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EVALUATION OF AERODYNAMIC DERIVATIVES

UNIVERSITY OF VIRGINIA WIND-TUNNEL COLD MAGNETIC

BALANCE SYSTEM

ABSTRACT

The dynamic testing of a model in the University of

Virginia cold magnetic balance wind-tunnel facility is expected

to consist of measurements of the balance forces and moments,

and the observation of the essentially six degree of freedom

motion of the model. The aerodynamic derivatives of the model

are to be evaluated from these observations. This paper is

concerned with demonstrating the basic feasibility of extracting

aerodynamic information from the observation of a model which

is executing transient, complex, multi-degree of freedom motion.

It is considered significant that, though the problem treated

here involves only linear aerodynamics, the methods used are

capable of handling a very large class of aerodynamic non-

linearities. The basic considerations include the effect of

noise in the data on the accuracy of the extracted information.

For this purpose the motion of the projected first model, a

cone, is calculated with "known" aerodynamic derivatives. This

data is corrupted by various amounts of noise. The aerodynamic

derivatives are then evaluated from the noisy motion by two



methods: 1) the "Brute-force" method, and 2) the method

of parametric differentiation. The "Brute-force" method

treats the differential equations of motion as algebraic

equations in the unknown aerodynamic derivatives and uses the

method of least squares to average a large number of data

points. In the method of parametric differentiation the

equations of motion are considered in "aerodynamic derivative"

space and the method of least squares is applied. Both methods

extract the significant groupings of aerodynamic derivatives

rather well and with only minor differences in accuracy. The

relationships between noise level and the accuracy of the

evaluated aerodynamic derivatives are presented.
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LIST OF SYMBOLS

A matrix of order n x n

a.. elements of matrix A

B matrix of order 1 x M

b. elements of matrix B

C vector whose elements are the parameters

CK 3CK/.3(W/VT) K = z, m
w

CK 3CK/9 (Q;d/VT)

C 3C /3(Wd/V2T)
Dw

C 8C /3(Pdy/V2 )
pv

CK 8CK/3(PVd
2/V3T)

KpDv K T

C 3D /3(PRd2/V2 )
pr

D £- (i-)° VT
 (3t)

d Base diameter

i,,i_,i_,i^, !> ,i_ Nondimensionalized moments of inertia, e.g,
A D C D EI c

(A/(ipSd3))

n Number of parameters

N Number of data points
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LIST OP SYMBOLS (cont.)

P,Q,R Angular velocities about body-fixed axes

P,q,r Pd/VT,Qd/VT,Rd/VT

S Characteristic area

S. (T,C ) Parametric Coefficient

SSR Sum of square of error

t Time

U,V,W Translational velocities in body-fixed

axes system

u,v,w Nondimensionalized velocities

U/VT, V/VT, W/VT

V Tunnel speed

X,Y,Z Tunnel fixed orthogonal system of

axes X positive downward
k

x k th element of X

x,y,z Nondimensional distance along (X,Y,Z)

X/d, Y/d, Z/d

/I np Mass of model/ (-x-pvSd)

p Free stream air density

a Standard deviation

i|T, 6,<j> Euler angles defining the orientation

of body-fixed axes Cx, Cy, Cz (Cx being

the axis of symmetry) in relation to

tunnel-fixed axes



LIST OP SYMBOLS (cont.)

(tvT/d)

Subscripts and Superscripts

i,j,k,l Integers

Initial conditions or values
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Introduction

For several years the development of magnetic balances to

support models in wind tunnels has been in progress. The

ability to support a model with no physical connections to it

and the ability to arrange no model motion even at a lifting

incidence, allow nearly free motion,or to influence and adjust

the model motion to a significant extent is considered an

important advance in wind tunnel techniques. Two different but

complementary systems have been or are being developed.

One of these, the MIT/French system, basically supports a

cylindrical magnetic core and is effectively a five component

balance. Roll control has been added but is essentially an

independent subsystem. This system easily makes static tests

of models in which the model is held at a fixed orientation and

the forces and moments are measured. The system also can drive

the model in simple oscillatory modes of motion to measure, for

example, dynamic stability derivatives. Dynamic testing with

the MIT/French system suffers from (1) the small magnitudes

of the aerodynamic forces and moments caused by the motion in

comparison with the forces and moments required to force the

motion and (2) the complexities involved in dynamic calibrations

of the magnetic balance system.

