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Fixed Point Theorems and Dissipative Processes

by
Jack K, Hale and Orlando Lopes

1. Introduction

Suppose X 1is a Banach space, T: X —»X is a continuous mapping.
Thé*map T is said to be dissipative if there is a bounded set B in
X such that for any x € X, there is an integer N = N(x) with the
property that ‘'x €3 for n > N(x). In his study of ordinary dif-
ferential equations in n-dimensional Euclidean space (which were: ®--
periodic in time), Levinson [ 12] in 194k initiated the study of dl!§ipative
systéms with Tx representing the solution of the differential eéuaéibn
at time « which started at_.x.‘at time zero. The ﬁasic problem is
to give information about the limiting behavior of orbits of T and
to discuss the existence of fixed points of T. &ince 19&&, a tre~'
mendous literature has accumﬁlated ori this sﬁbject and thé réader may
consuit LaSalle [11], Pliss [ 147, Reissig, Sansone and Conti [15] and
Yoshizewa'[16] for references. Levinson [12] showed that some iueréte-ofv
T has a fixed point and he characterized the maximal compact invariant
set of T. Later (see Pliss [14]), it was shown that the maximal compact

invariant set was globally asymptotically stable and that some power cf T

has a fixed point, the latter teing proved by applying the fixed point

theorem of Brouwer.

For the special case of the Banach space ¥ arising in retarded
functional differential equations, and T completely continuous, Jones [G]
and Yoshizawé [ 16] showed thét T has a fixedvpoinﬁ by using Browder's

‘theorem. For an arbiﬁrary'Banach space X 'and T complefeiy‘chfinuous,
the same result was obtained by Horn [8] and by Gerstein and Krasnoselskii

[5] with applications to parzbolic partial differential equations. Recently,



Billotti and LaSslle [ 1] have obtained the same result with T com-
pletely continuous, They have in addition characterized the maximal
compact invariant set and proved that it is globally asymptotically
stable.

- Gerstein [ 4] has considered the case when T is condensing
on balls in X; in particular, if o(TB) < o(B) for any bali BCX
and @ is the measure of Boncompactness introduced by K;iatowski (see
. Dafbo.[B]). Gerstein showed there is a makimal compact invariant set
and a few other properties, but said nothlng about - flxed p01nts of T.
-Nore xecently, Hale, LaSalle and Slemrod [ 7] have considered a sllghtly
-stronger definition of dissipative and a class of operators T which
includes O-contractions or k-set contractions; that is, there is af
constant k, 0 <k <1, such that o(TB) < ka(B) for any bounded B C X.
They have characterized the maximal compact invariant set of T, shown
" that it is asymptotically stable; and proved that some iterate of T has
a fixed fdint. | o

There are a number of deficiencies in the above theorieé, two

of which are the following: First, in the applications to w-periodic
retarded functional differential equations, the hypothesis that T is
completely continuous implies .that the period w inrthe equation is
greater than or equal to the delay zr in the differential system. in
particular, this implies the above theory can not be employed to show the
existence of an equilibrium point for an autonomous equation'by taking
a sequence of periods approaching zero. However, with the avallable knov‘edge
. on asymptOulc fixed point theory (see for examp]e, Jones [10]), the zntardea

equations can be handled directly for any - ® > O. Secondly, in neutral



functional differential equations, the operator T is not even completely con-

tinuous when > r and the most that can be obtained is a special form of an

Q-contraction. However, the above theory for this case implies only
that some iterate.of- T has a fixed poiﬁt.

It is the purpose of this paper to consider the same type of
operators as considered by Hale, LaBalle and Slemrod [ 7] and to impose
an additional condition on T which will ensure that it #as a fixed
Lﬁoint. At first glance, this‘latter condition'looks very strange, but
it will be shown that the condition is always satisfied for T vcondens-
ing and local dissipative. Applications are given to a class of neutral

-

funetional differentiai equations,

2. Dissipative systems.

The €-neighborhood of a set K CX will be denoted by BS(K),
.the closure by CL(K) and the convex closure by &o(K). Let (k) be
Jthe Kurétowéki measure of noncompactness of a bounded set K in X (see [3]).
Suppose T ié a continuous map T: X —»X. The mep T is said to be

weak condensing if for any bounded K C X for which oK) > 0 and T(X)

is bounded it follows that o(T(K)) < a(K). The mep T is said %o be &

weak Q-contraction if there is a constant k,0 <k <1, such that for any

bounded set KC X for which T(K) ‘is bounded, it follows that o(T(K)) « ka(K) .
If; $ ~takes bpunded Sets into_bounded~§etsg then a weak‘ a~-contraction is

20 Lo . - .
an g-contraction. The map T is said to be weak completely continuous

if there is-an integer nO such that for any bounded set B C X, there is

¥
a compact set B C X with the property that, for any integer N > n, . and.

. *
any x € X with ™x e B for 0 <n <N, it follows that ™x ¢ B~ for:

y <n<N. If T is weak completely continuous it is week condensing.
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If T is completely continuous then T is weak completely continuous.

The map T is said to be asymptotically smooth if for any bounded set

B C X, there is a compact set B* CX such that for any € > 0, there is
an integer nO(S,B) with the property that T'x ¢ B for n >0 implies
™% € BS(B*) for n > nO(S,B).

For a given continuous map T: X =X, we say a set K CX attracts

a set HCX if for any €& > 0, there is an integer N(H,e) such that

™(H) CfBe(K) for n > N(H,£). We say K attracts compact sets of X if

K attracts each compact set H-CX. '‘We say K attracts neighborhoods

of coémpact sets of X if for any compact set H C X, there is a neighbor-

hood HO of H such that X attracts Hb.

A continuous map T: X =X is said to be point dissipative if there

is a bounded set B C X with the property that, for any x € X, there is an
integer N(x) such that T'x € B for n > N(x). If B satisfies the
- property that for any compact set A CX; there is an integer N(A) such

that T(A) CB for n > N(A), then T is said to be compact diésipative.

If B satisfies the property that for any x € X, there is an open neigh-

“borhood O_ and an integer N{x) - such that TnOX,CZB, n > N(x), then T

is said to be local dissipative. Obvicusly, local dissipative implies
compact dissipative implies point dissipative..

We now give a few relations among the above concepts.

Lemma 1. a) (Hale, LaSalle, Slemrod [T7]). If T is continuous, local

dissipative and asymptotically smooths, then there is a compact set K C X

which attracts neighborhoods of compact sets of X.
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b) (Billotti and LaSalle [1]) If T is continucus,
point dissipative and Tno is weak completely continuous, then there‘
is a compact set KC X such that for any compact set HC X , there
is an open neighborhood H, of H and an integer N(H) such that

0

Yo TJ}IO ‘is bounded and TnHO CX for n>N(H . In particu-

"lar, T is local dissipative and T asymptotically smooths.

