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FOREWORD
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Allowables Data for Adhesives for Attaching Reusable Surface In-

sulation.'" Work reported herein was performed under the direction
of the Materials Technology Branch of the Structures and Mechanics
Division with I. K. Spiker as the Contracting Officer's technical

‘monitor.  Development work reported herein was conducted between
17-JanUary-1972 and 30 September 1972.

The authors wish to acknowledge the contributions of the
following individuals who were directly responsible for perform-
ing the program tasks and preparing this final report: J. E.
Halkias, E. W. Turns, J. D. Reynolds, and H. J. Weltman (Engineer-
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SECTION 1

INTRODUCTION AND SUMMARY

The work performed on NASA,MSC contract NAS9-12392,
Development of Design Allowables for Adhesives for Attaching
Reusable Surface Insulation, is described in this report. The
overall objective of this program was to test and establish
design allowables data for the following room temperature
vulcanizing (RTV) silicone rubber based adhesives, (1) General
_Electric's RTV-560, (2) Dow Corning's 93-046, and (3) Martin
Marietta's SLA-561. These adhesives are being evaluated for
attaching reusable surface insulation (RSI) to space shuttle
structure.

General Electric's PD-200 adhesive system was originally
"scheduled for testing in this program, but it was deleted per
~CCA No. 1 early in the program.

A further objective was to modify existing RTV silicone
adhesive formulations to impart reduced modulus and density as
compared to the adhesives specified above. In this portion of
the program, development work was confined to modifications of GE
RTV-560 and Dow Corning's unfilled RTV 77-137 and development of
an adhesive system comprised of Raybestos Manhattan's RL-1973
closed-cell silicone sponge sandwiched between bond lines of GE
RTV-560.

Glass and phenolic microballoons were added to GE RTV-560 and
DC-77-137 formulations to reduce density and possibly reduce
modulus. This approach was successful in reducing density, but
the high modulus of the microballoons caused the modului of the
formulations to increase rather than decrease. The addition of
microballoons to the formulations also created shelf aging and
processing problems.

The system comprised of RL-1973 sponge bonded with GE RTV-

- 560 proved to be quite successful. 1Its density is less than half
that of the solid adhesives tested, and it has a very low modulus.
The system possesses adequate strength to compete with the other
adhesives. Based on these findings, the RL-1973/GE RTIV-560 system
was selected for design allowable testing along with the three
contract specified adhesives.

The three specified adhesives and the RL-1973/GE RTV-560
developed system were tested for adhesion in tension and shear;



tensile, shear, and compression modulus along with Poisson's
ratio; constant-strain /stress-relaxation; thermal expansion,
thermal conductivity, and specific heat; and effects of thermal
cycling. Test methods used and data obtained are reported herein.
Design allowables curves were developed for adhesion in tension
and shear to failure at temperatures above the glass transition
points of the four adhesive systems.

A summary of the advantages and disadvantages of the four
adhesive systems is presented in Table I. Difficulties were
encountered in determining the modulus of the four adhesives at
temperatures below their glass transition points. These diffi-
culties arose because the test methods for determining deformation
of specimens under increasing loads were designed to accommodate
high elongations. As the adhesives become stiff and brittle at
temperatures below their glass transition points, deformation
under the relatively low loads become so small that minute
measurement inaccuracies caused extreme fluctuations in calculated
values of modulus,

Poisson's ratio values obtained on the adhesives at tempera-
tures below their glass-transition points were also extremely
variable for the same reason as the modulus values. In addition, .
it was discovered, unexpectedly, that specimens exhibited shrink-
age when initially subjected to load at these low temperatures.
Initial applicable of load produced negative rather than p051t1ve
elongations. Under these low loading conditions, Poisson's ratio
could not be determined. Because of this unforeseen problem at”
low temperatures and due to the fact that values for the adhesives
in their rubbery state are approximately 0.5, utilization of these
data in analysis techniques based on theories of elasticity is
inadvisable.

.. Under amendment 2S to this contract, a fifth adhesive, Dow
Corning's X3-6004, was tested the same as the four covered in this
report. In addition, tensile modulus of X3-6004, along with GE
RTV-560 as a control, was tested using a new procedure. Molded
"dog bone" shaped specimens, 10 inches long with 0.5-inch-diameter
throats, were fitted with a 2-inch Instron extensometer and tested
in an environmental chamber on an Instron test machine. This method
gave significantly higher tensile modulus values than the strap
specimens described in paragraph 4.3.1.2 of this report. Details
of the test and data obtained are presented in an addendum to
this report.



TABLE I ADHESIVE ADVANTAGE AND DISADVANTAGE SUMMARY

Adhesive

Advantages

Disadvantages

GE RTV-560

. Easy processing
. Best low temperature

properties

. Highest strength at

intermediate
temperature

. Highest thermal

conductivity

. Highest density
. Highest modulus

Thick sections
blister inter-
nally at 550°F

DC 93-046

Second lowest moduius

. Viscous, diffi-

cult to process

. Highest glass .

transition tem-
perature

Cracks on thermal
shock at -200°F

. Thick sections

revert and
blister inter-
nally at 550°F

SLA-561

. Best high tempera-

ture strength

. Easy processing,

easiest to degas

. Weak in shear

strength

. Thick sections

crack at 550°F

. Fresh SLA-561 has

low adhesion to
cured SLA-561

RL-1973/GE RTV-560

. Lowest density
. Lowest modulus
. Lowest thermal

conductivity

. Volume sensitive

to pressure
change

. Lowest strength
. Must be sliced to

desired thick-
ness
Compatibility
with base
adhesive must
be determined
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SECTION 2

TEST MATERTIALS AND METHODS

Candidate adhesives and tests conducted are shown in Figure 1,
Program Overview. Tests were generally conducted in triplicate,
using identical specimens. Specimen configurations were as shown
in Figures 2 through 11. When thermal conditioning or testing at
low or elevated temperature was involved, the required environment
was maintained for five minutes following stabilization of the
specimen at ambient conditions.

2.1 SPECIFIED ADHESIVES

Originally the program called for testing of the following
materials:

1. GE RTV-560 3. Dow Corning 93-046
2. GE PD-200 4. Martin MMC SLA-561

The GE PD-200 was deleted from the program when it became
impractical for NASA, MSC to obtain fabricated specimens from GE..
A further contract objective was to conduct investigations
leading to development of a lower modulus and density adhesive
system. The effort was not considered to be a major formulation
of adhesives but rather a modification of existing adhesives. As
a result of this effort in the program, the GE RTV-560/RL-1973
system evolved as the most promising material, the technical
monitor agreed to include it in the program as the fourth test
adhesive system.

2.2 SELECTION OF ADHERENDS AND PRIMERS

Selection of these materials was based on the most recent
information available relative to space shuttle technology



Development
of
Lower Modulus .
and Density
Adhesive

Materials

® GE RTV-560
~® Dow Corning 93-046

e Martin Adhesive - MMC SLA-561
_’ ® GE RTV-560/RL 1973 ‘

1

Environmental Test

Conditions
O

-270 75

-200 300

-175 350

-150 550

-65 600

Tests
e Tensile Stress-Strain
® Shear Stress-Strain N
e Poisson's Ratio (3 Strain Rates)
: Shear Modulus
Tensile Modulus

e Compression
e Density (RT)
¢ Thermal Expansion
® Specific Heat
e Thermal Conductivity
e Thermal Cycling
e Constant Strain/Stress Relaxation

Figure 1 Program Overview




uswyidadg SNINPOK IBIYS UCTSAOYL ¢ 2an3Tg

wnutwniy axeqd 181 %¢0Z €90°0

6g° a0 ‘01" ‘90 ‘€0°
SS3WMITIY]L 9ATSaUpy
unuUIWNiy saeg

181 %70¢

6Z' 20 ‘01" ‘90" ‘g0
. . SSauNOTYL SATSaypy
wnurunyy aaeq 181 %20¢ S¢1°0

9T10H

UTW 00°1

‘'Id ,8/1

uswtoadg zeayg ¢ 2an81g

wnutwny oIeg 181L-%70Z
"+ €90°

AOTYL 090° SATSSYPY

€00

uawioadg SNINpPol STISUd] +# 2an31yg

°IOH ®BTQ ,,5C°

FIEW Yyousg e1q ,070°

0°1 ° o01"

N Q,
LXK

5
S

WNUTWNT Y
papuog 050°

uswloads 8lIsusl g °and1Jg

\umomam

\\\\\\‘xoﬂ:a 090° @ATS3YpPY

970H 3urioor

051
wnuIWNy v

T1S8L %20Z ®TQ ,,6C1°1
1oo0dg 3s9]




uawtoadg L3ITATIONPUO) Jewaayl ¢ 2I1n3TJ

uawyoadg uswydadg uorssaiadwo) 9 aan31g

uoTsuedxy Jewidy] g 2andTd

//; —t/mﬂa 00°'%
00°2 00¢
//AW\ uswioadg 3JedH O13T0adg
pue £31suaq /[ 9ind81d \\ﬁ\

/ . 84
05 DR |

i ~ -
s
A

0%0°



uswIdsds uorsaypy
UOTSUL], uTeIlS Juejlsuoy 1T @2an31g

sa0®B[4 7
wnuIuNly 39141 ,,2/1
Ao0Tg pug

v

h

mmomHmoxUMss
w%90°0 190edg
unutwny y

181 %20¢

jv

—

[/
%
wwu.m.mnm 01
ATYL ,1'0 3aTSaypy

-——————BTQq (" (—

uswroadg padeys-pueg. o1 2aIn3814g

.—mNH *

.m..HQ :*N

u06¢”

10



2.2.1 Adherends (Substrates)

Bare aluminum alloy sheet 2024T81 and rod 2024T851 were used
as the substrate for all the adhesive systems tested. All sub-
strates were uniformly cleaned by the following technique:

1. All surface soils, o0il, and grease were removed by wiping
with cheesecloth moistened with methyl ethyl ketone
(MEK) .

2. Specimen substrates were then vapor degreased in a tri-
chloroethylene vapor degreaser.

3. Pre-etch cleaning was accomplished by immersion for 9 to
15 minutes in a solution of the following composition
maintained at room temperature:

697 Nitric Acid _ 10 to 227 by Volume
Fed. Spec. (0-N-350)

70 Hydrofluoric Acid 0.4 to 0.8% by Volume
Chromium Trioxide 3.5 to 4.5 oz (Dry Wt.)

Fed. Spec. (0-C-303B)
Tap Water Balance to make 1 gal.

4. Adherends were rinsed in clean, running tap water at
room temperature for 6 to 12 minutes.

5. Adherends were then immersed from 9 to 15 minutes in a
solution of the following composition, which was maintained
at 155 + 15°F.

(66°Be) Sulfuric Acid 10 Parts/Wt.
Fed. Spec. (0-5-809A)

Sodium Dichromate 4 Parts/Wt.
- Fed. Spec. (0-S-595)

Water (Tap) 30 Parts/Wt.
6. Specimen substrates (adherends) were rinsed in clean tap

water at room temperature and then spray rinsed thoroughly
with room temperature demineralized water.
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7. Drying was accomplished in a 160°F + 10°F oven for 30
minutes.

NOTE: During all degreasing, cleaning, rinsing, and drying
operations the specimens were individually separated
in aluminum racks to provide identical, uniform
treatment.

2.2.2 Primers

Based on either vendors data and recommendations, or previously
obtained data from room temperature lap shear tests of primer,
adhesive, and adherend combinations, the following adhesive primer
systems were selected.*

1. GE RTV-560 with GE SS4004 or GE SE4155 prime
2. DC 93-046 with DC 1200 prime
3. MMC SLA-561 with DC 1200 prime.
4. GE RTV-560/RL 1973 with GE SE4155 prime
* Cufe time for all specimens was 7 déys.

The fundamental consideration in selecting primers was the
ability to promote adhesion sufficient to provide cohesive
failures of the adhesive rather than adhesive failure to the sub-
strate. Practically all of the specimens in the program did fail
cohesively.

In the application of primers it is Convair's experience and
observation that a very thin but uniform coating of primers is
required. Thicker coatings of the silane-based primers form
loosely adhering powders on the surface when they hydrolyze.
Therefore, in this effort all primers were applied with a clean
camel's hair artist's brush to cover the surface completely. The
primed surface was then immediately wiped with clean cheesecloth
or lint free '"Kim-Wipes" removing all excess prime. The remaining
very thin film was allowed to air dry for 30 minutes before
application of the subsequent required adhesive.

Initially, the vendor recommended that S$SS4004 primer be used

with the GE RTV-560 adhesive. Difficulties developed with the
use of this primer (paragraph 2.3.2.1), however, and the vendor

12



later suggested that SE4155 be evaluated for use in place of
SS4004. The SE4155 primer is a silane-type primer, while the
SS4004 is a silicone resin type. The SE4155 presents fewer
problems in application; i.e., it makes a more uniform coating on
the aluminum substrates. Also, current tests of lap shear and
flatwise tension adhesion specimens made with SE4155 primer and
tested up to 600°F show 100 percent cohesive failures in the
RL-1973. Hence, there appears to be no problem with the SE4155
primer at elevated temperature. Based on these findings, GE
primer SE4155 was used to prepare the remaining specimens under
the contract. A new lot of GE RTV-560 was ordered for use in
CCA No. 1 and was tested before use in preparing the required
specimens.

2.3 PROCESSING

The techniques used were based on Convair Aerospace's
previous experience with sealing and potting compounds. All
pertinent details are supplied in the following sections.

2.3.1 Mixing and Handling Characteristics

“Adhesive components were mixed as described below. All mixing
and curing were performed in a room with a controlled temperature
of 774+2°F and a relative humidity of 5045 percent.

2.3.1.1 Weighing

Base materials and their corresponding catalysts were weighed
on a torsion balance. Batch sizes of 100 grams or more were used
to provide additional uniformity.

2.3.1.2 GE RTV-560

The weight ratio of the base to the catalyst for this candidate
material is 100:0.5. The desired quantity was weighed out in a new
clean mixing container, and the exact required quantity of catalyst
was added to the base. The material then was hand blended with a
spatula for a minimum of five minutes. The completely blended GE
RTV-560 was then transferred to new plastic Semco centrifuge-
dispensing tubes. Most of entrapped air bubbles was expelled by

13-



centrifuging the material at 1500 RPM for 10 minutes. The GE
RTV-560 was immediately piston dispensed from the tube into the
various types of specimen molds or applied in adhesive joints.
Work life of GE RTV-560 was approximately 2 hours.

2.3.1.3 DC 93-046

DC 93-046 is a black thixotropic material and requires
special techniques to achieve uniform blends. The weight ratio of
the base to the catalyst is 10:1. It was also batch size limited;
i.e., when batches larger than 500 grams were attempted a reduced
pot life resulted and the material tended to gel and become more
viscous and tacky. Consequently, 300 to 400 gram batches were
utilized. Mixing was accomplished by one of the two methods
listed below:

1. The base and catalyst were partially mixed. The premixed
material was then vacuum degassed (28 in. Hg. min.)
followed by final mixing in a pneumatic operated Pyles
Industries mixer. With this device, mixed material was
hydraulically forced into plastic Semco tubes. Filled
tubes were then immediately utilized to inject the
DC 93-046 into the required specimen molds or adhesive
joints.

2. The 10:1 weighed DC 93-046 was thoroughly mixed for at
least 5 minutes in a new throw-away container. It was
then evacuated (28 in. Hg. min.) for 5 minutes. The
material was transferred to plastic Semco tubes and
centrifuged at 1500 RPM for 10 minutes. It was immedi-
ately injected to form the required specimens. This
evolved method was the final preferred method of mixing
and degassing since it eliminated the laborious, time
consuming task of cleaning the Pyles mixer immediately
after each batch.

The work life of DC 93-046 was approximately 1 hour.

2.3.1.4 MMC_SLA-561

- This material is a transparent blend of a base-catalyst
ratio of 10:1 by weight. Viscosity is ideal for uniform mixing;
however, air bubble entrappment was a problem. Bubbles were
eliminated by evacuation (28 in. Hg. min.) for 5 minutes, followed
by centrifugation in a Semco plastic tube for 10 minutes at 1500

14



RPM. The material was immediately injected into the required
specimen molds or adhesive joints. The work life of MMC SLA-561
was approximately 1 hour.

2.3.1.5 GE RTV-560/RL-1973 -

This was a composite material composed of GE RTV-560 blended
as described in 2.3.1.2 and slices of RM/RL-1973 closed-cell
silicone sponge. The required thickness of sponge for the
various specimens was cut to specimen configuration. The surfaces
of the sponge were washed with methyl ethyl ketone and blotted dry
with cheesecloth several times. After a 30 minute air dry, RTV-
560 was trowelled onto the sponge faying surfaces with a spatula.
After brief experimentation, it was learned the surface thickness
- of 0.005 to 0.010 inch RTV-560 coating could be controlled by
scraping off the excess leaving just enough material to fill the
surface cells and maintain a continuous, uniform surface coating.

2.3.2 Uniformity of Lots

2,3.2.1 Variability of Different Lots of GE RTV-560

The majority ofltests of GE RTV-560 in this :.program were con-
ducted using a 50-pound shipment of lot number 592. A 10-pound
shipment of lot 618 was received to complete the tests.

