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ABSTRACT

Experimental results of a group of theoretically selected cold cathode

materials are presented. These tests indicate Ag-CuO, Cu and Pt-Cu as

three new cold cathode materials for sealed off CO_ lasers. The power output
£*

3
of a test laser with ari Ag-CuO cathode and a gas volume of only 50 cm varied

from 0. 72 W to 1. IWat 3000 hours and yields still 0. 88W after 8000 hours. Gas

3
discharge tubes with Cu cathodes and a volume of 25 cm yield life times in

excess of 10, 000 hours. Gas analysis results, obtained from a similar tube

over a period of 3000 hours, look most promising. A Pt-Cu alloy cathode shows

an extremely promising V-I characteristic over a period of 2800 hours.
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INTRODUCTION

Most of the gas discharge tubes used for CO_ lasers are high impedance
Ct

devices requiring only small currents; cold cathodes are suitable electron

emitting sources to furnish these currents. Gas removal due to cathode

sputtering usually limits the life of discharge tubes filled with noble gases.

Moreover, dissociation of CO. into CO and O with successive oxygen removal
£, • £t

due to oxide layer formation is a consideration for the CO_ laser. The degree
M

of dissociation is very much influenced by the cathode surface chosen. It is a

difficult problem to find the proper cathode materials that do not remove gas by

sputtering and avoid consumption of any gas mixture constituent through scale

formation. .

Background

The CO laser was discovered in 1964 [ l]. Its high efficiency and power '
LI

capability make it ideal for communication purposes as well as for energy

sources. Despite the recognition of its importance we have so far had no

entirely satisfactory cold cathode for the CO laser. It is true that the state'
c*

of the art has been much advanced in the last two years but we are still looking

for a cathode that is noise free, does not produce sputtering deposits and lasts

+Work initiated by ONR, ARPA and supported by NASA.

University of Maryland, College Park, Md. 20742



for 10000 hours or more with small gas volumes. The nickel cathode invented

by Dr. Carbone [ 2] , the platinum cathode discovered by Dr. Whittemann [ 3]

and the N.O cathode developed by Honeywell depend on a relatively large gas

volume and can yield life times of several thousand hours under this condition.

Used in a 1W CO_ laser with a typical gas volume of the order of 50 to 100 cm

they usually last less than 1000 hours. The demand for a space qualified laser

tube with a life expectancy of at least 2000 hours has justified the need for CO_
Ci

laser cold cathode research. These facts also indicate that we are dealing with

a difficult and important unsolved problem.

CATHODE PARAMETERS INVOLVED

Sealed-off CO lasers are relatively tolerant of the composition of the gas
£t

mixture used. One of the most efficient mixtures uses He CO,.N_ and X . It
2 2 e

has been shown by several researchers [ 4] that CO can be substituted for N_.
Li

We have optimized one of our own 1W lasers with respect to gas composition

and the results are shown by Figures 1 to 22. From these measurements we

must conclude that the substitution of CO for N has little effect on power output.
LJ

E. g. , we measure a power output of 1.3W at 6 mA and 5100 V across the laser

tube for a gas mixture containing 9. 1 Torr He, 4. 25 Torr CO-, 5. 45 Torr CO
L*

and 1. 2 Torr Xe. This result must be compared with a power output of 1. 2W

obtained at 6 mA and 4980 V across the laser tube for a mixture consisting

of 10 Torr He 4. 65 Torr CO 4. 65 Torr N and 0. 7 Torr Xe. For these two
Ct Ct

cases the substitution of CO for N gave a slightly larger power output and
LJ

also a slightly higher efficiency. We have to mention that our results have been

measured during the first 10 minutes the laser was turned on and do not reflect

long term changes in the composition of the gas mixture. The laser tube for



our measurements originally gave an output of1.._!_W_and_s ucc.essiyecathode tests.

produced a slight, visible layer of deposits on the internal'gold coated mirror.

These deposits reduced the power output from 1. 7 to 1. 3 W under otherwise

Identical conditions.