Lemma 2. If T: X »X 1is continuous and there is a compact set K‘C X
that attracts neighborhoods of compact set.;:. of f( ©, then

a) there is a neighborhood H) C Hy, the above.neighbor-
hood of H, such that Un >0 Tn'Hl is bounded;

b) U, S o 9B  is precompact if B is compact.

Prbof: a) TFirst of all observe that a continuous function
is bounded in some neighborhood of a compact sete If HC X 1is
compact and W = nl(H,S) is the number occuring in the definition of

"~ the concept of attracts neighborhoods of compact sets, consider the

sets H,T(H),ee., T T(H) . Let Qo"“’QN-l be corresponding
neighborhoods where T is bounded. .Define Oy = BS(K), I‘N = Q
o -1 : _' - . . A
Fi = T (Qi-:~l) N Qi . The set H) = I‘O satisfies the required
property.
b) The set A = Us s 7B is bounded. Since TY(B)

is compact for any j we have «f(A) = af Uj > T (B)) for any n .

But Agiven e >0 ,4i~f n > nl(B,Ei) , we have U] - I8 By (B) and

thus ofA) < 2€ . Thus afA) =0 and A is compact. This proves

the Lemma.
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The following result was proved in [7] if we use Lemmas 1 and 2.
Theorem 1. If T: X »X 1is continuous and there is a compact set KCX

which attracts neighborhoods of compact sets of X, then J = nj S OTJ(K)

is independent of the sets K satisfying the above property, J is the

maximal compact invariant of T and is globally asymptotically stable.

o ~ The hypotheses of Lerma 2 also imply there is a closed, bounded

o

convex neighborhood U of Ki and an integer n such thaf (V) Cfﬁ.
Thus; if T possesses the fixed point property, then some iterate of T
has a fixed point (see [T7]).
Regarding fixed points of T , it is known (see [9], [11;.]“,_.‘[5],
(8}, [1]) that T completely continuogs and point dissipative implies T
has a fixed point. Below, we give some weaker conditions which assert
that T has a fixed point, but before beginning this discussion, there

is one other interesting result regarding condensing maps which was stated

without proof by Gerstein [ 4] for point dissipative systems.

Theorem_é. a) If T:X -X 1is continuous, weak condeﬁéiﬁg.and conpact
dissipative, then there is a compact invariant set K which attracts
compact sets of X and T is local dissipative.

b). If T is weak condensing and point dissipative then there

is a compact invariant set K that attracts points of X .

Proof: a) It.is an easy matter to prove the following fact: If H is

a compact set such that T:H - H , then the set A = f\Tn(H) is compact,

non empty, T(A) = A and T (H) tends to A in the Huusdorff metric.
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Now, for any compact set L of X',_let L, = L%>OTJ(L). Since L is
‘bounded, L, =1L LJT(Ll) and T is weak condé;sing, it follows that
oc(Ll) =0 and thus H = Cl(Ll} is compact. Also T(H)C H . Let
AL 'é Ny o ™ (H) . But, Ey hypothesis, therg‘is a closed
boundéd.set BCX -suchkthat AI,C:B for each compact set L .
Since T(LJAL) = L)AL » where the union is taken over all compact

~sets LCX , it follows that the set K = Cl(LJAI) is compact,

T(K)C X , and K attracts compact sets of X.

Nussbaum [ 137 has shown that if a non-empty invariant set
attracts compact sets then 1% attracts neighborhoods of points and so if T 1is
is weak condensing and compactIQissipatiye_it is local dissipative. This proves
2) and the proof of b) is the same. |

With a slight change in the agéument abo#é, ﬁe can
prove the following:

Lemma 3. If T is a weak Q- contraction, then
T asymptotically smooths.

Proof: If B is a bounded set, then B* = CL(UA)) ,

where AX is constructed as above for the elements x € B

such that T x e.B s for any n>0 .

Corollary. If T 1is a weak o-contraction and local dissipative,

then there is a compact invariant set that attracts neighborhoods of compact sets.

3. Fixed point theorems. In this section, we

prove some fixed point theorems which have spplications to the
dissipative systems of the previous section. We need the follow-

ing obvious :
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Lemma L. 'If A is a coﬁpacf set of X and FCX
contains a sequence {Xn} such that d(xn,A) 5 0 as n -9 ®
then ANTFH# ¢ . N _ |

Theorem 3 | Suppose K CBCSCX are convex

subsets with K compact, S closed, bounded, and B open in S .

If T: S —-X is continuous, YBCS, j_>m'0 ,'and' K attracts
points of B , then there is a convex, closed bounded subset A

of S8 such that .

- w3 md
A = co[Ujle(BﬂA)],AﬂK £ 6 .

Proof: Let 5 Dbe the set of convex, closed,
bounded subsets L of S such that T9 (_B NL)YC L for j>1
and LNK # ¢ . The family % is not empty because S ¢ F.

If Le % , let Ll=E'6[-U1.>1'TJ(BﬂL)] . By Lemma k4,

L,N K 9&’ $ . Also, L, is convex, clésed, and contained in S .

1
Since Le &, we have L DL, and L, D EN DD TYEN L)
for all j>1 . Thus, I, ¢ % . It follows that a minimal

element A of % will satisfy the conditions of the theorem.

To prove such a minimal element exists, let

(L)

aoel
L =

be a totally ordered family of sets in % . The set

e T is closed, convex and contained in § . Also,

BN L) C (8 NL)C L, foreny ael and j> 1. Thus,
BEBNAL)C L for j>1. If J is any finite subset of I ,

ae s Loz)'?( ¢ and, from compactness, it follows

that K N (ma - Loz) 4 ¢ . Thus, Le¥% and Zorn's lemma

we have K N(N
yieids‘ the conclusion of the 'th'eorem.

The same procf as given in Theorem 3 also proves

the following:
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Theorem L. The set A of Theorem 3 is compact if
and only if there is a compact set @ = Q(B) such that QN B 7! ¢

and Tj(QﬂB)CQ for all j >0 .

Lemma 5. (Horn [8]). Let 8,C SlC S, be convex -

subsets of a Banach space X with So’SE compact and S, open

1
in S2 . Let T: 82 - X be a continuous mapping such that for
some integer m > 0 , TJ(Sl) CS, ,0< <1, TJ(Sl)C S,

m<j<2m=-1 . Then T has a fixed point.

Theorem 5. Suppose KC BC SC X are convex sub-
sets with K compact, S closed bounded and B open in S .. It
T: S »X 1is continuous, ‘TjB cs, j=>0 , K attracts co.mpact'
sets of B and the set A of Theorem 3 is compact, then T has
a fixed point.

