z)
and Hy(z) for M = 8. Fig. 2a shows the implementation of (1-2);

Fig. 2b, (1-3).



Fig. 1. Pole-zero Plots in the .
z~-plane.
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Fast Convolution [2]

Fast convolution is a technique which employs the FFT and IFFT
to determine the filter output response (see Fig. 3a). Direct convolu-

tion is ekpressed by

N-1 -
y(kT) = ) hET)x(kT - £T). (1-4)
£=0

To calculate N output points, this requires N2 real multiplications.

For fast convolution
y(kT) = IFFT{H(-2) FFT(x(kT))} . (1-5)
NT . :

Here the FFT and IFFT require 2Nlog,N operations each, while the multi-

pliéation requires N operations. This totals
{# operations = N(4 logy N + 1).

If each operation (a complex multiplication) is assumed to take approxi-

mately 4 real multiplications, the result is
#_multiplicationé = 16 N logy N. 4 (1-6)
Suppose N = 1024, then N2 = 106 and 16 N logy N = 1.6 x 105, Hence,

for large numbers of output points, the fast convolution technique

is faster than direct convolution.
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The reéder must be careful in using the fast convolution technique
because the results can be misleading. Consider the convolution éf
the analog signals in Fig. 3b. If we sample these signals and use
the FFT and IFFT, we are convolving the periodic functions shown in
Fig. 3c. Hence the output y(kT) can differ greatly from the desired
sequence.

In order to improve the results one may add zeroes into the input
and transfer function sample sequences as shown in Fig. 4. Note the
improved output response. However, in adding zeroes we have increased

the calculation time unless we modify the FFT algorithm.

Linear Phase Filters [3]

A linear phase filter is an FIR filter with exact linear phase.
They may be used to approximate an arbitrary magnitude frequency
response without causing phase errors. The linear phase filter is
good for standard lowpass, bandpass, and highpass filters.

If the number of sample points in a FIR filter is
N=2t+1,
then linear phase with delay 1 is realized if and only if

h(kT) = h(NT - T - kT) (-7
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Hence, for N even
1. There is no unique peak in h(kT)
2. h(kT) = h(NT - T - kT) k = 0, () - 1
3. The center of symmetry is between (%b and (g) - 1.

4. The delay is |

=N-1
2

the center of symmetry.
~For N odd
1. There is a uniﬁue peak in h(kT) at (N - 1)/2.
2. h(kT) = h(NT - T-kT) k=0, (N-1)/2
3. The center of symmetry is at (N -~ 1)/2

4. The delay is

the center of symmetry.
If the above conditions are met, the frequency samples H(ﬁ%) will be

_given by
My = Uk jom
Hgp = RGPl e
where, for N even

U m=0, -1

D
I
g
-
=]
n

(1-8)

<D
|

n = %%(N -mT m (g), N
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and for N odd

=0, (N=-1)/2

<D
i
{
|
g
=
I

0 =-2ﬁT-'-(N—m)'r m (%)-i—l,N.
and

f
HEL) =S =0 .
2T 2

This concludes our brief description of

Frequency Sampling Filters [3]

linear phase filters.

(1-9)

(1-10)

The term frequency sampling filters refers to a class of digital

filters specified by sample points in the frequency domain and imple-

mented in the manner of Fig. 5. Many techniques have been suggested

for choosing the sample points

o
H(é%) = |Hm| P | m

including optimization techniques which adjust the points in the

transition region to give a good ripple

real impulse responée filters

0, N-1

between sample points.

For

(1-11)
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_ ‘ Transition Region
******J ‘ﬁ///F— .

[]
|
» |
Pass ="' | Stop
Band R ' Band
| » [}
® |
I > i
| » |
: Yo i
] 1***&3!1———-_=-,—__9
(a) N-1
0 NT
1 Ho
. -1
1-2z
—-i-""““l"‘“7‘
l_z-lejZ'ﬂ' N

k1)~ 12N g

Comb
Filter *
1
= - lod2r(N-1)/N
’ Ay-1
(b)

Fig. 5. Frequency_Sampling‘Filter
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lu, | = ey
=-9
em N-m
By the IDFT
N-1 o
h(kT) = | H(ZR) o (2n/Muk
m=0 NT
and
N-1
H(z) = ) h(kT)z ¥
k=0
where
m
H(z) = HGD)
z = oi2m/N
Then
N-1 [ N-1
H(z) = z Z H) ka z.k
k=0 | m=0 NT
or
N-1 HGE)
Hz) = (1-2Y NT
m=0 1 - z-lwm

(1-12)

(1-13)



2~-13
whefe

W= ej21r/N

"Equation (1-13) is the motivation behind the frequency sampling

implementation illustrated in Fig. 5b.

Windowing Filters [4]

In equation (1-2) a truncafion was performed (a fairly drastic
measure) to produce a FIR filter from an infinite impulse response
function. Windowing is the process of orderly termination of an
infinite series by truncating the series and adjusting the remaining
terms to mask the truncation effects. The transfer function for the

FIR is given in equation (1-1); its butput response is

m
y(kT) = ] a;x(kT - iT).
1=0

Briefly stated, the problem is to find the coefficients a; of the

FIR filter H(z) such that
nel®T) = redh

jwT
where F(er ) is some‘specified desired frequency response. The

design procedure is outlined below:
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1. From F(eij), use the IFFT algorithm to find f£(kT).
2. Multiply f(kT) by a window function w(kT), or

h(kT) = £(kT)w(kT) (1-15)

The process is outlined in Fig. 6., Multiplication in the time domain

is convolution in the frequency domain, and hence
H(f) = F(E)W () .

The window function shown is a rectangular one which duplicates the

truncation process. Notice the ringing effect in Fig. 6c. The side-

lobes for this window are about 20%. Fig. 7 illustrates two other
windows. The triangular one reduced the sidelobes to about 4%. The

raised cosine window is the best one shown. Its function is
mt
w(t) =a+ (1 - a) cos ¥ (1-16)

If a = 0.50 it is called a Hamming window. The optimal value of a is
about 0.54. This value yields the Hanning window and reduces the

sidelobes to about 1%.

Moving Average Filter [5]

A moving average filter is a FIR filter which calculates the

average of the N most recent observations of the input:
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F(eij)

Nl DN

(a) Desired Frequency Response

W(w)

' | v " P
— =
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H(eij)
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Fig. 6. Windowing Filter Construction
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1 N~1 :
y(kT) = = } x(kT - £T)
' N =0
and
N-1
H(z) = %' ) -
£=0

In another form

-N
H(z) = %—1—'-2— i (1-17)
1 - z-1

Least Mean—-Square Digital Filters [6,7]

Assume that the filter input is x(nT), a random signal whose
autocorrelation Ryyx(t) is known, and that the crosscorrelation
Ryx(t) of this input and a desired output d(nT) is also specified.
Let the impulse response of the filter be g(kT), and its output,
z(kT). Allowing a shifted time scale,

N
z(nT) = )} x(aT - KT)g(kT).
. k==M
Define the signal D to be expected value of the difference in the

actual and desired filter outputs squared:

D = E[d(nT) - z(nT)]2.
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By definition

R (t) = E {x(t + O)x(1)}

XX

Ry, (t) = E {d(t + 1)x(1)} ' (1-18)
Ryy(t) = E {d(t + 1)d(1)}

Substitution of these relations into D yields

N
D=Ryy(0) - 2] Ry(nDy(nT)
n=-M
(1-19)
N N
+ ) ) R (kT - nT)g(kT)g(nT).
k=-M n=-M

The purpose of the least-mean squares filter is to minimize D by
choosing g(nT). Hence, if one takes the partial derivative of D with
respect to g(nT) and sets the result to zero, the following solution

is generated

N
"Rgx(T) = ) R (kT - nT)g(kT) . -M <n <N (1-20)
k=-M
In equation (1-20), all quantities are known except g(kT). Hence,

the filter weights may be calculated from (1-20). Least mean-squares

filters are sometimes called digital Wiener filters.
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Least Squares Polynomial Moving Arc Filter [5]

The problem here is to solve for the coefficients ay of a polynomial -
to best fit the input data y(tj) in a least squares sense. Each input

point is approximated by

}'(ti) = ag + alti + azt:% + *** + adtg

d
J a,tk
=0ki

If the input samples are evenly spaced,Ati = iT and

o d '
y(iT) = (1ink
Lo

For n input samples define

n d k
s= 7. ) a (IT)" - y(iD)
i=0 k=0
In order to minimize S by choosing a,, one may take the partial
deratiﬁe
£

d d
3B - {2 ] a Dk -yun| ] €D =0
day k=0 £=0

This expression reduces to
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d

d d
I I aunfent - ] yanent
k=0 £=0 £=0
Written in matrix form
CA =B
or
A=ct

" UB. (1-21)

In (1-21) the matrix C~1 represents the filter itself (whose coefficients
are precomputed) and B represents the system input. The output is A
which represents the polynomial coefficients ay .

Another form of polynomial filtering termed exponential filtering
allows the polynomial to grow by one term as each new input occurs.

Such schemes are called "growing memory" filters.

Digital Inverse Filtering [8,9]

Digital inverse filtering is a special case of least mean-square
filtering as described in equation (1-20). Suppose that the desired
filter output is

d(kT) =1, 0, 0, 0, **°

the discrete impulse function. Hence the crosscorrelation
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Ry (D) = x(0), 0, 0, 0, **-

which can be scaled to unity (x(0) = 1). Equation (1-20) with M= 0

" then becomes

p- . -y - - - -

I'o rl I‘2 e I'N go 1
] rg r) ry-1 81 B 0 (1-22)
N rN—l rN_2 o | LgN_ L0 ]

where

ry = r;i = Rxx(iT)_ .

If the filter coefficients g4 are used in an FIR filter

N
H(z) = ) giz-i
i=0 :
and the random signal x(nT) is applied to the input, the output will

be a digital impulse function. Therefore, H(z) is said to be an

inverse digital filter. The calculations involved are shown in Fig. 8.
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Rex (D)
Eqn (1-22) — 8.
d (KT)
(a) Filter Design
N
R (KT) e iZO giz-i f———> 2 (kT) = d(KT)

(b) Filter Application

Fig. 8. Digital Inverse Filtering
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Recursive Digital Filters

General

A recursive digital filter is a filter with feedback which, in
general, has an infinite impulse response. Its transfer function is

n
.Z'aiz'i .
H(z) = =0 | . (1-23)

1+ ) byz™d
i=1
where at least one a; and bi is not zero.
’ RécursiVe filtérs éénerally require fewer terms (lower order)
tﬁan a nog-recursive filter with similar characteristics. Higher
order recursive filters are usually factored into sécond order stages

‘which are either cascaded or paralleied.

Block Recursion [10]

One technique for implementing a desired recursive digital filter

of the form
(1-24)

is called block recursion and is shown in Fig. 9. The implementation

in Fig. 9b is
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X(z) ——an H,(2) ———  Y(2)

(a) The Desired Filter

X(2) —L s Hy(2) +

|
|
|
1
I
FIR :
l
|
|
I
!
|
I
I
|

6(2) le— 2z fe—I

FIR Block

— ——— —— M — —— — o — —

(b) The Implemented Filter

Fig. 9. Block Recursion
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H(z) = —M ~ . | . (1-25)

But the desired filter is

m . a
! R S
=1 1 -z

- Hy(2) =
n Q@ - ziz'l)
i=1 , :

where zj are the poles of the function H,(z).

‘The finite impulse response filter HM(z) is found by truncating each

component of Hp(z) to M terms, or

‘m 'ai[l - (ziz-l)M]

- Hy(z) =
4=1 1 - z4z71
- M
_ aiz--
e -t ]
i=1 1 - 242
f;:_f:fgfil : ' (1-26)
T D(z2)
where
m aiz?D(z)
Q(z) = ] ——— .
=11 - g2}

Thus,

Hy(2)D(z) = 1 - 2 Mo(2)
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and
Qz) = 21 - Hy,(2)D(2)) o -27)

where Q(z) is a polynomial of order M-1. From the above relations it

is clear that if G(z) in HB(z) is chosen as Q(z), then

Hp (2) = Hp(z) (1-28)

G(z) = Q(2)

and the block recursive implementation exactly produces Hp(z), the
desired filter. Thus, we have shown that a recursive filter can be
implemented using one FIR HM(z) in the feed forward path and one FIR

G(z) in the feedback path, where

HM(z) =" truncated version of Hp(z)
M (1-29)
G(z) = z (1 - Hy(2)D(z)).
Some researchers have used the FFT to implement the two FIR filters
[11-13].

Example. Consider the filter

1 = _1
1+ azl + bz2 D(z)

Hp(Z) =
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and let M = 3

-1 -2 1 -az"1+ (a2 - b)z"2
l+az " +bz V1
1+ az7l + pz?
- az7l - pz2
- az7l - 42,72 _ 5p-3
' (a?--b)z—2 + abz™3
Hence

H3(z) = 1 - az"l + (az-b)z"2

6(z) = 23Q1 - H3(z)D(z))

(2ab - a3) + (b2 - azb)z-l.

One can check the impulse response of HB(z) by dividing the

denominator into the numerator and comparing it with Hp(z).

Flat Group Delay Digital Filters [14]

In order to achieve a linear-phase digital filter one must choosé
a non-recursive structure. However, when the order of the non-recursive
filter is unacceptably larger, one is led to approximate the linear
phase using a recuréivevfilter»design whose error norm is the maximally
flat criteria.

Consider the recursive filter
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H(z) = (1-30)

whose d.c. gain is unity. The phase response (T = 1) is given by

N W
Z aisin iw

ran~1 | 120 = o(w) (1-31)

1

n
Z as;cos i w

The ideal phase (-wt), where T is the desired delay is approximated

by minimizing

§(w) - ¢(w) (1-32)

I}
1
€
-

or

e(w) tan(8(w)) = - tan wt - tan (®(w)) .

The procedure is to make e(w) vanish at d.c., together with its

derivatives up to some order depending on n.

The solution yields the filter
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.\ _ 2nl 1
H(z) = n! 2n
I (2t + 1)
i=n+l
(1-33)
[ ] 1
n n . .
"k . 2T +1. -k
I D @)1 Tk+1 -
k=0 kjmp 2T+ K

which is stable for all finite positive values of T.
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Advanced Topics

In addition to the simple division of digital filters into recur-
sive or non-recursive categories, there are many other ways of identifying

their characteristics.

Complex Digital Filters [15]

A complex digital filter has a complex input x(nT), a complex
output y(nT), and a complex transfer function H(z). An example is
shown in Fig. 10. A lowpass envelope is centered at fC by replacing

z by e JucT 5 = vz in H(z).

n
Z azz—['
H(z) = =0n
-£
1+ ) bpz
=l Z
Hence
n
T vta,t
£ ©
Hs(z) = * (1—34)

n
1+ Z Yl’bez“’e
£=1

Complex digital filters have application in communication and
information theory, signal detection, randomly time-invariant channels,
etc. In one application they are used to generate the Hilbert transform

of a real signal x(nT).
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H(f)

Hg(£)

Fig. 10. Complex Bandpass Filter
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Randomly Sampled Filters [16]

A randomly sampled digital filter H(z) takes input samples of the

analog input signal x(t) at some random time
nT <t <nT+T

and stores them in an input buffer. The numbers x(tn) are then fed
to the filter hardware as evenly spaced samples x(nT). Hence, the
direct convolution of x(nT) and h(nT) produces the output y(nT)
which is interpreted as y(t,). The question arises what errors are
generated by the random sampling?

Define

n (1-35)

where Zn is a random variable. Also define

1]
"o
1]
b
~~
=]
+
N
=]
e’

x(tn)

(1-36)
x(nT)

[1]
b
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If we expand §n in a Taylofvserieé about Z,

A

| : . w2,
Cxy = x, tx Z 0+ 1/2ann + -

whetg X, = é% x,, and define an input error &,

-

- ’ . ' — : - 2 L ]
gn =X, - X = X2, + 1/2ann +

The output error due to random sampling is defined as

v = E(Zﬁ)
n = Efzﬁ)
E(E,) = 1/2x,v% 4+
E(sﬁ) = ;§v2 + (/4x2 + 1/3%5x )0 + -
. | n
(B = DB

2, . T2 :
E(ep) = E“(ey) + ] hp_gvar(g)) .
: i=0 .

(1-37)
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The frequency response error is determined for sinusoid inputs

x(t) = cos wt 0 <w < Ng

where N¢ is the Nyquist frequency m/T. The expected values of the

output steady state errors are

E(e)gs = (-1/202v2)H(ed?) cos nu
n
2 - nl 2 w2v? _ wlvh - whvh
E(e )gs = E"(e)gs + izohi 5 5 :

n 2,2 4,4 4,2 1
- ) h2e-ii2w wv? _ Jwlv ey cos2nw

. e -
2 8
i=0 * 2 4

The physical interpretation of the results is shown in Fig. 11, where
Eped?)) = (1 - 1/202v2)H(ed?) (1-38)

In random sampling only the expected amplitude response is distorted
while the expected phase response is unchanged. The noise to signal

ratio for noise generated by random sampling is approximated by

.2
] h2 42,2
1=0

[a(edv) |2

NSR = 10 log ;g (1-39)
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cos wt ‘1: : H(z) -—-___4;.'yn
n
(a) Exact Model
cos wt /T . .%(z) b 5

. (b) Approximate Model

Fig. 11. Randomly Sampled Filter
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Random sampling finds wide application in time=-gsharing filters,
radar filters, and faulty samplers - all samples are faulty to some

extent.

