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Fixed Point Theorems and Dissipative Processes

by

Jack K. Hale and Orlando Lopes

1. Introduction

Suppose X is a Banach space, T: X - X is a continuous mapping.

The' map T is said to be dissipative if' there is a bounded set B in

X such that for any x c X, there is ah integer N = N(x) with the

property that 'Trx z 3 for n > N(x). In his study of ordinary dif-

ferentia.l equations in. n-dimensional Euclidean space (which were co-

periodic in time), Levinson [12] in 1944 initiated the study of _ sipative

systems with Tx representing the solution of the differential equation

at time O which started at x at time zero. The basic problem is

to give infonrmation about the limiting behavior of orbits of T and

to discuss the existence of fixed points of T. Since 1944, a tre-

mendous literature has accumulated ori this subject and the reader may

consult LaSalle [ 11], Pliss [14j, Reissig, Sansone and Conti [15] and

Yoshizawva 16] for references. Levinson [121 showed that some iterate of

T has a fixed point and he characterized the maximal compact invariant

set of T. Later (see Pliss [14i.]), it was shownT that the maximal compact

invariant set was globally asymptotically stable and that some power of T

has a fixed point, the latter being proved by applying the fixed point

theorem of Brouwer.

For the special case of the Banach space X arising in retarded

functional differential equations, and T completely continuous, Jones [9j

and Yoshizawa [16] showed that T has a fixed point by using Browder:s

theorem. For an arbitrary Banach space X and T completely continuous,

the same result was obtained by Horn [8] and by Gerstein and Krasnoselskii

[5] with applications to parabolic partial differential equations. Recently,
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Billotti and LaSalle [1] have obtained the same result with T com-

pletely continuous. They have in addition characterized the maximal

compact invariant set and proved that it is globally asymptotically

stable.

Gerstein [4] has considered the case when T is condensing

on balls in X; in particular, if a(TB) < a(B) for any ball B C X

and a is the measure of noncompactness introduced by Karatowski (see

Darbo [3]). Gerstein showed there is a maximal compact invariant set

and a..few other properties, but said nothing about fixed points of T.

More recently, Hale, LaSalle and Slemrod [7] have considered a slightly

stronger definition of dissipative and a class of operators T which

includes a-contractions or k-set contractions; that is, there is a

constant k, 0 < k < 1, such that a(TB) < ka(B) for any bounded B C X.

They have characterized the maximal compact invariant set of T, sho-wn

that it is asymptotically stable, and proved that some iterate of T has

a fixed point.

There are a number of deficiencies in the above theories, two

of which are the following: First, in the applications to A-periodic

retarded functional differential equations, the hypothesis that T is

completely continuous implies that the period w in the equation is

greater than or equal to the delay r in the differential system. In

particular, this implies the above theory can not be employed to show the

existence of an equilibrium point for an autonomous equation by taking

a sequence of periods approaching zero. However, with the available know.ledge

on asymptotic fixed point theory (see for example, Jones [10]), the retard.ed

equations can be handled directly for any X > 0. Secondly, in neutral



3.

functional differential equations, the operator T is not even completely con-

tinuous when w > r and the most that can be obtained is a special form of an

a-contraction. However, the above theory for this case implies only

that some iterate of T has a fixed point.

It is the purpose of this paper to consider the same type of

operators as considered by Hale, LaSalle and Slemrod [7] and to impose

an additional condition on T which will ensure that it ha's a fixed

point. At first glance, this latter condition looks very stranger but

it will be shown that the condition is always satisfied for T condens-

ing and local dissipative. Applications are given to a class of neutral

functional differential equations.

2. Dissipative systems.

The 8-neighborhood of a set K C X will be denoted by B,(K),

the closure by Cl(K) and the convex closure by co(K). Let a(K) Le

the Kuratowski measure of noncompactness of a bounded set K in X (see [3]).

Suppose T is a continuous map T: X - X. The map T is said to be

weak condensing if for any bounded K C X for which a(K) > O and T(K)

is bounded it follows that a(T(K)) < a(K). The map T is said to be a

weak a-contraction if there is a constant k,O < k < 1, such that for any

bounded set KC X for which T(K) is bounded, it follows that a(T(K)) < ka(K).

If T takes bounded sets into bounded sets, then a weak a-contraction is

an a-contraction. The map T is said to be weak completely continuous

if there is-an integer nO such that for any bounded set B C X, there is

a compact set B C X with the property that, for any integer N > n
O
-and.

n n *
any x e X with T x e B for 0 < - < N, it follows that T X nx B for

nO < n < N. If T is weak completely continuous it is weak condensing.
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If T is completely continuous then T is weak completely continuous.

The map T is said to be asymptotically smooth. if for any bounded set

B C X, there is a compact set B* C X such that for any g > 0, there is

an integer n
0
(8,B) with the property that Tnx C B for n > 0 implies

Tnx e B ( B * ) for n > nO(E,B).

For a given continuous map T: X ->X, we say a set K C X attracts

a set H C X if for any 8 > 0, there is an integer N(H,e) such that

Tn(H) C Bg(K) for n > N(H,e). We say K attracts compact sets of X if

K attracts each compact set H-C X. 'We say K
'
attracts neighborhoods

of compact sets of X if for any compact set H C X, there is a neighbor-

hood H
0

of H such that K attracts H
0.

A continuous map T: X ->X is said to be point dissipative if there

is a bounded set B C X with the property that, for any x e X, there is an

integer N(x) such that Tnx e B for n > N(x). If B satisfies the

property that for any compact set A C X, there is an integer N(A) such

that Tn(A) C B for n > N(A), then T is said to be compact dissipa.tive.

If B satisfies the property that for any x E X, there is an open neigh-

borhood 0 and. an integer N(x) such that T n C B, n > N(x), then T
x x

is said to be local dissipative. Obviously, local dissipative implies

compact dissipative implies point dissipative.-.

We now give a few relations among.the above concepts.

Lemma 1. a) (Hale, LaSalle, Slemrod [7]). If T is continuous, local

dissipative and asymptotically smooths, then there is a compact set K C X

which attracts neighborhoods of compact sets of X.



b) (Billotti and LaSalle [1]) If T is continuous,

point dissipative and T is weak completely continuous, then there

is a compact set K C X such that for any compact set H C X , there

is an open neighborhood H
0

of H and an integer N(H) such that

Uj > O Ti H
0

is bounded and T Ho C K for n > N(H) . In particu-

lar, T is local dissipative and T asymptotically smooths.