In the interim between use of these two lots, Convair was
notified by NASA,MSC technical monitor that General Electric was
having adhesion problems with some later lots of GE RTV-560,
particularly when used to bond silicone rubber sponge to sub-
strates.

Convair Aerospace 1mmed1ate1y tested lot 618 in conJunctlon
w1th Raybestos-Manhattan's RL-1973 closed-cell silicone rubber
sponge. GE primer SS4004 was used in the test specimens. Test
failures were mostly adhesive failures between the GE RTV-560 and
the SS4004 primer; with lots 592 and 608, failures were 100 percent
cohesive in the RL-1973 sponge.

Convair Aerospace notified General Electric Silicone Division
of the problem, and General Electric replaced lot 618 with lot 619
and suggested that GE primer SE4155 be used in lieu of SS4004.
Lot 619 was tested in the same manner as described above.
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Lot 619 shows some of the same tendency as lot 618 to fail
adhesively at the SS4004 primer interface; however, tests with
SE4155 primer show 99 percent cohesive failure in the RL-1973
sponge. Data obtained are tabulated in Table I1. Based on these
data, the few remaining GE RTV-560/RL-1973 sponge specimens were
made using SE 4155 primer in lieu of SS4004 primer.

2.3.2.2 Véndor Quality Control Certificates

- Vendor quality control certifications accompanying materials
used in this program are included in Appendix I.

2.4 SELECTION OF MATERIALS FOR DEVELOPMENT OF .
REDUCED MODULUS AND DENSITY ADHESIVE

Two approaches were selected for modifying available silicone
RTV adhesives to reduce modulus and density. One approach was to
fill suitable RTV silicone adhesives with extremely low density"
glass or phenolic microballoons. The other approach was to obtain
a low-density, low-temperature, commercially available silicone
rubber sponge that can be sliced into any desired thickness.
Selected thicknesses can then be bonded between substrates to
provide low-modulus, low-density bond lines.

2.4.1‘ Selection of RTV Silicone for Modification

GE RTV-560 and Dow Corning 77-137 were selected for modifi-
cation. Both are copolymers containing phenyl groups in the -
polymer chain to impart low-temperature properties. GE RTV- 560
was selected for its low viscosity. It was reasoned that a
greater percent of low-density fillers could be incorporated;
hence, a lower density of the cured adhesive bond line would result.
DC 77-137 was selected because of its inherent low modulus and
absence of fillers. Here again it was reasoned that DC 77-137
would accept a greater volume of low-density fillers and result in
a considerably reduced modulus and density adhesive.

2.4.2 Selection of Microballoon Fillers

The following microballoons were selected for use in this
program:

16



TABLE II ADHESIVE PROPERTIES OF VARIOUS LOTS OF GE-560
USING GE SS 4004 & SE 4155 PRIMERS

(Lap Shear Specimens, 1 in.2 joints, 2024 T81, .064",Load Rate 0.03'/min.)

Without sponge in Glue Line | With RL-1973 sponge (0.050") in Glue Line
Percent |[Bondline Percent Bondline
Lot No.|Shear,psi|Cohesive|Thickness Shear,psi| Cohesive Thickness
592 288 100 0.06 91 100 0.07
270 100 0.06 89 100 0.07
286 100 0.05 95 100 0.07
281 100 92 100
608 282 100 0.05 94 100 0.08
277 100 0.05 79 100 0.07
276 100 0.05 92 100 0.07
277 100 88 100
618 ' 77 60 0.07
76 40 0.06
78 60 0.06
48 0 0.07
. 49 0 0.07
57 0 0.06
619 287 99 0.04 101 " 85 0.06
279 98 0.05 92 95 0.06
272 90 0.05 _83 85 0.06
279 96 92 88
60 50 0.06
61 10 0.06
80 90 0.06
67 50 /
87 60 0.06
73 50 0.06
91 80 0.06
84 73
*With SE 4155 rather tHan SS 4004
Primer
99 100 0.07
99 100 0.07
94 98 0.07
97 9

Note: All specimens made with GE SS 4004 primer except as noted.
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1. 3M's B-22A glass
2. Emerson Cumming's IG-101 glass
3. Union Carbide's BJ0-0930 phenolic

These three fillers were selected for their low density (less than
0.33g./cc), availability, and relatively low cost.

~2.4.3 Selection of a Closed-Cell Silicone Rubber Sponge

Raybestos-Manhattan's RL-1973 silicone sponge was selected
for use in the program because of its closed-cell structure, low
density (0.30g./cc), and low-temperature properties. Convair
Aerospace uses this sponge in certain F-111 airplane applications
and it has proved to be uniform in quality and density from lot to
lot. It can be obtained from the vendor in most any thickness
desired down to 0.03 inch.
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SECTION 3
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AND LOWER DENSITY ADHESTIVE SYSTEM
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SECTION 3

DEVELOPMENT OF REDUCED MODULUS
AND LOWER DENSITY ADHESIVE SYSTEM

Decreasing the modulus and density of the adhesive would
effect a substantial weight savings in the space shuttle thermal
protection system (TPS). Therefore, the objective for this
portion of the program was to modify existing adhesives to reduce
both modulus and density yet retain sufficient strength properties
to provide reliable attachment of the RSI to the space shuttle
structure. Approaches taken were:

1. Formulation of Dow Corning's low modulus silicone material
77-137 using fillers as well as phenolic and glass micro-
balloons to make a low-density syntactic foam.

2. Formulation of GE RTV-560 with the same phenolic and glass
microballoons to reduce density.

3. Utilization of Raybestos-Manhattan's closed-cell silicone
sponge with thin glue lines of GE RTV-560 on either side
and GE primer SE4155 on the adherends.

3.1 MODIFICATION OF DOW CORNING'S 77-137
RTV SILICONE MATERIAL

Dow Corning's 77-137 mixed with accompanying catalyst cures at
room conditions. Preliminary tests of the material showed it to
have extremely low modulus but unexpected low strength properties.
Dow Corning's technical service personnel were contacted to discuss
the need for a low-modulus RTV silicone adhesive and the deficien-
cies of 77-137. Dow Corning suggested incorporating 5 micron-
particle-size Minusil (Pennsylvania Sand and Glass' ground silica)
to improve tensile strength and elongation. Small batches of
77-137, one with 30 and another with 40 parts per hundred of
rubber (phr) 5-micron Minusil, were prepared. Two additional
batches were mixed; one had 18 phr phenolic microballoons and the
other had 15 phr phenolic microballoons plus 30 phr 5-micron
Minusil.

Sheets of the four batches were cast. Small dumbbell specimens
were cut from these sheets and tested for ultimate tensile strength
‘and elongation. Lap shear specimens using both DC 92-019 and



DC 1200 primer on 0.064 gauge 2024-T81 adherends were also
prepared. Formulations and data obtained are shown in Table III.
Analysis of these data indicated that more work was needed to
improve the strength, adhesion, and processing properties of the
77-137.

Reinforcement of the 77-137 with 30 to 40 phr of 5-micron
Minusil increased tensile strength from 18 psi to 153 psi, but its
tear strength was still low. Viscosity of the formulated 77-137
- was low, which made it difficult to confine it in a bond line.
Further discussions were held with Dow Corning personnel regarding
low strength and viscosity of the formulated 77-137. Dow Corning
responded by reformulating the 77-137 to produce a more workable
viscosity material. The new formulation was designated 77-158.

Exploratory tests consisting of lap shear strength of the
77-158 to 2024-T81 aluminum showed the adhesive to have excellent
shear strength after 11 days cure and it still exhibited the
desirable low modulus as shown in Table IV. Observations during
the fabrication of these lap shear specimens revealed that the
77-158 was too viscous for easy processing. The tests also show
that DC 92-019 primer did not develop full shear strength of the
77-158. Failures were 100 percent adhesive to the aluminum
substrates.

Following further deliberation with Dow Corning representa-
tives, a third formulation, designated X3-6000 and based on the
same polymer precursor system, was submitted to Convair Aerospace.
Flatwise tension and lap shear specimens were prepared with the
X3-6000. Test data obtained is shown in Table . V. The X3-6000
has excellent strength in both tension and shear as well as high
elongation and low modulus. Although X3-6000 shows highly
desirable properties, the base component of the two-component
system thickens prematurely during shelf storage. Dow Corning
determined that this is due to hydrogen bonding between one of
the fillers and the liquid copolymer. This condition has now
been corrected by substitution of another filler. The fourth
reformulation is designated X3-6004, but its development came too
late for it to be considered as a candidate adhesive in this
contract work.

3.2 MODIFICATION OF GE RTV-560 USING
MICROBALLOONS AS FILLERS

General Electric's RTV-560 has the lowest viscosity of the
three silicone adhesives included in this program; therefore, it

21



TABLE III PROPERTIES OF DOW CORNING'S RIV
SILICONE 77-137 FORMULATIONS

FORMULA_NO. . 1 2 3 4 5
Ingredients ’ PARTS BY WEIGHT
77-137 Base 100 | 100 100 100 100
5 4 Minusil - 30 30 40 -
Phenolic Microtalloons : 18 15 - - -
77-137 Catalyst 10 10 10 10 0
128 155 140 150 110
Tensile Strength, psi 7 day cure
1 . 57 66 125 171 20
2 58 66 137 154 16
3 63 66 125 133 - 1
Avg. 9 6 129 53 18 (22)
Ultimate Elongeation, percent
1 30 80 160 170 70
2 20 90 180 160 70
'3 35 105 160 140 -
Avg. .28 92 167 | 157 70 (55)1
Lap Shear Strength, psi .064" 2024-T81, 1" overlaps, .063" glue line
: 19
With DC-92-019 primer not not no bond 19
tested tested 100% adh. 19 )
. failure Avg. 19
With DC-RTV-1200 primer not not 49 40
: tested tested 48 39

49 43
Avg. —4_9-(2) 41 ?/é

1. Vendor brochure data
2. 100 percent cohlesive failures

3. '90 to 95 percent cohesive failures
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was selected for modification with glass and phenolic micro-
balloons. It was reasoned that the lower viscosity material would
accommodate the largest volume loading of microballoons; thus it
would produce the lowest den51ty syntactic foam adhesive. Three
types of mlcroballoons, 3M's B-22A, Emerson Cumming's IG-101,

and Union Carbide's BJ0-0930, were obtained for use in the program.
Work with the latter two was soon abandoned because they caused
the GE RTV-560 to cure without the addition of catalyst. It was
surmised that moisture on the large surface area of these two
types of microballoons caused the cure. Attempts were made to

dry the IG-101 and BJO0-0930 microballoons, but this did not
completely mitigate the problem with the IG-10l1 microballoons and
at the 350°F drying temperature the phenolic microballoons began
to smoulder.

Formulation work was continued with the B-22-A microballoons
and tested along with the Raybestos Manhattan RL-1973/GE RTIV-560 -
system discussed in paragraph 3.3. 1In Table VI, formulas 7 and-8
are GE RTV-560 filled with 14 and 7 parts by weight of B-22-A
microballoons, respectively. Formula 7 contains equal
volumes of GE RTIV-560 and B-22-A microballoons while formula 8
contains a ratio of 100 to 50 parts by volume of the two materials:
Density of the resulting formulations were reduced by 50 and 25
percent, respectively. In contrast, modulus of formulas 7 and 8
as compared to the control (100 percent GE RTV-560) are increased
by over 100 percent. This is to be expected when one considers
.the high modulus of the glass microballoons as compared to the
low modulus of the silicone rubber based GE RTV-560. In view of
this fact; i.e., the increased modulus imparted by glass micro-
balloons, work on modifying the GE RTV-560 with glass microballoons
stopped in favor of the more promising development of the RL-1973
closed cell silicone rubber sponge. Data on adhesion in tension
and shear are tabulated in Table VI and are shown graphically in
Figures 12 and 13.

3.3 RAYBESTOS MANHATTAN'S CLOSED-CELL SILICONE
RUBBER SPONGE, RL-1973, BONDED
BETWEEN GE RTV-560

Silicone RTV liquid polymers are available as foam-in-place
materials. These were considered only briefly in this program
because it would be almost impossible to obtain uniform density
glue lines in any kind of production process. Convair Aerospace
has used Raybestos Manhattan's RL-1973 (a low-density, low-modulus
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sponge) in numerous applications on airplanes and found it to be
a highly reliable material. Therefore, it was brought into this
program. RL-1973 can be sliced to any desired thickness and
bonded in place with most any RTV silicone adhesive. Since GE
RTV-560 was one of the adhesives to be fully evaluated and
characterized in this program, it was selected as the adhesive
to be used in combination with the RL-1973 sponge.

Preliminary data on RL-1973/GE RIV-560 is shown in Table VI
in direct comparison to GE RTV-560 alone and GE RTV-560 filled
with 100 and 50 percent by volume glass microballoons. It is
quite obvious that the RL-1973/GE RTV-560 system possesses the
lowest modulus and has about one-third the density of GE RTV-560.
As mentioned in paragraph 3.2, these data are shown graphically in
Figures 12 and 13. 1In adhesion in tension and shear, the RL-1973/
GE RTV-560 shows about one-third the strength of GE RTV-560 alone,
but this (approximately 100 psi) should be adequate for the
intended application.

3.3.1 Effect of Reduced Pressure on RL-1973 Sponge

The RL-1973 sponge exhibits linear and volumetric changes
when exposed to variations in pressure. The magnitude of change
has been estimated by placing specimens of known dimensions upon
standard grids in a variable pressure chamber and noting dimen-
sional changes versus time at pressure. The sponge expands
- immediately when subjected to a mechanical pump vacuum of 29.5 in.
Hg. (Figure 14), but it begins returning to its original dimensions
as evacuation of the cells continues. On release of the vacuum,
the sponge immediately contracts and again begins returning to its
original dimensions as pressure in the cells returns to atmospheric.
This characteristic may or may not be a drawback. Comparable data
on the solid RTV adhesives was not determined.

3.3.2 Selection of RL-1973/GE RTV-560 As the Fourth
Adhesive System in the Program

Since the RL-1973/GE RTIV-560 adhesive system proved to be the
lowest in density and modulus of all those investigated, the NASA,
MSC technical monitor and Convair Aerospace agreed that it would
be the fourth adhesive system to be tested for establishment of
complete design allowables data. ‘
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3.4 DENSITY OF ADHESIVES

Density at room temperature was determined using the hydro-
static method described in ASTM-D-297 Section 17(C). Essentially
this involves weighing the specimen in air and water, deducting
tare (hanging wire), etc. This calculation was as follows:

Density = Z’-"(%lc_)

Where A = weight of specimen
B = weight of specimen and supporting wire in water
C = weight of supporting wire in water

Data for the specified adhesives and modified formulations are
shown in Table VII.
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TABLE VIT DENSITY AT ROOM TEMPERATURE ASTM-D-297, 17(C)

FIVE SPECIMENS PER

TEST

RTV-560 Standard

Average

Density,
Grams/cc

1.4044
1.3997
1.4018
1.3984
1.4004
1.4009

GE RTV-560 Vacuum Deaerated

Average

Density,
Grams/cc

1.4211
1.4208
1.4184
1.4194
1.4192
1.4198

DC 93-046

Average

Density,
Grams/cc -

.0845
.0846
.0845
.0847
. 0845
.0846

il e

MMC SLA 561

Average

Density,
Grams/cc

.0501
L0472
.0476
.0507
L0474
.0486

e e e

RM/RL-1973 Silicone Sponge
Thickness (Avg.) = 0.059"

Average

Density,
Grams/cc

0.3065
.2997
.2998
.2999
.2992
.3010

[eNeNoNeNo)
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SECTION 4

MECHANICAL PROPERTIES
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SECTION 4

MECHANTICAL PROPERTTIES

4.1 ADHESION IN TENSION

The intended adhesive application dictated that tensile
properties should be determined using flatwise adhesion specimens.
These specimens were two solid metal cylinders bonded with an
0.060-inch-thick layer of the test adhesive. Properties deter-
mined were ultimate tensile strength, ultimate elongation, and
percent cohesive failure to metal. The load deflection curves
obtained with each specimen were used to develop stress-strain
curves.

4.,1,1 Test Method

Test specimens consisted of two 1.125-inch-diameter 2024-
T81 solid aluminum cylinders bonded with an adhesive glue line
thickness of 0.060 inch (Figure 2, Section 2). The lay-up fix-
ture shown in this figure was used to ensure uniform bond line
thicknesses and parallel surfaces of the test cylinders. After
the adhesive was cured, the specimens were tested by loading the
specimen normal to the cylinder faces, Figure 15, in a Scott
CRE ZK or Instron test machine.

Actual bond line thicknesses were measured before testing.
Deformation during testing was recorded autographlcally and per-
cent elongation was calculated as follows:

deformation of adhesive

RE = original thickness

x 100.

To ensure that only deformation of the adhesive was used in
the determination of ultimate elongation, a solid cylinder was
loaded at each test temperature and a load deformation curve
determined. This curve represented the extraneous extensions
inherent in the test set-up in addition to the deformation of
the cylinder. This value was subtracted from the deformation
recorded for each test specimen before calculation of ultimate
elongation or development of stress-strain curves.
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Figure 15 Cylinder Adhesion Test Setup

Since the bonded area was 1 square inch, load in psi was
read directly from the load deflection curves. Strain rate was
0.4 inch/inch/minute.

