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ABSTRACT 

This paper reviews the  state of the art of s o l i d  lubr ica t ion  f o r  
moderate t o  extremely high temperature lubr ica t ion  ( t o  1600~ F) a Lubri- 
cat ing characteristics , s t a b i l i t y  i n  various environments, and rel.evant 
machine design considerations are  discussed. Lubricating materials dis-  
cussed include t h e  layer  l a t t i c e  compounds: 

graphite f luor ide  (CFxln, t h e  high temperature polyimide polymer, and 

ca.lcium f luor ide  based coatings arid composites. The scope of t h e  in-  
formation includes r e su l t s  from wear t e s t e r s  > b a l l  bearings,  and 
j ournal bearings. 

MoS2, WS2, graphite and 

INTRODUCTION 

During t h e  last  25 years ,  much e f f o r t  has been d i rec ted  t o  the  
study of s o l i d  lubricants  ( e . g , ,  r e f s  e 1-6). Those materials have 
solved many un4que lubricat ion problems a However, t h e  misapplication 
of s o l i d  lubricants  has not been uncommon. Sol id  lubr icants  have 
nevertheless gained considerable acceptance. The key t o  even more wide- 
spread use w i l l  be t h e  rea l iza t ion  t h a t  s o l i d  lubricants  are special ized 
materials. Their properties and performance i n  regard t o  such f ac to r s  
as atmosphere, temperature and bearing design must be understood before  
a w i s e  se lec t ion  can be made. For any c r i t i ca l ly - lub r i ca t ed  machine 
element, t h e  lubr icant  propert ies  must be considered as careful ly  as 
those of any other  design material. In other  words t h e  lubricant  
should be one of t h e  facets  of conceptual machine design. 

It is t h e  purpose of t h i s  paper t o  describe some of t h e  relevant 
propert ies  of  various s o l i d  lubricants  f o r  use i n  moderate and severe 
environments, but with emphasis on high temperature appl icat ions.  

Advantages and Disadvantages of Sol id  Lubricants 

When one considers the  very low f r i c t i o n  and t h e  long l i f e  possible  
with o i l  or grease lubricated bearings, a legi t imate  question i s ,  why 
use s o l i d  lubr icants?  Some of t h e  advantages of s o l i d  lubricants  are: 
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1. Solid lubrrcants  can be used i n  severe environmental conditions 
where t h e  usual f l u i d  lubricants  such as o i l  are not suitable, These 
conditions include ambient temperatures above t h e  decomposftion tempera- 
t u re  of o i l s  or, on the  other  hand, temperatures s o  low t h a t  o i l s  f reeze 
t o  b r i t t l e  so l ids .  Sol id  lubr icants  can a l so  be used i n  chemically 
reac t ive  environments such as l i q u i d  oxygen and f luorine o r  t h e  molten 
a l k a l i  metals 

2 ,  Sometimes design advantages are a l so  derived, These include 
a reduction i n  weight of t he  mechanism: dry-lubricated bearings fre- 
quently do not require  cooling; therefore  rec i rcu la t ing  o i l  systems, 
with t h e i r  pumps and heat exchangers, may be eliminated - fur ther ,  
ro t a t ing  shafks can sometimes be shortened because dry-lubricated bear- 
ings can be loca ted  closer t o  heat sources, or at the  other  temperature 
extreme, c loser  t o  cryogenically cooled areas.  Not only i s  shaf t  weight 
reduced, but i n  high speed machinery, problems of shaf t  whip and c r i t i c a l  
speeds are lessenea.  

3. The use of dry-lubricated bearings can sometimes reduce t h e  
number of s ea l s  required i n  a system. In vacuum environments, f o r  example, 
low vapor pressure ao l id  lubr icants  need not be sealed from the  vacuum 
t o  prevent evaporatlon, Tn f l u i d  systems ,, sea l s  are of ten required t o  
i s o l a t e  the  lulmlcaeing f l u l d  from the  process f lu ids .  These sea ls  are 
not required when bonded s o l i d  lubricants  t ha t  are  compatible with t h e  
process f lu ids  are  used. 

This i s  t h e  case f o r  s o l i d  lubricants .  In  order t o  use them i n t e l l i -  
gent ly ,  however, t h e i r  disadvantages should a l so  be discussed. Some of 
these a re :  

1. Fr ic t ion  coeff ic ients  are generally higher than obtained with 
hydrodynamic lubricat ion ( f o r  hydrodynamic oi l - lubricated bearings,  f r i c -  
t i o n  coeff ic ients  of 0.005 are not unusual). For t he  bes t  s o l i d  lubr i -  
cant ,  under favorable conditions, a f r i c t i o n  coeff ic ient  of 0.05 i s  
typ ica l ;  f o r  severe conditions of boundary lubricat ion,  f r i c t i o n  coef- 
f i c i e n t s  up t o  0.20 are frequently considered t o  be acceptable. 

2. Some wear i s  unavoidable because of t h e  s o l i d  s l i d i n g  contact. 
I n  hydrodynamic lubricat ion,  w e a r  ra tes  t heo re t i ca l ly  can be zero. 

3. When used as a bonded coating, t h e  w e a r  l i f e  of a s o l i d  lubri-  
carAt i s  f i n i t e ;  when t h e  coating wears out ,  t h e  lubricant  generally 
cannot be replenished except with considerable d i f f i c u l t y  . 

4. Solid lubricants  cannot function as coolants while o i l s  are 
e f f ec t ive  coolants. 

5. Sol id  lubricants  have l i t t l e  o r  no damping e f f e c t  It is of ten 
overlooked t h a t  o i l  dampens vibrations espec ia l ly  i n  nonloaded ro t a t ing  
pa r t s  such as b a l l  bearing cages. Damaging v ibra t iona l  cage i n s t a b i l i -  
t i e s  can occur i n  dry bearings running a t  high speeds. 