In the other magnetic balance, the University of Virginia
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system, a magnetic sphere is supported and the system is

basically a three component balance. By responding to trans-

lation at frequencies below a somewhat adjustable "balance

frequency", it holds the model in the test section. A model

built around the magnetic sphere is nearly rotationally free

at all frequencies and is essentially free in translation

above the "balance frequency" (of the order of 10-15 hertz in

the prototype). This sort of operation is called Quasi-6

Degree of Freedom operation and is considered to be the nearest

thing to free-flight obtainable in a wind tunnel. The study

of the dynamic stability of a model (a prime application of the

U. Va. system) corresponds to measuring the balance forces and

moments, observing the model motion, and inverting the equations

of motion to obtain the aerodynamic forces and moments, static

and dynamic. An obvious inconvenience with this system is that

the motion of the model cannot be restricted to simple one or

two degree of freedom oscillations. Thus the problem of ex-

tracting the aerodynamic information from the experimental

data involves the use of 6 degree of freedom motion data. The

U. Va. prototype is designed specifically for the case of

spinning axisymmetrical bodies (missile types) in supersonic

flow. The extension to airplane types and subsonic flow is

expected to be made in the not-too-distant future.
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This paper describes and summarizes the results of a

first attempt to demonstrate the feasibility of extracting

aerodynamic information, specifically values of aerodynamic

derivatives, from six degree of freedom motion data for a

reasonably realistic approximation of a model in the prototype

U. Va. system. Also of considerable interest is the relation-

ship between noise in the data and accuracy of the extracted

derivatives. The two methods of solution of the inverse

problem ("Brute Force" {BF} and "Parametric Differentiation"

{Par Dif f .})-> which were used are sufficiently general that

the inertial nonlinearities are retained and a quite large

class of aerodynamic nonlinearities may be handled in principle

as easily as linear aerodynamics. Only a transient motion

case was considered.

The general procedure was as follows. The projected first

model for the U. Va. prototype system, a 15° cone, was chosen as

the body and a set of "best" aerodynamic derivatives., was

established. With suitable approximations the full six degree

of freedom equations of motion were numerically integrated to

produce perfect motion data, which could be corrupted with

various amounts of noise. The inertia parameters, balance

forces and moments (if any) and the (noisy) data were used

to invert the equations of motion to recover a set of aero-

dynamic derivative. A comparison of the extracted derivatives
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with those used to calculate the perfect data and the knowledge

of the amount of noise added enables one to study the relation

between noise level and accuracy of the extracted derivatives.

Generation of Perfect Data

For this study the base motion case is taken to be the

projected first model, a 15° cone, in the U. Va. prototype

cold magnetic balance wind tunnel system. The following

assumptions and approximations are made: (1) Zero-gravity;

(2) Zero-drag; (3) Zero rolling moments on the model; (4) Zero

balance forces and moments on the model; (5) The mass distri-

bution of the model is nearly axially symmetrical about the cone
— 2 .

axis, but unbalanced so that i-_ = i_ = i_, - 10 i_ , {i_ = i_,;
D £i r D a L.

i - in/6}; (6) The model is assumed to have a non-zero C ,
A * zw

Cz ' Czn '
 Cz ' Cm ' Cm ' Cmn '

 and Cm (and' of course'
q Dw pv w q Dw pv

the other corresponding lateral derivatives which follow from

axial symmetry) [6, 7]; (7) The flight is at Mach 3; (8) The

center of mass is on the symmetry axis at 0.6 of the length

of the model from the nose.

