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BOUNDARY LUBRICATION OF FORMULATED C-ETHERS IN AIR TO 300° C

.II-ORGANIC ACID ADDITIVES

by William R. Jones, Jr.

Lewis Research Center

SUMMARY

Friction and wear measurements were made on consumable electrode vacuum melt-
ed (CVM) M-50 steel lubricated with three C-ether (modified polyphenyl ether) formula-
tions (organic acid additives) in dry (<100 ppm HgO) and moist air (relative humidity
(RH) 50 percent at 25° C (77° F)). Results were compared to those previously obtained
with a fully formulated Type n ester and the C-ether base fluid. A ball-on-disk sliding
friction apparatus was used. Experimental conditions were 1-kilogram load (initial
Hertz stress, 1x10 N/m ), a 17-meter-per-minute disk surface speed, a 25° to 300° C
(77° to 572° F) disk temperature range, and a 25-minute test duration.

The three C-ether formulations yielded better boundary lubricating characteristics
than the Type n ester under most test conditions. Formulation V (perfluoroglutaric
acid boundary additive) (0.1 weight percent) exhibited lower or similar wear compared
to the C-ether base fluid for most of the test conditions. In both dry (<100 ppm HoO)
and moist air (RH 50 percent at 25° C (77° F)), formulations IV (polyacid boundary addi-
tive) and VI (phenylphosphinic acid boundary additive) (0. 08 weight percent) yielded
higher wear than the C-ether base fluid over the entire temperature range.

In general, all C-ether formulations exhibited higher friction coefficients than the
Type H ester from approximately 150° to 300° C (302° to 572° F). Lower or similar
friction coefficients were observed for the formulations from 25° to 150° C (77° to
302° F).

Formulation V (perfluoroglutaric acid additive) (0.1 weight percent) exhibited lower
wear at low temperatures and higher wear at high temperatures when tested in moist air
as compared to a dry air atmosphere. No moisture effects were observed with the other
two formulations.



INTRODUCTION

Advanced aircraft and re-entry vehicles will place increased thermal stresses on
hydraulic fluids and lubricants. Maximum fluid temperatures in excess of 316° C
(600° F) have been estimated for future applications (refs. 1 to 5). At these elevated
temperatures, fluids must operate without appreciable degradation and must also pro-
vide effective lubrication for bearings and hydraulic system components.

Presently available fluids such as,the super-refined mineral oils (refs. 6 and 7),
hindered esters (refs. 3, 8, and 9), fluorinated pblyethers (refs. 2, 3, and 10), and
polyphenyl ethers (refs. 3, 7, 11, arid 12) have one or more deficiencies which limit
their use at high temperatures. These deficiencies include poor oxidation stability,
poor boundary lubricating characteristics, and cdrrosivity. In addition, because of the
optimization of the high temperature properties, these fluids exhibit poor low tempera-
ture fluidity (high pour point).. ,

The C-ethers, which are structurally related to the polyphenyl ethers, are a prom-
ising class of fluids for possible high temperature applications (refs, 13 and 14). They
have excellent thermal stability (thermal decomposition temperature of 390° C (734° F)
measured by isoteniscope), good oxidation stability to 260° C (500° F), and adequate
pour points (-29° C (-20° F)). They also exhibit low vapor pressure, high surface ten-
sion, and excellent shear stability. The main deficiencies of the C-ethers have been .,
their poor boundary lubricating ability and poor wetting characteristics (refs.' 7 and 15).
Heat transfer (cooling) problems have also been encountered with this fluid class (ref. 2)
and are probably a result of its poor wetting properties. Additives can, however, im-
prove the boundary lubricating ability of, C-ethers (fef, 16). .

The, objectives of this investigation were (1) to determine the friction and wear of
Consumable electrode vacuum melted (CVM),M-50 steel lubricated with three C-ether,
formulations (organic acid additives) in dry (<100 ppm H2O) and moist air .(relative
humidity (RH) 50 percent at 25° C (77° F)) at temperatures from 25° to 300° C (77° to
572° F); arid (2) to compare these results with those previously obtained (ref. 16) with
a fully formulated Type U ester (MIL-L-23699) and the C-ether base fluid. Other ex-

• • • • • • ' • ' . ' ' ' 9 . 2
perimental conditions included a 1-kilogram load (initial Hertz stress, 1x10 N/m ), a
17-meter-per-minute surface speed, and a test duration of 25 miriutes.