This p a r t i a l  i i s t i n g  of advantages and disadvantages should ind ica te  
t h a t  t h e  decisions t o  use e i t h e r  a s o l i d  or l i q u i d  lubricant  and which 
spec i f i c  lubricant  t o  use can be complex and should be made ea r ly  and 
c are f i d l y  . 

SPECIFIC SOLID LUBRICANTS AND THEIR PROPERTIES 

Layer Lat t ice  Compounds 

These are  materials with a hexagonal layered c r y s t a l  s t ruc ture .  
The shear proper%ies are  anisotropic  with preferred easy shear p a r a l l e l  
t o  t h e  basa l  planes of t h e  c r y s t a l l i t e s .  This c lass  of materials con- 
s t i t u t e  t h e  most widely used group of s o l i d  lubr ica t ing  mater ia ls .  
Generally speaking, t h e  f r i c t i o n  coeff ic ients  obtained with good layer 
l a t t i c e  s o l i d  lubr icants  such as MoS2 or WS2 are lower than those ob- 

ta ined  with t h e  other  classes of s o l i d  lubr icants  t o  be mentioned. 
Therefore, they are generally preferred f o r  applications i n  environments 
with which they are compatlble. 

Molybdenum disu l f ide  (MoS2). - MoS is  an excel lent  s o l i d  lubr i -  2 
eat ing mater ia l  that has gained w i d e  acceptance. It i s  an i n t r i n s i -  
ca l ly  low shear s t rength mater ia l  and, i n  contract  t o  graphi te  does not 
require  the  presence of adsorbable vapors i n  order t o  lub r i ca t e  ( re f .  7 ) .  
MoS i s  commonly used i n  r e s in  bonded coatings applled t o  t h e  bearing 

surfaces.  The maximum useful  temperature of these coatings depends upon 
t h e  composition of t h e  res in  binder.  Thermoplastic res ins  such as t h e  
ce l lu los i c  or ac ry l i c  lacquers are convenient They are e a s i l y  sprayed, 
f a s t  drying, and require no baking. However, t h e i r  m a x i m u m  recommended 
serv ice  temperature i s  only about 150' F. 
res ins  have much b e t t e r  high temperature propert ies .  The maximum serv- 
i c e  temperature f o r  t h e  phenolics i s  about 400' F; t h i s  r e s i n  has good 
adhesion t o  metal surfaces ,  and i s  quite hard.  Epoxy res ins  a l so  ad- 
here w e l l ,  a re  s o f t e r  than t h e  phenolics and are thermally s t ab le  t o  
about 600' F. Epoxy-modified phenolics are of ten used i n  heat-cured 
resin-bonded MoS2 formulations. Wear l i f e  of resin-bonded Mo5 de- 

creases with temperature and at t h e  maximum recommended temperatures 

may be - t h e  l i f e  at room temperature. 

2 

Some of t he  thermosetting 

2 

10 0 

I n  f igure 1 t h e  e f f ec t s  of temperature on the  lubr ica t ing  prop- 
e r t i e s  of a MoS2 coating bonded with a mixed r e s i n  are shown ( re f  - 8 ) .  

A t  about 600' F, both f r i c t i o n  coeff ic ients  and rider w e a r  increase 
sharply.  This r e s u l t  can be a t t r i bu ted  t o  f a i l u r e  of t h e  r e s in  binder.  
However, MoS2 i tsel f  decomposes i n  a i r  t o  form molybdic oxide and sul- 

fur dioxide at only s l i g h t l y  higher temperatures. This oxidation rate 
i s  appreciable at about 750' F. 
of an organic binder,  inorganic binders such as sodium s i l i c a t e  have 

To avoid t h e  temperature l imi ta t ions  
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been used (ref 9 )  Coatings of t h i s  type are l imited by t h e  threshold 
temperature f o r  oxidatton of MoS2 ra ther  than t h e  binder,  

may a l so  provide some oxidation protection t o  the  Nos2 pa r t i c l e s  by, t o  

at least a l imited extent , excluding a i r  from t h e  lubr icant  pa r t i c l e s  e 

Enclosed bearlng housings a l so  may sometlmes a i d  i n  reducing the  oxida- 
t ion  rate. In  a completely i n e r t  atmosphere such as argon, lubr ica t ion  
with powdered Mog2 5s possible up t o  perhaps 1500" F. 

This binder 

Tungsten d i su l f ide ,  WS2. - WS i s  similar t o  MoS2 i n  t h a t  it i s  a 
2 

l ayer  l a t t i c e  type of s o l i d  lubricant  and it does not require  t h e  presence 
of adsorbable vapors t o  develop low shear s t rength charac te r i s t ics  e 

apparently has somewhat b e t t e r  high temperature propert ies  i n  both a i r  
and nonoxidizing atmospheres ( ref .  lo), f igure  2. Both s o l i d  lubr i -  
cants are  e f f ec t ive  t o  higher temperatures i n  the  nonoxidizing atmos- 
phere, X-ray d i f f r ac t ion  s tudies  have shown t h a t  the s ign i f icant  in-  
creaze i n  f r f c t fon  coeff ic ient  of both compounds in  a i r  at the  higher 
temperatures 2s caused by chemieal reaetion of t h e  disuIf ides  t o  form 
the respect ive oxides. 

