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A.bs tract

The inclusion problem for the class of monadic recursion schemes is

shown to be undecidable. The proof illustrates the close relationship

between monadic recursion schemes and deterministic pushdown automata.

The proof is extended to show that both the weak equivalence problem

for the class of monadic recursion schemes and the weak equivalence

problem for the class of free schemes without identity are undecidable.



Schemes can be viewed as abstract models for computer programs.

They allow us to study aspects of a computation that are independent of

the actual functions, variables and predicates involved. In this paper

we shall be concerned with one particular class of schemes—monadic

recursion schemes.

In a monadic program scheme there is exactly one variable x, a

set of unary functions (f_,...,f ) that assign values to the variable

x, and a set of unary predicates C p n » « » « » P ) that determine the flow

of computation. In addition, there is a set of function variables

(Fn,...,F.) that are defined below.

Let a term be defined in the usual way as constructed from functions

and function variables applied to the variable x, e.g.,

f1(F2(F4(fQ(x)))), x, F

A conditional term is any expression of the form

if p.(x) then I else T_,

where T.. , T- are terms or conditional terms. A function variable

definition is : .

v?here T is any term or conditional term. Since x is the only

variable, we will abbreviate
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F (x) «- if p2(x) then f (F2(x)) else x

as F.^ «- if p2 then f^ else ID,

vhere ID is the identity function.

We can now formally define a monadic recursion scheme S as a

5-tuple S = (V, grt ff>, SS,FQ), where

V = a finite set of function variables

<̂ "= a finite set of functions

^= a finite set of predicates

0=3 finite set of function variable definitions (exactly one

for each eleraemt in V)

F.. e V the distinguished initial; function variable

Unless othervrise noted "scheme" shall mean "monadic recursion scheme".

If we assign a value to the variable x and associate actual functions

and predicates with the scheme (e.g., f,(x) ̂  /x , P2(x) ̂  x = 0) , then

the scheme can be looked upon as an executable program. Such associations

are called int erpre t at ions. Formally, an interpretation I has domain D

of possible storage values (for the variable x), and a distinguished

element d,, e D used as the initial value of x (or, rather, the input).

Since the scheme is monadic, this is the only treatment of variables

necessary. For each function f, there is a total function I(f) : D ->- D,

and for each predicate p, a total function I(p) : D -*• {T,F}. So, for

any given interpretation I, the scheme S can be evaluated in the

normal sense by applying the initial function variable F_ to input dQ.

The computation either terminates, yielding a value called va!1(S), or

it diverges and .val-T(S) is undefined.
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5.

Given two schemes S and S', we say that S is less defined than

S1 (SES') iff for every interpretation I, whenever valT(S) is

defined, then val (S') is also defined and valj(S) = val-CS1). Because

of the obvious difficulty with proving properties over all interpretations,

we define a more restrictive type of interpretation. An interpretation

will be called free if for variable x, I(x) = e (i.e., the empty word),

and I(f)(a) = fa, where this is just the concatenation of the function

symbol f to the string a e Dom(I). Note" the resemblance to the

Herbrand Universe. In fact, such interpretations are often called Herbrand

interpretations in the literature. It is important to realize that we

have not restricted the predicates; because of this, we can obtain an

infinite number of free interpretations for any scheme. This notion of

free interpretation now yields the following useful result:

Lemma; Given any two schemes S and S1, S^S* iff for all fjree

interpretations I, whenever val_(S) is defined, then val._(S') is

defined and val (S) = val (S1).

Prooj. This is similar to the result on equivalence in [5].

To show that a problem is unsolvable, it 'Is often convenient to use

the unsolvability of the Post Correspondence Problem (PCP). The Post

Correspondence Problem is defined as follows: Let E be a finite set

containing at least two elements, and let f? be a non-empty sequence

of 2-tuples of strings in E . For example,



6.

where for i = l,...,n, x.,y, e £ ,

This is an instance of the PCP, The sequence of indices i-,...,i with

t > 1 is a solution to this instance of the PCP if x, . ..x. = y. ...y, .1l it xx it
It is well known that the PCP is undecidable.