Lemma 2. If T: X - X is continuous and there is a compact set K C X

that attracts neighborhoods of compact sets of X' , then

a) there is a neighborhood H1C HO, the above.neighbor-

hood of H, such that Un > TnH1 is bounded;

b) U. >0 TJB is precompact if B is compact.

Proof: a) First of all observe that a continuous function

is bounded in some neighborhood of a compact set. If H C X is

compact and N = nl(H,9) is the number occuring in the definition of

the concept of attracts neighborhoods of compact sets, consider the

sets H,T(H),..., TN'1(H) Let )O0.o. hN- 1 be corresponding

neighborhoods where T is bounded. Define QN = Bg(K), PN = oN

r. = T-l(i l) n i. . The set H1 = o satisfies the required
]. i-,-i 1 0

property.

b) The set A = > TjB is bounded. Since TJ(B)

is compact for any j we have a(A) - a( j > n T=(B)) for any n

But given > O , if n > nl (B,.) , we have Uj > n TjB C B (B) and

thus a(A) < 2 Thus a(A) O and A is compact. This proves

the Lemma.
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The following result was proved in [7] if we use Lemmas 1 and 2.

Theorem 1. If T: X -* X is continuous and there is a compact set K C X

which attracts neighborhoods of compact sets of X, then J = > oT(K)

is independent of the sets K satisfying the above property, J is the

maximal compact invariant of T and is globally asymptotically stable.

The hypotheses of Lemma 2 also imply there is a closed, bounded

convex neighborhood U of K and an integer n such that Tn(U) CU.

Thusj if T possesses the fixed point property, then some iterate of T

has a fixed point (see [7]).

Regarding fixed points of T , it is known. (see [9], [14], [5],

[8], [1]) that T completely continuous and point dissipative implies T

has a fixed point. Below, we give some weaker conditions which assert

that T has a fixed point, but before beginning this discussion, there

is one other interesting result regarding condensing maps which was stated

without proof by Gerstein [4] for point dissipative systems.

Theorem 2. a) If T:X - X is continuous, weak condensing and compact

dissipative, then there is a compact invariant set K which attracts

compact sets of X and T is local dissipative.

b). If T is weak condensing and point dissipative then there

is a compact invariant set K that at-tracts points of X

Proof: a) It is an easy matter to prove the follo.wing fact: If H is

a compact set such that T:H - H , then the set A = l Tnm(H) is compact,

non empty, T(A) = A and Tn(H) tends to A in the Hausdorff metric.



Now, for any compact set L of X , let L1 = U>oTJ(L). Since L1 is

bounded, L1 = L U T(L1 ) and T is weak condensing, it follows that

a(L1) = 0 and thus H = C(L1) is compact. Also T(H) C H . Let

AL = On > o Tn(H) . But, by hypothesis, there is a closed

bounded set B C X such that AL C B for each compact set L

Since T(UAL) = UAL , where the union is taken over all compact

sets L C X , it follows that the set K = Cl(UAL) is compact,

T(K) C K , and K attracts compact sets of X.

Nussbaum [ 11 has shown that if a non-empty invariant set

attracts compact sets then it attracts neighborhoods of points and so if T is

is weak condensing and compact dissipative it is local dissipative. This proves

a) and the proof of b) is the same.

With a slight change in the argument above, we can

prove the following:

Lemma 3. If T is a weak a - contraction, then

T asymptotically smooths.

Proof: If B is a bounded set, then

where A is constructed as above for the elements
x

such that Tnx C B , for any n > 0 .

B= C1( Ax
)

x c B

Corollary. If T is a weak a-contraction and local dissipative,

then there is a compact invariant set that attracts neighborhoods of compact sets.

3. Fixed point theorems. In this section, we

prove some fixed point theorems which have applications to the

dissipative systems of the previous section. We need the follow-

ing obvious :
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Lemma 4. If A is a compact set of X and F C X

contains a sequence {Xn1 such that d(xn,A) - 0 as n- 

then A n 

Theorem 3. Suppose K C B C S C X are convex

subsets with K compact, S closed, bounded, and B open in S

If T: S -X is continuous, Tj B C S , j > 0 , and K attracts

points of B , then there is a convex, closed bounded subset A

of S such that

A = co [U > 1 T( B n A)], A n A K f 

Proof: Let Y9 be the set of convex, closed,

bounded subsets L of

and L K

If L E 3 r

Lln K ' 

Since L e

for all j

element A

(L )a I

j f . The

, let L1 =

Also, L
1

_F, we have

>1 . Thus,

of - will

To prove

be a totally

S such that Tj (B L) C L

family Y is not empty bece

i Tj(B n L)] . By

is convex, closed, and con'

L DL1 and L D Tj (B n( L)

L1 c Y. It follows that

satisfy the conditions of ti

such a minimal element exis1

ordered family of sets in

for j > 1

ause S' -t.

Lemma 4,

Iained in S .

) D Tj (B Ll)

t a minimal

he theorem.

ts, let

F o The set

is closed, convex and contained in S o

Tj (Bs L) C Tj (B nL )C La

Tj(B nL) C L for j > 1 .

we have K n(n n J L). 

that K ) (n I La) i 0

yields the conclusion of the

for

If

r any a e I and j > 1. Thus,

J is any finite subset of I ,

and, from compactness, it follows

Thus, L e-- and Zorn's lemma

theorem.

The same proof as given in Theorem 3 also proves

the following:

L = na Also,
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Theorem 4. The set A of Theorem 3 is compact if

and only if there is a compact set Q = Q(B) such that Q nB i

and TJ(Q nB)C Q for all j > 0 .

Lemma 5. (Horn [8]). Let So C S
1
C S2 be convex -

subsets of a Banach space X with SoS2 compact and S1 open

in S
2

. Let T: S
2
- X be a continuous mapping such that for

some integer m > 0 , TJ(S
1
) C S2 , 0 < j < m-1 , TJ(S )C So ,

m < j < 2 m - 1 . Then T has a fixed point.

Theorem 5. Suppose K C B C S C X are convex sub-

sets with K compact, S closed bounded and B open in S . If

T: S -*X is continuous, T B C S , j > 0 , K attracts compact

sets of B and the set A of Theorem 3 is compact, then T has

a fixed point.