M:- Since K is compact and convex, the set
B can be taken as S ﬂ@e(K) for some € >0 . Let Q be as
in Theorem 4, 8, = Cl(_@e/Q(K)) Nnqg , 8, = %, (K NQ and

=8MNQ . Then SOC Slc S, S Sy compact and S

Sp 1
is open in S, . Also, TJ(Sl) Cs, , 0<3<mn(Ke) and

o 2

Tj(sl)C s, for J§> nl(K,S) for some integer nl(K,Ei) . An
application of Lemma 4 completes the proof of the theorem.

It is clear that Theorem 5 is equivalent to the
theorem of Horn. |

Any additional conditions on the map T which will
ensure that the set A in Theorem 5 is compact will yield a fixed

point theorem using Thecrem 5. One result in this direction is
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Theorem 6. If T is weak condensing, then the

set A in Theorem 5 is compact.

Proof: If 'K:UjZlTj(BnA),then X =
T(BNA) UT(E) and MM:a(m=mwm@@ﬂAﬂ,Mﬂ1ﬂ.
since oT( X)) <a(E) if «(R) >0, it follows that
o X) = a(T(BNA)). Thus, if a(BMA) >0 , then a(b) =
o E) <a(BNA) <a(s) and this is a contradiction. Thus,
a(BMA) = 0 . However, this implies «a(A) =0 and A is

compact, proving the theorem.

Corollary 1. If the sets K,B,S in Theorem 5 exist,
if X attracts the compact sets of B and T is weak condensing,
then T has a fixed point.

Proof. This is immediate from Theorems 5 and 6.
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Corollary 2. If T: X » X is continuous, point~
wise dissipative and T is weak completely continuous, then T

has a fixed point.

Proof: This is immediate from Lemma 1b) and

Corollary 1.

Corollary 3. If T is a weak « - contraction and

thére are sets X,B,S as in Corollary 1, then T has a fixed point.

Corollary ﬂ. If T 1is weak condensing and compact

dissipative, then T has a fixed point.

Proof: From Theorem 2a),'T is a local dissipative

system. Thus ‘co X has an open convex neighborhood B with bounded
orbit. The result now follows from Theorems 2, 5, 6.

For a-contractions, this result is contained in [137.

n_ .
Corollary D. If T ® is weak completely continuous, T

is weak condensing and point dissipative, then T has a fixed point.

Proof: This follows from Lemma 1b) and Corollary 4.
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Lemra é. If S: X - X 1is a bounded linear operator
with spectrum contained in the open unit ball, then there is an

equivalent norm, |-|l , in X such that |S |1 < 1.

Proof. Define |x |, ={x]| +|sx| + ... +_|Snx| R

The assumption on the spectrum implies there is an 0 < r <1 such

that |Sn | < ' if n is sufficiently large. Thus, there is a

constant K such that |x| < |x ll < Klx| . Also, for x #0

-1
| sx | 2 -
ST g [aedesl o, dsxl L] s
l=1, B Ix |

=i

The lemma is proved.

Corollary 6. If T is compact dissipative, T = S + U, where

S is linear and continuous with spectrum contained in the open unit ball

ana T(Q) %bounded implies C1(U(Q)) coméact for ény QCx ,
then T has a fixed point. If, in addition, Sno is completely
continuous and T is only point dissipative, then T has a fixed
point.
Proof: The first statement is immediate from
Corollary 4 and Lemma 6. The second follows from Corollary 5
n n

and the observation that T ° is s © plus a completely continu=-

ous operator.
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The next result generalizes an asymptotic fixed

point theorem of Browder [2].

Theorem 7. Suppose SO,Sl,S2 are subsets of a
Banach space, So’S2 convex, closed, Sl open, 82 bounded,
So(: Sl(: 82 e Assume T: 82 = X 1is condensing in the following
sense: if @, T(Q) are contained in S, and a(@) >0, then
a(T(Q)) < a(Q) . Assume also that T satisfies: for any
compact set HC S, , Tj(H)C: S5 » J >0, and there is a number
N(H) such that Tj(H)C 8, for J>N(H) « Then T has a
fixed point.

Proof: Following the proof of Theorem 2, there is

a compact set K which attracts the compact sets of S Since

l .
KC S,  , it follews that o KCS, . Let B be a closed, convex
neighborhood of ©¢o K, B CSl . Theorems 4 and 5 complete the

proof.

L, Dissipative flows.

Let |{T(t), t> O} be a flow in a Banach space X .
A point x € X 1is said to be an equilibrium point if T(t)xO = X
for any % >0 . We also say that a'compact set J attracts a

compact set H if, for any € > O , there is & t*(H,€) such

that T(t)HCBe(J) for t > t*(H,e) . A set QCX is said to

be boundedly compact if PN Q is compact for any closed bounded

set PCX .
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Theorem 8. If {T(t), t> 0} satisfies:
al) there is a compact set J that attracts the

compact sets of Jos

aé) there is a number w > 0O and a famlly of
boundedly compact (1n partlcular compact) sets Q(1), 0<T<w
such that Q(1) N I, #¢ and T(k1)Q(v) NQr) ,0< 1 <w,
k positive integer; T | | h
then there ié an equilibrium point.
* .Egggﬁz Take thé seéuence ﬁh =w/n . From

Theorems 2, 4, 5, it follows that for each n, there is an x

satisfying: T‘(Wn)xn =% - Since W, > 0, x 1is in J.
Changing the notation if necessary, we mzy assume that Xn
converges o X, Let kn(t) be the integer defined by:

kn(t)wn <t < (kn(t) + l)w . Then, T(k (t)w )x = x  and

so: |T(t)xo - X, | lT(t)X - L(k (t)w )X | + |T(P (t)w )x -
B(kn(t)wh)§n|_+ Ign - Xo | . Slnce k (t)w tends to t as

, e :
n — o , the right hand side of the above expression goes to

zero and this proves the theorem.

As an application of Theorems 4,5 and 8, we have:

Corollary 7: If {T(t), t >0} is weak condensing
for any t >0 and satisfies a,), then there is an equilibrium

point.
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Corollary 8. If {T(t), t> 0} is a weak o ~ con-

traction and satisfies al) ; then there is an equilibrium point.
A flow {T(%), t > 0} is said to be local dissi-
pative if there is a bounded set B such that for any point
x € X there is a neighborhood Ox of x and a t(x) such that
T(t)OxC B for t> t(x).
A flow {T(t), t >0} is compact (point) dissipative
if there is a bounded set B such that for any compact set H
(any point x ) there is & 4(H) (4(x) such that. T(HEC B (2(8)x < B)

for t > t(H) (t > t(x)) .