In [6], Paterson states that the question of whether or not the

inclusion problem (SES1) for monadic recursion schemes is decidable is

open. The following theorem shows that this problem is undecidable. First

we shall sketch a proof of the known result that the inclusion problem for

languages accepted by deterministic pushdown automata (dpda) is undecidable.

This construction [6] will give an indication as to how we will later

prove the main theorem of this paper,

Let £ = {a,b> and let 8> = (x..,y..),..., (x ,y ) , where for

i = !,.«.,n, x.,y. e £ . Encode the indices l,.,.,n, as symbols

f, ,...,f , respectively. Define the following two languages L. ,L2 <^_

{a,blci$,f1,f2,...ffn}*

L7 = {f ...f ex. ...x $ | t > 1 and i ,..,,t. are indices
1 il it Xt 1 "

from 1 to n)

L9 = {f. ...f cw$ | t > 1 and i..,...,i are indices from
/ i 1 i t . - A C

R ,
1 to n, and w f y .,.y. /

*-
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7.

Both L.. and "L can be accep.ted by dpda's, and L CT iff there does

not exist a solution to the PCP for Sf> Thus, the inclusion problem for

dpda's is undecidable.

Theorem; The inclusion problem for monadic recursion schemes is undecidable.

Proof; Let Z = {a,b} and let -£P= (x, ,y,),..,, (x ,y ) where1 JL JL n n

for i = l,..,,n, x±>y± e r
+.

* ft
Let F = {A,B}, and define a horaoroorphism h; E -*• F determined by

h(a) = A, h(b) = B.

A . / , - f . A *

Let F = {A,B>, and define the function g; E •> FT as follows:

if zw e I where z E {a,b}, then

g(zw) - ^A h(vr) , if z - a

\ B h(w), if z = b

We will now define two schemes S, S1 such that S £-5* iff there does

not exist a solution to the PCP for .9*. We will see that SES' =>

{valT(S) | I is a free interpretation for S} 2

{val (S1) | I. is a free interpretation for S'}.

Let S = (V, SF) ̂ , 35, F ) , where

V = (F-jF,,...,F }UFU{X,U},

• ̂ "rf {a,b,c,$}U{f1,...ff }t

£P= {q, ,.. .,0 } U{p^,p, tp<.} , and 3) is defined as follows;j. n a D y

(The comments that follow point out the similarities to acceptance by

n dpda) ;



Page Intentionally Left Blank



8.

*• if q^ then hCx-^F^ else

•*- if q2 then h(x2)F]Lf2 else

F *• if q then h(x )F-f else c
n nn n 1 n

A •*• if p then a else U

B «- if pa then U else if

p, then b else U

X •«• if p then U else if
3.

p, then I! else if
b

P then $ else U

Mark the end of a computation. This
is similar to placing a marker on the
bottom of the pushdown store in a dpda.

h(x.) is a string that encodes x..

Note how this is like pushing the
string x. onto the pushdown store

when an index (f.)

input string. The operation c
the end of "reading" indices.

is read from the

indicates

Recall that h(x ) is a string in {A,B> .

We can view predicates p and asa' H>'
"testing if the symbol read from the input
string is an a, b, or $, respectively."
Thus, A is undefined ("rejects") unless
p is true; B is undefined unless p, is
3 D

true.

X is the leftmost "function variable, and
it is undefined unless p , p, are false

3 D

and p^ is true. That is, we have reached

"the end of the string".

U •*- U This is a loop, so that whenever U is
encountered in a computation, the value
of the scheme is undefined for that
interpretation.