Proof: Since K is compact and convex, the set

B can be taken as S nfLg(K) for some g > 0 o Let Q be as

in Theorem 4, SO = Cl( g/2(K)) n Q , S1 = 9g (K) Q and

S
2
= S n Q . Then S C S1 C S

2
SO S2 compact and S1

is open in S2 . Also, TJ(S
1
) C S

2
, O j nl(K,) and

TJ(S 1)C SO for j > nl(K,e) for some integer nl(K,g) . An

application of Lemma 4 completes the proof of the theorem.

It is clear that Theorem 5 is equivalent to the

theorem of Horn.

Any additional cond.litions on the map T which will

ensure that the set A in Theorem 3 is compact wrill yield a fixed

point theorem using Theorem 5. One result in this direction is
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Theorem 6. If T is weak condensing, then the

set A in Theorem 5 is compact.

Proof: If A = U> 1 Tj (B n A), then 7 =

T(B n A) U T( A) and a(A) = a() = max(a(T(B n A)), a(T('~))

Since a(T( A)) < a( A) if a(X() > 0 , it follows that

cz( A) = a(T(Bn A)). Thus, if a(B n A) > O , then a(A)

a( A) < a(B n A) < a(A) and this is a contradiction. Thus,

a(B n A) = 0 . However, this implies a(A) = 0 and A is

compact, proving the theorem.

Corollary 1. If the sets K,B,S in Theorem 5 exist,

if K attracts the compact sets of B and T is weak condensing,

then T has a fixed point.

Proof. This is immediate from Theorems 5 and 6.
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Corollary 2. If T: X - X is continuous, point-

wise dissipative and T is weak completely continuous, then T

has a fixed point.

Proof: This is immediate from Lemma lb) and

Corollary 1o

Corollary 3. If T is a weak a - contraction and

there are sets K,B,S as in Corollary 1, then T has a fixed point.

Corollary 4. If T is weak condensing and compact

dissipative, then T has a fixed point.

Proof: From Theorem 2 a), T is a local dissipative

system. Thus co K has an open convex neighborhood B with bounded

orbit. The result now follows from Theorems 2, 5, 6.

For a-contractions, this result is contained in [13].

n
Corollary 5. If T o is weak completely continuous, T

is weak condensing and point dissipative, then T has a fixed point.

Proof: This follows from Lemma lb) and Corollary l4.
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Lemna 6. If S: X -* X is a bounded linear operator

with spectrum contained in the open unit ball, then there is an

equivalent norm, I'1 ' in X such that IS I1 < 1 .

Proof. Define |x 11 = Ox I + IS
x
I 

+
... + IS n x I + ....Proof. Define 1x11=lxl ls + x+I ~I +

The assumption on the spectrum implies there is an 0 < r < 1 such

that jSn I < rn if n is sufficiently large. Thus, there is a

constant K such that Ix I < Ix I1 < KIx I . Also, for x ¢ 0

ISx Il 1 [ ISx 2 
ll~ -1 sx I + I

s
x I + ] 1

Ix 1 !x I Ix I -

The lemma is proved.

Corollary 6. If T is compact dissipative, T = S + U, where

S is linear and continuous with spectrum contained in the open unit ball

and T(Q) bounded implies Cl(U(R)) compact for any 2 C X ,

no
then T has a fixed point. If, in addition, S is completely

continuous and T is only point dissipative, then T has a fixed

point.

Proof: The first statement is immediate from

Corollary 4 and Lemma 6. The second follows from Corollary 5

and the observation that T is S plus a completely continu-

ous operator.
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The next result generalizes an asymptotic fixed

point theorem of Browder [2].

Theorem 7. Suppose So,S1 S2 are subsets of a

Banach space, S',S2 convex, closed, S1 open, S2 bounded,

S
o

C S1 C S
2

Assume T: S2 - X is condensing in the following

sense: if 2, T(s) are contained in S2 and a(Q) > O , then

a(T(n)) < a(Q) . Assume also that T satisfies: for any

compact set H C S1 , TJ(H) C S
2

j > 0 , and there is a number

N(H) such that TJ(H)C S for j > N(H) . Then T has a

fixed point.

Proof: Following the proof of Theorem 2, there is

a compact set K which attracts the compact sets of S1 . Since

K C SO , it follows that co K C SO . Let B be a closed, convex

neighborhood of o6 K, B C S1 o Theorems 4 and 5 complete the

proof.

4. Dissipative flows.

Let {T(t), t > 0} be a flow in a Banach space X

A point x e X is said to be an equilibrium point if T(t)x = x
0 0

for any t > 0 . We also say that a compact set J attracts a

compact set H if, for any 9 > 0 , there is a t*(H,g) such

that T(t)H C Bg(J) for t > t*(H,E) . A set Q C X is said to

be boundedly compact if P n Q is compact for any closed bounded

set P C X



Theorem 8. If IT(t), t > 0
t
satisfies:

a1) there is a compact set J that attracts the

compact sets of Jo;

a2) there is a number w > 0 and a family of

boundedly compact (in particular compact) sets Q(T), 0 < X < W

such that Q(T) n Jo i $ and T(k¶)Q(r) n Q(¶) , < ¶ <w ,

k positive integer;

then there is an equilibrium point.

Proof: Take the sequence w = /n o From

Theorems 2, 4, 5, it follows that for each n, there is an xn

satisfying: T(w )X = x . Since w > 0 , x is in J.
n n n n n

Changing the notation if necessary, we may assume that x

converges -to xo . Let k n(t) be the integer defined by:

kn(t)wn < t < (kn(t) + 1)wn Then, T(kn(t)Wn)Xn x= n and

so: IT(t)x - x < IT(t)x - T(kn(t)w )x l + T(kn(t)w)o -

T(kn(t)w n)n + In - x . Since kn(t)wn tends to t as

n - ~ , the right hand side of the above expression goes to

zero and this proves the theorem.

As an application of Theorems 4,5 and 8, we have:

Corollary 7: If. T(t), t > 0
I

is weak condensing

for any t > 0 and satisfies a,), then there is an equilibrium

point.
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Corollary 8. If {T(t), t > 0} is a weak a - con-

traction and satisfies cal) then there is an equilibrium point.

A flow {T(t), t > 0
1

is said to be local dissi-

pative if there is a bounded set B such that for any point

x E X there is a neighborhood 0 of x and a t(x) such that
x

T(t)O
x
C B for t > t(x).

A flow {T(t), t > 0
I

is compact (point) dissipative

if there is a bounded set B such that for any compact set H

(any point x ) there is a t(H) (t(x)) such that. T(t)H C B (T(t)x E B)

for t > t(H) (t > t(x)) .