It has also been shown that a small amount o'f H or H_O can be added and
2 L

this may further increase power output and efficiency [ 5] . Our own. incomplete

measurements for H addition are shown in Figures 23 to 25. These variations
Ci

in the gas composition are not only important for the achievement of maximum

power output or efficiency, they also profoundly affect the cathode chemistry

and therefore the life of the laser tube. The other parameters of the cathode

are the current density, the temperature and the composition of the cathode

surface. The current density can, to a certain extent, be controlled by the

choice of the cathode geometry. We have normalized the cathodes, designed

for a current of 6 mA, to 4 diameters to conform to available or easily

modified ceramic sputter shields. These normalized cathode configurations are

shown in Fig. 27.

> ~ .
The operating temperature of these cathodes depends, of course, on

the current and it can be raised by using thermal insulation outside of the

cathode sleeve. Typical temperatures for one cathode configuration are shown

in Fig. 28. The last parameter, the composition of the cathode surface, is

dealt with in the next paragraph:

Ch'qite' of ;cathbde materials

We would like to find cathode materials that are chemically inert in the

presence of the particular gas mixture used. The second requirement is a

very low sputtering rate of the materials used for the cold cathode surface

• . ' ' . . ' 3



and the.last requirement asks for a minimum of negative ion formation in the

sputtering products. This is necessary to prevent material"deposits at the
i

anode end due to the attraction of such negative ions by the positive anode.
s .

i Of particular interest are the metal-oxides with a larger oxygen

dissociation pressure than the one of the reaction

2 GO + 02 ^ 2 C02,

Some of these oxides are shown in the standard free-energy diagram in

Fig. 29 located above the reaction mentioned. The dissociation O» pressure
£*

can be read from this diagram or from Fig. 30. In the presence of a mixture

of equal parts CO and CO9 these oxides are reduced to their lower oxidation
C*

state under condition of thermal equilibrium and in the absence of the electrical

discharge current. (It is noteworthy that most of these metals and oxides also

act as catalysts for the CO oxidation reaction. The fact that the degree of CO_

dissociation is indeed affected by the cathode surface chosen is also documented

in the literature [ 6] . ) The use of one of these materials as a cold cathode

exposes it to additional processes such as ion bombardment, photo-, field-

and thermal emission with the result that the surface has a tendency to stay

,in the higher oxidation state. Oxidation at the cathode end of discharge tube

is unexpected but has been observed and described [" 7],

The discharge conditions of most of the small CO_ lasers result in cathode
L*

, 2
current densities above 2 mA/cm . Experience shows that insulating oxide

layers can usually not support such current densities over prolonged periods

of time. This difficulty can be avoided by using semiconducting oxide layers.

Most of the oxides under consideration are of this type and their electrical



conductivity as well as their catalytic activity increase with temperature.

Unfortunately, reliable data of electrical conductivity of oxides vs. temperature

is rather scarce in the recent literature.

EXPERIMENTAL APPROACH

It was obvious from the beginning of the research that a large number of

different cathode materials had to be tested. To build a laser for each different

cathode would have been prohibitively expensive in terms of manpower, material

expenses and testing facilities. A faster and far cheaper approach was to test

gas discharge tubes alone. This was done and the standard geometry chosen for

the discharge tubes is shown in Fig. 31. Discharge voltage measured at constant

current and color of the discharge vs. time are coarse and not always sufficient

indicators of the condition of the tubes. We felt that at least a partial gas

analysis was necessary to verify the composition of the gas mixture over the

life span of the moxt promising discharge tubes. This can be achieved either

by periodically analyzing gas samples in the mass-spectrometer or by infrared

absorption spectroscopy. We have chosen infrared absorption spectroscopy to

obtain an indication of the CO_ and CO content of the tubes. This required the
c*

attachment of an absorption cell with infrared transmitting windows to each

discharge tube. The cell geometry chosen increased the gas volume of the

3 3
discharge tube from roughtly 25 cm to 50 cm . The most successful cathodes

are tested in actual lasers.

Gas Analysis

As previously mentioned, the CO and CO_ content was monitored with
LJ

infrared absorption spectroscopy. The absorption cells had a path length of

7. 8 cm, 1 mm thick Irtran 2 windows and their geometry is shown in Fig. 32.
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|The absorption spectrum between 2000 and 2500 cm was measured with
i

a DigiLab model FTS 14 double beam spectrometer. The resolution of this

instrument is insufficient to display the true line shape of a single rotational
i ~

CO_ or CO line. For this reason we chose an equivalent slit width that would
Ci .

enable us to sample over two or more rotational lines. A slit width of 8 cm

achieves this objectively, saves time and was chosen for all measurements.