Lemma 7.

a), If T(w) is weak condensing for some w > O
and is compact (point) dissipative with compact attractor K 5
T(w)KC K , then {T(t), t >0} is compact (point) dissipative »

with attractor J =y T(t)X .

oLt<w
b). If there is & compact set K such that
T(w)XC K and K é.ttracts neighborhoods of points, then the set

J above attracts neighborhoods of points relative to the flow

), t>0) .

c), If {T(t) 2> 0} 1is weak condensing for some o > o}

and compact dissipative, it is local dissipative,

Proof:  For any € > 0 , there is a 8> 0 such
that T(t)B5(K) - BS(J), 0<t<w. Since T(WKCK,
narts a) and b) are proved. Part ¢) follows from Theorem 2, and

parts a) and b).
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Corollary 9. If for some w >0, T(w) is weak
completely continuous and point dissipative then {r(t), t >0} is

local dissipative.

Proof: The set XK in Lemma 1(b) may be chosen to

satisfy the hypothesis of Lemma 7(b). From the previous theorem,

we can state the following:

Theorem 9. If (T(t), t > 0) is weak ccndensing for
t > 0, then the following assertions hold:
ay. If {T(t), t >0} 4is compact dissipative, then

there is an equilibrium point;

b). If {T(t), t >0} is point dissipative and T(w)
is weak completely continuous for some w > O, then there is an
equilibrium point,

Corollary 10. TIf [T(t) = S(t) + U(t), t > 0}
then the following assertions hold:

a). If {@(t), t>0} is compact dissipative, S(t)
is linear with spectrum contained inside the unit béll for £t >0
and U(t) is weak completely continuous, then there is an equilib-
rium point.

b). If S(w) is completely continuous for some

w>0 and {T(t), t >0} is point dissipative, there exists an

equilibrium point. -
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- 5. Functional differential equations.

Aé an application of the previous results, we consider a special
class of neutral functional differential equaﬁions which are periodic
in time. Let r > 0 be a given real nﬁmber, E' be an n-dimensional
linear vector space with norm |-], C([a,b],En) be the space of continu-
ous functions from [a,b] to E° with the uniform topology and let
C= ¢({-r,0],EY). For 9 ¢, |o| = SUP_pcppl ®(6)}. For any xe

¢([ -r,A),E"), A >0, let x,  €C, t€ [0,A], be defined by x,(6) =

t
x(t+0), -r <6 <0. Suppose D: RXC SE" is a continuous linear operator

Do = 9(0) -g(t,9),

: 0
g(t,9) =/ [an(t,0)19(6)
(1) s
|] Lau(t,0)10(6)] < v(s)]o],

for s>0, peC where L isan n X n wmatrix function of bounded
variation, ¥ is continuous and nondecreasing on [O,r]}, Y(0) = 0. If

I RXC -E i% continuous, then a NFDE is a relation
(2) 2 p(t,x,) = £(t,x,)
dt 7% . ITES
A solution x = x(p) through © at time 0. is a continuous function

defined on [o-r,0+A), A > O, such that X, =0, D(t,xt) is continuously

differentiable on (o,0+A) and (2) is satisfied on (o0, 0+A). .We assume
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We assume a 'solution x(p) of (2) through any ¢ € C exists on [o-r,),
is unique and x(9)(t) depends continuously on (p,t) € C X [o-r,),
In the following, we let T (t,0)I C =C, t > 0, be the continuous
linear operator defined by TD(t, o) = yt(cp), t > o, where y = y(p) is

the solution of

a
(5) 'E-ED (t;yt) = 0, yo. = Q.

If 'D is w-periodic in t, CD = {p €C: D(O,cp) = 0}, then CD is a
Banach space with the topology of c, TD(w,O)Z Cp 2Cp and

n .
TD(nw,O) = TD(W,O).

The operator D is sald to be uniformly stable if there exist

constents K > 1, a > O, such that

-a(t-c)l

(%) | T (%, )] < Ke 9], ®€C, t>o.

Notice the operator DP = 9(0) corresponding to retarded functional 4if-

ferential equations is always stable.

Remark., - The conclusion of the main theoreni below is valid under the weaker .

(6]
hypothesis that D(9) = Do_(cp) + [ A(6)p(0)d6 where D, 1is stable, For
-r
simplicity in notation, we do not consider this more general case.
We need some results from Hale and Cruz [6]. It is shown in [6] that

D uniformly stable implies there exists an n X n matrix function B(%)
defined and of bounded variation on [ -r,o), continuous fram the left,

B(t) =0, -r <t <0, and a constant M, such that
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(5) |TD(t)cp| < Mllcpl , t>0, 9 €C, sup B(t) < M,
> -r

and, for any continuous function hi [O,w) —>En, the sclution of the prob-

lem
g
(6) D(t,x%) = D(0,9) + é h(s)ds, Xy = @
is given by
t
(N x, = Tp(t)e - (f) B, j(s)ds .

Furthermore, there exist n functions Pyreces®y in C such that
D(0,0) = I, the identity, where © = (py,...,9 ).

Let V: C —>CD be the continuous linear operator defined by V() =

¢ - oD(9).
Lemma 8 « If D is uniformly stabie and f maps bounded
~sets:of . RxC into bounded- sets of - E , Then -there is'a family
of continuocus transformations Tl(t): C—->C, t>0 wvwhich are

weak completely continuous and

~ def
T(t,0)0 = T(t)e = =x.(0) = T (E)¥(e) + T ()0

If Dp = @(0) , then T(t) is weak completely continuous for + > r .
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Proof: Equation (2) with initial value x, =@ is equivalent to
t
D(x.) = D(p) + é f(s,x)ds, t>0, x; =9,

which from (7) is equivalent to

def . t D def '
T(t)e = x = T (t)¥(p) + T (t)eD(9) - é Bt_sf(s,xs)ds = Tp () ¥(9)+T, ().