Lemma 7.

a). If T(w) is weak condensing for some w > 0

and is compact (point) dissipative with compact attractor K ,

T(w)K C K , then {T(t), t > 0 1 is compact (point) dissipative

with attractor J = Uo < t < w T(t)K .

b). If there is a compact set K such that

T(w)K C K and K attracts neighborhoods of points, then the set

J above attracts neighborhoods of points relative to the flow

{T(t), t > 0

c). If (T(t) > 0) is weak condensing for some o > O

and compact dissipative, it is local dissipative.

Proof: For any g > 0 , there is a 6 > 0 such

that T(t)B8(K) C Bg(J), O < t < w . Since T(w)KC K ,

parts a) and b) are proved. Part c) follows from Theorem 2, and

parts a) and b).
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Corollary 9. If for some w > O, T(w) is weak

completely continuous and point dissipative then (T(t), t > O is

local dissipative.

Proof: The set K in Lemma l(b) may be chosen to

satisfy the hypothesis of Lemma 7(b). From the previous theorem,

we can state the following:

Theorem 9. If (T(t), t > O) is weak condensing for

t > 0, then the following assertions hold:

a). If IT(t), t > O0 is compact dissipative, then

there is an equilibrium point;

b). If (T(t), t > 0) is point dissipative and T(w)

is weak completely continuous for some w > O, then there is an

equilibrium point.

Corollary 10. If {T(t) = S(t) t), t > 0

then the following assertions hold:

a). If {4T(t), t > 0O is compact dissipative, S(t)

is linear with spectrum contained inside the unit ball for t > 0

and U(t) is weak completely continuous, then there is an equilib-

rium point.

b). If S(w) is completely continuous for some

w > 0 and IT(t), t > 01 is point dissipative, there exists an

equilibrium point.
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5. Functional differential equations.

As an application of the previous results, we consider a special

class of neutral functional differential equations which are periodic

in time. Let r > 0 be a given real number, E
I

be an n-dimensional

linear vector space with norm I'1, C([a,b],En) be the space of continu-

ous functions from [a,b] to En with the uniform topology and let

C = C([-r,O],En). For cp E C, (PI = suP_r<s<IP((0). For any xE

C([-r,A),En), A > 0, let xt E C, t E [O,A], be defined by xt(8) =

x(t+e), -r < 0 < O0. Suppose D: R X C - En is a continuous linear operator

Dp = cp(O)-g(t,cp),

0
g(t,cp) = j [df (t,G)]p(e)

(1) o -

I s+[dia(t,0)] ]p()l < r(s)l l ,
-s

for s > O, c e C where M is an n X n matrix function of bounded

variation, r is continuous and nondecreasing on [O,r], T(O) = O. If

f: R x C En is continuous, then a NFDE is a relation

(2) d (txt) D((t,x t)

A solution x = x(Q) through (q at time a is a continuous function

defined on [a-r,a+A), A > O, such that x = c, D(txt) is continuously

differentiable on (a,a+A) and (2) is satisfied on (a,a+A). We assume
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We assume a solution x(cp) of (2) through any cp E C exists on [a-r,c),

is unique and x(p)(t) depends continuously on (cp,t) E C X [a-r,o0).

In the following, we let TD(t,a): C - C, t > 0, be the continuous

linear operator defined by TD(t,a)cp = Yt(P), t > a, where y = y(cp) is

the solution of

d
(3) d-tD (t,Yt) = O, y, = .

If D is 'c-periodic in t, CD = [I EC: D(Ocp) = O), then CD is a

Banach space with the topology of C, TD(wO): CD -CD, and

TD (nw,O ) = TD(w,O).

The operator D is said to be uniformly stable if there exist

constants K > 1, a > 0, such that

(4) ITD(t,a) pl< Ke-(t- )li, P E CD t > .

Notice the operator Ip = cp() corresponding to retarded. functional dif-

ferential equations is always stable.

Remark. The conclusion of the main theorem below is valid under the weaker.
0

hypothesis that D(q) = D0(p) + f A(G)(p(0)de where DO is stable. For
-r

simplicity in notation, we do not consider this more general case.

We need some results from Hale and Cruz [6]. It is shown in [6] that

D uniformly stable implies there exists an n X n matrix function B(t)

defined and of bounded variation on [-r,;), continuous from the left,

B(t) = O -r < t < O, and a constant M
1

such that
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(5) ITD(t)CPI < Mlli , t > O, o E C, sup B(t) < M1,
t> -r

and, for any continuous function h: [O,-) - En, the solution of the prob-

lem

t
(6) D(t,xt) = D(O,S) + f h(s)ds, xO = 

0

is given by

t

(7) xt = TD(t)cp - f Btsh(s)ds

Furthermore, there exist n functions 1, 'n in C such that

D(O,~) = I, the identity, where 0 = (P],..., n).

Let 4: C - CD be the continuous linear operator defined by *(p) =

cP - OD(p).

Lemma 8 0 If D is uniformly stable and f maps bounded

sets:of RxC into bolnmded" sets of En , then-there is'a family

of continuous transfonnations Tl(t): C - C , t > 0 which are

weak completely continuous and

def

T(t,O)p = T(t)cp = xt(TP) = TD(t)*(@p) + Tl(t)cp

If Dp = qo(O) , then T(t) is weak completely continuous for t > r .
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Proof: Equation (2) wvith initial value x0 = p is equivalent to

t
D(xt) = D(cp) + f f(s,xs)ds, t > O, xO = c,

0

which from (7) is equivalent to

def tD def
T (t)qcp = TD (t) '(c) + TD(t)D(D) - f Bt_sf(s,xs)ds = T (t)t(cp)+T (t)

0 D

It is now an easy matter to verify the assertions in the theorem.

Since the condition that D is uniformly stable implies the

linear operator S(o) = TD (OW) has spectrum contained inside the

unit ball, Corollary 6, Lemma lb) and Corollary 10 imply

Theorem 4. If there exists an c > 0 such that f(t+,cp) = f(t,cp) for

all c 6 C, f takes bounded sets of R x C -4En and system (2) is

compact dissipative, then -there is an co-periodic solution of (2). If f

satisfies the same hypotheses and is independent of t. then there is a

constant function c in C such that f(c) = 0; that is, an equi-

librium point of (2). If D(cp) = cp(O), then the same conclusions are

true for point dissipative.
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Fixed. Point Theorems and Dissipative Processes

by

Jack K. Hale and Orlando Lopes

1. Introduction

Suppose X is a Banachi space, T: X -4X is a continuous mapping.