It is clear from the definition of S that

(valT(S) | I is a free interpretation for

:{$x. /..x, cf' '̂ '..f. | for j=l,...,t, 1 < i < n}U{$c}
xl t t *! - J -
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Vie could have written a "simpler" scheme that would have also produced

the same set of values by using the following definitions of <3) :

•<- if q then else

•<- if q then x F, f else cn n n 1 n

It will become clear later why we have chosen not to proceed in this manner,

Define scheme S1 as follows: S' = (V , &t &>, &' ,Fp , where V =

{F^,...,F^>UrurU{T(T,E,tl} U{F.. ,...,Fn), and 35' is defined as follows:

Fl

F?
n

F2 *•

F •*•n

A -
if q. then g(y )F f else F'

if q2 then g(y2>F f2 else F'

if q then s(y )F,f else $c
n - • n 1 n '

if q, then h(y^F^f- else F '

if q2 then bCv^F.^
 else ̂ 3

if q then h(v )F,f else c
n ' n 1 n

The sane "comments" apply" as for scheme
S, except that the leftrapst function
variable is now marked with a A. Also,
F' has $c as the else clause instead ofn
c, since we do not have a leftmost
indicator X,

same comments as for scheme S
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A •*• if p then a else if
Si

p, then Tb else if

PA then ID else U

If p is true ("a is read from the
3.

input string"), then continue computing
for the remaining function variables.
Otherwise, if p. is true, then we

"accept the string by reading until
$ is reached" (via function variable
T). However, if p* is true, then the

"string is shorter than y. o..y.t , soxl xt
accept" by reducing to ID. All remaining
function variables also reduce to ID
until the leftmost is encountered (A or
B), which then computes $.

3 •*• if t> then Ta else if
~ a

p, then b else if dual of A above

then ID else U

if p then Ea else ifa
<i

p, then Tb else if

then $ else U

This .is the leftmost function variable
so if p i?i true, then we must checka
via function variable E whether the
"next symbol in the input string is
the endmarker $, indicating the end
of the string." Otherwise, "accept
the remaining string that ends in $."

B «- if p then Ta else if

p, then Eb else if

p<, then $ else U

dual of A above

T •«- if p then Ta else if
3

'p, then Tb else if

P then ID else U

This acts like a state in a dpda that
reads until the endmarker $; when
pt is finally true, the ID function
9

causes all remaining function variables
to also reduce to ID until the leftmost
is encountered (A or B), which then
computes $.
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T +• if p then Ta else if

• p, then Tb else if
D

PA then $ else U

Similar to T above, but T is
encountered only when no other
function variable remains to be
computed. Hence, when p^ is true,

the function $ is applied immedi-
ately.

E «- if p then Ta else if

p, then Tb else U

U ••*- U

This basically checks for the end-
marker $. p0 true indicates that

V

we have "read a string
$y. ...yj cfi ...f,- , so reject."
' il ^t t H
Otherwise, "accept" via T.

Loop,

It is implicit in the comments above that

{val (S1) | I is a free interpretation for S1} =

{$wcf. ...f. |for j=lt...,t, 1 < i. < n, and w E Ex,
t 11 " 3

. w j« y. ...y, }U{$C}xl \

The theorem follows from the undecidability of the correspondence

problem and the following claim.

Claim. S£S' iff there does not exist a solution to the PCP for SP t

Proof. <== Suppose that S is not less defined than S'. Clearly,

for any free interpretation I, S and S1 apply functions in

{f1,..T,f } in the same order, so we only need to check what happens in a

computation after the application of function c. The. only predicates

involved there are p , p, and p,... These can be vieued as testing
3. u v

if the function to be applied is an a, b, or $, respectively. Both
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S and S' are constructed so that each such function variable first

tests p then p, . and then r>6t Except where the loop function variable
a * D ' 9

U Is encountered, both schemes S and Sf behave such that if p is
3.

true then function a is applied; if p is false and p, is true then
a b

function b is applied; if p , p, are both false and p^ is true then
a D 9

function $ is applied and the. computation terminates. Thus, we can see

that there can be no free interpretation I such that val...(S) and

T(S') are both defined but valT(S) ̂  valT(S'). So, since it is not

the case that S£S', it is sufficient to consider free Interpretations

I such that val-CS) is defined and val_(S') is undefined. By the

reasoning above, we can see that this can only occur when the computation

reaches a point where function variable E (in scheme S') must be replaced

by its definition, where p , p, are false but p,; is true. Since S is
cl *" D y

not less defined than Sf, S is defined here, and S1 is undefined.