Fig. 33 shows a sample spectrum of the reference mixture of 20 Torr He

CO CO X in the pressure ratios 15:7:7:1 and indicates maximum absorption
2 e

of roughly 10% for CO and 1. 2% for CO. Further measurements were made
c»

with expanded scales,Fig. 34 and the results for other gas compositions are

shown in Figs. 35 to 40.

Experimental Techniques

All the discharge tubes and lasers were made from Pyrex and had tungsten

electrode feed-throughs. Gallium arsenide and Irtran 2 windows as well as the

internal gold coated quartz mirrors were attached with indium film seals

developed for this purpose in our laboratory [ 8] . All these seals are of the

ultrahigh vacuum type and no Epoxy resin was used anywhere. The tubes

were evacuated with an oil diffusion pump and the electrodes outgassed with RF

generator and torch. The first discharge was usually in pure oxygen followed

by a burn-in period of 1 to 2 days in the final mixture. Subsequently, the tubes

were refilled, sealed off and run on the test stand. Practically all the cathode

alloys were fabricated in our own laboratory and then cast and machined or rolled

and formed into the filial shape. Internal oxidation of the silver alloys were

performed in a temperature-controlled furnace with a quartz tube flushed with

O9 as a working chamber.
L* . ' -



EXPERIMENTAL RESULTS

From the oxygen dissociation curves in Fig. 30 we see that gold forms the

most unstable oxides, followed by silver, MnO , Pt O, PdO and CuO.
L*

Gold Cathodes

We would expect that gold, the most noble metal with respect to oxidation

would be a rather inert cathode surface. Unfortunately, gold sputters very

badly and we have so far not been able to get reasonable life with such cathodes

in He CO CO Xe and H e C O _ N X e mixtures.
£• L* L*

Silver Cathodes

The next noble metal, silver, does not work successfully in the HeCO.N.X
i Ci e

mixtures probably because the volatile Ag NO, can be formed. In He CO9COX
J L* _ C '

mixtures we see an entirely different picture. Here we can nicely observe how

the discharge oxidizes the spot of impact at the cathode. This area becomes

dark due to silver oxide formation, with a resulting local decrease in the

electrical conductivity. This lowered electrical conductivity then forces

the cathode spot to move to an unoxidized area. If the cathode has a temperature

of 200 to 300 C we can later observe how the original, oxidized area returns

again to pure silver by dissociation. Such cathodes can have quite a long life

and. some of them are surprisingly sputterfree. Their drawback is the electrical

instability caused by the moving cathode spot. Typical characteristics are

shown in Figure 41.

We have also tried to reduce the surface resistivity of the oxide layer by

increasing the temperature. This attempt was unsuccessful and usually

resulted in increased sputtering. Another method is to alloy the silver with

a metal that forms oxides with a higher electrical conductivity. The additional

7.



metal in the alloy has to be oxidized in order to prevent oxygen depletion in

the final gas mixture. This process then leads to:

Silver Matrix Cathodes

Silver at high temperatures is quite transparent to oxygen and for this reason

silver alloys can be internally oxidized. The best known example are probably
i

the AgCdO alloys used for electrical contacts. This compound can be formed

by sintering compressed Ag-CdO powder slugs or by exposing the AgCd alloy

to an oxidizing atmosphere at high temperatures for extended periods of time.

We have formed AgCdO, AgCuO, AgMnO and AgZnO cathodes and used sintered

AgCdO and AgNiO cathodes. These cathodes consist essentially of a silver

matrix holding the oxide particles. Curves from reference [ 91 for the

AgCuO internal oxidation process are shown in Fig. 42. Silver matrix cathodes

should be relatively inert to surface damage and free of electrical instabilities

once sufficiently low surface resistivity has been achieved.

AgCdO Cathodes

Results for these cathodes are shown in Figs. 43 to 46. The main sputtering

deposits stay close to the cathode; slight anode deposits do occur.

AgCuO Cathodes

These cathodes work quite well, Fig. 47 to 49, but still show moving

cathode, spots. Anodes stay very clean and surprisingly low cathode deposits

occur with the 2L 4. 5 type cathodes. Notice the CO decrease and the CO

increase with time for cathodes with 10% or more Cu. In these cathodes

sputtered Cu O is reduced to Cu O giving off oxygen. The partial pressures

of CO and CO_ stayed fairly well balanced for the cathode with 5% Cu while pure

8



I Ag cathodes show an excess of CO in Fig. 41. Ag Cu/O cathodes are not

; successful in the presence of N . "''""'
i .