It is now an easy matter to verify the assertions in the theorem.
Since the condition that D is uniformly stable implies the
linear operator S(®) = TD(w)W has spectrum contained inside the

unit ball, Corollary 6, Lemma 1b) and Corollary 10 imply

Theorem 4. If there exists an ® > 0 such that f£(t+ww,p) = £(t,9) for
all ¢ € C, f takes bounded sets of R X é —>En and system (2) is
compact dissipative, then there is an w-periodic solution of (&), 1 *
satisfies the same hypotheses and is independent of 1+, then tThere is a
constant function ¢ in C such that f(e) = 0; that is, an equi-
librium point of (2). If D(p) = ®(0), then the same conclusions are

true for point dissipative. -
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Fixed Point Theorems and Dissipative Processes

by 1
Jack K, Hale and Orlando Lopes

1. Introduction

Suppose X 1is a Banach space, T: X =X is a continuous mapping.
The map T is said to be dissipative if there is a bounded set B in
X such that for any x € X, there is an integer N = N(x) with the
property that T'x € B for n > N(x). In his study of ordinary dif-
ferential equations in n-dimensional Euclidean space (which were w-
periodic in time), Levinson [ 12] in 194k initiated the study of dissipative
systems.with rTx” representing the solution of ‘the differential equation
at time o which startéd at x at time zero. The basic problem is
to give information about the limiting behavior of orbits of T and
to discuss the existence of fixed pointé of -T.. Since 1944k, a tre-
méndousilitérafure hés accumﬁiated on this subjéct and the reader may
consult LaSalle [11], Pliss [ 1], Reissig, Sansone and Conti [15] and
Yoshizawa tlé] for references, Levinsén fléj showed that some iterate of
T has a fixed point and he characterizéd the maximal compact invariant
set of T. Later (see Pliss [1L]), it was shown that the maximal compact

invariant set was globally asymptotically stable and that some power of T

has a fixed point, the latter being proved by applying the fixed point

theorem of Brouwer.

For the special case of the Banach space X arising in retarded
functional differential equations, and T completely continuous, Jones [ 9]
and.Yoshizawa [].6] showed that. T has a fixed point by using Browdér's
theorem, Tor an arbitrary Banach space X and T completely continuous,
fhe same result was obtdined by Horn [8] and by Gerstein and Krasnoselskii

(5] with applications to parabolic partial differential equations. Recently,



Billotti and LaSalle [ 1] have obtained the same result with T com-
pletely continucus. They have in addition characterized the maximal
compact invariant set and proved that it is globally asymptotically
stable,

Gerstein [ 4] has considered the case when T is condensing
on balls in X; in particular, if o(TB) < o(B) for any ball B CX
and Q@ is the measure of noncompactness intfoduced by Kuratowski.(see
. Darbo [3]). .Gerstein showed there is a maximal compact inveriant set
and a few other propert1ns, but said noth1ng about fwxed p01nts of T.
More recertly, Hale, LaSalle dnd Qlemrod [7] have con81dered a sllgh+ly
stronger definiticn of dissipative and a class of operators T - which
includes a-contractions or k-set contractions; that is, there is a
constant k, O _<_‘k < 1, such that o(TB) < < k(B) for any bounded B C X.
They have characterized the maximal compact invariant set of T, shown
fhat it is asymptobically stable, and proved that some iterate of T has
a fixed pOLUu.‘

There are 2 number of deficiencies in the above thecries; fwo
cf which are the foliowing: First, in the applications to w-periodic
retarded funcitional differential eoa?twop s, the hypothesis that T is
completely continuous implies that the period w in the equation is
greater than or equal to the delay r in %he'differential system. In
@articular, this implies the above theory can not be employed to show the
existence of an equilibrium point for an auntonomous equation.by taking
a seguence of periods approaching zero. However, with the available krowlpﬁge
o asymptotic fixed ﬁaint Lheory {see for exanple, Joneq [10]), the retarded

eguations can be handled directly for any @ > O, Secondly, in neutral



functional differential equations, the cperator T 1ig not even completely con-
tinuous when ® > r and the most that can be obtained is a special form of an
G-contraction. However, the above theory for this casé implies only
that some iterate of T has a fixed point.
| It is the purpose of this paper to consider the same type of
. operators as considered by Hale, ILaSalle and Slemrod [7] and to impoze
an additional condition on T which will ensure that it has a fixed
‘ﬁoint. At.first.glance, this Jatter condition looks very strange, but
it will be shown that the condition is always satisfied for T condens-
ing and local dissipative. Applications are given to a ¢lass of neutral
funcfional d;fferéntial equations. |

2, Dissipative systems.

The €-neighborhood of a set K C X will be denoted by Bg(K),
-the closure by C1{K) and the convex closure by &o(K). Let (X)) Te
~the Kurétowéki ueasure of noncompactness of a vounded set K in X (see [3]).
Suppose T is a continuoué map T: X -X., Themap T _is said to be

weak condensing if for any bounded K T X for which oK) > 0 and T(K)

is bounded it follows that a(T(X)) < a(X). The map T  is said to be a

weak Q-conbraction if there is a constant k,0 < k < 1, such that for any

bounded set KC X for which T(X) is bounded, it follcws that a(T(x)) gka(K).
If T tekes bounded sets into bourided sets, then a weak «-contraction is

. no . L
an a-contraction. The map T i1s said to be weak completely continuous

if there is an integer nO such that for any bounded set B C X, there ig

*
a compact set 3 CX with the property that, for any integer N > no and
n

) n ¥-
any x € X with TxeB for 0 <n<N, it follows that T x e B for

1y <n<N. If T is weak completely continuous it ig weak condensing.
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If T is completely continuous then T is weak completely continuous.

The map T is said to be asymptotically smooth if for any bounded set

B CX, there is a compact set B* CX such that for any € > 0, there is
an integer no(e ,B) with the property that Tnx €eB for n >0 implies
™% ¢ B, (B*) for n>n(e,B).

For a given continuous map T: X - X, we say a set K CX attracts

a set HCX if for any € > 0, there is an integer N(H,&) such that

7" (H) CBS(K) for n > N(H, ). We say K attracts compact sets of X if

K attracts each compact set HCX. We say K attracts neighborhoods

of compact sets of X if for any compact set H C X, there is a neighbor-

hood HO of H such that K attracts H..

A continuous map T: X - X 1is said to be point dissipative if there

is & bounded set B CX with the property that, for any x ¢ X, there is an
integer N(x) such that T'x € B for n > N(x). If B satisfies the’
property that for any compact set A C X, there is an integer N(A) such

that TU(A) CB for n > N(&), then T 1is said to be compact dissipative.

If B satisfies the property that for any x € X, there is an open neigh-
borhood O and an integer N(x) such that ’l‘noy CB, n>N(x), then T

is said to be local dissipative. Obviously, local dissipative implies

compact dissipative implies point dissipative.

We now give a few relations among the above concepts.

2]

Lemma 1. &) (Hale, LaSalle, Slemrod. [7]). If T is continuous, loecal
dissipative and asymptotically smooths, then there is a compact set K CX

which attracts neighborhoods of compact sets of X.



Do
b) (Billotti and LaSalle [1]) If T is continuous,
point dissipative and TnO is weak completely continuous, then there
is a compact set K C X such that for any compact set HC X , there
is an open neighborhood Ho of H and an integer N(H) such that
Yl g TjHO is bounded and TnHO CK for n>N(H) ‘. In particu-

lar, T is-local dissipative and T asymptotically smooths.

