//,,/ . ,,,/,//,/m N
L
. ,//,,/«//7

SC

100

o

,7,,,,,,,”;,
L // N
: ,NZ/,%//,, . .

o

/:w

\ /2,/(7/// ﬂ
///,//M/,,,/,C N \ D \ /& L
/// \ DMl .) N L T ax,,,,uf, \
L L \ \ , , .

L
.
wﬁ//,% .

L

THE TNCLUSION PROBLEM FOR
MONADIC RECURSION SCHEMES'

by
Emily Perlinski Friedman

2-73

Center for Research in Computing Technology
Harvard University, S

Cambridge, Massachusetts 02138

+T‘nis research has been supported in part by the National Science
Foundation under Grant NSF GJ-30409 and by the National Aeronautics
and Space Administration under Grant NGR 22~007-176,

Page Intentionally Left Blank

Abstract

The inclusion problem for-the'class of monadic recursion schemes is
shown to be undecidable. The proofAillustrates the close relationship
Between monadic recursion schemes .and deterministic pushdown automata.
The proof is extendgd to show that both the weak equivalence problem
for the ciéss of monadic recursion schemes and the weak equivalence

problem for the class of free schemes without identity are undecidable.

Schemes can be viewed as abstract models for computer programs.
They allow us to study aspects of a computatioq that are independent of
the actual functions, variables and pfedicates involved., In this paper
we shall be concerned with one particular class of schemes--monadic
recursion schenes,

In a monadic program scheme-there is exactly one variable x, Va
set of unary fuﬁctions (fo,...;fm) that assign values to the variable
x, and a set of unary predicates »(po,...,pn) th#t determine the flow
of computation, In addition, there is a set of function variables
(Fysees,Fy) that are defined below. SR
Let a term be defined in the usual way as constructed from functions

and function variables applied to the variable x, e.g.,

CE (R (F(F G, x Fy ()

" A conditional term is any expression of the form

if pi(x) then Tl. else TZ’

where Tl’ T2 are terms or conditional terms. A function variable

definition is:
v, <~ T

vhere T 1s any term or conditional term. Since =x is the only

variable, we will abbreviate

»age Intentionally Left

Blar"

4,

Fl(x) + if pz(x) then fl(Fz(x)) else x
as Fl « if Py then leQ else ID,

where ID is the identity function.

-We can now formally define a monadic recursion scheme S as a

5-tuple S = (V, ¥, &P, @,FO) , where

V = a finite set of function variables
& = a finite set of functions
= a finite set of predicates -
@D = a finite set of function variable definitions (exactly one
for each elememt in V)

Fore V the distinguished initial function variable

Unless otherwise noted ''scheme" shall mean "monadic recuréioﬁ:scheme".

If we assign a value to the variaﬁle x and associate actual functions
énd predicates with the scheme (e.g., fl(x) v oYX, pz(x) vox o= O), then
the scheme can be looked upon as an executable program. Such associations

are called interpretations., Formally, an interpretation I has domain D

of possible storage values (for fhe variable x), and a distinguished
glement do.e D wused as the initial Qalue of x (or, rather, the input).
Since the scheme is monadic, this is the only treatment of variables
necessary. For eacb function £, there is a total function I(f): D » D,
and for each predicate p, a total function I(p): D » {T,F}. So, for
any given interpretation I, the scheme S can be evaluated in the
normal sense bi abpiying the»initial function variable .Fo to input dO.
The compﬁtation either terminates, yielding a valqe_called valI(S), or

it diverges andf‘vali(s) is undefined.

Page Intentionally Left Blank

5.

Given two schemes S and S', we say that S is less defined than
S' (SES') 4iff for every iﬁterpfetation I;- wvhenever valI(S) is
defined, then valI(S') is also defined and valI(S) = ValI(S'). Because
of the obvious difficulty with proving properties over all interpretations,
we défine a more restri;tive type of interpretation., An intefpretation
will be called free if for variable x, I(x) = ¢ (i.e., the empty word),
and I(%)(a) = fa, where tﬁis isbjust the concatenation of the function
symbol f to the string a € Dom(I). 'Note'the resemblance to the
Herbranﬂ Universe, In fact, such interpretations are often called Herbrand
interpretations in the literature} It is imbortént to realize that we
have not restricted the predicates; because of this, we can obtain an
~infinite number of free interpretations for any'scﬁémEJ " This notion of

free interpretation now yields the following useful result:

Lemma: Given any two schemes S and S', S §S' iff for all free
interprétations I, whenever valI(S) is defined, then valI(S') is
defined and valI(S) = valI(S').