The map T is said to be dissipative if there is a bounded set B in

X such that for any x c X, there is an integer N = N(x) with the

property that Tnx e B for n > N(x). In his study of ordinary dif-

ferential equations in n-dimensiolal Euclidean space (which were w-

periodic in time), Levinson [12] in 1944 initiated the study of dissipative

systems with Tx representing the solution of 'the differential equation

at time X which started at x at time zero. The basic problem is

to give information about the limiting behavior of orbits of T and

to discuss the existence of fixed points of T. Since 1944, a tre-

mendous literature has accumulated on this subject and the reader may

consult LaSalle [11], Pliss [1)4], Reissig, Sansone and Conti [15] and

Yoshizawa [16] for references. Levinson [.12] showed that some iterate of

T has a fixed point and he characterized the maximal compact invariant

set of T. Later (see Pliss [14])., it was shown that the maximal compact

invariant set was globally asymptotically stable and that some power of' T

has a fixed point, the latter being proved by applying the fixed point

theorem of Broiuwer.

For the special case of' the Banach space X arising in retarded

functional differential equations, and T completely continuous, Jones [9]

and Yoshizawa [1.6] showed that T has a fixed'point by using Browder's

theorem. For an arbitrary Banach space X and T completely continuous,

the same result .Tas obtained by Horn [8- and by Gerstein and Krasnoselskii

[5] with applications to parabolic partial differential equations. Recently,
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Billotti and LaSalle [ 1] have obtained the same result with T com-

pletely continuous. They have in addition characterized the maximal

compact invariant set and proved that it is globally asymptotically

stable.

Gerstein [4] has considered the case when T is condensing

on balls in X; in particular, if a(TB) < a(B) for any ball B C X

and a is the measure of noncompactness introduced by Kuratowski (see

Darbo [3]). Gerstein showed there is a maximal compact invariant set

and a few other properties, but said nothing about fixed points of T.

More recently, Hale, LaSalle and Slemrod [7] have considered a slightly

stronger definition of dissipative and a class of operators T which

includes o-contractions or k-set contractions; that is, there is a.

constant k, 0 < k < 1, such that a(TB) < ka(B) for any bounded B C X.

They have characterized the mliaximal compact invariant set of T, shown

that it is asymptotical.ly stabl.e, and proved that some iterate of T has

a fixed point.

There are a number of deficiencies in the above tlheories, two

of whic. are the following: First, in the applications to a)-periodic

retarded fLunctional differential equatio.rs, the hypothesis that T is

completely continuous implies that the period w in the equation is

greater than or equal to the delay r in the differential system. In

particular, this implies the above theory can not be employed to show the

existence of an equilibriaum point for ain autonomous equation by taking

a sequ.ence of pEer"i.ods approaching zero. .- owever, with the svailable kniow,!ledge

on asymptotic fixed p)oinrit theory (see for example, Jones [10]), the retarded

eouations can be hLandle'd directly -for any a, > C. Secondly.:, in neutral
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functional differential equations, the operator T is not even completely con-

tinuous when w > r and the most that can be obtained is a special form of an

a-contraction. However, the above theory for this case implies only

that some iterate of T has a fixed point.

It is the purpose of this paper to consider the same type of

operators as considered by Hale, LaSalle and Slemrod [7] and to impose

an additional condition on T which wili ensure that it has a fixed

point. At first glance, this latter condition looks very strange, but

it will be shon. that the condition is always satisfied for T condens-

ing and. local dissipativeo Applications are given to a class of neutral

functional differential equations.

2. Dissipative systems.

The 8-neighborhood of a set K C X will be denoted by Be( K j,

the closure by Cl(K) and the convex closure by o(K) Let a(K) be

the Kuratowski measure of noncompactness of a bounded set K in X (see [3])0

Suppose T is a continuous map T: X --- X. The map T is said to be

weak condensing if for any bounded K C X for which a(K) > O and T(K)

is bounded it follows that a(T(K)) < a(K). The map T is said to be a

wreak a-contractior if there is a constant k,O < k < 1, such that for any

bounded set KC X for which T(K) is bounded, it follows that a(T(K)) _ ka(K).

If T takes bounded sets into bounded sets, then a weak a-contraction is

an a-contraction. The map T is said to be weak compn3letelvy continuous

if there is an integer nO suchl that for any bounded set B C X, there is

a compact set B C X -with the property that, for any integer N > n0 and

any x E X vrith Tnx E B for O < n < N, it follows that T x c B for

no < n < N. If T is weak completely continuous it is weak condensing.0_ -



4.

If T is completely continuous then T is weak completely continuous.

The map T is said to be asymptotically smooth if for any bounded set

B C X, there is a compact set B* C X such that for any e > 0, there is

an integer nO(g,B) with the property that T nx c B for n > 0 implies

Tnx e Be(B*) for n > nO(9,B).

For a given continuous map T: X - X, we say a set K C X attracts

a set H C X if for any g > 0, there is an integer N(H,E) such that

Tn(H) C Bg(K) for n > N(H,e). We say K attracts compact sets of X if

K attracts each compact set H C X. We say K attracts neighborhoods

of compact sets of X if for any compact set H C X, there is a neighbor-

hood H
0

of H such that K attracts HO .

A continuous map T: X --X is said to be point dissipative if there

is a bounded set B C X with the property that, for any x E X, there is an

integer N(x) such that Tnx e B for n > N(x). If B satisfies the

property that for any compact set A C X, there is an integer N(A) such

that T (A) C B for n > N(A), then T is said to be compact dissipative.

If B satisfies the property that for any x E X, there is an open neigh-

borhood 0 and an integer N(x) such that T Oi C B, n> N(x), then T

is said to be local dissipative. Obviously, local dissipative implies

compact dissipative implies point dissipative.

We now give a few relations among the above concepts.

Lemma 1. a) (Hale, LaSalle, Slemrod [7]). If T is continuous, local

dissipative and asymptotically smooths, then there is a compact set K C X

which attracts neighborhoods of compact sets of X.
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b) (Billotti and LaSalle [1]) If T is continuous,

no
point dissipative and T is weak completely continuous, then there

is a compact set K C X such that for any compact set H C X , there

is an open neighborhood H
0

of H and an integer N(H) such that

Uj > O Ti H is bounded and T Ho C K for n > N(H) . In particu-

lar, T is local dissipative and T asymptotically smooths.