WS2 

Oxidation of WS2 and MoS2" - The influence of temperature on t h e  

oxidation r a t e s  of WS2 and MoS2 w a s  determined i n  an X-ray d i f f r ac t ion  

furnace ( r e f .  11). 

and NOS are compared In f igure  3. 

more raptdly than WE2" 

where oxidation ha l f - l i f e  of MoS2 i s  given f o r  two a i r  flow ra t e s .  

Oxidation was s ign i f i can t ly  more rapid at t h e  higher a i r  flow ra t e .  
The dependence of oxidation rate on oxygen ava i l ab i l i t y  t o  t h e  reac t ing  
surface is therefore  clear.  

The oxidation half- l ives  of t he  t h i n  films of WS2 

Above about 730' F, MoS2 oxidized 2 

The importance of oxygen ava i l ab i l i t y  i s  demonstrated i n  f igure 4 

For vacuum application t h e  maximum usefu l  temperature i s  a function 
of t h e  thermal dissociat ion rates ra ther  than t h e  oxidation ra tes  of 
t he  lubricants  e Thermal dissociat ion rates of molybdenum and tungsten 
d isu l f ides ,  diselenides and d i t e l lu r ides  i n  vacuum have been systemat- 
i c a l l y  studied (ref.  12), The major r e s u l t s  are summarized i n  table I. 
The da ta  ind ica te  t h a t  the  d isu l f ides  are t h e  most s t ab le  t o  thermal 
diesociat ion,  t h e  deselenides are  intermediate and t h e  d i t e l lu r ides  are 
the  least s tab le .  However, t h i n  films of t h e  diselenides provided 
e f f ec t ive  lubr ica t ion  i n  vacuum t o  a higher temperature (1400O F )  than 
the  d isu l f ides  The diselenides ,  because of t h e i r  higher dens i t ies  
evaporate more slowly than t h e  d isu l f ides  and apparently, f o r  the  very 
t h i n  films used, t h e  evaporation ra tes  w e r e  t h e  control l ing fac tor  i n  
determining the  maximum temperatures f o r  e f f ec t ive  lubr ica t ion .  

Graphite, Graphite w a s  perhaps t h e  first widely used inorganic 
s o l i d  lubricant .  It i s  indus t r i a l ly  important as a par t ing  compound 
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f o r  molds, and as a lubricant  i n  metal-working processes such as w i r e -  
drawing and extrusion,  

Because of i t s  importance as a lubr icant ,  it 9s i n t e re s t ing  t h a t  
pure graphite has severe def ic iencies  as a lubr icant ,  It has been 
demonstrated t h a t  graphite must adsorb gas moisture o r  hydrocarbon 
vapors before it develops the  property of low shear s t rength  required 
of a s o l i d  lubricant  ( r e f ,  13). The presence of some oxides and other 
extraneous materials i s  a l so  important i n  t h e  formation of adherent 
films of graphite on slolid surfaces and i n  reducing t h e  shear s t rength 
of t h e  graphite s t ruc ture .  It has been suggested tha t  t h i s  i s  due t o  
the  formation of i n t e r s t i t i a l  or in te rca la t ion  compounds by reaction 
of these  mater ia ls  with graphite ( ref .  1 4 ,  f o r  example) e 
water vapor present i n  t he  normal atmosphere are usually su f f i c i en t  t o  
h s u r e  an adequate supply of adsorbable material. However, at high 
a l t i t udes  or  under vacuum conditions,  desorption occurs and graphite 
does not function as a lubr lcant ,  The e f f e c t  of temperature on the  
f r i c t i o n  coef f ic ien t  fo r  lubr ica t ion  with graphite powder i s  shown i n  
f igure 5 ( r e f .  1 5 ) .  The f r i c t i o n  coeff ic ient  i s  qui te  low at room 
temperature, but increases at temperatures above about 200' F. 
f r i c t i o n  coeff ic ient  remains high then shows a marked reduction at 
temperatures above approximately 800' F,  and graphite i s  again an 
e f fec t ive  lubricant  at 1000° F (probably associated with oxidation of 
t h e  lubricated metal)  

The gases and 

The 

In  a i r ,  the threshold temperature f o r  long duration uses of graphi te  
i s  determined by the  oxidation rate. 
s i z e  begins t o  oxidize at an appreciable r a t e  at about 850' F ( r e f .  16 ) .  
Graphite can be used t o  higher temperatures i f  it can be replenished 
because the  oxidation products are gases and no so l id  residues are 
produced. Considerable advantages i n  t h e  development of adherent lubr i -  
cat ing films can of%en be gained by the addition of meta l l ic  salts o r  
oxides t o  graphite.  
cadmium oxide ( C d O )  with graphi te ,  a low f r i c t i o n  coeff ic ient  can be 
obtained over t h e  e n t i r e  temperature range e 

Graphite powder of s m a l l  p a r t i c l e  

The lower curve of f igure  5 shows t h a t ,  by mixing 

Graphite i s  perhaps more frequently used f o r  high temperature 
applications i n  t h e  form of self- lubricat ing,  carbon graphite materials 
than i n  the  form of powders o r  coatings. Because the  oxidation of 
graphi te  involves t h e  chemical reaction of carbon with oxygen i n  t h e  
a i r  t o  f o m  carbon dioxide, t h e  oxidation of carbon-graphite bodies can 
be inh ib i ted  by high temperature surface treatments or by impregnating 
the  carbon-graphite s t ruc ture  t o  exclude air  Carbon-graphites , im-  
pregnated with copper or  s i l v e r ,  are reportedly useful t o  about 900' F 
while some of  t h e  r e l a t ive ly  new types of ceramic-impregnated carbon- 
graphites are reportedly good f o r  service at 1200' F (ref.  17). 