Proof. This is similar to the result on equivalence in [5].

To show that a problem is unsolvable, it és often convenient to use
the unsolvability of the Post Correspondence Problem (PCP), The Post
Correspondence Problem is defined as follows: Let I be a finite set
containing at least two elements, and let &% be a non—empty sequence

: +
.- of 2-tuples of strings in [. For example,

F = (xl’yl)"‘A"(Xn'yn)
+
where fot i = l’-.o’n’ xi’yi e X,

This is an instance of the PCP. The sequence 6f indices il,...,it with
t > 1 is a solution to this instance pf the PCP 1if xil...xit = yil...yit.
It 15 well known that the PCP is undecidable,

In‘[6], Paterson statesvthat the question of whether or not the
inclusion problem (S ES') for mqnadic recufsion schemes is decidable is
6pen. The following theorem shows that this problem is undecidable, First
we shall sketch a proéf of the known result that the inclusion problem for
languages accepted by deterministic pushdown automata (dpda) is undecidable.

This construction [6] will give an indication as to how we will later

prove the main theorem of this paper,
Let Z = {a,b} and let &= (Xl’yl)°°"’(xn‘yn)’ where for
i=1,.,04,0, X;0¥, ® Z+; Encode the indices 1,...,n, as symbols

fl,..;.fn, respectively, Define the following two languages Ll,L2§§

%

{a,b,c,$,fl,f2,...,fn}

oo.fi CX?,..;X? $ ‘ t : 1 and il,a.opti are indices
1 t t 1

L, = {f

1 i

from 1 to n)

L, = {fi ...fi ews$ | ¢t > 1 and 11,...,1t are indices from
1 t
R
1 to n, and w ¢ Yg eee¥y }
t

. Pagé Intentionally Left Blank

Both L1 and L2 can be accepted by dpda's, and L1§5L2 iff there does

not exist a solution to the PCP for .. Thus, the inclusion problem for

dpda's 1s undecidable,

Theorem: The inclusion problem for monadic recursion schemes is undecidable.

Proof: Let I = {a,b} and let &¥= (xl,yl),...,(xn,yn) where

. +
for i = 1,..4,n, Xy, €I,

- : *® E3
~Let T = {A,B}, and define a homomorphism h: I =+ TI' determined by

h(a) = A, h(b) = B,

. A A ’ Ak
Let T = {4,B}, and define the function g: if o tr¥ s follows:

if zwe I' where z € {a,b}, then

g(zw) = {'3 hiw), if z = a

B h(w), if z

i

b

We will now define two schemes S, S' such that SES' iff there does

not exist a solution to the PCP for #. We will see that SES' =

{vall(S) l I 1is a free interpretation for S} <

{valI(S') [T is a free interpretation for S'},
Let S = (V, &%, 9’,@,1’0), where

v = {Fo,Fln..,Fn}UFlJ{XJU,

' g—/ {a,b,c,$}U {fl,ou-,fn},

3?5-{ql;.;{,qn}Lj{pa,pb,p$}, and & is defined as follows:

(The comments that follow point out the similarities to acceptance by

a dpda):

"~ 'Page Intentionally Left Blank ~ "~

F, « XF

Fl « 1f a1 then h(xl)Flfl
7F2 “« 1if q, then h(xz)Flf2
Fn « if q, then h(xn)Flfn
A<« if P, then a else
B <« if P, then U else

Py then b else
¥ <« if P, then U else

Py then U else

Pg then $ else
U<« U

It

else F2

else F3

else ¢
U

if

if

if

8.

Mark the end of a computation., This
is similar to placing a marker on the
bottom of the pushdown store in a dpda.

h(xi) is a string that encodes Xg

Note how this 1s like pushing the
string x; onto the pushdown store

when an index (fi) is read from the

input string., The operation ¢ indicates
the end of ''reading" indices.

Recall that h(x,) is a string in {A,B}+.
We can view predicates Pos Py and Pg as

"testing if the symbol read from the input
string is an a, b, or $§, respectively."
Thus, A is undefined (''rejects') unless
10 is true; B is undefined unless Py is

true,

X i1s the leftmost function variable, and
it is undefined unless P,s Py are false
and p$ is true. That is, we have reached

"the end of the string'.

This 1s a loop, so that whenever U is
encountered in a computation, the value
of the scheme is undefined for that
interpretation,

is clear from the definition of S that

{vall(S) | T 1is a free interpretation for S} =

TS

) {sX, seo0X
1

1

ESFRAE

t

.

| for j=1,...,t, ‘1 < ij < n}U{Sc}

9.