4,1.2 Results and Discussion

Average tensile and ultimate elongation values are shown
in Table VIII and Figures 16 and 17. These values are averages
of three specimens. The average percent cohesive failures of
the specimens at each temperature are also shown. Individual
specimen values are shown in Appendix II.

In general, the data show that the tensile strengths increase

as the test temperature decreases. Also the percent cohesive
failure decreases with decrease in test temperature with the ex-

ception of the RTV-560/RL-1973 specimens, which generally exhibit

100 percent cohesive failure. At temperatures above 350°F, rapid
deterioration of all materials occurs (Figure 16). It was also
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noted during the tensile tests that MMC SLA 561 emitted dense
white fumes at approximately 450°F., These fumes soon dissi-
pated as the temperature was increased.

A plot of ultimate elongation versus temperature is shown
in Figure 17. As noted, the ultimate elongation increases as
the temperature decreases to .a point just above the brittle
point of the material followed by a rapid decrease in elongation
as the temperature decreases below the brittle point. This
corresponds to a maximum shear value as shown in Section 4.2,

4,1.3 Data Analysis

Flatwise tension data was analyzed using regression and
tolerance limit techniques to. give statistical confidence limits
and allowables. Statistical relationships were derived for
stress versus strain and ultimate strength versus temperature
test results. Stress-strain relationships were developed using
regression analysis to determine a mathematical model which best
represented the test data at each test temperature. In addi-
tion to the "best-fitting" relationship, upper and lower confidence
limits were determined for the relationship at a statistical
confidence limit of 95 percent. Thus, if the sample tested were
an accurate representation of the adhesive stress-strain charac-
teristics, then 95 percent of all additional samples tested may
be expected to have 'best-fitting' stress-strain relationships
which would be contained by the established confidence limits.
Data analy31s also included establishment of a best- f1tt1ng
relationship and confidence limits for ultimate strength as a
function of absolute temperature. In addition, strength allow-
ables were established using the lower confidence limit of the
mathematical model as a baseline and calculating one-sided
tolerance limits for 90 percent and 99 percent confidence levels.
The strength allowables at 90 and 99 percent confidence levels
reduced from a "typical' value based on a 95 percent confidence
level are analogous to the definitions of B- and A-basis allow-
ables, resPectlvely, as given in MIL-HDBK-5A, and have been de-
noted as B' and A' allowables in- thlS report '

4;1.3.1"Methodology

The methodology associated with regression and tolerance
llmlt calculations is summarized in Appendix II.
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Figure 16 Tensile Strength Vs. Temperature
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Figure 17 Ultimate Elongation Vs. Temperature
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4.1.3.2 Compilation of Test Data

Continuous load-versus-deflection curves through ultimate
load were obtained autographically for each specimen tested in
flatwise tension. Values of deflection were read from each curve
for several values of load including ultimate load. Strain and
stress were calculated for each pair of load-deflection data
read for each specimen tested. The calculations are summarized
in Appendix III.

The deflection data read directly from load-deflection
curves was corrected by subtracting empirical correction factors
before calculating values of strain. The empirical correction
factors were determined by loading solid metal details of the
same gauge and configuration used in flatwise tensile specimens
on the same test machines and temperatures used in the bonded
specimen tests. The correction factors are summarized below:

Temperature Correction

Range Factor
Test Machine Method Material (°F) (in/1b)
Scott Tester Tensile  RTV-560 only +350 to -175 0.0000346
Instron Tensile RTV-560 only -200 & -270 0.000012
Instron Tensile  SLA-561, +350 to -270 0.000012
' - DC93046, and C
RTV-560/
RL-1973

Test results for 550°F and 600°F conditions were not
analyzed. The results at these temperatures indicate the mate-
rials do not have sufficient/reliable strength characteristics
to justify statistical calculations. '

Test results for low temperatures (less than -150°F) are
generally highly erratic and in most cases have not been analyzed.

A summary of the test conditions studied for stress-strain
regression analyses is given in Table IX.

4,1.3.3 Tensile Stress-Strain Data

The regression coefficients, standard deviations, and cor-
relation coefficients determined for each strain-strain test
condition are summarized in Table X. Regression analyses of
tensile stress-strain data gave a wider range of 'r" (correla-
tion coefficient) values than for shear data (Reference para-
graph 4.2.3); however, it was possible to perform the analyses
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for all test temperatures < 350°F for all materials except SLA-
561. Data for SLA-561 for temperatures < -150°F was too erratic
to be characterized by a math model and was not analyzed. 1In
the case of tensile loading, data at temperatures below the
glass-transition temperature gave values of '"r" similar to those
observed for data at higher temperatures. Glass-transition
temperatures are characterized by abrupt changes in thermal
properties., Based on results given previously, approximate
glass-transition temperatures are listed below.

Approximate Glass

Material Transition Abrupt Changes in

DC-93-046 -50°F Specific heat, thermal con-
ductivity, and expansion

SLA-561 -175°F Thermal conductivity and
expansion

RTV-560 -175°F Thermal conductivity and
expansion

RTV-560/RL-1973 -100°F/-175°F  Thermal conductivity and
expansion )

4.1.3.4 Tensile-Strength-Temperature Data

Ultimate strength and strain results for each specimen are
~ included in Appendix III.

Regression analyses were also conducted for ultimate
strength-temperature data from tests in flatwise tension for
RTV-560, DC 93-046, SLA-561, and RTV-560/RL-1973. The results
are summarized in Table XI.

- The analyses used temperature (degrees R) as the independent
variable and ultimate strength as the dependent variable. Temper-
ature range included in the analyses was 260°R to 810°R (-200°F
to 350°F). Data outside this range at test temperatures of 190°R
(-270°F), 1010°R (550°F), and 1060°R (600°F) was deleted from
the analysis. These results were not compatible with the results
at the other temperature conditions.

General observations relative to tensile strength are

1. When strength-temperature data is plotted on semi-
logarithmic graph paper (Figure 18) two straight
lines can be fitted to the data. The lines are
distinct for RTV-560/RL-1973, SLA-561, and RTV-560
adhesive and intersect approximately at the glass-
transition temperature. Fitting the lines to
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Figure 18 Average Flatwise Tensile Strength of Adhesive Materials
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DC 93-046 material data was less straightforward;

the lines fitted to this data were based on the trend
observed on the other materials using the glass-
transition temperature to approximate the inter-
section point. ' '

2. SLA-561 specimens generally failed adhesively at
sub-zero test conditions and cohesively for room
and elevated temperature conditions.

3. RTV-560 specimens generallg failed cohesively at
temperatures of 395°R (-65°F) and above. Failures
below 395°R were mixed.

4, DC 93-046 specimens generally failed cohesively at
all test temperatures.

4,1.3.5 Data Reduction and Presentation

Regression analyses were conducted using Convair Aerospace
computer program AON to calculate the values of 1n A, B, [C],
Sy.x, and r. These values (except the C matrix) were presented
in Tables X and XI. The tables also include the 95 percent
confidence limits for r.

Confidence limits on the best-fitting regression line were
calculated on a Hewlett-Packard desk computer. The desk computer
was also used to calculate B' and A' allowables in the case of
ultimate strength-temperature data reduction. The tensile strain
confidence limits for specific values of tensile stress are sum-
marized in Appendix IV. Ultimate strength confidence limits
and allowables for specific test temperatures are summarized in
Appendix V. '

Data 1is presenﬁed graphically as follows:

o Figures 19 through 22 Tensilé Strength - Temperature

o Figures 23 through 52 Tensile Stress-Strain

In the case of stress-strain data, the regression analysis
stress is the independent variable, but the variables were re-

versed in the graphs to allow plotting the data in the manner
familiar to engineers.
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4.2 ADHESION IN SHEAR

Shear properties were determined using single overlap shear
specimens. The properties determined were shear strength, per-
cent cohesive failure, and shear stress-strain curves.

4,2.1 Test Method

Shear specimens consisted of a standard 1l-inch-wide single
overlap shear specimen with a l-inch overlap and 0.060-inch bond
line (Figure 3, Section 2). The adherends were 2024-T81 aluminum.
Specimens were tested at ten different temperatures from -270°F
to 600°F using a strain rate of 0.4 inch/inch/minute. Individual
specimen bond thickness and overlap area were measured and re-
corded before testing. Shear strength was calculated as follows:

Load at Failure (pounds)
Over Lap Area (in.<2)

Shear, psi =

Load-deformation curves were determined for each specimen,
and these curves were used to develop the shear stress-strain
curves., A solid metal specimen was loaded and the data used to
correct for extraneous extensions inherent in the test setup.
Specimens were tested in tension in a Scott CRE 2K or Instron
test machine.

4,2,2 Results and Discussion

Average shear strengths and percent cohesive failure are
shown in Table XII and Figure 53. 1Individual specimen data is
shown in Appendix IIT.

As noted in Figure 53, the shear strength of the materials
tested increases with decrease in temperature to a point slight-
ly above the brittle point of the material and then decreases
with further decrease in temperature. The percent cohesive
failure increases with increase in temperature with the exception
of RTV-560/RL-1973, which shows 100 percent cohesive failure at
all test temperatures. The materials exhibit rapid deteriora-
tion at temperatures above 350°F (300°F for DC 93-046).
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4.2.3 Data Analysis

Single overlap shear data was analyzed using regression and
tolerance limit techniques similar to those used to analyze the
flatwise tension data (Reference paragraph 4.1.3). The same sta-
tistical values were developed for shear data, i.e., stress-
strain and strength-temperature, as were developed for tensile
data.

4.,2.3.1 Methodology

The methodology used in analyzing shear data is summarized
in Appendix II.

4.2.3.2 Compilation of Test Data

Continuous load-deflection curves through ultimate load were
also obtained for shear specimens. The load-deflection readings
were converted to stress-strain exactly as was done in the case
of tensile specimens (Reference paragraph 4.1.3.2) except the cor-
rection factor used was 0.00004 inch/pound for all four adhesive
materials. The calculations of stress-strain for shear specimens
are summarized in Appendix III.

A summary of the test conditions studied for stress-strain
regression analyses is given in Table XIII.

' 4,2.3.3 Shear Stress-Strain Data

Regression analysis of shear stress-strain data gave high
(>0.9) values of '"r," the sample correlation coefficient, for all
- test temperature conditions except those near the glass-transition
temperature. The stress-strain regression results are summarized
in Table XIV. ' »

Shear data for temperatures below the glass-transition tem-
peratures were generally too erratic to be used in a regression
analysis. Negative values of strain were calculated for DC93-046
at -150° and -175°F, and negative values of strain were calculated
for SLA-561 at -200° and -270°F. Test specimens within a tempera-
ture condition were too dissimilar to select a common math model
for the regression analysis for RTV-560 at -200° and -270°F and
SLA-561 at -1759F. Tests on DC93-046 specimens at -200°F and
-270°F yielded stress-strain curves that included decreases in
strain level for corresponding increases in stress level. Regres-
sion analyses were conducted for the modified adhesive RTV-560/
RL-1973 at -200° and -270°F to illustrate that such data gives poor
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correlation results (note the low value of "r'" in Table XIV). The
modified adhesive data did exhibit good correlation at two test
temperatures below its glass-transition temperature; this was in-
consistent with the behavior of the other materials.

4.2.3.4 Shear Strength-Tempefatufe Data

Ultimate strength and strain results for each specimen are
included in Appendix III.

Regression analysis was also conducted for ultimate strength-
temperature data from overlap shear tests for all four adhesives.
The results are summarized in Table XV.

The analyses for shear was similar to that used for tenSLOn
as discussed in paragraph 4.1.3.4.

General observations relative to shear strength include

1. When strength-temperature data is plotted on semi-
logarithmic graph paper (Figure 54), only one straight
line is required to represent test data for DC 93-046
and RTV-560 materials, but two straight lines are
necessary for SLA-561 and RTV-560/RL-1973. The inter-
section point of these lines is near the. glass-
transition temperature.

2. Specimens tested at sub-zero conditions generally
failed adhesively; those tested at room and elevated
‘temperature generally failed cohesively.

4,2,.3.5 Data Reduction and Presentation

Regression analyses and confidence limits were conducted using
the computer program AON and the desk computer as dlscussed in
paragraph 4.1.3.5.

Strain confidence limits for specific values of shear stress
are summarized in Appendix IV. " Ultimate strength confidence limits

and allowables for specific test temperatures are summarized in
Appendix V.

Data is presented graphically as follows:
Figures 55 through 58 Shear Strength-Temperature

Figures 59 through 80 Shear,Stress-Strain
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In the case of stress-strain data, stress is the independent varia-
ble; however, the variables were reversed for plotting purposes.

4.3 TENSILE MODULUS AND POISSON'S RATIO

Tensile modulus and Poisson's ratio values were determined
from measurements made on flat specimens loaded in tension. The
properties reported in this section are '"least squares'" modulus
and Poisson's ratio values.

4,.3.1 Test Method

4.3.1.1 DeVélopment of Test Method

During the development of a test method to determine Poisson's
ratio and tensile modulus, several determinations were made using
- dead weights to load a GE RTV-560 specimen in tension up to approx-
imately 40 psi and 11.5 percent elongation. 'Measurements at in-

. cremental loadings were .taken using a millimeter scale and a two-

power magnifying glass: Even though changes in AL and AW are
small (using one .to two pound incremental loading) and difficult
to read, fairly uniform values for Poisson's ratio were obtained
as shown in Table XVI and Flgure 81, Test Number 6. Values ranged
between 0.4 and 0.45.

Since it would be impossible to make measurements with a hand
held scale and the eye during dynamic loading and at low and high
témperature environmental conditions, a camera was set up on the
~ Scott tester as shown in Figure 82. The 35mm Beattie-Colman

" Veritron camera was tied in electrically with the device on the
tester that makes specific load indicating 'blips" on the chart
paper. With this setup, sequence photographs can be made of the
specimen as it is being loaded. Later, the loading charts' and
photographs can be read and related directly by the sequence of
"blips" on the chart paper. Measurements of AL and AW can be
taken dlrectly from the photographs and P01sson S ratlo calcu-
lated.

In checking the photographic method, several enlargement
methods were investigated to read AL and AW as shown in Tests
1, 2, 3, 4, and 5 in Table XVI. Note that the Poisson's ratio
values obtained using the photographs and recorded in Table XVI
and plotted in Figure 81 appear to be reasonable at 20 psi loads
and above but not at lower loadings. These apparent errors were
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Figure 81 Poisson's Ratio for GE's RTV 560 at Room Temperature

Figure 82 35mm Veritron Camera Mounted on CRE/2K Scott Tester
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due to the '"fuzziness' of the bench mark lines on the specimens
and the magnification of the photographs. To mitigate these prob-
lems, the camera was refocused and moved closer to the specimen
and a bench mark method utilizing 0.02-inch-diameter dots was
devised.

4.3.1.2 Tensile Modulus and Poisson's Ratio Test Method

Flat strips of molded adhesive (except RL-1973 sponge) 0.1
inch thick, 12 inches long, and 2.5 inches wide (Figure 4, Section
2, and Figure 83) were tested for determination of tensile modu-
lus and Poisson's ratio. One-inch-wide aluminum doublers were
bonded on each end to distribute the applied load to the entire
specimen. A two- by five-inch test section was bench marked with
0.02-inch-diameter dots in the center of the specimen face. The
bench marks were applied using a template and GE RTV-102. For
temperatures below room temperature, the GE RTV-102 was pigmented
black for marking GE RTV-560, MMC SLA-561, and RTV-560/RL-1973
specimens. Unpigmented GE RTV-102 was used to mark all DC 93-046
(a black material) specimens. The black dots used to mark speci-
mens tested below room temperature assisted in distinguishing the
bench marks from frost in the photographs.

Figure 83 Tensile Modulus Test Setup
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The RL-1973 sponge specimens were cut from flat sheets 0.1
inch thick. A 0.005- to 0.010-inch-thick coating of GE RTV-560
was applied to each face of the specimen and cured before bench
marking as described above. 1In addition, one RL-1973 specimen
without the GE RIV-560 coating was tested at -200°F.

Specimens were tested at six temperatures ranging from -650F
to 600°F using a strain rate of 0.4 inch/inch/minute. Specimens
also were tested at additional strain rates of 0.25 and 0.003 inch/
“inch/minutes at -65°F, RT,.and 300°F. At temperatures below -65°F,
the strain rate selected for each material provided a load rate
consistent with the response of the test machine. These strain rates
are shown in the tables of data. ) ‘

" During testing, photographs were made at incremental loadings;
these were later measured for calculating tensile modulus and
Poisson's ratio. Transverse and axial measurements from the photo-
graphs were fed directly into a Hewlett-Packard 2116A computer
programmed to give a printout of Poisson's ratio and moduli values
along with "least squares'' values for the two properties. The
""least squares' value is the slope of the least squares linear
line through the stress-strain points for tensile modulus and the
slope of the least squares linear line through the transverse-
axial strain points for Poisson's ratio. A more detailed discus-
sion of the least squares computation is contained in Appendix VI.