Example. [9]

H(z) = __ 0.1
1-.9z71

and Zn has a rectangular distribution with o = 0.1, or 10% jitter
in the input sampler. The curves of Fig. 12 illustrate that as
frequency increases, the noise component increases making the

filter unusable above m/Nf = 0.3

Multirate Digital Filtering [17]

A multirate digital filter is one in which the samplers for the
'input and output are operating at different rates, one usually being
an integral multiple of the other. Much analysis of multirate sampled
data control systems has been treated in the open literature. Here
we exaﬁine three configurations of multirate filters demonstrated
in Fig. 13. Solutions for the sampled output frequency responses are

*k . v . . . .
W Gw) = L I 6w + j 210y Re(ju + j é%EQ
KT n=-o KT



-20

-60

2-37 -

0.5

Fig. 12. Random Sampling Example
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R(s)

fast

(a)

G(s)

W(8) / Wk(s) / Wkk(s)

Typical Multirate Filter

T

G(s)

KT
slow

X(s) , X**(s)

KT

slow

G(s)

Y(S)/

KT

R(s) — ' RECN 5y | BE) 7
’ T KT
fast
(b) Digital Prefilter
R(s) Fs) &) /S
KT
(¢) Analog Prefilter

Fig. 13.

slow

Multirate Digital Filters

Y**(S)
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]

X**(ju) = i%,,z [%**(jm)ﬂ(jw + i%%E {] R*(j@ + ji;q )

n= -00

(1-40)
vrx(je) = L ] |err(uF(ie + 1252 )] R(Go + L222)
=m0 KT - KT
KT n .
These expressiones simplify greatly if the filter function G(s) is
band limited
l6GGw)| = 0 lo] > 22 . (1-41)

KT

The functions H(s) and G(s) represént prefilters uséd_to band limit

the input signal r(t) to prevent frequency aliasing.

Two Dimensional Digital Filters [18,19]

Two dimensional digital filters are used in digital image
processing. They are used to transform characteristics in photographs

or CRT images. The transformation is described by

Pl a2kt
LoL n“1%2 Az, z.)
H(Z ’22) - m—-O n—O = 1 2 . (1_42)
1 : E E m_n B(z;, zp)
bnz12)
m=0 n=0

and



2-40

where sy and s, are Laplace variables; A and B are the sampling intervals
in the x and y planar coordinates of the image being processed. The

two dimensional filter may also be expressed as
H(zy,25) = Z Z hmnszg (1-43)

where h; -~ is the impulse response.
Let us consider the stability of a two dimensional digital filter.

For a stable filter

o oo

I LI Ibgpl < = (1-44)

m=0 n=0
A two dimensional digital filter is stable if and only if no value of
~2) and zj exist such that
|21| <1, and

Izzl <L



2-41

Equivalent conditions are listed below: H(zj,zp) is stable if and

only if

1) The map B(zl,zz) = 0 of the unit circle lzll 0 to the 29

plane is outside the unit circle [zp| = 1.

2) No point in Izll < 1 maps into z2 = 03 or z9 0 maps

outgide the unit circle in the z; plane.

Example. Given the two-dimensional filter

1
1+ az, + bzz

H(zlizz) =

we may set the denominator to zero.
B(zl,zz) =1+ azy +bzy=0

to determine the following map

-321 .

22=- b

o'l=

Condition 1 is shown in Fig. 14.
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AN

22

Z

-
N

o |~

}

Fig. 14.

Stability in Two-Dimensional
Digital Filters.
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or.
|a| + |b] <1

for stability.

Condition 2 chéﬁks the point z5 =0 in the zy plane:

1
Z, = = =
1 a

but z must lie outside the unit circle, so

which is included in condition 1. Therefore, the example filter
is stable if the sum of the magnitudes of the coefficients is
less than one.

Non-recursive two-dimensional digital filters may also be designed

using wihdows, just as their one dimensional brothers. If wl(x) is a

good one-dimensional window, then
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wo(x,y) = wi( V2 4 y2) (1-45)

will be a good two-dimensional window function.’

Example. Consider the one-dimensional window

w(x) =1 - le Ix[_i 1
=0 Ix| > 1

Then

W(w) = sin(w/2)/ (w2/4)

which has sidelobes of about 4%.

The two-dimensional counterpart is

1- V2442 %2 + y2| <1

W2 (x!}') X y

=0 |x2 + y2| > 1
Then, in the frequency domain

o)
Wy (wp,up) = 2n[p™3 [ Jg(£)de-p23,(p)]
0

m%+w%

which has sidelobes of only 2%.
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The reader is referred to the open literature where much two-

dimensional digital filfering theory is reported.

Adaptive Digital Filters [20]

A major advantage which digital filters hold over analog ones is
the ease in which a digital filter's coefficiénts may be changed while
the filter is processing data. Adaptive digital filters change their
coefficients to miﬁimize some épecified criteria.. Aﬁ exémple non-recursive
adaptive digital filter is depicted in Fig. 15a. The filter output is

(1) -
x(iT - kT) (1-46)
0 X

Il 1R

d(T) =
. k

where gél) are time varying coefficients calculated as shown in Fig. 15b.

géi+l) = géi) + Ae(i)x(iT - kT). ‘ ' (1-47)

The term e(i) is found by subtracting the filter response . from an ideal
response d(iT). The factor A is a variable step length which is

adjusted to improve the filter response in driving e(1) toward zero.

Floating Point Digital Filters

A fléating point digital filter is one which is implemented by
" a computing device which executes floating point afithmétic‘in calcu-
lating the filtér's difference equations. Both the filter's coefficients

and the signal variables are represented in the following format
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x(1T-T) x(1iT-KT)

- —(

ae(1)

i (1 (1) g(i)
& & 2 K
X X T X
pe (1) L) Y 44m —
Z Response
+ d{iT) Generator

(a) Filter Block Diagram

x(iT-kT)

g(i)
k

(b) Time Varing Gain Generation

Fig. 15. An Adaptive Digital Filter.
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F x RE : : o (1-48)

where F is a fraction expressed in radix R and E is the exponent value.

R is usually 2 in 16-bit minicomputers but is 16 in IBM 360/370 machines.

Digital filters are not usually implemented in floating point for several

reasons. Floating point hardware is slower_than fixed point and is
more costly. Perhaps a more important reason is that floating point
quantization errors in signal variables can cause system instability
whereas with fixed point arithemtic is guaranteed to be stable if the

filter coefficients yield stable poles in the z-plane.

Optimal Digitél Filtering

Optimal digital filters are filters used to minimize some per-
formance .evaluation criterion set for the discrete filter. 1In this
section, thrée topiés will be preséntéd:"l) the coﬁcept of optimi-
zation, 2) the optimal control law, and 3) state estimation.

Concept of Optimization [21]. A system may be described by n

first order linear or non-linear differential equations in the
independent variables X) 5 X, "‘xn. Any system can be so described
by the introduction of the appropriéte number of variables, henceforth

referred to as the state variables. The n differential equations are

x = f£(x,u,t) : : (1-49)

Suppose that a function

D)
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mT
Vuw = [ L(x,u,t) dt (1-50)
(o]

is to be minimized by choosing the forqing functions u(t) or some
other system pérameters} L represents the performance criterion
together with any terms which penalize or restrict the use of
forcing signals. The minimum value of V(g) is termed the cost.

A linear optimal system has the following characteristics:

(a) 1linear differential equationms

(b) the performance criterion has a quadratic form in the

state variables and forcing functions

(c) unrestricted forcing functions and state variébles.
Any system which does not possess all three characteristics is non-
linear.

Consider the linear system described by the following set of

first order differential equations:

%= Fx + Gu

(1-51)

y=He .

Now it is desired to calculate u(t) (given the initial values
x(0)) such that the cost function V(u) is minimized.

It is proposed to approximate the system by a discrete time version.
The time interval is divided into m equal sub-intervals T and the forcing

function u is to be held constant during each subinterval. The system



2-49

is considered to be described by a sequence of transitions from the

(k-1)th to the (k)th state.

Solving the set of first order differential equations,'we find

the following transition equation:

x(KT + T) = ¢(kT + T, kT)x(kT) + I'(kT + T, kT)u(kT) (1-52)
where
KT+T
T(kT + T, kT) = [  ¢(kT + T, T)G(T) dT.
| KT |

and ¢(t,T) is found as follows:

1. When F is time varying, ¢ is computed from

Cdfe(e, ] - pee) o(e,T)

at

2. When F is constant o(t,T) = o(t-T) is computed by

- | k
e(e-T) = eFETT) - ) [F(t-ty)]

k=o k!
The relationship between continuous and discrete systems is shown in

Fig. 16.

In addition, the integral to be minimized is replaced by the

summation
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m-1 ,
V@mT) = T ) L[u(kT), x(kT), kT] (1-53)
k=0
The minimization of V(mT) for discrete systems will be considered

for two cases: a) the optimal control law, and b) state estimation.

Opfimal Control Law [22]. Consider the continuous system equations

to be of the form,

x(t) = F(t) x(t) + 6(t)u(t)

H(t)x(t) - a-se)

y(t)

_ mT
V() = x (nT)Ax(mT) + [ =xT(t)B x(t) dt
o]

mT

+ { uT(r) c(e)ulr) de
(o}

where A = terminal state weighting matrix

B(t) = state weighting matrix

c(t) control cost matrix.
The optimal controller is obtained by solving the nonhomogenous matrix
Riccati equation

ds _

T T SF- s + sec1(0)cTs - B(0). (1-55)

If F and G are constant,

S(MT) = (657 (WD) + ¢,,(WT)AI[$;; (@T) + 1, (mT)A]"L (1-56)
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Where
STy | 11 %12
%21 %22
and
-F ccteT
M= .
B(0)  FT

Once S(mT) is known, the optimal control vector can be obtained from

Bopt(t) = D(mT -~ t)x(t) (1-57)

where

D(mT - t) = C1(t)cTs(mT - t) -

In block diagram form, the optimum controller can be depicted as in
Fig. 17. Notice that to find Yot the state vector x(t) is necessary
for calculation of the optimal input. In most systems x(t) is not

available; y(t) is available instead. Hence, we "estimate' x(t) using

y(t) as shown in Fig. 17,
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State Estimation [23]. It is desired to find an optimal estimate

é for the state variables x for a system defined in Fig. 17. The

_system output y is measured every T seconds; call the measurement

z(nT) = y(uT) + v(nT)

= H(nT) x(nT) + v(nT).

simplifying the notation

z = ann + v, (1-58)
where Y, is measurement noise and
Ty 2
Elv,vy] = RnSon
(1-59)
E[Yn] = 0.
The estimation scheme is to predict the present value of the state
vector by using the last predicted value and updating it with the
present measurement.
x () = 2,(=) + K [z,-Hyx, ()] (1-60)

where §n(+) and én(-) are estimates of the state vector Xn after
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and before the measurement g, at time nT. The Kn is the optimum

weighting matrix. Let the error in the estimate be

() = x4 - x,

) . (1-61)

X (=) = x,(=) - x
Substituting (1-58) and (1-61) into (1-60)

2, (+) = (I - Kan);n(;) + ann , g | | (1-62)
Define

Pt = Elx, (+) x1(+)] | | (1-63)
However,

Elx, ()] = Elygxg(-)] = 0
because of uncorrelated measurement errors. Thus, (1-63) becomes

Pn(}) = (I - K H)P (-)(T - KH)DT + K R KL . (1-64)

The cost function to be minimized in state estimation is the sum of

the diagonal elements of the error covariance matrix Pn(+):
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m-1 - -
van = | {EXI®x ®)])
n=o

The V(mT) is minimized by K, The solution is
= syl uT -1 ‘ Trp-1 _
Kn = P, ( )Hn[HnPn( )Hn + R,] Pn(+)HnRh (1-65)
Substituting Kn into Pn(+) results in
= T T -1
P_(+) = B (=) - P (-)HI[H P (-)HT + R 1™ H P (-). (1-66)
The equation set for the state transitions of the discrete system
X4l - fnXn t ¥n- (1-67)
Again, using (1-67) and (1-61) in (1-63)
= T -
A ORERIOTIE NP | (1-68)

where

w = T[T + T, kT]u(kT)

T, _
E[Ynym] - Qnamn
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E[yn] = 0.
The results given above are now summarized in Fig. 18.

Nonlinear Filtering [24]

Reference [24] presents a class of nonlinear systeﬁs which obey a
principle of superposition. In particular, the synthesis of nonlinear
filters for signals which can be expressed as a ﬁroduct or convolution
of componenfs is examined. Practical applications in speech and image

processing are illustrated.

Range Adaptive Digital Filtering {[25]

InAmany applications the digital filter's input signal tends to
dwell near zero with occasional perturbations away from null. Range
adaptive digital filtering has automatic scaling of its input, internal,
and output signals to prevent arithmetic overflow. This is a hardware
concept and.will be further examined in PART 3, Mechanization of Digital

Filters.

Random Sample Skipping [26]

In certain time-shared applications of digital filter hardware
several input/outpuf sequences, say‘n, of numbers can be handled by
a single special-purpose computer which looks like n digital filters.
If the sampling rates for each filter is different, then inevitably
conflicts for the arithmetic unit will take placeiand certain input

samples will essentially be lost. This proceés can be described as
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(1-68)
P, (t)

_
_ 0n ()OI + Q
_
_

(1-66)

| |
D - omlmg (Ot + r)™lag ()

|

|

— . d— w— —— S s m— ewe e e o— —
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nonlinear random sample omission. Reference [26] shows that in some
cases random sample omissions in a closed-loop system with random
inputs can be beneficial in reducing the mean-square value of a nulling

error signal.

Block-Floating-Point Filters [27]

Block-floating-point is a compromise between fixed-point and floating-
point arithmetic. In fixed point arithmetic no scaling is used for
addition or multiplication of numbers. In floating-point, automatic
scaling is performed for each product or sum calculated. In block-
floatiﬁg point arithmetic, numbers are expressed as a fraction and
exponent (as in floating point); however, scaling is perforﬁed dnce
for an entire expression instead of for each operation.

For example,
Yn = X tayypg T+ oagy,y : (1-69)

would be calculated as

w1 -

y = =

n A Yn
n

Yn = BpXn t aphpwy v +oaghjeyy

(1-70)

]
|

n - An-lxn

win = An—lyn—i
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The scaling factors A, and An are powers of 2 and are determined as

follows
= 1
T
2
An = ApAn g

-~

where Cn is the maximum characteristic of the variables x,, Win, ">

VNpe In (1-70), the calculations for yp, xn; and wy, involve only

scaling (shifting). Once scaling is performed in Yn» then all the
arithmetic calculations are performed in fixed-point. The block-floating~

point realization is summarized in Fig. 19.

Sample-Rate Reduction Digital Filters [28]

There exists a direct relation between input sampling frequency
and the computational rate of the digital filter hardware implementation.
In order to prevent input frequency aliasing, two common practices
are to sample at a high rate or to use an analog low-pass filter before
the A/D converter. Reference [28] suggests sampling at a high rate
and using a digital low-pass filter whose output can be sampled at
a much lower rate to furnish the input signal for some digital signal
processing system. Advantages include the elimination of phase

distortions which are inevitable in analog aliasing filters.
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II. TRANSFER FUNCTION SYNTHESIS

The synthesis of transfer functions for digital filters is
surveyed in this section. The survey is subdivided into nonrecursive

filters, recursive filters, and sample designs.

Nonrecursive Filters

The synthesis of nonrecursive digital filters consists of determining

the coefficients h; of the expression

M-1
H(z) = ] bz . (2-1)
i=0

In the z-plane this amounts to placing zeroes anywhere in the plane

with all poles falling at the origin.

Specification of Frequency-Domain Zeroes [29]

The design of nonrecursive digital filters in the frequency domain
consists of specifying a finite trigonometric polynomial which satisfies
some criteria. Here the polynomial is defined by placing its zeroes.
The frequency charactrristic of (2-1) is defined as

M-1

H(f) = z hn e-jZ'nfn .
n=0

2-62
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Replacing f by the complex variable ¢ = f + jo

M-1

H($) =Ky 1 [1- e 32m(47¢n)y o (2-2)
n=1
where
(6.} = {£y + dop)
e, < 1/2

The {¢,} are the zeroes of H(¢) in the central period. Hence, the'
scale factor K; and the M-1 central zeroes completely specify H(f).

The function is factored into stopband and passband zeroes

H(f) = Hg(£)H,(f) - (2-3)
where
Ng
Ho(f) = Kg I [1 - e~32m(£=¢,)]
n=1 (2-4)
Np
Hp(f) =k, T [1- e~32m(f-¥y)
n=1 .
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Once the zeroes have been apportioned between the stopband and passband,
the passband and stopband zeroes are positioned to give a "good" shape

for H(f). The procedure is demonstrated in [29].

Frequency Sampling [30,31,32]

The technique of frequency sampling may be used to synthesize
nonrecursive filters as follows:

1. Choose a set of frequencies at which the sampled frequency
response is specified.

2. Obtain the values of the cqntinuous frequency response of the
resulting filter as a function of the filter parameters
(defined below) using the sampling theorem.

3. Compare the interpolated frequency response with the desired
filter and search for a minimum of some filter characteristic.

4. When the minimum is found, the parameters are used to realize

the nonrecursive filter.

The frequency samples in step 1 are specified in the passband
and stopband; however, in the transition region several samples are
left adjustable and these are the parameters used in steps 2 and 3.
The references [30,31] describe computer aided design programs which

essentially automate the optimizing process.

Windowing [19,31,33}]

Windowing filters, discussed in Chapter 1, are nonrecursive

filters whose finite impulse response is found by terminating an
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infinite impulse response by means of a window function. The details

of the procedure have been demonstrated earlier.