We could have written a "simpler" scheme that would have also produced

the same set of values by using the following definitions of & :

Fl « if 9y then .xlFlfl else F2

F <« if gq then x F.f else ¢
n n n 1'n

1

It will become clear later why we have chosen not to proceed in this manner,
Define scheme S' as follows: S' = (V',gf,g?,éﬁ',Fi), wvhere V' =

{Fi,...,FA}L)FL)%(){T,%,E,U}(J{%l,...,ﬁn), and D' is defined as follows:

A

Fi + if g, then g(yl)Flfl else Fé The same comments apply as for schene
R S, except that the leftmost function
Fé +« if 95 then g(yz)Flfz else Fé variable is now marked with a ~. Also,
. Fé has $c as the else clause instead of

¢, since we do not have a leftmost
. R : indicator X,

F' « if F §

n if q_ then g(yn) 1fn else Sc

x>

F, < if q, then h(y)P £, else

>

F, « if q, then h(yz)frlf2 else

same comments as for scheme S

P« if q, then h(yn)ﬁlfn else ¢

-Page Intentionally Left Blﬂa_:r}_I_(:]

A+« if

B <« if

A< if

B« if

T « 4.f

Pa

Py,

Py

then a else if ‘\

then Tb else if

then

then
then

then

then

then

* then

then

then

then

then

then

then

ID else
Ta else
b else
ID elsge
Ea else
A

Tb else
S else
%a else
Eb else
S else
Ta else
Tb else
ID else

U

if

if

if

if

if

if

if
if

u

19,

If P, is true ("a 1is read from the

input string"), then continue computing

for the remaining function variables.

Otherwise, if p, 1is true, then we

b
"accept the string by reading until

$§ is reached" (via function variable
T). However, 1f Ps 1s true, then the

“"string is shorter than c see S0
g yll Yit’

‘accept' by reducing to ID. All remaining
function variables also reduce to ID
gntil the leftmost is encountered (A or
B), which then computes $,

dual of A above

This is the leftmost function variable
so 1if P, is true, then we must check

via function variable E whether the
"next symbol in the input string is
the endmarker $, indicating the end
of the string.'" Otherwise, "accept
the remaining string that ends in $."

dual of A above

This acts like a state in a dpda that
reads until the endmarker $; when
Pg is finally true, the ID function

causes all remaining function variables
to also reduce to ID until the leftmost
is encountered (A or ﬁ), which then
computes . g

" Page Intentionally Left Blank

11.

a . A
% + if P, then Ta else if Similar to T above, but T 1isg
N ' encountered only when no other
Py then Tb else if function variable remains to be

computed, Hence, when p$ is true,

Pg then § else U the function $ is applied immedi-

ate:l.y:

E<« 1if »p then Ta else if This basically checks for the end-
marker §, P, ‘true indicates that

Py then Tb else U we have "read a string

Syil...yitcfit...fil, so reject,"

. A
" Otherwise, "accept" via T,

U<U : } Loop,

It is implicit in the comments above that

{val (s") | T is a free interpretation for S'} =

{$wcfi '°'fi |for J=lyeee,ty 1 5’11 <n, and we Z*,
t 1 <o »
W # Y, ooy, PU{Sc}
1 e

The theorem follows from the undecidability of the correspondence

problem and the following claim,

Claim, SE£S' iff there does not exist a solution to the PCP for &,
Proof, <= Suppose that S 1is not less defined than S'. Clearly,
for any free interpretation I, S and S' apply functions in

(£ ,.(T;fn}'in the same order, so we only need to check what happens in a

1
computation after the application of function ¢. The only predicates

involved there are P.s Py and Pge These can be viewed as testing

if the function to be applied is an a, b, or $, respectively. Both

~ Page Iﬁteﬁffénally Left Blank

12,
S and S' are constructed so that each such function variable first

tests P then Py

and then p$. FExcept where the loop function variable
' is encountered, both schemes S and S' béhave such that if P, is
true then function a i1is applied; if P, is false and Py, is true then
function b 1is applied; if p.» Py are both false and Py is true then
funcfion $ 1s applied and the computation terminates. Thus, we can sece
that there caﬁ be no free interpretation I such that valI(S) and
valI(S') are both defined but valI(S) #'valI(S'). So, since it is not
the case tﬁat Scs', it is sufficient to consider free interpretations

I such that valI(S) is defined and QalI(S') is undefined, By the
reasoning above, we can see that this can only occur when the computation
reaches a point where function variable E (in scheme S') must be replaced
by its definition, where P.» Py are false but p$ is true., Since § is.
not less defined than S', S is defined here, and S' is undefined.