Lemma 2. If T: X - X is continuous and there is a compact set K C X

that attracts neighborhoods of compact sets of X' , then

a) there is a neighborhood H1 C H0, the above-neighbor-

hood of H, such that Un > O TnH1 is bounded;

b) U T jB is precompact if B is compact.
.j > 

Proof: a) First of all observe that a continuous function

is bounded in some neighborhood of a compact set. If' H C X is

compact and N = nl(HS) is the number occuring in the definition of

the concept of attracts neighborhoods of compact sets, consider the

sets H,T(H),..., TNl(H) . Let .1 be corresponding

neighborhoods where T is bounded. Define QN = B (K), r = N

P. = T (i+l) n . .* The set H = r satisfies the required
1 i+l i 1 0

property.

b) The set A = U > TB is bounded. Since Tj(B)

is compact for any j we have a(A) = ( Uj _> n Tj(B)) for any n

But given g > O ;if n > nl(B,g) ,we have Uj > B C B(B and

thus a(A) < 2 g . Thus a(A) = 0 and A is compact. This proves

the Lenmna.
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The following result was proved in [7] if we use Lemmas 1 and 2.

Theorem 1. If T: X - X is continuous and there is a compact set K C X

which attracts neighborhoods of compact sets of X, then J = nj > oTJ(K)

is independent of the sets K satisfying the above property, J is the

maximal compact invariant of T and is globally asymptotically stable.

The hypotheses of Lemmna 2 also imply there is a closed, bounded

convex neighborhood U of K and an integer n such that Tn(U) C U.

Thusj if T possesses the fixed point property, then some iterate of T

has a fixed point (see [7]).

Regarding fixed points of T , it is known (see [9], [14],-[5],

[8], [1]) that T completely continuous and point dissipative implies T

has a fixed point. Below, we give some weaker conditions which assert

that T has a fixed point, but before beginning this discussion, there

is one other interesting result regarding condensing maps which was stated

without proof by Gerstei.n [ 4] for point dissipative systems.

Theorem 2. a) If T:X ->X is continuous, weak condensing and compact

dissipative, then there is a compact invariant set K which attracts

compact sets of X and T is local dissipative.

b) If T is weak condensing and point dissipative then there

is a compact invariant set K that attracts points of X

Proof: a) It is an easy matter to prove the following fact: If H is

a compact set such that T:H - H , then the set A =- Tn(H) is conmact,

non empty, T(A) = A and. Tn(H) tends to A in the Hausdorff metric.
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Now, for any compact set L of X , let L1 = Uj>oTO(L). Since L1 is

bounded, Ll = L U T(L
l ) and T is weak condensing, it follows that

a(L1 ) = 0 and thus H = Cl(L1) is compact. Also T(H) C H . Let

AL = Nn > o Tn(H) . But, by hypothesis, there is a closed

bounded set B C X such that A C B for each compact set L

Since T(UAL) = UAL , where the union is taken over all compact

sets L C X , it follows that the set K = Cl(UAL) is compact,

T(K) C K , and K attracts compact sets of X.

Nussbaum [13] has shown that if a non-empty invariant set

attracts compact sets then it attracts neighborhoods of points and so if T is

is weak condensing and compact dissipative it is local dissipative. This proves

a) and the proof of b) is the same.

With a slight change in the argument above, we can

prove the following:

Lemma 3. If T is a weak a - contraction, then

T asymptotically smooths.

Proof: If B is a bounded set, then B* = Cl( U Ax)

where A is constructed as above for the elements x E B

such that Tnx E B , for any n > 0

Corollary. If T is a weak a-contraction and local dissipative,

then there is a compact invariant set that attracts neighborhoods of compact sets.

3. Fixed point theorems. In this section, we

prove some fixed point theorems which have applications to the

dissipative systems of the previous section. We need the follow-

ing obvious :
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Lemma 4o If A is a compact set of X and FC X

contains a sequence {x J such that d(xn,A) - 0 as n- m 

then A nF o

Theorem 3. Suppose K C B C S C X are convex

subsets with K compact, S closed, bounded, and B open in S

If T: S -*X is continuous, Ti B C S , j > 0 , and K attracts

points of B , then there is a convex, closed bounded subset A

of S such that

A = co [ Uj> T j (B n A)], A n K i /

Proof: Let 95 be the set of convex, closed,

bounded subsets L of S such that Tj (B n L) C L for

and L n K

If L E

L n K ij 

Since L E

for all j

element A

(L)a E I

4 . The family -F is not empty because S' 35.

let L = co[U. 1 Tj (B n L)] . By Lemma 4,, let L1 = c-~ [Uj > 1

Also, L1 is convex, closed, and contained in S

F, we have L 3L 1 and L1 D Tj(Bn L)D Tj (B n L,)

> 1 . Thus, Li E 5. It follows that a minimal

of . will satisfy the conditions of the theorem.

To prove such a minimal element exists, let

be a totally ordered family of sets in g o The set

is closed, convex a

Tj (B n L) C TI(B n L) c La

Tj (B n L) C L for j > 1 .

we have K n(n A J L )_

that Kn (n E L) 4 

yields the conclusion of the

for

If

and contained in S o Also,

r any a e I and j > lo Thus,

J is any finite subset of I ,

and, from compactness, it follows

Thus, L ¢-F and Zorn's lemma

theorem.

The same proof as given in Theorem 3 also proves

the following:

L= n
al 
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Theorem 4. The set A of Theorem 3 is compact if

and only if there is a compact set Q = Q(B) such that QnB i B

and Tj (Q n B)C Q for all j > .

Lemma 5. (Horn [8]). Let S C S1 C S
2

be convex

subsets of a Banach space X with So,S2 compact and S
1

open

in S
2

. Let T: S2 - X be a continuous mapping such that for

some integer m> 0 , TJ(S) C S2 , 0 < j <m- , Tj(S)C S ,

m < j < 2 m - 1 . Then T has a fixed point.

Theorem 5. Suppose K C B C S C X are convex sub-

sets with K compact, S closed bounded and B open in S . If

T: S -4X is continuous, TJB CS , j > , K attracts compact

sets of B and the set A of Theorem 3 is compact, then T has

a fixed point.