But this is the case where valT(S) = $wcf. ...f. , where w =

x. ...x. = y. ...y. . Thus, i..,...,i is a solution to the PCP for SP,

=> Suppose S ES'. Let I be any free interpretation such that

val (S) is defined—hence, val (S) = valT(S') = $x. ...x cf. ...f .
i i i xl 1t t 11

In scheme S1, immediately after application of the function c, we"

have cf. ...f, as the value of the variable, with the string of function

variables a = g(y.' )h(y'. )...h(y ) remaining to be computed according to
11 12 ' it

the interpretation I. We have four possible cases to consider:
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1) The interpretation I is such that all function variables in a are

computed with p true whenever function variables A or A are con-
ci

sidered (so that function a is applied) , and p is false but p, is
3. u

true whenever function variables B or B are considered (so that

function b is applied). Hence, the variable will eventually have value

wcf. ...f. , x-fhere w = y. ...v , and function variable E remains to
\ Xl "H t

be computed for interpretation I. But for valT(S') to be defined, we

must have either p true (where function a is applied) or p falsea . a

and p, true (where function b is applied). Hence, valT(S') =

$x. ...x. cf. ...f, , where y. . . .y . is a proper suffix of x. ...x. .
11 1t Y Xl xl Xt Xl t

Thus, i.,..,,i is not a solution to the PCP for SPt

- - - - - - - . A
2) The interpretation I is such that some function variable A or A

in a is computed with p false and p, true, so b is applied to
el . D

the value of the variable, Since va!T(S') = $x. ...x. cf. ...f. ,
Xl 1t Xt Xl

3z-,z,j,z« e Zx such that

x. ...x = z.bz- and y ...y. = z,az9.
xl 1t l ±l t J

Hence, i1,..,,i is not a solution to the PCP for

3) The interpretation I is such that some function variable B or B

in a is computed with p true, so a is applied to the value of the
3-

variable. ..This is just the dual of 2), so again i....,,i is not a

solution to the PCP for SP,
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4) The interpretation I is such that some function variable A, B,

A, or B in a is computed with p , p, false and p^ true. All

function variables (A, B) in a remaining to be computed are replaced

by ID until only one function variable (A or B) remains to be computed.

[Note that S* is constructed so that there is exactly one occurrence of

either A or B in any computation.] Since we still have p , p,

false and p* true, A and B cause function $ to be applied, thus

ending the computation. Hence va!T(S') = $x. ...x. cf. ...f. , where
T * . * . 1

x. ...x. is a propejr suffix of y. ...y. • Thus, i..,...,i is not

a solution to the PCP for &1. Q

Two other relations between schemes are the following: _ . .

Stronp Equivalence. S = S' iff for every (free) interpretation I , either

both valT(S) and va!T(S') are undefined, or both are defined with
-L —~-""" JL

valI(S) = vales').

Weak Eo uivalence. S = S' iff for every (free) interpretation I either

valT(S) or valT(S') is undefined, or both are defined with valT(S) =
JL •*"•"" JL • i.

The three relations described in this paper ( = , 9»~) -^re all

re^asonahle relations in the terminology of [5]. That is, let S and

Sf be any two schemes and ^ be any relation between S and S'.
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Then ^ is reasonable on the class of monadic recursion schemes if for

any two schemes S and S',

1) S = S1 => S -v S1

2) S ̂  S1 => S = S'

We have just shown the undecidability of the inclusion problem for

monadic recursion schemes. The decidability of the strong equivalence

problem for schemes remains open, however the construction of the above

proof gives us another result.