4.,3.2 Results and Discussion

The data obtained on GE RTV-560 is shown in Table XVII and
Figure 84. 1In the plot of tensile modulus versus temperature,
a decrease in modulus is shown as the temperature decreases from
350°F to -65°F and a rapid increase in modulus is shown from -150°F
to -175°F. The modulus values obtained at 550°F and 600°F show a
rapid deterioration of the material at these temperatures. A plot
of strain rate versus tensile modulus is shown in Figure 85. As
noted, a slight decrease in modulus occurs as the strain rate is
decreased from 0.4 to 0.003 inch/inch/minute.

An additional modulus test was conducted using a cylinder
adhesion specimen in which the deflection was measured using an
extensometer. These tests were conducted at -175°F, —ZOOOF, and
-270°F. The data obtained is shown in Table XVIII. The specimen
configuration, thin glue line, and difficulties encountered in
determining deflections with the extensometer at low temperatures
can account for the difference in the values obtained between the
strap and cylinder specimens. :
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The tensile modulus data for DC 93-046 is shown in Table XIX
and Figure 86. As can be seen, the plot of tensile modulus versus
temperature is of the same general shape as that obtained for GE
RTV-560. Softening of DC 93-046 begins at 300°F and rapid increase
in modulus begins at -65°F. As noted, the material deteriorated
and could not be tested at 550°F and 600 F. Also, the strains
developed in the material while being cooled to -270°F caused the
specimens to crack and no data could be obtained.

Figure 87 is a plot of tensile modulus versus strain rate.
As shown, the modulus values obtalned are 1ndependent of strain
rate at room temperature and 300°F and appear to be independent at
-65°F except for the value obtained at 0.003 lnchélnch/mlnute strain
rate (Table XIX). The high value obtained at -65"F at the low strain
rate is believed to be due to the long soak time at temperature
"this specimen received. ©Normally, the specimens are brought to
test temperature in about 20 minutes then soaked at temperature
5 minutes before testing. The time required for testing is approx-
imately 3 minutes. At the low strain rate, however, the time re-
quired to test the specimen is 30 minutes, which results in a longer
soak time. DC 93-046 appears to be extremely time- temperature de-
pendent at temperatures approaching its brittle point.

The tensile modulus data for MMC SLA-561 is shown in Table XX
and Figure 88. The plot of tensile modulus versus temperature is
similar to the other two materials and shows a decrease in modulus
as the temperature decreases from 350°F to -65°F and a rapid in-
crease in modulus from -150°F to -270°F. The values obtained at
550°F and 600°F show a rapid deterloratlon of the material at these
temperatures. A plot of load rate versus tensile modulus is shown
in Figure 89. As noted, the tensile modulus values are essentially
- the same in the strain rate range of 0.003 to 0.4 inch/inch/minute.

Tensile modulus values for RM/RL-1973 sponge are shown in
Table XXI and Figure 90. With the exception of one specimen tested
at -200° F, the specimens were coated on each face with 0.005- to
0.010-~ lnch thickness of GE RTV-560. This coating of GE RTV 560 was
applied to simulate the actual bond conditions. At -200° F, the
specimen without a coating exhibits a modulus approx1mately one
tenth that of the coated specimens.

. Figure 90 is a graph of tensile modulus versus temperature.
As shown, this curve is similar to the other materlals tested. A
minimum modulus is reached at approximately 200°F and a maximum
modulus is reached at -200°F. The rapid increase in modulus begins
at approximately -100° F Softening of the material is shown at
temperatures above 350°F.
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Figure 91 Tensile Modulus of RTV 560/RL-1973 Vs. Strain Rate
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Tensile modulus as a function of strain rate is shown in
Figure 91. The modulus decreases slightly as the strain rate is
decreased at room temperature but it is essentlally constant at
all strain rates at 300°F and -65°F.

As noted in the tables of data, large variations in values
‘are obtained when the materials are tested below their brittle
point. This variation is partly due to inaccuracies in measure-
ment of these low deformations. A further discussion of this prob-
lem is contained in Section 6. '

4.4 SHEAR MODULUS
4.4.1 Test Method - =

- Shear modulus tests were conducted on double overlap shear
spec1mens as shown in Figure 5 of Section 2 and Figure 92 loaded
_in torsion. The specimens were 1 inch wide with a l-inch overlap.
Bond thicknesses were 0.03, 0.06, 0.10, and 0.25 inch. Three
specimens were tested for each data p01nt Strain rates were 0.4,
-0, 25, and 0.02 inch/inch/minute at —65 F, rogm temperature and

- 300°F and 0.4 inch/inch/minute at 350°F, 550°F, and 600°F. At

- o
" temperatures below -65"F, a strain rate was selected for each

material which would'provide a load rate consistent with the
response of the test machine. These load rates are shown in the
tables of data.

Load-deformation curves were obtained for each specimen tested.
An initial slope was obtained from these curves and used to calcu-
late the shear modulus as follows:

!

2.66 x P x t
Arc sin (4/3.0)

:T Shear‘Modulus; psi =

where: p/A = initial slope of load deformatlon curve
- t average bondline thickness

The shear modulus test fixture was deSLgned so that the speci-
men. could. be plnned with 0.125-inch-diameter pins at each end,
and the load was applied at the center of the specimen through
another 0.125-inch-diameter pin (Figure 92 and inserts in Figure
93 through 96). The fixture arm clevises holding each end were
free to swivel and the cross arm holding the arm clevises was also
free to swivel at the center. This allowed the specimen and fixture
to be in alignment under all load conditions.
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Figure 92 Shear Modulus Test Setup

4,4,2 Results and Discussion

Testing of shear modulus in torsion of the four adhesive mate-
rials was accomplished as described above. Effects of bondline
thickness (0.03, 0.06, 0.10, and 0.25-inch), strain rates (O 4,

0. 25 and 0.02 1nch/1nch/m1nute), and temperatures from -270°F to
600°F were determined.

Generally the modulus of all four adhesives vary directly
with load rate and inversely with thickness of bond lines and
temperature. There are individual exceptions to this generaliza-
tion, however, as shown in Tables XXII, XXIII, XXIV, and XXV and
graphically in Figures 93 through 96.
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The RTV-560/RL-1973 system has the lowest shear modulus of
the four adhesives in the temperature range of -65°F to SSOOF
while the GE RTV-560 has the lowest modulus values below -65°F.
This difference Jmay or may not be real The lower values for GE
RTV-560 at -175° F, -200° F, and -270°F may be due to polymer struc-
ture slippage rather than actual lower modulus In crude shock
tests (striking lap shear specimens at -200 F), the RL-1973 speci-
mens appear to be the toughest of the four adhesives at this low
temperature.

The large decrease in shear modulus of the 0.25-inch bond
line RTV-560/RL-1973 as compared with the 0.1 inch and thinner
bond line specimens is believed to be due to smaller percentages
of GE RTV-560 contained in the bond line. When using the GE RTV-
560 as an adhesive for the RM/RL-1973 sponge, the outer layer of
sponge cells are filled with the adhesive. This in addition to
the bond line comprises a high percentage of the total bond line
in the specimens with thin bond lines but only a small percentage
of the total bond line in specimens with thicker bond lines.

As noted in the tables of data, large variations in values
are obtained when the materials are tested at temperatures below
their brittle point. These variations are partly due to inac-
curacies in measurements, which is discussed further in Section 6.

4.5 COMPRESSION MODULUS

Molded parallelepipeds were subjected to compressive loads,and
their longitudinal and transverse deformations were monitored.
The data obtained was used to determine compression modulus and
Poisson's ratio in compression.

4.5.1 Test Method

Parallelepipeds 1.5 inches square by 4 inches high were molded
from the three two-component adhesives (Figures 6, and 97). The
RM RL-1973 sponge specimens were cut from sheets of sponge 1.5
inches thick. GE RTV-560 was applied to each end of the sponge
specimens to provide ends that were closer to being parallel than
could be cut from the sponge sheets.

One face of each specimen was bench marked with four 0.02-
inch-diameter dots using a template and procedure as described
-under tensile modulus testing. During testing, 35mm photographs
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Figure 97 Compression Modulus Test Setup
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(Figure 82) were taken at incremental loadings; these were later
developed and measured. The camera-.and techniques used to relate
an individual photograph with a spec1f1c load were the same as
those used during the tensile modulus testing. Two dots, one at
the top and one at the bottom of -the spec1men were used to moni-
tor longitudinal strain, and two’ dots .one on each edge- of the
specimen 2 inches from the ends ‘were. used. to monitor transverse
strain. The computer program descrlbed in Appendlx V was slightly
modified to calculate compre351on modulus and POlSSOH s ratio in
compression. : : : kN :

Specimens were tested at 0. 4 O 25 and O 007 1nch/1nch/m1n-
ute strain rates at. -650F ‘room’ temperature, and 300 F and at 0.4
lnch/lnch/mlnute at 350°F. At temperatures approaching the mate-
rial's brlttle point and below, a straln rate that would provide
a load rate consistent with the response of the test machine was
selected. These straln rates are shown ‘in ‘the tables of data.

4.5.2° ResultsJand Discussion -

4.5.2.1 Compression:Modulus_

In testing the compre331on blocks, “the same phenomenon was
encountered as with the tensile straps at low temperatures. For
example, when the blocks were initially loaded at temperatures
below their glass-transition temperature they began to shrink.

In some cases, the rate of shrinkage was greater than the .loading
rate; hence load on the machine chart would go up and then’ return
to zero as - the specimen belng tested began to shrink (Sectlon 6).

When these SLllcone materlals freeze extensive 1nternal
stresses are apparently set up in the block specimens. At'-200°F,
approximately lSOOF below thé glass-transition temperature of DC
93-046, stresses were so great that the slight thermal shock
caused by opening the door to the environmental chamber fractured
the specimen as ‘shown pictorially in Figure 98.

Elevated temperatures were extremely detrimental to the 1.5
x 1.5 x 4.0-inch compression blocks, particularly since 30 minutes
to 1 hour was required to brlng the centers of the specimens to
ambient temperature. At 350° F and above, the DC 93-046 sponged
internally. At 550° and 600°F the GE- 560 also sponged internally
while the SLA-561 cracked, These effects are shown in Figure 99.
At temperatures above 3500F, the RL-1973 closed-cell silicone
sponge expanded and buckled under load. Because of these effects,
data on compression at temperatures above 350°F were unobtainable.
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Figure 98 Effect of ~200°F on DC 93-046 Compression Specimens
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One effort to heat a GE-560 specimen faster by placing it in
a dielectric oven resulted in rupture and partial depolymerization
of the specimen.

The compression modulus data on indiyidual specimens is shown
in Tables XXVI through XXIX, and the relationship between compres-
sion modulus and temperature is shown in Figures 100 through 103.

As can be seen in these flgures the. curve - obtalned is similar to
that obtained for ten31le modulus

GE RTV-560 (Table XXVI and Flgure 100) experlences a decrease
in modulus from room: temperature to =65 F and then a rapid increase
in modulus from -150°F to -200°F followed by a decrease in modu-
lus below -200° F. Softening of the material is shown in the
curve above 300°F. As noted in Table XXVI,. compression modulus
does not change with change.in strain rate. -

DC 93-046 (Table;XXVII and Figure lOl)-experiences an in-
crease in modulus with decrease’in temperature.  As shown in Table
XXVII, no change in modulus is agsociated with change in strain
rate at room temperature and 300°F. However, at -65"F an apparent
change in modulus does occur with change in strain rate. This is
believed to be due to the time at temperature tolerance allowed
with these specimens. As discussed previously, DC 93-046 is
extremely time-temperature dependent, and slight variations in
time at temperature greatly affect the test results.

The modulus versus temperature curve for MMC SLA-561 (Figure
'102) is similar to that obtained for GE RTV-560 showing a decrease
S in modulus from room temperature to -650F a rapid increase from

- -150° F to -200° F, and another decrease below -200°F. Softening
_of the material occurs above 350°F. As shown in Table 'XXVIII, the
' modulus of MMC SLA-561 is constant with change in strain rate.

~ Modulus values for RM/RL 1973 sponge are shown: in Table XXIX
and Figure 103. A decrease in modulus occurs as the temperature '
decreases from 3500F to -65°F followed by a rapid increase in '
modulus from -150°F to -270°F. Deterioration- begins between 350 F
and 550°F. The data in Table XXIX also indicate that the modulusf;
i§ constant with change in strain rate -
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Compression Modulus, psi

Compression Modulus, psi
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4.6 POISSON'S RATIO
4.6.1 Results

Maximum and minimum values of measured Poisson's ratio are
shown in Tables XXX and XXXI, as obtained from strap tension tests
and block compression tests.

Values of tension and compression modulus of elasticity are
shown in Tables XXXII and XXXIII. Strain rate, which was a test
variable, is disregarded in this tabulation. The closeness of
values at each temperature justifies this omission. Averages of
these and shear modulus are used to obtain calculated values of
Poisson's ratio shown in Tables XXXIV and XXXV.

4.6.2 Discussion

The minimum and maximum measured values of Poisson's ratio
shown in Tables.XXX and XXXI generally indicate that all the mate-
rials tested exhibit a Poisson's ratio close to 0.5. A rubber-
like material that strains easily and without volume change would
be expected to have a value of Poisson's ratio slightly smaller
than 0.5. :

Further examination of the data indicates that the wvarious
materials tested exhibit some rather unusual behavior.

At very low temperatures (indicated by * in Tables XXX through
XXXV), the apparent stiffness increases suddenly by several orders
of magnitude and volume decreases (strain of negative magnitude
in both length and width). This behavior suggests that the mate-
rials are complex and that residual stresses in part of the mate- .
rial, caused by freezing, are released when load is applied. The
- observed strains are a composite of the strains caused by the
externally applied loads and the strains caused by release of in-
ternal (thermal) stresses.

There is also evidence that the materials are complex at
temperatures  above freezing. The data in Tables XXXII and XXXIII
indicate that the materials are stiffer in compression than they
are in tension. This behavior is analogous to that of a rein-
forced material where tension is carried by the reinforcement and
compression is carried by all the parts of the material. Since
there is more material effective in compression, the stiffness is
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greater in compression than tension. The tested Values of the
moduli are remarkably consistent. .

Values of Poisson's ratio computed using measured moduli and
the assumption of perfectly elastic behavior in an isotropic con-
tinuum, C = E (Ref. 1), are shown in Tables XXXIV and XXXV.

2(1 + u)

The resulting calculations indicate that either the testing
capability was inadequate or the materials are not perfectly
elastic, isotropic, and homogeneous.

The calculated values for GE RTV-560/RL-1973 appear quite
consistent when calculated from the shear modulus and one of the
other moduli. Using compression modulus, the average result is
0.65. Using tension modulus, the average result is -0.45. The
consistency of results in each type of calculation indicates that
the test techniques were probably adequate. This material is a
mechanical arrangement of membranes, which is probably the reason
for its mechanical behavior.

The calculated values for the other materials indicate that
the materials may not be perfectly elastic, isotropic, -and homo-
geneous.

In summary, the more pertinent observations are

1. The measured modulus of elasticity in tension is dif-
ferent from the modulus in compression for the mate-
rials tested.

2. There is a drastic change in the behavior of each of
the materials at temperatures below their glass-
transition points.

3. The measured, average values of Poisson's ratio for
these materials is generally close to 0.50, except
at cryogenic temperatures where reasonable measure- .
ments were not obtainable.

‘4, The preceding-—-observations indicate that the materials—————-
tested are complex arrangements or mechanisms affected
by thermal stressing. :

The apparent complexity of the materials, the drastic change
in properties at cryogenic temperatures, and, particularly, the
apparent closeness of Poisson's ratio to 0.5 indicate that analy-
sis techniques based on theories of elasticity are not advisable.
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This last point is illustrated by solving for stresses along three
axes using Hooke's Law for strain-stress relationships in elastic,
homogeneous, and isotropic materials,

Unit strains are shown as e and subscripted for each axis.
Stresses, S, are subscripted similarly. Poisson's ratio is shown
as u and modulus of elasticity as E. '

us us

e = Sx _ 2y | 22z
X E - E E
S usS uS

e =X . X - _=z
y E E E
S usS us

e =% T X - _y
zZ E E E

- Algebraic solution of these expressions results in

Ee. (l1-u) + uEe_ + uEe
X y b

Sx - (1 + u) (1-2u)

! Ee_ (l-u) + uEe_+ uEe
=y (1L + u) (1-2u)

. (1-u) + uEe_ + uEe
s = 2 >4
z (L + u) (1-2u)

It can be seen that solutions for stress involving values of
Poisson's ratlo approachlng 0.5 become undefined.