Ag MnOzCathodes

i The cathodes were first oxidized at 750 C and then at 500 C to achieve

conversion to MnO , known to be an excellent catalyst [10]. Results are
Ct

shown in Fig. 50. Anode deposits do occur with these discharge tubes but the

cathode spots are relatively quiet. The cathodes are unsuccessful in the

presence of N .
C*

Ag Ni O Cathodes

Results are shown in Fig. 51. The anodes stay relatively clean and the

cathodes are quiet in these discharge tubes.

Ag Zn O Cathodes

Results are shown in Fig. 52. Quiet cathode spot, very light anode deposits.

The cathode with 10% Zn shows some cathode deposits. These cathodes are

unsuccessful in the presence of N .
£*

Cu Cathodes .

Oxide layers can be formed in an oxygen discharge and such cathodes

live surprisingly long with quite large current densities. It is a known fact

that thin oxide layers on Cu grow very slowly at room temperature [11] .

Anodes stay very clean; cathodes are unsuccessful in the presence of N_.
L*

Cathode spots move when large current densities are used, but practically

no sputtering occurs. Cathode spots are quiet with lower current densities

but the sputtering rate is higher. Results are shown in Fig. 53.

Oxide Layer Cathodes

Such cathodes can be formed by oxidizing alloys in an oxygen atmosphere

• . • .- ' 9



for a prolonged period of time at elevated temperatures. The scaling layers

so formed usually contain the oxide of the less noble component of the alloy.

Suitable layers have to adhere very well, e. g. , Cu O on Au [ 12] , and are

only allowed to continue growing at an infinitesimal rate at the operating

temperature of the cathode. Such cathodes are of course much more delicate

than matrix cathodes formed by internal oxidation. For this reason we have not

stressed their development and only a few were tried.

Platinum Cathodes

Pure platinum cathodes dissociate very little CO_ [6] but sputter badly
u

and are riot successful. We have tried to reduce the sputtering by alloying

Pt with Ag, Au, Cu and Ni. The results show that sputtering can indeed be

reduced drastically but the life of the discharge tubes tested was generally

less than 1000 hours. The addition of hydrogen or water vapor does, however,

change the situation. It is well known that platinum oxides can be reduced by

atomic hydrogen at room temperature in a cycle similar to the water vapor cycle

in incandescent lamps [13]. Langmuir described this cycle as follows:

"A lamp made up with a side tube containing a little "water which is kept

cooled by a freezing mixture of solid carbon dioxide and acetone (-78. 5 C) will

blacken very rapidly when running at normal efficiency, although the vapor

-4
pressure of water at this temperature is only about 4 • 10 mm.

The explanation [ Langmuir states] of the behavior of water vapor seems to

be as follows:

The water vapor coming into contact with the filament is decomposed, the

oxygen combining with the tungsten and the hydrogen being evolved. The

oxide distils to the bulb, where it is subsequently reduced to metallic tungsten

10



,by 'atomic hydrogen given off by the filament, water vapor being simultaneously

produced. The action can thus repeat itself indefinitely with a limited quantity

of water vapor. '
ii
( Several experiments indicated that the amount of tungsten that was carried

from the filament to the bulb was often many times greater than the chemical

equivalent of the hydrogen produced, so the deposit on the bulb could not well

be formed by the simple attack of the filament by water vapor.

Another experiment demonstrated that even the yellow oxide, WO,,, could

be reduced at room temperature by atomic hydrogen. A filament was heated

in a well-exhausted bulb containing a low pressure of oxygen; this gave an

invisible deposit of the yellow oxide on the bulb. The remaining oxygen was

pumped out and dry hydrogen was admitted. The filament was now lighted to a

temperature (2000 K) so low that it could not possibly produced blackening under

ordinary conditions. In a short time the bulb became distinctly dark, thus

indicating a reduction of the oxide by the active hydrogen. Further treatment

in hydrogen failed to produce any further darkening, showing that the oxide

could only be reduced superficially. " . . - . . - ' . -- r . .. ' : ' , :

alloy_cathodes workingjwith gas"~rnixtures "coritaining; hydrogen or

Trwate^_yap_qr ar e essentially mas s transport cathodes jwjJ:h trans pojrt^ rjates •_

controlled by the impurity used.~~.In^ this~ca¥eTwe ne~ed'far laTger" im'purity concen-

trations to reduce sputtering and preliminary results are seen in Figs. 54 and 55.