Corollary. The Xv'eak equivalence problem for monadic recursion schemes

is undecidable.

Proof. The construction is similar to the one above, except now

define the function variable E in scheme S1 as

E •*- if p then Ta else if

A

p, then Tb else ifb

PX then a else U

A scheme is _free iff for every free interpretation the computation

of the scheme has no predicate that ever tests the variable x with the

same value more than once. Ashcroft, Manna, and Pnueli [1] prove that

it is decidable whether or not a scheme is free. In the proof of the

.main theorem above, .scheme S is free, but scheme S' is not free. The

non-freedom of Sf is introduced by the use of the ID function in the

definitions of function variables A, B and T. This non-freedom is
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essential to the proof. The strong equivalence problem for free schemes

is known to'be decidable [1], whereas the inclusion problem for free

schemes is open.

Korenjak and ilopcroft [4] define a type of pushdown automaton called

an s-machine. This is a real-time (no e-moves) deterministic pushdown

automaton with only one state that accepts by empty store. The inclusion

problem for languages accepted by s-machines is still open. By appro-

priate encoding, it can be shown that this problem is equivalent to the

inclusion problem for free schemes with no ID function.

Theorem. The weak equivalence problem for free schemes without identity

is undecidable.

Proof. The proof technique is similar to that used in the theorem

above. Let I, <$?, h and S be defined as in the proof of the previous

theorem. We will define a new scheme S" such that S - S" iff there

does not exist a solution to the PGP for SP*

S" = (V",̂ ",̂ '">2)",F̂ ) where

V" = {F|jtFj,...fFj|}U{G;L,....lGn}U{A,BfX".U}

&" - if1 fn}U{a,b,c,$}

&" = {q1,...,qn}U{pa,Pb»P$>

and Q)" is defined as follows?
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F" •*- if q1 then h(y.)G..f.. else .F" \ Same comments as for scheme S,
| except the else clause of F" is

F" <- if q2 then h(y )G f^ else F" I now a loop.

F" •*- if q then h(y )G..f else U )
n n n l n

•*- if Q.J, then hCy^C^ else G2

*• if q2 then h(y2)G f2 else G_ Same comments as F..,..., F for
scheme S.

G •*- if q then h(y )G.f else c
n n -n 1 n

A •*- if p then a else U
Si

B •<- if p then U else if Same comments as for scheme S.

p, then b else U

X" •*• if p then U else if
3

p, then U else if

PA then a else U

X" is always the leftmost function
variable to be computed, so terminate
only when p , p, false and p^
true.

U «- U | Loop.

We can see that for any free interpretation I with both val (S) and

valT(S") defined, we have val (S) = $wcf ...f. and valr(S") =

awf. . ...f. , where w = x. ...x = y ...y. . Also, if î ...,!
' , xt _ . 1 Xl t 1 t ^
is a sbiuEion tp'the PCP for £Pt then there exists a free interpretation

I such that valT(S) = $x. ...x cf. ...f and val (S") =
xl t xt 1.
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av.« • • «Yj cf. « • » £ • <• Hence, S = S" iff there does not exist a
11 it t 3'1

solution to the PCP for £P '. Thus, the undecidahility of the weak

equivalence problem for free schemes without ID follows from the

undecidability of the PCP. Q . •

An immediate consequence is:

Corollary. The weak equivalence problem for free schemes is undecidable.

There are subclasses of monadic recursion schemes that have a known

decidable inclusion problem. For example, v;e can subclassify monadic

recursion schemes as linear [3] if each term in a function variable

definition contains at most one function variable. The inclusion and

x<rea!c equivalence problems for linear schemes (not necessarily free) are

shown to be decidable in [2],
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