Proof: Since K is compact and convex, the set

B can be taken as S n 6P(K) for some g > 0 o Let Q be as

in Theorem 4, SO = C1( Qg/2 (K)) n Q , S1 = Qg(K) n Q and

S
2
= S n Q . Then S C S1 C S2 S 2 compact and 

is open in S2 . Also, TJ(S
1
) C S2 , 0 < j < n(K,e) and

Tj(Sl) C So for j'> nl(K,e) for some integer n1 (K,g) . An

application of Lemma 4 completes the proof of the theorem.

It is clear that Theorem 5 is equivalent to the

theorem of Horn.

Any additional conditions on the map T which will

ensure that the set A in Theorem 3 is compact will yield a fixed.

point theorem using Theorem 5. One result in this direction is
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Theorem 6. If T is weak condensing, then the

set A in Theorem 5 is compact.

Proof: If A = Uj 1 Tj (B n A), then A =

T(BnA) U T(~A) and a(A) = a(A) = max(a(T(B nA)), a(T(~A))

Since a(T( A)) < a(' ) if a( A) > 0 , it follows that

a('() = a(T(BnA)). Thus, if a(B n A) > 0 , then a(A)

a.( A) < a(B n A) < a(A) and this is a contradiction. Thus,

a(B n A) = 0 . However, this implies a(A) = 0 and A is

compact, proving the theorem.

Corollary 1. If the sets K,B,S in Theorem 5 exist,

if K attracts the compact sets of B and T is weak condensing,

then T has a fixed point.

Proof. This is immediate from Theorems 5 and 6.
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Corollary 2. If T: X -X X is continuous, point-

wise dissipative and T is weak completely continuous, then T

has a fixed point.

Proof: This is immediate from Lemma lb) and

Corollary 1.

Corollary 3. If T is a weak a - contraction and

there are sets K,B,S as in Corollary 1, then T has a fixed Doint.

Corollary 4. If T is weak condensing and compact

dissipative, then T has a fixed point.

Proof: From Theorem 2 a). T is a local dissipative

system. Thus co K has an open convex neighborhood B with bounded

orbit. The result now follows from Theorems 2, 5, 6.

For a-contractions, this result is contained in [ 13].

n
Corollary 5. If T is weak completely continuous, T

is weak condensing and point dissipative, then T has a fixed point.

Proof: This follows from Lemma lb) and Corollary 4.
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Lemma 6. If S: X - X is a bounded linear operator

with spectrum contained in the open unit ball, then there is an

equivalent norm, I.!1 , in X such that IS I1 < 1 .

Proof. Define Ix I1 = Ix I + IS x I + ... +.I Sx I +

The assumption on the spectrum implies there is an 0 < r < 1 such

that IS n < r if n is sufficiently large. Thus, there is a

constant K such that Ix I< x I 1 < KIx I . Also, for x 0

Sx 1- 1_ _2

lS[ 1 + !sx I + IS x I + <--- 1 

Ixll x l Ix i K

The lemma is proved.

Corollary 6. If T is compact dissipative, T = S + U, where

S is linear and continuous with spectrum contained in the open unit ball

and T(2) bounded implies Cl(U(n)) compact for any y C X ,

no

then T has a fixed point. If, in addition, S is completely

continuous and T is only point dissipative, then T has a fixed

point.

Proof: The first statement is immediate from

Corollary 4 and Lemma 6. The second follows from Corollary 5

no n
and the observation that T is S plus a completely continu-

ous operator.
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The next result generalizes an asymptotic fixed

point theorem of Browder [2].

Theorem 7. Suppose So, S1 ,S2 are subsets of a

Banach space, So,S2 convex, closed, S
1

open, S2 bounded,

S
o
C S1 C S2 Assume T: S2 - X is condensing in the following

sense: if a, T(Q) are contained in S2 and a(Q) > 0 , then

a(T(Q)) < a(Q) . Assume also that T satisfies: for any

compact set H C S1 , Tj (H) C S2 , j > 0 , and there is a number

N(H) such that TJ(H)C S for j > N(H) . Then T has a

fixed point.

Proof: Following the proof of Theorem 2, there .is

a compact set K which attracts the compact sets of S1 . Since

K C So , it follows that co K C So . Let B be a closed, convex

neighborhood of co K, B C S1 Theorems 4 and 5 complete the

proof.

4. Dissipative flows,

Let {T(t), t > 0} be a flow in a Banach space X

A point x c X is said to be an equilibrium point if T(t)x = x

for any t > 0 . We also say that a compact set J attracts a

compact set H if, for any e > O , there is a t*(H,g) such

that T(t)H C B (J) for t > t*(H,e) . A set Q C X is said to

be boundedly compact if P n Q is compact for any closed bounded

set P C X .
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Theorem 8. If {T(t), t > 0I satisfies:

C1) there is a compact set J that attracts the

compact sets of J ;

a2 ) there is a number w > 0 and a family of

boundedly compact (in particular compact) sets Q(T), 0 < ¶ < w-

such that Q(T) N Jo i $ and T(k)Q(T) n Q(n ) , 0 < t < w ,

k positive integer;

then there is an equilibrium point.

Proof: Take the sequence wn w/n o From

Theorems 2, 4, 5, it follows that for each n, there is an x

satisfying: T(w )x = x . Since w > O , x is in J
n n n n n

Changing the notation if necessary, we may assume that x
n

converges to xo * Let k(t) be the integer defined by:

kn(t)wn < t < (kn(t) + 1)wn Then, T(kn(t)w )x = x and

so: IT(t)Xo - x o I IT(t)o
'
- T(kn(t)wn)Xol + IT(kl(t)Wn)Xo

(k(t)w )x -x Since k (t)w tends to t as
T(k(t)w

n
) I n I X nSn

n -- ,. the right hand side of the above expression goes to

zero and this proves the theorem.

As an application of Theorems 4,5 and 8, we have:

Corollary 7: If {T(t), t > 01 is weak condensing

for any t > O0 and satisfies a1), then there is an equilibrium

point.



15. 

Corollary 8. If {T(t), t > O1 is a weak a - con-

traction and satisfies a1), then there is an equilibrium point.

A flow {T(t), t > O} is said to be local dissi-

pative if there is a bounded set B such that for any point

x e X there is a neighborhood 0 of x and a t(x) such that

T(t)O C B for t > t(x).

A flow {T(t), t > 0O is compact (point) dissipative

if there is a bounded set B such that for any compact set H

(any point x ) there is a t(H) (t(x)) such that. T(t)H C B (T(t)x c B)

for t > t(H) (t > t(x)) .