Pd Cathodes

Just as with Pt these cathodes seem to be good catalysts but sputter far

too much. We have not yet had time to check their behavior with gas mixtures

11



containing H or HO.
L* L* •

Ni Cathodes

The life of discharge tubes using nickel with oxidized or unoxidized

surfaces has always been restricted to less than 10000 hours by our test

conditions. The substitution of CO for N in the gas mixture did not improve this
£t

result.

CATHODE ALLOYS TESTED

These are shown in the following tables I and II.

12



Table I

Cathode alloys tested in HeCO-N Xe
£i LJ

15/7/7/1 gas mixtures

Main- element
Impurity'Nv

Ag

Au

Cd

Co

Cu

Mn

Ni

Pd

Pt

Re

Zn

Ag

100

0.8 ,2
5,10,20

20

0 . 5 , 3
5,10

15

3, 10

10

Au

100

Co

0.5 ,2
10

Cu

3

100

Mn

38

Ni .

•

10

Pd

1,3,10

10

3,7
10,14

3

100

Pt

1,3

3, 10

0.3,1,
3,10,

30

0.2,
0.5,1,
1.5,2,
2 .5 ,3 ,
6, 10

100

Re

100

The numbers represent impurity % by weight.

13



Table II

Cathode alloys tested in HeCO COXe

15/7/7/1 gas mixtures

Main- element
Impurity "\.

Ag

Au

Cd

Co

Cu

Mn

Ni ,

Pd

Pt

Re

Zn

Ag

100

18

1, 10

5,10,20

1.25
3, 10

15

10, 18

3,26

1,3,10

Au

10

100

5

Co

100

40

Cu

100

2, 10

Mn

38

Ni

10

100

Pd Pt

1,3

1,10

0. 5
1,2

100

Re

100

The numbers represent impurity % by weight.

14



LASERS .

A typical result for a. laser with a nickel cathode is shown in Fig. 56. Far
i / •

more encouraging,is the power output vs time of the laser with a 1 L4. 5 Ag 20 Cu/O

cathode shown in Fig. 57. This cathode is actually somewhat too small and

has worked with a larger than optimum current density. As a result.of this

sputtering has taken place but the deposits are nicely confined to the cathode

area. The most impressive fact is the lack of visible deposits in the bore,

on the anode, or on the gold coated internal mirror at the anode end after

8000 hours of continuous service. The sputtering in the cathode area is almost

completely eliminated with the next larger 2 L 4. 5 type cathode. Comparison

of the last two results shows that indeed much progress has been made during

the past year.

CONCLUSION

From the many test results available we see that careful selection of gas

mixture composition, cathode material, and geometry promise CO laser life
L*

of 10, 000 hours or more. So far Ag-Cu and pure Cu cathodes are the most

successful ones in combination with the He CO CO Xe mixture. Both of these
£i

cathodes show a minimum of sputtering deposits in the bore and on the anode.

To date we have not been able to completely suppress the flickering of the

cathode spot in the Ag-Cu cathodes. Pure Cu cathodes show the same effect

for current densities above 18 mA/cm . Lowering the current density to

12 mA/cm stabilizes these cathodes at the expense of increased sputtering.

The sputtering products are still confined to the cathode area and if the results

of the gas analysis continue to confirm the excellent appearance of the 10, 000

hour-old discharge tubes we may very well have the best overall results with

the pure Cu cathode. This solution would also be very attractive from the

----•.—."-_ : •• — - -- • 15



point of view of simplicity: namely a simple cathode working with the least
i
complicated efficient gas mixture available.

-<: , " ~

i Surprisingly good discharge characteristics are shown in Fig. 55 for a

!Pt cathode alloy containing 30% Cu in combination with a HeCO_ N_X H gas
Lt Ct e £•

i
mixture. This result has to be reproduced and confirmed by gas analysis.

The cathode itself seems to be electrically quiet but produces anode deposits.