Subject to these assumptions, the full six-degree of

freedom equations of motion are integrated by the Runge-Kutta
»k

4 step method. The translational equations are written in the

tunnel fixed frame of reference, and the rotational equations
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are written in the body fixed frame. Thus the perfect data

consists of sets of values of x, y, z, position of the center

of mass in the tunnel fixed frame and ty, Q, $ the conventional

orientation angles. The initial conditions are all zero except

<MO) = 0.1, 8(0) = 0.15, and <fv<|> (0) = 0.0165 a roll rate close

to roll pitch resonance for this model. The motion of a model

in the U. Va. facility is expected tp_Jbe observed as a continuous
'"> Ko'iv̂ '-'o. " .'. __^ fcs. -̂ C'Â le' _-

record in time, which may then^ ̂ T̂ ueed ;tô
" j

points as dense as desired. About 4 cycles in 0 and ty, 100

points, are used for the positional (x,y ,z, ty, 8 ,tf>) perfect data.

Inverse Problem

The inverse problem is solved by two methods: The "Brute-

force" method and the method of parametric differentiation.

The aerodynamic axial force and rolling moment are assumed to be

zero in the generation of the perfect data and are not considered

in the inverse problem. The aerodynamic derivatives are evalu-

ated in the body-fixed coordinate system.

(1) The "Brute-force" (BF) Method

The BF method of solution uses the discrete positional

data, numerically calculates velocities and accelerations and

inserts them, along with other known quantities, into the

equations of motion. The equations of motion are thus treated
T̂

as linear algebraic equations in the ''
"lj
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derivatives. The full nonlinear character of the inertial terms

in the equations of motion is retained in the solution.

The model being axisymmetric , only the z force (in body

frame) and pitching moment equations of motion are considered

in the inverse problem. Furthermore, the force and moment

equations are independent of one another.

The pitching moment equation, for example, is written as

an algebraic equation in the unknown aerodynamic derivatives

as follows:

C w . + C q . + C Dw.+C (pv) . = i_ Dq .
mw 1 mq X "DW 1 mpv X B X

 (1)

)± - ip (qr + Dp) ± + ±D (qp -Dr)

i = 1, 2, ---- , N,

where N is the number of data points. This can be written as

follows :

n
• Z l f 3 . l > C l * ~ ~ J D l • 1 TL-T / *-S \3=1 13 D i 1 = 1, ---- / N (2)

where c.'s are the moment derivatives, a. .'s are the kinematics

of motion, and b.'s the inertial terms. Rewriting Eq. (2) as

an error equation

N n
SSR = Z (Z a. . c . - b..) 2 (3)
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and minimizing SSR with respect to c., the aerodynamic deri-

vatives are obtained. The z force equation is treated in the

same fashion.

The kinematics of motion, u, v, w, p, q, r, Du,,.Dv, Dw,

Dp, Dq, Dr are obtained from the positional data in the

following manner: In case of noisy data, the positional

data at every instant are smoothed by using a quintic power

series and 9-equidistant points. The velocities and accelera-

tions in the tunnel fixed reference frame are obtained by

numerically differentiating 5-equidistant points of the

smoothed translational positional data. The Euler angular

velocities and accelerations are obtained in a similar fashion,

These are transformed to the body axis reference frame to

obtain the necessary kinematics of motion.

(2) The Method of Parametric Differentiation

The motion of the model is considered as being in

a parametric space of aerodynamic derivatives and the initial

conditions of motion. The six equations of motion are used

and are written as a set of first order nonlinear differential

equations of the form

DX = F (X, C, T) (4)

where X is the set of twelve (12) positions and velocities and

C^ is the twelve initial conditions, X(o) , plus the aerodynamic
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derivatives to be evaluated. For a given set:of c the

solution is of the form

' X =' X (T, C°) (5)

The change in X due to small changes in the parameters C as" ">

given by the sensitivity coefficients, defined thus:

x .(.T.,. c°, .0°,. —.,. ,c° .+, Ac...,. .--—.,. .c°). - x (T, C°)

Sk (T, C°) = lim AC.
•J Ac+0 'J

J avk (r r°^. ,0.X . . V-*•• ,• -**̂ . /

= | o . }
OO- L^. \v /

Differentiating Eq. (4) with respect to c. it follows that

k o 3fk a o 8fk

D - 3x*< 3 - 3c..

These are the parametric equations, which are a set of

linear differential equations with variable coefficients.