•APPARATUS

The ball-on-disk sliding friction apparatus is shown in figure 1. The test specimens
were contained inside a stainless-steel chamber. The atmosphere was controlled with
respect to moisture content. A stationary 0. 476-centimeter-radius ball was placed in



Applied load

Rider (0.476-cm-
radius ball)-;

CD-11286-15

Figure 1. - Friction and wear apparatus.



sliding contact with a rotating 6.3-centimeter-diameter disk. A sliding speed of 17 me-
ters per minute was maintained. A normal load of 1 kilogram (initial Hertz stress,

q 9
1x10 jN/m ) was applied with a deadweight. Balls and disks were made of CVM M-50
tool steel. Disk and ball hardness was Rockwell C 62 to 64.

The disk was partially submerged in a polyimide cup containing the test lubricant
and was heated by induction. Bulk lubricant temperature was measured with a thermo-
couple. Disk temperature was monitored with an infrared pyrometer. Frictional force
was measured with a strain gage and was recorded on a strip chart recorder.

MOISTURE MONITORING AND CONTROL

The two atmospheres used in this study were (1) moist air at a relative humidity
(RH) of 50±5 percent at 25° C (77° F) and (2) dry air (<100 ppm H2O). The relative
humidity was monitored by a direct reading hygrometer accurate to ±1.5 percent. The
low water concentrations were monitored by a moisture analyzer with an accuracy of
±10 ppm.

Dry air was obtained by drying and filtering service air. Moist air was obtained by
bubbling the dry gas through a water reservoir. The relative humidity of the moist air
was controlled manually to 50±5 percent at 25° C (77° F).

PROCEDURE

Q Q

Disks were ground and lapped to a surface finish of 10*10 to 20x10 meter (4 to
Q

8 juin.) and balls to 2. 5x10 meter (1 Min.) rms. Specimens were scrubbed with a
paste of levigated alumina and water, rinsed with tap water and distilled water, then
placed in a desiccator.

All lubricants tested in dry air were degassed at approximately 150° C (302° F) at
2 torr for 1 hour. Measurements using the Karl Fischer technique indicate that this
degassing procedure reduces dissolved water content in C-ethers to less than 20 ppm.

The specimens were assembled and 70 cubic centimeters of lubricant were placed in
3 3the lubricant cup. The test chamber (3. 7x10 cm volume) was purged with the test

3
atmosphere for 10 minutes at a flow rate in excess of 50x10 cubic centimeters per hour.
The disk was heated by induction to the test temperature while rotating (100 rpm). The
ball was then loaded against the disk. Test atmosphere flow rate was reduced to

3 -335x10 cubic centimeters per hour, »and a 6.9xlO~ -newton-per-square-meter (1-psig)
pressure was maintained in the chamber. The lubricant was heated only by heat transfer
from the rotating disk. The bulk lubricant temperature was essentially the same as the



disk temperature at disk temperatures to 100° C (212° F). At disk temperatures of 200°
and 300° C (392° and 572° F), the bulk oil temperatures stabilized at approximately 150°
and 200° C (302° and 392° F), respectively.

Frictional force and bulk lubricant temperature were continuously recorded,
temperature was continuously monitored. Experiments were terminated after 25 min-
utes and the rider (ball) wear scar diameter was recorded (from which wear volume was
calculated).

t
Disk

EXPERIMENTAL LUBRICANTS

The experimental and reference fluids used in these experiments were a formulated
Type n ester, a C-ether base fluid, and three C-ether formulated fluids. Some typical
properties of the Type n ester and the C-ether base fluid appear in table I. Table n con-
tains the additive contents of the test fluids.