Much more experience is needed with this cathode type and we are exploring

the influence of the composition of the Pt-Cu alloy. However, from an

engineering point of view we have some reservations. The addition of a small

amount of H? or HO very much increases the complexity of the cathode
£* £*

problem. New chemical compounds can be formed and it is of course very

well known that the control of the hydrogen pressure depends to a certain

extent on the surface properties of the materials used for the fabrication of

the laser tube.

16



APPENDIX -

I. Laser V-I characteristics for different gas mixtures

These characteristics are shown in Figs, la to 26a. The voltages
shown represent the values directly across the laser tube and do not
include series resistance drop. Fig. Z7a shows the design of the laser
tube.

II. Laser power output for mixtures with low CO and CO0 content
' r- - - - - ' ' - - - I " - ~ " - - - . - . . _ ~~~ C* ~ ~" " ~

This information is shown in Figs.28a to 29a and is useful to determine
the laser output near the end of the life when the CO- and CO
concentrations have fallen off from their initial values.

17
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Power Output vs Discharge Current
5.6 x 150mm bore
He CO2 N Xe
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Figure 1. Power output as a function of discharge current
[Po (Watts vs Irjp (mA)]for a 150 mm length laser tube with a
5.6 mm bore.
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Power Output vs Discharge Current
5.6 x 150 mm bore
He CO2 N2 Xe

15 7 1
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Figure 2. Power output as a function of discharge current
[Po (Watfs) vs |Q/~ (mA )D for a 150 mm length laser tube with a
5.6 mm bore.
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Power Output vs Discharge Current
5.6 x 150 mm bore
He CO2 N2 Xe
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Figure 3. Power output as a function of discharge current
CPo (Watts) vs. lpj£ (mA)D for a 150 mm length laser tube with a
5.6 mm bore.



t Power Output vs. Discharge Current
5.6 x 150 mm bore
He C0

15

2

7 7
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Figure 4. Power output as a function of discharge current
LPo (Watts) vs. ln_ (mA)]for a 150 mm length laser tube with a
5.6 mm bore.



Power Output vs. Discharge Current
5.6 x 150 mm bore
He CO2 N2 Xe

15 7 7 3

0.5

0

'DC

5

mA

10

Figure 5, Power output as a function of discharge current
[Po (Watts) vs. I (mA)3for a 150 mm length laser tube with a

5.6 mm bore.



Power Output vs Discharge Current
5.6 x 150 mm bore
He CO2 N2 Xe

15 7 5 1.5

0.5

0

'DC mA

Figure 6. Power output as a function of discharge current
CPo (Watts) vs l^_ (mA)!lfor a 150 mm length laser tube with a
5.6 mm bore.
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Power Output vs Discharge Current
5.6 x 150 mm bore
He CO2 N2 Xe
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Figure 7. Power output as a function of discharge current
[Po (Watts) vs lnr (mA)] for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 8. Power output as a function of discharge current
CPo (Watts) vs lp£ (mA)]for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 9. Power output as a function of discharge current
CPo (Watts) vs |Q£ (mA)D for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 10. Power output as a function of discharge current
CPo (Watts) vs lp£ (mA)D for a 150 mm length laser tube with a
5.6 mm bore
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Figure 11. Power output as a function of discharge current
CPo (Watts) vs 1^^ (mA)J for a 150 mm length laser tube with a
5.6 mm bore. DC
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Figure 12. Power output as a function of discharge current
CPo (Watts) vs I (mA)n for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 13. Power output as a function of discharge current
[Po (Watts) vs |Q£ (mA)J for a 150 mm length laser tube with a
5.6 mm bore.



t Power Output vs Discharge Current
5.6 x 150 mm bore
He CO2 CO Xe

1 5 7 7 3

1.3

0.8

0.3«-
0 10

'DC mA

Figure 14. Power output as a function of discharge current
CPo (Watts) vs IQ,- (mA)D for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 15. Power output as a function of discharge current
CPo (Watts) vs ID(~ (mA)] for a 150 mm length laser tube with a
5.6 mm bore.