Graphite Fluoride. - Some of t he  l imi ta t ions  of graphite are absent 
i n  a new s o l i d  lubricant  

t he  d i r ec t  chemical combination of graphite powder and f luor ine  gas under 

graphite f luoride (CF ) , which i s  prepared by 
X 
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careful ly  control led condi-t;ions. 
x from 0.3 t o  about 1-9 depending upon t h e  completeness of t h e  chemical 
react ion,  CFx Ts a so-called in te rca la t ion  eompound of graphi te ;  some 

of t h e  features of the  parent graphite c r y s t a l  s t ruc ture  are retained. 
However, t he  spacing distance between the  layers  of carbon atoms or 
basa l  planes i n  graphite a re  expanded from 3 e 4  t o  7.5 k1.5 Angstroms. 
I n  general, lubr ica t ing  abTlity and thermal s tabi l i ty  improve with 

ever, good lubr ica t ion  has been obtained with x as low as 0,5, 

The stoichiometry range is  broad with 

increasing x and t h e  bes t  r e s u l t s  have been obtained with CFlBle HOW- 

One of t he  chief advantages of CFx compared t o  graphi te  i s  tha t  it 

does not require adsorbed vapors or adjuvant impurit ies i n  order t o  
lubr ica te  e 

Figure 6 compares the  w e a r  l i v e s  i n  dry a i r  (<20 ppm H20) of CFx 

and Nos2 films as measured on a pin on disk wear t e s t e r  ( r e f .  18).  
Result3 fo r  rubbed-on o r  burnished films and resin-bonded coatings of 
both lubr icants  are given. 
varnish which I s  thermally s t a b l e  in  air  t o  about 750' F (400' C ) .  

The r e s ln  is a heat  cured polyimide (PI )  

CFIBl does not oxidize when heated i n  a i r#  The m a x i m u m  service 

temperature i s  determined by thermal decomposition t o  f ine ly  divided 
carbon soot ,  carbon teCrafluoride and higher fluorocarbons ( r e f  e 19 ) a 

In  vacuum, t h e  onset of slow thermal decomposition occurs a t  about 800' F 
(420' C ) .  
and as indicated i n  f igure  6, CFlel can provide lubricat ion f o r  some 

t i m e  up t o  1040' F (550' C ) ,  

The thermal s t a b i l i t y  i s  a b i t  bet ter  a t  atmospheric pressure 

Polymer Lub ri ca t  ing Mat erf als 

Polyimide t h i n  f i lm lubr ica t ion ,  - Polyimide varnish without any 
lubr ica t ing  f i l l e r s  i s  of i n t e r e s t  as a s o l i d  lubricant  coating. Fr ic t ion  
coeff ic ients  and wear l i ves  f o r  PI f i l m s ,  PI-bonded CFx and PI-bonded 
MoS2 are compared i n  figure 7. 

perature in t he  f r i c t i o n  and w e a r  l i f e  propert ies  of PI t h i n  films be- 
tween 25' and 100' C (77' and 292' F) e Above t h i s  t r a n s i t i o n  P I  t h i n  
f i l m s  performed very well as lubricat ing f i l m s ;  below t h e  t r a n s i t i o n ,  
f r i c t i o n  was  high and wear l i f e  shor t ,  Adding CF or MoS grea t ly  im- 

X 2 
proved room temperature performance, Above t h e  t r a n s i t i o n ,  no lubr i -  
cant additives 

increased wear l i f e  at a l l  temperatures I) 

There is  an in t e re s t ing  t r ans i t i on  t e m -  

were needed f o r  low f r i c t i o n ;  however, CFx additions 

Polymeric bearing materials. - We have so far discussed s o l i d  
lubricant  coatings. W e  have seen tha t  polymers or res ins  are used as 
binders for s o l i d  lubr ica t lng  pigments, I n  one case c i t e d ,  polyimide 
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varnishes,  t h e  res in  alone is  an e f fec t ive  s o l i d  lubricant  under some 
conditions e Polytetrafluoroethglene (PTFE) and other polymers have a l s o  
been used as 1ubrPcating coatings but at lower temperatures than P I  i s  
serviceable a 

A large variety of polymers a re  a lso used with and without f i l l e r s  
as self- lubricat ing bearing materials Some w e l l  known examples are 
polyamides (e. g e 

The first three are low cost materials with good processabi l i ty:  they 
can be injectPon molded or extruded. PTFE fluorocarbon has t h e  lowest 
f r i c t i o n  coeff tc ient  of any known so l id .  All are l lmlted f o r  high 
temperature applications e 

nylon), ace ta l s  , polyethylene and fluorocarbons . 

Some polyamides m e l t  at about 400' F, 
f ibe r s  i s  used as a lubr ica t ing  l i n e r  fo r  highly loaded a i r c r a f t  cont ro l  
surface bearings t o  a m a x i m u m  of about 325' F. 
t o  500' F but cold flaw-is a problem above 325' F for  high load applica- 
t i ons .  