Equiripple Filters [34,35]

Equiripple nonrecursive digital filters'may be designed by
minimizing the maximum error between some desired complex frequency

response F(f) and the FIR response as shown below

P/2 v
= =2nif L
E, = hpe k* - F(2WE£,) (2-5)
k  p=p/2 ¢ . K
where
j=/1

hp = filter coefficients

P = even integer

fk = normalized sampled frequenéy
|fk| <1/2

2W = sampling rate.

Equation (2-5) may be minimized using the simplex method of linear
programming. Digital filters designed in this manner are sometimes

said to have minimax responses.
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Recursive Filters

The recursive digital filter has the form

(2-6)

The synthesis of recursive filters is the task of choosing the
coefficients a; and by in order to force the filter to behave in some

specified manner.

Direct Synthesis in the Frequency Domain [36]

The frequency response for (2-6) is found by substituting z = ej2nfT

'Z’ aie-jZTrfiT
H(f) = 1=0 (2-7)
) bye d2nEIT
i=1

If N(f) is the numerator of (2-7), then

e-janiT j2wfiT

N2 = (] a )( ] age )

n
H, + 2 kxl H, cos(2mkTf) (2-8)

where
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{2=]
1]

n
2
]k
° k=0

It
]
Y]

iy

(r-9)=k P

Equation (2-8) may be further reduced to
t: 2k ’
|N(f)|2 = z @, cos (nTE), . _ (2-9)
k=0 ’ . v

where o) are constants. Hence equation (2-7) ﬁay be written as a

rational function in cos (nTf) [or sin(an)]. Any such rational

function may be specified by the roots of the two polynomials.
Consider the Butterworth lowpass filter in the analog domain

1, (£)]2 = L

1+ (5y?p
fe

Since the term sin(nfT) corresponds to f in the discrete case

lHy (£)]? = 1 | | (2-10)
1 + [singﬂng ] 2p

51n(ﬂch)
represents a lowpass digital filter. To find the filter coefficients
solve for the roots of the polynomial. An example design in the

continuous case is presented later in this chapter.
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Other filter types (bandpass, highpass, band stop, etc) may be

designed using this technique.

Sampled Data Transformations [37]

This section describes a mapping technique for designing recursive
digital filters. First, a suitable continuous filter G(s) is found,
and then a mapping function from the s-plane to z-plane is employed to
find the digital equivalent filter D(z). Hence, first we review
continuous filter design and then employ the sampled-data transformations.

Continuous Filter Design. The design of continuous filters can

be accomplished by first designing several low pass filter transfer
functions G(s), called prototype or normalized designs; the prototypes
have a critical or break frequency of one radian/sec. The prototype
is used to realize a filter for a given specification by using the

frequency transformations listed below:

Low Pass: s -+ s/wu

2
8¢ + w, w
Band Pass: s *> ——-Le'-
s(wu-wz)

s(w, ~wp) (2-11)
Band Stop: s + ——u b

2 4+
] (Uu(.l)z

High Pass: s +uw. /s

u

where
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upper cutoff

€
[

low cutoff

up

Five prototype filters will be discussed in this section:

Butterworth, Bessel, Transitional, Chebyshev, and Elliptic designs.

Butterworth: The Butterworth approximation to the ideal low pass

filter is defined by the squared frequency magnitude function
l6w) |2 = 1/[1 + (W2)"] (2-12)

where n is the order of the filter. The Laplace transfer function is

given by

G6(s) G(=s) = 1/[1 + (-1)Rs2D]

or
n
1 .
G(s) = I —ern
j=1 (s f bj)
where
by = ~eM[(1/2) + (2§-1)/2n] i = /T

J
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Bessel: The Bessel filter approximation for the linear delay function

e ' may be written

K
G(s) = —2 (2-13)
Bn(S)

where Kg is a constant term and Bn(s) are Bessel polynomials.

Bo =1
B1 =g+ 1

= (Ime 2
B, = (2n-1) B, *+s Bn-2

i/n
The roots of Bn(s) are normalized using the factor (Ko)

th

Transitional: The transitional filter combines roots of the n order

Butterworth and normalized Bessel filters according to a tramsitional
factor TF. Let
ry = magnitude of jth transitional pole

ry = magnitude of jth Bessel pole

ej = angle of jth transitional pole

D
|

15 = angle of §th Bessel pole

= angle of jth Butterworth pole.

<
N
[
1
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the poles of the transitional filter are then described by

rj = rleF

<D
L]

62j + TF(elj - ezj) . (2-14)

Chebxshev:' Chebyshev filters exhibit better cutoff characteristics
for lower order filters than do the above designs. Chebyshev type I

and type II filters are defined by

|6, (w)]? R (2-15)
1 1+ eZTZ(w)
n
and
1
|Gy (w)| = (2-16)
2 T (w,.) 2
1+ ¢ —_n_ T .
T, (w,./w)
where
m® = cos(n cos™1lu) 0<wx<1
= cosh (n cosh'lm) w >1
TO =1
T, = w
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= 242 -
T2 2w 1

T3(w) = 4w3 - 3w

The order of the filter n is determined by specifying inband ripple E

and the lowest frequency at which a loss of a db is achieved. Hence,

e = (108/10 _ 1)1/2
(2-17)

a2 = 102/10

and

cosh'lVAZ - 1/e

-1
cosh (wr)

n=

In equation (2-17), the variables E, a, or w, must be adjusted so the
n will be an integer. The type I filter differs from the type II in
that the type I exhibits equiripple in the pass band while type II

has equiripple in the stop band.

Elliptic: The Elliptic filter has equiripple in both the pass and
stop bands. Hence, this type design usually achieves the desired
frequency response with a lower order n than any of the above types.

The elliptic filter is determined by



2-73

1

lc(w)|? = (2-18)
1+ €22 (w)
where
K(k1) -1
. = sn [n"E?EY sn™L (w;k) kel n odd
’ Klky) -1
sn[K(k1)+ NE?EY_ sn (w;k);kll , n even
with
dw
f = Elliptic integral of the
0 [(1-02) (1-k242)11/2  first kind

sn[x;k] = w = Jacobian Elliptic function

K(k) = complete Elliptic integral of the first kind
/2 do
T a- K2s1n24)1/2
k = 1/m¥
k) = e(A2 - 1)-1/2,
e = (10E/10 _ 1y1/2
a2 = 102/10

where e, a, w,. were defined for the Chebyshev filter, the order n

is found by
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K(kl)K(k)

n=s—"——"—"—""-"
K(kl)K(k’)
with

K- = (1 - k2)1/2

o 201/2
1 1 kl)

=~
1

The result of any of the five design methods results in a Laplace

transfer function G(s) for the desired frequency response.

Sampled-Data Transformations. Once the continuous transfer function

G(s) has been determined, the transformation to the discrete or z-plane
is made. Three methods of transformation will be presented: the
standard z-transform, the bilinear z-transform, and the matched

z-transform.

Standard z-transform: The problem of converting a continuous filter

to a discrete one was presented earlier. It was shown that

1
«
~
N
~

]

2[G(s)]

and that
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E (s)

= (s) Z[G(s)]
s

But for small T

H
-3

Gho(s) *
Hence,

E (s)

TZ[G(s)] .
'Ei*(s)

Define the digital filter D(z) equivaleht to G(s) to be

D(z) = TZ [G(s)], ' | (2-19)

where Z[G(s)] is the standard z-transform of G(s). Hence,

n
D(z) =T ) M
: k=1, _ e'Tbkz—l

. Note that the standard z-transform can be used only on bandlimited

signals (f < £fs/2).
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Bilinear z-transform: The bilinear z-transform may be used to obtain

a discrete equivalent of G(s) as follows:

D(z) = G*(s)

s= /1A -zha+zHt (2-20)

Where G (s) is a continuous filter whose critical frequencies differ

from G(s) by
£7 = 1/7T tan (nf.T). | (2-21)

Relation (2-21) is used before the continuous filter G(s) is designed.
The new filter G (s) is designed instead and then transformed to the
z-plane by (2-20). The bilinear z-transform is a bandlimiting trans-
formation with relatively flat magnitude characteristics in the pass
and stop bands. However, the time response will be considerably
different.

Matched z-transform: The matched z~transform matches the poles and

zeroes of the discrete function to those of the continuous one. The

digital equivalent of the G(s) function is calculated as follows:

D(z) = G(s)

]

s+ay=1-zlea;T
-1_-b,T (2-22)
s + bj =1-2z"e";j
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I1f G(s) has no zeroes, it is sometimes necessary to multiply (2-22) by

-1,N

(L+2z ), N is an integer.

Summary: The standard z-transform is suitable for only bandlimited
functions, while the biliﬁeaf and matched z-transforms are suitable

for all filter types.b The matched z-transform requires G(s) in

factored form; standard, in partial fraction form; and bilineér,

in prewarped frequency form. The standard thransform preserves the
shape of the impulse-time response; the matched, the shape of the
frequency responsé; and bilinear, the flat magnitude gain-frequency
response characteristics. An example filter is designed and discretized

in the following example.

Design Exanple. In this section a digital filter will be designed

using the techniques summarized above.

Suppose it is desired to design a bandstop filter Gl(s) with

w,. = 200

2m(31.831)

wp = 170 = 27(27.056).

Multiplied times this filter will be a low pass filter Gz(s) with

0, = 600 = 2ﬁ(95.493), with a d. c. gain of 1.356., The band stop filter

will be designed from Butterworth, Bessél, and Chebyshev I prototypes

with n = 2. The low pass filter will be designed with n = 1. The

prototype of G,(s) = 1

s+ 1
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The prototype filters for Gl(s) are found below.

Butterworth: The Butterworth filter is defined by

16, (w)|? = L

1+wl‘

Gl(s)Gl(-s) =

1+ 54
1
G (s) = -
1 (S - 313‘"/4) (S - eis’ﬂ'/ll')
Gy (s) = 1

s+ vV2 s +1

Bessel: The Bessel prototype is defined by

Ko 3

By(s) s + 35+ 3

G(s) =

Chebyshev I: The Chebyshev I filter is defined by

16, (@)]2 = —

1+ ezTg(w)

T,y (w) = 202 -1

c = (10E/10 _ 1)]_/2
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A2 - 10a/10
cosh—l(v 2 )
n= A "1/8 = 2
-1
cosh (wr)

Let E = 1,33 db, then

e = (10133 _ 1y1/2

.Let the filter gain be down 6 db at w_

w_ = 1.098
r



Hence,

2 1

6] = 7—
w -w +1.25
1
Gl(S) =
(s + 1.057 /31.75°)(s + 1.057 /-31.75°
1

G (s) =

s + 1.308s + 1.118

The analog filters are designed from the prototypes by setting

G(s) = Gl(s) X GZ(S)

§ & ——mmm—mm— s=s/w,
n

and adjusting the d.c. gain to be 1.356. The resulting filter equations

are given by
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Buttetworth:
4468000s2+1.156X107
G(s) = 813.6 s oo Hbs
(s4+1272. 8s3+68900s2+4 . 3275X107 s+1.156X109) (s+600)
Bessel:
s4+68000s2+1.156X109
G(s) = 2440.8

(3s4+2700053+2.049X10552+9.18X107s+3.465X109)(s+600)

Chebyshev I:

s4+68000s2+1.56X107
(1.1188%+1177.283+7692452+4.0025%107 s+1. 2924X109) (s+600)

G(s) = 909.6

The filter equations above were plotted for db and phasé, ¢ , versus
frequency as shown in graphs 1, 2, and 3. Since the plots are nearly
identical, the Butterworth G(s) was chosen to be discretized by the
standard, bilinear, and matched z—transforms, with T = .001.

The Butﬁerworth design for G(s) may be written in partial fraction

expantion

40.567 2.4402X10~% + §7.5033%107°
s + 27.314  x + .35375 + j185.39

4+ 2.5502X107% - §7.5033%10"5
x + .35375 - §185.39
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+' 1642.1 , _-869.03

8 + 1244.8 8 + 600

The standard z-transform is taken

a
s +u 1 - e Uizl
and

a + ib + _a-1dib o [2a] + [2e"UT (bsinvT - acosvT)]z"l
s +u + iv s +u - 1iv . 1 + ['ze_UTCOSVT]z—l + [e-ZuT] 2—2

Hence,

4.0567X102 4.8803X10~7 - 4.420xX107z1
D(z) = +

1- .973062-l 1 - 1.9654z71 + .999292-2

1.6421 -.86903
+ +
1 - .28800z"1 1 - .548812z71

The frequency response of this function is found by letting z = gij.
The plot is shown in graph 4. Note that this response is entirely
inadequate. The standard z-transform is accurate only when G(s)

is limited to frequencies less than 1/2T, or in this case, 500 Hz.

This condition is violated as is seen in the plot of the continuous

Butterworth design G(s).
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The bilinear z-transform requires a prewarped frequency scale for

the Butterworth G(s) design, so

w

wg = %-tan ( 7; T).

unwarped
200
170

600

‘warped
200.67
170.41

-618.67

The Butterworth design_to be used in this case is

s/618.67

G(s) = L X L -
s2 +V2s+1 s
g o _5(200.67 - 170.41) .
s2 + (200.67)(170.41)
446839252+1.1694x109
G(s) = 838.92 s siHl. .
s%+1294. 853+69308s2+4.4279X107s+1.1694X10° ) (s+618.67)

G(s) = 838.92 (s2+3.4199%104)2

(5+26.987) (s2+.70708s+34199) (s+1267.1) (s+618.67)
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The bilinear z-transform is found by letting

D(z) = G(s)
c-2 l-3z
T 1+ -1
D(z) = .19509 (1-1.9661z"L4272)2 (14,71

(1—.973372'1)(1-L9654z'1+.999302'2)(l-.224332'1)(1-.527492'1)

The frequency response for this function is found with z = J®T and is
plotted in graph 5. Note that this plot closely matches graph 1.

The Butterworth G(s) may be factored as follows:

G(s) = 813.6 (s-3184.39) (s+1184.39) (s~j184.39) (s+j184.39)
(s+27.314) (s+.35375+3184.39) (s+.35375-1184. 39) (s+1244. 8) (s+600) .

The matched z-transform is given by

D(z) = G(s)

-aT -1
- e z

(s+u+iv)(s +u=1iv) = 1 - 2e"TcogvTz-] + e-zuTz-2
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and D(1) is set equal to 1.356, the d.c. gain. Hence,

I (1-1.96612" 142722
(1—.97036z'1)(1—1.9654z‘1+.99929z‘2)(1-.28800z‘1)(1-.54881z‘1)

D(z) = .3460

The frequency response of this function is plotted in graph 6. Note
that the matched z-transform (like the bilinear) gives a good approxi-

mation to the response of graph 1.

Digital Compensators [38]

Digital filters are often employed as compensators for discrete
control systems. Two common techniques for designing these compensators
are root locus and Bode plots. |

Root locus. A typical discrete-time closed-loop control system

is demonstrated in Fig. 20a. Let

n

z aiz-i
D(z) =k =0 (2-23)

n
} byz™t
1=0

where K is a variable constant and ag = bg = 1. The root locus
technique is outlined below

1. Find the characteristic equation

1 + D(2)Z[Gy,(s)G(s)H(s)]
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D(z) / . Gho(s

G(s)

-3

H(s)

f o C(s)

(a) Closed-loop Control System

increasing K
———

(b) Typical Root Locus

Fig. 20. Root Locus




2-93

2. Place the poles. and zeroes of D(z) inside the gnit circle
in order to make the rootS~of tﬁe chéracteriétic equatién
stable for some range of K. ‘
3. Vary'K from 0 to » and solve for the closed-loop roots of
the characteristic equation.
4. Choose an appropriate value for K.
In practice steps 2 and 3 are repeated on a trial and error basis. Once
the procedure is complete, D(z) in (2-23) is completely specified.
Bode plots. Bode plots are amplitude and phase plots for a
transfer function constructed using the asymptotic behavior of simple
first and second order factors in the numerator and denominator of

the function D(s). The plots are

db = 20 log|D(j2nf)]

¢ = /D(j2nf) .

Once the proper frequency fesponsevhas been found, D(s) may be mépped

to the z-domain using the bilinear z-transform.

Frequency Sampling [3]

Earlier in this report the technique of implementing a finite
duration impulse response filter in a recursive manner was presented.
The coefficients must be integer powers of the first one for this

technique to be applicable.
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Nonlinear Programming [34]

Nonlinear programming can be used to design both recursive and

nonrecursive digital filtera. The filter is written as

s 1+ aiz.l + biz'2

H = i (2_24)
() =¢ j=1 1 + ciz'l + diz'2
or
S -1
: a; + byz
H(z) = g+ ) 1”01 — (2-25)
i=l1 1 + ciz'1 + dyz
An error function is formed
2nf 2 2 :
E, = lu(ej i SY R £ T %Y k = 1,N (2-26)

where fi are the discrete frequencies, 2W is the sampling rate, and F
is the desired continuous frequency response. Note that Ey is every
where a differentiable function of ay, by, Cy» dij, and g. The errors

Ex must satisfy
=Ly < Ex < Uy k = 1,N. (2-27)

From (2-27) we may define
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A
G = QU - Ep
k (2-28)
A
He = QL + B, k = 1,N
where Q. > O.
A penalty function such as
N N .
Q+ ) L+ ) X (2-29)

is formed. A suitable computer program (such as the Fletcher-Powell
algorithm [39]) is used to minimize the penalty function with respect
to Q, g, a3 bj, ¢y, and dj. Then the factor r is divided by a factor
and the process is repeated until Q becomes nearly constant. If Q is
less than unity the procedure stops; otherwise, increase the number
of stages s of the filter and’repeat the above procedure until a Q

is found less than unity.