The solution of Eq. (4) is expressed in terms of Eq. (5)

and Eq. (6) in the form of a truncated Taylor series:

xk (T, C) = xk (T, C°) +0^ Sk ( , C°) Ac,.. (8)

In the present case the parameters C are ordered sequentially

in the following way:

xo' yo' V V V V Dxo' Dyo' Dzo' D*o' D6o' D*o'

c c c
V S' V
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With this sequence it follows from consideration of Eg. (8)

that

S.k (0, C°) = 1 if j = k -
D — /g\

= 0 if j ? k ty;

Equations (7) and (9) constitute the basis for the para-

metric study of the motion governed by Eq. (4). The observed,

positional data, in tabulated form, can be denoted by

Q'^X; k = 1, — 6 and i = 1, ---N

Let x. (T, C°) be the values of the calculated motion obtained
J. •""

by solving Eq. (4) with estimated values of C°. The sum of

squares of the error between the observed and calculated

positions is given by the following:

SSR = Z ::z [fexkl - (xfc- (T, C°) + Z Sk. Ac.)]
i=l k=l x x -1=1 D1 D

Minimizing SSR with respect to Ac. one gets the following;

A AC = B

where

N 6 k k
a. = Z Z S.. S .
D£ i=l k=l D1

L=l k=l
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This yields the correction to the assumed C as

AC = A B

The new set of C_ f±sj used in Eq. (4) and the procedure con-

tinued until convergence in the SSR is obtained. The;;final set C is

defined to be the "true" C.

The calculated motion depends on the initial estimation

of the aerodynamic derivatives and the initial conditions

of the motion. The latter are estimated by obtaining the

smooth positional data and the velocities by numerical differenti-

ation of the first few data points by the methods used in the

"Brute-force" method.

Modelling Problem

The modelling problem is that of determining a "best" set

of aerodynamic derivatives for a body from its observed motion.

It is conceivable that an important derivative could be missed,

if the aerodynamic characteristics of the body are sufficiently

strange and unknown.

A very preliminary attack on the general modelling problem,

as well as a basic verification of the two chosen inversion

methods, is accomplished in the following way. One assumes the

perfect data are real, and of course very accurate, motion data

for a body,the aerodynamic derivatives of which are completely

unknown. The problem then is to see if one can construct a
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logical argument to determine a "best" set of aerodynamic

derivatives for that data subject to the ignorance assumption.

(Of course, in the present case, one may also make comparisons

and draw conclusions using the "known" derivatives for that

data.)

The process of interpretation of the results is affected

by the following considerations. The aerodynamic pitching

moment for the chosen model is

C = C w + C q + C D w + C p v .m m m m _ mw q Dw pv

By adding and ^/subtracting suitable terms the same pitching

moment may be written in three alternate forms:

Cm = Cm w + (Cm + Cmn >*
 + (Cm ~ Cmn

 )pv + Cmn
 (Dw ' •* + pv) -w q Dw pv Dw Dw

= Cm w + (Cm + Cm >* + (Cmn ' Cm )Dw + Cm (Dw ' * + pv)•w q pv Dw pv pv

= Cm w + (Cm + Cm >pv + (Cmn
 + Cm >Dw ~ Cm (Dw ~ q + pv)'w q pv Dw q q

For a low lift configuration, such as a 15° cone, one expects

the combination (Dw-q+pv) to be small. If Dw - q + pv is a

one order smaller quantity than q, Dw, or pv, then one may expect

only two damping constants to be well determined. The second

and third terms on the right sides are three alternate forms of

these two groupings. Thus one can expect that the values of

these damping derivative groupings*'tb'fbe of more significance than
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the individual derivatives. Linear combinations of any pair

will give any other pair, hence there is little significance

in which pair of groupings one uses. Exactly similar consid-

erations hold for the significant groupings of force damping

derivatives.

(1) The "Brute-force" Method

The number of aerodynamic derivatives, n, chosen in

Eq. (3) is arbitrary. This is true also for the corresponding

force equation. Table 1 shows the result of choosing n = 2,

3, 4, 5 and extracting 2, 3, 4, 5 individual force and moment

derivatives. For n = 6, adding C and C to the set of
V m^:

derivatives, the matrix A was singular and no solution was

found. Table I also shows the important groupings which follow

from the fact that the quantity Dw + pv - q is very small.