 Lemma 2. If T: X »X dis continuous and there is a compact set KT X
that attracts neighborhoods of compact sets of X ', then

a) there is a neighborhood Hl(: Hy, the above.neighbor-
hood of H, such that lJn >0 TnHl is bounded;

o) le > 0 TJB  is precompact if B is compact.

Proof: | a). First of allvobsefvé-that a continuous function

is bounded in some neighborhood'of a compéct set.A If HCX 1is
compact and N = nl(H,S) is the number occuiing in the definition of
* the concept of attracts neighborhoods of compact sets, consider the -
sets H,T(H),e00, .'I'..N-l(H) o Tet 0g,e00,0 o rres ' |

- neighborhoods where T 1s bounded. Define Q

be corresponding

= Bé-(K), T =0,

N N N
’ m-l T . . . 4 ‘ .
Fi = T (Qi+l)fﬁ Q; . The set Hl = PO satisfies the required
property.
b) The set A = Ui s o 793 is bounded. Since TI(B)

is compact for any J we have a(d) = a(tjj .- T(B)) for any n .

'ro." ‘-.c;~ ~. ' .,.. .uj \V
But given € >0 , if n > nl(B,e) , we have le > n B C BS(B) and

thus a(A) < 2¢& . Thus o(f) =0 and A is compact. This proves

the Lemma.
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The following result was proved in {7] if we use Lemmas 1 and 2.
Theorem 1. If T: X »X is continuous and there is a compact set K C X
which attracts neighborhoods of compact sets of X, then J = ﬂj S OTj(K)
is independent of the sets K satisfying the above propefty; J —is &he
maximal compact invariant of T and is globally asymptotically stable.
o ~. The hypotheses of Lemma 2 also imply there is a closed, bounded
convex neighborhood U. of K' and an integer =n .such tﬁaf Tn(U) Ciﬁ.

Thus; if T possesses the fixed point property, then some iterate of _T

has a fixed point (see [7]).

Regarding fixed points of T , it is known (see [9], [lhj,-[5],
[8], [1]) that T completely continuous and point dissipative implies T
hag a fixed point., Below, we give some weaker conditions which assert
that T has a fixed point, but before beginning this discussion, there
is one other interesting result regarding condensing maps which was stated

without proof by Gerstein [4] for point dissipative systems.

Theorem 2. a) If T:X =X is continuous, ﬁeak condenéiﬁgAand compact
dissipative, then there is a compact invariant set X which attracts
compact sets of X and T is local dissipative.

b) If T is weak condensing and point dissipative then thére

is a compact invariant set X that attracts points of X .

Proof: a) It is an easy matter to prove the following fact: If H is

a compact set such that T:H —H , then the set A = NT(H) is compact,

non empty, T(A) = A and T (H) tends to A in the Hausdorff metric,



Te
Now, for any compact set L of X , let L, = Uj>OTJ(L). since L, 1s

bounded, Ll =L L}T(Ll) and T 1is weak condensing, it follows that

a(L.) = 0 and thus H=Cl(Ll) is compact. Also T(H)C H . Let

1)

A T(H) . But, by hypothesis, there is & closed

bounded set B C X such that A, C3B for each compact set L .
Since T(L)AL) = L)AL , where the union is taken over all compact
- sets LCX , it follows that the set K = Cl(LJAI) is compact,

™X)C K , and K attracts compact sets of X.

Nussbaum [ 13] has shown that if a non-empty invariant set
attracts compact sets then it attracts neighborhoods of points and so if T is
is weak condensing and compact dissipativg it is local dissipative. This proves
a) and the proof of b) is the same.

With a slight change in the aféﬁﬁent.abo§e, ﬁe can
prove the following:

Lemma 3. If T is a weak Q= contraction, then
T asymptotically smooths.

Proof: If B is a bounded set, then B* = cl(UA) ,

where Ax is constructed as above for the elements x € B

such that T x e'B ; for any n>0 .

Corollary, If T is a weak a-contraction and local dissipative,

then there is a compact invariant set that attracts neighborhoods of compact sets.

3. Fixed point theorems. In this section, we

prove some fixed point theorems which have applications to the
dissipative systems of the previous section. We need the follow-

ing obvious :



Lemma k. If A dsa coinpact set of X and FCX
contains a sequence {xn} such that d.(xn,A) - 0 as n—> ®
then ANTF A ¢ . _ , o |

Theorem 3 - Suppose K CBCS(CX are convex
subsets with XK compact, S closed, bounded, and B open in S .
| If T: S —X 1is continuous, Tj BCS, j=0 ,‘ and X 'at"cract's
points of B , then there is a convex, closed bounded subset A

of S such that

—a j )
A = co[uj>lT(BnA)],AnK 4 6 .

Proof: Let £ be the set of convex, closed,
bounded subsets L of S such that Tj(BﬂL)C L for j>1
and L NK 7! ¢ . The family % is not empty because S ¢ F.
If Le$S , 1let L1 = ¢o [Uj >1 Tj(BﬂL)] . By Lemma L,

Llﬂ K# 6 . Also, L, is convex, closed, and contained in § .

1
Since L e &, we have L DI, and L, DT (BN L)D (B N L,)
for 211 j>1 . Thus, I, e % . It follows that a minimal

element A of % will satisfy the' conditions of the theorem.

To prove such a minimal element exists, let

(%)

Do e T be a totally ordered family of sets in % . The set

L = ﬂa e T is closed, convex and contained in S5 . Also,
Tj(Bn L) C Tj(B ﬂLa)C L, for any d eI and j> 1. Thus,
Tj(B NLYC L for j>1. If J is any finite subset of I ,
we have K N (ﬂa ¢ I La)j! ¢ and, from compactness, it follows
that XN (N, ¢ 1 L) 4 ¢ . Thus, L e¢¥ and Zorn's lemma

yvields the conclusion of the theorem.

The same proof as given in Theorem 3 also proves

the following:
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Theorem 4. The set A of Theorem 3 is compact if
and only if there is a compact set Q = Q(B) such that QNB # ¢

and TI(Q NB)CQ for all j>0.

Lemma 5. (Horn [8]). Let 5,C S:LC S, be convex -

subsets of a Banach space X with 80,82 compact and S open

1
in 82 . Let T: 82 — X Dbe a continuous mapping such that for
some integer m > 0 , TJ(sl) CS, ,0<j<m1, TJ(Sl)C S,

m<j<2m-1. Then T has a fixed point.