Optimal Digital Equivalent [40]

In this section the problem of determining an optimal digital
equivalent D(z) for a continuous filter G(s) is considered (see Fig. 21).
The coefficients of D(z) are determined by fitting the input and outputs

of the two filters. Let

eod(j) = eo(j), ' - (2-30)
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E (s)
E, (s) »  G(s) / > es(t)

*
V=100 B > et (0)

Ei(s)

Fig. 21. The Equivalent Filters



2-97

and

E (z) a 4+ a 27l geeeqq M
= .0 1 n-1 (2_31)

Ey(z) 1+ blz'1 +"'+bnz_n

The problem then becomes one of choosing ap and bp in D(z) such that
(2-30) is satisfied. A difference equation for (2-31) is
n-1

n |
eod () KE age; (i-0) - Ezl bpeyg(i-0)- | (2-32)

=0
Substituting (2-30) into (2-32)

n-1 ' n
e(d) = ] ape;(3-) - [en(3) + ZZ bpeo (3-£) ] | (2-33)
: L

=0

where e(j) is driven to zero by minimizing e2(j), the meén squared

error.

In vector form (2-33) becomes e(j) = gT(j)c - ey(j) where,

£T = [ao’-o-’an_i’_bl’oo.,_b ]

n
(2-34)
aT(3) = [eg () ** ey (i-ntl),eq(3-1), ¢+ e (3-m)].
The mean square error is
— N
e? = 1im 1/(281) §  e2(§) (2-35)

Noroo j=-N
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Equation (2-35) is minimized by

aez Y
==—=21lm 1/(2M1) § gq(3e(d) =0

ac Noeo j=-N
or
. N N
(1im 1/2M1 ]  g(q (e = lim 1/281 ]  g(ie,(3)
Noo j=-N N->c0 j=-N
[ ' N | i
R r
and

(2-36)
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(2-37) and (2-38) may be written

AB

[ ]
CD

rl = [E F.

elements of (2-39) are of the form

¢eiei(kT)
¢eie°(kT)
te e (kT)
deyeo (kT)
tejey (kT)
deqyeq (kT)

N

Ogy (kT) = lim 1/(28+1) |

Nooo

3=-N

x(J)y(G-k);

(2-39)

(2-40)

the ¢xy is the correlation function for discrete sequences. Since the

input signal power spectrum ¢eje;(s)and the analog filter G(s) are

known, (2-40) is deterﬁined by

Qeiei(kT)

¢eieo(kT)

and

tejeq (1)

-l[éeiei(S)G(S)]

T

'1[¢eiei(s)]

kT

T=

= @eoei (kT) N

(2-41)
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ve e (KT) = ~[deses(s)G(s)G(-8)]
. t = kT.

The digital filter determined above should have higher order than

its analog counterpart so'thét the mean squared error will be small.

Sample Designs

'In this section some example digital filters are listed.

~ Bandstop Filter

A digital bandstop filter was designed earlier in this chapter:

.34607 (1~1.9661z"1+z72)2

D(z) =
- - -1
(l-.97036z'1)(1—1.9654z'1+.99929z'2)(1—.28802 1)(1-.548812 )

(2-42)

The frequency response for T = 0.001 is shown in graph 6.

Digital Resonators

A digital oscillator is formed by placing complex poles on the

unit circle:

. 1
D(z) = (2-43)
1 - 2 cos(2 fT)z"l + 22

where T is the sampling period and £ is the frequency of oscillation.

Experimental results are available in [41].
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Digital Differentiators [42]

The differentiator is a necessary part of many practical systems.
The digital differentiator may take many forms; perhaps the best is

a forth order recursive design shown below:

1-aba-vzha-czha -dzh (2-44)

D(z) = A
1 -ez"bHa - fz71ya - gz71y@@ - 21

where
A = 0.36804011 e = -,10779165
a = 0.99999949 f = -.87602073
b = -0.86810806 g = 0.33494085
c = 0.32672838 h = 0.51312758 .
d = -.44183252

This differentiator was designed using nonlinear programming.
A nonrecursive wideband differentiator can be constructed for N

samples by the relation

i
]

k/(N/2) k = 0, N/2

Gk
(2-45)

(N-k)/ (N/2)

=
]

N/2 + 1, N -1,

If the center samples are adjusted to optimally minimize the magnitude

error for N = 16, then
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GN/Z = 0.92890015

G(n/2)-2 = 0+75000000

yields a peak error magnitude of 7 x 10'5 for an 80% bandwidth.

Low-Pass Filters [43-45]

Reference [43] presents some 9 ekample'nonrecursive low-pass filters
of order 11. The designs are found using prolate spheroidal functions,
least mean-square error, Fourier coefficients, windowing, binary
weighting, and minimax techniques. The reader is referred to Table 1

of [43] for the appropriate coefficients.

(/



III. COEFFICIENT QUANTIZATION

General [46]

One effect of finite wordlengths in digital computers is that the
filter's parameters, or coefficients, must be chosen from a finite set
of allowable values. Classical design procedures yield filter transfer
functions with coefficients of arbitrary precision which must be altered
for implementation using digital computing devices. One approach to
this problem is to select a filter structure (programming form for
the difference. equations) which is not sensitive to coefficient
1naccuraciés. For example, realizing a filter directly allows a
greater chance for instability than cascading or paralleling second
order modules because it is well known that the roots of polynomials
become more sensitive to parameter changes as the order of the polynomial
increases.

Any programming form, or structure, produces a grid of allowable
pole/zero locations in the z-plane. The proper structure to choose is
one for which the grid is most dense in the areas at which the poles/
zeroes must be placed for a particular design. It is obvious that
arbitarily rounding or truncating denominator coefficients could cause

poles to migrate outside the unit circle causing filter instability.

Instability Thresholds [47]

For low-pass filters, a measure of the number my of bits required

to represent the coefficients of a stable filter may be expressed as
2-104
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m = i - N log,(2m BT) o - (3-1)

where

B = minimum attainable bandwidth

i-1 N i
2 i([N/2]>< 2

»for';he.direct programming form. For the cascade form

2 - (mb - 2)/2
- B = 20T . : ' (3-2)

These stability thresholds are valid for filters designed uéing direct
synthesis in the frequency domain for sine and tangent Butterworth low-

pass filters. The results may be extended to other filter types.

Reduced Coefficient Wordlengths [48]

The cost of implemeﬁting a digital filter via a speéialqurpééé'
computer is directly related to the wordlgngth of its coefficients,
However, a short wordlength éan_cause large deviations in pole/zero
placement. Hence a compromise must be found. The following procedure
represents one solution to the problem.

Let the transfer function of the digital filtef be

H(z) = ————— | o | (3-3)



2-106
where ¢ = 1. If we examine the desired frequency response Hw around
o

the unit circle

ij)I

|Hw(e 1 1in passband

(3-4)

0 1in stopband.

and is unspecified in the transition regions. If the maximum passband

and stopband deviations are defined as Gp and Gs

JjwT juT

IHw(ejQT)I - || < s’

or

. 1
e(ed®Ty = ap [1 - lHn(eij)[ | in PB

-

ij (3-5)
) | in SB

Sg IHn(e

where € is the normalized error function and Hn(z) = K H(z), a normalized

transfer function.

The design of H(z) minimizes max e such that

max € < 1 (3-6)
using standard minimax procedures. If (3-6) holds for a set of parameters

a, then justification for searching for a second set a' of reduced word-

length which also satisfies (3-6), where
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T v
_é = [bo’ see, bm’ co’ LR IR cm] .
' The coefficients are usually found for the cascade or parallel form.

The search for a new set a' follows a modified univariate procedure

which is described below:

1. Several sets of parameters, say 10, are stored in order of
minimum max €. :

2. Perform a univariate search on the best set 3. If no improvement
can be found, try a,.

3. Stop the procedure when no better improvement is found for
any stored coefficient a;.

Generally, rounding of the coefficients is first performed. A
‘uﬁivariate search reduces max € by 25 tq 502 over rounding, while a
modified univariate séarch produces the best results reducing max ¢
by 25 to 50% over the univariate search.

.In general, the development of synthesis procedures for quantized

digital filter coefficients remains an active area of research.



IV. NONLINEARITIES IN FIXED POINT ARITHMETIC

In digital computer implementations for digital filters, the
restriction of finite wordlength produces several nonlinear phenomenon.
Quantization occurs at the input sampler and in the internal arithmetic.
Saturation and overflow also manifest themselves. Inaccuracies in
coefficient representation has been discussed previously. Other noteable

effects which must be examined are limit cycles and deadbands.

Quantization Errors

A digital filter specified by equation (3-3) is implemented by pro-
gramming constant coefficient linear difference equations. The program
for the difference equations will consist of the arithmetic operations,
multiplication and addition (subtraction), and data transfer operations.
The arithmetic unit of the computing device must be furnished binary
numbers for the coefficients and variables.of the difference equations.
Since each coefficient and variable is represented by a finite number of
binary digits, the binary numbers supplied to the arithmetic unit are
quantized versions of the real numbers expected in the differénce equation.
Hence the digital filter introduces quantization errors into the system

of which it is a part.

Quantizer Types [49]

Signal amplitude quantization results from A/D conversion of the
digital filter input signal, and from arithmetic operations with in the
computing device itself. Three common types of arithmetic quantizers
are shown in Fig. 22; the step-length of each quantizer is h. Fig 22a
illustrates the quantizing characteristic for a roundoff quantizer. The
roundoff quantizer approximates the input signal ey by the closest quan-

tized value eiq as follows: ) 8
=10
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hdn

4 —> >
h e4 h eq
(A) ROUNDOFF (B) TRUNCATION
A..
eiq
3 4
2h 4
h
+ + ~+ + t ~3»
h  2h 3h e,

«©) LSB-l

Fig. 22. Three Common Arithmetic
Quantizers.
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(4-1)

Therefore, the maximum error magnitude is %-. The properties of the
truncation quantizer is shown in Fig. 22b. This quantizer is less diffi-
cult to implement than the roundoff type; however, the approximation eiq
is less accurate:

0<e-e < h for ey >0

1 (4-2)

-h < e; - ejq < 0 for e; < 0.

Here the maximum error magnitude is h.

The third arithmetic quantizer presented in Fig. 22c is labeled LSB-1.
In LSB-1 the least significant bit of quantized binary words is always
set to "one." For this quantizer ejq 1s never equal zero.

-h < e -ejq<h fore >0

19 (4-3)

-h < e, - e.:

i ig £h for e; < 0.

Again the maximum error magnitude is h.
Signal amplitude quantization at the A/D converter usually takes two
forms. If the A/D converts the input signal magnitude to binary form,

then the quantizer characteristic of Fig. 22b for truncation adquately
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describes the effect of the A/D. However, if a bipolar A/D is used, the
bipolar property is usually obtained by an offset bias voltage which

causes the bipolar A/D quantization characteristic shown in Fig. 23. For

this quéntizer

0 <ej-esq<h ‘ (4-4)

and the maximum error is h.

In summary, the maximum error magnitude introduced by a quantizer

at a sampling instant is

Roundoff: _h; = h/2

, (4-5)
Others: h3 = h ,

The quantizers of Figs. 22 and 23 may be represented in a system as
an additional input error signal; this process is shown in Fig. 24. Using
thié model fér the quantizers, their effect on system response will now '
be considered. Mathematical analysis of quantizing erfors may generally
be déscribed as steady-state analysis, statistical analysis, and error

bound analysis. Each of these analysis techniques will now be presented.

Steadx-Staté Analysis [50]

The steady-state .analysis may be divided into three steps. Firét,

find the z-plane transfer functions Tj(z) from the jth quantizing error
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Ae
n-1 iq- SATURATION
h
-
— e e - e - - 2n—1h
SATURATION

N = WORDLENGTH OF A/D

Fig. 23. Bipolar A/D.
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ei(kT) eiq(kT)
(o) THE jth QUANTIZER
1 QUANTTZER
r= - - = I
| |
1 | n, (KT) |
| |
| |
|
| )

ei(kT) | l eiq(kT)
| |
o e J

(B) MATHEMATICAL REPRESENTATION

Fig. 24. Mathematical Model for a Quantizer.
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source Nj to the system output, e The total number of quantizers in

o.

the system 1s s. Hence,

s
Eon(z)-= jzl Tj(z)Nj(z), (4-6)

where Eon(z) represents the output due to quantization errors.

Second, assume each error source is a step input of the maximum

error amplitude h3 for the type quantizer being analyzed. Therefore,

Ny (2) = —— (4-7)

Substituting (4-7) into (4-6)

s T.(z) h!

Eg(2) = | =i, (4-8)
j=1 1 - z71

Lastly, apply the z-transform final value theorem [y(») = 1lim(1l - z'l)

z~>1
* Y(2)] to (4-8); thus,
s
eon(®) = lim Z T, (z)h!
z>1 j=1 1 3
L
= lim T (z)] hi.
j=1 L z»1 . 3
If one defines
KSsj = lim Tj(z) (4-9)

z~>1
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then

s
. (4-10)
€on (™) = jzl Kgsj By

Equation (4-10) may be used tofevaluate the éffect of each quantizer on the
‘system output under steady-state conditions. |

Another technique for finding the Kssj weighting constants for (4-10)
is derived as follows. The standard z-transform for tj(t) is

-]

Ty(2) = ] 5Dz | (4-11)
k=0 .

where kT represents a sample instant. Hence (4-9) becomes

K = t, (kT)
ssJ kZO 3

If tj(kT) tends to zero as kT gets large, say NT,

N .
Kegy = L 3D | (4-12)
k=0
may be used in (4-10) to calculate tke steady-state error. The terms
tj(kT) in (4-12) may be obtained from a simulation of the system by apply-
ing Njﬁi) = 1, a discrete impulse function,. Note that the weighting con-
stants are functions of the system characteristics and not of the quan-

tizers.
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Statistical Analysis [51]

If the input signal to a roundoff quantizer Qj has a dynamic range
of more than three step intervals hj, the effect of the quantizer may»be
determined by replacing it with a unity gain and an additive white noise
nj(kT) (see Fig. 24) with a rectangular amplitude distribution density
function p(nj) of bounds jhj/Z and height 1/hj. The LSB-1 quantizer can
also be replaced in this manner with p(nj) bounded by +h; and 1/2hy. The
truncation quantizer cannot be represented exactly in this manner, but
this technique does give a good approximation with p(nj) bounded by
ihj and l/2hj. Let us continue by analyzing the roundoff case which
can be easily extended to the others.

The variance ci of this rectangular distribution is

3

2 * 2 l‘i
ny = / njp(nj)dnj =1, (4-13)

=00

When the dynamic range of the input signal is greater than three
quantization levels, the noise input of the quantizer is essentially un-
correlated between successive sampling intervals, and the autocorrelation

of the quantization noise becomes

(==}

@njnj(r) nZ-mogj (T - |TI)/T ITI < T (4m10)

=0 lTI>T
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The sampled power density spectrum is defined by

@njnj(z) = ﬁz—co <I>njnj (nT)z™ ™ = onj-z‘ = -52— (4-15)

The mean-squared error output due to one quantizer error is

eonz(kT) = 1/2ni J(.annj(z) Tj(z)Tj(z-l)dz/z : (4-16)
I‘ .
where Tj(z) = Eon(z)/Nj(z), I is the unit cirecle, and i = Y=1. Substi-
tuting (4-15) into (4-16) and assuming that the total rms output error is

bounded by the sum of the s rms errors due to the quantizer inputs yields

s )
leon) rms i'jzl KStj hj ' (4_17>
where
_ 1/2
L : .
Kstj = [24n1 ij (z)Tj(l/z)dz/z] T (4-18)
r : :

The integral in (4-18) may be evaluated by calculating the residues of the

integrand.

Another technique for calculating the mean?square output error is by

using the following identity:

1 n/ig = 3 2
59 f F(z)F(1/z)dz/z = kz=0 f (kT)
I" .

Hence (4-18) becomes

| w | 1/2
i 2
Ksts [13 Lo 0D ]
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where tj(kT) 18 found from the impulse response in a simulation of the

system. If tj(kT) converges to zero for k large, say N, then

., X ,]1/2 |

This relation may be used instead of (4-18) for many applications.
Equations (4-18) and (4-19) are for roundoff only. They should be

altered by substituting hj = 2h3 into (4-17) for the general case.

Quantization Error Bounds [52]

th

Consider an n"" order system described by

x(k + 1) = Ax(k) + Dr(k)

(4-20)
eo(®) = Tx@) + d'r(®
where r(k) is a vector of the system inputs and e, (k) is the output.
The sampling interval T has been eliminated for convenience. The
introduction of quantizers into the system results in
Sk + 1) = Ax%(k) + Dr(k) - Bq(k)
(4-21)

e () = Tx1(0) + d"x ) - £a®)

where gq(k) represents a vector of the s quantizer error inputs nj(k). A

state variable representation for the quantization error
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v(k) = x(k) - x¥(k)

q (4-22)
eon(k) = e (k) - ey* (k)

results from subtracting (4-21) from (4-20)

vk + 1) = Av(k) + Bq(k)

' , (4-23)
e = el ) + £lg (k).

The general solution for (4-23) is.

N-1 -
v = A () + J. A'Bq(N - 1 - 1) (4-24)
=0 , ‘
N-1 | | -
eon = cTAN(0) + T cTalBq(N - 1 - 2) + £lq).
: =0

For N large,

]
v = )

N1 |
j 1( 1 A byJag - 1 - 0)
2=0 .