An inspection of Table I from the "modelling Problem"

point of view (derivatives unknown) is quite informative. For

these four sets of extracted derivatives, one observes that the

values of C and C are nearly constant. C , C , C , Crti 2 z in 2 —. iii__w w q q Dw Dw

seem to oscillate with increasing n. The two groupings of the

damping derivatives remain nearly constant for n >_ 3. It is

apparent that, when two or more damping derivatives are extracted,

(C + C ) and (C - C ), as well as the correspondingm m m_ mq pv Dw pv

force groupings are nearly constant.

It seems clear that this particular body has two important
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moment damping derivatives and two important force damping

derivatives which show in the groupings regardless of how many

derivatives are extracted. The fact that the force derivatives

behave nearly as well as the moment derivatives is somewhat

surprising.

An inspection of Table I including the actual values and

the percent errors verifies the above "modelling problem"

conclusions. Large errors in the individual derivatives can

occur, e.g., n = 4, with excellent values for the two inde-

pendent groupings. One can conclude that for this body in

this motion state that when two or more force and moment damping

derivatives are included in the set successfully extracted from

accurate data, the groups (C + C ), (C - C ) and the
q pv Dw pv

corresponding groupings of force derivatives are given with

good accuracy.

(2) The Method of Parametric Differentiation

The same perfect data are'msed for extraction of derivatives

by the method of parametric differentiation. Increasing the

number of parameters from 15 to 20 corresponds to taking

Cm ' Cm ' Cm and in order Cm ' Cz ' Cz ' Cz ' Cz in
mw mq mpv mDw Zw Zq Zpv ZDw

the inverse problem. The ordering of the aerodynamic derivatives

is arbitrary but in the work reported here that order was fixed.

For all the cases in Table II, except that in the last column,

the starting values were the actual values. For the last case

18



1
•
t*o
oo
OO

n
N

rt

5^ |
n

N
13
<

1

1

1
to
•
tO
VO
O
O
-P-

1

•

0
oo
VO

1
to
•

to
00
00

ON

1

•
O
CO
CO

1
ts3

to
VO
| — i

O

1

,
1 •

CO

1
o

OO
ON
tsJ

o n
N N

,n 13
+ O

' 0 <
N

13
<

1 1
CO
•
Cn
ON
|_i
*^j
ON

1

J>» |

.p-

1
to
•

oo
ON
CO 1
CO
CO

1
1

o
.p-
^J

,
to
•

00
ON 1
00

00

1

1

to
10

1 1
to

00 to
ON ON
f-^t &\
0 0
O Cn

+

1

O
•̂ J

1
O
•
0
Cn

^

0
N

13
<

1

1

1

1

1

•
Cn
00
Cn
0
00

1
h-1
0
to
Cn

+

Co
(-•
to
«^J
VD

-(.
X«J

O
0

1
to
•
Co
.p*

n
N

(~J

^J

i

i

i
Is3
•
N3
VD
O
0
_£•»

-j-

N>
•

H-

1
to
•
00
*^J
CO
oo
.p*

1
to
•
00

1
I—1

VD
**J
oo
to
Cn

-j-
j— »
Cn

-P-

1
to
•
00
(— »

o
N

,C*I

1
LO
•
Ln
0%
1 — i
•̂ 4
O^

i
to
ON

00

1
to
*
00

CO

Co

1
1 — 1
•

co
*»o

1
S3
•

to
00

to
O

+
M
oo
•

oo

1
CO

f-1

^J
to
^J
vo

1
l->
to
•

VD

1
M
•

00
Ui

o
N

5j

i
M
•
OO
Cn
•̂ 1
^j
CO

1

-P-
to

1
1-1
•

oo
VD
^J
•P>

+

•

^}
|— i
-P-

1
M
•
oo
.p-
VD
00
VD

+

•
O'
0
ON

1
H-1

00
-p*
VD
ON f

to

+
•

O
to
h-1

1
M
•
to
VD

*-

O

tj

^ |
O

g
13
<J

1

1

1
M
•
to
00
Co

oo

+
•

•̂
VD

1
M
•
to
oo
M

O

+

•

VD
•*»4

i
i—1

to
oo
.p*
o

+
•
S^J

«^J

1 1
to
• ^5 •
VD f~N
OO .P-

n o o
^g ^g ^g

-}. Q ^

n <
g

13
<!