Formulated Type II Ester

A fully formulated Type n ester was chosen as a reference fluid for these experi-
ments. This lubricant is commercially available and meets General Electric D50TF1,

TABLE I. - TYPICAL PROPERTIES OF THE EXPERIMENTAL FLUIDS

Properties3"
n

Kinematic viscosity, m /sec (cS)
At 38° C (100° F)
At 99° C (210°'F)
At 300° C (572° F)

Pour point, °C (°F)
Flash point, °C (°F)
Fire point, °C (°F)
Density at 38° C (100° F), g/cm3

Thermal decomposition (isoteniscope), °C (°F)
Vapor pressure at 371° C (600° F), torr
Surface tension at 23° C (73° F), N/cm (dynes/cm)d

Erdco bearing rig deposit rating (Type II conditions )a' f

C-ether base fluid

2.5X10"5 (25)
4. IxlO"6 (4.1)

6. 9x10" 7 (0.69)
-29 (-20)
239 (445)
285 (540)

1.19
390 (734)

140

44. 8X10"4 (44.8)

Type n ester

2.8X10"5 (28)
5.3X10"6 (5.3)

b6. 8x10" 7 (0.68)
-60 (-75)
280 (535)

C0. 990
316 (600)

26

Manufacturer's data.
Extrapolated.

Specific gravity (15.6° C/15.6° C (60° F/60° F)).
dMeasured by author.
eBulk oil 227° C (440° F), oil in 204° C (400° F), bearing 260° C (500° F).



TABLE II. - ADDITIVE CONTENTS OF TEST FLUIDS

Formulated Type II ester

Antiform, anticorrosion, aromatic
amine antioxidant, combined
antioxidant and load carrying
agent

C-ether base fluid

Antifoam

C-ether formulation IV

Antifoam, polyacid

C-ether formulation V

Antifoam, perfluoro-
glutaric acid
(0. 10 weight
percent)

C-ether formulation VI

Antifoam, phenylphos-
phinic acid
(0. 08 weight percent)

Pratt and Whitney PWA 521B, and MIL-L-23699 lubricant specifications.

C-ether Base Fluid

The C-ether base fluid used in this study was originally reported in reference 13. -
This fluid is a blend of three-ring and four-ring components which are structurally simi-
lar to the polyphenyl ethers. This base fluid contains an antifoam additive.

C-ether Formulations (Organic Acid Additives)

Formulation IV. - Formulation IV was the base fluid plus a proprietary organic
polyacid boundary additive.

Formulation V. - Formulation V was the base fluid plus 0.1 weight percent of a
boundary additive (perfluoroglutaric acid).

Formulation VI. - Formulation VI was the base fluid plus 0. 08 weight percent of a
boundary additive (phenylphosphinic acid). None of these formulations has been studied
previously.

RESULTS AND DISCUSSION

Wear

Formulated Type n ester. - This fluid was chosen as a reference fluid because it
appeared to be a typical example of the polyol ester group of MIL-L-23699 lubricants.fi
Wear results for this fluid appear in figure 2 (from ref. 16). No significant differences
in wear were observed between the dry and wet air results. Therefore, a single wear
temperature curve appears in figure 2. The wear rate was essentially constant at

131. 4X10 cubic meter per minute over the entire temperature range.
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Figure 2. - Coefficient of friction and rider (ball) wear
as a function of temperature for a fully formulated
Type II ester and a C-ether base fluid. Test condi-
tions: M-50 steel specimens; 1-kilogram load; 17-
meter-per-minute (100-rpm) sliding speed; dry «100
ppm H20) and moist (RH 50 percent at 25° C (77° F)
air; 25-minute test duration.

C-ether base fluid. - Wear results for this base fluid also appear in figure 2 (from
ref. 16). The C-ether base fluid yielded lower wear than the ester in both atmospheres
over almost the entire temperature range. Lower wear rates occurred when the C-
ether was tested in moist air (RH 50 percent at 25° C (77° F)) as compared to a dry air
(<100 ppm H2O) atmosphere.