Lemma 7.

a). If T(w) is weak condensing for some w > 0

and is compact (point) dissipative with compact attractor K ,

T(w)K C K , then {T(t), t > 0 } is compact (point) dissipative

with attractor J = U < < w T(t)K

b). If there is a compact set K such that

T(w)K C K and K attracts neighborhoods of points, then the set

J above attracts neighborhoods of points relative to the flow

{ T(t), t > O } -

c). If [T(t) > O) is weak condensing for some o > 0

and compact dissipative, it is local dissipative.

Proof: For any g > 0 , there is a b > 0 such

that T(t)Bs(K) C BE(J), 0 < t < w . Since T(w)KC K ,

parts a) and b) are proved. Part c) follows from Theorem 2, and.

parts a) and b).



Corollary 9. If for some w > O, T(w) is weak

completely continuous and point dissipative then (T(t), t > O] is

local dissipative.

Proof: The set K in Lemma l(b) may be chosen to

satisfy the hypothesis of Lemma 7(b). From the previous theorem,

we can state the following:

Theorem 9. If (T(t), t > 0) is weak condensing for

t > O, then the following assertions hold:

a). If IT(t), t > 0) is compact dissipative, then

there is an equilibrium point;

b). If (T(t), t > 0) is point dissipative and T(w)

is weak completely continuous for some w > O, then there is an

equilibrium point.

Corollary 10. If IT(t) = S(t) + U(t), t > 0O

then the following assertions hold:

a). If {T(t), t > 0 is compact dissipative, S(t)

is linear with spectrum contained inside the unit ball for t > 0

and U(t) is weak completely continuous, then there is an equilib-

rium point.

b). If S(w) is completely continuous for some

w > 0 and IT(t), t > 0 is point dissipative, there exists an

equilibrium point.
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5. Functional differential equations.

As an application of the previous results, we consider a special

class of neutral functional differential equations which are periodic

in time. Let r > 0 be a given real number, En be an n-dimensional

linear vector space with norm I'1, C([a,b],En) be the space of continu-

ous functions from [a,b] to En with the uniform topology and let

C = C([-r,O],En). For cg E C, Ipl = sup_r<eI<D°(0)I . For any xE

C([-r,A),En), A > 0, let xt E C, t E [0,A], be defined by xt(e) =

x(t+G), -r < < O0. Suppose D: R X C - En is a continuous linear operator

D]p = o(O)-g(t, T),

0
g(t,T) = f [dl(t,9)]p (0)

(1) o -r

I I +[dp(t,O)] (e)J <_ r(s) I sl ,
-S

for s.> O, c E C where p is an n X n matrix function of bounded

variation, r is continuous and nondecreasing on [O,r], ¥(O) = 0. If

f: R X C - E i's continuous, then a NFDE is a. relation

(2) d D(t,xt) = f(t,xt).

A solution x = x(@) through T at time a is a continuous function

defined on [a-r,a+A), A > 0, such that xY = cp, D(t,xt) is continuously

differentiable on (a, a+A) and (2) is satisfied on (a,'a+A). We assume
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We assume a solution x(cp) of (2) through any cp E C exists on [a-r, ),

is unique and x(cp)(t) depends continuously on (f,t) E C X [a-r,c).

In the following, we let TD(t,a): C - C, t > 0, be the continuous

linear operator defined by TD(t,a)p = Yt(P), t > a, where y = y(cp) is

the solution of

tD (t,yt ) = 0 yo = .(3)

If D is a-periodic in t, C
D
= cp EC: D(O,P) = 0), then CD is a

Banach space with the topology of C, TD(w,O): CD -4CD, and

TD(nw,O) Tn(w,O).

The operator D is said to be uniformly stable if there exist

constants K > 1, a > O, such that

(4) ITD(t
i
a)pl < Ke-a(t-a) l pl, E CD, t > a.

Notice the operator Dzp = Tp(0) corresponding to retarded functional dif-

ferential equations is always stable.

Remark. The conclusion of the -mai n-theorem below is-valid under the weaker -
0

hypothesis that D(cp) = Do(w) + f A(0)cp()dO where DO is stable.' For
-r

simplicity in notation, we do not consider this more general] case.

We need some results from Hale and Cruz [6]. It is shonm in [61 that

D uniformly stable implies there exists an n x n matrix function B(t)

defined and of bounded variation on [-r,-), continuous frnom the left,

B(t) = O, -r < t < O, and a constant M1 such that
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(5) IT (t)C(pI < M PI , t > 0, cp C C, sup B(t) < M1,
t> -r

and, for any continuous function h: [O,.) - En, the solution of the prob-

lem

t
D(t,xt) = D(O,qp) + J h(s)ds, xO = cp

0

is given. by

t

xt = T(t)cp - f Bts h(s)ds 
0

Furthermore, there exist n functions cl, ... , n in

D(O, ) = I, the identity, ,where $ = (cPlp..., ¢pn)

Let V: C - CD be the continuous linear operator

cp - (D (p).

C such that

defined by *(cp) =

Lemma 8 o If D is uniformly stable and. f maps bounded.

sets of RxC into bounded sets of En , then there is a-family

of continuous transformations Tl(t): C -C , t > 0 which are

weak completely continuous and

def
T(tO)p = T(t)(p = xt(cp) = TD(t)V(q) + Tl(t)cP

If Dxp = cp(O) , then. T(t) is weak completely continuous for t > r .

(6)

(7)
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Proof: Equation (2) with initial value xO = cp is equivalent to

t

D(xt) = D(p) + f f(s,xs)ds, t > 0 x = cp,

which from (7) is equivalent to

def tD def
= T (t) t) D(p) - f Bt _sf(S,x)ds = T (t)(Cp)+Tl(t).

It is now an easy matter to verify the assertions in the theorem.

Since the condition that D is uniformly stable implies the

linear operator S(o) = TD(wO)* has spectrum contained inside the

unit ball, Corollary 6, Lemma lb) and Corollary 10 imply

Theorem 4. If there exists an C > 0 such that f(t+w,cp) = f(t,c) for

all cp E C, f takes bounded sets of R X C - En and system (2) is

compact dissipative, then there is an A)-periodic solution of (2). If f

satisfies the same hypotheses and is independent of t, then there is a

constant function c in C such that f(c) = 0; that is, an equi-

librium point of (2). If D(@) = cp(O), then the same conclusions are

true for point dissipative.
I
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