i i i
CO
•

CO
•vj
-p-
o
.̂

1
CO 1 1

to

1
to
•
VD
00
10 I 1
Ui

1
• 1 1

oo
•P-

1 1
to M
• •

VD O
VD 00
I-1 1 ^J
*""J ^^Co to

1 1
to
ON

• | N3
CO O
VD

1 1 1
to

VD to !-•
oo oo co
to h- * ON
Cn ON M
^D OO Co

+ 1
to

O .£>
0 O
OO

1
l—j
•
Co
Co
-P-

O
_S
•3
C

1

1

1
M
•
to
oo
CO
*^J

oo

+
Co

• ĵ
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(n = 19, 5 iterations) the initial estimates were C =0.4
mw

and C = -1.8 and the rest were zero. For the missing n = 16zw

case ('-four- moment derivatives and no force derivatives) the

program gave numbers which were unrealistic (magnitudes too

large by 10 or more).

For this method an obvious and natural criterion for the

"best" set of aerodynamic derivatives is: Minimum SSR corresponds

to the "best" set of derivatives. It is probably no real dis-

advantage that this criterion loses its significance when SSR

becomes sufficiently small. The Modelling Problem point of
J\S

view, i.e., disregarding actual values and percent errors, again

may be adopted in viewing the results presented in Table II.

A first conclusion is that a few iterations are very

helpful in reducing SSR as shown by the n = 15 and n = 19 cases.

Presumably a few iterations for n = 17 and 18 would have reduced

SSR significantly. Secondly, the moment damping groupings

change much less as n is changed than the individual moment

damping derivatives. A similar conclusion about the force

damping derivatives cannot be made since the force derivatives

occur in so few cases.

The examination of the entire sequence suggests: (1) the

translational motion is important in this motion as evidenced

by n = 16 not working and the general reduction in SSR as force

derivatives are added, (2) there are two important moment damping
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constants corresponding to the groupings, and (3) the sharp

reduction in SSR in going from n = 18 to n = 19 suggests that

there are (perhaps only) two important force damping constants.

Again, adding the actual values of the derivatives and

the percent errors gives quantitative evidence to the above

conclusions. The accuracy of the two groupings of force

damping derivatives in case n = 19 is confirmed. The inclusion

of translational motion in the inversion problem does increase

the accuracy with which the moment damping groupings are

extracted.

There is one interesting item in the comparison of the two

methods. There is only one common case tried by each. Brute

Force, n = 4 (Table I), corresponds to extracting the same

eight non-zero derivatives used to generate the perfect data.

It was successful in that values of the important force and

moment groupings came out with fair accuracy, though all the

percent errors were considerably worse than for the adjacent

cases (n = 3,5), The Parametric Differentiation case n = 20

corresponds to extracting the same set of derivatives, and it

did not work. It is tempting to conclude that Brute Force is

a somewhat more stable numerical process than parametric

differentiation.

Influence of Noise

In order to investigate the influence of noise in the data

on the accuracy with which aerodynamic derivatives may be



extracted, one case of each of the two inversion methods was

chosen. These were Brute Force n = 3 and Parametric Differentia-

tion n = 19, which seemed to give best results with the perfect

data.

Noisy data..were simulated by adding to the data a set of

pseudo-random numbers with zero mean and a chosen standard

deviation. The noise levels in the translational positions

x,y, and z were chosen to be three times larger than those in

the angular positions t|/ and 6. This corresponds crudely to

some notion of how accurately translational and rotational

positions may be measured. Noise was not added to the roll

,23 ..- J



angle <j>*. At each of the noise levels five (5) experiments

(independent sets of noise) were done. Different or inde-

pendent sets of pseudo-random numbers with zero mean and the

same standard deviation were generated. In the case of "no

noise" the five experiments correspond to 5 sets of slightly

altered initial conditions used to calculate the perfect data.