PTFE reinforced with g lass  

Thermal s t a b i l i t y  extends 

Here again P I  of i n t e r e s t  f o r  higher temperatures. PI r e t a ins  
nearly f u l l  room temperature mechanical s t rength  almost i nde f in i t e ly  at 
5004 F and retallrzs useful  s t rength for  hundreds of hours at 600' F. P I  
i s  avai lable  unf i l led  or f i l l e d  with graphite or  MoS2 powders t o  improve 

lubr ica t ing  charac te r i s t ics  e It can also be strengthened by reinforce- 
ment with graphi te  f ibe r s .  
molded par t s  can be made with a graphite f iber  reinforced addition type 
polyimide. I n  contrast  t o  t he  more conventional condensation polymers, 
t h e  addition type undergoes t h e  f i n a l  stages of polymerization without 
t he  release of v o l a t i l e  react ion products; t h i s  eases t h e  processing 
problem of achieving void-free moldings with th ick  sect ions ( r e f s .  20, 

It has been reported t h a t  s t rong void-free 

21) 

Graphite fiber-reinforced polyimide bearings - We have invest igated 
fiber-reinforced' a d a i l o n  type P I  as a heat-cured molded bearing material 
( re f ,  22).  This mater ia l  i s  of i n t e r e s t  f o r  a i r c r a f t  cont ro l  surface 
bearings with higher temperature capabi l i t i es  than PTFE-lined bearings a 

The increased aero@namic heat ing of a i r c r a f t  at Mach numbers of 3 o r  
higher can r e s u l t  i n  control surface temperatures well  above 325' F. 

In  order t o  minimize t h e  weight of  t h e  thermal protect ion system, 
airframe s t r u c t u r a l  members may be allowed t o  get as hot as mechanical 
s t rength considerations w i l l  allow. Creep l imi ta t ions ,  f o r  example, 
d i c i a t e  a maximum of about 650° F fo r  t he  t i tanium a l loys  which are re- 
placing aluminum In some advanced high speed a i r c r a f t .  Increased air- 
frame temperatures, therefore ,  d i c t a t e  t h a t  control  surface bearings 
and other  airframe bearings with capabi l i t i es  wel l  above current prac- 
t i c e  w i l l  be needed. 

The design of t h e  tes t  bearings i s  shown i n  f igure 8. The spher ica l  
element of t h e  bearing i s  graphi te  fiber-reinforced PI, The f ibers  are 
chopped f ibe r s  about l/h-inch long and 0.0003 inch diameter. The 
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spherical  element was not fastened t o  the  osc i l l a t ing  journal.. 
t h e  bearing i s  e s sen t i a l ly  a self-aligning p la in  cy l indr ica l  bearing 
with journal o sc i l l a t ion  fn t h e  cy l indr ica l  bore and self-alignment pro- 
vided by the  spher ica l  surface.  
and 60 w/o were evaluated, 

Therefore, 

Graphite f iber  content of 1 5 ,  25, 45, 

We performed tes ts  on o s c i l l a t i n g  p la in  spherical  bearings at 
temperatures from room t o  650' F and at uni t  loads t o  5000 p s i ,  Oscil la- 
t i o n  was  + , 1 5 O  at 60 cycles/minute e The tes ts  were performed i n  an air  
atmosphere with a r e l a t i v e  humidity of about 50 percent. 

The best  combination of f r i c t i o n ,  load carrying capacity and good 
thermal conductivity were observed with t h e  45 w/o graphite-PI composite. 
An example of t h e  temperature and f r i c t i o n  t i m e  p rof i les  i n  a typ ica l  
temperature cycling t e s t  are shown i n  f igure 9. The temperature p r o f i l e  
i s  our estimate of t h e  thermal h is tory  f o r  t h e  control surface bearings 
i n  a shu t t l e  o r b i t e r  during re-entry from o rb i t  and t h e  subsequent land- 
ing approach. 
temperature f o r  tPtanium a l loy  d r f r ame  kept "cooltt with an insu la tor /  
ablator  thermal protection system. 

The 650" F temperature i s  t h e  m a x i m u m  ant ic ipated re-entry 

The f r i c t i o n  temperature charac te r i s t ics  of a l l  four  graphite/  
polyimide compositions are summarized and compared t o  t h e  r e su l t s  f o r  
a standard PTFE-lined airframe bearing i n  f igure  10.  Duration of bear- 
ing t e s t a  and bore deformation due t o  wear and p l a s t i c  yielding are 
given i n  t a b l e  TI, 

The f r i c t i o n  coeff ic ients  of t h e  polyimide composites decreased i n  
a regular  manner with increasing graphite content. 
graphite f i b e r  composite deformed, then f rac tured  at 6 0 0 ~  F and a 5000 
ps i  un i t  load. 
f rac ture  under t h e  same conditions.  
Composite did not f a i l  under a 5000 ps i  u n i t  load up t o  6 5 0 O  F and f o r  
a short  duration of 675' F. 

The 15 and 25 w/o 

The 60 w/o  graphite f ibe r  composite f a i l e d  by b r i t t l e  
However, t h e  45 w/o graphite f i b e r  

The nature of t h e  composites, therefore ,  changes i n  a regular manner 
from p l a s t i c  t o  b r i t t l e  behavior with an apparent optimum load capacity 
between 25 and 60 w/o graphite f iber  and with 45 w/o t h e  best composi- 
t i o n  of those evaluated i n  t h i s  preliminary study, 

The standard PTFE-lined bearing had very low torque t o  400" F but 
t h e  PTFE l i n e r  extruded out of t h e  bearing at 450" F. 