’ (4-25)
s N-1 T ' T
e (N) = ¥ ) ¢ Albj q; (N -1 -2) + £q(N).
on . = =yl -
: j=1\ 2=o0
th . th
where qj(N) is the j quantizer and Ej is the j column of the nxs

matrix B. Since, if a = be + de, Ialjjblxlcr+|d|x|e]
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N-1

A 8
pool < (1 1#nl)layer-1- 0]
J=1\L=0
and
s ,N-1 N '
A% |)n’ -
v < j§1< zzo | _j|> y | (4-26)

where h3 = |qj(n -1- z)|max is given in (4-5). Similarly,

s - s (4-27)
TR ' '
DRI R G E ) DR
In another form,
s
v, < jzl myhj
(4-28)
. s
Ieon(N)!max i'jzl Kubjhj
where
T 14t
= A'b ’ = 1,
= =0 —J . °
Kypg = 1 <l£TA’“£j|)+ l£51, 3 = 1, s. (4-29)
=0

Note that (4-29) gives weighting vectors mj and weighting constants Kubj

which are functions of the system and not of the quantizers. Hence, (4-28)
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and (4-29) are useful in helping to choose quantization error schemes for
systems with digital filters.
A second method for bounding the output error due to quantizer Qj

is from the transfer function

The impulse response is found with Nj(z) = hj.,Therefore,

Eon(2) = Tj(z)h.:] B [kEO tj(k)z-k] h_.; . - (4-30)

To calculate the worst case output error €on due to quantizer Qj

leon®™ |1 < [kzo‘ &40 1] hJ. | | (4-31)

Similar to the argument employed for equations (4=12) and (4-19)

S
leon(N) lmax h3 jzl KUbjh:']

where

N
Kubj ~ kZO [ty [, 3 = 1, s- S (4-32)

Equation (4-32) may be used to calculate the weighting constants Kubj

instead of (4-29).
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A summary of the results of the quantization analysis presented in

this section is displayed in Table 1.

TABLE 1: Quantization Analysis

8
Figure of Merit = I Constantj hj
i=1
Analysis Figure of Constantj
Method Merit
Steady Steady Kssj = 1im Tj(z)
State State Error z »>1
K : g (kT)
~ t
ss
3 k=oj
= 1/2
Statistical Root mean Kstj =11 Tj(z)Tj(l/z) dz
square error 6ni T z
[ N
K., *l1z eqam? |22
st] = k|
L3 k=0
N-1 1.8 )
Error Maximum Kby = L Ic A'b |+If |
Bound error
N
=) t; (kT)
Kubj k=0| j |

Open-Loop vs. Closed-Loop [53]

The quantization analysis procedures above are equally applicable

to open-loop or closed-loop systems. However, open-loop analysis of the

digital filter itself 1is perhaps the easier approach. It has been

shown in [49,53] that open-loop analysis can give satisfactory results

even if the filter is to reside in a closed-loop system.
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Limit Cycles and Deadband Effects [46,54,55]

Consider the digital filter

y,=x +85y,, »  8=0.5 - (4-33)

implemented in fixed-point arithmetic with roundoff quantization. If

the input x, is a impulse function of value 7/8

yo = 7/8

yp = 1/2

yg = 1/4 | (4-34)
y3 = 1/8 | |

Yo = 1/8 n>4

is the resulting output sequence. .Ideally the output should go to
zero. This type error is called a limit cycle, and the amplitude
intervals within limit cycles are called deadbands. The deadband for

(4-33) is

| .
Va1l = Blyp-1l 2 (52 b

where b is the number of magnitude bits. Hence

NIF*

(3)270
lyggl < —— . | - (4-35)

1 - |8]
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For the second-order filter

the deadband is
-b-1
lyn_zl :__Z________ : ‘ (4-37)

The deadband for higher order filters is directly dependent upon
the programming form. In general, the parallel form yields better
results because one need not be concerned with the ordering of cascaded

sections [54].

Saturation and Overflow [56]

When a filter is impleﬁented in one's or two's complement arithmetic

and signal values exceed the finite register length upper limit, a
overflow condition occurs and the results usually changes sign. This
condition can cause large limit cycles, called overflow oscillations,

to be excited. These osciliations may be avoided by using saturation
arithmetic as designed in [57,79]. One must be wary of this solution

for in many closed-loop control systems, saturating the signals causes
system instability. Saturation changes the filter output which

effectively alters, temporarily, the transfer function.
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. Dynamic Range [46]

The dynamic range of a binary signal xp of b + 1 bits is
b : '
0 < x| <27 - 1. (4-38)

Increasing the number of bits by one doubles the dynamic range. As

seen in the last section, it is important that the dynamic range of

a digital filter in many applications ne?ér,be exceeded. Hence, several
techniqueé may'to employed to find b.

One technique finds the least upper bound on the signal kn-and

uses (4-38) to specify b and hence this limit can never be exceeded.‘
More practical solutions use simulation of the filter with typical
inﬁuts to define the dynamic range of the internal variables. Some-

times statistical methods are used for non-deterministic input signals.



V. NONLINEARITIES IN FLOATING POINT ARITHMETIC

In the past there has been little emphasis placed on research and
analysis of quantization errors at the output of a floating point filter,
the reason for this being that most filter implementations use fixed
point arithmetic. Sandberg [58] was the first to study quantization
error analysis for floating point filters with [59-62] being more recent.

As in the case of fixed point filters, quantization error for floating
point filters has three sources due to finite word length. They are

1) the quantization of the input signal X, into a set of discrete

levels;

2) the representation of the coefficients of the filter, ap and

bk,.by a finite number of bits;

3) the accumulation of roundoff errors caused by arithmetic

operations.

Notation
If we assume the ideal output of the filter is w, and the actual
output y,, the error at the output of the nth sample e, may be defined

as
€n = Yn = Vn _ (5-1la)
where
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bz'[ N
wn = X, - b Wn-k
=0 <0 k=1 ©

(5-1b)
Before the effects qf the above error sources are discussed, the repre-
sentation of floating point numbers with a fixed number of bits should
be considered.

A floating point number is written in the form (sgn)Zb'a, where b
is a binary integer called the expoment énd a is a fraction between
1/2 and 1 called the mantissa. As expected, the_range of numbers that
can be represented is determined by the number of bits of the exponent.
In order to represent a number v in floating point form with a t-bit
mantissa, the smallest integer exceeding log, v is first determined.
Thisvnumber is denoted by [log, vl. The binary expansion of the fraction
v/flogy vl is then rounded to t bits. If (v), deﬁotes the t-bit mantissa

floating point approximation, it is seen that
W) =v(@ + g) ' (5-2)

where the error is bounded by -2"t <e < 2_t, or [-2,2).

Error Sources

Both addition and multiplication in floatihg point afithmetic
introduce roundoff error. Let (vl'vz)t and'(vl + v2)t denote,

respectively, the actual computed product and sum of two numbers vy

and V23 then
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(v1°vp)p = (vy V) (L + 6) (5-3)
(vl + VZ)t = (Vl +vo)(1 + €) (5-4)

where the errors 8 and e are bounded by [-27t, 27%),

The above errors will be regarded as random quantities and they
will be uniformly distributed in their range [-2t, 27t). Making these
and the above assumptions, a statistical approach will be discussed
which predicts floating point quantization errors.

First, consider the effect of input quantization. Supposing
the quantizer has equal step size h, the input to the filter is
x, + eg where each eg is bounded by -(h/2) §_e8 < (h/2). Since the
filter is linear, the output is the sum of the two components, Xp
and eg. In determining the effect of input quantization, eg is
considered as white noise with a zero mean and variance h2/12. The
steady-state output component due to eg is a zero-mean wide-sense-

stationary (w.s.s.) sequence with power spectral density
H(z)H(1/z) (h2/12) (5-5)
where H(z) is the transfer function of the filter as repeated below

M N
Hz) = ( ] az™)/Q+ ] bz (5-6)
k=0 k=1
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Thébeffect of coefficient inaccuracy on roundoff accumulation has been
ignored.

An expression fof the mean-squared value of the error at the
filter's outpﬁt due to input quantization is obtained by integrating

the power spectral density (Equation (5-5)). It is equal to

1/2nj~}}H(Z)H(l/z)(h2/12)]/z dz : -7

Coefficient Quantization

Considering the effect of coefficient quantization, it is seen
that each coefficient is replaced by its t-bit representation
according to (5-2). This means the coefficient a, is replaced by
(ak)t’ which equals ap(l + o), with’dk bounded in absoluté value
by 2-t, Likewise, each bk is replaced by (bk)t which is by ( 1 + Bk)'
Because of this, it is abvious that the filter characteristics will
change. The problem can be approached in several ways. The first,
and the simpliest, is to compute the frequency response of the actual
filter with t-bit rounded coefficients by using the actual transfer

function
- M N '
H)], = ( ] (a)e 2799/Q + ] (b)) 27" . . (5-8)
k=0 k=1

and then comparing the result with the ideal response of the original

design.-
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Coefficient rounding can cause movements of the poles and zeroes
of the transfer function. When this happens, network sensitivity
theory can be applied to study the changes of the filter response.

If the poles of H(z) are at Z: i =1, N, and the poles of [H(z)]t

are at zy + Az4, it can be shown that

7 k+1 N '
pzg = 1 [T W @ - (24/2,))]/8ay (5-9)
k=1 m=1
m#i

where lday is the change in the coefficient a,. Likewise, reéults can
be obtained-for fhe movement of the zeroes. The change in the filter
response can be studied from these movements.

Instability of a filter may occur, due to coefficient error, when
a filter has poles that are close to the unit circle in the z-plane.
The problem can be serious when the sampling rate of the filter is
relatively high, even for low order filters in the direct form.
Kaiser [62] has demonstrated that for an Nth-order low-pass filter
operating at a sampling rate of 1/T with distinct poles at e_ka,
stability is guaranteed if the number of bits used m satisfies the

inequality

N
m, > [-log,[SA /2M2) ( 1 p,T)]] (5-10)
k=1

where the bracket denotes the samllest integer exceeding the quantity

inside. It is also possible to extend the result to include multiple
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poles and to derive similar results for filters of other than low-pass °
type.

The effect of coefficient inaccuracy is more pronouncéd for a
high-order filter when it is realized in the direct form than when
it is realized in the parallel or éascade form, which suggests the
parallel or cascade form should be used for high-order filters when
possible. Further details on coefficient quantization are given in

Chapter 3.

Output Error

Roundoff accumulation error for floating point filters [59-61]
is quite different from that of fixed point filters and consequently
will be treated with more depth than that of fixed point. The errors
introduced are relative to Equations (5-2), (5-3) and (5-4). The
calculation of the statistical mean-squared error at the output will
be discussed for the direct programming form with the understanding
that extension to other forms is easily accomplished [61].

It has been shown that for floating point arithmetic the actual
filter coefficients are ak(l + ap) and br(1 + Bk) where ajp and Bk are
bounded in absolute value by 2~t. The actual computed output ¥n is
given by

M

: ' N .
vy, = £2I k-—z-O a1 + o )x ) kzl b (L + Bidy ] (5-11)
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where f£[ ] denotes the actual computed result by floating point
arithmetic of the quantity Iinside the brackets. It is assumed that
the computation of (5-11) is carried out in the following order: the
‘products ap(l + op)x,_; and by (1 + By)¥p-i are first formed; the two
sums are then calculated; and finally the difference is taken to give
Yn° Each of these arithmetic operations introduces a round-off error
which is characterized by (5-3) and (5-4). A flowgraph of this operation
may be drawn, as is shown in Fig. 25, which includes all the roundoff
error introduced in the calculation of y,. From Fig. 25, it is seen
that dn,k is introduced when the product of ak(l + ak)xn—k is formed,
and 5n,1 is introduced when the computed products of ao(l + ao)xn and

a;(1 + a))x,_; are added. The actual output y, is then

M N
Yo = kZO ag (L + o )8 1%y p = kzl b (L + By 1Yk (5-12)
where
M
o= A +E)A+68, ) T (1+1z,;7)
i=1
M
On,k = A+ EDQA + 6, ) 1§k QA+, 4)s k=1,2," M
N
on,1 = a+ En)(l + en,l) I @+ nn,i)
i=2
N
¢n,k = (1+£)Q+ e k) T (1+mn,4), k=23, L (5-13)

4=k
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a°(1+00)xn . ¢ b1(1+81)yn_l
14§ : ' 4e_
n,o n,
1+¢Sn 1 : 1+En 2
1 b4
a, (I+a))xO7 by (+8y)y2
1+;n,l 1+nn,2
146 1+e
R n,2 _ L ____on'3 b3(l+33)yn_v_3
a2(1+a2)xn_2
1+
n,2 14n

1+6
QbN(l+BN)Yn_N

=

(o
aM ( l+qM) n-M

Fig. 25. Flowgraph of Equation (2-81).
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The quantities Gn,k; %n,k’ "n,k’ €n,k’ and £  are the errors introduced
at each arithmetic step and they are independent random variables uni-
formly distributed in [-27t, 2-t),

From Equations (5-1) and (5-12) it can be shown that the error

e satisfies the following equation:

n

N
) bee =u' +u" (5-14)
k“n-~
k=0 n-k n n

where bo = 1 and

M N
u' = ) aox . - J bBw _
n k=0 k*k*n-k kel k"k n-k
M N
no_ 8 - - -1 -15
uy kZO 3 (Op ke ~ Dx kgl by (e = Dvipge (5-15)

In the above equations u!

n is due to coefficient rounding; u; is due

to roundoff accumulations and the input X, is zero mean and w.s.s.

Both components uﬁ and u; have zero mean and are w.s.s., and they are

uncorrelated, this being because 8, . and ¢, y have a mean equal to 1
H H]
and are independent of x, and LA

From Equation (5-14), the error sequence e, is zero mean and w.s.s.

with a power spectral density related to those of uy

and ug by

Pee(2) = [1/(D(2)D(1/2)] [8y1 1 (2) + O nyn(z)]. (5-16)
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o,y (2) is calculﬁted from Equation (5-15) and is given by
8 1 1(2) = IB(2) - K(2)A()]" [B(L/2) - H(1/2)A(1/2)]8, (z)  (5-17)

where H(z) (Equation (5-6)) is as previously defined and

N
_ -k
A(z) = kzl b, By2
M |
B(Z) = z akakz'k . (5-18)
k=0

Concluding from Equations (5-13), and (5-15), ug is white noise with

power spectral density as follows;

¢u;.u;.(z) = q%/2nj f(F(Z) + G(z)H(2)H(1/z)
-N(1/2) [D(z) - 1]H(=z)
-N(2) [D(1/2) - 1]H(1/2))%,(2)/z dz (5-19)

M :
where N(z) =) akz—k is the numerator of the transfer function in
_ k=0
Equation (5-6) and

11
F(z) = a.F z
k=0 1i=0 ot k,i

k-i
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N Ig .
G(z) = ) b a,G, (z+
Lyl TR
M+ 2 - max(k,i), k#iork=1=0
Fo g =
L M+ 3 -k, k=1i#0
N + 2 - max(k,i), k#iork=1i=1
Cp,i =
N+ 3 -k, k=1i#1 (5-20)

The mean squared value of the error e, can now be calculated from

¢ee(z) by using

E{ei} = 1/2ﬂj Jﬁ @ee(z)/z dz. (5-21)



VI. PROGRAMMING FORMS

The structure of a digital filter is described by a unique set
of constant coefficient linear difference equations. These difference
equations constitute the digital filter's programming form. As a general
rule, for any programming form the lower the order n of the filter
transfer function the smaller the efror introduced into the system by
coefficient and signal amplitude quantization. Consequently, a nth
order filter is usuaily factored into second-order modules which are
paralleled or cascaded to realize the higher orders. The second-order
is chosen so that complex poles and zeroes are realizable.

The z-transfer function for any second-order module may be expressed

a + alz'l + azz"2
(6-1)

D(z) =
1+ blZ 1 + bzz_z

The eleven programming forms presented here will be for the second-order
module of equation (6-1). For a higher-order digital filter, the following
procedure applies: 1) Section D(z) into second-order modules, 2)analyze
each module using the computef—aided design brocedure to be developed
1atef, and 3) cascade (or parallel) the resﬁlting designs to realize the
original D(z).

This section will summarize, for equation (6-1), eleven different pro-

gramming forms and the attributes of each needed for quantization analysis
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by steady-state, statistical, and upper-bound techniques. 1In particular,
the transfer function Tj(z) from the jth quantizer to the filter output
for equation (4-9) and (4-18), and the discrete-time difference equations
necessary for the impulse response from the jth quantizer to the filter
output for equations (4-11), (4-19), and (4-32), will be listed for each

programming form. The tabulation of the eleven programming forms is

a result of [38, 63-66]. Many others are possible as seen in [67-70,76].

The direct progr;mming form for equation (6-1) is shown in Fig. 26.
This form has am A/D or inmput quantizer, Q;, digital-to-analog (D/A) or
output quantizer Q, and one internal feedback quantizer Q3. The transfer

functions from each quantizer to the output are

Tl(z) = D(z)
Tz(z) =1 (6-2)
-1 =2
b,z + b,z
T3(z) - 1 2

1+ b]_z"'l + I:uzz'2
The integrands for equation (4-18) are thus

2
12 + az)(a0 + a,z + a,z )/b2

z z(z2 + byz + bz)(z2 + blz/b2 + 1/b2)

Tl(z) Tl(l/z) ) (aoz2 + a

T,(2) T,(1/2)

z

1 (6-3)
Z
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e (k)q3

Fig 26, The Direct Form.
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@ T3/ gz b (b ¢ bz’ /b,

z z(z2 + b,z + b2)(z2 + blz/bz + 1/b2)

For programming and impulse testing the difference equations for the

direct form are

ei(k)q = ei(k) + nl(k)
eo(k) = aoei(k)q1+ alei(k - 1)q1+ azei(k - Z)q1

-bleo(k - 1)q3 - bzeo(k - 1)q3 (6-4)

eo(k)q, = ey (k) + n,y(k)

eo(k)q3 = eo(k) + n3(k).