C-ether formulations (organic acid additives). - Wear results for C-ether formula-
tions I, n, and El, containing phosphorus ester additives, were reported in reference 16.
Wear results for C-ether formulations IV, V, and VI, containing organic acid additives,
appear in figure 3. The wear rate for the Type II ester also appears in figure 3 for ref-
erence.

Moisture in the test atmosphere did not greatly affect the wear results for formula-
tions IV and VI. However, formulation V yielded lower wear below and higher wear
above 185° C (365° F) when tested in moist as compared to dry air.

As is evident from figure 3, formulations IV and V yielded lower wear than the ester
over essentially the entire temperature range. Formulation VI yielded lower wear than
the ester from 25° to 150° C (77° to 302° F) and about the same wear from 150° to
300° C (302° to 572° F).

Comparisons between the wear rates for the three formulations and the C-ether base
fluid appear in figure 4. In both dry (fig. 4(a)) and moist air (fig. 4(b)) formulations IV



10-
_ e

10-M

o Dry air «100 ppm H20)
a Moist air (RH 50 percent

at 25° C (77° F»

Type II ester from fig. 2

10-15

r -30

O

•C .20
r .10

0

i i i
.

1 1 1

1

•v-S-o

1

1 1

o _n

~

1 1

(a) C-ether formulation IV (polyacid boundary
additive).

10"

10'13

_ E

ID"15

_c .30

•| £ . 20

lr .10
o =>

0

r12

oT
fo

i-10"13

B10-14

s

" ID'15

-30

•I 5 .20

(b) C-ether formulation V (perfluoroglutaric acid
ooundary additiveHO. 10 weight percent).

o o

0 50 100 150 200 250 300
Temperature, °C

100 200 300 400
Temperature, °F

500 600

(c) C-ethe/formulation VI (phenylphosphinicacid
boundary additiveHO. 08 weight percent).

Figure 3. - Coefficient of friction and rider (ball) wear rate
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lations. Test conditions: M-50 steel specimens; 1-
kilogram load; 17-meter-per-minute (100-rpm) surface
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and VI yielded higher wear than the base fluid over almost the entire temperature range.
Formulation V exhibited a somewhat more complex behavior yielding lower wear than
the base fluid under most conditions but higher wear under others.

Coefficient of Friction

Figure 2 contains a comparison between the friction coefficients for the Type n
ester and the C-ether base fluid. Figure 3 shows the friction-temperature curves for
each of the three formulations. All C-ether formulations exhibited higher friction coef-



ficients than the ester from 150° to 300° C (302° to 572° F) and similar or lower values
from 25° to 150° C (77° to 302° F). Testing in a moist as opposed to a dry air atmos-
phere had little or no effect of the friction coefficients for all fluids.

A summary of friction and wear results for all test fluids at four selected tempera-
tures at 25°, 100°, 200°, and 300° C (77°, 212°, 392°, and 572° F) appears in table HI.
Figure 5 also summarizes the wear rates for all fluids at the aforementioned tempera-
tures in both dry and moist air.

Care must be taken in interpreting these results. Obviously boundary additives are
added to base stocks to improve their boundary lubricating characteristics (i.e., reduce
friction or wear). However, whether a particular additive actually increases or de-
creases the wear associated with the unformulated base stock is dependent upon its
chemical reactivity. The chemical reactivity, in turn, depends upon specimen metal-
lurgy, type of atmosphere, and the severity of the test conditions.