4.7 CONSTANT STRAIN-STRESS RELAXATION

The four adhesive materials were tested to determine stress
relaxation under constant strain conditions as a function of time.
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4.7.1 Test Method

Determination of stress relaxation using a test fixture as
shown in Figure 104 was initially planned. Specimens would be
elongated to the specified strain and the relaxation would be
periodically monitored using load rings connected to a recording
system. However, initial tests revealed that most of ‘the stress
relaxation occurred during the first few minutes follow1ng load-
ing, which necessitated continuous recording of stress values.
Also, the wide variation in stress developed by the different
adhesives precluded the use of a single load cell arrangement to
monitor stress.- Therefore, the data contained in this report was
obtained from specimens that were individually tested in a Scott
or Instron test machine in which the stress ‘'was contlnuously re-
corded. :

Two types of specimens were tested--a molded band specimen
(Figure 10) with an inside diameter of 4.0 inches and a cross sec-
tion dimension of 0.125 inch thickness x 0.25 inch width and a
stacked specimen as shown in Figures 11 and 105. The band RL-1973
sponge specimens were cut from a flat sheet of sponge 0.25 inch
thick. The stacked specimen consisted of alternate layers of
aluminum and adhesive to provide a total adhesive thickness of
approximately 1 inch. This specimen was selected to simulate
actual installation conditions and to provide correlation with
previously determined data.

Initial plans were to subJect the band specimens to stralns
of O 10, 0.04, and 0.02 inch per inch at temperatures of -270°F,
-175° F, -125°F, and room temperature and to monitor the stress
over a 6-hour period. The stacked specimens were to be tested at
0.10 inch per inch strain. During preliminary testing, it was
determined that the stacked specimens failed before the required
strain was obtained and that at temperatures below the brittle
point of the materlals the band specimens failed at strains below
0.01 inch per: inch. In addition, the low stresses developed in
the band specimens at the low strain levels coupled with the dif-
ficulty encountered in obtaining an exact zero stress-strain point
precluded obtaining useful information at these low strain levels.
These results were discussed with the NASA,MSC project moni-
tor, and as a result of this discussion the original test plan
was modified. The test temperatures and strain values decided
upon are listed in Tables XXXVI and XXXVII with the tabulated
data. Also, stress relaxation was monitored until stress was
constant.
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4,7.2 Results and Discussion

Constant strain test results for the band specimens are
shown in Table XXXVI. Stress relaxation versus time for typical
specimens are shown in Figures 106 through 108. The greatest
stress relaxation occurs during the first 2 minutes following
loading. At room temperature, the adhesive materials show a
total stress relaxation of approx1mately 5 to 10 percent. At
-175 F the stress relaxatlon is 70 to 90 percent, at =200° F,

50 to 60 percent, and at -270°F 5 to 10 percent. In general,
the stress relaxatlon curves leveled approximately 1 hour after
loading.

The results from the stacked specimens (Table XXXVII and
Figures 109 through lll)ialthough'Sbmewhat erratic show similar
results. The inconsistencies in the stacked specimen results
are believed to be due to problems encountered in obtaining
uniform glue lines and parallel discs .and -the.possibility of
internal failures occurring during testing. These specimens
were fabricated by bonding cured discs of adhesive’between
aluminum discs. In some of the failures, the- MMC SLA-561 did
not bond satisfactorily to itself. Also, several adhesive metal
failures occurred with MMC SLA-561 and GE RTV-560. Partial ad-
hesive failures (adhesive failures at the edges of the specimen)
were also noted in the RTV-560/RL-1973 speCLmens It is probable
that these type of failures were also occurrlng 1nternally in
. the specimen. :
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Figure 110 Stress Relaxation at Constant Strain, SLA-561, Stacked Disc Specimens
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Figure 111 Stress Relaxation at Constant Strain, R/M RL-1973, Stacked Disc Specimens
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SECTION 5

THERMAL PROPERTTIES

5.1 - THERMAL EXPANSION

The coefficient of linear thermal expansion is calculated by
determining the change in length per unit length of the specimen
and dividing that value by the magnitude of the temperature dif-
ferential that produced the linear change.

5.1.1 Test Method

_ Linear thermal expansion determinations were conducted in
accordance with ASTM E-228, Procedure B. Two linear voltage
differential transformer (LVDT) dilatometer-type units were used.
Both were calibrated with NBS standard specimens of fused silica
and aluminum oxide.

1
1

5}1.1.1 Thermophysics Corporation Instrument

The initial measurements were made on the Thermophysics
Corporation Model TE-3000L unit (Figure 112) which utilizes a 1/8-
to 1/2-inch-diameter X 2-inch-long specimen (Figure 9, Section 2).
The specimens were individually placed in the horizontally
-mounted fused silica dilatometer and precooled to approximately

-300°F. Prior to the precooling operation, the environmental
dome covering the furnace and dilatometer was evacuated by
mechanical pump and back-filled with helium gas a minimum of
_three times. The cooling was accomplished by use of liquid
nitrogen. Temperature and dilation of the specimen were moni-
tored on an X-Y recorder. Specimens were stabilized at -300°F
for 15 minutes.

A Thermac temperature controller/Data-Trak programming
system was then used to ralse the temperature of the specimen
through 750° °F at a rate of 8°F per minute. During the entire
operation, the recorder maintained a plot of change in sample
length (expansion or contraction) versus temperature. A run was
terminated when deterloratlon softening, and/or sagging was
noted prior to achieving 750°F. A minimum of three specimens
tested for each material.

The expansion of each specimen, as AL/L versus temperature,
was then calculated, and the averages of the individual specimen
values for each material were plotted. These data were normal-
ized to 75°F. Calculation of the expansion coefficient between
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Figure 112 Thermophysics Corp. Model TE-3000L Linear
Thermal Expansion Unit

2 electrobalance

Figure 113 Perkin Elmer Differential Scanning Calorimeter/
Thermomechanical Analyzer Unit

133



any temperatures, T and T, from the normalized values was then
accomplished by use of the following formula:

aT; to Ty = [(AL/L)Tp - (AL/L)T1 1- [Ty - Tq].

5.1.1.2 Perkin Elmer Corporation Instrument

The Perkin Elmer Corporation Differential Scanning Calori-
meter, model DSC-1B, with its accessory Thermomechanical
Analyzer, model TMS-1, is shown in Figure 113. The TMS-1 uses a
Y-inch-long by 1/8-to %-inch-diameter sample. Each specimen was
mounted vertically with the fused silica extensometer probe of
the vertical dilatometer floating in a silicone liquid damper.
Standard weights were added to the probe until a zero bouyancy or
no-load condition existed on the material, thus minimizing the
possibility of sample indentation by the probe.

The interior volume of the electrical furnace was continu-
ously purged with helium gas, and the assembly was precooled to
approximately -300°F by thermal transfer from a surrounding
liquid nitrogen cooled dewar. Temperature and dilation were
monitored continuously on an X-Y recorder. Specimens were stabi-
lized at -300°F for 15 minutes, and the temperature was increased
at a programmed rate (2-5°F/min.) through 700°F or until the
specimen exhibited signs of deterioration, softening, and/or
sagging. The data were subsequently reduced in a manner
identical to the one previously described for the Thermophysics
Corporation instrument.

5.1.2 Results and Discussion

5.1.2.1 Factors Considered in Selection of Instrument

The horizontally mounted dilatometer used with the Thermo-
physics Corporation instrument requires a light load to be applied
to overcome sliding friction during dilation of the specimen. Other-
wise, the LVDT core is not heavy enough to cause the probe to '"'fol-
low" or track the specimen when it contracts during the cooling
cycle. This load has no adverse effect on the expansion/contrac-
tion/temperature profile of a material unless that material
softens, sags, or deforms at some temperature within the desired
expansion profile. When this occurs, the extensometer probe of
the instrument begins to penetrate into the specimen and it appears
on the X-Y plotter that expansion has ceased or that contraction
has begun.
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The initial runs on GE RTV-560 material with the Thermo-
physics instrument revealed that the material softened between
350 to 400°F. Since this was not unexpected, no problem with
the instrument was apparent until runs were attempted on the R/M
RL-1973 sponge material. The pre-loading force on the dilatometer
was sufficient to cause deformation on the sponge even at ambient
room temperature. The pre-loading force could not be satis-
factorally adjusted to a point where frictional force could be
overcome without specimen deformation.

The Perkin Elmer instrument was found to offer an ideal’
solution to the problem since it contained the zero bouyancy or
no-load capability and had no frictional component on the verti-
cally mounted specimen. Comparison tests on the two instruments
were made on the GE RTV-560 material, and the results are pre-
sented in Tables XXXVIII and XXXIX. The data from the two instru-
ments are virtually identical throughout the temperature range.

The coefficient of expansion for this material over the tempera-

ture range zero to 3500F has been reported by the vendor to be 1l.4 x
1072 inch/inch®F. This correlates well with the values of 11.0 and
11.58 x 10~ 1nch/1nch°F given in the sample calculations for that
temperature range at the bottom of the tables.

Thermal expan31on measurements were made with both instru-
ments in accordance with ASTM E-228, Procedure B, with the excep-
tion that the specimen length for the Perkin Elmer instrument was
less than the 2 inch minimum stipulated. This is considered
acceptable practice since the data correlates well with (1) that
reported by the vendor and (2) that generated on the Thermo-:
physics instrument, which uses a 2-inch-long specimen.

, Based on the above information, the NASA,MSC technical -
monltor agreed to the use of the Perkln Elmer Model ™S- 1

instrument in lieu of the Thermophysics Model TE-3000L ‘instru-
ment for the balance of the program. '

5.1.2.2 Thermal Expansion of GE RTV-560

~ Expansion data for GE RTV-560 are given in the previously
‘mentioned Table  XXXIX.—The expansion as ~AL/L versus tempera-"
ture is also plotted in Figure 114. The radical change in ex-
pansion of RTV-560 near -175°F is attributed to a transition in
the material. Penetration tests on a series of specimens pre-
cooled to -270°F and allowed to warm up reveal that RTV-560 softens
between -170° and -180°F.
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TABLE XXXVIII
SUMMARY OF LINEAR THERMAL EXPANSION DATA: RTV-560
(NORMALIZED TO 75 F)

INSTRUMENT: THERMOPHYSICS CORPORATION MODEL TE-3000L,
FUSED SILICA DILATOMETER
PROCEDURE: ASTM E-228, PROCEDURE B

Temperature, Expansion - Expansivity*
oF . AL/L750F, Inch/Inch @ 0n o F,Inch/Inch °F
-250 - -27.65 X 1o:§ 8.51 X 10:?
-200 -25.92 X 1073 9.43 X 1077
150 -23.04 X 1073 10.24 X 1072
~100 -18.30 X 1073 10.46 X 1073
- 50 -13.57 X 103 10.86 X 1077
o - 8.25 X 107, 1100 X 1072
50 - 251X 1003  10.04 X 10
75 0 0
100 2.94 X 1073 11.76 X 107
150 8.42 X 10 11.23 X 10
200 . | 13.75% 1003 11.00 X 1072
250 | 19.19 X 1073 10.97 X. 1073
300 © 24.35 X 1073 10.82 X 1072
350 30.16 X 1075 10.97 X 10
400 36.00 X 10 11.08 X 10
450%% 40.77 X 1073 10.87 X 1072
500%* 44.48 X 1073 10.47 X 1072
600%* 49.45 X 10 9.42 X 10~

*Calculation of o from any T, through T, is accomplished

by use of the following formila: 2

1 to T, =[(41JL)T2 - (AIJL)Tllé[TZ-Tﬂ
_ [30.16-¢-8.25)] x 107%= 11.0 x 107

356 in./in. F

Example: *0 to 350°F

**Specimens Sagged
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: TABLE XXXIX .
SUMMARY OF LINEAR THERMAL EXPAN%ION DATA: RTV-560
(NORMALIZED TO 75°F)

INSTRUMENT: PERKIN ELMER CORPORATION, MODEL TMS-1
PROCEDURE : ASTM E-228, PROCEDURE B

Temperature , Expansion Expansivity* o
Op AL/L750F, Inch/Inch 0'750 to TOF > Inch/Inch F
-250 -30.72 X 107> 9.45 X 107
-200 -28.80 10.47
-150 -25.56 11.36
-100 -20.22 _ 11.55
- 50 -14.31 | 11.45
0 - 8.44 3 ~11.25 s
50 - 2.10 X 10 ~ 8.40 X 10
75 0 o - 0 .
100 2.73 X 10 | 11.00 X 10
150 8.44 | | 11.25
200 14.%4 | 11.39
250 20.47 11.70
300 - 26.41 11.74
350 32.08 |- 11.67
400 - 37.80 4 R 11.63 |
450 | 42.59 - 11.36 -
500 | 47.80 X 10-3 11.25 X 107>
* @ o, " [(AL/L)TZ . (AL/L)Tl] ()
Inch/Inch®F

Example: c¥0 to 3500F,= J;32.08—(-8.44)] X 10-3 3

350

= 11.58 x 10~
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+5.0

Perkin Elmer Model TMS-1 P

+4.0 Fused Silica Dilatometer

- ASTM E-228, Procedure B

+3.0 |-

+2.0 |-

+1.0

AL/L in./in. x 1072

-3.0F
1 P | i | i 1 L | L 1 L 1 It ! A i J

-300 -200 -100 0 ~ 100 200 300 400 500 600
Temperature °F

Figure 114! Linear Thermal Expansion Vs. Temperature, RIV-560

The data presented in Table XXXIX and Figure 114 repre-
sent the average expansion of 5 to 9 specimens. All of these

eventually sagged at temperatures ranging from 330°F to above .

500°F, depending on the '"time-at-temperature' history of the.
specimen. It should be noted thatothe expansion below the 5
softening transition point (& -250°F to -200°F = 3.84 x 10~

inch/inch®F) is approximately 1/3 of tge expansion above that -

point (& -150°F to 400°F = 11.52 x 107> inch/inch®F), as cal-
culated by the formula given in Table XXXIX.

5.1.2.3 Thermal Expansion of DC 93-046

Expansion data for DC 93-046 are given in Table XL and
plotted as AL/L versus temperature in Figure 115.  Penetration
tests on 93-046 reveal it undergoes a softening transition in
the -459F to -60°F temperature range. Sag temperatures occur
at 400°F and above.
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TABLE XL
SUMMARY OF LINEAR THERMAL EXPANSIQN DATA:

(NORMALIZED TO 75°F)

INSTRUMENT: PERKIN ELMER CORPORATION, MODEL TMS-1

DC 93-046

5

PROCEDURE: ASTM E-228, PROCEDURE B
Tempegature Expansion Expansivity* o
F AL/L 7593 Inch/Inch &0 o 7Ops Inch/Inch F
-3 -5
-250 -39.8 X 10 12.25 X 10
-200 -37.7 13.71
-150 -34.2 15.20
-100 -29.5 16.86
- 50 -21.2 16.96
- 25 -13.2 13.20
0 -10.0 13.33
50 - 3.6 14.40
75 0 _3 0 -5
100 3.8 X 10 15.20 X 10
150 10.7 : 14.27 -
200 17.3 13.84
250 24.4 13.94
300 31.5 14.00
350 - 38.4 13.96
- 400 45.8 14.09
450 51.2 13.65
500 - 47.3 11.13
550 - >100 ' >21.05 R
o, = -[(AL/L)T, - (.AL/L)T:]:[T-Z-T-l]
T, to T _ 2 1] L
1 2 : :
Inch/Inch®F. c
I - “_”__'EW"EBIE?CHDTOﬂ“Eijb';"fﬁ?j}fS?}{IO‘

Example: 0 to 350°F

S
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Perkin Elmer Model TMS-1
Fused Silica Dilatometer ., 1
5.0 ASTM E-228, Procedure B s \J

AL/L in./in. x 1072

i 1 A i 1 n i Il I 1 e L A 1 L
-300 -200 -100 0 100 200 300 400 500
Temperature, °F

'_Figure 115 Linear Thermal Expansion Vs. Temperatﬁre, DC 93-046

The expan81on of DC 93-046 above its softenlng transition
point (a -25°F to 400 F = 13.88 x 10 ° inch/inch°F) is slightly
higher than that of GE RTV-560 above its transition temperature.
Expansion of 93-046 below the transition point does not appear
constant and increases rapidly as it approaches the transition
temperature,

©5.1.2.4 Thermal Expansion of MMC SLA-561

Expansion data for MMC SLA-561 are summarized in Table XLI
and plotted as AL/L versus temperature in Figure 116. Penetra-
tion tests on SLA-561 reveal that it undergoes its softening
transition in the -175°F to -185°F temperature range. Sag temper-

. atures were noted to be in the 685°F to 740°F range.