The filter output variable is eo(k)qz' This completes the description of
the direct programming form.

For all eleven programming forms the standard notation of Q; for
the filter input quantizer and Q2 for the filter output quantizer has been
adopted for convenience. The transfer functions Ty(z) and Tz(z) are then
always to be for the input and output quantizers respectively. These
transfer functions will be identical for all the programming forms as

given in equation (6-2),

Modified Direct Form

The modified direct programming form for equation (6-1) is shown in

Fig. 27. This form differs from the direct form only in the feedback
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Fig. 27. The Modified Direct Form.
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loop. This form has two internal quantizefs; Q3 is identical to the
direct form hence T4(z) is given by equation (6-2); Q, has been added and

its transfer function to the filter output is displayed below:

z—l

1+ bzt + bzz_l (6-5)

T4(Z) =

The integrand for equation (4-18) for Q4 becomes

T,(2) T,01/2) 2% /b,

(6-6)

2 2(z + byz + by) (2% + byz/b, + 1/by)

1

For programming and impulse testing the difference equations for

the modified direct programming form are

ei(k)q = ei(k) + nl(k)

eo(k) = aoei(k)q + alei(k - l)q + azei(k - 2)q

+ m(k - l)q
eo(k)q2 = eo(k) + nz(k) (6-7)
eo(k)q3 = eo(k) + n3(k)

m(k) = —bleo(k)q3 - b2eo(k - 1)q3

m(k)q = m(k) + n4(k).
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Standard Form

The standard programming form for equation (6-1) is presented in Fig.
28; This form has two internal quantizers, Q3 and QA’ Their transfer

functions to the filter output are

1

T,(2)
3 z2 + b,z + b2

1 (6-8)

Z+bl

T4(Z)_

7 .
2 + b,z + b2

1

The integrands for equation (4-18) are

T,(2) T5(1/2) z2/b2

z z(z2 + b,z + b2)(z2 + blz/b2 +'1/b2)

1
(6~9)

T,(2) T,(1/z2)  (z + b)) (z + byzA) /b,
z 2

z(z" + byz + bz)(z2 + blz/bz + l/bz)

The difference equations for this form are

ei(k)q = ei(k) + nl(k)
eo(k) = aOei(k)q + my(k - l)q

eo(k)q = eo(k) + nz(k)

my (k) = aje; (k) = bymy(k - 1)g = bymy(k - D, (6-10)
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Fig. 28, The Standard Form.
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ml(k)q = ml(k) + n3(k)
my (k) = alei(k)q + ml(k - 1)q

mz(k)q = mz(k) + n4(k)
where

ay) = a; - aob1

Modified Standard Form

Again the modified standard form is for D(z) as expressed in equation
(6-7) and is demonstrated.in Fig; 29. This programming form differs from
the standard form in its feedback loops. The same internal quantizers
are present as before with a fifth quantiéer added. The transfer func-

tions for the three quantizers are

T4(z) = T3(z) in (6-2)
T4(z) = T3(z) in (6—85
T5(z) = Té(z) in (6-5)

Hence, the integrands for equation (4-18) have been previously shown.
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Fig. 29. The Modified Standard Form.
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For prbgramming, etc., the difference equations for the modified

standard form are

ei(k)q = ei(k) + nl(k)
eo(k) = aoei(k)q + my(k - 1)_q
eo(k)q2 = eo(k) + nz(k)
eo(k)q3 = eq(k) + n3(k)

: (6-11)
ml(k) = azei(k)q - bzeo(k)q3

my(k) = age; (kg + my (k - g - breg (kg

mz(k)q = my(k) + nS(k).

Canonical Form

The block diagram for the canonical programming form limited to
the second-order module of equation (6-1) is shown in Fig. 30. This

form has only one quantizer Q3 whose transfer function to the filter

output is given by

T3(z) = D(z).
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Fig. 30. The Canonical Form.
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Therefore, Q4 has the same effect as the input quantizer on the filter
output. The difference equations including quantization are shown

below:

e () = e; () +n (k)
m(k) = e;(k)q - bym(k = 1) - bym(k = 2),

m(k.)q = m(k) + n3(k) :
: (6-12)

eo(k) aom(k)q + alm(k - l)q + azm(k - 2)q

eo(k)q = eo(k) + nz(k).

‘Modified Canonical Form

The modified canonical programming form for tﬁe second—order D(z)
of equation (6-1) is depieted in the bloék'diagram of Fig. 31. Thisvpro-
gremming form differs from fhe canonical form by its_fofward transfer |
paths. By movihg the muleiplier coefficient from m(k)q to ei(k)q the

transfer function for Q3 is changed:

a2z + a :
2
T3(Z) = 2 1 N (6"13)
2 + blz + bz
‘ where
al = al - aobl

0.2 = az - aobzo
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Fig. 31. The Modified Canonical Form.
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The integrand for equation (4~18) for this transfer function is

T3(z) T3(l/z) L (alz + az)(alz + azzz)'

(6-14)

7
z 2(z” + byz + bp) (2% + byz/b, + 1/by)

The difference equations for the modified canonical programming form are

shown below:

e, (1) = e, (k) + 0y (k)

eo(k) = aoei(k)q + alm(k - l)q + a2m(k - 2)q

eo(k)q'= e (k) + ny(k) | .(6—15)

m(k) = ei(k)q - blm(k - 1)q - bom(k - 2)q

m(k)q = m(k) + n3(k).

Thé six programming forms discussed to this point have all required
the programming coefficients a; and bi of equation (6-1), or were easily
calculated from them. The last five forms which are to be presented now

will require more effort to find the correct form for D(z) and the proper

programming parameters for the difference equétions.
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Parallel Form

The general block diagram for the parallel programming form for
a second-order D(z) 13 shown.in Fig. 32. The form may be used if
and only if the second-order module has real poles p; and p,. Hence,
D(z) must have the form

D(z) = ao + P11+ &y (6-16)
z-p;  z-p, -

The constants R1 and R2 are real numbers representing the residues of

poles P, and pz,and Py should be different from Py-

The coefficients g; shown in Fig. 32 must satisfy the following

relationships:
8182 = R

152 1 (6-17)
8384 = Ry

In order to minimize the magnitude of the parameters g; the following

choices were arbitrarily made:

gl= ‘lRll
8y = Ry/g;

g3 = VIR,

(6-18)

The transfer functions from the internal quantizers to the filter
output were obtained:

82

T3(z) = (6-19)
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Fig. 32. The Parallel Form.
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84

T (z) =
4 z=p, -

The integrands for equation (4-18) corresponding to (6-19) are

T3(z)T3(1/z) = —gg z/pl

z z(z-py) (z-1/py)
- ! ! (6-20)
- o2
Ta(z)Ta(llz) = -g, z/py
z z(z-pj) (Z'l/Pz) .
The difference equations for the parallel form are
ei(k)q = e;(k) + ny (k)
ey (k) = aoei(k)q + gzml(k-l)q + g4m2(k—1)q
eo(k)q = eo(k) + nz(k)
(6-21)

m (k) = ge; () + pymy (k-1)
ml(k)q = my (k) + nj(k)

m, (k) = g3ei(k)q + pzmz(k—l)q
my (k) = my(k) + ngk) .

Please note that the parallel form can realize only real poles, but

it is capable of realizing either real or complex zeroes.

Cascade Form

The cascade programming form for a second-order digital filter
module essentially factors the module into first order stages and
realizes each stage individually. If each first order stage is

implemented in the manner of Fig. 30; the resulting cascade form is
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shown in Fig. 33. A requirement for this form is that

D(z) = a, (z—q;) (z-q;) (6-22)
(Z-Pl) (Z'Pz) ’
where q; and p, are real zeroes and poles. Also, the following
i v

relationships must be satisfied:

aO = g1g2g4

83 7882 - . (6-23)

8 ="8,8,

The cascade form has two internal quantizers which are described

by the transfer functions

T3(Z) = D(Z)/gl
(6-24)
T4(Z) = 8y 279
7,
The integrands for equation (4-18) are
T3(Z) T4(1/2) = 1 D(z) D(1/2)
81 z
. ‘
(6-25)

T,(2) T,(1/2) = -g;(z=p) (1-4,2) /p,

z z(z—pz)(z-l/Pz) .

The difference equations for this cascade form are displayed below:

ei(k)q = ey (k) + n;(k)
. (6-26)

ml(k) = glei(k)q + lel(k-l)q

mi(k)q = ml(k) + n3(k)
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Fig. 33, The Cascade Form.
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my(k) = gymy (k) + ggmy (emD)g + pymy(k-1)
mz(k)é = m,(k) + n4(k)
eo(k) = gymy(K) + ggmy(k-1)
ey () = eg(k) + my(k) .

The parameters g;, i=l, 5 in equation (6-26) must be found using (6-23).
Since there are three equations with five unknowns, an arbitrary choice

for g; and 89 is made as follows:

g1 = 1.0

By = Vlaol.

If a, is zero, this form cannot be realized.

(6-27)

This completes the cascade form. In summary, this programming form
. .

is applicable to a second-order digital filter module when it is

possible to cascade first-order stages programmed in the canonical form.

Modified Cascade Form

Of the many possible ways of implementing first-order stages,
one other techrique was selected which employs the modified canonical
form for each first-order section (see Fig. 34). This programming
form is labeled modified cascade; it requires D(z) to be factorable
into real poles and zeroes as in equation (6-22).

The transfer functions from the three internal quantizers to the

filter output are given below:

T,(2) = g384(2-q3)

(z-p1) (2-py)
1 2 (6-28)
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%/

AR Ao
m3(k eo(k)

m3(k)q
<"2|

Fig. 34. The Modified Cascade Form.
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Z;q2
14(2) - g4 .
P2
TS(Z) = g6
Z-Pz ’
where the parameters g, are restricted by
8184 = 3
8,83 = (P1-97)8; (6-29)
g858¢ = (P,-4,)8, -

Since there are three equations and six unknowns, arbitrary choices

are again

made for 81> 89» and g, as follows:

g1 ~ Mgl

g, = (pyt1)/2

g3 = (P1741)8,/8 ' (6-30)
8, = ao/gl B

gs = (py+1)/2

gg = (Py=4,)84/85

Using these parameters, the following difference equations may be used

to implement this programming form:

e, (k) = e; (k) + ny (k)

m, (k) = glei(k)q + g3m1(k—1)q

my (k) = mp(k) + ng (k) (6-31)
eq(k) = g my (k) +.g6m3(k—1)q

eo(k)q = eg(k) + n,(k)

m, (k) = gzei(k)q + plml(k-l)q

ml(k)q = m (k) + n3(k)
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n () = gomy() + pyml-l)

X1 Structure

The last two programming forms to be presented are designed
for a second-order D(z) with complex poles. The appropriate

expression for the transfer functiom is

- %
D) =2 ¥ AT S (6-32)

where a, has been previously defined, p and p* are complex conjugate
poles, and A and A* are complex conjugate residues.
The first implementation of (6—32) is depicted in the block diagram

of Fig. 35. The parameters indicated in the figure are defined below:

-Re (p)

= Im (p)

(o]
[\
[

(6-33)
2 Im (A)

2 Re (A) .

&4

The two internal quantizers, Q3 and Q4, are described by the

transfer functions

T3(z) = 82 (6-34)

The corresponding integrands for equation (4-18) are

Ty(2) T,(1/2) = g2z’/b,
z z(z2+b z+by) (22+by2/by+1/by) (6-35)
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e, (k)q

Fig. 35. The X1 Structure.



2-162

T,(2) T,(1/2) = (z-g;) (z-g1z9)/b,
z z(22+blz+b2) (zz+blz/b2+1/b2) .

The difference equations for the XI structure are enumerated below:

ei(k)q = ei(k) + nl(k)

e (k) = aoei(k)q + mz(k—l)q 636

6-3

eo(k)q = e, (k) + nz(k)

my (k) = g3ei(k)q + glml(k—l)q - gzmz(k—l)q

ml(k)q = my (k) + n3(k)

mz(k) = g4ei(k)q + glmz(k—l)q + gzml(k—l)q

mp (k) = my(k) + (k)

X2 Structure

The last programming form presented in this paper is the X2
structure of Fig. 36. The transfer function D(z) must be expressed
in the format of equation (6-32) in order to use this form.

This programming form has two internal quantizers whose transfer

functions to the filter output are

= + -
T,(2) = g3z + (8,8, - 8;83) (6-37)
2% + byz + b,
T,(z) = 8% ~ (gzg3 + 81g4)
22 + blz + b2 >
where
gl ==Re (p)
gz = Im (p)
(6-38)
33 ==Im (A)

g, = Re (&)
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Fig. 36. The X2 Structure
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The integrands for equation (4-18) are

T4(2)T4(1/2) = (g52+8)) (842+8,2%) /by

z z(zz+blz+b2) (zz+blz/b2 + 1/b2)

(6-39)

TA(Z)TA(llz) = (g4z+62) (g4z+6222)/b2

z z(z2+blz+b2)(zz+blz/b2+l/b2)
where
61 = 8,8, ~ 8183

8y =883 = 8184 -

The difference equations for the X2 structure are listed belqw:
e; (k) = eg (k) +1;(K)
eq(k) = age; (k) _ + gamy(k-1)q + gzm,(k-1)q
o 0=i‘tgq 371 472 (6-40)
eo(k)q = ey(k) + nz(k)
ml(k) = glml(k_l)q - gzmz(k'l)q
my(k) = 2 ei(k)q + glmz(k-l)q + gzml(k--l)q
mz(k)q = my(k) + n4(k)

This completes the X2 structure.

Summaryv of Programming Forms

This section has summarized the essential characteristics of
eleven programming forms for a second-order digital filter module.
All of the equations necessary to perform steady-state, statistical,
and error bound analyses have been determined. A pattern may be

observed in the formats of the relations for equation (4-18), the
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residue evaluation equation for statistical analysis. All of the

integrands fall into the foliowing formats:

Fi(z) = Y3(Yozz+vlz+w2) (Yo+le+Y222)

z(zz+b z+by) (z2+blz/b2+1/b2)

1 (6-41)

or

F,(z) = va(z-vy) (1-v;2)

z(z-vo) (z=1/vy) .

Table 2 displays the respective equations for each programming form

using equation (6-41).

. Many other characteristics of each programming form should also be
investigated; for example, the coefficient sensitivity and the deadband

effects are also important for good digital filter operation.
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Table 2. Integrands for (4-18).
Parameters
Programming Quantizer Format| vy, Y1 Yy Y3
Form
Q, =
Direct Qs Fl 0 by boy 1/by
Modified Qs Fy 0 by by 1/b,
Direct
Q Fy 0 0 1 1/by
Standard Q3 Fy 0 0 1 1/by
Q, Fq 0 1 by 1/b,y
Modified Q3 Fy 0 by b, 1/b,
Standard
Q, Fq 0 0 1 1/by
Qs Fq 0 0 1 1/by
Canonical Q3 Fy a, ay a, 1/by
Modified Qy F, | 0 al a2 1/b,
Canonical
Parallel Q3 Fy Py 0 —g%/pl
2
Y Fa | P2 0 ~8,/P1
2
Cascade Q, Fy a, a; a, l/glb2
: 2
Q, Fy P, q -83/p,

e 2.2
Modified Qg F 0 1 -4, g3g4/plp2
Cascade )

A Fp 1 Py 1, ~8,/p)
2
Q5 F2 PZ 0 —gG/PZ
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Table 2. Integrands.for (4-18). (Cont'd)

. » [ Parameters
Programming Quantizer [ Format Yo | Y1 Yo Y3
Form
X1 Structure 2

Q3 Fl 0 0 1 g2/b2
X2 Structure Qq F 0 g, 81 1/by




VII. COMPUTER AIDED DESIGN

In the design of complex system, the digital computer serves as
an essential tool in synthesis and design verification. Computer
aided design (CAD) programs are effectively employed in the synthesis
of digital filters in three ways: transfer function synthesis,

coefficient quantization, and programming form selection.

Transfer Function Synthesis

The digital computer has been used extensively in the design of
digital filter transfer functions [30,71-74]. Nonrecursive designs
using linear programming has been implemented by Rabiner [73] while
Parks and McClellan [72] using polynomial interpolation techniques.,
Rabiner et al [30] also used é steepest descent technique to obtain
FIR filters with minimax error in selected bands.

Recursive digital filters have been synthesized using sampled
data transformations by Golden [71]. Robinson and Robinson [74]
have demonstrated a CAD program for taking z-transforms. Steiglitz
[75] has used nonlinear optimization techniques to obtain recursive

digital filter approximations to arbitrary frequency responses.

2-168
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‘Coefficient Quantization

Avenhaus [48] has investigated the effects of coefficient optimi-
zation for reducing thé coefficient wordlength. A given filter is
designed and its coefficients are founded. Then an optimizing search is
undertaken to find other sets of coefficients which meet the design
criteria with a shorter wordlength.

Much work is left to be done in the proper quantization of digital
filter coefficients and CAD will surely play a major role in future

developments in this area.

Programming Form Selection

A CAD program, listed in [49], has been developed which analyzes
the signal amplitude quantization-errors in the eleven programming
forms presented in Chépter 6. The program, written in FORTRAN Iv,
is an aid to implemgnting digital filters for any application, the only
restriction is that the filtersbbe expressable as second order stages

as shown in equation (6-1).