But thisvis the case where valI(S) = $wcfi ...fi , Wwhere w =

t 1

) = e . ’ i o i (Q
X X, Yy e yit Thu§, 1y ’it Ts a solutlon to the PCP for

i ¢ 1

=> . Suppose SES', Let I be any free interpretation such that

. g = 1y -
yalI<S) is defined=-hence, valI(S) = valI(S) $xil...xitcfit...fil.
In scheme S', immediately after application of the function ¢, we-

have cf, ...fi as the value of the variable, with the string of function
g, 08 e Y.i?lf‘,t;.-;";._';l.:,,-;yp T _
variablés o = g(yi‘)h(yi)...h(yi) remaining to be computed according to
: ‘1 2 t :

the interpretation I, We have four possible cases to consgider:

... . _.Page.Intentionally Left Blank

13.

1) The inferpretation I i; such that all function variables in a are
computed with pé true whenever function variables A or A are con-
sidered (so that function a 1is applied), and P, is false but Py is
true whenever function variables B or 5 are considered (so that
function b 1is applied)., 1ience, the variable will eventually have value
WCflt...f'l” vhere w =y l...yit, and function variable E remains to
be computed for interpretation I, But for valI(S') ‘to be defined, we
must have either pé true (where function a is applied) or P, false

and p;, true (where function b is applied)., Hence, valI(S') =

$X, seex, ¢f, ,..f, , where Y; ...yit is.a proper suffix of Xy eeaXy o

1 LT *1 1 1 t

Thus, il""’it is not a solution to the PCP for ¥
. . R Lol . Y oY
2) The interpretation T is such that some function variable A or A
in o is computed with P, false and p, true, so b 1s applied to
the value of the variable., Since valI(S') = $xi vo Xy cfi veof,

) 1 t t 1
321,22,23 e £ such that

X, oneX = z.bz and Y, .ee¥ = Z,8Z,
i, it 1772 il it 3772

Hence; il,...,it is not a solution to the PCP for %

A

3) The interpretation I is such that some function variable B or B
in a 1s computed with P, true, so a 1s applied to the value of the
variable, . This is_ just the dual of 2), so again il...,it is not a

solution to the PCP for &

" Page Intentionally Left Blank =~ =~~~

14,

4) The interpretation I 1s such that some function variable A, B,

n

ﬁ, or B in a is computed with Py Py false and Py true, All
function variables (A, B) in a remaining to be computed are replaced
by ID until only one function variable (R or ﬁ) remains to be computed.

[fote that S' is constructed so that there is exactly one occurrence of

either A or B in any computation.] Since we still have P.s Py

false and p$ true, A and B cause function $ to be applied, thus

ending the computation, Hence wval (S') = $x, ...%x, cf, «s.f, , where
I 1y e v 1

is a proner suffix of Vi ees¥y oo Thus, il"'°’i is not
t

X, oooXi t

‘1 t 1
a solution to the PCP for &, u

Two ‘other relations between schemes-are the following: = =

- Strong Eqﬁivalence. S = 8' {iff for every (free) interpretation I , either
both valI(S) and valI(S') are undefined, or both are defined with

= T '
valI(S) \alI(S Y.

Weak Fouivalence, S = §' {iff for every (free) interpretation I either

valI(S) or valI(S’) is undefined, or both are defined with valI(S) =
valI(S')f

"

The three relations described in this paper (=, ©,=) are all

reasonable relations in the terminology of [5]. That is, let S and

S' be any two schemes and ~ be any relation between S and S§'.

Page Intentionally Left Blank

15.

Then v 1is reasonable on the class of monadic recursion schemes if for

any two schemes S and S',

1) s §' => § ~ §'

2) S~ S' = § =§'

Ve have just shown the undecidability of the inclusion problem for
monadic recursion schemes, The decidability of the strong equivalence
problem for schemes remains open, however the construction of the above

proof gives us another result,

Corollary. The weak equivalence problem for monadic recursion schemes
D e pd
is undecidable,

Proof. The construction is similar to the one above, except now

define the function variable E in scheme S' as

A
E <« 1if 1 then Ta else if
A
Py then Tb - else if
then a else U o | :
ps A
A scheme is free iff for every free interpretation the computation
of the scheme has no predicate that ever tests the variable x with the
same value more than once, Ashcroft, Manna, and Pnueli [1] prove that
it is decidable whether or not a scheme is free, In the proof of the
.main theorem above, scheme S 1is free, but scheme S8' 1is not free, The
. . . Lo

non-freedom of S' is introduced by the use of the ID function in the

definitions of function variables A, B and T. This non-freedom is

. - Page Intentionally Left Blank

16,

esséntial to the proof. The strong equivalence problem for free schemes
is known to be decidable [1]; whereas the inclusion problem for free
schemes 1s open.