The expansion of SLA 561 below its sogtenlng tragsltlon
temperature (- & -275 to -175°F = 4.7 x 10~ ° inch/inch F) is
approx1mately one- thlrd of that between the softenlng point and
400°F (c1-175 to 400°F = 15.1 x 1072 inch/inch® F), but decreases
aga%n above 400°F through its degradatlon temperature ( @ 400 to
700°F = 10.86 x 10 ° inch/inch® F).
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TABLE XLI

SUMMARY OF LINFAR THERMAL EXPAN%ION:‘ MMC SLA-561
(NORMALIZED TO 75°F)

INSTRUMENT: PERKIN ELMER CORPORATION, MODEL TMS-1
PROCEDURE; ASTM E-228, PROCEDURE B

Tempegature Expansion Expansivity* o
F A'L/L750F, inch/inch a0 . wOps inch/inch F
-2 -5
=275 -4.44 x 10 12.69 x 10
-250 -4.35 13.38
-225 -4.,24 ' -13.83
-200 -4.10 14.91 .
-175 -3.97 15.88
-150 . : -3.61 . .. 16.04 . .
-100 -2.79 15.94
- 50 -1.94 . 15.52
0 -1.18 -2 - - 15.75° -5
50 -0.38 x 10 15.20 x 10
75 0 -2 0 -5
100 - - 0.37 x 10 ~ . .- 14.80 x 10
150 1.13 ‘ 15.07
200 1.84 4 ' 14,72
250 2.59 ' 14.80 1
300 3.31 1 14.71
350 - 4.06 14.76
400 4,71 14.49
450 5.31 14.16
500 5.87 ' 13.81
550 6.42 ! 13.52
600 6.92 13.18 ’
650 7.50 ) ' 13.04 _s5
700%%* 7.97 x 10 12.75 x 10
T x Ty =‘[(AL/II)' -("AL/L)"]%[TZITI]' - e
Ty to T2 T2 T1 .
Example: o o ={[(4.06)-(-1.18)],x 1072}% 350
0 to 350°F

= 14.97 x 10> inch/inch®F.
**Specimens sagged in 685 to 740°F range.
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in./in. x 10-2
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Perkin Elmer Model TMS-1
Fused Silica Dilatometer
ASTM E-228, Procedure B
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Figure 116 Linear Thermal Expansion Vs. Temperature, SLA 561
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Figure 117 ,Linear Thermal Expansion Vs. Temperature RM/RL-1973
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AL/L, Inch/Inch x 10-2

5.1.2.5 Thermal Expansion of R/M RL-1973

Expansion data for R/M RL-1973 sponge are summarized in
Table XLII and plotted as AL/L versus temperature in Figure 117.
Penetration tests on this material revgal its sofgening transi- °
tion temperature range is between -175F and -185 F. No sag
temperature as such could be’detected‘beldwo700 F, although the
expansion appeared to level off between 550 F and 700 F this
indicated that deformation might be occurring in that temperature
range. : ' ' ; '

Three slopes are apparent in the thermal expansion curves
for the RL-1973 sponge. The value is typically low -below the
softening transition (& -275 to -200°F = 2.4 x 10~ inch/inchoF),
increases rapidly through ambient temperature ( @ -75 to 50°F =
48.6 x 1072 inch/inchoF), and then decreases again through SOOOF
( @ 100 to 500°F = 8.65 x 10-5 inch/inch®F). :

5.1.2.6 Comparison of Four Materials

The overall thermal expansions of the varibus adhesive
systems can be compared in Figure 118.

12

PERKIN-ELMER MODEL TMS-1 ; DC 93-046
FUSED SILICA DILATOMETER i
ASTM E-228, PROCEDURE B . ! SLA 561
8 4 &
l,afxr’azﬂ
- RTV-560
4 /d‘/ ™~ &
i RL-1973
0
RTV-560—
" /]
// SIA 561 /
<1pC 93-046 AA/{
I P R g - R EUR — B
RL-1973
.12
-300 -200 -100 O 100 200 300 400 500 600 700

Temperature, °F

Figure 118 Linear Thermal E)&panéion Vs. Temperature
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TABLE XLII

SUMMARY OF LINEAR THERMAL EXPANSIONé R/M RL-1973 SPONGE
(Normalized to 75°F)

INSTRUMENT: PERKIN-ELMER CORPORATION MODEL TMS-1
PROCEDURE: ASTM E-228, PROCEDURE B

Temperature, Expansion Expansivity* o
o AL/L o ? inch/inch a o inch/inch™F
’ 75°F 75 to TF
275 -8.79 x 1072 25.11 x 10-5
-250 -8.73 26.86 :
-225 -8.65 28 .83
-200 -8.61 31.31
-175 -8.47 33.88
-150 : -8.23 36.58
-125 -7.99 39.95
-100 -7.65 : 43.71
- 75 - -6.91 46.07
- 50 : -5.67 . 45.36
- 25 -4.40 ‘ 44,00
0 -3.18 42 .40
25 -1.71 i 34.20 s
50 -0.83 x 10 33.20 x 10
75 0 _ 0 s
100 0.45 x 10 18.00 x 10
125 | 0.76 , 15.20
150 1.01 13.47
175 . 1.21 12.10
200 1.42 - 11.36
225 1.64 10.93
250 1.85 10.57
275 2.07 10.35
300 2.31 10.27
325 . 2.53 10.12
350 | 2.75 10.00
375 7 2.96 9.87
400 3.19 9.82
425 3.37 9.63
450 . 3.55 9.47
475 3.73 i 9.33 s
500 3.91 x 10 9.20 x 10
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. TABLE XLII (Continued)
SUMMARY OF LINEAR THERMAL EXPANSION: R/M RL-1973 SPONGE
(Normalized to 75°F)

Temperature, Expansion Expansivity*, . o
6 . . inch/inch F
AL/L750F sinch/inch @0 . 1% °
525 | 4.05 X 1072 9.00 X 107
550 4.12 _ 8.67
575 4.16 8.32
600 4.17 7.94
625 4,17 . 7.58
650 4.17 7.25
675 4,11 6.85
700 4,11 - 6.58
725 4.11 gy 6.32 5
740 4.63 x 10 6.96 x 10
*aTl t0 T, = [(AL/L_)TZ - ‘(AL/_L)TI];_[TZ-TI]
Example:

%0 to 350°F =%[(2.75)-(-3;18)]x 10'2}e 350
" =16.94 x 10™° inch/inch°F
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5.2 THERMAL CONDUCTIVITY

Thermal conductivity of a material is measured by determin-
ing time rate of heat transfer by conduction through a unit
thickness, across a unit area, for a unit difference in temp-
erature.

5.2.1 Test Method

Thermal conduct1v1tyowas determlned throughout a mean
temperature range of -300F to +500 °F by the guarded hot-plate
method specified in ASTM C-177. One matched pair of specimens
was used for each material. The specimens were 12 inches square
by % inch thick (Figure 9, Section 2). The central 8-by-8-inch
area represented the test section, and the remainder of the
specimen (2-inch-wide band around outer edge) comprised the
guard section. The test and guard heaters of the hot-plate were
of identical dimension, and a differential thermopile was used
to maintain the guard section at the same temperature as the
test section.

One specimen was placed on each side of the hot plate's
heater and sandwiched between two 12-by-12-inch cold plates
through which a coolant could be circulated. Six hot face side,
six cold face side, and four guard zone thermocouples were used
to monitor temperatures on a precision potentiometer equipped
with a multipoint selector switch for establishing equillibrium
conditions.

The entire hot plate/specimen/cold plate sandwich was
mechanically locked in position in such a manner that the speci-
men faces were in intimate contact with the heater and cold
plates but were under no compressive loading. This package was
then lightly wrapped with foam insulation prior to the test run.
The electrical input to the heater and the type and flow
rate of the coolant through the cold plates were adjusted to
provide mean temperatures of -300°F to +500°F. - Water, methanol,
and liquid nitrogen were used as cooling media. In Figure 119,
the guarded hot plate is shown in operation with a liquid nitro-
gen dewar cart as the coolant source.

The thermal conductivity was calculated from data taken at
equillibrium conditions by using the following equation:
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K, BTU inch/hour sq.ft. °F

3.0

2.5

2.0

1.5

1.0

Figure 119 Liquid Nitrogen being Flowed through ASTM-C-177
Thermal Conducitivity Tester

Guarded Hot Plate
ASTM C-177

Specimen 12" x 12" x 0.25"

1 1 | 1 | L 1 1 I 1 i " | 1 | L

-300 -200 -100 0 100 200 300 400
Mean Temperature, °F

Figure 120 Thermal Conductivity Vs. Mean Temperature, RTV-560

147

500



k = qL/A(TlfTZ) o

where: -

k - = thermal conductivity, BTU inch/hr. ft.zoFA
q = rate of heat flow, BTU/hr-

L = thickness of specimen, inches

A = area of isothermal test section, ft.

'I‘l = temperature of hot face, Og

T2 = temperature of cold face, F

5.2.2 Results and D;Séuésionl"

5.2.Zlif¢Thérmal Conductivity:ofiCE RTV=560

Thérmal conductivity determinations on GE RTV-560 are- .
summarized ‘in Table XLIII.. The average ‘cold and hot face
temperatures from which the data were’ geneérated are also listed
in the table. The thermal conductivity is plotted versus mean
temperature in Figure 120.

The Sonductance increases shargly as the temperature rises
from -310"F to the vicinity of -150 F.o It then decreases on
continued temperature rise through 450°F. :

5.2.2.2 Thermal Conductivity of DC 93-046

Thermal conductivity data on DC 93-046 are summarized in
Table XLIV, which includes average cold and hot face temperatures
from which the mean temperatures were obtained. The thermal
conductivity is plotted versus mean temperature in Figure 121.

DC 93-046 conductance follows the general trend exhibited-
by GE RTV-560. The conductance values are lower, however, and.
the peak value occurs at a higher temperature closely corres-
ponding to the softening transition of the material. A greater
degree of reversion in the test zone was noted for DC 93-046
than for GE RTV-560.

5.2.2.3 Thermal Conductivity of MMC SLA-561

Table XLV summarizes thermal conductivity determinations
on MMC SLA-561 and lists face temperatures from which mean
values were obtained. The thermal conductivity versus mean
temperature for this material is plotted in Figure 122.
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TABLE XLIII
THERMAL CONDUCTIVITY TEST RESULTS

Sample RTV-560 Procedure ASTM C-177

Thickness 0.25"

Average Cold Average Hog Mean | (BTU-in. ) *
'Side Temp. F Side Temp. F T. F OF-ft.4-hr.
-319 ‘ -300 -310 1.09
-321 288 -305 1.15
-311 : - =280 -296 1.27
-315 -216 -265 1.60
-311 ‘ -121 =216 2.00
-159 -145 -152 2.56
-132 : - 87 -110 2.52
- 32 o+ 2 - 15 2.42
- 5 o + 82 + 39 2.42
+94 +146 +120 2.20
+150 ‘ +199 - +175 2.27
+133 " 4233 +183 2.20
+192 +296 T 4244 2.11
+248 ‘ +301 +275 2.05
- +279 +334 +307 1.97
© 4297 +353 - +325 1.92
. 4355 : +417 +386 1.74
4397 +i61 +429 1.68
. +422 +489 +456 1.60

*In all thermal conductivity. tests the BTU quantity was obtained.
from readings of precision electrical meters connected in the
heater circuit.
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TABLE XLIV

- THERMAL CONDUCTIVITY TEST RESULTS

~ Sample ___ DG 93-046 ‘Procedure __ASTM C-177

Thickness 0.25"

Average Cold ‘Average Hot ~ Mean | ( BTU-in. )
‘Side Temp.OF .}~ Side Temp.oF |- T.°F OF -ft<-hr.

oo=311 . . . =262 o =287 | 0.18
w309 0 | 183 | - -246° |  0.30
296 | -2T70 183 0.42
-272 D +12 -131 10.65
-239 . . 1+ 43 . - 98 , 0.80
=226 . . | 466 | -8 | 0.9
208 . | +109 .50 |.. " 1.07
= 34 . S =19 " - 27 1.40
- 29 - -5 . 17 1.41
-17 | +15 o1 | 1.45
-5 + 26 + 10 1.49
+ 7 : + 50 + 29 1.52
+ 19 + 85 4+ 52 1.45
-+ 69 +133 +101 . 1.51
+140 - +242 +191 - 1.41
+i64 4319 +242 1.41
+296 +402 $349 | 1.37
+335 ' +384 +360 - 1.37
+405 - : +457 +431 - 1.33
+436 ' : - +493 +465 1.23
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TABLE XLV

THERMAL CONDUCTIVITY TEST RESULTS

~ Sample _- MMC-SLA-561 o - Procedure_ ASTM C-177

Thickness _0.25

Average Cold ~ Average Hot - Mean K( BTU-in. )
Side Temp. F_| Side Temp. F T. F _°F-ft4-hr.

w310 | . -281 ] 2296 | 0.36
;_11_312: '-  7‘,-;. ?267 | : 1 ;ngj :::;};6543:

3100 | w0 | -27s ‘f  i‘0.5i*
o298 | s | car | o0
' f];235{ f_,  ' o 127 o ) -207" ;;_‘1 0;90 |

';253.~:',' - 90_[' o {172:» V”f:.o.95':-1
-236 | A |aws] 1.00
- 17 .+ 19 | o+ 1 . 1.00
+45 - | 4151 | +98 | 1.00
+180 - | +280 L4230 | 0.97
+288 - "  o +364 - +326 |  1.07
wis | 4419 w41 | 1.02-

+421 | +s91 | 456 | - 1.05
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Conductance of SLA-561 increases from -296°F through the
materials softening transition temperature; then, conductance
appears to remain constant from the softening temperature’ through
450°F. The thermal conductance of SLA-561 is considerably
below that of RTV-560 throughout.the temperature range -300 .
to 450°F; however, at temperatures below -100F, the condgctance
of SLA-561 is greater than that of 93-046, whereas at -50 F -
and above, SLA-561 exhibits less thermal conductance than
93-046.

5.2.2.4 Thermal Conductivity of RM/RL-1973

Thermal conductivity determinations on RM/RL-1973 sponge
are summarized in Table XLVI and are plotted in Figure 123.
Some fluctuation in data reproducibility was noted on the sponge.
The data show slight variations in conductance values when the
material is retested at some previously used temperature. Slight
shrinkage was also noted in the specimen upon completion of the
test. The RL-1973 sponge generally exhibited the lowest ther-
mal conductance throughout the overall temperature range.

5.2.2.5 Comparison of Four Materials

Thermal conductivity versus mean temperature curves for
the four adhesive systems are plotted for comparison in Fig-
ure 124,

5.3 SPECIFIC HEAT

Specific heat is determined by measuring the quantity of
heat necessary to raise a unit mass of a material a unit temp-
erature interval. Specific heat was determined in accordance
with Perkin Elmer Corporation Instruction 900-9547 to be used
with their Model DSC-1B differential scanning calorimeter (DSC).

5.3.1 Test Method

Specific heat was determined on the DSC unit previously
shown in Figure 113. The tests were conducted from -130°F to
600°F on triplicate samples of each material. Liquid nitrogen
was used as the coolant. Sample weight varied from 15 to 100
milligrams. Four sapphire discs (NBS standards) of known weight
and specific heat at the temperatures of interest were used as
comparison standards. '
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TABLE XLVI THERMAL CONDUCTIVITY TEST RESULTS

Sample Raybestos RL 1973 Silicone Sponge Procedure ASTM C-177
Thickness__0.25" (See Note) | ’

Average Cold Average Hog . Mean K(BTU-in. )
Side Temp. F Side Temp. F. T. F OF-ftZ-hr
-308 o -277 -293 0.12
-302 -262 282 | 0.26
-303 -227 -265 0.32
-297 -197 -247 0.38
=254 -107 -180 0.47
- 23 : + 16 - 4 0.50
+ 97 +131 +114 0.56
+182 +213 +208 0.69
+323 +385 +355 0.62
+395 +482 ~ +439 0.73
+15 +502 +460 0.76

(Decreasing Temp.) o

+359 +i48 +404 0.74
+192 +262 +227 0.76
+145 +201 +173 0.72
Heater Off Overnight - Restarted in Morning

4115 | +163 +135 0.63

+152 +302 +227 0.68

+206 - +458 | +252 0.70

: (Decreasing Temp.)
+111 +167 +139 0.75
NOTE: At completion of test, sample dimensions had changed from

12" by 12" by 0.25" to 113" by 113" by 0.24" at room temperature.
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The method involved scanning the sapphire standard at a
rate of 18°F per minute over a 20°F temperature range with the
test temperature at mid range, making a blank determination,
and scanning the sample over the same range under identical
conditions. The DSC readout was on recorder chart paper reading
directly in calories per second. The saphire and sample chart
deflections were corrected for the blank deflection to obtain the
amplitude of saphire and sample. The specific heat (at tempera-
ture T) of the test sample was calculated as follows:

Sp-ht-x@T = Awa X Sp.ht.s@T

AgWx
where:
Sp.ht.x@r = specific heat sample at temp., Cal./gmoK o
Sp.ht.;@r = specific heat sapphire at temp., Cal./gm. K
Ag = amplitude of sample, Cal./ sec.
Ag- = amplitude of sapphire, Cal./sec.
Wx = weight of sample, grams
Wg = weight of sapphire, grams

5.3.2 Results and Discussion

5.3.2.1 Establishment of Minimum Temperature Limit

The procedure described above requires that the temperature
of the specimen and reference be programmable over a narrow 20°F
band that straddles the desired test temperature. Liquid nitro-
gen temperatures had been achieved with this instrument in ther-
mal expansion and penetration tests on the thermomechanical
analyzer (TMA) accessory because the specimen temperature could
be monitored directly by use of a thermocouple located at the
base of the sample. However, in DSC runs no thermocouple exists
in the sample cell compartment, and the temperature programmer is
calibrated by use of various metal standards which melt at known
temperatures. While liquid nitrogen temperatures could be
achieved on the DSC, a programmable temperature scan could not
be made at temperatures below -130°F. The limiting lower temp-
erature of -130"F for specific heat measurements was reported
to the NASA, MSC technical monitor, and he granted approval
for Convalr Aerospace to conduct SpeC1f1C heat tests between
-130°F and 600°F.
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5.3.2.2 Specific Heats of Four Adhesive Systems

The specific heats of the various adhesive systems are
summar%zed in Table XLVII. The data reported for DC 93-046
at -65 F was erratic and not reproducible. This is not unusual
since the test temperature is in the fringe of the glass
transition for DC 93-046. An extra series of determinations
was mage on each side of the transition fringe (at -100°F and
at -25F) to provide additional check points.