10



I
1.3

0.8

Power Output vs Discharge Current
5.6 x 150 mm bore
He CO2 CO Xe

15 7 7 2

0.3
0

lDCmA

10

Figure 16. Power output as a function of discharge current
CPo (Watts) vs ln(- (mA)3 for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 17. Power output as a function of discharge current
CPo (Watts) vs IDC (mA)3 for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 18. Power output as a function of discharge current
CPo (Watts) vs IDC (mA)J for 150 mm length laser tube with a
5.6 mm bore.
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Figure 19. Power output as a function of discharge current
CPo (Watts) vs ID£ (mA)]for 150 mm length laser tube with a
5.6 mm bore.
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Figure 20. Power output as a function of discharge current
CPo (Watts) vs IQC (mA)]for 150 mm length laser tube with a

5.6 mm bore.
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Figure 21. Power output as a function of discharge current
CPo (Watts) vs lp£ (mA)D for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 22. Power output as a function of discharge current
[Po (Watts) vs lp£ (mA)] for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 23. Power output as a function of discharge current
CPo (Watts) vs ln_ (mA)D for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 24. Power output as a function of discharge current
CPo (Watts) vs I (mA)3 for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 25. Power output as a function of discharge current
CPo (Watts) vs IDC (mA)lfor a 150 mm length laser tube with a
5.6 mm bore.
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Figure 26. Power output as a function of discharge current
LPo (Watts) vs lnr (mA)I] for a 150 mm length laser tube with a
5.6 mm bore.
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Figure 41. Silver Cathodes: Voltage versus operating time (upper curves) and
CO2 and CO partial pressures versus operatimg time (lower curves).
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Figure 42. Silver-Copper Alloys: A. Internal oxidation of alloys versus time at 750°C
in 1 arm. of oxygen; B. Oxidation of alloys versus percent composition with
curves 1 through 6 for oxidation times of 0.5, 3, 10, 20, 30 and 40 hours
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Z.F. Metalkunde 30, 83, 1938)
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Figure 43. Silver-Cadmium Oxide Cathodes (Ag 0.8 Cd/O):
Voltage versus operating time (upper curve); CO2 partial
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Figure 44. Silver-Cadmium Oxide Cathode (Ag5 Cd/O): Voltage versus operating time
(upper curve); CO2 and CO partial pressures versus operating time (lower curves).
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Figure 45. Silver-Cadmium Oxide Cathode (Ag 10 Cd/O):
Voltage versus operating time (upper curve); CO2 and CO partial
pressures versus operating time (lower curves).

6

4

2

0

10"

t
o



400

300

He-CO2-N2- Xe 15:7:7:1, 20 TORR TOTAL, 6mA

214.5, 50cmc

1 200

100

100 200

COo

CO

\
\

10J

t (HOURS)

Figure 46. Silver-Cadmium Oxide Cathode (Ag20 Cd/O): Voltage versus operating time (upper curve);
CO2 AND CO Partial pressures versus operating time (lower curves).
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Figure 47. Silver-Copper Oxide Insulated Cathode (Ag 5 Cu/O):
Voltage versus operating time (upper curve); CO2 and CO
partial pressures versus operating time (lower curves).
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Figure 48. Silver-Copper Oxide Insulated Cathode (Ag 10 Cu/O):
Voltage versus operating time (upper curve); CO2 and CO
partial pressures versus operating time (lower curves).
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Figure 49. Silver-Copper Oxide Insulated Cathode (Ag 20 Cu/O):
Voltage versus operating time (upper curve); CO2 and CO partial
pressures versus operating time (lower curves).
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Figure 52. Silver-Zinc Oxide Cathode (Ag 10Zn/O): Voltage versus
operating time (upper curve); CO2 and CO partial pressures
versus operating time (lower curves).
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Figure 56. CO2 Laser power output versus time.
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Figure 28a. Power Output vs Total Pressure 5.6 x 150mm Bore, 6 MA DC.

pow

GAS MIXTURE:
He 15 PARTS

1.5

1.0

0.5

0

CO,

Xe

PARAMETER
PARAMETER
1 PART

T

CO2:CO = 5:

10 15 20

TOTAL PRESSURE IN TORR

25



Figure 29a. Power Output vs Total Pressure 5.6 x 150mm Bore, 6m A DC.

P0 W

1.5

GAS MIXTURE:
He 15 PARTS
CO2 PARAMETER
CO PARAMETER
Xe 2 PARTS

1.0

0.5

0
10

7:9

CO2:CO = 5:7

15 20

TOTAL PRESSURE IN TORR