Graphite additions subs tan t ia l ly  improve thermal conductivity as 
w e l l  as reducing f r i c t ion .  Heat generation at the  s l i d i n g  surfaces is 
therefore  reduced subs tan t ia l ly ,  This i s  of great p r a c t i c a l  s ign i f i -  
cance especial ly  with bearing materials containing polymers For 
example, the  commonly used design c r i t e r ion  f o r  p l a s t i c  bearings,  which 
i s  termed l imi t ing  'tPV'' r e f e r s  t o  the  m a x i m u m  product of un i t  load  and 
ve loc i ty  t o  which t h e  bearing can be subjected before t h e  surface tempera- 
ture reaches t h e  thermal degradation temperature of t h e  polymer, Within 



9 

t he  limits of load carrying capacity d ic ta ted  by mechanical s t rength 
considerations 
t h e  l imi t ing  P'V' of t he  bearing mater ia l ,  

jlmproved thermal conductivity w i l l  therefore  increase 

Extreme Temperature Sol id  Lubricants 

For lubrfcat ion at 1000° F or  higher, calcium f luoride (CaF2) and 

barium fluoride (BaF2) have shown considerable promise, 

have been t e s t e d  i n  a number of coating eompositEons and as t h e  lubr i -  
cating material i n  fluoride/metal  composites 

These compounds 

Coatings of BaF2 and CaF2 are applied by spraying ( e s sen t i a l ly  

paint ing)  a suspension of t h e  f luoride so l id s  i n  water on t o  the  m e t a l  
surface,  The metal is pre-heated t o  about l8o0 F t o  cause almost instan-  
taneous evaporation of t he  water thus leavlng a f i l m  of f luorides  on 
t h e  surface. Next, bond is developed by heat ing the  coated pa r t  i n  argon 
or  i n  hydrogen up t o  e i the r  t h e  s in te r ing  point or  t h e  melting point of 
t h e  coating material, Upon cooling, a bonded s o l i d  f i lm coating i s  ob- 
ta ined.  The s in t e red  coatings, of course, require  a lower f i r i n g  t e m -  
perature but they are more porous than the  fused coating. 

nesses from about 2x10 

Coating thick- 
-4 t o  2x10m3 inches can be achieved by control l ing 

~ 

t h e  thickEess of t h e  coating during spraying. Therefore no subsequent 

Fluoride-lubricated composites are prepared e i t h e r  by i n f i l t r a t i n g  
porous s in te red  metal bodies with molten f luorides  or by plasma-spraying 
a m i x t u r e  of f luorides  and powdered metal. Plasma sprayed coatings a re  
usual ly  th icker  and rougher than conventionally sprayed and fused coat- 
ings * Plasma sprayed coatings therefore  of ten do require  subsequent 
machining t o  provide a surface f in i sh  t h a t  I s  sa t i s f ac to ry  f o r  a bear- 
ing application. Plasma spraying has a tremendous advantage i n  t h a t  
t h e  coated p a r t s  are not heated severely i n  t h e  process, 

- The f r i c t i o n  and wear propert ies  i n  a i r  
of fused f luor ide  coatings of t h e  composition 38 percent CaF2 - 62 percent 

BaF are  given i n  f igure 11, The r ide r  w e a r  and f r i c t i o n  coef f ic ien ts  

of uncoated specimens are included fo r  comparison. Separate 1-hour ex- 
periments were conducted t o  obtain each of t h e  data  points  shown over a 
range of temperatures from 7 5 O  t o  1500' F and at two s l i d i n g  v e l o c i t i e s ,  
455 and 2000 feet per minute, Rider wear 5s expressed as wear per foot  
of s l i d ing  so t h a t  wear at t h e  two s l id ing  ve loc i t ies  can be d i r ec t ly  
compared. 

2 

Over the  e n t i r e  temperature range and at both s l i d ing  ve loc i t i e s ,  
t h e  coatings were responsible f o r  very s ign i f i can t  reduction i n  f r i c t i o n  
and wear relative t o  the  uncoated metals. 
feet per  minute t h e  f r i c t i o n  coeff ic ient  of t h e  coated specimen w a s  

A t  a s l i d ing  veloci ty  of 455 
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high (0,4) at 75' F, but r i d e r  wew was very low; from about 500' t o  
1500' F the  f r i c t i o n  coeff ic ients  were less than 0.20, A t  2000 feet 
per minute, t h e  f r i c t i o n  coeff ic ients  were 0,lO t o  0,22 over t he  e n t i r e  
temperature range 75' t o  1500' F, 

Signi f icant ly ,  t he  coatings did not w e a r  through t o  f a i l u r e  i n  any 
of t h e  experiments i n  an air  atmosphere. One hour represents 52 200 
cycles with no f a i l u r e  at the  lower speed and 229 000 cycles with no 
f a i l u r e  at t h e  higher speed. Because of t h e i r  excel lent  chemical 
s t a b i l i t y ,  these coatings are a l so  sui table  f o r  use i n  s t rong  reducing 
environments such as hydrogen or  even l i q u i d  sodilum, 

- Composite materials which are su i t ab le  
f o r  use at high temperatures i n  such react ive environments as air, hydro- 
gen and l i qu id  metals have been reported ( ref .  23 ) .  The composites con- 
s i s t  of a porous metal matrix impregnated with barium fluoride-calcium 
f luoride eu tec t i c  composition. As already indicated,  bonded coatings of 
t h i s  eu tec t ic  w e r e  shown t o  be ef fec t ive  s o l i d  lubricants  i n  severe en- 
vironments such as l iqu id  sodium, air ( t o  1200' F ) ,  and hydrogen ( t o  
l 5 O O 0  F) . 

Th.e microstructure of a composite with 60 w/o nickel-chromium a l loy  - 
40 w/o f luoride eu tec t ic  i s  shown i n  f igure  12. The e f f e c t s  of tempera- 
t u r e  on the  f r i c t i o n  and wear of t h e  composites are  given i n  f igure 13. 
Low wear of t h e  eomposfte and t h e  dense metal r i d e r  were observed i n  a l l  
cases Fr ic t ion coefficients decreased with increasing temperature, and 
were reduced appreciably when a t h i n  f luor ide  overlay was bonded t o  t h e  
surface of t h e  composite. 