The specific heats of all four adhesive systems are of the
same order of magnitude over the temperature range investigated;
the gpecific heats are generally between 0.2 and 0.4 calories/
gram K.

5.4. THERMAL CYCLING

Tensile strength, tensile modulus, ultimate elongation,.
adhesion in tension, shear strength, and shear modulus were

determined .at room temperature before and after exposure. to éach.,_

series of thermal cycles listed below. Time at temperature was
'5 minutes and three specimens were tested at each condltlon.'
-Specimens were allowed to return to room temperature before a
subsequent temperature exposure.

Thermal Cycle Temperatures

 Series 1. R.T., -290°F, R.T. (77%2°F)
' Series 2. R.T., +5000F, R.T.
Series 3. R.T., -290°F, +500°F, R.T.
Series 4. R.T., +350°F, R.T.

Series 5. R.T., -290°F, +350°F, R.T.
5.4.1 Band-Shaped Specimens

Tensile tests were conducted using molded band specimens
with an inside diameter of 4.0 inches and a cross-section
dimension of 0.125 inch thickness x 0.25 inch width (Figure 10,
Section 2). Sponge specimens were cut with a fabricated 'cookie"

cutter type tool.
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TABLE XLVII
SUMMARY OF SPECIFIC HEAT VERSUS TEMPERATURE

SPACE SHUTTLE ADHESIVES

PERKIN-ELMER CORPORATION MODEL DSC-1B

INSTRUMENT :
PROCEDURE:  PERKIN-ELMER INSTURCTION 900-9547 (SPECIFIC HEAT)
TEMPERATURE SPECIFIC HEAT, CALORIES/GRAM °K
% | % °F GE DC - MMC ~ RMC
. | RTV-560 93-046 SLA-561 | RL-1973
183 | -90 | -130 | 0.23 0.27 _0.30 0.22
200 | -73.3 | -100 . 0.28 - -
| 28 -
219 | -s54 | - 65 | 0.24 .34-0.38 0.32 0.27
261 | -32 | - 25 - 0.31 - -
300 27 | 80.6 | 0.27 0.32 0.34 0.28
422 | 149 | 300 0.32 0.38 0.39 . 0.32
450 | 177 | 350 0.34 0.38 0.39 0.31
561 | 288 | 550 | 0.33%% 0.45%% 0.41 ©0.33
*  -65°F IS IN FRINGE OF A TRANSITION ZONE FOR DC93-046.

*%k

SPECIFIC HEAT ERRATIC AND NOT REPRODUCIBLE AT THIS TEMPERATURE.

MATERIAL UNDERGOING THERMAL DEGRADATION DURING MEASUREMENTS AT
THESE VALUES ARE QUESTIONABLE.

550°F .




5.4.1.1 Test Method

Tests were conducted according to ASTM-D-1414 Section 7
specified for O-rings, except the strain rate was 0.4 inch/inch/
minute (Figure 125). Testing was conducted at room temperature.

Figure 125 Band-Shaped Specimen in Test on CRE-2K Bendix Scott Test Machine

5.4.1.2 Effect on Tensile, Elongation, and Tensile Modulus

Ultimate tensile strength, percent elongation, and initial
tensile modulus values were calculated from the data obtained
from the band specimens. These values are shown in Table XLVIII.
In general, GE RTV-560 exhibits a slight increase in tensile and
elongation and a decrease in modulus whereas DC 93-046 exhibits a
decrease in all properties. A decrease in properties is exhlblted
by MMC SLA-561 when exposed to environments requiring 500 °F
exposure, but a slight increase is exhibited when exposed to
the other conditions. RM/RL-1973 experiences a decrease in tensile
and elongation properties under all conditions but modulus values

are essentially unchanged.

5.4.2 Torsional Shear Specimens

Shear specimens were standard double overlap specimens
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(Figure 5, Section 2) with a bond line thickness of 0.100 inch.

5.4.2.1 Test Method

Shear modulus was determined in torsion at room temperature
with the specimen loaded to 25 percent failing load as determined
on three nontemperature-cycled control specimens. The test
method was the same as that described in Section 4, Shear Mod-
ulus.

5.4.2.2 Effect on Torsional Shear Modulus

Shear modulus values are shown in Table XLIX. All materials
experience a decrease in modulus after exposure to environmental
conditions requiring exposure to 500°F. When exposed to the other
environmental conditions, the modulus of all materials except
DC 93-043 is essentially unchanged. DC 93-046 experiences a -
decrease in modulus after all environmental conditions.

5.4.3 Shear Strength at Failure

Test specimens were as described above in 5.4.2 and this,
test was conducted on those specimens previously loaded to
25 percent of failure in torsion shear. However, in this test
of shear strength, specimens were loaded longitudinally, which
resulted in a tension-shear to failure arrangement. It could
also be described as a double lap shear ultimate for the material.

5.4.3.1 Test Method

Test specimen load holes on the specimen ends were drilled
out to %-inch diameter to allow the use of stronger 3/16-inch
pins, which would not bend under load. A clevis fitting was
used to remove all slack in linkage. The strain rate was 0.4
in./in./min. : '

5.4.3,2 Effect on Shear Strength to Failure

Shear strengths before and after environmental conditioning
are shown in Table XLIX. All materials exhibit a decrease in
shear strength after exposure to environmental conditions re-
quiring exposure to 500 F and a slight increase in strength after
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exposure to tge other environments. It should be noted that the
effect of 500°F exposure on DC 93-046 was so severe that the:
specimens failed during the torsional shear test. This test:
required that the specimens be loaded in torsion to 25 percent
of the. average failing load of an unaged specimen before being
tested in shear.

5.4.4 Tensile (Spool) Specimen

Flatwise tension specimens of 1.125 inch diameter, shown
in Figure 2 of Section 2, with a 0.060 inch glueline of the
candidate test materials were exposed to the five series of
thermal environments.

5.4.4.1 Test Method

Specimens were tested in tension at room temperature at a
strain rate of 0.4 inch/inch/minute as described in Section 4.
Adhesion in Tension.

5.4.4.2 Effects on Tension and Elongation

As shown in Table L, all materials experience a decrease
in tensile strength after exposure to environmental conditions-
requiring 500 F exposure. A decrease in elongation is also
exhibited by GE RTV-560 when exposed to this environment, but
an increase in elongation occurs with DC 93-046 and MMC SLA-561-
The elongation of RTV-560/RL-1973 is essentially unchanged.

After exposure to the other three environmental conditions,
the tensile and elongation properties of GE RTV-560 and RTV-560/
RL-1973 are essentially unchanged, whereas DC 93-046 exhibits a
decrease in tensile strength and an increase in elongation.

MMC SIA-561 exh1b1ts an increase in tensile strength after ex-
posure to -290 F but it js essentially unaffected by the other
test environments.
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SECTION 6

BEHAVIOR OF SILICONE
RUBBER ADHESTIVES
BELOW THETIR

GLASS-TRANSITTION POINTS

Techniques used to test elastomeric materials for modulus
and Poisson's ratio at temperatures above their glass transi-
tion points are not suitable for testing these same properties
at temperatures below their glass transition points. In the
rubbery state, the materials have high elongations and are
‘usually tested at relatively high loading rates to minimize
effects of stress relaxation. Because of the high elongations,
minor errors in measurement of elongation as a function of
applied stresses are inconsequential. In contrast, at glass
transition temperatures and below these materials become hard
and brittle thus have high modului. Deformation caused by
stress is small and optical techniques used for measurement
of deformation at temperatures above the glass transition are
no longer accurate enough to produce reproducible data. Load-
ing rates must also be reduced by at least one order of magnitude
in an attempt to obtain deformation measurements at incremental
stress points. Conventional strain gauges cannot be used on
rubber and extensometers tend to ice and freeze, which leads
to slow testing and questionable test results.

6.1 OBSERVATION OF SPECIMENS AT AND BELOW
GLASS TRANSITION TEMPERATURE

In testing the silicone based adhesives in this program,
it was observed that at temperatures below their glass tran-
sition points, specimen were prone to shrink when initially
subjected to stress. Pictures taken of the 10-inch-long,
2%-inch-wide and 0.10-inch-thick tensile strap specimens during
loading showed this shrinkage, which resulted in negative de-
formations under initial loading conditions. This same phenom-
enon manifested itself in the compression tests of the 1l.5-by
1.5-by 4-inch high molded blocks. At temperatures below the
specimen's glass transition temperature, the test machine would
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start the loading then load would be lost momentarily due to
shrinkage of the specimen. As in the case of the tension spec-
imen, this resulted in negative values in both the axial and
transverse load directions.

‘The exact cause of the observed phenomenon described here
was not determined. Nevertheless, three theories have been
proposed to explain the unusual behavior. One is that the mate-
rials are supercooled and when axial load is applied molecular
structure changes and shrinkage occur. Secondly, it is possible
that a loose lattice formed during cool down prevents maximum
shrinkage but when load is applied the lattice or restraining
mechanism is broken thus allowing additional shrinkage to occur.
A third theory is that the phenomenon is a results of the Joule
Effect. The Joule Effect in rubber is that when it is placed
under stress and subjected to heat the rubber specimen shrinks
rather than expands (Ref. 2).

It is possible that when the specimens in this program are
cooled below their glass transition temperature, stresses are
set up in the polymer chains. Then, when low loads are intro-
duced, the heat produced causes the Joule Effect to occur; hence,
the specimen shrlnks.'

6.2 LITERATURE SURVEY REGARDING LOW TEMPERATURE
PROPERTIES OF SILICONE RUBBER

Extensive work has been conducted by Polmanteer and asso-
ciates at Dow Corning Corporation, Reference 3 and 4. He re-
ports that silicone rubbers do supercool and the degree of super-
cooling is a function of quenching rates. Also he reports that
two types of crystals form in polydimethylsiloxane.

Silicone rubber containing phenyl or diphenyl siloxane as a
copolymer with the methyl or dimethyl siloxane, as exemplified
by GE RTV-560, SLA-561 and RL-1973, are reported not to crystal-
lize at low temperatures. 'The large phenyl side groups on the
polymer chains tend to prevent the formation of crystalline
patterns+  The polymers get- stiff and-brittle at low temperature
but do not crystallize as do the dimethyl siloxanes as exempli-
fied by DC 93-046.
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6.3 STRESS RELAXATION OF POLYMERS
AT LOW TEMPERATURE

Mark and Tobolsky (Ref. 5) report some interesting points on
the viscoelastic nature of polymers at low temperature as follows:

""The viscoelastic properties of substances in their
glassy state have not been investigated extensively.
Studies of stress relaxation in polyisobutylenes of
different molecular weights and of Butyl rubber in-
dicated that at sufficiently low temperatures the
viscoelastic properties are independent of molecular
weight and are also practically independent of the
presence of cross linkages. The stress decay curves
at low temperatures are of quite different shape from
the curves obtained at high temperatures and the:
apparent activation energy of stress relaxation is
very much hlgher in the glassy state than in the
rubbery state.

_"Ihese results indicate that the instantaneous
"modulus'" of polymers stretched in their glassy state
arises from a shift in short range interatomic dis-
tances rather than from the long range configurational
changes that occur when these same substances are
stretched in their '"rubbery" state above the glass
transition temperature. The force resisting stretching
in the glassy state should probably be regarded as
arising from a change in internal energy rather than
from a change of entropy. Relaxation of stress is very
,rapld in the region.of transition because only small range -
atomic movements are required to release distortion.
Also, the change of viscoelastic properties with tempera-
ture here is not easily described as due to a simple
translation of the relaxation time spectrum along the
log time axis."

"An indication that the mechanism of stretching is :
completely -different in the glassy state from that in the
rubbery state is obtained by simultaneous measurements of .
stress and birefringence. The ratio, which is a constant -
in the rubbery range of temperature, changes very markedly
in the region of the glass transition, there occasionally
being a reversal of the sign of this quantity at the
transition temperature."

Tobolsky's fihdings reported here may account for the rapid
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stress relaxation of the silicone adhesives tested under constant
strain and reported in Section 4.

169,170



SECTION 7
CONCLUSTIONS

AND

RECOMMENDATIONS

171



7.0 CONCLUSTIONS
AND

RECOMMENDATTIONS

7.1 CONCLUSIONS

Conclusions drawn from this extensive development and
testing work are:

1.

An adhesive system comprised of a closed-cell silicone
rubber sponge bonded to substrates with thin bond lines
of GE RTV-560 exhibits density and modulus values
approximately one-third that of the solid RTV silicone
adhesives.

Utilization of glass or phenolic microballoons as
fillers in RTV silicone adhesives reduce density but
increase modulus of the vulcanized materials.

Mechanical properties of GE RTV-560, DC 93-046, SLA-561
and RL-1973/GE RTV-560 were determlned Data obtained
over the temperature range of -175 °F (-65 °F for DC-93-
046) to 350°F proved to be very reliable and suitable
for establishing de31gn allowables data curves. At
temperatures below -175 °F (- 65 F for DC 93-046), the
adhesives became stiff and brittle. Strains caused

by stress are extremely small; therefore, methods of
measuring strains at temperature above the glass tran-
sition temperatures are inadequate and do not provide

the accuracy needed to establish reliable design allow-
ables for temperatures below the glass transition points.
Moreover, it was discovered that at these low tempera-
tures, the silicone adhesives exhibit a phenomenon of
shrinkage when initially subjected to loading conditions.
This phenomonon causes aberations in data such as

modulus and Poisson's ratio derived from measurements

of deformation. At test temperatures of 550 and 660 F
the silicone adhesives are in a transient state of de-
terioration; therefore, mechanical properties deter-
mined at these temperatures are low and variable.

Thermal cycling of the silicone adhesives to -270°F
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causes no noticeable effects in mechanical properties

subsequently tested at room temperature. Cycling to

350°F caused no significant changes but, cycling to 500°F

is reflected in permanent reductions in mechanical pro-
. perties.

5. Constant-strain/stress-relaxation tests produce interest-
ing data in that stress relaxation is most pronounced near
the glass transition temperature. GE RTV-560, SLA-561,
and RL-1973 silicone rubber sponge exhibit approximately
10-percent relaxation at room temperature under a constant
10-percent strain. Under a 0.4-percent constant strain at
-270°F there is a 3-to 5-percent stress relaxation in the
first 5 minutes followed by a stabilization.

In contrast, at a test temperature 0f-175°F and 0.4-
percent constant strain, there is'agproximately 90
percent stress relaxation. At -200 F under the same:
conditions, there is an approximately 50-percent
stress relaxation. The majority of the stress relaxa-
tion occurs in the first 10 to 15 minutes of the test
conditions.

6. The three solid adhesives (GE RTV-560, DC 93-046 and
MMC SLA-561) exhibit virtually the same thermal expan-
sion characteristics over the temperature range of
-270 to 500 F. RM/RL -1973 sponge follows the same
curve as the solids down to 75°F; then, it exhibits
a greater rate of contraction.

7. GE RTV-560 has the highest thermal conductivity and
RM/RL-1973 has the lowest. This is to be expected
because of density difference and the air space in
the closed-cell construction of the sponge.

8. Glass transition points (Tg) of the four adhesives are
shown by breaks in both the thermal expansion and
thermal conductivity curves; however, effects of Tg
are more pronounced in thermal conductivity curves.

7.2 RECOMMENDATIONS

Dﬁring the course of work described herein, it has become
apparent that additional investigations and work are warranted.
The following investigations are recommended:
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Exploratory research should be conducted to fully
characterize the silicone adhesive in their glass
transition range and at temperatures down to -270°F.

Reserach and development should be conducted to pro-
vide a silicone rubber sponge that will exhibit a low

- modulus at temperatures down to -270°F.

Tests of candidate adhesives should be conducted to

‘determine the effects of more severe thermal cycling

than those to which the silicone adhe31ves .were sub-
jected in this program.

Research and development should be conducted to develop
test techniques and instrumentation to accurately measure
the minute deformations experienced by elastomeric materials
subjected to loading conditions at extreme low temperature.
These measurements should be recorded on a real-time basis.
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APPENDTIX I
QUALITY CONTROL DOCUMENTS RECEIVED FOR
TEST CANDIDATE MATERIALS '

The quality control documents shown here were received with
the adhesives tested in this program. They verify that accompany-
ing materials meet vendor quality control specifications.
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NORTH CHARLESTON DIVISION

RaybestosManhattan

Date June 12, 1972

CERTIFICATION OF COMPLIANCE

To: GENERAL DYNAMICS Contract No.:
P. O, BOX 748
FORT WORTH, TEXAS 76101 P. 0. No.: 542676

R/M Reg. No.: 21596

9062 'O'S ‘NOLSITHVHO HLIHON "3IAVY HVIH.O % "1S O0OHvO N

Quantity: see below *

This is to certify that the material identified as R/M RL-1973 Silicone Rubber

Sponge

meets and complies with the following specifications R/M RL-1973

Compliance for quality assurance has been determined by testing and/or inspection
in accordance with the applicable specifications and/or Quality Control Standards,
the results of which are on file and are available to the Buyer and the Government.