Theorem 5. Suppose KC BC-SC X are convex sub-
sets with K compact, S closed ‘;aounded and B openin S . If
T: S »X 1is continuous, ‘TjB cs, J2 O. , K attracts compacti
sets of B and the set A of Theorem 3 is compact, then T has
a fixed point.

| EIE(_)_f_:. Since K is compact and convex, the set
B éan be taken as S ﬂ_@e(K) for some € >0 . Let Q be as
in Theorem 4, S, = 01(96/2(1{)) neq , 8, = QS(K) NQ and

82=SﬂQ, . Then SoC SlC S, , 8_ , 8, compact and 8

0 1

is open in S, . Also, Tj(Sl) Cs, , 053 Snl(K,Ei) and
Tj(Sl)C 8, for J> nl(K,S) for some integer nl(K,C) . An
application of Lemma 4 completes the proof of the theorem.

.It is clear that Theorem 5 is equivalent to the
theorem of Horn.

Any additional conditions on the map T which will
ensure that the set A in Theorem 3 is compact will yield a fixed

point theorem using Theorem 5. One result in this direction is
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Theorem 6. If T is weak condensing, then the

set A in Theorem 5 is compact.

Proof: If A = Uj > 1 (BN A), then & =

L

2ENA) UT(E) and o) = alX) = mx(a(2(®N4)), a(X) .
since a(T(X)) <a(B) if oK) >0 , it follows that

oK) = T(BNA)). Thus, if a(BNA) >0 , then ofA) =

o 7{) <a(BNA) <a(A) and this is a contradiction. Thus,
a(BNA) = 0 . However, this implies a(A) =0 and A 1is

compact, proving the theorem.

Corollary l. If the sets KX,B,S8 in Theorem 5 exist,
if X attracts the compact sets of B and T 1is weak condensing,
then T has a fixed point.

Proof. This is immediate from Theorems 5 and 6.
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Corollary 2. If T: X » X is continuous, point-
wiée dissipative and T is weak completely continuous, then T
has a fixed point.

Proof: This is immediate from Lemma 1b) and

Corollary 1.

Corollary 3. If T is a weak o - contraction and

~

there are sets K,B,S as in Corollary 1, then T ha; a fixed woint.

Corollary E. If T is wesk condensing and compact

dissipative, then T has a fixed point.

Proof: From Theorem 2a), T is a local dissipative
system. Thus <c¢o K has an open convex neighborhood B with bounded

orbit. The result now follows from Theorems 2, 5, 6.

For a-contractions, this result is contained in [13].
%o
Corollary 5. If T is weak completely continuous, T

is weak condensing and point dissipative, then T has a fixed point,

Proof: This follows from Lemma 1b) and Corollary 4,
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Lemma 6. If S: X » X is a bounded linear operator
with spectrum contained in the open unit ball, then there is an

equivalent norm, |-|l , in X such that |s |, < 1.

Iy
Proof. Define |x | = bx | +]8x] + ooe # 8™k | + voo &

The assumption on the spectrum implies there isan 0 <r <1 such

that |s" | <™ if n is sufficiently large. Thus, there is a

constant XK such that |x| < |x], < klx| . Also, for x#0

1=

-1
| sx | 2 .
—-l=.1-[1+lSXi . Asxl +~--] < 1-= .
- K
PN PYRNTY

The lemma is proved.

Corollary 6. If T is compact dissipative, T = 8 + U, where

S is linear and continuous with spectrum contained in the open unit ball

aﬁa T(2) bounded implies C1(U(Q)) coméact for ény QCx ,
then T has a fixed point. If, in addition, Sn0 is completely
continuous and T is only point dissipati&e, then T has a fixed
point.
Proof: The first statement is immediate from
Corollary 4 and Lemma 6. The second follows from Corollary 5
ng n

and the observation that T is 8 ° plus a completely continu-

ous operator.



The next result generalizes an asymptotic fixed

point theorem of Browder [2].

Theorem 7. Suppose So,Sl,S2 are subsets of a
Banach space, 80,52 convex, closed, Sl open, 82 bounded,
So(: Sl(: 82 o Assume T: 82 - X 1is condensing in the following

sense: if 0, T(Q) are contained in S, and () > 0 , then

2
a(T(Q)) < a(Q) . Assume also that T satisfies: for any
compact set HC S, , Tj(H)C: S, , §>0, and there is a number
N(H) such that TI(H)C S_ for j>N(H) . Then T hasa
fixed point.
Proof: Following the proof of Theorem 2, there is

a compact set X which attracts the compact sets of S Since

l L)
KZCfSO , it follows that To KCsS . Let B bea closed, convex
neighborhood of w K, BCS, . Theorems 4 and 5 complete the

prdof.

4, Dissipative flows.

Let {T(t), t> O} be a2 flow in a Banach space X .
A point x € X 1is said to be an equilibriﬁm point if T(t)xO =X
for any t >0 . We alsoc say that a compact set J attracte a
compact set H if, for any € > O , there is a t*(H,€) such
that T(t)H CB,(J) for t> t*(H,'C) . A set QCX is said to

be boundedly compact if P M Q is compact for any closed bounded:

set PCX .
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Theorem 8, If {T(t), t > O} satisfies:
al) there is a compact set J that attracts the

compact sets of J_;

Oé) there is a number w > 0 and a family of
boundédly compact (iﬁbpéfticular compactj éeté (), 6 <t <w
such that Q(1) N Iy # ¢ and T(k1)Q(t) NQ(r) ,0<t<w,

k positive integer; ' R o -

then there ié an equilibrium point.

' Proof: Take the seéuence ﬁh = w/ . From
Theorems 2, 4, 5, it follows that for each n, there is an x
satisfying: T(wh)xn = x, .' Sincé W >-O ;>.xﬁn is'in J .
Changing the notation if necessary, we may assume that Xn
converges to x_ . Let kn(t) be the integer defined by:

kn(t)wn <t < (kn(t) + l)wn . Then, T(kn(t)wn)xn =x and

so: IT(t)xO - X l S .[T(t)xo-— T(kn(?)vh?Xgl f(‘?‘kn(t)wh)%o --

T(kn(t)wh)xn| + IXn - X | . Since kn(o)wh tends to ‘t as
“n - o ,. the right hand side of the above expression goes to

zero and this proves the theorem.

As an application of Theorems 4,5 and 8, we have:

- Corollary 7: If {T(t), t > 0} is weak condensing
for any t > 0 and satisfies al), then there is an equilibrium

point.
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Corollary 8. If ({T(t), t > 0} is & weak @ - con-

traction and satisfies al), then there is an equilibrium point,
A flow {T(%), t > 0} is said to be local dissi-
vative if there is a bounded set B “such that for any point
x € X there is a neighborhood O, of x and a t(x) such that
T(t)OX_C_B for t > t(x). . .
4A flow {T(t), t > O} is compact (point) dissipative
if there is a bounded set B such that for any compact set H
(any point x ) there is a _t(H) (t(x)) such that. T(¥)HC B (T(t)x € B)

for ¢ > t(H) (t > t(x)) .