The f r i c t i o n  and wear of composites i n  a hydrogen atmosphere are 
given i n  f igure  14. 
disk wear rate was nearly constant for  a l l  temperatures. With an over- 
lay:, f r i c t i o n  coeffzcients were 0.20 at 80' F and decreased with tempera- 
t u r e  t o  0.06 at 1500' F, 
hydrogen are given i n  t ab le  111. 

Very low wear w a s  observed at a l l  temperatures; 

The w e a r  l i ves  of composites i n  air and i n  

In  alr t h e  endurance l i f e  of t h e  composites exceeded one mill ion 
A t  80' F,  the f r i c t i o n  coeff ic ient  cycles at 500°, lOOO', and 1200' F,  

w a s  greater  than 0 - 3 0  and a zero w e a r  l i f e  i s  indicated.  However, t h e  
low wear rate ( f i g .  1 5 )  a t  80" F indicates  t h e  composite could be used 
at 80' F i n  applications where a low f r i c t i o n  coeff ic ient  is not e s sen t i a l .  
A t  1500' F, t h e  wear l i f e  w a s  850 000 but severe oxidation occurred, 
The w e a r  l i f e  of a BaF2-CaF2 eu tec t i c  coating on dense nickel-chromium 

a l loy  w a s  389 000 cycles at 1000' F, The wear l i f e  of t h e  composite 
was almost t h ree  times grea te r ,  

In  hydrogen, t h e  experiments were terminated after about 1 1/2 
mil l ion cycles i f  t h e  f r i c t i o n  coef f ic ien t  had not yet increased t o  
0.30. Results were similar t o  those obtained i n  a i r  with t h e  exception 
t h a t  t h e  f r i c t i o n  coeff ic ient  at 80' F w a s  lower i n  hydrogen than i n  
a i r  and t h e  composite w a s  run a f u l l  1 1 /2  mil l ion cycles at f r i c t i o n  
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coeff ic ients  below 0 30 a 

A t  1000' F wear l i f e  of t h e  composite w a s  f a r  superior t o  t h e  w e a r  
l i f e  of the  coating bonded t o  a dense metal subs t ra te ,  

B a l l  Bearing Tests 

Fluoride s o l i d  lubricants  were t e s t e d  In  b a l l  bearings at 1200° F 
and 1500' F. 
bearing are shown i n  ftgure 16. 
lubr ica t ing  composftes o f  s in t e red  Inconel impregnated with a eu tec t ic  
f luor ide  (38 w/o CaF2 - 62 w/o BaF ) composition. 2 

unlubricated bearing i s  shown f o r  comparison. The da ta  show t h a t  
f luoride-lubricated b a l l  bearings can run f o r  useful  periods of t i m e  
at 1200' and 1500' F. Bearlng torque w a s  steady at about 1 t o  3 inch 
ounces compared $0 e r r a t i c  torque between 3 and 1 0  inch ounces f o r  t h e  
unlubricated bearing, The 1 t o  3 inch ounces torque w a s  comparable t o  
t h e  torque of grease-packed bearings run at lower temperatures (100' - 
400' F) but under otherwise iden t i ca l  conditions e 

The bearing tes t  head and an exploded view of t h e  t es t  
The bearing cages were made from self-  

Some t y p i c a l  test data  a re  shown i n  f igure  &7* The torque of an 

The f a i l u r e  mode wa8 not due t o  excessive wear. In  a l l  cases, 
f a i l u r e  was caused by a gradual swellfng of t h e  composite cage mater ia l  
due t o  oxidation which eventually caused t h e  cage t o  jam against  t h e  
outer  race. 
dation res i s tance  i n  the  fluoride-metal composltes. This w a s  accomplished 
by introducing specially-formulated glasses i n t o  t h e  composition; these  
glasses  acted as oxidation ba r r i e r s  or  i nh ib i to r s  e 

'This experience prompted a study t o  develop improved oxi- 

P la in  Cylindrical  Bearings With Oxidation-Resistant 
Self -Lubri cating Liners 

Recent tes ts  of t he  subject  bearings have been very encouraging. 
The tes t  bearings are similar t o  figure 8 except t he  e n t i r e  bearing i s  
of n icke l  chromium alloy. The bore of t h e  spher ica l  element i s  l i ned  
with a 0.010-inch plasma-sprayed and machined composite layer  of nichrome, 
CaF2' and g lass ,  Fr ic t ion coeff ic ients  from room temperature t o  1600' F 

were on the order of 0.2 t o  0.3. Less than 2x10 inch of combined 
journal  and bore wear occurred i n  a 6-hour osc i l l a t ing  tes t  at a bearing 
un i t  load of 5000 ps i .  

-4 

CONCLUDING REMARKS 

1. Sol id  lubricants  are available which can be used over a w i d e  
temperature range. 

cate  t o  m a x i m u m  temperatures of TOO0 t o  800' F, but oxidize at higher 

Lwer l a t t i c e  materials such as MoS2 and WS2 lub r i -  
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temperatures.. Graphite i s  usefu l  t o  about 850° F but requires  adsorbed 
moisture or  s o l i d  additives t o  lubr ica te  e Graphite f luor ide  I) an i n t e r -  
calat ion compound of graphite does not require  adsorption or  additives 
and lubr ica tes  100' t o  200' F higher than MoS2 i n  a given appl icat ion.  

CaF2-based coatings and composites can be used i n  most atmospheres t o  

at least 1 6 0 0 ~  F. 