Korenjak and Hopcroft [4]:define a type of fﬁshdown automaton éalled
an s-machine. This is a real-time (no e-moves) deterministic pushdown
automaton with only one state that accepts by empty store. The inclusion
problem for languages accepted byvs—machines is still open. By appyé—
priate encoding, it can be shown that'this problem is equivalent to the

inclusion problem for free schemes with no ID function.

Theorem., The weak equivalence problem for free schemes without identity

is ‘undecidable, S - - R

Proof. The proof technique is similar to that used in the theorem
above, Let X, &%, h and S be defined as in the proof of the previous
btheorem. We will define a new scheme 8" such that S = S" iff there

does not exist a solution to the PCP for &,

S" = (V",QT",S”",QD",FB) where

]

v {FS,F", cos ,F:}) {cl,.,. . ,Gn} U{a,s,x",U}

1
g-u = {flpubagfn}U{a’b,C,s}

]

7" {ql""’qn}(J{pa’pb’p$}

and @" is defined as follows:!

Page Intentionally Left Blank

1

17,

e ynptt
0" ¥
F! « if q, then h(v,)G,f. else F! Same comments as for scheme S,
1 1 1 1 1l : 1" .
except the else clause of Fn is
" o« 3 1 .
F2 if 4 then h(yZ)le else F3 now a loop
"M o« 4
Tn if 4 then h(y)Gl n else U
<
G1 if a4 then h(vl)Gl 1 else C2
P
G2 if q then h(yZ)Cl 2 else G 73 Same comments as Fl,...,Fn for
¢ scheme S,
<
Gn if a, then h(yn)clf else ¢
A€ 1f pa then a else U - -
B+ if P, then U else if Same comments as for scheme S,
Py then b else U
X"+ if P, then U else if X" is always the leftmost function
. variable to be computed, so terminate
Py then U else if only when Py Py false and Pg
true.
Pg then a else U
U<«U } Loop.
WYe can see that for any free interpretation I with both valI(S) and
val (S") defined, we have wval_(S) = Swcf, ..,.f and wval_(S8") =
I I il il I
awf, ...f, , where w = x, ...%X, =¥, +ssy. «» Also, 1if 1.,...,1
T 1y e i TR _ L t
is a solution to the . PCP for &, then there exists a free interpretation
- ~ o 1} &=
I such that valI(S) = $xi ...“itcfit...fil and valI(S)

18,

ayil...yi cf, «uof; o Hence, S = §" 41ff there does not exist a
1 t t 1
solution to the PCP for & . Thus, the undecidability of the weak

equivalence problem for free schemes without ID follows from the

undecidability of the PCP, [3
An immediate consequence is:
Corollary, The weak equivalence problem for free schemes is undecidable,

There are subclasses of monadic recursion schemes that have a known
decidable inclusion problem, For‘example, we can subclassify monadic
recﬁrsiﬁﬁ séheﬁesAaé lineat [Bj if eaéh téfﬁAiﬁ'a;fﬁnétiéd variable
definition contains at most one function variable. The inclusion and
weak equivalence problems for linear schemes (not necessarily free) are

shown to be decidable in [2].

Page Intentionally Left Blank

l:c

BIBLIOGRAPRY

E. Asheroft, Z. ™anna, and:A, Pnueli, Decidable Properties of Monadic
Tunctional Schemas, International Svmposium on the Theorv of Machines
and Computation, Haifa, Israel, August 1971,

E,P, Friedman, Decidab1e>Properties of Linear Recursion Schemes, in
preparation, ' o

S.J. Garland and D.C. Luckham, On the Fquivalence of Schemes, Pro=

ceedings Fourth Annual ACH Symposium on Theorv of Computing, 1972,
Pp. 65-72, :

A.J. Korenjak and J.E. Hovcroft, Simple Deterministic Languages,
TEEE 7th Annual Svmposium on Switching and Automata Theory, 1966,

PP [36"46 L]

D.C. Luckham, D,M,R, Park, and ¥.,S, Paterson, On Formalised Computer
Programs, JCSS 4, 1970, pp. 220=-249,

4,5, Paterson, Decision Problems in Computational Models, Proc. ACH
Conference on Provinz Assertions about Procrams, 1972, pp.- 74~82, -

Page Intentionally Left Blank