The results are shown in Tables III and IV. ParDiff was

done with 3 iterations.

*0riginally, the noise added to the perfect data was of the

form

X = X (1+Y )
-noisy -perfect -noise

i.e., relative noise. For a reason which was not clear at

the time, the error in the extracted aerodynamic derivatives

was especially sensitive to (relative) noise in <f>. The change

from relative to absolute noise

X = X + Y
-noisy -perfect -noise

was made because the latter seems to correspond better to

reality. After approximately one half the calculations were

done a case with absolute noise added to <J> showed that the error

was quite insensitive to (absolute) noise in (f>. For con-

sistency (and the lack of computing funds) the calculations were

completed with no noise in 4>. It is now clear that the secular

character of <{>, 4> is nearly constant, causes a small relative

noise to correspond to a quite large effective absolute noise.
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ŵ
p$
C/3
H
0a
o**i
a
0
M
CO

O
H

26



Tables III and IV present, .for. each derivative and

important derivative grouping at each noise level, the mean of

the sample of five numerical experiments and the standard de-

viation for the sample. In almost all cases the standard

deviation is considerably larger than the-error in the mean.

Further, the errors in the mean show no definite trend with

noise level, while the standard deviation shows a definite

increase as the noise level increases. Therefore, the standard

deviation, rather than error in the mean, is related to probable

error in the values of extracted derivatives. It is to be noted

that the confidence level is low because the number of experi-

ments in a sample is small. The largest noise level, a / = a

= a = .009 correspond to a being about 10% of the amplitude
Z

of a typical position variable.

It is not surprising to note, that the static derivatives

are extracted with greater accuracy than are the dynamic deri-

vatives. It may be surprising to note that Parametric Differenti-

ation recovered C out of the noisy data with about twice the
zw

accuracy as it recovered C . Table V presents the standard
w

deviation in percent of the static derivatives as a function of

the noise level for the two methods of inversion.

Figure 1 shows how the standard deviation in percent

of the force and moment damping derivative groupings variels. with

the noise level for both methods. An overall view of Figure 1
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shows that Par Diff gives better results. More specifically,

Par Diff recovers the force groupings about four times better

than BF. Par Diff extracts (C + C ) and (C - C )
mq mDw mDw mpv

equally well, while BF extracts the former about three times

better than the latter and the former not quite as well as

does Par. Diff.

The computing requirements for the two methods are signi-

ficantly different. Doing 3 iterations, Par Diff requires about

25 times as much computing time as BF.

Conclusions

(1) There is no particular difficulty in extracting aero-

dynamic information of reasonable accuracy from reasonably

noisy data describing the complicated, Quasi-Six degree of

freedom motion of a 15° cone in a Mach 3 tunnel. This result

is demonstrated by a quite simple and straightforward inversion

technique (BF) and by a quite sophisticated and complex inversion

technique (Par Diff). The interesting implication is that this

conclusion is not unique to this particular motion case.

(2) Both of the inversion methods used are inherently

general in that they do not depend upon linearization. BF is a

linear algebraic problem as long as the aerodynamic forces and

moments may be written in terms of the derivative coefficients.

Par Diff involves a numerical integration of the equations of

motion; the inertial nonlinearities present no difficulties, but
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it is conceivable that, enough higher, order terms in the

expressions for the aerodynamic forces and moments „ could be im-

portant and could cause excessive integration difficulties.

Certainly most important aerodynamic non-linearities could

be handled by Par Diff. The interesting possibility is that

these methods, and perhaps others, coupled with magnetic

balance wind tunnel systems provide a practical way of ex-

perimentally studying nonlinear aerodynamics of suitable

models.

(3) The work reported here is only a first step in

the attempt to understand the aerodynamic information extraction

problem for the complicat£d;n: efuasi-six degree of freedom case.

The obvious extensions which ought to be done involve: various

noise levels in individual observables and their influence in

combination, different models and flight conditions, and active

balance forces and moments.
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