2, Machine design should include consideration of t h e  lubricant  
from the  conceptual s tage of-desfgr, Bearing systems should be matched 
t o  t h e  propert ies  of solid lubr icants .  A bearing desfgn suitable f o r  
o i l  lubrteat ion i s  not necessar i ly  appropriate f o r  s o l i d  lubricat ion.  
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TABLE I, - RESULTS OF THEFNAE $TABILITY AND 
FRXCTIONAL EXPERD'IENTS IN VACUUM OF 

10-9 TO io-6 TORR 

Compound 

MOS 2 

MoSe 

W8e2 
MoTe2 

-- - -__ 
ws2 

WTe2 

Probable 
onset of 
thermal 

d3 s s o c i  a t  ion 
as 

(detected by 
TGA) 

O F  

1700 
1600 
1400 

1300 

1300 
1300 

Dissociation 
products 

by mass 

O F  

first  de t e c t  ed 

spectrometry, 

2000 

1900 
1800 

1700 

1300 
1300 

Maximum 
temperature 

at which 
burnt shed 

films provided 
e f f e c t  i ve  

lubr ica t ion ,  
O F  

1200 

1350 
1400 
1400 
1000 

(a) 

%ict ion  coeff ic ient  grea te r  than 0 e 2 at a l l  temper- 
a tures .  
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TABLE I'I, - BORE WAR AND D E F O M T I O N  'TN GRAPHITE FTBEB- 
POLYINTDE SP€UCRICAL BEARING ELEMENTS 

7 [Oscillation at 60 cpm, +,15', u n i t  loads t o  5000 ps i  ( 3 . 5 ~ 1 0  
N/m2) maximum variable  temperature, ambient, t o  650' F (350' C).] 

%actwe too  extensive t o  allow accurate measurements 
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TABLE 111. - COMPARATIVE WEAR LIFE OF COMF'OSITES 
MTD COATINGS I N  ATR AND HYDROGE3l 

Specimen 
temper at ure 

O F  

80 

5 00 

1000 

1200 
1500 

Cycles at which f r i c t i o n  coe f f i c i en t  
increased t o  0.30a 

Campos it es 

(b 

2,750,000 

1,150,000 

1,370,000 
850,000 

r 

Coatings 

Hydrogc 

Compos i t es 

dl ,560,000 

dl ,490,000 

dl, 610,000 

dl ,370,000 
570,000 

Coatings 

Based on s i n g l e  runs.  a 

bLow w e a r  rake but f r i c t i o n  coe f f i c i en t  of 0,30 t o  0.35. 
C 
NO tes t .  

c i en t  d i d  not increase t o  0 , 3  during number of cycles  
ind ica ted .  ) 

dExperiments terminated before  f a i l u r e  (F r i c t ion  coef f i -  
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Figure 1. - Lubricating properties of resin-bonded 
molybdenum disulfide. 
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Figure 3. - Comparative oxidation of WS2 and MoS2 
average particle size, -1.0~; compact density 50% of 
maximum a i r  flow rate, 113 Llmin. 
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Figure 2. - Friction characteristics of MoS2 and WS2 
in a i r  and in argon. Sliding velocity, 6 f t lmin;  load, 
6 kg. 
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Figure 4. - Oxidation characteristics of MoS2 at two a i r  
flow rates. Average particle size, - 1 . 0 ~  compact den- 
sity, %%of maximum. 
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Figure 5. - Lubrication with graphite and with graphite - 
cadmium oxide mixture. 
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Figure 6. - Wear life vs temperature. Exp cond: load, 1 kg; 
speed, 2.6 mlsec (1000 rpm);  dry air  atm (20 ppm H20); 
failure criterion, friction coeff of 0.30. 
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Figure 7. -Effect of temperature and atmosphere 
on the  wear l ife and fr ict ion coefficient of poly- 
imide films. Experimental condition: load, 1 
kg; speed, 2.6 mlsec; failure criterion, f r ic-  
tion coefficient of 0.30. 
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Figure 8. - Self-aligning plain Spherical Test Bearing. 
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Figure 9. -Temperature and fr ict ion profi le of bearing wi th 
45 wt.% graphite-fiber-reinforced - polyimide composite 
dur ing simulated re-entry test. 
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Figure 10. - Summary of f r ic t ion of spherical bearings with poly- 
imide - graphite-fiber composites of various fiber ontents. 

journal  oscillation in cylindrical bore at 1 hertz, +15O. 
Stellite 6B journal; radial un i t  load, 3. 5x107 N l m  5 (5000 psi); 
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Figure 11. - Lubricating properties of 
fused fluoride coating composition 
in air. 
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Figure 13. - Friction and wear of fluoride-Inconel 
composite disks and cast Inconel riders in air. 
(35 V% BaF2-CaF2 eutectic, 65 V% sintered Inconel; 
718-in. -radius riders, 5 0 0 9 1  load, 2000 ftlmin.) 
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Figure 14 - Lubricating properties of fluoride- 
Inconel composite disk and cast Inconel riders 
in hydrogen. 35 V% BaF C a F 2  eutectic, 65 
V% sintered Inconel-X; $/&in. -radius riders, 
W-gm load, 2MxJ ftlmin. 

LOAD-BEARING SURFACE OF FLUORIDE- INCONEL COMPOSITE 

35 V %  BaFZ-CaFp EUTECTIC,  65 V %  INCONEL. 1200° F HYDROGEN, 2000 FTIMIN, 5 0 0 - G M  L O A D ,  6 HR 
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Flgure 15. 
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Figure 16. - Bearing test head and test bearing. 
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Figure 17. - Influence of temperature and speed on bearing perform- 
ance. Composite cages, 30 Ib t h rus t  load, 0.020-in. cage-race 
clearance. 
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