Test results are attached hereto or may be obtained by referencing Quality Control

Report No. 780 dated = June 12, 1972

H

3 Pes. - 23" x 23" x 1/4" 4 \/ /L/ ‘
" " " - 7 “

2 Pes. - 16! x 24" x 1/4" | J////// ;{ 77

1 PC. - 22'.' X 22;. X 1/4.” ' " (t Charles R. MCPherSCn

1. PC., - 22 X 22. X °100 /0126 ‘thko Manager’ Quality ASSurance

1 Pc, - 14" x 22" x ,100"'"/,126" thk,

178.
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NORTH CHARLESTON DIVISION

Raybestos@Manhattan

Date July 11, 1972

CERTIFICATION OF COMPLIANCE

To: GENERAL DYNAMICS CONVAIR Contract No.:
AEROSPACE DIVISION
GRANTS LANE P. 0. No.: 079071

FR. WORTH, TEXAS 76101
R/M Reg. No.: 22664

90¥62 'O'S 'NOLSITHVYHO HIHON “3IAV HVIH.O ® '1S 00HvVO B

Quantity: 4 Sq/ Ft.

This is to certify that the material identified as R/M RL-1973 Silicone Sponge,

.060" thk.

meets and complies with the following specifications R/M RL-1973

Compliance for quality assurance has been determined by testing and/or inspection
in accordance with the applicable specifications and/or Quality Control Standards,
the results of which are on file and are available to the Buyer and the Government.

Test tresults are attached hereto or may be obtained by referencing Quality Control

2

Report No. 917 dated July 11, 1972 ..

Charles R. McPherson Y

_ Manager, Quality Assurance
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NORTH CHARLESTON DIVISION m

RaybestosgManhattan

Date March 28, 1972

CERTIFICATION OF COMPLIANCE

906z "0'S 'NOLSITHYHO HLHON “3AV HY3IH.O 8 "IS ODHVO

To: GENERAL DYNAMICS Contract No.:
CONVAIR AEROSPACE DIVISION »
FT. WORTH, TEXAS 76101 ~ P. 0. No.: 525068
. R/M Reg. No.: 17926-1
Attention: Mr. A, E. McDonald 15 Sq. Ft.-0.10" thk,
Bldg. 80, Dept. 064-6 Quantity: 4 Sq. Ft.-0,030" thk,

This is to certify that the material identified as . R/M RL-1973 Silicone Sponge

Grey

meets and complles w1th the following specifications R/M RL- 1973 & R/M Factory

Spec1f1cat10n 857 Sh, 1

COmp_llance for quallty assurance has been determined by testing and/or inspection
in accordance with the applicable specifications and/or Quality Control Standards,
the;results of which.are on file and are available to the Buyer and the Government..

Test reSults are attached hereto or may be obtained by referenc1ng Quality Control

Report No. 6/9?X , dated March 28, 1972 .

‘C'arles R. McPherson
Manager, Quality Assurance
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NORTH CHARLESTON DIVISION F!

RaybestosfManhattan

Date February 18, 1972

CERTIFICATION OF COMPLIANCE

GENERAL DYNAMICS
CONVAIR AEROSPACE DIVISION

To: ¢ L
° FT. WORTH, TEXAS Contract No.:
. 525068
\ttn.: Mr. A, E. McDonald P. 0. No.:
Bldg. 80, Dept. 064-6 17926

R/M Reg. No.:

90¥62 'O'S ‘NOLSITHVHO HLHON "3AY HVIH.O % "1S ODHVD

Quantity: see below *

This is to certify that the material identified as R/M RL-1973 Silicone Sponge

" Sheets, 1.5" thk.} .250" thk.; .060" thk. - each sheet 4 Sq. Ft.

meets and complies with the following specifications R/M RL-1973 & R/M Factory

Specification 857 Sh. 1

Compliance for quality assurance has been determined by testing and/or inspection
- in accordance with the applicable specifications and/or Quality ContrOIIStandards,
the results of which are on file and are available to the Buyer and the Government.
Test results are attached hereto or may be obtained by referencing Quality Control

2
Report No. 45 , dated February 18, 1972

S - <"~ - - - - - - - . . .. Manager, Quality Assurance .
* 4 Sq. Ft. - 1.5" thk. - Grey - Cure Date - 13 Oct. 1971

8 Sq. Ft. - .250" thk. - Green - Cure Date - 15 Nov. 1971

4 Sq. Ft. - .060" thk, - Green - Cure Date - 15 Nov. 1971
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MATERIAL CERTIFICATICON -

DATE June 28, 1972

Géneral Dynamics

Ft. Worth, Texas

SUBJECT  YOUR ORDER § 542689

FOR MATERIAL RTV 560 Gallon

OUR BATCH # BB619

DATE OF MFG. 6-21-72

'SHELF LIFE Six months

Gentlémen:

The material supplled on your order as indicated above, was made
in accordance with General Electric Company procedurez. A final
sample taken from this batch was tested, obtaining test results
which meet General Electric Silicone Products Department control
specifications.

Regards,

. LAWRENCE ELECTRONIC COMPANY

%y N o2,
LAWRENCE ELECTRONIC COMPANY
P.0., Box 1038
921 North Bowser Road -

~ Richardson, Texas - 75080
Telephone: 235-5606
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Dow Corning CORPORATION

ENGINEERING PRODUCTS DIVISION
ELIZABETHTOWN PLANT o ELIZABETHTOWN, KENTUCKY 42701

CERTIFICATE OF COMPLIANCE

suepep 1o~ Ceneral Dynamics Corporation oare. 2417172
Convair Aevospace Division ’
Benbreck, Texas 76126

‘ec: Purchaasing Department

| CUSIOMER P. O. NO. DOW CORNING INV. NO. CUSTOMER SPECIFICATION

52 6639 : DA794520E1 Bom

| PRODUCT LOT NUMBER QUANTITY
DOW CORNING® 93-046 serospace sealant 2031% ' 4 x 10 1b,

_DOW CORNING® 93-046 catalyst A 201136

Extrusion Rate, Gms/Min 30

Tack Free Time S 1/2 Hrs.
Snap Time _ 4 Hrs,
Cure Time 7 Deys/RT

Specific Gravity 1.09
Durometer 34
pensile, psi 440
Elongation, .1 580

Mfg. Date - February, 1972
Shelf Life-3 Months from Recelpt
Store Below 90F,

It is hereby certified that the articles

listed above comply with all opplicable

specification requirements. Test reports
C— e — e . -~ - - are on filesubject.to examination. . —.

DOW CORNING CORPORATION

// - o ’ /;;‘" - o ‘ / ’
. ) /,- " ) - P . ; ! . / ) i 7 o .
NOTARY~ _/ o S g & T L s AR I R R

MY COMMISSION EXPIRES INSPECTOR,OUALIIY‘CONIRQ{

ETF-002-567
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APPENDTIX ITI

SUMMARY OF REGRESSION ANALYSIS AND TOLERANCE
LIMIT TECHNIQUES USED IN
DATA REDUCTION

The methods of regression analysis and tolerance limits used
in data reduction of both flatwise tensile and single overlap
shear results are well documented in the literature. The purpose
of this appendix is to summarize the methods and the equations
used in calculating statistical parameters and coefficients for
convenient reference.

Regression Analysis

. ‘Application of regression analysis requires the assumption

of a mathematical relationship between the variables being studied.
In_this case, the variables were stress versus strain and strength
versus temperature. The best-fitting mathematical models for all
analyses performed for the data on this program were forms that
could be transformed to linear relationships; hence, the special
case of multiple regression analyses, i.e. linear regression analy-
sis, was used for all the data reduction that provided design
allowables.

Mathematical Models

Three math models were used to represent stress-strain data.
The models are

e=AoB - A . (1)
e=areB 7 ‘ - , (2)
c_ . B
and ef= Ao | o (3)
where € = strain, in./in.

stress, psi

o
A, B constants.

The three models were transformed to the linear forms used
for regression

ln € = 1In A+ B 1ln o | : (4)
' 189



Ine =1InA+Bo « | (5)
and €= 1n A+ B lno. - | (6)

The strength-temperature data was found to be represented by
a single math model, i.e.

o= AeBT : ‘ ' (7)
where o = strength, psi
T = absolute temperature, degfees R
A,B = constant35

It was generally necessary to determine a best-fitting form
of Model (7) for strength-temperature data below the glass-tran-
sition temperature and a different best-fitting form of Model (7)
‘for data above the glass-transition temperature. The linear form

of Model (7) was’ used for regression analy315, i.e.

lnv— In A + BT. | - - (8)

'Best-FittinggEquation

The math models selected for analysis are each of the form

Fi = o 8w | | (9)

The best-fitting equation to the test data is determined by mini-

mizing §he sum of the squares of the differences between the

model (7i) and the data set ( i) to obtain estimates of the con-
stants « and 8. The procedure is outlined briefly as follows.
n - 9 n 9
Let Q = Z (Yi-Yi)“© = Z (yi-a-Bxi) ©(10)
i : 1 ) o -

Minimizing Q by

3Q _ 5 0Q _ . .
Se 0 and Y 0 gives two equations

n Xxi][a] [ZYi
9 = (11)
Zxi  ZXxi®[|g] [ZYiXi
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which may be solved to give a and g8

ZYi

= |c . : ' (12)
B SYiXi |

n FPXi
where C = |
zxi zxi?
-The géneral equatlons above are applicable to the four models
presented in the preévious discussion, Equations (4) through (6)-

and Equation (8), and they may be used by direct substitution.

For example, in solving for Equatlon (8), Equatlon (12)-is re-'
written to give '

’ . . ’ o |
lnBA _ C X1ln i (13)
2Ti In 91
n STi -1
where C = 2

ZTi ITi

Confidence Limits

The estimated standard deviation between the best-fitting
equatlon and the data is given by 1/2

S y.x = | (Yl-Yl) . " - (14)
u : o o

where u = degrees of freedom = (n-3)

in this case.

(Note that the units of Sy.x are identical to ‘the units
of Yi.)

The confldence llmltS are determlned from

Y upper = Y + (t

u, .95 Sy.x UX) - (15)
lower
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where

1] 1 : : _
U = |1 Xi c || (16)

t,» -95 = 95-percentile of the statistical t-distribution.

Correlation Coefficient

Regression analyses that are performed on finite sample sizes
result in estimates of the parameters of the mathematical model
selected as the '"best-fitting'" relationship between the variables.
In the limiting case, variables can be classified as being either
"independent' . or 'nonindependent,'" but for finite estimates a
measure of the 'degree of correlation' between variables. is neces-
sary. . A quantity designated as a ''correlation coefficient'" has
been defined by statisticians to permit comparing the results of
a correlation of variables based on a finite sample to the limit-
ing cases.

_ The correlation coefficient (for two random variables) is
defined by - : '

. . .
pyx _ cotirla?;e (X, y) %5 . (17)
X y ; X"y
where x, y are random variables

Ox is standard deviation of x

9y is standard deviation of y.

The values of the correlation coefficient for the cases of
"nonindependent' and "independent'' variables are +l1 and 0, re-
spectively. o ‘

In application, a sample correlation coefficient is calcu-
lated; this coefficient is an estimate of the population coef-
ficient defined by Equation (17). The sample correlation coef-
ficient for the linear model is given by

'yx _ n_ F(YiXi) - FYi FXj (18)
n2 SySx ‘ ‘
where Sy = estimate of standard deviation of Yi data
Sx = estimate of standard deviation of Xi data.
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Confidence limits may be determined for values of r, by using a
transformation equation y '

z=%1lnl+r = tanh-l(r) | (19)
l -r

The 95-percent confidence limits for z are calculated by

Z upper _ Z + tu,.95 (20)
lower

n-3
and then retransformed to give

r upper (21)

lower

Z upper

= tanh Z lower

Values of r may approach the limiting values of P . In
general, values of r >0.9 indicate good correlation. A plot of
data pairs for which r is as low as 0.7 generally shows little
visual relationship between variables.

One-Sided Tolerance Limits

Equation (15) gives a lower bound on "typical' values based
on a 95-percent confidence level that the regression equation
adequately represents the true equation. Design allowables
for strength versus temperature are reduced values based on
the lower confidence limit determined by Equation (15). The
reduction is obtained in a manner analogous to the method used
to determine A- and B-basis allowables as defined in MIL-HDBK-5A.
The variation in this case is to use the statistical t-distri-
bution percentil points rather than the so called "K-factors"
used for A and B allowables. Equations (23) are used for
calculation of allowables. :

B' - allowable = Yy ower " 4?90 <Sy.x) (23)

' — -
A’ - allowable = Y1ower tu,'99 (Sy.x)

The terms in Equation (23) have been defined preQioﬁQiy.
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APPENDTIXKX ITI

COMPILATION OF STRESS-STRAIN CALCULATIONS

Stress-strain calculations based on discrete values read from
continuous load deflection curves taken for specimens loaded in
flatwise tension and overlap shear are summarized in this appen-
dix. Tensile stress-strain data is included in Tables LI through
LIX. Shear stress-strain data is included in Tables LX through
LXVIII. 1In each of the tables the values of ultimate strength
and strain are shown as the highest load level.

'—l
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APPENDTIX IV

SUMMARY OF STRAIN CONFIDENCE LIMITS FOR
BEST FITTING REGRESSION EQUATION TO
STRESS-STRAIN DATA

The strain confidence limits for discrete values of stress
corresponding to the best-fitting equation to stress-strain data
for each material and test condition are summarized in this
Appendix., " Flatwise tensile strain confidence limits are given
in Tables IXIX through LXXVI. Over lap shear strain confidence
limits are given in Tables LXXVII through LXXXIV,
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APPENDIX V

SUMMARY OF STRENGTH CONFIDENCE LIMITS FOR
BEST FITTING REGRESSION EQUATION TO
STRENGTH-TEMPERATURE DATA
The strength confidence limits for discrete values of tem-
peraturé corresponding to the best-fitting equation to strength-
temperature data for each material are summarized in Tables
LXXXV and LXXXVI for flatwise tension and overlap shear tests,

respectively.
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APPENDTIX VI
TENSILE MODULUS, POISSON'S RATIO, LEAST SQUARE COMPUTATIONS
METHOD FOR COMPUTING MATERIAL CONSTANTS

The test specimen is marked with 0.02-inch-diameter dots
applied with a template at the corners of a 5-by 2-inch rectangle;
then, a series of increasing loads were applied. . Photographs
were taken of the dots at these various loads. This report con-
cerns the analysis of those photographs.

The (X, Y) coordinates of each of the dots were measured on
the Oscillogram Analyzer and Reader (OSCAR) interfaced to a
Hewlett-Packard model 2116A digital computer. Digital counts
were converted from the various positions of potentiometers in
each of the horizontal and vertical axes. The program provides
for calibration and scaling of these counts to inches.

(X, ¥y) X, (X3, Y3)
Y, R
Xy,
(Xl’ Yl) e ;(‘X4J Y,

Figure 126 Test Area for Tensile Modulus and Poisson's Ratio

As shown in Figure 126, the four lengths of the quadrilateral
are determined as follows:
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2
I = \/(Xz'xl)

2
Xu ='\/(X3-X2)

2 2
Y = \/(XB-XA) + (Y4-Y,)

—
X, = \/ (x4-x1)

2
+ (Yz-Yl)

2
+ (Y3fY2)

2

2
+ (Y4-Yl)

(Left)

(Upper)

(Right)

(Lower)

The first measurement was taken at no load, and the four
were determined.

original lengths X 0’
the two ax1a}
were computed from

load,

and

X1 %10
X0

xu—XuO

XuO

Y Y10
Y10
YeYRo
Yro

Y
’
(A) stra%gs an

At any

the two transverse (T) strains

Then, the average axial and average transverse strains were
calculated by

>
n

-3
|

L
s (AL + Au)

= L :
5 (T + Tp)
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Stress

The original cross-sectional area was entered into the

computer from the keyboard, as was each load Pi'

load,
STRESS, = i
AREA
ELASTIC MODULUS = STRESS,
A,
1
POISSON'S RATIO =| ‘i
A,
1

Then, for each

The computer then determined the least squares,best-fit
straight line from the points STRESS, versus A, (Figure 127).
The slope of this line is the least équares eldstic modulus.
The slope of the Ti versus Ai line is the least squares Poisson's

ratio.

\Elastic
Modulus

Ff

Axial Strain (A)

Transverse Strain (T)

‘\\Poisson's
Ratio

———

Axial Strain (A)

Figure 127 Least Squares Elastic Modulus and Poisson's Ratio
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The least squares line for N points Y, ver'sus.Xi is the

line such that the mean square error between the liné and the
It is described completely by the

points is a minimum.
Y-intercept and the slope.

2
Yo = DYy D%y - DX¥y DX

NZXiZ - @‘92

and

SLOPE = ~2.5iY4 -zxizYi

NYx; - Dx;)”

where all summations are i

=1 to N.
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