TABLE m. - SUMMARY OF FRICTION AND WEAR RESULTS

Disk temper-
ature

°C °F

Test fluids

Type n ester C-ether base
fluida

C-ether for-
mulation IV

C-ether for-
mulation V

C-ether for-
mulation VI

o

Rider wear, m /min

25

100

200

300

77

212

392

572

14xlO~14

14x10" 14

14xlO"14

14X10"14

7. 5x10" 14

b3.0

3. 8x10" 14

b2.0

S.OxlO"14

b3.5

14
llxlO"1*

b9.0

S.OxlO"14

4.5X10"14

S.OxlO"14

20X10"14

7.0X10"14

b2.5

3. 5x10" 14

bi.o

2.0X10"14

b2.5

10X10" 14

16

4. 5xlO"14

9.0X10"14

16xlO"14

10X10"14

Coefficient of friction

25

100

200

300

77

212

392

572

0.10

0.16

0.16

0. 1'2

0.12

0.16

0.18

0.20

0.07
b.13

0.14

0.19

0.21

0.08
b.10

0.12
b.14

0.18

0.18

0.10

0.10

0.16

0.18

Ref. 16.
ist air (RH 50 percent) results where they differ from dry air results.
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Rowe (ref. 17) has given an explanation of how lubricant (or additive) reactivity,
wear, and test severity are related. A schematic plot (from ref. 17) illustrating these
relations appears in figure 6. Curve B represents a set of test conditions more severe
than those of curve A. Essentially, high wear can be obtained at low reactivities (ad-
hesive wear) or at high reactivities (corrosive wear). Obviously, there is an optimum
balance between the two types of wear which is dependent on the severity of the test con-
ditions. It should also be obvious, that a change in test severity (such as an increase in
load) could cause a re-ordering of additives of different reactivities from a wear stand-
point.

The relative reactivities of the three additives included in this study have not been
independently measured. However, it is apparent from figure 4 that both the polyacid
(formulation IV) and phenylphosphinic acid (formulation VI) are operating in the corro-
sive wear regime. Both additives yield higher wear than the base fluid alone. A lower-
ing of the additive concentration in these two formulations would ameliorate this effect.

Another interesting aspect shown in figure 4 is the effect of atmospheric moisture
on wear rate. As previously mentioned, only formulation V (perfluoroglutaric acid)
yielded different wear rates when tested in dry air as compared to moist air. It is also
interesting to note that in the earlier study of C-ether formulations (ref. 16), only for-
mulation in (containing a halogenated acid) yielded a similar result.

Apparently, water catalyzes boundary film formation with halogenated acids. This
is consistent with some experiments with fatty acids which indicated that the rate of
boundary film formation was accelerated by the presence of water (ref. 18).

Test condition1

A B

Adhesive wear Corrosive wear

Lubricant or additive reactivity »•

Figured. - Schematic illustrating relationship between wear, reac-
tivity, and severity of test conditions (ref. 17). Severity of test con-
dition B is greater than that of test condition A.
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It must be stated that the test conditions of this study are only a part of the spectrum
of conditions that a lubricant or hydraulic fluid would be subjected to in service. Quite
different results may be obtained under higher speeds, higher loads, and different
metallurgies.

SUMMARY OF RESULTS

The friction and wear of consumable electrode vacuum melted (CVM) M-50 steel
lubricated with three C-ether formulations (organic acid additives) in dry (<100 ppm
H2O) and moist air (relative humidity (RH) 50 percent at 25° C (77° F)) were determined
using a ball-on-disk sliding friction apparatus. Disk temperature range was 25° to
300° C (77° to 572° F). Other conditions were a 1-kilogram load (initial Hertz stress,
1x10 N/sq m), a 17-meter-per-minute (100 rpm) sliding speed, and a 25-minute test
duration. Results were compared to those obtained with a formulated Type II ester and
the C-ether base fluid. The major results were the following:

1. The three C-ether formulations yielded better boundary lubricating characteris-
tics compared to the Type II'ester under most test conditions.

2. Formulation V (0.1 weight percent perfluoroglutaric acid boundary additive) ex-
hibited lower or similar wear while formulations IV (polyacid additive) and VI
(0. 08 weight percent phenylphosphinic acid boundary additive) exhibited higher wear than
the C-ether base fluid for most test conditions.

3. In general, all C-ether formulations exhibited higher friction coefficients than
the Type H ester from 150° to 300° C (302° to 572° F) and lower or similar values from
25° to 150° C (77° to 302° F).

4. In moist air, formulation V (perfluoroglutaric acid boundary additive) exhibited
lower wear at low temperatures and higher wear at high temperatures then it did in dry
air. No moisture effects were observed with the other two formulations.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, February 5, 1973,
501-24.
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