General
The filter implementation program actually consists of eleven
parts, one for each programming form discussed in the previous section.

Each programming form is analyzed using steady-state, statistical,
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and upper bound techniques. The system weighting constants KSs s K

j* “stye

and K, . are calculated using the equations of Table 1. K and K
ubj ssj stj
were computed by both equations for debugging purposes; Kubj was

determined using tlie second equation. A weighted average of these

constants was also used:

Kyaj = Alesj + AZKstj + ABKubj ’ (7-1)
where
)\l+)\2+>\3=1.
Therefore, a weighted average error can be calculated by
=} ’
le,] = ) K _.h, . (7-2)

The weighting constants A; may be adjusted by the designer to emphasize
the steady state, statistical, or upper bound errors.

The filter implementation program may be used in two modes, one
for stored-program computers and one for special-purpose hardware; the
two modes are distinguished by the manner in which the quantizer step

lengths are chosen. In both the assumption is made that truncation
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(or LSB-l) quantizers are used in the system. All errors must be
halved by the user if foundoff quantizers are present.
In the stored program mode the maximum error hj of the jth
quantizer is fixed by first simulating the ideal digital filter
response to a "worst case" step input, which is an A/D input word
of all "ones." During the transient response to this.step, the |
maximum value of the filter output and internal variables is recoxrded.
After the simulgtion has run a sufficient number of iterations for conver-
gence, sav 100, the maximum values are rounded up to the nearest
power of two. Since the computer wordlength is a fixed number L.,

the quantizer intervals are found by

] .
hj = llvarlmaxl rounded-up (7-3)

,2Lr
, ,
hy is always assumed equal one.
In the special—purpose computer mode the register lengths are

. - 1]

not fixed; therefore, a different method is used to find hj. The
philosophy of this mode is to balance the effect of each quantizer
in the system so that they all have relatively equal error contribu-

tions. This balancing is done by dividing equation (7-2) by K .

(with hj = 1):

8 1
[e,] =1+ Kyai \hi
_o.___‘."f i=2 at (7-4)

KWal KWal *

Each term in the summation is forced to be less than or equal one

(to insure that the A/D will introduce an error as large or larger
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than the other quantizers) by choosing

M o< el (7-5)
Kyaj

]
A further restriction is that hj be a power of two; hence the ratio

Kwal/Kwaj is rounded down to the nearest power of two to find the

actual h; to be used:

h& = [Kwal/Kwaj] rounded down- (7;6)

Flow Charts

Fig. 37 demonstrates the flow of information in the main section
of the filter implementation program. The input data to be given to
the program is summarized below:

1) Transfer function coefficients in (6-1)
ag, 81» 3z, by, b2
2) Register lengths
A/D, D/A, and wordlength of the stored—program computer
or coefficient wordlength for the special-purpose computer.

3) Weighting coefficients in (7-1)
Al, >\29 A3

This is all the information needed to completely analyze the quantiza-
tion errors for all the programming forms.

The first major task in tﬁe program is to find the poles and
zeroes of the transfer function D(z) and to set three flags which omit
those programming forms which are unrealizable. The main program
then calls a subprogram for each realizable programming form. Each
called subprogram completely analyzes the quantization errors
characteristic to that particular form and prints their detailed
description. At the end of the program, final summaries of each

program mode are listed for easy cross-reference.

—\



READ INPUT DATA

l

CALCULATE POLES AND ZEROES

!

SET FLAGS TO SKIP

UNREALIZEABLE FORMS

!

PRINT PROGRAM

OPERATING VALUES

Y

CALCULATE FIRST

SIX FORMS

s FLAGL SET? >-LES—

2-173

EXIT

. PRINT FINAL SUMMARIES

CALCULATE XI AND

XII STRUCTURES

IS FLAG3 SET?
YES

NO

CALCULATE PARALLEL FORM

YES

IS FLAG2 SET?

CALCULATE CASCADE FORMS

—>

Fig. 37. Flow Chart of Main Progfam.



2-174

A general flow chart describing a subroutine for any given
programming form is shown in Fig. 38. The first task is to calculate
all of the parameters needed for the difference equations of the
specified programming form; next, these parameters are quantized.
The simulation difference equations are then calculated once for
the step response and once for each quantizer in the system. During
these simulations the system constants Kssjs Kstj, and Kypj are
calculated. Finally the steady-state, statistical, and upper bound

errors are calculated, as well as the weighted average error of

equation (7-2), for both modes of program'operation.

Source Listing

The filter implementation program consists of approximately 1800
source statements and is available in [49]. Also, a limited

number of printed listings are available from Auburn University.

Summarx

The filter implementation program has been developed using an
IBM 360/50 using FORTRAN IV and 0S360. In its final form the program
takes approximately 3.5 minutes to compile and 25 seconds to load and
execute. The execution time may be trimmed by limiting the simulation
iterations to a smaller number, say 10 to 20.

Now the CAD program will be used to analyze two digital filters,

one for each program operating mode.
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< ENTER >

CALCULATE AND QUANTIZE

DIFFERENCE EQUATION PARAMETERS

y
INITIALIZE VARIABLES, SET STEP

INPUT, SET IJK=0

¢ :

CALCULATE SIMULATION EQUATIONS

FOR 100 ITERATIONS TO OBTAIN

MAXTMUM VALUES AND SUMS OF

ey leol, and eo2

CALCULATE h, FOR |g YES

3
STORED PROGRAM MODE

IS 1IJK=0?

4

NO IS IJK=4?

IJK=1JK+1 |=

SET QUANTIZER(IJK)
PRINT Kgg, Kge, Ky
FOR IMPULSE TEST

PRINT ERRORS FOR STORE

PROGRAM MODE

Y

?
CALCULATE hj AND PRINT ERRORS

FOR SPECIAL-PURPOSE COMPUTER MODE

Fig. 38. Flow Chart for Programming Form.
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Stored Program Mode

Consider the second order digital filter

2
D(z) = z° + .75z + 0.125 . (7-7)

22 + .50z + .0525

Suppose that this filter is to be realized using a 16~bit minicomputer
uéing a 11-bit A/D and 13-bit D/A as input-output equipment. The com-
puter-aided design (CAD) program may be used in the étored-program mode
of operation to aid the designer in programming the minicomputer. Table
3 is the final summary of quantization errors attributed to the filter
above for its realizable programming forms.. The D(z) in (7-7) has real
poles and zeroes; therefore, the X1 and X2 structures may not be used.

Using the weighted average errors in Table 3, the CAD program rec-
ommends that the filter in (7—7)'be programmed by first the modified canon-
ical form; and second, the parallel form. Note that all the programming
forms give relatively good results; this is due to the fact that the
internal quantizers and output quantizers contribute only a minor part
of the total quantizing error. The A/D and D/A wordlengths chosen in

this example are responsible for these results.
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Special-Purpose Computer Mode
Suppose that a special—puépoee computer is to be constructed to im-

plement the following z-domain tramnsfer function:

D(z) = 22 = 1.862z + .895 - (7-8)
22 - 2500

Again, if an 11-bit A/D is to be used, the CAD program gives the results
shown in Table 4. From the table, the weighted average error suggests

that the direct form is best; the modified canonical form, second.

Direct form. The program prints out an analysis of each programming
form which may be used for (7-8). See Table 5. The system error weight-

ing constants (K Kops and K,;) are summarized as well as the A's of

(7-1), the maximum quantizing error h' of each quantizer, and the form

factor. The form factor is interpreted as follows
FORM = I,J,
where

I = total number of bits for the register

J = number of bits to the right of the binary point.

A negative J indicates the least significant bit has a value greater

)= 2hi and h; = 4hi. The CAD program always

than one. From Table 5, h2
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TABLE 5: The Direct Printout

STEADY-STATE ANALYSIS
KSS(1) = 0.044
KSS(2) = 1.000
KSS(3) = 0.333

STATISTICAL ANALYSIS
KST(1) = 1.426
RST(2) = 0.577
KST(3) = 0.149

ERROR BOUND ANALYSIS

KUB(1) = 5.009
KUB(2) = 1.000
KUB(3) = 0.333

SPECIAL-PURPOSE COMPUTER MODE

LAMBDA(1) = 0.333 H(1) = 1.0 FORM = 11,0
LAMBDA(2) = 0.333 H(2) = 2.0 FORM = 10,-1
LAMBDA(3) = 0.333 H(3) = 4.0 FORM = 9,-2

STEADY~-STATE ERROR = 3,377
PERCENT Q1 = 1.3
PERCENT Q2 = 59.2
PERCENT Q3 = 39.5

RMS ERROR = 3.177

PERCENT Ql = 44.9
PERCENT Q2 = 36.3
PERCENT Q3 = 18.8

MAXIMUM ERROR BOUND = 8.343
PERCENT Q1 = 60.0
PERCENT Q2 = 24.0
PERCENT Q3 = 16.0

WEIGHTED AVERAGE ERROR = 4,966
PERCENT Q1 = 43.5
PERCENT Q2 = 34.6
PERCENT Q3 = 21.9
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1
gests that a 10-bit D/A may be used.

assumes h! = 1. Also, the form factor of Q,, the output quantizer, sug-

Modified canonical form. The CAD program output for the modified

canonical form is shown in Table 6. Note that h! = 2h. and hé = hi for

2 1

this programming form.

Closed-Loop Comparison

The second-order digital filter in (7-8) has been analyzed in [53]
for a closed-loop sampled-data control system. The block diagram for
‘the control loop is shown in Fig.v39. Statistical and upper bound tech-
niques were employed to design the compensator of the control loop for
both the direct and modified canonical forms; system simulations were
employed to verify the.results. Table 7 presents a comparison of the
open-loop fesults of this paper and the closed-loop results of [53].
Note that they agree very closely.

One observation should be made at this point. The register lengths
determined by the open-loop design procedures of this paper are in gen-
eral larger than those required in closed-loop applications. Stable
feedback systems generally tend to reduce the maximum valueé of the dig~
ital filter variables and thus the number pf bits needed to represent

these variables in the special-purpose computer.
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TABLE 6: The Modified Canonical Printout

STEADY-STATE ANALYSIS
"KSS(1) = 0.044
KSS(2) = 1.000
KSS(3) = -0.956

STATISTICAL ANALYSIS
KST(1) = 1.426
KST(2) = 0.577
KST(3) = 1.303

ERROR BOUND ANALYSIS
KUB(1) = 5.009
KUB(2) = 1.000
KUB(3) = 4.009

SPECIAL-PURPOSE COMPUTER MODE
LAMBDA(1) = 0.333 H(1) = 1.0 FORM = 11,0
LAMBDA(2) = 0.333 H(2) = 2.0 FORM = 10,-1
LAMBDA(3) = 0.333 H(3) = 1.0 FORM = 12,0

STEADY-STATE ERROR = 3.000
PERCENT Q1 = 1.4
PERCENT Q2 = 66.7
PERCENT Q3 = 31.9

RMS ERROR = 3.884
| PERCENT Q1 = 36.7
PERCENT Q2 = 29.7
PERCENT Q3 = 33.6

MAXIMUM ERROR BOUND = 11.019
PERCENT Q1 = 45.5
PERCENT Q2 = 18.1
PERCENT Q3 = 36.4

~ WEIGHTED AVERAGE ERROR = 5.968
PERCENT Q1 = 36.1 |
PERCENT Q2 = 28.8
PERCENT Q3 = 35.1
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TABLE 7: Open-Loop Versus Closed-Loop

Programming Open-Loop Closed-Loop
Form Results Results [17]
1 - ] 1] = ?
Direct hz 2h1 hz h1
' . ' ' - '
h3 4h1 h3 4h1
' = ' LR |
Modified h2 2h1 h2 h1
1 =Rt | - '
Canonical h3 h1 h3 .5h1
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Conclusion

This section has presented a computer-aided design technique useful
in implementing digital filters expressed as z-domain transfer functions.
Two examples have been given to illustrate the stored-program and special-
purpose modes of operation of the CAD program. Also, the program,which
analyzes the filter's "open-loop" quantization errors, gives results closely
matching a "closed-loop" design. This CAD program should be used as a
tool for obtaining a "first guess' at the best way to program a digital
filtgr. If a closed-loop simulation is available for the system in which
the digital filter will be used, then the CAD program design may be ad-
justed to give better loop performance.

Although the program as presented has been designed for second-order
modules, it can be used as a subroutine in larger programs to match pole-
zero pairs for higher order realizatiomns, or to indicate the proper
cascade ordering of second-order modules. The CAD program may be a power-
ful tool to the digital filter (or controller)‘designer if its results

are properly interpreted.



VIII. APPLICATIONS OF DIGITAL FILTERING

Digital Filtering has found many diverse applications in recent

years.

This section lists several of them and points the interested

reader to the open literature for detailed descriptions.

The following list presents typical applications for digital filters:

l‘

8.

9.

Sampled-Data Control Systems

a. General [38, 77]

b. Pendulous Integrating Gyroscopic Accelerometer [78, 79].
c. Saturn V Thrust Vector Control [80, 81]

Speech Processing
a. General [82]

b. Vocoder [83]

c. Equalizers {[84]

Radar and Sonar Signal Processing
a. General [85, 86]

b. MII Filters [87, 88]

c. Tracking Filters [89, 90]

Spectral Analysis and Synthesis

a. Narrow Band Filters

b. FFT [91]

c. Frequency Synthesis [92]
Vibrations and Acoustic Testing [93]
Image Processing

a. General [24, 94, 95]

b. Image Enhancement [94, 95, 96]
c. Pattern Recognition [97]

Seismic Processing [7, 9]

Biomedical Processing [94, 95, 97, 98]

Synthesis of Speech and Music [99]

Many other applications of digital filtering are also important

with the number of new ones ever increasing.
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I. INTRODUCTION

In recent years a trend has been developing to replace analog sys-
tems with digital systems. This rate of replacement has been directly
related to the technological advances in the manufacturing of digital
logic building blocks. With the advent of large-scale-integration, a
particular class of digital networks, called digital filters, has be-
come economically practical in such areas as stabilization of control
systems, spectrum analysis, voice and speech analysis, radar, medical
electronics and virtually any other analog filter function [1,2].

Digital filtering has been defined in PARTS ONE and TWO as a
computational process consisting of digital multiplications, additions
and delays whereby one sequence of numbers is transformed into another
sequence. This transformation may be specified by a transfer function
in the z-domain, D(z), or by a set of linear difference equations
with constant coefficients. Assuming knowledge of these coefficients,
digital filter realization procedures [1,3,4,5] consist of the design
of a digital system to solve these difference equations. The difference
equations may be solved with a software program and a general purpose
computer or with the use of a special-purpose (SP) computer [6,7,8,9,

10,11,12], a technique which has become increasingly popular.
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- In the SP computer realizatibns, a particular digital filter pro-
gramming form is selected and the computer is designed accordingly
[13,14,15,16,17]. Particular attention must Be given to assure that
the hardware organization meets the system specifications for coefficient
.quantization, signal amplitude quantization, and quantizatiqn noise
levels introduced into the system by the digital filter implementation.
At the present time no systematic design procedure has been developed
to accomplish these goals. Typically one designer specifies the digital
filter coefficients and anothef specifies a hardware implementation.

The state-of-the-art in digital filter implementation is represented
in [1,3,7,8,9,10,12,18,19,20,21]. Pefhaps the most interesting are the
IC model in [1] and the programmable design of [12]. The IC model is
ayailable from Autonetics Division of North American Rockwell. A
digital filter implemented with this technology is small and can
realize third-order filters at sampling rates‘of up. to 5kHz. However,
poles must be real and the parallel progrémming'form is the only one
available. The commercial units also have restricted programming
forms, or implementation is done by frequency transformations which
limit their use to applications in which minimum time aeiay and high
speed sampling are not specified. It has been shown in [14] that some
of the programming forms have different characterigtics, and it is
desirable in many cases to be able to select the programming form.

The need for a sglectable programming form alpng with the desirable

features of LSI implementation offer a challenge to the system designer.
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Add fhe necessify for real-time fault diagnosis and standardized CAD

brocedures to the list and the system design goals are complete.
‘Now that the theory of digital filtering has been ﬁresented in

PART TWO, we will examine four mechanization techniques for digital

filters. The four techniques are 1) general—purpose computers,

2) mini-computefs, 3) special-purpose computers, and 4) FFT hardware.

A discussion of all techniuqes will be presented starting with

mechanization (implementation) by general-purpose (GP) computers.

CL"I



II. GENERAL PURPOSE COMPUTER IMPLEMENTATIONS

Of the four implementation techniques, the GP computer is the
least attractive, with the main reason being that most GP computers
possess excessive computing capabilities to be used only for differ-
ence equation calculations. If this were done, there would be large
portions of the computer hardware that would never be used thereby
making this type implementation overly expensive.

vGP computers do have a useful application in digital filter
implementation in that they may be used to simulate other implementation
designs (an example being by special-purpose computers) or for real-
time programming of a GP computer to implement a digital filter as well
as other computational chores. Let us now look at these two aspects

of using a GP computer in the design of a digital filter system.