Lems 7.

a), If T(w) is weak condensing for some w> O
and is compact (point) dissipative with compact attractor X ,
T(wKCK , then {r(t), t > 0} is compact (point) dissipative

with attractor J = U T(t)X .

o<t<w
b). If there is a compact set K such that
T(wWKCK and X éttracts neighborhocds of points, then the set

J above attracts neighborhoods of points relative to the flow

{T(t), t>0} .

c), If {T(t) >0} is weak condensing for some w > Q

and compact dissipative, it is local dissipative,

Proof: For any € > 0 , there isa 5> 0 such
that T(t)B,(K) C B,(9), 0<t<w. Since T(WKC K,
parts a) and b) are proved. Part ¢) follows from Theorem 2, and

parts a) and b).
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Corollary 9. If for some w >0, T(w) is weak
completely continuous and point dissipative then {T(t), t >0} is

local dissipative.

Proof: The set K in Lemma 1(b) may be chosen to

satisfy the hypothesis of Lemma 7(b). From the previous theorem,

we can state the following:

Theorem 9. If {T(t), t > 0} 1ic weak condensing for
t > 0, then the folldwing assertions hold:
ca)y. If {T(t), t+ >0} is compact dissipative, then

there is an equilibrium point;

b). If {7(t), t >0} is point dissipative and T(w)
is weak completely continuous for some w > O, then there is an

equilibrium point.

Corollary 10. If {T(t) = S(t) + U(t), t > 0]

then the following assertions hold:

a). If {a(t), t+>0} is compact dissipative, S(t)
is linear with spectrum contained inside the unit ball for t >0
and U(t) is weak completely continuous, then there is an equilib-
rium point.

b). If S(w) is completely continuous for some
w>0 and {T(t),.t > O} is point dissipative, there exists an

equilibrium point.



17-
5. TFunctional differential equations.

As an application of the previous results, we consider a special
class of neutral functional differential equations which are periodic
in time. Let 1 > 0 be a given real number, E' be an n-dimensional
linesr vector space with norm ||, C([a,b],E”) be the space of continu-
ous functions from [a,b] to E' with the uniform topology and let
C= ¢([ -r,0],EY). For o € ¢, |o| = SUP_rgpl ®(8)]. For any x€

C({-r,8),E), A >0, let x €C, t€[0,A], be defined by x,(6) =

t
x(t+9), -r < 6 < 0. Suppose DI RX C »E" is a continuous linear operator

Dp = 9(0)-g(t,9),

: 0
g(t,9) = [ [du(t,0)0(6)

(1) o
1] Tau(t,0)0(0)] < v(s)]o],
-S .

for >0, g€ C where B is an n X n matrix function of bounded
variation, ¥ is continuous and nondecreasing on [O,r], Y(0) = 0. If

fIRXC -E i% continuous, then a NFDE is a.relation
(2) 8 p(t,x,) = £(t,%,)
dt A SO 27g
A solution x = x(®) through © at time o is a continuous function

defined on [o-r,0+A), A > 0, such that X, =, D(t,xt is continuously

differentieble on (0,0+A) and (2) is satisfied on (o, 0+A). .We assume
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We assume a solution x(p) of (2) through any ¢ € C exists on {o-r,=),
is unique and x(¢p)(t) depends continuously on (p,t) € C X [o-1,),
In the following, we let TD(t,G): C -»C, t >0, be the continuous

linear operator defined by TD(t,o)@ = y£(¢), t > 0, where y = y(p) is

the solution of

d
(3) E-ED (t)yt) = 0’ yg = Q.

If D is w-periodic in 4, ¢, = {® €C: D(0,9) = 0}, then ¢, ise
Banach space with the topology of C, TD(w,O)I Cy ->CD; and

n A
TD(nw,O) = TD(W,O).

The operator D is said to be uniformly stable if there exist

constants K > 1, a > 0, such that

(4) |z, (¢, 0)0] < Ke"“(t'd)[@i, peCy, t> 5.

Notice the operator D9 = @(0) corresponding to retarded functional dif-

ferential equations is always stable.

" Remark., -The eonclusion of the mair--theorem below is-valid under -the weaker -

0 is stable. TFor

o -
" hypothesis that D(op) ='DO(¢) + [ A(8)p(8)d0" where D
-
simplicity in notaticn, we do not consider this more general case.

We need some results from Hale and Cruz [6]. It is shown in [6] +that

D wuniformly stable implies there exists an n X n matrix function B(%)
defined and of bounded variation on [-r,»), continuous fram the left,

B(t) =0, -r <t <0, and a constant M, such that
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(5) |TD(’G)<P| < MllCPl , >0, 9 €C, sup B(t) < My
t> -r

and, for any continuous function h: [0,=) —9En, the solution of the prob-

len
‘t
(6) D(t,X_t) = D(O,CP) + (j; h(S)dS, XO =
is given. by
t
(7) x, = T ()9 - é B, (h(s)as .

Furthermore, there exist n functions Pyseees?® in C such that

D(0,0) = I, the identity, vhere ¢ = (Pj,.ee,® ).

Let V¥: C —»C be the continuous linear operator defined by (o) =

D
® - oD().

Lemma 8 . If D is uniformly stable and f maps bounded
“sets of RxC into bounded sets of E -, then there is a.family
of continuous transformations Tl(t): C->C, t>0 which are

weak completely continuous and

def
T(t,0)0 = T(t)p = x.(0) = T (H)¥(®) + T,(t)e

If Dp = ¢{0) , then- T(t) is weak completely continuous for t > r .
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-

Proof: Equation (2) with initial value Xy, = ¢ is equivalent to
t
D(X%) = D(p) + é f(S,xs)ds, t > o? Xy = P,

which from (7) is equivalent to

. def . t def '
T(t)e = x. = T (£)¥(p) + T (£)eD(p) - Cf) By Fls,x)ds = T (£)¥(o)+1, (%).

It is now an easy matter to verify the assertions in the theorem.
Since the condition that D 1is uniformly stable implies the
linear operator S(®) = TD(w)W has spectrum contained inside the

unit ball, Corollary 6, Lemma 1b) and Corollary 10 imply

Theorem 4. If there exists an w > 0 such that f£(t+w,9) = £(t,9) for
all o€ C, f takes bounded sets of R X C >E" and system (2) is
compact dissipative, then there is an w-periodic solution of (2), If £
satisfies the same hypotheses and is independent of t, then there is a
constant function c¢ in .C such that f(e) = 0; that is, an equi-
librium point of (2). If D(9) = 9(0), then the same conclusions are

true for point dissipative. -
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