Simulation
The most common implementation of a digital filter is by special-
purpose computer. When designing a special-purpose computer for the

implementation of the filter in a particular programming form, one of



the first steps that must be done is deciding on word length require-
ments for the input word, output word and internal variable (m(kT - T),
m(kT - 2T), etc. of the difference eqs.) wordlengths»and possibly
arithmetic schemes. This can be accomplished by techniques such as
the CAD program presented earlier. Once a design is recommended, it
is good engineering practice to simulate the system on a GP computer
to verify all the design-parameters. With most higher level languages,
‘logical programming may be done such that every aspect of the design
may be simulated. If this approach is taken the system designer may
"change something' and observe its effects; this technique may be
used to "optimize" tﬁe final system design. |

As an example of a digital filter implementation simulation, the
progfam below was written in FORTRAN and run on an IBM 360 digital
computer to simulate the "range-switching" filter described in [8]
employed in a nulling type control loop. The program was written so
that the "range-switching" effects on the oﬁtput of the loop could be
observed and the effect ﬁhe wordlengths had on the outﬁut response for
a particular input, which in this case is a sine wave of specified

amplitude and frequency.
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FORTRAN SOURCE PROGRAM FOR SIMULATION OF PIGA LOOP
WITH A NOISE INPUT

SOURCE DECK _
C TIME DOMAIN SIMULATION OF THE COMPENSATED SYSTEM
DIMENSION X1(2),X2(2),X3(2), D(2)

669

COMMON/COM2/RM(1001) , ITER, TES
COMMON/COM1/XP(3,2),BQ(1),C(2)

1

2

10

FORMAT (1H ,13,2X,1P9E13.4)
CALL INPUT

FORMAT (1H1)

N=1

H=1.0E+05

WN=184.0

T=0.001

GP=56.2

GT=321000.0

CDA IS THE TOTAL LOOP GAIN
GDA=0.083

W1=SIN(WN*T) /WN

W2=C0S (WN*T)

W3=(1.0-W2) /WN**%2
W4=(T-W1) /H

W5=(1.0-W2)/H

W6=WN*SIN (WN*T)

W7=W6/H
GDIG=GAD/GT/GP/ (T-W1) *H
WRITE(6,10) GDIG

FORMAT (1HO, 7HKDIG = ,1PEll.4)
TEST=+2000.0%980.0/4.0

DO 669 NAGL=1,2

XP (NAGL,1)=0.0

BDC=0.0
BQ(1)=0.
X1(1)=0.
X2 (1)=0.
X3(1)=0.
D(1)=0.0
C(1)=0.0
COFS=0.0
DO 5 1=1,ITER

R=TES#*980. *RM(I)

WRITE(6,1) I,BDC,BQ(N),X1(N),XP(1,1),D(N),R,COFS,C(1)
BEGIN ANALOG PORTION SIMULATION

X1 (N+1)=X1 (N)+WL*X2 (N)+W3*X3 (N)+W4* (R-GR*D (N) )

X2 (N+1)=W2*X2 (N)+W1*X39N)+W5%* (R-GR*D(N) )

X3 (N+1)=W2*X3 (N) +W6 *X2 (N)+W7* (R-ST*D(N) )

BDC=GP*X1 (N+1)

0
0
0
0
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END ANALOG PORTION SIMULATION
BEGIN DIGITAL UNIT SIMULATION
UI=BDC

CALL DIGCOM (UI,YP)
D(N+1)=GDIG*YP

END DIGITAL UNIT SIMULATION
COFS=GT*D(N+1)

X1 (N)=X1(N+1)

X2 (N)=X2 (N+1)

X3 (N)=X3(N+1)

D(N)=D(N+1)

STOP

END

SUBROUTINE DIGCOM(U1l,YP)
COMMON/COM1/SP(3,2) ,BQ(1),C(2)
A0=1.0

Al=-119./64.

A2=57. /64.

B1=0.0

B2=0.0

FX=256.

UI=UI/3.0*FX

EX=1.0

CALL ROUND (UI,EX,FX)
UP=UI

BQ(1)=UP*3.0/FX
UI=UI*3.0/FX

IF(ABS(UP)-16.0) 2,3,3

€(2)=0.0

GO .TO 4

C(2)=1.0

UP=UP/16.

1UP=UP -

UP=1UP

FX=16.

IF(C(2)-C(1)) 4,6,7
XP(1,1)=16.*XP(1,1)
XP(2,1)=16.%*XP(2,1)
AX=4.0

BX=63.75

CALL ROUND(XP(1,1),AX,BX)
CALL ROUND(XP(2,1),AX,BX)
GO TO 6
XP(1,1)=XP(1,1)/16.0
XP(2,1)=SP(2,1)/16.
AX=4.0

BX=63.75

CALL ROUND (XP(1,1),AX,BX)
CALL ROUND (XP(2,1),AX,BX)

SP(1,2)=-B1*XP(1,1)-B2*XP(2,1)+UP

XP(2,2)=SP(1,1)
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AX=4.0

BX=63.75

CALL ROUND(XP(1,2),AX,BX)

YP=(A1-AO*B1) *XP (1,1)+(A2-A0*B2) *XP(2,1)
+A0*UP

CX=64.

DX=255./64.

CALL ROUND(YP,CX,DX)

DO 1 I=1,2

XP(I,1)=XP(1,2)

c(1)=C(2)

YP=YP/FX*3.0

RETURN

END

SUBROUTINE INPUT

RANDOM INPUT
COMMON/COM2 /RM(1001) ,ITER,TES
TES=200.

ITER=301

NRANB=6

CALL RANBIT (NRANB)

CALL RCON1(35187269)

RMAX= (2. **NRANB-1.)/2.

D019 I=1,ITER

RM(K)=IRAN(5)

RM(I) = (RM(I)-RMAX)/RMAX
RETURN

END

SUBROUTINE ROUND (A,AN,BN)
X=ABS (A)

S=A/X

IX=X*AN"

XQ=IX

XQ=XA/AN
IF(XQ-BN) 1,2,2
A=S*XQ

RETURN

A=S*BN

RETURN

END



Real Time Programming

A digital fiiter implemented on a general-purpose computer,
whether large or small, is said to be realized by real-time pro-
gramming. Thg machine language version (translated from some higher
level language) bf the difference equations must execute quickly |
enough to meet the.sampling rates imposed by the system specificationsf
In some applications the generai—purpose cqmputer will handle other
calcuiations as well and wili be "time-~shared" to perform both duties.
Other times.a Smallbproéess control computer can be dedicated solely
to the digital filter calculatioﬁs. An example system is sﬁown in
Fig.'z.i.

Generally speaking, future trends will be to design special-
purpose computers to shoulder the digital signal processing tasks, and
relieve the_genéral-purpose computer for more complicated tasks which
exploit its entire computational power as embodied by its versatile

instruction set.
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Fig., 2.1. A GP computer being used as a digital
filter in a discrete control loop.



III. MINICOMPUTER IMPLEMENTATIONS

| A minicomputér‘implgnentation of a digital filter as described
in [22] will be discussed. Only one reference is used as a background
since it is the only one that has been seen in the literature of digital
.filtering. It will be sufficient since any other minicomputer imple-

mentation would follow the guidelines presented.

Hardware Requirements.

The hardware used for the minicomputer implementation is shown in
Fig. 3.1. It consists of a Honeywell H316 minicomputer with two 4096-
word memory modules, a iO-bit analog-to-digital (A/D) converter, a 12-bit
digital-to-analog (D/A) converter, a crystal-controlled real-time clock
and the ASR-33 teletypewriter.

H316 minicomputer. The H316 is a GP minicomputer with a 16-bit

wordlength. Arithmetic is performed in two registers, A and B, and
it is a one-address machine with the A register serving as the accumulator
which will be described.in detail later. The memory is divided into
sectoré or pages of 512 words each, with the computer having the
capability to reference any ofvthe_512 words within a certain sector.
Single-level indexing and/or multiple~level indirect addressing can be
used to address words outside the current sector or the base sector.

With respect to the arithmetic instructions of the computers
instruction set, there are two modes of operation: single precision

and double precision. Each mode of operation may be entered by the use

3-11
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A/D D/A ASR-33
/ / Clock

Fig. 3.1. Hardware used in minicomputer implementation.
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of one instruction, "SGL" for single-precision arithmetic operations
and "DBL" for double precision arithmetic operations. When operafing
in the single-precision mode, the A register is used solely as the
accumulator. It is 16-bits long with the left-most bit being the
sign bit and the 15-bits to the right being the most-significant
through the least significant of the magnitude bits which are in a
twdfs coﬁplemeﬁt code. When operating in the double precision mode,
the A and B registers are used as the accumulator with the sign bit
being in the left-most bit position of the A register. The rest of
the A register contains the 15 most significant bits of the double
precision word with the 15 least significant bits being contained in
the 15 right most bit positions of the 16 bit B register. The left
most bit position of the B register does not take part in arithemtic
operations.

When performing.the "add" instruction which will have to be done
many times in difference equatibns calculations, the contents of the
addressed memory‘word are added to the contents of A leaving the sum
in A for single-precision addition. If done in double-precision the
contents of the addressed memory word (two memory locations for double
precision) are added to the contents of the A and B registers and the
sum left in them.

The same procedure occurs for multiply for the single or double
precision mode. The addressed word in memory is multiplied by the word
stored in the A or A and B registers and the product left in the A or

A and B registers.
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Fixed point arithemtic is used for all difference equation calcu-
lations. Since an imaginary binary point is assumed, after a multipli-
cation instruction is executed, the computer shifts the product as
required to align the binary point.

Input to the minicomputer is accomplished through 16 input bus
lines into the A register. Several peripheral devices may be connected
to this bus as inputs to the computer. In the case of the.minicomputer
implementation of a digital filter this bus inputs information from the
A/D, ASR-33, and the real-time clock.

Output is accomplished through 16 output bus lines which are tied
directly to the A register and always reflect its contents. For the
digital filter implementation, the output device is the D/A or the ASR-33.

The different input devices are checked by the computer by placing
a code unique to each device on the address bus.

Most peripheral devices are slower than the computer, thereby
making the computer spend much of its time waiting for a peripheral
device to perform its function. It is for this reason that it is
practical to let the computer process other information while a particu-
lar peripheral is performing its I/O function. Then when the peripheral
is finished, it can inform the computer and the computer can give it
another command.

The method of informing the computer of the completion of a task

is called an interrupt. When a peripheral interrupts the H316, it
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finishes executing the instruction.présently being performed and then
performs a subroutine jumﬁ indirectiy through a dedicated memory
location. In.sﬁort, the dedicated memory location contains the address
of a subroutine to which the computer jumps wﬁen an interrupt occurs.
Within this subroutine the computer may poll the peripheréls to find
out which one interrupted.

An A/D converter is used as the input interface element to the
comﬁuter. The A/D which was interfaced to the H316 is a bipolar con-
verter having a range of -10v to +iOv.» It has a 10-bit plus sign-bit
output which is input into the most significant 10-bits of the A
register.

‘Thé D/A converter accepts and transforms the binary output of the
computé: into an analog voltage. A hold registér is employed so that
the output voltage will remain constant until the next output occurs.
The D/A used in the minicomputer implementation was built from Honeywell
u-Pac DTL logic. The converter is built from three cascaded.Honeywell
CE-071 four-bit converters which consist of a resistive ladder plus
switching network.

To provide for a sampling rate othgr than that determined by the
computers execution time, a real-time clock was employed. It initiates
each cycle consisting of input, calculation, and output and is built
as a peripheral which furnishes periodic (sample rate) interrupts to
the computer. When an interrupt occufs, the computer goes through one

cycle and then waits for the next interrupt before it goes through the
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cycle again. This allows the operator of the minicomputer to obtain
any desired sample rate.

Operating System

It is the purpose of the minicomputer implementation to be able
to realize in real-time one of eleven diffefent digital filter programming
forms. 1t is the function of the operating system to set up, control,
and possibly run diagnostic tests 1f something goes wrong, on the
minicomputer and its peripherals.

A functional block diagram of the operating system (0S) is shown
in Fig. 3.2. Solid arrows indicate a passing of control from one
routine to another, while dotted arrows indicate a passing of parameters.
Only one filter form is shown, but it should be remembered that eleven
such forms are present with similar links to the operating system-

Briefly, to realize a digital filter, a particular form is picked
and the parameters which determine the transfer function are input.

The 0S will then type back these parameters if desired. Once the filter
form is set up, the 0S is instructed to begin execution of that form.

Let us now discuss the different parts of the O0S.

Executive. The executive routine (EXEC) initially types a question
mark on the teletype. Whenever the question mark appears the operator
types in one of four commands: MODIFY, LIST, RUN, or TEST. The first
three refer to a particular programming form and are followed by.a
number between one and eleven. The TEST command refers to one of seven

diagnositc routines and should be followed by a number from one to seven.
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After one of the four commands is typed in EXEC turns control over to
one of the four routines having the same name. Let us briefly discuss
these routines.

1. Modify. The modify routine inputs the coefficients, quantization
formats, and sample rate for a particular filter form. EXEC determines
which of the eleven forms has been typed iﬁ following the command MODIFY,
then transfers controi to the modify routine, passing the filter form
number as a parameter.

2. List. The list routine types out the coefficients of a pro-
gramming form followed by the quantization formats and finally the
sample period.

3. Run. To begin the filter processing the operator would type
in RUN followed by the number of the form he desires to use.

RUN has a list of all entry points of the filter forms. When
the RUN routine is entered it immediately obtains the address of the
normal entry point and passes it to the interrupt processer which will
need it at a later time. Then RUN selects the sample period which the
user has specified for that filter form and outputs it to the RTC.
Next, RUN sets the mask of the real-time clock (RTC) and teletype,
starts the RTC, types out a question mark, and transfers control to
the initialization entry of the filter form specified. The filter form
makes its first pass and hangs up in the idle routines at the end.

While in the routine the RTC should interrupt.
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Interrupt processor. When the interrupt'occurs, control is passed

to the interrupt processor. This routine must identify what caused

the interrupt and act accordingly.

Users interface. The user interface consists of the teletype

routines plus the date conversion routines. The teletype routines
are relied upon by all the other routines which have to communicate
with the user. The teletype routines handling mumerical data rely on
the conversion routines to convert from decimal to binary and binary
- to decimal.

Diagnostics. Seven diagnostic routines are implemented in the
0S to test the hardwafe and the software structure. One of these-routines
may be executed by typing‘in the request TEST followed by a number from
one to seven. The errors that are checked for are divided into three
categories: hardware errors, errors in the programming of the 0S, and
last, user errors.

This completes the discussion of the 0S. We will now look at the
assembly‘programs.

Assembly Programs.

Each of the eleven filter programming forms is realized by a
separate subroutine which has the following format:

. ENTRY
INPUT
CALCULATION
OUTPUT
TIME DELAY
PRECALCUATION
IDLE
EXIT
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There are two entry points to each program: one being an initializa-
tion entry point which zero's the internal variables the first time
through the program and the second a regular entry point that is
entered everytime except the first. After entering the normal entry
point a "start A/D" command is given and, while waiting on the input
to become available, a partial sum is formed. As soon as the input
arrives it is shifted to a correct format, multiplied by Ag, and the
sum is then completed. The sum is then quantized for output, presented
to the D/A, then quantized in a different format for storage and feed-
back. If overflow is detected during quantization, the word is saturated,
i.e., filled with the largest possible number.

After the output is complete, the internal variable must be shifted
to perform time delay. Then the partial sum for the next pass is begun.
Just enough of the formation of the partial sum is left for the next
pass to occupy the arithemtic unit while waiting on the A/D. During
the "idle" period, the RTC interrupts and the interrupt subroutine
directs control back to the normal entry point.

The coefficients as well as the three shift instructions used in
the quantizing routines are declared as external names so that they
may be altered by the O0S.

As an example of one of the eleven assembly 1anguage programs the
assembly language program for a second order D(z)‘in modified canonical

programming form is shown below.
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SUBR MCAN1,ENT1
SUBR MCAN2,ENT2
ENT SHFT61,S1
ENT SHFT62,S2
ENT SHFT63,S3
ENT COEF6,A0

BEL
* INITIALIZE INTERNAL VARIABLES
ENT1 CRA

STA XMl

STA XM2
*CALCULATE OUTPUT DIFFERENCE EQ.
ENT2 OCP  '41 . START A/D

LDA XMl

MPY ALl

DBL

DST TEMP

LDA XM2

MPY AL2

DAD TEMP-

DST = TEMP

INA  '1041 INPUT FROM A/D

JMP *-1 WAIT FOR INPUT
St LRS 4

STA EI

MPY A0

DAD TEMP

SGL

STA  SGN
s2  LLS 9

SSC

JMP 0Kl

LDA  SGN

CSA

LSA ='77777

SRC '

TCA
OK1 OTA '40

JMP  *-1
*CALCULATE FEEDBACK DIFFERENCE EQ.
- LDA EI _

MPY ONE

DBL

DST  TEMP

LDA XMl

TCA

MPY Bl
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DAD  TEMP

DST TEMP

LDA XM2

TCA

MPY B2

DAD TEMP

SGL

STA  SGN
S3 LLS 3

SscC

JMP  OK2

LDA  SGN

CSA

LbA ='77777

SRC

TCA

* PERFORM TIME DELAY
OK2 STA XM

LDA XMl

STA  SM2

LDA XM

STA XML

ENB

NOP

P *-1
XM1 DBP O
EO BSS 1
XM  BSS 1
EI  BSS 2
XM2 BSS 2
TEMP BSS 2
SGN BSS 1

A0 0OCT 10000

ALl OCT -22753

ALZ OCT 7357

Bl OCT 3146

B2 OCT 231

ONE OCT 10000
END

Experimental Results

Experimental results were obtained of the minicomputer implementation

previously described.
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First it realized the transfer function of a Euler integrator

D(z) = —L _ | . (1I-1)

1 -2z

in the direct form at its maximum sampling rate (5.5 KHz). The response
was obtained for an input sduare wave and as wished, the output was a

triangular waveform with a fine-grained stair-stepped appearance.

Secondly it realized the transfer function of a digital differentiator
D(z) =1 - 21 ' . (I1-2)

in the direct programming form. 1It's reéponse to a triangular